DIFFUSION OF POLYSTYRENE LATEX SPHERES IN HYDROXYPROPYL CELLULOSE SOLUTIONS STUDIED BY DYNAMIC LIGHT SCATTERING AND VISCOMETRY

Ms. Suwanna Lertskulbanlue

A Thesis Submitted in Partially Fulfillment of the Requirements for the Degree of Master of Science
The Petroleum and Petrochemical College
Chulalongkorn University
in Academic Partnership with
the University of Michigan, the University of Oklahoma
and Case Western Reserve University

1996
ISBN 974-633-603-7

Thesis Title

Diffusion of Latex Spheres in

Hydroxypropylcellulose Solution by Dynamic Light

Scattering and Viscometry

By

Ms. Suwanna Lertskulbanlue

Program

: Polymer Science

Thesis Advisors

1. Prof. Alexander M. Jamieson

2. Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in Partial Fulfillment of the Requirements for the Degree of Master of Science.

Drum Director of the College

Thesis Commitee

(Prof. Alexander M. Jamieson)

(Assoc. Prof. Anuvat Sirivat)

(Assoc. Prof. Kanchana Trakulcoo)

บทคัดย่อ

สุวรรณา เลิศสกุลบรรลือ : การแพร่ตัวของพอลิสไตรีนลาเท็กซ์ในสารละลายไฮครอกซีโพรพิล เซลลูโลส ศึกษาโดยใช้เทคนิคการกระจายของแสงแบบไดนามิกส์ และ การวัดความหนืด (Diffusion of Polystyrene Latexs in Hydroxypropylcellulose Studied by Dynamic Light Scattering and Viscometry) อ.ที่ปรึกษา: ศาสตราจารย์ อเล็คซานเดอร์ เอ็ม เจมิสัน (Prof. Alexander M. Jamieson) และ รศ.ดร. อนุวัฒน์ ศิริวัฒน์, 56 หน้า, ISBN 974-633-603-7

สัมประสิทธิ์การแพร่ตัวของโพลิสไตรีนลาเท็กซ์ (PS) ในสารละลายไฮครอกซีโพรพิล เซลลูโลส (HPC) ถูกศึกษาโดยใช้เทคนิคการกระจายแสงแบบไดนามิกซ์ และ การวัดความหนืด สาย HPC จะดูดซับบนพื้นผิวของลาเท็กซ์ และในกรณีของลาเท็กซ์ขนาดเล็ก และ HPC สายยาว, กลไกการเชื่อมต่อกัน (Bridging meachaism) สามารถตรวจสอบได้ เมื่อเซอร์แฟคแทนท์ ชนิดไม่มีประจุ (ไตตรอน เอ็กซ์-100) ได้ถูกเติมลงไป แรงอันตรกิริยาระหว่าง HPC และลาเท็กซ์ จะลดลง ณ 0.1 % โดยน้ำหนักของไตตรอน เอ็กซ์-100 การดูดซับของ HPC บนลาเท็กซ์ถูก ยับยั้งอย่างสมบูรณ์ ในงานวิจัยนี้มีการหาค่าสัมประสิทธิ์การแพร่ของลาเท็กซ์เพื่อศึกษาผลกระ ทบของความเข้มข้นของเซอร์แฟคแทนท์, ความเข้มข้นของพอลิเมอร์ในมวลโมเลกุลที่ต่างกัน 3 ค่า และ ขนาดของลาเท็กซ์ที่ต่างกัน 3 ขนาด สเกลของการเปลี่ยนแปลงตามความเข้มข้นอยู่ใน ช่วง 0.5-0.8 ขึ้นอยู่กับแรงอันตรกิริยาระหว่างอนุภาคภายในระบบ

ABSTRACT

942014 : MAJOR POLYMER SCIENCE

KEYWORDS DYNAMIC LIGHT SCATERING, DISPERSIONS,

HYDROXYPROPYL CELLULOSE, STERIC STABILIZATION,

SUWANNA LERTSKULBANLUE: DIFFUSION OF
POLYSTYRENE LATEX SPHERES IN HYDROXYPROPYL
CELLULOSE STUDIED BY DYNAMIC LIGHT SCATTERING
AND VISCOMETRY: THESIS ADVISORS: PROF. ALEXANDER
M. JAMIESON AND ASSOC. PROF. DR. ANUVAT SIRIVAT,
56 PP, ISBN 974-633-603-7.

Self diffusion coefficient of polystyrene (PS) spheres in hydroxypropyl cellulose (HPC) solution was studied by using the dynamic light scattering and viscometry techniques. HPC chains tend to absorb on the PS surface, and in the case of small sphere and long chain length of HPC, a bridging mechanism can be observed. When a nonionic surfactant, Triton X-100, is added, the interaction between HPC and PS is reduced. At 0.1 % wt. of Triton X-100, the adsorption of HPC on PS is completely inhibited. In this work, the diffusion coefficient of PS was measured to investigate the effects of Triton X-100 concentration, polymer concentration, molecular weights of HPC, and sizes of latex sphere. The exponent values of the stretched exponential function were also determined. δ varies from 0.5-0.8 depending on the interaction between the particles in the system.

ACKNOWLEDGMENTS

This thesis would never have been completed without the help and support of many people and organizations who are gratefully acknowledged here. The author would like to express appreciation to USAID for providing the student exchange scholarships through the University Development Linkage Project (UDLP) funding. She would like to give sincere thanks to the National Metal and Material Technology Center (MTEC) for their generosity in permitting the use of their dynamic light scattering instrument.

She would like to give special thanks to her research advisor, Prof. Alexander M. Jamieson who originated her thesis and gave valuable suggestions. She is deeply indebted to Assoc. Prof. Anuvat Sirivat, her coadvisor, for his suggestion, proof-reading and gave her the opportunity to present her work in Newton Institute DSM Research Symposium, "Rheology/Chain Structure Relationships in Polymers" at Issac Newton Institute for Mathematic Sciences, University of Cambridge, England. She also greatly appreciates her thesis committee member, Assoc. Prof. Kanchana Trakulcoo. Her thanks also go to all of her friends for their encouragement. She wishes to thank all of the staffs of the Petroleum and Petrochemical College for providing all facilities needed in her work.

Finally, she would like to express her deep gratitude to her family for their understanding, love and generous encouragement.

TABLE OF CONTENTS

CHAPTER			PAGE
	TITLE	E PAGE	i
	ABST	RACT	iii
	ACKN	NOWLEDGMENT	v
	TABL	E OF CONTENTS	vi
	LIST	OF TABLES	viii
	LIST	OF FIGURES	ix
I	INTR	ODUCTION	
	1.1	Backgrounds	
		1.1.1 Definitions and Significant Behavior	1
		1.1.2 The Structure of Stabilized Latex	4
	1.2	Applications	6
	1.3	Previous Work	7
	1.4	Objectives	9
Ħ	EXP	ERIMENTAL SECTION	
	2.1	Materials	
		2.1.1 Polymers	10
		2.1.2 Solvent and other Chemicals	10
	2.2	Methodology	
		2.2.1 Purification Units	11
	222	Sample Preparation	12

CHAPTER				PAGE
		2.2.3	Experimental Conditions	14
	2.3	Appara	atus	
		2.3.1	Viscosity Measurement	15
		2.3.2	Dynamic Light Scattering Measurement	19
Ш	RESI	U LTS A	ND DISCUSSION	
	3.1	Molec	cular Characterization of the Polymer	
		3.1.1	Hydroxypropyl Cellulose	24
		3.1.2	Polystyrene Latex	28
	3.2	Effect	of Latex Diameter and Triton X-100	
		conce	ntration	30
	3.3	The E	ffect of Molecular Weight of HPC	
		and T	riton X-100 concentration	33
	3.4	The E	ffect of Concentration of HPC	
		and T	riton X-100	36
		3.4.1	Comparison of the diffusion of Latex in	
			HPC solution with 0 % and 0.1 % of	
			Triton X-100	36
		3.4.2	Scaling Exponent Determination	39
		3.4.3	Viscosity Data	42
IV	CON	ICLUSI	ONS	44
	APP	ENDIX		46
	REF	EREN(CES	54

LIST OF TABLES

TABI	LE .	PAGE
1.1	Comparison of the properties of sterically and electrostatically	
	stabilized dispersions	4
3.1	The molecular properties of HPC in water at 30°C	27
3.2	Diffusion of polystyrene sphere in water at 30°C	29
3.3	The effect of added Triton X-100 and Molecular weight of HPC	
	on the scaling exponent	41

LIST OF FIGURES

FIGU	FIGURE PAGE	
1.1	The preparation of hydroxypropyl cellulose (HPC)1	
1.2	The idealized structure of hydroxypropyl cellulose2	
1.3	Structure of adsorbing polymer on the surface5	
1.4	Terminally anchored polymer on the surface5	
1.5	Schematic picture of bridging mechanism of absorbed layer	
	on the particles8	
2.1	The Ubbelohde viscometer	
2.2	The schematic diagram of dynamic light scattering instrument20	
	(Malvern 4700)	
3.1	Reduced viscosity versus HPC concentration for 3 different	
	molecular weights in water at 30°C24	
3.2	Diffusion versus concentration of HPC for 3 different	
	molecular weights	
3.3	R _{h,app} versus C _p of 3 different molecular weights of HPC26	
3.4	Log η versus Log M _w compared with Yang and Jamieson's data27	
3.5	Log D° versus Log M _w compared with Yang and Jamieson's data28	
3.6	Diffusion of Polystyrene sphere in water at 30°C29	
3.7	Diffusion versus concentration of Triton X-100 for latex	
	spheres (0.001 % wt, with diameters 302 and 460 nm) in	
	0.4 % wt HPC (M _w =100,000) solution30	
3.8	Apparent diameter versus concentration of Triton X-100	
	for latex spheres (0.001 % wt, with diameters 302 and 460 nm)	
	in 0.4 % wt of HPC (M _w =100.000) solution	

FIGURE PAGE

3.9	The adsorption of Triton X-100 on polystyrene sphere in HPC	
	solution with 0.05 % of Triton X-100	32
3.10	Diffusion in fast mode (D_{fast}) and slow mode (D_{slow}), of 0.001 % wt	
	of latex (diameter 94 nm) in 0.2 % wt of HPC (M _w =10 ⁶)	
	solution	34
3.11	The molecular weight dependent diffusion coefficient as a	
	function of Triton X-100 concentrations (fixed $C_p = 0.2$ % wt,	
	latex diameter = 94 nm and C _{latex} = 0.001%wt)	35
3.12	The molecular weight dependence on sphere diameter	
	as a function of Triton X-100 concentrations (fixed C_p = 0.2 %wt	
	latex diameter = 94 nm and C _{latex} = 0.001 %wt)	35
3.13	The dependence on HPC molecular weight of the diffusion of	
	latex sphere of diameter 460 nm without Triton X-100	37
3.14	The dependence on HPC molecular weight of the diffusion of	
	latex sphere of diameter 460 nm with 0.1 % wt Triton X-100	37
3.15	Comparison between the diffusions of latex sphere	
	(diameter 460 nm) in HPC ($M_w=1x10^5$) solutions with	
	0 % and 0.1 % wt of Triton X-100	38
3.16	Comparison between the diffusions of latex sphere	
	(diameter 460 nm) in HPC ($M_w=3.7\times10^5$) solutions with	
	0 % and 0.1 % wt of Triton	38
3.17	Comparison between the diffusions of latex sphere	
	(diameter 460 nm)in HPC ($M_w=1x10^6$) solutions with	
	0 % and 0.1 wtof Triton X-100.	39
3.18	Determination of δ values of the 460 nm latex in HPC solution	
	in the absence of Triton X-100	40

FIGURE		PAGE
3.19	Determination of δ values of the 460 nm latex in HPC solution	
	in the presence of 0.1 % wt. of Triton X-100	40
3.20	Relative viscosity of three systems: (a) HPC only (b) latex in	
	HPC with 0.1 % wt. of Triton X-100 (c) latex in HPC	
	without Triton X- 100	42