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ABSTRACT

5291003063:  Petrochemical Technology Program
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and Dissociation Kinetics with the Presence of Promoters for Gas
Storage Application
Thesis Advisors: Assoc Prof. Pramoch Rangsunvigit, Dr. Santi
Kulprathipanja, Asst. Prof. Praveen Linga, and Asst. Prof,
Boonyarach Kitiyanan, 172 pp.
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Gas hydrate is of interest for the process to store and transport gas.
However, the slow kinetics and the storage capacity remained the obstruction. In this
study, the hydrate promoters, including activated carbon, tetrahydrofuran (THF) and
sodium dodecyl sulfate (SDS), were investigated for methane hydrate formation and
dissociation kinetics. The experiments were conducted in a quiescent condition in a
batch reactor at the desired experimental conditions. The results showed that all
promoters significantly enhanced the Kinetics of methane hydrate formation
compared to pure water. In other words, the addition of porous media could increase
the contact area between gas and liquid, SDS reduced the interfacial tension of the
liquid phase, while THF shifted the methane hydrate phase equilibrium to higher
temperature and lower pressure. A small particle size of activated carbon showed the
fastest induction time; however, the highest gas consumption was observed with a
large particle size. In contrast, a small particle size showed the fastest hydrate
dissociation. Moreover, the surface treatment of activated carbon resulted in the
increase in the gas consumption. In the system of THF, at the same concentration,
increasing the experimental temperature led to the decrease in the kinetics of hydrate
formation but the increase in the gas consumption; however, it was not stable at high
temperature. The higher THF concentration exhibited a faster induction time than
that of the lower concentration. Mixed THF-SDS showed the synergetic effects on
the methane hydrate formation kinetics.
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