Chapter 1l
Theoretical Background

The characteristics of the acceleration of particles on the or in the
corona are not certain. A major goal of this thesis research is involved with the
injection of particles from the , so it is necessary to consider the influences
that affect the transport. We need to select the appropriate equation for this
propagation. The author uses the theory of focused transport to explain the
propagation of solar cosmic rays in the interplanetary space, and to consider the
effects described in this chapter,

The Solar Wind

The outermost portion of the Is the corona. It has a high temper-
ature (~ 106K), so it has a higher pressure than the surrounding interplanetary
medium. The pressure in the interplanetary medium is close to zero because the
density of plasma is lower. Thus the pressure difference forces a flow from the
corona to the interplanetary medium. This difference drives the plasma to a high
velocity, so there has been a change of energy from thermal energy to kinetic en-
ergy. Plasma continuously flows away from the  with a speed of ft; 400 km/s
and this flow is called the “solar wind.™ This flow “drags” the magnetic field out
from the (this “dragging” will be explained in the next section). Since the
solar wind is highly turbulent, the interplanetary magnetic field which is dragged
out is very irregular (Figure 2.1).
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Figure 2.1: Sketch of the solar wind and the interplanetary magnetic field.

Interplanetary Magnetic Field

The particles released from the  move in the interplanetary medium,
which comprises a plasma continuously moving with a speed of « 400 km/s (the
solar wind). The solar wind carries the magnetic held from the | but the
turns around on its axis, so the magnetic held lines are bent as in Figure 2.1
The turbulent flow of the solar wind leads to irregular magnetic held lines. The
transport of particles in this magnetic held mainly consists of motion around the
magnetic held line.

To study the propagation of solar cosmic rays requires understanding the
interplanetary magnetic held. Because of the strength of the tenuous interplan-
etary plasma (< 10 particles/cm3 at 1 AU), the interplanetary magnetic field
is convected out from the . This is because it is “frozen” into the plasma.
Consider the magnetic flux, $ 1through any surface, , bounded by the closed
contour, L (Figure 2.2). After a small time, At, let L be convected with the
plasma velocity, 1, to a new contour, V. Let ." be any surface bounded by V.



Then the comoving time derivative of the flux is given by
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Now ,. =7" —(l/c)u x ; where . isthe electric field in the rest
frame of the plasma and 7 = (1 — 2/¢2)-1/2. However, if the plasma is perfectly
conducting, 1= 0. Therefore, we have $/dt = 0. This implies that magnetic
field lines are dragged along with the plasma (Roelof 1969).

The concept of being “frozen-in” means that the magnetic field can he
deduced from the plasma velocity field. The solar plasma initially corotates with
the surface of the

Assuming that the plasma flows radially out from the Sun, the mean field
Bo(0) is B(ro.0), where 0 is measured from the north ecliptic pole. The magnetic
field lines lie along the Archimedean spirals )= $0—sirsin0 . We have

Ar— Al AS = —HA/, df$ (2.2)
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Figure 2.2: The change of flux through any closed contour, L, is zero in a perfectly
conducting plasma (after Roelof 1969).

We define &= 0 when r = 0, so d(f)/dt —0, and
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If 1?0(0) = J3(r0,0) then

[(0) = r|Bor(Q): fi sin 0
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If we use the values of fl = 3x Jo-1 sec-1,%~ 700,000 km, and 400 krn/sec,
then Bo&  —0.005 z20r, S0 Bo(0)  -*(.Bor)2+ (£ )2~ BOr(0). Finally, the field



at a distance r from the IS

B(r,0) = Bofe) (1) 2f ““‘“0@) (26)
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where To is the radius of the , fl is the angular rate of rotation of the |
and er and &y are unit vectors in the radial and azimuthal directions, respectively
(Roelof 1969). Such a field line corotates with the , and it has major effects
on the propagation of energetic particles spiraling along it.

Charged Particle Transport

As mentioned earlier, the turbulence of the solar wind makes the magnetic
field from the  very irregular. This characteristic affects the charged particle
motion. When we consider the transport of charged particles in the magnetic
field, we find that the orbit of a particle is a helix, because particles are forced
to move in circles around the magnetic line, while moving along the field with a
constant speed (Figure 2.3).

The form of this orbit depends on the pitch angle (0), which is the angle
between the speed of the particle and the magnetic field line. Defining

fl = cos 0, (2.7)

n is a constant of the motion for a uniform magnetic field. However, in the
interplanetary medium, it is affected by the irreqularities in the magnetic field.
The sign of /i will show the direction of transport from the . When 0 < 90°,
[i > 0, then the particles move outward from the  , and when 0 > 90°, [A< 0,
then the particles move toward the . If the magnetic field is smooth, then the
form of this orbit will be constant, but when the interplanetary magnetic field
is irreqular, then the value of fl changes randomly. This process is called “pitch
angle scattering” and is shown in Figure 2.4.
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Figure 2.3: Pitch-angle scattering in a steady magnetic field.
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Figure 2.4: Example of the force along the field for resonant scattering of particles
orbiting an irregular magnetic field.
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The simplest treatment of the diffusive transport of particles in interplan-
etary space includes the effects of the streaming of particles and the distribution
of scattering. Jokipii (1966) used a Fokker-Planck equation to explain this trans-
port of particles, using a Fokker-Planck equation of the form

df(t,n,z) - df 1 d <pffi) df{t, fi, 2)
dt ANooodz dj, 2 an

where t is the time since the solar flare occurrence, z is the arclength along the
magnetic field, . is the particle speed, . is the cosine of the pitch angle, or
v [ is the particle distribution function and <is the coefficient of pitch angle
scattering (Jokipii 1971; Earl 1973), where

7 29)

This equation includes the effects of pitch-angle scattering and streaming, which
explain the cosmic-ray distribution as a function of the distance along the mag-
netic field and the cosine of the pitch angle, in which q is the spectral index of
the power law for interplanetary field fluctuations at wave number k within an
interval dk, Qxx is the spectral power at a reference wave number ko, and

A = 2iT"pQxx(k0rL)q, (2.10)

where R is the particle rigidity, and -1 is the Larmor radius. Thus Qxx, g, and
ko are parameters of the spectrum of field irreqularities (Jokipii 1966).

Earl (1976a) further developed the transport equation by including the
effects of adiabatic focusing:

L0, df(tng) 2 df{tnz)  d <p(fi)df(ttfi,z)
STt M dr =) -0} % +dji 2 InT
(2.11)

where the first term on the right-hand side represents the effect of adiabatic
focusing (Roelof 1969), and L is the scale length for spatial variations of the
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guiding field,
1 dB
) 'Bdz'
In this work, the author uses the focused transport equation as the basis
for simulating coherent pulses of solar cosmic rays. However, this is not the most

complete equation used in this work, which will include other effects.

(2.12)

A diabatic Deceleration

In the focused transport model (Earl 1976a), the energetic particles are
considered to undergo pitch-angle scattering, which is the effect of small-scale
irregularities in the interplanetary magnetic field, and focusing, which is the effect
of the large-scale divergence of the field at increasing distance from the . We
can then consider two reference frames (Ruffolo 1995). The first is the fixed
frame (we define the particle velocity in this frame as ). In the fixed frame, the
large-scale structure of the magnetic field is stationary, and the focusing conserves
.= | ) (Figure 2.53). The second frame is the solar wind frame (we define the
particle velocity in this frame as ). In the solar wind frame, the small-scale
irreqularities arc frozen in the solar wind frame, so the scattering conserves the
magnitude of the velocity, , = v" (Figure 2.5h). We examine effects of focusing
and scattering in the solar wind frame, because it is computationally easier to
consider scattering in the frame in which it conserves the particle speed.

Focusing preserves . but does not preserve ,. The focusing always makes
the velocity of the particle in the solar wind frame closer to the origin. Figure
2.6 shows the deceleration of v' from the schematic trajectory of a particle that
undergoes scattering and focusing.

Note that the rate of deceleration is

=il (2.13)
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Figure 2.5 Illustration of the adiabatic focusing and pitch-angle scattering in (a)
the fixed frame and (b) the solar wind frame.
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Figure 2.6: Scattering and focusing in the solar wind frame.
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and the focusing in the fixed frame gives the rate of change of p. as
(2.14)

where the scale length, L, for spatial variation of the magnetic field was defined
earlier. Substituting p from equation (2.14) into equation (2.13), we find that

v yjvfi + vi

N M vsw

1 = =V1i- v

; Vi - vsw)2 + v)
(2- 2pvvsw+va 112

-V W /v

\J1- p2v

o'
dp
-V 5w \2
2L{z) (L)
-V SW
2L(2) (-
where vsw is the solar wind velocity. Similarly, if we consider special relativity,
and neglect terms of order ( /)2, we get the formula for the rate of change of

the momentum,

(2.15)

. (2i6)
where plis the momentum of a particle in the solar wind frame.
For a radial field, the scale length of the interplanetary field is r/2, where

r is the distance from the Earth to the  , so we have

D2y

| (2.17)

p=[(1- 2Vl (2.19)
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In the solar wind frame, the pitch-angle distribution tends to hecome
isotropic, in which case the directional average of (1 —/i'2) is equal to 2/3 and

() = -V oevs, (2.19)

From this viewpoint, adiabatic deceleration is a monotonie decrease in the mo-
mentum resulting from the transformation of adiabatic focusing from the fixed
frame to the solar wind frame (Ruffolo 1995).

Archimedean Spiral Magnetic Field
1 a frame that is corotating with the , the solar wind velocity, vl |
is parallel to the magnetic field at each point;

vew = vswr — ?sin 0% (2.20)
= o (2-21)
= vswsec[il?(z)], (2.22)

where Q is the angular velocity of the solar rotation, z is the unit vector along
the outward tangent to the average magnetic field, and tp(z) is the angle between
rand z, which is shown in Figure 2.7.

The decrease of p' is systematic, and the rate of change in the magnitude
of the momentum of a particle in the solar wind frame depends on the adiabatic
focusing. By replacing vew for vsw in equation (2.16), we get

p'= 2Lfz)-(1" '[2)’ (2'23>

The rate of change of momentum depends ou the change in velocity along

the magnetic field (thé] in the solar wind frame. In different locations, the so-

lar wind frame and ~ are different. This characteristic is called “differential
convection.”
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Figure 2.7: llustration of the direction of r, i, and 0(z).

If we consider the streaming of a particle moving from point A to B along
the same field line in the solar wind frame, focusing preserves . and increases
P\ = p{ + E/(c2)vew or pn = P —E/(c2)vew, so we get the relation between pA,
the momentum in the solar wind frame at point A, and pB, that at point B:

pha = V\\-AvswA (2.24)
MB = PUI-AWL, | (2-25)

and the momentum change from point A to B is
Ap\\ = - —vsw(Asecip). (2.26)
In terms of the distance along the field line from A to B, this is
Ap|| = (jj" secip\ Az. (2.27)
From Az = U|A/,

M = --Eu, foos 02 seol U, (2.28)
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where At is the travel time. Finally, the rate of deceleration along the field line
due to this effect is

pjl = ~P\WSWAcos !)-secxl”) (2.29)
From the relation, p' = (p[l/p/)p||\ we can find the rate of deceleration due to

changes in . ...
v s M D) (2.30)

Therefore from equation (2.23) and equation (2.30), we get a total deceleration
rate of
Vo=-p'vew - p 2+ costph-secrp/2* . (2.31)

Other Effects of the Solar Wind

There are other effects of the solar wind on the transport of solar flare
particles. Due to the effects of scattering, the distribution of particles is often
nearly isotropic in the solar wind frame. However, in the fixed frame, solar wind
convection makes the distribution anisotropic. Since focusing preserves . in the
fixed frame, and P|| = pjl + < ..) v owithen

Pl=pip' +r e Ip. (232)
The rate of streaming and convection is given by

= - =fl "+ sec, (2.33)
b SeCHn (2.34)

oyt El' v
The change in/ s a result from adiabatic focusing according to equation
(2.14) in the fixed frame, so in the solar wind frame this rate hecomes

%/d/ - 1+ secf—/IV  osectr1(1—fl)  (235)
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where p' is differential convection from the changes of the solar wind velocity vew.
The perpendicular momentum in the solar wind frame is not affected by this, so
we have

dp'l) =0 = d[piA1-p"2) (2.36)
= 2L —pn)pdp —2p'p2ip 23
. ].-/IiV'I (238)

1 pp

Considering this equation (2.38) and equation (2.30) we get
p = -vsw(cosipdj-secxp)p'(l - 1,2). (2.39)

From equation (2.35) and equation (2.39), we find the total rate of change of p
from the effects of the solar wind and due to focusing:

p = pon-ffsec - ponssech - P
- vsw(cosipr-sect)p'(l - p'2). (2.40)

This differs from equation (2.35) because we are considering the other
effects in the theory of focused transport for the propagation of solar cosmic rays
in the interplanetary space. Now we can find the appropriate equation for this
propagation.

Modified Equation of Focused Transport

Now we have new expressions as a function of the pitch angle from equa-
tion (2.40), the distance from the along the magnetic field from equation
(2.34) and the momentum from equation (2.31). From these equations, we can
find a Fokker-Planck equation for solar cosmic rays in interplanetary space, which
will be an improved form of equation (2.8). We give the distribution function of

solar cosmic rays F as
(PN

dzclpdp '

(2.41)
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where N represents the number of particles. The Fokker-Planck equation that
includes only the effects of streaming, adiabatic focusing and scattering is

dF t) 151 F tl 1 1 ’ dF t) 151
(dptzp) _w JF(LR.D) i v<f 13 (t.p.z,p)
(249
We write this equation in terms of changes of e, p, z in the local solar wind frame
(without primes, for convenience):

dF(t,p,z,p) d (Az \ d fAp
it d2 VAt ) dp \ At
d (E' A
fio 2 dplE - —lpWVaAf (243)

Note that there is a factor of E'/E = 1—pvvswsecip/c2in the pitch-angle scatter-
ing term. It relates to the distribution in terms of time and position in the local
solar wind frame (Webh & Glesson 1979; Skilling 1975; Earl 1984). In equations
(2.31), (2.34) and (2.40) we presented Az/At, Ap/At and Ap/At, so we can

derive the appropriate transport equation (Ruffolo 1995).
dF(t'dpt’Z'p)-? g PUE (tin1p) (streaming) (244)

b 1p~— lvswsec TpF(t.p,z,p) (convection)

%+ pvaseclp!)—p-v%vérl Sech

dp 2L{z)

-(1- P2)F{t,p,z,p) (focusing)
~QNV ™ Mcosip-t-secip ) p(l - p2)

-E(t,p,z2,p) (differential convection)
ddp vf;p) ddp Fltop.z.0) (scattering)

- lg " (1 v« costfh ec*rj

e i) (deceleration)

The parameters in this equation are the angle between the field line and
the radial direction V/(~)i the focusing length L(z), and the pitch-angle scattering
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coefficient <p(p). From the Archimedean field model of Parker (1958) with 6 =0,
we get the relation

COSI

TN " hi2sina®° yli'2+ R2 (248)
L _i_r|J+g 312 0 19
" P ) G494

where /2 = vsw/(Cisin 0) is the angular rotation rate of the , and r is the
radius as a function of 2. We use the coefficient of pitch-angle scattering as

ffi) = An\-1 1-£i9) (2.50)

There is a problem from the singularity at p=0, so we follow Ng & Wong
(1979) and use an effective scattering coefficient (pefT(i). To derive <efl-(p), we
start with the A flux,

5. = Wi(l-vgF- O
(2.51)
assume that = (L —p2) for simplicity. Then we consider F(/.i) at fixed t,
and fi:
C-12 = 1100 -S)FM- (-
0 FM 1A A (0
fd(F(fi) - 2Ls/v)
J (F(ji)-2Lsjv) Al\n\<-'il"
In(F(fi) —2Ls/v) + ¢ I
F(p) = 2Lshy + ces()af o) (2.52)
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We find the constant values of and . when /i = /if, H+ and .. = .. —A/iI2,

col= F o+ A2,
AF
2027THAT (M- AN 20+ IMAM 212-)
sinh " 2AL(

AUF 7 4RO (2 q2-q) 47 AR - [ AW2L2)
where F = (F, + FI+1)/2, AF = Fl+1—F, s0

D= 1Ty PEAE
= =P\
U
tanh{ [+ A%R2) - (- AliRJ2AL@T} )
here
M e :
n sy (2.54)

The limit of the effective scattering coefficient when AH s close to 0 is

. 1 ( locywei o 1—na)
Ao = (w20 iI-iAl
AHY (- [i2) (2.55)

where A/r is the grid spacing in the H coordinate. We thus find that (/< —
€(f) when H2> All.

The equation for the pitch-angle scattering in terms of a spatial mean
free path, A is
e (2.56)

)
v
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where D is a spatial diffusion coefficient, and

o 1 XL-p 224 (257)
(Hasselmann and Wibberenz 1968). In the numerical code, we use
_A
P LT R Yy (250)

in the limit of no focusing (Ruffolo 1991), where the sum is over fi halfway between
grid points. We can find the scattering amplitude, A, that leads to the desired
value of A
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