ADAPTIVE MATRIX MULTIPLICATION FOR VARIOUS DEGREE OF SPARSITY USING
TENSORFLOW

Mr. Siraphob Theeracheep

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science and Information Technology
Department of Mathematics and Computer Science
FACULTY OF SCIENCE
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University

o

nsgasuvisngnUsuladmsuauinesyiuaieg Tngldnuwes-Tnad

a L) IS
UNYHFINAN DILUN

‘3‘1/1EJ1ﬁwu§§LﬁuﬁawﬁwmﬂWiﬁﬂmmmé’ﬂqmﬂ%@mﬁmmmamumﬁmsﬁm
@1UMIANINYINTABUN MBI LaTINALULATENTEUWA A1AITIAGIAAIEAILAYINGINTS
ABUNILADS
ANEINEIMERS PNAINTAIININAY
Unsfinwn 2562

AUaAVEvRIPRINTAIININe 1Y

Thesis Title ADAPTIVE MATRIX MULTIPLICATION FOR VARIOUS
DEGREE OF SPARSITY USING TENSORFLOW

By Mr. Siraphob Theeracheep
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor JARULOJ CHONGSTITVATANA, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial

Fulfillment of the Requirement for the Master of Science

__ Dean of the FACULTY OF SCIENCE
(Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

__ Chairman
(Assistant Professor DITTAYA WANVARIE, Ph.D.)
__ Thesis Advisor
(Associate Professor JARULOJ CHONGSTITVATANA, Ph.D.)
__ External Examiner

(Associate Professor Worasait Suwannik, Ph.D.)

dsnm B5edn : manaumIndnUUlFdmuALTesEuse Tngltinumes-
1an. (ADAPTIVE MATRIX MULTIPLICATION FOR VARIOUS DEGREE OF
SPARSITY USING TENSORFLOW) 8.713nwmdn : 3a. as.a15laatl 2safingSamnn

mnasuninddunsdiiiunismnsadineansniluuszendlduilatdgmnane
Uszinnuaziinisdiauetunauisnisaaduninddmiuvatgunannosy nuwesivad
Duunanesudmiunisiseuimeinisaiusznoumeynmameadnmansualeaas

[

FAIANFINITANUNING Wulwasinadfiedsiugiud mSuauunIndaeads

e

¢ aa ¢

Ao ttmatmul wae tfsparse_matmul Fawugilildivumindniliavauddosuaziun

Sndgndavaudun aua1iu InginusaduiiiisuTulTauseansanveansgansng

4

vuwnanesuinugesinal 35n1snauunsndiinauesswlsiazunsnd duduming

' [
o

| & o] d' = ° Y]
Y88 INUUINADNTENIN tmatmul kag tf.sparse matmul MUUATFINUIIUEINTU

a

@Jmmw‘%ﬂﬁﬁ Lﬁa@m@j%ﬂmﬁﬂ%ﬂaat,maz@j ANUAMUAULUUTDUUNINDLDE LSINUINAIAS
nsAalunIndiudueddaiuisogaunsindlaianidn matmul uae
tf.sparse_matmul Tunsalnunindinisnseatedvesanlaldgudliadane dmsu
A o o a cw ' a M vy o & AL a2 A
nsflausAdINITAUNINgANaREINIsaRunInglagIn A dniugunsINgs
5¥WI19 tmatmul 3o tfsparse matmul indes agelsiniy Adin1spaunIng
asnanldlalanizun CPU WesaIn tf.sparsematmul $835UM59u@nIzul CPU

895UNSYINUUUE GPU

AT INYINITABURILADILAY ANGLDVDUEN oo
wAlulagansaume

Unsfinen 2562 AN939%8 8. NUSAWIARN coveeeeeeeee,

5972633323 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORD: TensorFlow, Matrix multiplication, Dataflow programming
Siraphob Theeracheep : ADAPTIVE MATRIX MULTIPLICATION FOR VARIOUS
DEGREE OF SPARSITY USING TENSORFLOW. Advisor: Assoc. Prof. JARULOJ
CHONGSTITVATANA, Ph.D.

Matrix multiplication is a fundamental operation used in many problems,
and many matrix multiplication algorithms are proposed for many computing
environments. TensorFlow is a machine learning platform with many mathematic
library functions including matrix multiplication. TensorFlow provides two methods,
tf.matmul and tf.sparse_matmul, for matrix multiplication. It is suggested that
tf.mnatmul should be used for dense matrices, and tf.sparse matmul should be
used for sparse matrices. In this work, an approach is proposed to improve the
efficiency of matrix multiplication in TensorFlow. The proposed approach divides
each matrix into four submatrices, and chooses either tfmatmul or
tf.sparse_matmul for the multiplication of each pair of submatrices, based on the
density of the submatrices. We found that it is faster than both tf.matmul and
tf.sparse_matmul for input matrices that have uneven distribution of non-zero
values. For other inputs, it is almost as fast as the faster one between tf.matmul
and tf.sparse_matmul. However, this approach can only be used for CPUs because

tf.sparse_matmul is supported only on CPUs but not GPUs.

Field of Study: ~ Computer Science and Student's Signaturecccoccevcvivcnnee
Information Technology

Academic Year: 2019 Advisor's Signatureccccccceviennen.

ACKNOWLEDGEMENTS

This thesis will not come to fruition without the help and support of all the
faculty and staffs at the Department of Mathematics and Computer Science, Faculty of

Science, Chulalongkorn University.

First, I would like to thank Ms. Nonglak Pootachareon, for all the help and

support regarding the paperwork and student's affairs.

Next, | would like to thank my family and friends who throughout the creation

of this thesis were always there for me when I'm in the darkest of places.
Finally, and most importantly, | would like to thank my thesis advisor,

Associate Professor Jaruloj Chongstitvatana Ph.D. for always being kind and patient with

me.

Siraphob Theeracheep

TABLE OF CONTENTS

.. iii
ABSTRACT (THAID et ii
.. iv
ABSTRACT (ENGLISH) 1.t \%
ACKNOWLEDGEMENTS ..ottt Vv
TABLE OF CONTENTS «.coiieiettieitiee ettt teiesseie et vi
LIST OF TABLES ...ttt viii
LIST OF FIGURES ...ttt ettt iX
Chapter 1 INTrOAUCTION ..ottt 11
Chapter 2 Related WOTKS ... 14
2.1 Dense Matrix MUltPUCATION........ciiiiieicciiii e 14
2.2 Sparse Matrix Representation ...t 15
2.3 Example of Sparse Matrix Multiplication Implementationscccccccvvviinnnee 18
2.0 TensorFLOW Programimingccc et 19
Chapter 3 Proposed MethOd.......ccoiiiiiiieee e 22
3.1 Block-adaptive Matrix MUltipliCationoveveeeiiieeecec e 22
Chapter 4 EXPErMENTScu ittt 27
4.1 Finding the Criteria for Choosing between Dense Matrix Multiplication and
Sparse Matrix Multiplication Methodscccvviierniicricrcceccee, 27
4.2 Performance Evaluation of block adapt matmul on CPUcccccccvevivivninnnne 31

Chapter 5 Results and DISCUSSIONviiieiiiiiiiieieieieieieieieeiee et 33

Vii

5.1 Performance of block_adapt matmul with Varying Overall Density of Input

T S e e et e et e e e e e e e e e e e e e e e e eaaan 33

5.2 Performance of block adapt matmul with Varying Density Differences of Input

IMBETTCES ... 38
Chapter 6 CONCLUSION ...ttt a2
REFERENCES ...ttt a4

LIST OF TABLES

Table 1 Criteria for selecting multiplication methods in block adapt_matmul.......... 28
Table 2 The fastest matrix multiplication method for each combination of input

matrices densities measured from experiments. ... 29
Table 3 The criteria for deciding whether matrix B is sparse or densec.ccoceveeeee 30

Table 4 The difference between the execution time of the two fastest multiplication

LIST OF FIGURES

Figure 1 An arbitrary matrix converted to 2x2 block MatriX.........ccccccvevvivvinvicninnnne 15
Figure 2 Example of sparse matrix in DOK formatcccoceiiniinninnincrcncccees 16
Figure 3 Example of sparse matrix stored in LIL format ... 16
Figure 4 Example of sparse matrix stored in COO format......cccooeevvvvnnnnnncces 17
Figure 5 Example of sparse matrix stored in CSR format and CSC format.........cccc..... 17
Figure 6 Example of matrix multiplications of block matricescccccovvviivnniccnnes 23
Figure 7 Pseudocode of block adapt matmul......cccceiiicnccceccee 25
Figure 8 The diagram of the algorithm for block adapt matmul.......ccccoocevnicnnes 26
Figure 9 Checkered pattern of higher density and lower density input matrix 32

Figure 10 Execution times of block adapt _matmul, tf.sparse_matmul and tf.matmul
on matrices of sizes 3000x3000, 6000x6000, 9000x9000, and 1200x12000 with varying
OVETALL ABNSIEY .ottt s ettt bbb ss et b esese s esess 34

Figure 11 Speedup of block adapt _matmul compared to tf.matmul for matrices of

overall density of 30%, 40%, 50%, 60%, 70%, and 80%, with varying sizes. 36

Figure 12 Speedup of block adapt_matmul compared to tf.sparse_matmul for

matrices of overall density of 30%, 40%, 50%, 60%, 70%, and 80%, with varying sizes

Figure 13 Execution times of block adapt matmul, tf.sparse_matmul and tf.matmul
on matrices of size 3000x3000, 6000x6000, 9000x9000, and 12000x12000 with varying

AENSItY AIFEIENCE ..o 39

Figure 14 Speedup of block adapt matmul compared to tf.matmul for matrices of

density differences of 20, 40, 60 and 80 with varying Sizesccccccevvivieieeeiieiereeene, a0

Figure 15 Speedup of block adapt matmul compared to tf.sparse_matmul for

matrices of density differences of 20, 40, 60 and 80 with varying sizes

Chapter 1

Introduction

Massive amount of data is constantly being processed by billions of
computers all over the world. They are processed on computers on a large network
of datacenter, desktop computers, laptop computers and even smartphones. For
these computers handle large amount of data, efficient algorithms must be provided.
An important algorithm frequently used in wide range of applications and scales is
matrix multiplication. A matrix is a data representation, organizing data into two-
dimensional array, which consists of rows and columns. Each row or column can
contain any number of elements. For each element in a matrix, its position in the
matrix can be specified using two integers, a row index, and a column index. Matrices
are used in many applications, such as solving a system of equations in linear algebra
[1]. These systems of equations are also used to model many problems in neural
networks, image processing, machine learning, and many others. Solving these
problems rely on matrix computation, especially matrix multiplication. For example,
in neural networks, a training session requires many iterations of matrix multiplication
[2]. Since the matrix multiplication is a computationally expensive operation whose
time complexity is in O(n®) for naive implementation [3], there are many approaches
to make matrix multiplication operation more efficient. An approach for optimizing
matrix multiplication is to exploit the property of input matrices. For example, if
input matrices contain a large number of zeros, many steps in matrix multiplication
will be wasted on multiplying zeros [4]. A matrix multiplication method can be
implemented to reduce numbers of these wasted computation steps. Matrices with
this property is called sparse matrix and matrix multiplication optimized for these
matrices is called sparse matrix multiplication. One approach to optimize sparse
matrix multiplication is to use a representation for sparse matrix which stores only
non-zero elements of a matrix. Then, algorithms for matrix operations must be
optimized for such representations. Some sparse representations are optimized for
the creation of matrices, while others are optimized for fast access and operations

[5]. These representations are also less efficient when used with matrices that are

12

less sparse. Some efficient matrix operations on sparse matrices are done on low-
level computing kernel that directly communicates with hardware, which depend on
specific hardware and may not be applicable on others. There are many
implementations of matrix multiplication with varying degree of optimizations which
target different fields of application. Many implementations of matrix multiplication
can be found in various libraries of high-level programming languages. An example of
such libraries is TensorFlow [6].

TensorFlow is a dataflow-paradigm-based machine learning library that can be
used on many types of processing units, such as CPU, GPU and TPU. It allows users
to design and construct computation graphs of computing tasks using a set of pre-
built nodes representing basic operations through a coding interface written in high-
level languages such as Python and Java. After the computation graph is constructed,
TensorFlow evaluates the dependency of computing nodes in the graph and
automatically allocate processing units for these nodes in order to make
parallelization of the tasks possible. TensorFlow hides the complexity of parallel
programming in low-level languages while still allows customizability through various
pre-built operation nodes. TensorFlow was developed as an open-source software
not only available for use with supercomputers or datacenters, but also for
smartphones and personal computers.

TensorFlow provides two different implementations of matrix multiplication
methods, tf.matmul, which is designed for general purpose matrix multiplication and
tf.sparse_matmul, which is optimized for sparse matrix multiplication. The method
tf.matmul is supported on both CPUs and GPUs. However, the method
tf.sparse_matmul is supported only on CPUs because a GPU kernel for sparse matrix
multiplication is not readily available in TensorFlow. Some matrices are of medium
density, e.g. matrices with half zeros and half non-zeros, and sparse matrix
multiplication is not well optimized for such matrices. However, if the method
tf.matmul is used, many multiplications of zeros are still performed.

In this work, we aim to increase the performance of multiplication of
medium-density matrices, using only pre-built operations on TensorFlow without

incorporating any customized low-level computing kernels. We propose an approach

13

for matrix multiplication and implement a computation graph of matrix
multiplication from basic operations in TensorFlow, including its two built in matrix
multiplication methods. The proposed approach divides each input matrices into
four submatrices and perform multiplication on each pair of submatrices using the
appropriate matrix multiplication method based on their density. This approach can
only be used on CPUs because the method tf.sparse_matmul is not supported on
GPUs.

Experiments are performed to evaluate the proposed method. It is found that
the method, block adapt matmul, outperforms tf.matmul and tf.sparse matmul
when the distribution of non-zero elements in the input matrices are uneven. The
more uneven the non-zero distribution in the input matrices are, the faster the
performance of the proposed. Although the method also requires a preliminary
experiment to determine the criteria for choosing multiplication methods for
different density.

In conclusion, block adapt matmul should be used when the input

matrices have uneven non-zero distribution and moderate overall density.

14

Chapter 2
Related Works

Matrix multiplication is used in many problems such as pattern recognition,
neural networks, and machine learning. In pattern recognition, an image is
represented by a matrix of values of each pixel in the image, and operations, such as
edge detection, are done by multiplying a matrix with the matrix of the image [7]. In
neural networks, the multiplication of the input and the weight matrix is performed
numerous times throughout the training process [2]. Many machine learning
algorithms, such as bert [8], word2vec [9] and GloVe [10], are based on neural
networks and, thus, rely heavily on matrix multiplication. As a result, reducing the
time for matrix multiplication can reduce the computation time for many algorithms.

Many approaches are proposed to improve the efficiency of matrix
multiplication. Some matrix multiplication algorithms are designed for dense
matrixes, and they are described in section 2.1. Section 2.2 describes the
representation of sparse matrices. Then, some implementations of matrix
multiplication for sparse matrices are explained in section 2.3. Some of these
implementations are designed for single-core CPUs, some are designed for multi-core
CPU, and some are of GPUs. Finally, section 2.4 describes TensorFlow, a machine

learning library which will be used as the experimental platform in this work.

2.1 Dense Matrix Multiplication

Early study proposes algorithms such as Strassen’s algorithm [11] and
Coppersmith-Winograd algorithm [12] which follow the same principle of recursively
reducing the total number of multiplications required in a matrix multiplication. In
Strassen’s algorithm, the multiplication of matrices is done by doing seven
multiplications of submatrices which are created by either adding or subtracting a
pair of submatrices of the input matrices. Compare to the basic divide-and-conquer
matrix multiplication which uses eight multiplications of submatrices, it reduces the

2.807)

time complexity of matrix multiplication from O(n®) to O(n*®"). After Strassen’s

algorithm, many matrix multiplication algorithms using similar optimization principle

15

which have better time complexity are proposed [12-14]. One of these algorithms is
the Coppersmith-Winograd algorithm, whose time complexity is O(n*>). However, all
these matrix multiplication algorithms have an exceptionally large computational
overhead cost. This makes these algorithms faster, in practice, than conventional
matrix multiplication only for extremely large matrices. Therefore, these algorithms
are not used in practice while Strassen’s algorithm can be used.

In order to utilize parallelization in hardware, Steven W. D. Chien et al [15]
uses tiling algorithm to divide matrices into smaller submatrices, as shown in figure 1.
Matrix multiplications are then performed on these submatrices in parallel on GPU.
In addition to parallelism, tiling algorithm also enable multiplication of matrices too

large to fit in the memory of a GPU.

G Gl /O
Amon = L;m i |7 la)
all b a a (1 e aln
1(3n) 1(3n+1)
A = : A1z = :
a Ry a a Ry a
| “(gm) (@m)zn) (zm)(zn+1) (zm)n
a(%m+1)1 a2 (%m+1)(%n) a(%m+1) (%n+1) a(%m+1)n
A21 = E . 5 o A22 == : ’ :
am1 o & m(%n) am(%n+ 1) o @ mn

Figure 1 An arbitrary matrix converted to 2x2 block matrix
These algorithms are designed for dense matrices. However, in many real-
world problems, data are represented by matrices may contain many zero-valued
elements, called sparse matrices. Based on the sparsity of matrices, many algorithms

are designed for sparse matrix multiplication.

2.2 Sparse Matrix Representation

One approach to optimize sparse matrix multiplication is based on the
representation of sparse matrices, which stores a collection of the non-zero values in
the matrix, together with their positions. This can reduce the memory required to

store sparse matrices, and also make it easy to avoid the useless multiplication of

16

zeros. Many sparse matrix storage formats have been proposed [5]. For sparse
matrices, dictionary of keys (DOK), List of lists (LIL) or Coordinate list (COO) are
examples of the representations that can be used to efficiently construct sparse
matrix or convert matrix to sparse representation from dense format. Figure 2, 3 and
4 show examples of matrices in DOK, LIL and COO sparse matrix representation,
respectively. For DOK format, a matrix is stored in a dictionary, and the key in the
dictionary is the row and the column of a non-zero element and the value in the

dictionary is the non-zero element.

0 O 0 O

0 66 90 81
45 0 0 —62

3 0 —-82 -97
(1,1): 66,
(1,2): 90,
(1,3): 81,
(2,0):45,
(2,3): — 62,
(3,0):3,
(3,2): — 82,
(3,3): —97,

Dense Matrix Format:

DOK Format:

Figure 2 Example of sparse matrix in DOK format
For LIL format, each row in a matrix is stored as a list of pairs of column index and its

value, and a matrix is a list of all rows.

0 0 0 12

—90 13 0 -5
0 48 0 -—116

=77 0 82 0

(3,12)],
(0,-90),(1,13),(3,-5)],
(1,48), (3,—116)],
(0,-77),(2,82)]

Dense Matrix Format:

[
LIL Format: {
[

Figure 3 Example of sparse matrix stored in LIL format
For COO format, a matrix is stored as a list of three-element tuples, where each

element is row index, column index and value, respectively.

17

0 O 63 0

0 76 0 -105
0 121 38 10

92 -38 0 0

(0,2, 63)
(1,1,76)
(1,3,—105)
(2,1,121)
(2,2,38)
(2,3,10)
(3,0,92)
(3,1,—38)

Dense Matrix Format:

COO0 Format:

Figure 4 Example of sparse matrix stored in COO format
When performing matrix operations, including matrix multiplication, some other
sparse matrix representations are more efficient [5], such as compressed sparse row
(CSR) or compressed sparse column (CSC) . Examples of matrix in these formats are
shown in figure 5. These two formats are similar, with the only difference being the
stored values are ordered by rows first in the former representation and by column
first in the latter. The CSR format is efficient for accessing values of the matrix by

rows, while the CSC format is efficient for accessing values of the matrix by columns.

-11 -3 0 O
. 1o o 240
Dense Matrix Format: 95 —123 87 0
0 -94 17 0
Value= [-11 -3 24 95 -—-123 87 -94 17]
CSR Format:Column=1[0 1 2 0 1 2 1 2]
Row = [0 2 3 6 8]
Value= [-11 -3 24 95 -—-123 87 -94 17]
CSC Format: Row = [0 2 0 2 3 1 2 3]
Column=1[0 2 5 8 8]

Figure 5 Example of sparse matrix stored in CSR format and CSC format
Tao Wu et al. [16], proposed a block-based sparse matrix format combining
COO and CSR format called BCSR&BCOO. In BCSR&BCOO format, a sparse matrix is

divided into smaller submatrices or tiles. Each tile is then stored in either COO or CSR

18

format depending on the density of the tile. If the density of a tile is above a
threshold, it is stored in CSR format; otherwise, it is stored in COO format. The
BCSR&BCOO was designed for Multicore CPUs.

Monika Shah et al. [17], proposed an extension of COO format called
ALIGNED COQO, in which the storage format is not only optimized by exploiting the
sparsity of the matrices, but also their non-zero distribution. ALIGNED COO format is
specifically designed to optimize the performing of sparse matrix-vector
multiplication on GPU where the sparse matrix has skewed non-zero distribution. By
realigning and padding the sparse matrix into multiple segments of the same size,
the ALIGNED COO format helps increasing the degree of concurrency while
performing the computation in GPU.

The optimization of sparse matrix multiplication, based on a representation of
sparse matrix, is effective when the matrix is sufficiently sparse. The computation
time is higher when the number of non-zero elements in the matrix is higher. Thus,

it does not perform well for matrices with medium density.

2.3 Example of Sparse Matrix Multiplication Implementations

Another common approach to optimize sparse matrix multiplication is to
develop a computing kernel specific for sparse matrix multiplication for certain types
of input matrices. A computing kernel is a program written in low-level code in order
to optimize the computation on a specific hardware. Some works propose computing
kernels optimized for specific type of sparse matrix multiplication, such as SpMV [18],
where the multiplier matrix is sparse and the multiplicand is a single-row matrix or a
vector, while other works propose computing kernels for sparse matrix multiplication
in general.

Tao Wu et al. [16], proposed a sparse matrix-matrix multiplication computing
kernel BSpMM for use specifically with their proposed sparse matrix representation
on a CPU with L1 and L2 cache, BCSR&BCOO, which was described in section 2.2. The
sparse matrix multiplier in BCSR&BCOO format and dense matrix multiplicand are

loaded into L2 and L1 cache of a CPU core, respectively. Then the non-zero values

19

in the multiplier matrix is multiplied with all values in the dense matrix at the same
rows as the column index of each of the non-zero value.

Carl Yang et al. [19], proposed a GPU computing kernel for sparse matrix-
sparse vector multiplication, called SpMSpV, which is an improvement to SpMV,
which is a computing kernel for sparse matrix-vector multiplication. They developed
this kernel initially for breadth-first-search algorithm, which is a problem that can be
interpreted in terms of sparse matrix-vector multiplication [20] and then, based on
the algorithm for generalized sparse matrix-vector multiplication, the sparse matrix-
sparse vector multiplication kernel was developed.

Jeongmyung Lee et al. [21], developed a sparse matrix multiplication
algorithm on GPU called block reorganizer. The block reorganizer divides input
matrices into smaller submatrices and calculates the computational cost required for
each submatrix. The submatrices that contain greater number of non-zero values are
further divided into smaller blocks, while submatrices with smaller number of non-
zero values are grouped together into a larger block. By doing so, the block
reorganizer adjusts the computation load in each block to the similar level which
leads to better thread utilization and better performance.

The downside of optimization of matrix multiplication by developing a
computing kernel is that it is usually specific to the device the kernel is developed
for. Moreover, writing low-level computing kernel codes usually requires a lot of
technical knowledge and is mostly done on high-performance computing devices,
which make it less accessible to non-technical users. Nowadays there are platforms
that helps alleviate these downsides by wrapping operations like matrix
multiplication and other matrix manipulation techniques in higher level of
abstraction that is easier to understand and customize. One such platform is

TensorFlow, which is the platform that will be used in our experiments.

2.4 TensorFlow Programming
TensorFlow is @ machine learning library made by Google Brain [6]. It utilizes
dataflow programming paradigm to manage, distribute and parallelize computations

represented as dataflow graphs. A dataflow graph in TensorFlow consists of nodes

20

and edges. A node in TensorFlow graph represents a primitive, simple operator that
take zero or more tensor as input from edges and output zero or more tensor. An
operation in a node can be executed when all its input on edges are available. Since
the communication between nodes is explicitly defined by edges, the computation
dependencies between operations can be identified and parallel computation can
be done efficiently.

Writing a TensorFlow program can be divided into two parts. The first part is
the creation of dataflow graph. In this step, the program creates computational
nodes, which may include constant value tensors, variable tensors, placeholder
tensors or operation nodes. The constant value tensors are defined with specific
values at the creation of the dataflow graph, and then cannot be changed. The
variable tensors are initialized with values at the start of the dataflow execution, and
then can be further changed again throughout the computation. The placeholder
tensors take input values from outside of the dataflow graph at the start of the
computation. The operation nodes are nodes that take other tensors or operation
nodes as input and return output tensors or nodes depending on the operation
performed. The second part of the program executes the dataflow graph and return
output values. The dataflow graph is created only once and can be executed as
many times as needed. Any node of the dataflow graph can be selected as the end
of the computation, meaning that the dataflow graph can be partially executed up
to any node.

At the user-level, TensorFlow is available particularly in Python, C++ and
Java, although it has also been ported to other programming languages. While writing
a TensorFlow program in these high-level languages, such as when defining an
operation node, the high-level method for defining a node communicates through
API written in C with a low-level kernel of that operations called “ops”. TensorFlow
utilizes many high-performance computing libraries, such as Eigen [22] and BLAS [23]
in CPU implementation and cuBLAS [24] in GPU implementation.

TensorFlow provides two matrix multiplication methods. One is for general
purpose multiplication for arbitrary input matrices. This method, called tf.matmul,

performs multiplication of input matrices as if both inputs are dense matrix. The

21

other one is called tf.sparse matmul, which is specifically designed to efficiently
perform multiplication on sparse matrices. This method has additional arguments for
specifying if the first input matrix and/or the second input matrix is dense or sparse.
The TensorFlow’s tf.sparse matmul is suitable for efficient matrix multiplication
when the density of input matrices is below 70% as suggested in TensorFlow
documentation [25]. Both multiplication method can be executed using CPU, using
Eigen kernel implementation, while only the first method can be executed with GPU,
using cuBLAS kernel implementation.

Many of the multiplication methods described here utilize block matrix
multiplication or tiling algorithm, which divides input matrices into smaller
submatrices before further applying optimization techniques. In this work, we
propose a matrix multiplication method implemented on TensorFlow platform. The
proposed method also utilizes block matrix multiplication to increase the

performance for certain types of input matrices.

22

Chapter 3
Proposed Method

Most of the works on matrix multiplication focus on either dense matrices or
sparse matrices. In this work, we focus on matrix multiplication on TensorFlow, and
propose a matrix multiplication method. This method is based on the observation
that, regardless of the density of a matrix, some of its submatrices are possibly sparse
and some are possibly dense. If a faster multiplication method is chosen for each
pair of submatrices based on their density, the performance of matrix multiplication
can be improved. To create submatrices, a matrix can be divided by row or by
column.

The proposed method is called block-adaptive matrix multiplication or
block adapt matmul. Each input matrix is divided into four submatrices by both
rows and columns. Then, one of two matrix multiplication methods in TensorFlow,
tf.matmul and tf.sparse_matmul, is chosen for each pair of submatrices, based on
their density. For dense matrices with some sparse submatrices, this method should
be faster than the dense matrix multiplication. For sparse matrices with some dense
submatrices, this method should be faster than the sparse matrix multiplication.
However, this method is applicable for computation on CPU, but not on GPU,
because TensorFlow does not provide the sparse matrix multiplication method on

GPU.

3.1 Block-adaptive Matrix Multiplication

The product of two matrices is composed of submatrices that are the
products of submatrices of the multiplier and the multiplicand. For example, let
A be a matrix of size m X n, B be a matrix of size n X p and C be the product of 4

and B, which is of the size m X p. If the matrices A, B and C each are composed of

2X2 block matrices, all block matrices of C, which are C;1, C;5,C1 and C,,, can be

created from block matrices of A and B as shown in figure. 6.

23

A — All AlZ] B — Bll BIZ]
(xm) = (Agy Aga| P T By By
Cll ClZ
AXB = Cop = |1]

Ci1 = Ay1 X By1 + A2 X By

Ci2 = A11 X By + A1 X By,
Where

Cy1 = Az1 X By + Ay X By

Cy2 = Azg X By + Azp X By,

Figure 6 Example of matrix multiplications of block matrices

The method partitions the multiplier and the multiplicand into four
submatrices each by dividing both rows and columns. Then submatrices from the
multiplier and the multiplicand are paired for matrix multiplications. Total of 8 pairs
of submatrices multiplication are prepared. The paring is equivalent to the
multiplication of two 2x2 matrix. Two pairs of multiplication must be performed for
each submatrix in the product. The upper left submatrix of the product (Cy4) is the
addition of the products from the multiplication between the upper two submatrices
of the multiplier (411, 441) and the two left submatrices of the multiplicand
(B11, B21). The upper right submatrix of the product is the addition of the products
from the multiplication between the same upper two submatrices in the multiplier
and the two right submatrices of the multiplicand (Bj,, By3). The lower left
submatrix of the product is the addition of the products from the multiplication
between the lower two submatrices of the multiplier (A1, A5,) and the two left
submatrices of the multiplicand. The lower right submatrix of the product is the
addition of the products from the multiplication between the same lower two
submatrices in the multiplier and the two right submatrices of the multiplicand. After
the multiplications are performed, each product submatrices are concatenated,
resulting in the final product (C).

Based on the observation that each of the eight submatrices may be dense
or may be sparse, different multiplication method can be selected for each pair of

submatrices multiplication for the most efficient performance. The multiplication

24

methods available in TensorFlow are tfmatmul and tf.sparse matmul. The first
method, tf.matmul is optimized for dense matrix multiplication. The method does
not consider the zero values inside the input matrices. The second method,
tf.sparse_ matmul is optimized for multiplication of sparse matrices. The
tf.sparse_matmul has additional parameter to specify if either the multiplier and
multiplicand matrices are sparse, resulting in three possible configuration of
tf.sparse_matmul, for when the multiplier matrix is sparse, when the multiplicand
matrix is sparse, or when both input matrices are sparse. For multiplication of dense
matrices, tfmatmul is selected as the multiplication method. For pairs of
submatrices that include at least one sparse matrix, one of the three configurations
of tf.sparse matmul is selected as the multiplication method. The criteria to
determine if a submatrix is dense or sparse must be determined before the
block adapt matmul method can be implemented. The criteria are used in the
selectMatmulMethod function which take density of two matrices as input (DA and
DB) and return either the tf.matmul method or one of the three configurations of
tf.sparse_matmul as an output (ABmatmulmethod) , described in chapter 4.1. After
multiplication of each pair of submatrices are performed using their determined
multiplication method, the product from each pair is combined into the final result

matrix. The pseudocode of block adapt_matmul can is shown in figure 7 below.

25

Function: block _adapt_matmul (4, B,C) where A, B and C are matrices of size
m Xn,n X pand m X p respectively:
1. Divide A into Aq1,A412,451, A5, of size (% X %)
2. Divide B into By, B13, B1, By of size (g X g)
3. Calculate density of A11,A412,421,422 as Da11, Da12, Daz1, Daz2,
respectively
4. Calculate density of By1, B12, B21, B22 as Dg11, Dg12, D21, Dg22,

respectively

5. Determine the multiplication method for each pair of submatrices.

Ai1Biymatmulmethod = selectMatmulMethod (D411, Dg11)
A{1Bi,matmulmethod = selectMatmulMethod(D,11, Dgq15)
Aq,B,ymatmulmethod = selectMatmulMethod(D442,Dgy1)
A;,B,,matmulmethod = selectMatmulMethod (D412, Dgs2)
A,1B;ymatmulmethod = selectMatmulMethod(D4,1,Dg11)
A, B,matmulmethod = selectMatmulMethod(D4,41,Dg12)
A,,B,ymatmulmethod = selectMatmulMethod (D455, Dgyq)
A,,By,matmulmethod = selectMatmulMethod(Dyy5, Dgos)

6. Perform matrix multiplication on each pair of submatrices.

Ci1 = Ay1B;ymatmulmethod (4,1, B11)

+ A,,B,ymatmulmethod(A;,, By1)
Ci, = A;1Biomatmulmethod (A4, B13)

+ A, B,,matmulmethod(A;5, B,,)
C,, = A,;By;matmulmethod(A,,, B11)

+ A, By matmulmethod(A,,, Byq)
C,, = A,1B,matmulmethod(A,,, B;;)

+ A,,By,matmulmethod(A,,, Byy)

7. Combine Clll Clz, C21, C22 into C.

Ci1 C12]
C =
C1 Cyy
8. Return C

Figure 7 Pseudocode of block adapt matmul

The block adapt matmul is implemented in python using TensorFlow library

and can be described in as a computation graph shown in figure 8. In figure 8, A, B

and C are the two input matrices and the result matrix, respectively. The subscripted

As and Bs are submatrices derived from their corresponding input matrix. The

subscripted Ds are the density of the submatrices. The input matrices are partitioned

26

using the tf.split method. To find the density of each submatrix, the method
tf.count _nonzero is used to find the number of non-zero elements in the input
matrix and the function tfsize is used to find the size or the total number of
elements in the input matrix. The function selectMatmulMethod uses the density of
each submatrix to determine the appropriate method for the multiplication of a pair
of matrices according to predetermined criteria. All submatrices of the product are
combined using tf.add and tf.concat. The method tf.add is used to add the products
of submatrix multiplications, and the output of these operations are assembled into

the final matrix multiplication product tf.concat.

\| block_adapt_matmul(A,B) H

-]

(. A

A B c Da11[] De11[]
tf. count_nonzero Pat2L] D12l
‘ tf. size Da21[] De21[]

Da22(7] Dg22[]

DA1':E| 0515

Ay | selectMatmulMethod |

—
v
%—_}—{ A11Bysmatmulmethod | ——— Bﬂi

Ca11,B11

DAmE DB2‘E§| [tradd]— Eaic

Aq2 | selectMatmulMethod I

L‘\
v
H A12Bmatmulmethod | m —
. Ca12,B21 C12

B4

Bz . Htf,concatl—»
T
. —_—
L] L] c
DAzzE 0322(9 . . C21
L] L
Aga | selectMatmulMethod | R EBi
L‘\
y C
HAngggmatmulmethod [—— HE{ 22
Ca22B22
B22

Figure 8 The diagram of the algorithm for block adapt_matmul

27

Chapter 4
Experiments

All experiments were performed on a laptop with Intel Core i7-4720HQ quad-
core CPU with 16GB DDR3 RAM and Nvidia Geforce GTX 870M GPU with 3GB VRAM.
The operating system used was Linux Ubuntu 18.04.2. The proposed matrix
multiplication methods are implemented in Python 3.6.5 and TensorFlow rl1.11. The
computation time used in all performance evaluation is the average of the execution
time of the multiplication of 20 pairs of matrices generated randomly.

In this chapter, we will describe the experiments performed in this work. We
compare the performance of our proposed matrix multiplication method and the
TensorFlow built-in multiplication methods, tf.matmul and tf.sparse_matmul on
input matrices with different non-zero values distribution patterns. A preliminary
experiment is performed to determine the criteria to select the appropriate matrix
multiplication method and it is described in section 4.1. In section 4.2, performance
of block adapt matmul is evaluated against TensorFlow’s provided methods,

tf.matmul and tf.sparse_matmul on CPU.

4.1 Finding the Criteria for Choosing between Dense Matrix Multiplication and
Sparse Matrix Multiplication Methods

Because the performance of the proposed matrix multiplication method,
block_adapt matmul, depends on the matrix multiplication method chosen for
each pair of the submatrices, it is necessary to determine the criteria for choosing
one of TensorFlow’s multiplication methods for submatrices. TensorFlow offers a
multiplication method for dense matrices which is tfmatmul, and a multiplication
method for sparse matrices, which is tf.sparse_matmul. For tf.sparse_matmul there
are three variations of the method which are used according to the argument of the
method. This argument is used to indicate which of the input matrices is sparse. The
argument a _is _sparse indicates that the first input matrix is sparse, the argument

b is sparse indicates that the second input matrices is sparse, and the parameter

28

ab is sparse indicates that both of the input matrices are sparse. An optimized
sparse matrix multiplication method is used according to these parameters.

In order to optimize the performance of the proposed multiplication method,
block adapt matmul, it is needed to find the cut-off criteria to determine when one
of these four configurations of TensorFlow’s matrix multiplication is best for each
pair of input matrices. The criteria for selecting multiplication methods used in
selectMatmulMethod in the algorithm of block adapt matmul is shown in table 1.
For multiplication of arbitrary matrices, A and B, each column in table 1 represents
the density of the multiplier matrix or matrix A, while each row in table 1 represents
the density of the multiplicand matrix or matrix B. The different colors in the table
represent the multiplication method selected based on the densities of the input
matrices A and B. The cell is shown in pink when tf matmul is chosen, the cell is
shown in blue when tfmatmul(a is sparse) is chosen, the cell is shown in yellow
when tf.matmul(b_is_sparse) is chosen, and the cell is shown in green when
tf.matmul(ab_is sparse) is chosen. This criteria is derived from the experiment to find

the fastest multiplication method for matrices of various densities.

Table 1 Criteria for selecting multiplication methods in block_adapt_matmul

DA (%)

Dp (%) 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | %0 | 100

tf.sparse_matmul(ab_is_sparse)

20

30

tf.sparse_matmul(a_is_sparse)

40

50

tf.sparse_matmul(b_is_sparse)

60

70
tf.matmul

20

90

100

29

In the initial steps of determining the criteria, an experiment is performed to
compare the computation time of these four matrix multiplication methods. All four
multiplication methods were executed on input matrices with different density,
varying from 10%, 20% up to 100%, and different sizes, including 3000x3000,
6000x6000 and 9000x9000. Then, for each combination of input matrix densities, the
average execution time of each method is calculated from multiplication of 20 pairs
of matrices from each matrix size. The fastest multiplication method for each

combination of matrices density according to the experiment is shown in table 2.

Table 2 The fastest matrix multiplication method for each combination of input

matrices densities measured from experiments.

Da (%)

DB (%) 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

10

tf.sparse_matmul(ab_is_sparse)
20

20

tf.sparse_matmul(a_is_sparse)

40

50

tf.sparse_matmul(b_is_sparse)
80

70

tf.matmul

80

20

100

From table 2, the multiplication method tfmatmul and
tf.sparse_matmul(b_is sparse) are the fastest multiplication methods in ranges of
input matrices densities that are easily identifiable. Therefore, we use the result from
the experiment directly as the criteria for selecting these two methods as shown in
table 3. That is, the first matrix, A, is considered dense when its density exceeds 60%,

and the second matrix, B, considered sparse when its density does not exceed 40%.

30

Table 3 The criteria for deciding whether matrix B is sparse or dense

Da (%)
Dg (%) 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | %0 | 100
Ly :
10 tf.sparse_matmul(b_is_sparse)
20
B is considered as a sparse matrix
30
40
50
&0
70
B is considered as a dense matrix
80
%0 tf.matmul
100
Y

However, based on this criteria, the first matrix, A, is considered dense when
its density exceeds 60%, and the second matrix, B, is considered sparse when its
density does not exceeds 40%. If these cut-off points are used to determine if the
two matrices are dense or sparse, there are some cases that we will not choose the
fastest method. For example, when the density of matrix B is 30%, in which B should
be considered sparse, and the density of matrix A'is 20%, in which A is considered
sparse, we should use tf.sparse matmul(ab is sparse). But, from the experiment,
tf.sparse_matmul(a_is_sparse) is faster than tf.sparse_ matmul(ab_is sparse), as
shown in table 2. However, when we compare the average execution time of
tf.sparse_matmul(a_is_sparse) and tf.sparse_matmul(ab_is sparse) in these cases,
which is shown in table 4, it is found that the difference is very small, i.e. it does not

exceed 5%.

31

Table 4 The difference between the execution time of the two fastest

multiplication methods

Da (%)

Dg (%) 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
10 [.35%|.31%
tf.sparse_matmul(ab_is_sparse)
20
30 4% .25%]
tf.sparse_matmul(a_is_sparse)
40 [1.30%|.32% [2-11%[1.04%

50 [.90% (.25%|.20%

tf.sparse_matmul(b_is_sparse)
0 19%

70 |.44%|.89% |.72%

tf.matmul

80 [1.89%) [2.49%) .73% (.09%

90 [.B3% .38%|.31%

100 |.73% 2.27%|.25% |.15% 01%|

4.2 Performance Evaluation of block_adapt _matmul on CPU

The proposed block adapt matmul is evaluated against TensorFlow’s
tf.matmul and tf.sparse_matmul on CPU. All three matrix multiplication methods,
block_adapt matmul, TensorFlow’s tf.matmul and TensorFlow’s tf.sparse_matmul
were performed on input matrices of size 3000x3000, 6000x6000, 9000x9000, and
12000x12000. To study the performance of the proposed method on matrices with
uneven distribution of non-zero elements, the experiments are performed on input
matrices with varying degree of unevenness. Uneven-density matrices are generated
randomly by creating submatrices with some low-density submatrices and some
high-density submatrices, as shown in figure 9. The density of matrices used in the
experiments have different degree of unevenness as shown in Table 5. The
evaluation is performed by measuring the average execution time of matrix
multiplication of each input matrices setting. Furthermore, for each density
combination of the higher-density and the lower-density regions, the performance is
also measured in order to evaluate the performance of the proposed method for

matrices with different degree of unevenness of the matrix density.

Lower-density Higher-density

Region Region
Higher-density Lower-density
Region Region

Figure 9 Checkered pattern of higher density and lower density input matrix

Table 5 Density of submatrices and their overall density

Overall Density (Higher Density, Lower Density, Density Difference)
30% (50%,10%,40) | (40%,20%,20)
40% (70%,10%,60) | (60%,20%,40) | (50%,30%,20)
50% (90%,10%,80) | (80%,20%,60) | (70%,30%,40) | (60%,40%,20)
60% (100%,20%,80) | (90%,30%,60) | (80%,40%,40) | (70%,50%,20)
70% (100%,40%,60) | (90%,50%,40) | (80%,60%,20)
80% (100%,60%,40) | (90%,70%,20)

33

Chapter 5

Results and Discussion

In this chapter, we will describe the results of the experiments described in
Chapter 4 to evaluate the proposed method. The performance of
block adapt matmul is compared with the performance of the TensorFlow built-in
methods tf.matmul and tf.sparse_matmul.

The performance of block adapt matmul is evaluated with respect to two
different independent variables. The first variable is the overall density of the input
matrices, and the performance of block adapt matmul for different matrix densities
is described in section 5.1. The second variable indicates how uneven the non-zero
values is distributed in the input matrices. For this variable, we use the difference
between the density of the higher-density and the lower-density regions in the
checkered-pattern matrices, called density difference. For example, if the density of
the higher-density region is 70% and the density of the lower-density region is 30%,
the density difference is 40. If a matrix has high density difference, the density of the
dense part of the matrix is much higher than the density of the sparse part, which
means that the non-zero values distribution in the input matrices is more uneven.
The performance of block adapt matmul for different degree of density difference
is described in section 5.2. Additionally, we also examine how the performance of

the proposed method varies with respect to the size of the input matrices.

5.1 Performance of block adapt matmul with Varying Overall Density of Input
Matrices

The performance of block adapt matmul, tf.matmul, and tf.sparse_matmul
is measured as the execution time in seconds. Figure 10 shows the execution time of
all three multiplication methods for input matrices with overall density of 30%, 40%,
50%, 60%, 70%, and 80%. For one overall density, we consider various values of
density difference, i.e. we use all density for the high-density and the low-density
regions as shown in table 5, and the execution time is the average time for all cases.

In figure 10 the, x-axis is the overall density of input matrices, and the y-axis is the

34

execution time. Each line represents the execution time of a multiplication method
for one matrix size. The execution time of block adapt matmul, tf.sparse_matmul,
and tf.matmul are shown in red, blue and green lines, respectively. Different marks
on the line show the execution time for different matrix sizes. The execution time for
3000x3000 matrices, 6000x6000 matrices, 9000x9000 matrices, and 12000x12000

matrices are shown with &, 8 3 and X, respectively.

block adapt_matmul tf.sparse_matmul e tf.matmul
30 -+
25 +
12000x12000
20 +
r
£
'_
c 15 4
Q
5
O
]
x
T 9000x9000
5 1
g .él 6000x6000
0 #== } = 3000x3000
10% 20% 30% 40% 50% 60% 70% 80% 90%

Input Matrices Density (%)

Figure 10 Execution times of block_adapt matmul, tf.sparse_matmul and
tf.matmul on matrices of sizes 3000x3000, 6000x6000, 9000x9000, and 1200x12000

with varying overall density.

As shown in figure 10, both tf.sparse_matmul and block adapt matmul are
faster than tf.matmul for matrices with lower overall density. On the other hand, the
execution time of tfmatmul almost does not vary with the overall density of the

matrices. When the overall density is low (e.g. 30%), block adapt matmul is faster

35

than tf.matmul, but slightly slower than tf.sparse_matmul. When the overall density
is high (e.g. 80%), block adapt matmul is faster than tf.sparse_matmul, but slightly
slower than tfmatmul. However, for medium-density matrices (e.g. 60%),
block adapt matmul is faster than both tfmatmul and tf.sparse matmul.
Specifically, for 12000x12000 matrices, block adapt matmul is faster than both
tf.matmul and tf.sparse_matmul when the overall density is between 40% and 70%.

However, when the size of the input matrices is smaller, the performance
difference between block adapt matmul and the two TensorFlow’s built-in
methods are also smaller. The performance difference between the
block adapt matmul and the two built-in methods are measured as the speedup of
the proposed method compared to each existing method. The speedup is calculated
from the ratio of average execution time of an existing method to the average
execution time of the proposed method. Figure 11 shows the speedup of
block adapt matmul compared to tf.matmul and figure 12 shows the speedup of
block adapt matmul compared to tf.sparse_matmul. For both figures, the x-axis is
the sizes of the input matrices, and the y-axis is the speedup of
block adapt matmul compared to each built-in method. The speedup for matrices
of different densities are shown in different colors. The blue, orange, grey, yellow,
red, and green lines are the speedup for input matrices with density of 30%, 40%,
50%, 60%, 70%, and 80%, respectively. When the speedup is 1.0, shown by the
dashed thick line in figure 11 and 12, the performance of the proposed method and
the reference method are equally good. When the speedup is higher than 1.0, i.e.
above the dashed thick line, the proposed method is faster than the reference
method. On the other hand, when the speedup is lower than 1.0, i.e. below the

dashed thick line, the proposed method is slower than the reference method.

36

—0—30% —@—140% 50% 60% —@—T70% —@—80%
200 -
@
£ 175 4
é 150 4+ Py
S - /
2 -
& 125 4+ /
p=)
S 1.00 P ===
s é —eo— -
g 075 +
§
S 050 4L
él 3000x3000 6000x6000 9000x9000 12000x12000
(0]
(] . .
2 Input Matrices Sizes

Figure 11 Speedup of block adapt matmul compared to tf.matmul for matrices of

overall density of 30%, 40%, 50%, 60%, 70%, and 80%, with varying sizes.

From both figure 11 and figure 12, when compared to both tf.matmul and
tf.sparse_matmul, the speedup of block adapt matmul increases as the matrix size
increases. Compared to tfmatmul as shown in figure 11, the performance of
block_adapt matmul is significantly faster than tfmatmul for larger matrices with
density of lower than 60%. Otherwise, the block adapt matmul is slower than
tf.matmul. However, the performance of block adapt matmul drastically decreases
for smaller matrices such as 3000x3000 matrices because the overhead of dividing
and merging submatrices outweighs the gain of using appropriate multiplication

methods.

37

—0—30% 40% 50% 60% —@—70% —@—80%
150 -
@
£
S 125 4
£
£ —— °
[
g 1.00 -------------”/‘7 ,
S
% /
p=)
8
=075 4
[
©
Q
S
8 os0 L
Q
3 3000x3000 6000x6000 9000x9000 12000x12000
()
(]
S Input Matrices Sizes

Figure 12 Speedup of block adapt matmul compared to tf.sparse_matmul for
matrices of overall density of 30%, 40%, 50%, 60%, 70%, and 80%, with varying sizes

Compared to tf.sparse_matmul as shown in figure 12, block adapt matmul
is faster than tf.sparse_matmul for 12000x12000 matrices when the density is as low
as 40%. For small matrices such as 3000x3000 matrices, block adapt matmul is
slower than tf.sparse_matmul because the overhead is more than the gain of
reducing the multiplication. For medium-size matrices such as 6000x6000 matrices,
block_adapt matmul is faster than tf.sparse_matmul when the density of matrix is
higher than 40%.

As we consider matrices with average distribution of nonzero values, the
proposed method is not faster than tf.matmul and tf.sparse_matmul in some cases.
We further examine the performance of the proposed method when the density

difference is varied.

38

5.2 Performance of block_adapt matmul with Varying Density Differences of
Input Matrices

In this section, the execution time of block adapt matmul,
tf.sparse_matmul, and tfmatmul is measured for matrices with varying density
differences, i.e. the difference between the density of the higher-density region and
the lower-density region of the input matrices. Figure 13 shows the execution time of
each multiplication method on input matrices of size 3000x3000, 6000x6000,
9000x9000, and 12000x12000, with density differences of 20, 40, 60, and 80. The y-
axis is the execution time in seconds, and the x-axis is the density differences. The
execution time of block adapt matmul, tf.sparse matmul, and tf.matmul are
shown in red, blue and green lines, respectively. Different marks on the line show
the execution time for different matrix sizes. The execution time for 3000x3000
matrices, 6000x6000 matrices, 9000x9000 matrices, and 12000x12000 matrices are
shown with =+, 8 %k and X, respectively.

As shown in figurel3, for all matrix sizes, the average execution time of the
two TensorFlow’s built-in methods tfmatmul and tf.sparse matmul do not vary
much with the density difference, and tf.sparse_matmul is slightly faster than
tf.matmul. On the other hand, the proposed method block adapt matmul is faster
when the density difference is higher. Furthermore, the performance of
block_adapt matmul is comparable to tf.sparse matmul when the density

difference is low.

39

block adapt matmul tf.sparse_matmul e tf.matmul
25 -
\V.a \N/ \NZ .V
2 20 r Lo <2 <
o /N 7\
€ 15 L1 12000x12000
'_
S
= 10 4
>
g . X ‘x=* k %9000@000
X 4
! ! 6000x6000
0 ; ; ; t 2000x3000
20 40 60 80
Difference between the percentage of density of higher-density region and lower-density
region in the input matrices

Figure 13 Execution times of block adapt matmul, tf.sparse_matmul and
tf.matmul on matrices of size 3000x3000, 6000x6000, 9000x9000, and 12000x12000

with varying density difference

Figure 14 and figure 15 show the speedup of block adapt matmul compared
to tf.matmul or tf.sparse_matmul, and the y-axis is the speedup and the x-axis is the
matrix size. For a density difference d, the average execution time is measured from
the multiplication of matrices with the density difference d with all the overall
densities. For example, for the density difference of 40% we use matrices with
overall density of 40%, 50%, 60%, 70% and 80%. The speedups when the density
difference is 20, 40, 60 and 80 are shown in blue line, orange line, grey line, and
yellow line, respectively. Both figure 14 and figure 15 show that the speedup
increases when the density difference increases. The block adapt matmul is faster
when the density difference is at least 40%. However, when the matrix is as small as
3000x3000, the proposed method is only faster than tf.matmul when the density
difference is as high as 80%.

From all experiments, we can conclude that the performance of our
proposed method increases as the density difference of the input matrix increases.
When the density difference of the input matrix is large, the proposed method

outperforms both TensorFlow’s built-in methods, except for small matrices. As a

40

result, our method should be used when the distribution of nonzero values in the
matrix is uneven.

When we measure the average execution time for matrices with varying
density difference, our proposed method is faster than both TensorFlow’s built-in
methods for medium-density matrices. However, when the distribution of nonzero
values in the matrix is even, tf.matmul is still faster for very-dense matrices and

tf.sparse_matmul is still faster for very-sparse matrices.

——20 40 60 80
200 -+
4
=
£ 175 4
S
£
c 150 <+
g
p=)
8 125 4
kS . ————°
& 100 T
5 ./
I
2 075 +
©
(]
(]
& 050 4L
3000x3000 6000x6000 9000x9000 12000x12000
Input Matrices Size

Figure 14 Speedup of block adapt matmul compared to tf.matmul for matrices of

density differences of 20, 40, 60 and 80 with varying sizes

41

—@—20 40 60 80

200 +

1.75 4

150 <+

125 4+

1.00 : * -

075 /

050 L

3000x3000 6000x6000 9000x9000 12000x12000

Speedup Compared to tf.sparse_matmul (times)

Input Matrices Size

Figure 15 Speedup of block adapt matmul compared to tf.sparse_matmul for
matrices of density differences of 20, 40, 60 and 80 with varying sizes

a2

Chapter 6

Conclusion

In conclusion, we proposed an implementation of matrix multiplication,
which is called block-adaptive matrix multiplication or block adapt matmul, on
TensorFlow platform. The proposed multiplication method is optimized for matrices
which have large degree of unevenness of non-zero values distribution.

The method block adapt matmul partitions each input matrix into four
smaller submatrices or “blocks”, and then multiplies each pair of blocks using the
appropriate multiplication method, chosen between tf.matmul or tf.sparse_matmul
depending on the density of each pair of submatrices. This method is compared to
TensorFlow’s matrix multiplication methods, i.e. t.matmul and tf.sparse_matmul, on
CPUs. For input matrices larger than 6000x6000, the proposed method outperforms
tf.matmul when the overall density of input matrices is not more than 70% and
outperforms tf.sparse_matmul when the overall density of input matrices is at least
50%. The performance of the proposed method increases proportionately with the
density differences of the input matrices. Thus, the proposed method
block_adapt matmul is suitable for medium density matrices with uneven non-zero
values distribution.

In conclusion, our proposed method block adapt matmul can perform well
when the distribution of zeros in the input matrices is uneven. It performs better
than both TensorFlow’s matrix multiplication methods for large medium-density
matrices. However, when it is slower than one of the two TensorFlow’s matrix
multiplication methods, the difference is small. The performance of this method
depends on the difference between the performance of the two TensorFlow’s matrix
multiplication methods, which reflects on the criteria for choosing the multiplication
method for submatrices. An advantage of our proposed method is that it can be
implemented on any platform that supports TensorFlow. Additionally, the idea that
appropriate multiplication methods being applied to different submatrices could be
extended to any platform similar to TensorFlow that provides many

implementations of matrix multiplication methods.

a3

However, the disadvantage of our proposed method is that it can only be
used on CPUs but not on GPUs because it depends of the built-in method
tf.sparse_matmul, which is not supported on GPUs. As a preliminary step for future
works, on GPUs, we have also explored using similar concept of separating input
matrices into multiple submatrices and process each submatrix differently according
to their properties. We divide input matrices into submatrices by either rows or
columns based on their density. Then we applied tfmatmul, which is supported on
GPUs directly to the dense submatrices, while each sparse submatrix is packed into a
dense matrix before being applied the same method. We found that the
performance of multiplying matrices directly using tf.matmul on GPUs is significantly
more efficient compared to our pilot method most likely because tf.matmul is more

suitable with GPUs SIMD parallelism.

Sl

10.

11.

12.

13.
14.

REFERENCES

Strang, S., Linear Algebra and Its Applications. 2018: Cengage Learning.
Nielsen, M.A., Neural Networks and Deep Learning. 2015: Determination Press.
Cormen, T.H., Introduction to Algorithms, 3rd Edition. 2009: MIT Press.

Russell, S.J., et al., Artificial Intellisence: A Modern Approach. 2010: Prentice
Hall.

Jones, E., et al., SciPy: Open source scientific tools for Python. 2001.

Abadi, M., et al., TensorFlow: a system for large-scale machine learning, in
Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation. 2016, USENIX Association: Savannah, GA, USA. p. 265-283.
Davis, P.J., Circulant Matrices. 1979: Wiley.

Devlin, J., et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. in NAACL-HLT. 2019.

Mikolov, T., et al., Efficient Estimation of Word Representations in Vector Space.
CoRR, 2013. abs/1301.3781.

Pennington, J., R. Socher, and C. Manning. GloVe: Global Vectors for Word
Representation. in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). 2014. Doha, Qatar: Association for
Computational Linguistics.

Strassen, V., Gaussian elimination is not optimal. Numer. Math., 1969. 13(4): p.
354-356.

Coppersmith, D. and S. Winograd, Matrix multiplication via arithmetic
progressions, in Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 1987, Association for Computing Machinery: New York,
New York, USA. p. 1-6.

Stothers, AJ. On the complexity of matrix multiplication. 2010.

Davie, AM. and A.J. Stothers, Improved bound for complexity of matrix
multiplication. Proceedings of The Royal Society A: Mathematical, Physical and
Engineering Sciences, 2013. 143: p. 351-369.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

a5

Chien, SW.D., et al., TensorFlow Doing HPC, in 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 2019. p. 509-518.
Wu, T., et al,, An efficient sparse-dense matrix multiplication on a multicore
system. 2017 IEEE 17th International Conference on Communication Technology
(ICCT), 2017: p. 1880-1883.

Shah, M. and V. Patel, An Efficient Sparse Matrix Multiplication for Skewed
Matrix on GPU, in 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems. 2012. p. 1301-1306.

Bell, N. and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. 2009.

Yang, C., Y. Wang, and J.D. Owens, Fast Sparse Matrix and Sparse Vector
Multiplication Algorithm on the GPU, in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop. 2015. p. 841-847.

Shah, V., J. Gilbert, and S. Reinhardt, Some Graph Algorithms in an Array-Based
Language. 2011. p. 29-44.

Lee, J.,, et al., Optimization of GPU-based Sparse Matrix Multiplication for Large
Sparse Networks, in 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 2020. p. 925-936.

Guennebaud, G., B. Jacob, and others, Eigen v3. 2010.

Wang, E., et al., Intel Math Kernel Library. 2014. p. 167-188.

Chetlur, S., et al., cuDNN: Efficient Primitives for Deep Learning. ArXiv, 2014.
abs/1410.0759.

TensorFlow Python APl Documentation. Available from:

https://www.tensorflow.org/api_docs/python/.

https://www.tensorflow.org/api_docs/python/

FWIAINTAUNNIINY 1Y
CHuLALONGKORN UNIVERSITY

VITA

NAME Siraphob Theeracheep
DATE OF BIRTH 03 Feb 1994
PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Mr. Siraphob Theeracheep graduated in 2016 from the
Department of Biochemistry, Faculty of Science,
Chulalongkorn University with a degree in Bachelor of
Science (B.Sc.) (1st Class Honours)

HOME ADDRESS 660/925 Ideo Q Chula-Samyan, Rama 4 road, Si-praya,
Bangrak, Bangkok, 10500

PUBLICATION "Multiplication of medium-density matrices using
TensorFlow on multicore CPUs", Tehnicki glasnik, vol.13,

no. 4, pp. 286-290, 2019.

	ABSTRACT (THAI)
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	Chapter 2 Related Works
	2.1 Dense Matrix Multiplication
	2.2 Sparse Matrix Representation
	2.3 Example of Sparse Matrix Multiplication Implementations
	2.4 TensorFlow Programming

	Chapter 3 Proposed Method
	3.1 Block-adaptive Matrix Multiplication

	Chapter 4 Experiments
	4.1 Finding the Criteria for Choosing between Dense Matrix Multiplication and Sparse Matrix Multiplication Methods
	4.2 Performance Evaluation of block_adapt_matmul on CPU

	Chapter 5 Results and Discussion
	5.1 Performance of block_adapt_matmul with Varying Overall Density of Input Matrices
	5.2 Performance of block_adapt_matmul with Varying Density Differences of Input Matrices

	Chapter 6 Conclusion
	REFERENCES
	VITA

