REFERENCES

- Abbasi, T., Tauseef, S. M., and Abbasi, S. A. (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renewable and Sustainable Energy Reviews, 16(5), 3228-3242.
- Bartacek, J., Zabranska, J., and Lens, P. N. (2007) Developments and constraints in fermentative hydrogen production. <u>Biofuels</u>, <u>Bioproducts and Biorefining</u>, 1(3), 201-214.
- Chandra, R., Takeuchi, H., and Hasegawa, T. (2012) Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462-1476.
- Cheng, C.L., Lo, Y.C., Lee, K.S., Lee, D.J., Lin, C.Y., and Chang, J.S. (2011)

 Biohydrogen production from lignocellulosic feedstock. <u>Bioresource</u>

 <u>Technology</u>, 102(18), 8514-8523.
- Das, D. and Veziroğlu, T.N. (2001) Hydrogen production by biological processes: a survey of literature. <u>International Journal of Hydrogen Energy</u>, 26(1), 13-28.
- Eaton, A.D., Clesceri, L.S., Rice, E.W., and Greenberg, A.E. (2005) <u>Standard Methods for the Examination of Water and Wastewater</u>. Washington, D.C.: American Public Health Association.
- Fan, Y.T., Zhang, G.S., Guo, X.Y., Xing, Y., and Fan, M.H. (2006) Biohydrogen-production from beer lees biomass by cow dung compost. <u>Biomass and Bioenergy</u>, 30, 493-496.
- Fascetti, E., D'Addario, E., Todini, O., and Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids from the fermentation of source selected municipal solid wastes. <u>International Journal of Hydrogen Energy</u>, 23(9), 753-760.
- Gadow, S.I., Li, Y.Y., and Liu, Y. (2012) Effect of temperature on continuous hydrogen production of cellulose. <u>International Journal of Hydrogen Energy</u>,37(20), 15465-15472.

- Gao, D.W., An, R., Tao, Y., Li, J., Li, X.X., and Ren, N.Q. (2011) Simultaneous methane production and wastewater reuse by a membrane-based process:

 Evaluation with raw domestic wastewater. <u>Journal of Hazardous</u>
 Materials, 186(1), 383-389.
- Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27(11), 1339-1347.
- Intanoo, P., Rangsunvigit, P., Namprohm, W., Thamprajamchit, B., and Chavadej, J. (2012) Hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor under thermophilic operation: Nitrogen and phosphorous uptakes and transformation. <u>International Journal of Hydrogen Energy</u>, 37, 11104-11112.
- Kapdan, I.K. and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569-582.
- Ke, S.Z., Shi, Z., and Fang, H.H.P. (2005) Applications of two-phase anaerobic degradation in industrial wastewater treatment. <u>International Journal of Environment and Pollution</u>, 23(1), 65-80.
- Kim, D.H., Lee, D.Y., and Kim, M.S. (2011) Enhanced biohydrogen production from tofu residue by acid/base pretreatment and sewage sludge addition. International Journal of Hydrogen Energy, 36(21), 13922-13927.
- Liu, D.W., Liu, D.P., Zeng, R.J., and Angelidaki, I. (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research, 40(11), 2230-2236.
- Luo, G., Xie, L., Zhou, Q., and Angelidaki, I. (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresource Technology, 102(18), 8700-8706.
- Magnusson, L., Islam, R., Sparling, R., Levin, D., and Cicek, N. (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. <u>International Journal of Hydrogen Energy</u>, 33(20), 5398-5403.
- Metcalf, L. and Eddy, H.P. (2003) <u>Wastewater Engineering: Treatment and Reuse</u>. New York: McGraw-Hill.

- Mohan, S.V., Mohanakrishna, G., and Sarma, P.N. (2008) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. <u>International Journal of Hydrogen Energy</u>, 33(9), 2156-2166.
- Nathao, C., Sirisukpoka, U., and Pisutpaisal, N. (2013) Production of hydrogen and methane by one and two stage fermentation of food waste. <u>International</u> Journal of Hydrogen Energy, 38(35), 15764-15769.
- Pisutpaisal, N., Tanikkul, P., and Boonyawanich, S. (2010) Recovery of hydrogen and methane from wastewater using a two-stage UASB system. Research <u>Journal of Biotechnology</u>, 5(2), 5-13.
- Poramacom, N., Ungsuratana, A., Ungsuratana, P., and Supavititpattana, P. (2013)

 Cassava Production, Prices and Related Policy in Thailand. <u>American International Journal of Contemporary Research</u>, 3(5), 43-51.
- Riis, T., Hagen, F.E., Vie, J.S.P., and Ulleberg, Ø. (2006) <u>Hydrogen Production and Storage: R&D Priorities and Gaps.</u> France: International Energy Agency.
- Sangyoka, S. (2006) Bio-hydrogen Production from cassava starch manufacturing wastewater. Ph.D. Dissertation, Khon Kaen University, Khon Kaen, Thailand.
- Sarada, R., and Joseph, R. (1996) A comparative study of single and two stage processes for methane production from tomato processing waste. <u>Process Biochemistry</u>, 31(4), 337-340.
- Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., and Adani, F. (2012) Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. <u>Environmental Science & Technology</u>, 46(15), 8502-8510.
- Searmsirimongkol, P., Rangsunvigit, P., Leethochawalit, M., and Chavadej, S. (2011) Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor.

 International Journal of Hydrogen Energy, 36(20), 12810-12821.

- Sreethawong, T., Niyamapa, T., Neramitsuk, H., Rangsunvigit, P., Leethochawalit, M., and Chavadej, S. (2010) Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effects of COD loading rate, nitrogen content, and organic acid composition. Chemical Engineering Journal, 160(1), 322-332.
- Tähti, H., Kaparaju, P., and Rintala, J. (2013) Hydrogen and methane production in extreme thermophilic conditions in two-stage (upflow anaerobic sludge bed) UASB reactor system. <u>International Journal of Hydrogen Energy</u>, 38(12), 4997-5002.
- Teghammar, A. (2013). Biogas Production from Lignocelluloses: Pretreatment, Substrate Characterization, Co-digestion and Economic Evaluation. Ph.D. Dissertation, Chalmers University of Technology, Göteborg, Sweden.
- Ugwu, E.I., and Agunwamba, J.C. (2012) Detoxification of cassava wastewater by alkali degradation. <u>Journal of Research in Environmental Science and Toxicology</u>, 1(7), 161-167
- Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W. (2010) Lignin biosynthesis and structure. <u>Plant Physiology</u>, 153(3), 895-905.
- Yu, H., Zhu, Z., Hu, W., and Zhang, H. (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. <u>International Journal of Hydrogen Energy</u>, 27(11), 1359–1365.
- Zhang, Z.P., Show, K.Y., Tay, J.H., Liang, D.T., Lee, D.J., and Jiang, W.J. (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochemistry, 41(10), 2118-2123.

APPENDICES

Appendix A Calibration Curves

Table A1 Gas chromatograph's calibration curve for hydrogen (H₂)

Volume of hydrogen (ml)	Peak area
0.02	1,101,005
0.04	2,016,179
0.08	3,680,042
0.1	5,675,328
0.2	11,471,761
0.4	22,832,569

Figure A1 The relationship between amount of hydrogen (H₂) and peak area.

Amount of hydrogen =
$$\frac{\text{Peak area} + 319,435}{6 \times 10^7}$$

Table A2 Gas chromatograph's calibration curve for nitrogen (N2)

Volume of nitrogen (ml)	Peak area
0.02	69,431
0.04	188,161
0.08	426,068
0.1	478,146
0.2	1,008,515
0.4	2,155,800
0.6	3,309,337

Figure A2 The relationship between amount of nitrogen (N₂) and peak area.

Amount of nitrogen =
$$\frac{\text{Peak area} + 53,607}{6 \times 10^6}$$

Table A3 Gas chromatograph's calibration curve for oxygen (O2)

Volume of oxygen (ml)	Peak area
0.02	81,122
0.04	233,918
0.08	514,527
0.1	662,766
0.2	1,366,208
0.4	2,738,126

Figure A3 The relationship between amount of oxygen (O_2) and peak area.

Amount of oxygen =
$$\frac{\text{Peak area} + 44,133}{7 \times 10^6}$$

Table A4 Gas chromatograph's calibration curve for methane (CH₄)

Volume of methane (ml)	Peak area
0.02	151,094
0.04	523,919
0.08	998,851
0.1	1,366,651
0.2	2,898,103
0.4	5,880,444

Figure A4 The relationship between amount of methane (CH_4) and peak area.

Amount of methane =
$$\frac{\text{Peak area} + 138,046}{2 \times 10^7}$$

Table A5 Gas chromatograph's calibration curve for carbon dioxide (CO₂)

Volume of carbon dioxide (ml)	Peak area
0.02	4,238
0.04	188,166
0.08	293,029
0.1	354,304
0.2	747,872
0.4	1,515,064

Figure A5 The relationship between amount of carbon dioxide (CO₂) and peak area.

Amount of carbon dioxide =
$$\frac{\text{Peak area} + 45,298}{4 \times 10^6}$$

Table A6 Liquid chromatograph's calibration curve for acetic acid

Concentration of acetic acid (mg/l)	Peak area
1,000	0.04
2,000	0.15
3,000	0.29
4,000	0.37
5,000	0.48

Figure A6 The relationship between concentration of acetic acid and peak area.

Amount of acetic acid =
$$\frac{Peak\ area + 0.066}{0.0001}$$

Table A7 Liquid chromatograph's calibration curve for propionic acid

Concentration of propionic acid (mg/l)	Peak area
1,000	0.14
2,000	0.36
3,000	0.59
4,000	0.77
5,000	0.95

Figure A7 The relationship between concentration of propionic acid and peak area.

Amount of propionic acid =
$$\frac{Peak \ area + 0.0495}{0.0002}$$

Table A8 Liquid chromatograph's calibration curve for butyric acid

Concentration of butyric acid (mg/l)	Peak area
1,000	0.23
2,000	0.48
3,000	0.83
4,000	1.11
5,000	1.31

Figure A8 The relationship between concentration of butyric acid and peak area.

Amount of butyric acid =
$$\frac{Peak\ area +\ 0.0415}{0.0003}$$

Table A9 Liquid chromatograph's calibration curve for valeric acid

Concentration of valeric acid (mg/l)	Peak area
1,000	0.21
2,000	0.51
3,000	0.80
4,000	1.19
5,000	1.36

Figure A9 The relationship between concentration of valeric acid and peak area.

Amount of valeric acid =
$$\frac{Peak \ area + 0.0785}{0.0003}$$

Table A10 Liquid chromatograph's calibration curve for ethanol

Concentration of ethanol (mg/l)	Peak area
1,000	0.21
2,000	0.53
3,000	0.78
4,000	1.05
5,000	1.35

Figure A10 The relationship between concentration of ethanol and peak area.

Amount of et
$$\square$$
 ano $l = \frac{Peak\ area + 0.0617}{0.0003}$

Appendix B Preparation of 1 M NaOH Solution for pH-controlled System

Preparation of NaOH at concentration of 1 M (Molecular weight of acetic acid = 60)

$$= \frac{1 \ mol}{1 \ l} \times \frac{40 \ g}{1 \ mol}$$

$$= 40 \frac{g}{l}$$

Appendix C Volatile Fatty Acids (VFA) Quantification by Distillation Method

C 1. Acetic Acids Stock Solution Preparation for Recovery Factor (f) Determination

Concentration of fresh acetic acid (liquid) = 99.7%

Density of acetic acid = 1.07 g/ml

Molecular weight of acetic acid = 60

Determination of fresh acetic acids concentration in term of molar

$$= \frac{0.997 \text{ L of acetic acid}}{\text{L of solution}} \times \frac{1.07 \text{ g of acetic acid}}{\text{mL of acetic acid}} \times \frac{1 \text{ mol of acetic acid}}{60 \text{ g of acetic acid}}$$

$$= 17.78 \text{ M}$$

Preparation of acetic acid at concentration of 2,000 mg/L

= 2,000
$$\frac{\text{mg of acetic acid}}{\text{L of solution}} \times \frac{1 \text{ mole of acetic acid}}{60 \text{ g of acetic acid}}$$

= 0.0333 M

Dilution of acetic acid

$$N_1V_1$$
 = N_2V_2
 V_1 = N_2V_2/N_1
= $(0.0333x1)/17.78$
= $1.873x10^{-3}$ L

C 2. Standard Sodium Hydroxide (0.1 M) Preparation

Concentration of fresh NaOH (solid) = 99%

Molecular weight of acetic acid = 40

Preparation of acetic acid at concentration of 0.1 M

$$= \frac{0.1 \,\text{mol}}{1 \,\text{L}} \times \frac{40 \,\text{g}}{1 \,\text{mol}} \times \frac{100}{99}$$
$$= 4.04 \,\text{g}$$

C 3. Recovery Factor (f) Determination

Distill 150 ml of 0.0333 M of acetic acid in distillation apparatus Calculate the recovery factor

$$f = \frac{a}{b}$$

where

a = volatile acid concentration recovered in distillate, mg/L

b = volatile acid concentration in standard solution used, mg/L

Find volatile acid concentration recovered in distillate by titration with 0.1 M of NaOH (MW of acetic acid = 60.5)

1)	Distillate	50 ml	NaOH	11.7 ml		
	Used NaOH			=	$11.7x10^{-3}x$	0.1
				4	1.17×10^{-3}	mol
	Acetic acid in	n distillate		=	1.17×10^{-3}	mol
				=	$1.17 \times 10^{-3} \times 10^{-3}$	60.5
				=	0.07	g
	Concentration	n of acetic acid	in distilla	te		
				=	0.07/50	
				=	1.405×10^{-3}	g/ml
				=	1,405	mg/l
2)	Distillate	25 ml	NaOH	5.7 ml		
	Used NaOH			=	$5.7x10^{-3}x0$.1
				₩)	$5.7x10^{-4}$ m	ol
	Acetic acid in	n distillate		=	5.7x10 ⁻⁴ m	ol
				=	$5.7x10^{-4} x$	60.5
				= 1	0.034	g
Concentration of acetic acid in distillate						
				=	0.034/25	
				#	1.368x10 ⁻³	g/ml
				=	1,368	mg/l
	Average			=	1,387	mg/l
	Recovery fac	tor (f)		= 1	1,387/2,00	0
				=	0.693	

CURRICULUM VITAE

Name: Ms. Tasanee Wangmor

Date of Birth: September 03, 1990

Nationality: Thai

University Education:

2008-2012 Bachelor Degree of Engineering in Petrochemical and Polymeric Materials, Faculty of Engineering, Silpakorn University, Nakhon Pathom,

Thailand

Proceedings:

Wangmor, T.; Intanoo, P.; Rangsunvigit, P.; and Chavadej, S. (2014, April 22)
 Effect of Added Cassava Residue on Hydrogen and Methane Production from
 Cassava Wastewater Using a Two-Stage UASB System. <u>Proceedings of the 5nd
 Research Symposium on Petrochemical and Materials Technology and the 20th
 <u>PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok,</u>
 Thailand.

</u>

Presentation:

Wangmor, T.; Intanoo, P.; Rangsunvigit, P.; and Chavadej, S. (2014,May 7-8)
 Optimization of two-stage UASB system for H₂ and CH₄ production from cassava wastewater with added cassava residue. Paper presented at <u>2014 International</u>
 Conference on Environment and Renewable Energy, Paris, France.