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CHAPTER 1
INTRODUCTION

In 1966, Leo Moser published a number of problems, one of which is the fol-
lowing: “What is the region of the smallest area which will accommodate every
unit arc?”. This problem is also known as “Leo Moser’s worm problem ”. Although
there are a lot of mathematicians who have investigated this problem, the problem
remains unsolved to this day. It is difficult to solve Moser’s worm problem without
any conditions because we don’t know the proper structure and shape of a region.
Furthermore, the methods to prove can be difficult. Therefore, many researchers

focus on conditions in which divide the problem into 3 criteria as follows:

i. Patterns of the cover.
Using this criterion, we consider the region according to our interest. For
instance,
— The region which contains unit arcs is a triangle.
— The region which contains unit arcs is convex.

— The region which contains unit arcs is without condition.

Note that a set B can be covered by set A if there exists an isometry f on

R? such that B C f(A).

ii. The ways to cover.
Under this criterion, we are interested in the ways to cover. For instance,
— Allow only translation.
— Allow translation and rotation but not flipping.

— Allow translation, rotation and flipping.



iii. Patterns of arc to be covered.

We consider arcs according to our interest. For instance,

— Closed arcs.
— Convex arcs.

— Arbitrary arcs.

One of the easiest approaches to find the smaller covers is to use the most
recent regions of other works that are well-supported by lemmas as references to
improve further and find the smaller region.

Next, we will demonstrate the regions which can cover every unit arcs.

In 1973, J. Gerriets and G. Poole || created the convex region which is a rhom-
bus (see Figure ) This region has area approximately 0.28610.

Figure 1.1: The convex region of J. Gerriets and G. Poole.

In 1992, R. Norwood, G. Poole, and M. Laidacker ] created the convex region
which was modified from the rhombus of J. Gerriets and G. Poole (see Figure )
This region has area approximately 0.27524.



Figure 1.2: The convex region of R. Norwood, G. Poole, and M. Laidacker.

In 2003, R. Norwood and G. Poole @] created the convex region and the non-
convex region. They constructed the convex region from the non-convex region.
This non-convex region can cover every unit arcs, whose area is approximately

0.26044 (see Figure . For the convex region, this region has area approxi-
mately 0.27381 (see Figure .

Figure 1.3: The non-convex region Figure 1.4: The convex region of R. Nor-

of R. Norwood and G. Poole. wood and G. Poole.

In 2006, W. Wang ﬂﬂ] created the convex region (see Figure . This region
has area approximately 0.27091.
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Figure 1.5: The convex region of W. Wang.

In 2018, N. Ploymaklam and W. Wichiramala [Iél] created the non-convex re-
gion, modified from the cover by Norwood and Poole (see Figure ) This region
is currently smallest. The upper boundary of this region is an elliptic arc instead

of a circular arc. This region has area approximately 0.26007.

Figure 1.6: The non-convex region of N. Ploymaklam and W. Wichiramala.

In 2019, C. Panraksa and W. Wichiramala created the convex region (see Figure
). This region is a 30° circular sector of unit radius. This region has area
approximately 0.26180.



Figure 1.7: The convex region of C. Panraksa and W. Wichiramala.

In this work, we are interested in non-convex regions on R?. For the patterns of
arcs and the ways to cover, they can be anything. In the case of convex covers, the
Blaschke selection theorem guarantees the existence of such a solution. We modify
the covers in [3] and [6] by replacing the upper boundary with the graphs of conic
sections and cosine. The details of these graphs will be described in Chapter III.
However, our work focuses on constructing new regions with new upper boundaries
rather than finding the new smallest area of the region compared to the current
by the smallest one. Thus, our proposed regions do not guarantee that they are
the smallest area.

In Chapter II, we recall some basic definitions and ideas of the construction in
the literature.

In Chapter III, we demonstrate the construction concept of the new regions
starting from the upper boundary and construct a new covering set that contains
a congruent copy of every unit arc on the plane.

In Chapter IV, we show the concept of construction of the new regions starting
from the lower boundary and the problems of constructing the new region from
the lower boundary.

In the last chapter, we provide conclusions and further research about this

work.



CHAPTER 11
PRELIMINARIES

In this chapter, we recall some definitions used in this work. First, we introduce

definitions about convex sets and arcs related to this work.

Definition 2.1. A set A is said to be convex if for every points x and y in A, the

segment Ty C A.
The next definitions are the definition about arc.

Definition 2.2. Define the continuous function A : [—1, 1] — R? to be an arc and
[(A) to be the length of an arc. If [(A\) = 1, A is called a unit arc. Note that an
arc \ refers to the set [0, 1].

Definition 2.3. If both end points of an arc A are the same point, then \ is called

a closed arc.

Definition 2.4. An arc v is called simple if v is not self-intersecting. Whereas a

simple arc is called simple closed if its starting point and end point are alike.

Definition 2.5. Let A, A’ and B be sets in R*. A’ is said to be a congruent copy
of A if there exists an isometry f on R? such that f(A) = A’. A set B can be

covered by set A if there exists a congruent copy B which is a subset of A.

Some ideas of the construction in the literature

We will show the region of Norwood, Poole, and Laidacker. The region of
Norwood, Poole, and Laidacker was adapted from the region of Gerriets and Poole.
In the work of Gerriets and Poole, the region is the rhombus which was composed

3
of two adjacent equilateral triangles with sides of length —. This rhombus had

1 1
two end points (—5, O) and (5, 0). Moreover, it passed through points C’ and
V' which lie on y-axis, as shown in Figure .



Norwood, Poole, and Laidacker modified the region of Gerriets and Poole by
snipping off one corner of the rhombus. Thus, the region of Norwood, Poole, and
Laidacker contains a 60-sector with radius 0.5 (D‘A/B). Figure M demonstrates

the region of Norwood, Poole, and Laidacker.

Figure 2.1: The convex region of Figure 2.2:  The region of Norwood,

J. Gerriets and G. Poole. Poole, and Laidacker.

We will show the region of Norwood and Poole. The region of Norwood and

Poole contained two parts which are the upper and the lower boundaries. The

upper boundary is the circular arc of the equation z* + (y — ¢)* = 7 where
1 1 1 1
—3 <z< 3 passing through the points (—5, 0) , (5, O) and (0,t). Then it can

1

1
conclude that ¢ = ¢* — 1 and r =1t — . For the lower boundary, it consisted

of
1. the union of two parabolic arcs which are

« the right parabolic arc is the graph y = v2wx + w? + ¢ where 0 < z <

0.37046 and w = r — %

o the left parabolic arc is the reflection of the the right parabolic arc

across the y-axis

2. the circular arc came from the reflection of the circular upper boundary over

the z-axis where x > 0.37046.

Figure illustrates the region that can contain every unit arc proposed by

Norwood and Poole. It is obvious that the upper and lower boundary of the



region shown in Figure @ depends on variable t. The approximated value of ¢ is
0.1527985 such that the region satisfies some properties. Moreover, this value of
t results in the smallest area of the region. The idea of this construction will be

described more in Chapter 3.

Figure 2.3: The region of Norwood and Poole.



CHAPTER I1I1
MAIN RESULTS

In the works of [3] and [6], the authors constructed non-convex regions to cover
every unit arc. They started by creating the upper boundary and then form the
lower boundary which provides the important properties for the proof. The upper
boundaries in these two works are different. In [3], they proposed the top boundary

1
using the arc of a circle with the equation 2+ (y—c)* = r? where —3 <z< 5 and

1 1
passing through the point <—§, O) and (5, O), as the right half of the bottom

boundary consists of a parabolic arc and a circular arc. While [6] presented the top
Y=Y
b

1 1 1 1
——<zx< 3 and passing through the point (—5, O) and (5, O). Therefore, we

2
boundary using the elliptic arc with the equation <§> + ( = 1 where
a

2
would like to find the other shapes of the upper boundary which differ from [3]

and [6]. Next section we show the steps of construction for our proposed regions

based on the ideas from [3] and [6].

3.1 Construction of C*

We construct the new region named C* based on the idea from [3]. To construct
C*, first we consider the function of the upper boundary, says f where f contains
th int L 0 d L 0

e points { —=,0 ) and | =,0 ).

P 2 2

For the construction of the lower boundary, we consider the right half of the
lower boundary. The other half is the reflection of the right half of the lower
boundary about the y-axis. We construct the right half of the lower boundary
g in order to have the specific property. That is, no half of a unit arc starting
from y-axis can touch the bottom of the region and then escape the top of the

region. We define the locus of points (z, ) by L, which the sum of the minimum
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distance from the y-axis to L and the minimum distance from (Z,7) to the arc
1

of the function f is 5 Therefore, the straight line passing through point (z,y)

and (Z,y) must be pendendicular to the upper boundary which has a slope equals

f'(x). Form this property, we have the equation as follows:

y—y -1
r—z  f(x)

i+\/(x—f)2+(y—y)2:%and where (z,y) € f.

Moreover, the distance of any arc from the origin to the top of the region and then

1
goes back to meet the bottom of the region is greater than 5 (see Figure .

>0.5

Figure 3.1: Construction of C*.

1
Let [(x) be the function of graph L where 0 < z < 3 The lower boundary of
our proposed region is defined by g(z) = min ({(x), — f(z)) (see Figure .

g(x)= min (/(x), —f(x))

Figure 3.2: The lower boundary.
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3.2 Properties of the cover C*

Let v be a unit arc with midpoint m on the y-axis. From the construction with
specific constants, we get the relations between the upper boundary and the lower

boundary of C* as follows:

e The shortest distance from the y-axis to the lower boundary and then meets

1
the upper boundary is at least 3 Thus, we have the following property.

Property A: No half of 7 can touch the bottom of C* and then escapes the
top of C* (see Figure @)

| This cannot happen.
/ 7\\

Figure 3.3: Property A.

o The shortest distance from the origin to the upper boundary and then meets

1
the lower boundary is at least 3 Thus, we have the following property.

Property B: No half of v whose midpoint is below the origin can touch the
top of C* and then escapes the bottom of C* (see Figure @)

TN\ This cannot happen.
i N R
/ e
N,
= /
\ 7

Figure 3.4: Property B.
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We construct the region that satisfies Property A and Property B. Hence, we
can apply the idea of the proof of Norwood and Poole in [3] and Ploymaklam and
Wichiramala in [6] to show that the region can cover every unit arc. If the region
does not satisfy Property A and Property B, we cannot guarantee that the region
can cover every unit arc. Therefore, our proposed regions need to satisfy Property

A and Property B.

3.3 The regions satisfy Property A

Next, we present the regions that we investigated in this research. Note that
all regions satisfy Property A and we show only the right half of the regions. The
left half of the regions comes from the reflection of the right half about the y-axis.

1. The upper boundary is a circular arc.
1
Equation: (x —x0)* + (y — y0)? = 7* where 0 < x < 3 and pass through the

1
point | —, O). The lower boundary is described in Appendix 2.1.
Figure shows the region with the circular upper boundary where zy =

0,7 = 0.89447, yo = —0.5\/—1 + 42 + 4y — a3,

Figure 3.5: the region with the circular upper boundary.
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In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.260437.

. The upper boundary is an elliptic arc.

2 2
- - 1
Equation: (x xo) + <y 2 yo) =1where 0 <z < 3 and pass through

a

1
the point (5, 0). The lower boundary is described in Appendix 2.2.

Figure shows the region with the elliptic upper boundary where a =
by/a2 — (0.5 — x0)2

1.95272,b = 4.58588, 29 = 0,y =

Figure 3.6: The region with an elliptic upper boundary.

In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.26007.

. The upper boundary is a parabolic arc.

1
Equation 1: (z — x)? = 4c(y — o) where 0 < 7 < 5 and pass through the

1
point | —, 0). The lower boundary is described in Appendix 2.3.

Figure shows the region with the parabolic upper boundary where zy =
(()5 — x0)2

—0.4, C = —0.77, Yo = — 1
C
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¥

Figure 3.7: The region with the parabolic of the Equation 1 upper boundary.

In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.270511. In addition, we can get a smaller region compared to Figure
by snipping off one of the corners of the region. Details of snipping off

will be presented in the next section.
1
Equation 2: (y — yo)? = 4c(z — x0) where 0 < 7 < 5 and pass through the

1
point | —, 0). The lower boundary is described in Appendix 2.4.

Figure shows the region with the parabolic upper boundary where zy =

1,c=—-0.17,y9 = —V2c — 4cxy.
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Figure 3.8: The region with the parabolic of the Equation 2 upper boundary.

In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.276963.

. The upper boundary is a hyperbolic arc

2 2
— — 1
Equation 1: (y yO) —~ <x wo) = 1 and pass through the point <§, O) .

b a
The lower boundary is described in Appendix 2.5.

Figure @ shows the region with the parabolic upper boundary where zy =
by/1 + 4a? — 4y + 423
2a '

0,a =5.35,b = 35.4,y =
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Figure 3.9: The region with the hyperbolic of the Equation 1 upper boundary.

In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.260299.

2 2
Equation 2:($ xg) — (y yo) = 1.
a b

In this case, we can define the equation of this upper boundary as

2 2
— — 1
(:1: :Co) B (y byo) =1 where 0 <z < ? and pass through the point
a

1
<§,O>. For the lower boundary, we use Mathematica to find the lower
boundary that satisfies Property A. Although we can find the general form
of the lower boundary, we have a problem to find the constants that make

the region satisfies Property A and Property B.

. The upper boundary is a graph of cosine.

1
Equation: y = acosbr + k where 0 < z < 3 and pass through the point

1
(5, O>. The lower boundary is described in Appendix 2.5.

Figure [3.10 shows the region with a graph of cosine upper boundary where

a=25b=0.22144,k = —acos g
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Figure 3.10: The region with a graph of cosine upper boundary.

In this case, these constants are caused by the region satisfying Property
B. This region satisfies Property A and Property B which has area approxi-
mately 0.26009.

Each region is constructed based on the above idea. We experiment on several
functions for the upper boundary. Each of these functions provides a region with
the lower boundary equation in which satisfies some certain properties. Therefore,
we would like to find the values of the above functions in order to give the smallest

area of the region.

3.4 The snipping off of the upper boundary

We show the adaptation of our proposed regions in order to get the smaller
regions. The idea of adaptation is by snipping off the peak of the regions. We
apply this idea from Norwood, Poole and Laidacker [2]. In addition, the adapted
regions still satisfy Property A and Property B after modification. To snip the
peak off, we use a circular arc with the center at the vertex of the lower boundary
and radius % as the work of Norwood, Poole and Laidacker. The reason that we use

this arc is that we want the modified regions still satisfying Property A. However,
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after the modification, we have to calculate the shortest distance from the origin
to the modified upper boundary and then go back to the lower boundary. The
distance must be greater than % in order to make sure that the modified regions
satisfy Property B.

Next, we illustrate an example of the modified regions where it still satisfies
Property A and Property B.

The parabolic upper boundary is snipped off its peak. The equation of parabolic
upper boundary is (x — x0)? = 4c(y — yo) where 0 < x < % and pass through the

1
point (5, 0). The form of lower boundary can be seen in Appendix 2.6. Figure

(()5 — xo)Q
4c '

3.11| shows this region where xg = —0.4,c = —0.77,yp = —

e

Figure 3.11: The snipping off of the parabolic upper boundary.

In this case, these constants are caused by the region satisfying Property A
and Property B. This region satisfies Property A and Property B which has area
approximately 0.267663.

3.5 The upper boundary represented by the graph of cosine

It can be clearly seen that most of previous works constructed the upper bound-

ary using circular arc and elliptical arc. Thus, we want to find the upper boundary
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which is not from conic section. Finally, we come up with the graph of cosine.
In this work, we present the upper boundary represented by the graph of cosine
f(z) = acosbz + k.

One of our regions has the upper boundary defined by the equation f(x) =
a cosbr + k. According to this upper boundary, we construct the lower boundary
such that the region satisfies Property A and Property B. The lower boundary can
be written as g(x) = min ({(x), — f(x)) where I(z) is the function of the locus of
point (Z, 7). More the details and calculations of (Z,7) can be found in Appendix.
Obviously, this upper and lower boundaries depend on the variables a, b and k.
If we adjust the value of a, b and k, this process will affect the characteristic of
the upper and lower boundaries. Thus, the area of region will be affected as well.

1
Since the upper boundary f(x) = a cos bx+k passes through the point (5, 0) , the

constant k can be written in the form of a and b. That is kK = —a cos —=. Therefore,
there are two independent variables affecting to the area which are a and b. To
find the smallest area, one of the independent variables need to be fixed. In this
case, we fix the value of a and adjust the value of b. Also, the value of variable a
is adjusted until it leads us to the smallest area of the region.

We use numerical computation to find the values of a, b and k. Thus, we obtain
a = 25, b =0.22144 and k = —24.8469. The right half of the lower boundary of
C™ is defined by I(z) where 0 < x < 0.4324 and by — f(z) where 0.4324 < z < 0.5.
This gives C* of area 0.26009 (see Figure 3.12]).

Figure 3.12: The new region C*.
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We follow the proof of Norwood and Poole in [3] and Ploymaklam and Wichi-

ramala in [6] and get the improved result.

Theorem 3.1. The region C* which has area approximately 0.26009 can cover

every unit arc.

Proof. We assume that v is simple, i.e., v is non-self intersecting. To show that C*
can cover -y, we first assume that v cannot fit in C* and then find a contradiction.
Let a and [ be the two halves of 7. Assume that -+ cannot fit in C*. We
consider the situation where the midpoint m always lies on y-axis. We may rotate
and move ~ until it touches the bottom of C* and + is above the bottom of C*.

The proof is split into two cases according to how ~ touches the bottom of C*.
Case 1. Only one half of v can touch the bottom of C*. We consider the situation
when m is as low as possible, we call this the minimal positioning scheme 1 (MPS
1). Without loss of generality, we call that half S. Suppose that «y is not covered.
Thus, there are some parts of v which escape C*.

Case 1A. Assume that a part of 5 is not in C*. Note that we use the idea
from Norwood and Poole in [3] to prove this case. By Property A, no half of v can
touch the bottom of C* and then escape the top of C*. Thus, the possible position
of £ is that it must escape the top of C* and then back to touch the bottom of

C*. By Property B, m must be above the origin and § gets through the top of C*

before it touches the bottom of C* (see Figure [3.13).

The top of C* P e =l = o

The vertpx of C*

Figure 3.13: § is not in C* and ~ satisfies MPS 1.
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We now let C** be the reflection of C* about the z-axis. We define the notations

used in this work as below:

B* is the bottom of C* and B** is the reflection of B*.

T™ is the top of C* and T™" is the reflection of T™.

For points s and t in arc §, a part of § between s and t is called d;.
Let x, be the distance from y-axis to the point p.

Let I(7s) be the length of a part of v from the point s to the point t.

Consider when « does not cross B™, we may move v upward to touch B™.

From Case 1, we know that g must touch first. Then « cannot touch B** first. It

is clear that m is between the origin and B**. Since [ touches B**, it contradicts

to MPS 1. This implies that § must cross both T* and B** (see Figure {3.14)).

Figure 3.14: S must cross both T* and B**.

Next, we move v downward until it touches B**, not crossing. Since [ touches

B*™ and escapes T** (see Figure

is covered by C™.

3.15

, it contradicts to property A. Therefore,
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B**

*

7
g

Figure 3.15: 5 touches B** and escapes T**.

Case 1B. Assume that a part of a is not in C*. We know that a does not
touch B**. Then o must escape T~. Let a be the point such that « crosses T and

let L; be a tangent line of T at point a (see Figure .

A
O\

Figure 3.16: « is not in C* and a is the point such that « crosses T™.

We may translate g until it touches B**. When S touches B**, there are two
incidents that can occur. We apply the concept of Norwood and Poole in [Eh and
Ploymaklam and Wichiramala in [EI] to validate the first and the second subcases

as follows, respectively.

Subcase 1B(i). fisin C**. If @ is in C™, then 7 is covered by C**. Thus, we
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consider when « escapes C**. Since [ must touch C** first, @ must get through

T**. Let b be a point such that a crosses T** (see Figure B.17)).

Figure 3.17: g is in C** and « get

through C**.

Figure 3.18: ay, divides the region be-

tween L and Ls.

We see that if we move v up, then Ly is also moved upward. Since the original

position of g is covered by C*, Ly does not cross 5. By the assumption, 5 does

not cross agq. Let Lo be a tangent line of T** at point b. Since 3 is covered by

C**, Ly does not cross 5. We use g, to divide the region between L; and L, into

two parts. Thus, 8 must be in either of the two sides of separated region because

«v is simple (see Figure )

We rotate v while m still lies on y-axis until the straight line passing through

a and b is horizontal and  is above ay,. Next, we move + down until it touches

B*. We see that o must touch B* first, which is a contradiction. Thus, 3 is not

covered by C* (see Figure

3.19).
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Figure 3.19: a and b are horizontal.

Subcase 1B(ii). ( is not in C**. Let ¢ be a point where  touches B**. By

Property A and Property B, m is below the origin and [ escapes T at a point d

and then touches B* (see Figure |3.20).

b
\d

Figure 3.20: f is not in C**.

Without loss of generality, suppose that « is on the left of 5.;,. We see that «
cannot be above ¢ because if we translate v upward until it touches B**, 5 must
touch B** first. Similarly, we get a that cannot be below d. Next, we translate

C** and v downward until § touches B*. Thus, a must be between B* and B**.

Since « escapes T, v can only escape to the shaded region (see Figure [3.21]).
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Figure 3.22: S is a tangent line touching

Figure 3.21: « is on the left of 7.4.
a and .

Let S be the tangent line touching a and f from above (see Figure ) We
rotate and move v and S until the slope of S equals to the slope of the right of B**
at = equals to 0. This implies that S is parallel to the tangent line on the right
side of B** (see Figure .

Figure 3.23: S is parallel to the tangent line of the right of B**.

When we move v up, § must touch the left half of B** first. Next, we rotate
~ counterclockwise while keeping 8 touching B** until S also touches the left and
the right halves of B*™ at point e and f, respectively. From this situation, « is
above f.;. By assumption, 3 is not in C** and f touches both the right and the
left of B**. This contradicts to Property A (see Figure )
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Figure 3.24: o« is above .y and 3 is not in C™*.

Case 2. Both a and  may touch C*. We follow the proof of Ploymaklam
and Wichiramala in [B] By the continuity, we have at least one orientation which
both « and 3 touch B*.

Assume that both o and § touch B* and ~ is not in C*. Let a be a boint of 3
which touches B*. We consider the situation that m is as low as possible and both
a and f touch B*. We call this the minimal positioning scheme 2 (MPS 2). By
Property A and Property B, m is above the origin and there are at least one half
of v which escapes T™ and then they touch B*. Without loss of generality, assume
that £ is not in C* and the point which 8 touches B* is on the right of the point
which « touches B*. Let b be a point such that 5 crosses T* and p is the endpoint
of . In this position, v must be below B*™* because if v touches or cross B**, this

contradicts to Property A. In this situation, we are interested in m which is above

the origin (see Figure [3.25)).
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4

Figure 3.25: Both o and 8 touch B*.

Next, we translate v upward until v touches B**, if needed. If o and S touch
B**, this contradicts to MPS 2. So either v or # touches B**.
Case 2A. 3 touches B** at point ¥'. Then S is in C**. Meanwhile, « is not in

C™* but is above B*. Let ¢’ be a point of a which is below T** (see Figure {3.26)).

Figure 3.26: 3 touches B*™* at point ' and ¢’ be a point of o which is below T**.

We rotate v clockwise while g still touches the right half of B**. While subarc
from ¢ to b is on the left of the remaining of 3, a must go up to touch B**.
Otherwise, 8 must touch the left half of B**. From this situation, « is above a

part of 5. Similar to the end of case 1B(ii), this contradicts to Property A.
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Next, we consider the position of m while S and « touch B**. If m still lies
above the origin when 8 and « touch B**, it contradicts to MPS 2. Then we
consider the position of m while we rotate v. Assume that while we rotate v, m is

on the origin where 3 touches B** at point b”.

Figure 3.27: m is on the origin where 3 touches B** at point b”.

Since the shortest distance from the origin to B™ is greater than 0.266639,
L(Ympr) > 0.266639 and then I(vy,) < 0.233361. Since the length of ~, greater
than the original position of v from the point b to a, I(yp,) < 0.233361. By the
numerical computation, z; > 0.239093. From the reasoning in [3], x,» > 0.157124.
Thus, m move up, not down. Hence, we have the position that m is closer to B**
than B* at the original position. This contradicts to MPS 2.

Case 2B. «a touches B*™. The way to prove is similar to case 2A.

This completes the proof.



CHAPTER IV
THE PROBLEM OF THE ALTERNATIVE WAY TO
CONSTRUCT THE REGIONS

In Chapter 3, we apply the idea of Norwood and Poole in order to construct
the regions which contain every unit arc. To construct the regions, we start by
identifying the upper boundary. Then we define the lower boundary such that our
regions satisfy Property A and Property B. In this chapter, we adapt the concept
from Norwood and Poole by starting from lower boundaries. We found that it is

too difficult to find the region satisfying Property A and Property B.

4.1 Concepts of construction the new regions starting from

the lower boundaries

We wish to construct regions satisfying Property A and Property B. The con-
structed region still satisfies Property A and Property B like the region in Chapter
3 i.e., Property A: No half of v can touch the bottom of the region and then
escapes the top of C*. Property B: No half of v whose midpoint is below the
origin can touch the top of the region and escapes the bottom of C*.

This construction leads to the relation between the lower boundary g passing
through (%,O) and the upper boundary f passing through (%, 0). Moreover, the
upper boundary (7, Q) € f is defined by

—~

~ ~ 1 y— Y -1
r+\(r—2)>+ (y— ¥)?> = = and — = —,
Vi 22 2= gan L =

where (z,y) € g.

We design the equations which help to find the solutions.
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e Plan A. We consider

= — 1 ~y -1 ~ =
et et e 9=t amd L = L here (7.9) € /.
2 a—ax f()
Then
1 U _ > —_
— Z and g:—x f, where (z,Y) € f.
2 dzx y— Y
—~/ —A/-\
Then y:_m f xl
y— Yy
I -z o~z Lo\ e
= 2 andthenz +y = (2% y .
T = r —T
« Plan B. We consider
= 77 —y -1 ~ =
a:+\/(x—:c)2+(y—y)2:—andy gz —, where (z,Y) € f.
AT

Let ¥= f(x), y = g(x) and z= h(z).

We will arrange the equation in terms of 2. Then

H@)-+y/ (HE)= 5P + (g(H@) ~ (@) = L and f/(7) = @) G

where H is the inverse of the function h.

We observe that the equations of Plan A and Plan B have complication on
solving differential equations. Hence, we experiment with the simple lower bound-
ary such as the linear lower boundary passing through the points (0,t) and (%, 0)
where t < 0 and the parabolic lower boundary proposed by Norwood and Poole.
However, we are not able to find the upper boundaries which satisfy these lower
boundaries. This procedure resulted in the upper boundaries which are in the
form of derivative and contain a lot of variables. Thus, we applied substitution

and simplifying. However, we confronted many errors occurred in Mathematica.



CHAPTER V
CONCLUSIONS AND FURTHER RESEARCH

This paper explores Leo Moser’s worm problem, which is to find the region with
the smallest area that can cover every unit arc. We modify the work of Ploymaklam
and Wichiramala [6] together with the work of Norwood and Poole [3]. The region
is modified by changing the upper boundary. In addition, the adapted regions still
satisfy Property A and Property B after modification.

One of our region contains the upper boundary according to function f(x) =
acosbxr + k and this region satisfies Property A and Property B. By numerical
computation, we have a = 25, b = 0.22144, k = —24.8469 and the cover of area
0.26009.

Our work does not ensure that the proposed regions have the smallest area.
Instead, we present the region with the new upper boundary. Hence, we advise

some ideas to extend this research as follows:

1. In our way to prove, we may use other upper boundaries to construct the
new region in order to find the region with the smallest area. Also, the region

remains satisfied Property A and Property B.

2. In case we would like to construct the region starting from the lower bound-
ary, we may use the appropriate lower boundary that is easy to find the

whole region.

3. Other properties should be examined since it may lead to the constuction of

new region .

4. In this work, we propose the non-convex region. We could modify the region

to be a convex region by using a straingh line as a part of the lower boundary.
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CHAPTER VI
APPENDIX

In this thesis, we use Wolframe Mathematica to calculate the constants for each
upper boundary proposed in Chapter 3. Therefore, we describe the commands in

Mathematica that we use and the codes that we generate.

Solve[expr,vars|: To identify the variables vars by solving the system expres-

sions of the equations or inequalities.

» Reduce[expr,vars]: To identify vars and eliminate quantifiers by reducing the

statement expressions by solving equations or inequalities.

» Manipulate[expr,{u, Umin, Umas }]: To allow interactive manipulation of the

value of u. by generating a version of expr with control added.

o ParametricPlot[{ f,, fy }, {@, Wmin, Umaz }]: To create a parametric plot of a

curve with  and y coordinators f, and f, as a function of w.

o FullSimplify[expr]: To find the simplest form by trying a wide range of trans-

formations on expr involving elementary and special function.

1. The steps to construct the regions and find the area.
We described the codes constructing to find the regions and the areas. In this
case, we would like to construct the region starting from a graph of cosine upper

boundary.



1.1 Define the upper boundary function f.
Letf (x) = aCos [bx] + k

1.2 Simplify the above function f in terms of x.

Solve[aCos[bx] +k ==y, ¥]
{{yv>k+aCos[bx]}}

1.2 Find the derivative of y with respect to x.

D[k +aCos[bx], x]
-abSin[bx]

1.3 Find the locus of a part of the lower boundary satisfying PropertyA.

'\/(xl-x2)2+ (yl-yZ)2 ;

af{x1_, y1_}, {x2_, y2_}] :

p=1{x,y};
§= {}_{r 37};
yl-y2
m{{x1_, y1_}, {x2_, y2_}] := ——;
x1 - x2

d2[{x1_, y1_}, {x2_, y2_}] := (xl—x2)2+ (yl—y2)2;

1 2
FullSimplify[Solve[dZ [5, p/.y->k+acCos[bx] ] == (— - i) &&
2

-1
P, pP/. k Cos[b = et X, ¥
m[p P y->k+aCos|[ x]] Voo S S {x y}]]
{{Ye%(foab

a (b-2bx) +\/(172x)2 (a2 b2 +Csc[bx]2) ) Sin[bx]2),

1
¥->k+aCos[bx]-— ab—2abx+\/(l—2x)2 (a2b2+Csc[bx]2) Sin[bx]},
2

X

{

N (2x+ab ab (-1+2x) +J(1—2X)2 (a? b? + Csc[b x]2)

Sin[bx]2>,

AN | e

1

> k+

=

ab (-1+2x)+2acCot[bx] +\/(l—2x>2 <a2b2+Csc[bx}2> )Sin[bx}}}

1.4 Figure shows the locus of point (f, 37) which is a part of the lower boundary.

Remove["Global " %"]



1
Manipulate[k = - a Cos[b ;] ;

ParametricPlot[{1 (Zx—ab (a (b—2bx) +'\/(1—2x)2 (a2b2+Csc[bx]2) ) Sin[bx]z),
2

k+aCos[bx] - = (ab—2abx+'\/(1—2x)2 (a2b? + Csc[b x]2) ) sin[bx]},
2

{x, 0.001, %}], {{a, -1}, -10, 30}, {{b, 1}, -10, 10}]

a M
J

-0.05
-0.10
-0.15
-0.20
-0.25

-0.30

-0.35f

Remove["Global " *"]
1.5 Figure shows the right half of the region with a graph of

1
cosine upper boundary wherea = 25, b = 0.22144andk = - a Cos[b —] .
2

1
a=25;b=0.22144; k= - aCos[b —];
2

Show [ParametricPlot [

{i (2x—ab (a (b-2bx) +—\/(1—2x)2 (a%b? + Csc[b x]?) ) Sin[bx]z), k +aCos[bx] -
2

1 (ab—2abx+\/(1—2x)2 (a® b? + Csc[b x]?) ) Sin[bx]}, {x, 0.001, 2.1}],
2

Plot[{k+aCos[bx]}, {x, 0, i}], Plot[{-k-aCos[bx]}, {x, O, l}]]
2 2



Remove["Global " *"]

1.6 Find the lower boundary satisfying Property B. The value

of variables are adjusted until the region satisfy Property B.



i
X=—;
100
25;

0.22144;

a
b

1
k=-acC b—|;
a os[ 2]

Table [NMinimize [
2

\/([v_ 1 (2x—ab (a (b-2bx) +/ (1-2x)2 (a?b? + Csc[b x]12) ) Sin[bx]z)) .

2

(k+aCos[bv] - (k+aCos[bx] - i (ab—2abx+'\/(1—2x)2 (a2b2+Csc[bx]2) )
2

2
Sin[bx]]) ]+'\/(v)2+ (k+aCos[bv])?, {v, 0, 0.5}], {i, 50}]

{{0.649195, {v - 0.00129581}}, {0.645281, {v > 0.00263923}},
{0.641334, {v > 0.00403378}}, {0.637352, {v > 0.00548307}},

{0.633334, {v > 0.00699098}}, {0.629277, {v > 0.00856178}},

{0.625181, {v - 0.0101999}}, {0.621044, {v - 0.0119101}},

{0.616866, {v > 0.0136977}}, {0.612647, {v— 0.0155681}},

{0.608387, {v - 0.0175273}}, {0.604086, {v - 0.0195819}},

{0.599748, {v > 0.0217387}}, {0.595373, {v - 0.0240054}},

{0.590965, {v - 0.0263903}}, {0.586527, {v - 0.0289021}},

{0.582064, {v - 0.0315509}}, {0.577582, {v > 0.0343472}},

{0.573087, {v - 0.0373029}}, {0.568587, {v — 0.0404312}},

{0.56409, {v > 0.0437463}}, {0.559607, {v > 0.0472646}},

{0.555149, {v > 0.0510038}}, {0.550728, {v - 0.0549845}},

{0.54636, {v—>0.0592292}}, {0.542061, {v - 0.0637642}},

{0.537846, {v > 0.068619}}, {0.533737, {v > 0.0738278}},

{0.529753, {v > 0.07943}}, {0.525916, {v > 0.0854717}},

{0.522251, {v—>0.0920071}}, {0.518783, {v > 0.0990999}},

{0.515536, {v - 0.106826}}, {0.512537, {v - 0.115278}},

{0.509813, {v > 0.124566}}, {0.507389, {v - 0.134825}},

{0.505289, {v - 0.146221}}, {0.503531, {v - 0.158959}},

{0.50213, {v - 0.17329}}, {0.501093, {v > 0.189518}}, {0.500412, {v > 0.208008}},
{0.500066, {v - 0.229165}}, {0.500012, {v - 0.2534}}, {0.500182, {v > 0.281032}},
{0.500484, {v - 0.312141}}, {0.500804, {v - 0.346432}}, {0.50102, {v > 0.383221}},
{0.501018, {v > 0.42161}}, {0.500702, {v > 0.460748}}, {0.5, {v—>0.5}}}

Remove["Global " %"]

1.7 Find the intersection point between the locus of point

(}_:, 37) and the reflection of the upper boundary over the x -axis.



1
a=25;b=0.22144; k= - aCos[b —];
2

Show [

ParametricPlot[{i (2x—ab (a (b—2bx) +\/(1—2x)2 (a2b2+Csc[bx]2) ) Sin[bx]z)r
2

k +aCos[b x] - i (ab—2abx+'\/(1—2x)2 (a2b2+Csc[bx]2) ) Sin[bx]},
2
{x,0.42, £}], Plot[{k+aCos[bx]}, {x, 0.42, £}],
2 2

Plot[{-k-aCos[bx]}, {x, 0.4, i}]]
2

1 n n n 1 n n n n 1 n n n
0.35 0.40 0.45 .50

-0.02

-0.04

-0.06

-0.08




1
x=0.42+ ;a=25;b=0.22144;k=—aCos[b—];
2

1000

Table[{v: 1 (Zx—ab (a (b—2bx) +'\/(1—2x)2 (a2b2+Csc[bx]2) J Sin[bx]z) ’
2

k +aCos[bx] - l (ab—2ab:-:+—\/(1—2:-:)2 (a2b2+Csc[bx]2) ) Sin[b x],
2

-k-aCos[bv]}, {i, 50}]

{{0.354217, -0.0850671, -0.0762132}, {0.355835, -0.0840816, -0.07551},
{0.357457, -0.0830938, -0.0748012}, {0.359086, -0.0821038, -0.0740867},
{0.36072, -0.0811115, -0.0733666}, {0.362359, -0.0801169, -0.0726408},
{0.364004, -0.07912, -0.0719092}, {0.365655, -0.0781209, -0.0711718},
{0.367311, -0.0771195, -0.0704286}, {0.368972, -0.0761158, -0.0696796},
{0.37064, -0.0751098, -0.0689246}, {0.372312, -0.0741015, -0.0681637},
{0.373991, -0.0730909, -0.0673967}, {0.375675, -0.072078, -0.0666238},
{0.377365, -0.0710629, -0.0658448}, {0.37906, -0.0700454, -0.0650596},
{0.380761, -0.0690256, -0.0642683}, {0.382468, -0.0680035, -0.0634709},
{0.38418, -0.0669791, -0.0626671}, {0.385898, -0.0659524, -0.0618571},
{0.387622, -0.0649234, -0.0610408}, {0.389352, -0.063892, -0.0602181},
{0.391087, -0.0628583, -0.059389}, {0.392828, -0.0618223, -0.0585534},
{0.394575, -0.060784, -0.0577113}, {0.396328, ~0.0597433, -0.0568627},
{0.398087, -0.0587003, -0.0560075}, {0.399851, -0.0576549, -0.0551457},
{0.401621, -0.0566072, -0.0542772}, {0.403397, -0.0555572, -0.0534019},
{0.405179, -0.0545048, -0.05252}, {0.406967, -0.0534501, -0.0516311},
{0.408761, -0.052393, -0.0507355}, {0.410561, -0.0513335, -0.0498329},
{0.412366, -0.0502717, -0.0489234}, {0.414178, -0.0492075, -0.0480069},
{0.415995, -0.048141, -0.0470833}, {0.417819, -0.0470721, -0.0461527},
{0.419649, -0.0460008, -0.0452149}, {0.421484, -0.0449271, -0.0442699},
{0.423326, -0.0438511, -0.0433177}, {0.425173, -0.0427727, -0.0423582},
{0.427027, -0.0416918, -0.0413914}, {0.428886, -0.0406087, -0.0404172},
{0.430752, -0.0395231, -0.0394356}, {0.432624, -0.0384351, -0.0384465},
{0.434502, -0.0373447, —-0.0374499}, {0.436386, -0.036252, -0.0364457},
{0.438276, -0.0351568, -0.0354339}, {0.440173, -0.0340592, -0.0344144}}

Remove["Global " *"]

1.8 Find the area of the region.



1
a=25;b=0.22144"; k=-aCos[b —|;
2

- (- NIntegrate [

(k+aCos[bx] 1 (ab—2abx+\/(1—2x)2 (a?p? + Csc[b x]?) ] Sin[bx]]
2

(D[i (2x—ab (a (b-2bx) +—\/(1—2x)2 (a?b? + Csc[b x]?) ] Sin[bXJz), x]),

{x, 0.465", i}] —NIntegrate[k+aCos[bx] ,
2

{x, 0.43075223880624175", i}]] 2+ (—NIntegrate[
2

(k+aCos[bx] 1 (ab—2abx+\/(1—2x)2 (a2b? + Csc[b x]2) ] Sin[bx]) .
2

[D[i (2x—ab (a (b-2bx) ++/ (1-2x)? (a?b? + Csc[bx]?) ) Sin[bx]z) , x]) ,
2
{x, 0, i}] +NIntegrate[k+aCos[b*x] g {x, 0, E}]) * 2
2 2
0.26009

Remove ["Global " %"]
1.9 Find the shortest path from the origin to B** .
a=25;
b=0.22144;
1
k=-aCos[b—];
2
2

NMinimize[\/[(i (2x—ab (a (b-2bx) +\/(1—2x)2 (a®b? + Csc[b x]?) )Sin[bx]z)J +

2
([k+aCos[bx] 1 (ab—2abx+\/(1—2x)2 (a?b® + Csc[b x]?) ) Sin[bx]]) ] {x,
2
0, 0.5}]

{0.2666390703981955", {x » 0.26187629499827975"}}

Remove["Global " %"]

1.10 Find xp0.

1
x=0.26187629499827975 ; a=25; b=0.22144; k = - aCos[b —];
2

1 (2x—ab (a (b-2bx) ++/ (1-2x)? (a?b? + Csc[bx]?) ) Sin[bx]z)
2
0.15712354663496542"

Remove["Global " x"]

1.11 Find x, whenab < 0.233361.



Manipulate[xl = b; nm = NMinimize[d[arc], x2];
Column[{nm[[1]],
Show[{Plot[{T[x], -T[x]}, {x, 0, 0.5}], ParametricPlot[Bn[x], {x, 0, 0.5}],
Graphics[Line[arc /. nm[[2]]]]}, ImageSize -» Large] }]
, {{b, 0.2}, 0, 0.5}]

b M
)

AT NA
n>anaa (=[P |F] =]

0.2333061

0.15}

0.10

0.05

0.1 0.2 0.3 0.4 .5

-0.05

-0.10

-0.15

Remove ["Global " %"]

2. The lower boundary of regions with other upper boundaries.

2.1 The lower boundary of the region with the circular upper boundary.

The upper boundary represented by the circular arc (x-x0)2+ (y-yo)? =

r’ where 0 s x < —
2

The locus of point (X, ¥) which is a part of the lower boundary is

(%, 7) = {(zr4x_r2 (1+2%) (x-x0)%+ (x-x0)

((x—x0)3-—\/(r+x—x0) (r-x+x0) '\/rz (1—2x)2 (r+x—x0) (r—x+x0) ))/

1
2 (r+x—x0) (r—x+x0)

(2 (r+x—x0)2 (r—x+x0)2), -

('\/r2 (1—2x)2 (r+x—x0) (r—x+x0) -2r? (\/(r+x—x0) (r—x+x0) +y0)+



(x—xO) (\/(r+x-x0) (r—x+x0) +2xy0-

2 x0 (»\/(r+x—x0) (r—x+x0) +y0)))} for{x, 0, i}

The lower boundary of the region with the circular upper boundary where x0 =

0,r=0.892,y0=—0.5'\/—1+4r2+4xo—4x02.

(%, 7} = {(2r4x—r2 (1+2%) (x-x0)%+ (x-x0)

((x—x0)3——\/(r+x—x0) (r—x+x0) \/r2 (1—2x)2 (r+x—x0) (r—x+x0) J)/
1
2(r+x-x0) (r—x+x0)

(—\/r2 (1—2x)2 (r+x—x0) (r—x+x0) -2r? (»\/(r+x—x0) (r—x+x0) +y0)+

(x—xO) (f\/(r+x-x0) (r—x+x0) +2xy0-

(2 (r+x—x0)2 (r—x+x0)2), -

2 %0 (»\/(r+x—x0) (r—x+x0) +y0)))} for {x, 0, 0.433}

1
and y = -4/ r?-x?+2 xx0 - x0? -y0 for {x, 0.3697952069716776", —}.
2

2.2 The lower boundary of the region with the elliptic upper boundary .
x—xO]2 (y—yO)2
+ =
b

The upper boundary represented by the elliptic arc (
a

1
lwhereO<x< — .

2

The locus of point (¥, ¥) which is a part of the lower boundary is

{z, 7} ={- ! - [—2a6x+ab\/a2—(x—x0)2

2 a? (a2 - (x-xO)z)

\/(iz (1-2%)2 (a2 - (x-x0)?) (a®-a? (x-x0)? +b? (x—xO)z)) (x - x0) +

a

4a*x (x—xO)z—a2 (b2 (—1+2x) +2x (x—xO)z) (x—x0)2+

b? (-1+2x) (x-xo)"], [2a2b\/(a+x—x0) (a-x+x0) -

a\/(iz (1-2%)" (2 - 2% (x-x0)7 41 (x-%0)%) (asx-x0) (a-x+x0) )+

a

b (x—xO) ,\/ (a+x—x0) (a—x+x0) (—1+2x0) +2a3y0-2a (x-xO)zyO]/
(2a (a+x—x0) (a—x+x0))}for {x, 0, E}
2
The lower boundary of the region with the elliptic upper boundary where a =

b/a2- (0.5 -x0)?

a

1.95272°, b=4.58588", x0=0, y0 = -




{}?,37}:{—2 L " [—2a6x+ab*\/a2-(x-x0)2

a? (a2 - (x- xO)z)

\/(iz (1-2%)? (a- (x-x0)?) (a*-a? (x-x0)2+b? (x—xO)z)) (x - x0) +

4ax (x-xO)z—a2 (b2 (—1+2x) +2x (x—xO)z) (x—x0)2+

b* (-1+2x) (x-xo)"], [Zazb\/(a+x—x0) (a-x+x0) -

a\/(iz (1-23)" (2" - % (x-%0) 4 b (x-x0)%) (ax-x0) (a-x+x0)) s

a

b (x—xO) \/(a+x—x0) (a—x+x0) (—1+2x0) +2a%y0-2a (x—xO)zyO]/

(2a (a+x—x0) (a—x+x0))}for{x, 0, 0.459}

b'\/az-x2+2xx0-x02 1
and y = - -y0 for {x, 0.41899697583328316 ", —} .
a 2

2.3 The lower boundary of the region with the parabolic 1 upper boundary .
The upper boundary represented by the parabolic 1 arc (x - xO) 22

1
4c (y—yO) where 0 < x < — .
2
The locus of point (X, ¥) which is a part of the lower boundary is

(% 9} -

{ 1 [ac3x+\/(c—2<=x)2(4°2+("‘x°)2) (x-%0) +c (-1+2x) (x-xo)2],

8c3

1

4 c?

-y (oo (st (xema)?) o (et (crem0) x0sweye) [ eor fx, 0, )

The lower boundary of the region with the parabolic 1 upper boundary where x0 = -0.4",
(0.5 -x0)?
4c '

C = —0.77, yo = -

{x. v} =
{ 1 [8c3x+\/(c_2cx)2(4c2+(x—x0)2) (x-%0) +c (-1+2x) (x-xo)"’],

8 c3
12 [—\/(c—Zcx)2 (4c2+ (x—x0)2) +C (x—x2+ (—1+x0) x0+4cy0)]}for {x,
4c
0, 0.487}
x2-2xx0+x02+4cy0 1
and y = - for {x, 0.47404644105951255", ;}.
4c

2.4 The lower boundary of the region with the parabolic 2 upper boundary .
The upper boundary represented by the parabolic 2 arc (y - yO) -



1
4c(x—x0) where 0 < x < ; .

The locus of point (}T, 37) which is a part of the lower boundary is

o c(-1+2x) /e (x-%0) 4/ (1-2x)? (x-x0) (c+x-x0)
(% 7} = {x= 2 (x-x0) ) 2 (x-x0)> !

(\/c (x—xO) +'\/(—1+2x)2 (x—xO) (c+x—x0) +

_r
2 (x-xO)

Zx( c(x-xO) +y0)—2x0 (2 c(x-xO) +y0))}for{x,0,§}.

The lower boundary of the region with the parabolic 2 upper boundary wherex0 =1,

c=-0.17,y0=-V2c-4cx0 .

o c(—1+2x) '\/c (x—xO) '\/(1—2x)2 (x—xO) (c+x—x0)
{XIY}={X+ 2 (x-x0) ) 2(x—x0)2 !

1

—(\/c(x—xO) +—\/(—1+2x)2(x—x0) (c+x—x0) +

2 (x—xO)

2x( c(x—xO) +y0)—2x0 (2 c(x—xO) +y0))}for{x,0,§}.

2.5 The lower boundary of the region with the hyperbolic 2 upper boundary .
The upper boundary represented by the hyperbolic 2 arc (x - xO) 2.

4c (y—yO) where 0 < x < — .
2
The locus of point (:?, 37) which is a part of the lower boundary is

{f, i} = {[2a6x+4a4x (x—x0)2+a2 (b2 (—1+2x) +2x(x—x0)2) (x—x0)2+

b2 (—1+2x) (x—x0)4+ab'\/a2+ (1-:—x0)2
\/(%(1—2x)2 (a2+ (x—xo)z) (a‘*+a2 (x—x0)2+b2 (x—xO)z)) (—x+x0)]/

a

(2a2 (a2+ (x—xO)z)z), [-2 a2b+fa?+ (x-x0)% -
a\/(:—z(l—Zx)z (2 + (x-x0)7) (at+ a2 (x-x0) 41 (x-x0)?)) »

b a2+(x—x0)2 (x—xO) (—1+2x0)+2a3y0+2a(x—x0)2y0]/

(22 (a2 + (x-%0)?))} for {x, 0, 1)

The lower boundary of the region with the hyperbolic 2 upper boundary where x0 = 0,

b'\/1+4a2—4x0+4x02

a=5.35,b=35.4", y0 =
2a



{1_{, }_(} = {[2a6x+4a4x (x—x0)2+a2 (b2 (—1+2x) +2x (x—xO)z) (x—x0)2+

b2 (—1+2x) (x—x0)4+ab\/a2+ (x—xO)2
\/(%(1—21{)2 (a2+ (x—xO)z) (a‘1+a2 (x—x0)2+b2 (x-xO)z)) (—x+x0)]/

a

(2 a? (a2+ (x—xO)z)z), [—2a2b a+ (x—xo)2 -

a\/[iz(l—Zx)z (a2+ (x—xO)z) (a4+a2 (x -x0)2 + b2 (x—xO)z)] +

a
b a2+(x—x0)2 (x—xO) (—1+2x0)+2a3y0+2a(x—x0)2yOJ/

(2a (a2+ (x—xO)z))}for {x, 0, 0.462}

x2-2xx0+x0%2+4cy0 o1
and y = - for {x, 0.42479278055926334", —}.
4c 2

2.6 The lower boundary of the region with the cosine upper boundary .

The upper boundary represented by a graph of cosine aCos [bx] + k where 0 <

b
A
N R

The locus of point (X, ¥) which is a part of the lower boundary is
{x. ¥} -

{i (2x—ab (a (b—2bx) +'\/(1—2x)2 (a2b2+Csc[bx]2) ) Sin[bx]z), k +aCos[b x] -
2

i (ab—Zabx+\/(1-2x)2 (a2b2+Csc[bx]2) ) Sin[bx]} for {x, o, £].
2 2

The lower boundary of the region with a graph of cosine upper boundary where a =

1
25, b=0.22144, k= - aCos[b —].
2

{= ¥} -

{E (Zx—ab (a (b-2bx) ++/ (1-2x)? (a2b? + Csc[bx]?) ) Sin[bx]z), k + a Cos [b x] -
2
1 (ab—2abx+\/(1—2x)2 (a®b? + Csc[b x]?) ] Sin[bx]} for {x, 0, 0.465}
2

1
and y = -k-aCos[b#x] for {x, 0.43075223880624175", —}.
2

2.7 The lower boundary of the region

with the snipping off of the parabolic 1 upper boundary .
The upper boundary represented by the snipping off of the parabolic1 .
(x)%+ (y+0.3127336317241687 ‘)2 =

1 2
(—) where 0 < x < 0.1748013092940937" and (x-xo)2 =
2

1
4c (y-y0) where 0 < 0.1748013092940937" < —
2



The lower boundary of the region with the parabolic 1 upper boundary where x0 =
(0.5-x0)?

-0.4°,c=-0.77, y0 = -
4c

(%, 7} = {81? [8c3x+\/(c—2cx)2 (4c+ (x-%0)%) (x-x0) +c (-1+2x) (x—xO)zJ,

T [ (e zen et txmsol?) e fxmxte (2 0x0) sovaeo) | eor

0, 0.487}
x?2-2xx0+x02+4cy0

1
for {x, 0.47404644105951255", —}.

and y = -
4c 2
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