การพัฒนาวิธีเอมมา เนซัน เพื่อวิเคราะห์เร เดียม - ๒๒๖ ในสินแร่ด้วย เครื่องนับรังสึ

ชนิดชินทิล เลชันในของ เหลว

นางสาวศุภลักษณ์ สิงห์น้อย

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

ภ**า**ควิชา เ**ค**มี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2525

ISBN 974-561-142-5

DEVELOPMENT OF AN EMANATION METHOD FOR THE DETERMINATION OF RADIUM-226 IN ORES USING LIQUID SCINTILLATION

Miss Supalax Singnoi

A Thesis submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Chemistry

Graduate School

Chulalongkorn University

1982

Development of an Emanation Method for the Determination Thesis Title of Radium-226 in ores using Liquid Scintillation. Ву Miss Supalax Singnoi Chemistry Department Thesis Advisor Kantika Sirisena, Ph.D. Accepted by the Graduate School, Chulalongkorn University in partial fultillment of the requirements for the Master's degree. (Associate Professor Supradit Bunnag, Ph.D.) Thesis Committee Main Ammasil Chairman (Associate Professor Maen Amorasit) Lucha thona be toliar Member (Rucha Phongbetchara, Ph.D.) Siri Varothai Member (Associate Professor Siri Varothai, Ph.D.) X: Misluce Member

Copyright of the Graduate School, Chulalongkorn University.

(Kantika Sirisena, Ph.D.)

หัวข้อวิทยานิพนธ์ การพัฒนาวิธีเอมมา เนชัน เพื่อวิเคราะห์เรเดียม-๒๒๖ ในสินแร้ด้วย

เครื่องนับรังสีชนิดซินทิลเลชันในของเหลว

ชื่อนิสิต นางสาวศุภลักษณ์ สิงห์น้อย

อาจารย์ที่ปรึกษา ตร.กรรติกา ศิริเสนา

แผนกวิชา เคมี

ปีการศึกษา ๒๔๒๔

บทคัดย่อ

การพัฒนาวิธีเอมมาเนชันเพื่อวิเคราะห์หาปริมาณเรเดียม-๒๒๖ ทำโดยการไล่เรดอน ออกจากสารละลายดีเอมมาเนชันของเรเดียม-๒๒๖ ค้วยก๊าชนาพา (carrier gas) เรดอนจะ ถูกไล่ออกมาอย่างสมบูรณ์เมื่อปริมาตรของก๊าชนาพาเบ็น ๑๔ เท่าของปริมาตรสารละลายและถูก ดูดชับค้วยซิลิกาเจล (silica gel) ที่อุณหภูมิผสมของไนโตรเจนเหลวและอัลกอฮอล์ จากนั้น เทชิลิกาเจลลงไปในขวดแก้วนับรังสีซึ่งบรรจุสารละลายเรื่องแสงของโทลูอีนที่อุณหภูมิ ๑๐ ซ ประ-สิทธิภาพของการนับรังสีเป็น ๓.๕ ครั้งต่อนาทีต่อพิโคคูรี โดยมีค่าความแรงรังสีจากสภาพแวดล้อม (backgrourd) เป็น ๔ ครั้งต่อนาที ซีดจำกัดต่ำสุดของความแรงรังสีที่นับได้เป็น ๑ พิโคคูรี ค่ารีคอฟเวอรี (recovery yield)ของวิธีการเอมมาเนชันตรวจสอบได้จากสารมาตรฐานแร่ยู เรเนียม (NBL74 A) จาก New Brunsvick Laboratory ได้ค่าเฉลี่ยรีคอฟเวอรีเป็น ๔๕.๖๗+๐.๕๔ เปอร์เซ็นต์จากการทดสอบ ๑๐ ครั้ง แรโมนาไซด์จำนวน ๑๕ ตัวอย่างได้วิเคราะท์ หาปริมาณเรเดียม-๒๒๖ โดยวิธีนี้

Thesis Title Development of an Emanation Method for the

Determination of Radium-226 in Ores Using Liquid

Scintillation.

Name Miss Supalax Singnoi

Thesis Advisor Kantika Sirisena, Ph.D.

Department Chemistry

Academic Year 1981

ABSTRACT

was developed. Radon was quantitatively removed from the de-emanation solution containing radium-226 when a total volume of carrier gas being equal to 15 times that of the de-emanation solution had been passed.

The emanated radon was adsorbed on silica get at the temperature of an alcoholic slurry of liquid nitrogen. The silica gel was subsequently transferred at 0°c to a toluene-based liquid scintillator in a glass vial for counting. The counting efficiency of 3.5 opmPci⁻¹ with a background count rate of 4 cpm was obtained. The detection limit was 1 Pci of radon. The recovery yield of the whole process was determined by analysing a standard uranium ore, NBL 74 A, from the New Brunsvick Laboratory. An average recovery yield of 99.67 ± 0.54 per cent was obtained from ten separate experiments. Results of the analysis for the radium-226 content in 15 monazite samples were also reported.

ACKNOWLEDGEMENT

This work was supported by the Office of Atomic Energy for Peace.

The author wishes to express her sincere appreciation to Dr.Kantika Sirisena, who has offered her valuable advice, pointed out the experimental error and read carefully and critically many chapters of the manuscript. She is grateful to Associate Professor Siri Varothai for his valuable suggestion. Special thanks go to Mr. Manit Sonsuk and Mr. Sorawit Saejin, for their guidance and assistance on the liquid scintillation counting technique. She would also like to express her thanks for the experimental line setting to Mr. Chanit Attabutara. She further thanks to the theses committee for their comments. Finally, she is indebted to the University Development Commission for financial support.

CONTENTS

			PAGE
ABSTRACT (IN T	HAI)		IV
ABSTRACT			V
ACKNOWLEDGEMEN	TS ···		VI
LIST OF TABLES			25.
LIST OF FIGURE	S ···		XII
CHAPTER			
I. INTRO	DUCTION	• • • • • • • • • • • • • • • • • • • •	1
II. THEOR	Y		6
III. EXPER	IMENTAL	s	16
3.1	Materi	als ····································	16
3.2	Appara	tus and Instrument	18
3.3	Sample	Preparation	21
	3.3.1	Standard uranium ore	21
	3.3.2	Monazite samples	24
3.4	Proced	ure	25
	3.4.1	First de-emanation	25
	3.4.2	Second de-emanation	25
	3.4.3	Counting	28
3.5	Determ	ination of counting conditions	28
	3.5.1	Determination of gain and	
		discriminator settings ·····	29

		P	AGE	
	3.5.2	Determination of time required for		
		establishment of radioactive		
	Ψ	equilibrium between radon and its		
		daughters	30	
3.6	Determ	ination of optimum de-emanation		
	condit	ions	31	
	3.6.1	Effect of flow rate of nitrogen gas		
		and de-emanation time on efficiency	31	
	3.6.2	Effect of particle size of silica gel		
		on efficiency ······	32	
	3.6.3	Effect of weight of silica gel on		
		efficiency	32	
	3.6.4	Effect of warm up time on efficiency	32	
	3.6.5	Effect of warm up temperature on		
		efficiency	33	
	3.6.6	Effect of volume of liquid scintillator		
		on efficiency	3^	
	3.6.7	Effect of desorption temperature		
		on efficiency	33	
3.7	Determ	ination of detection limit	34	
3.8	Quanti	tative analysis of radium-226		
	in ore	samples	34	
	3.8.1	Quantitative analysis of radium-226		
		in standard uranium ore sample	34	
	3.8.2	Quartitative analysis of radium-226		
		in monazite samples	35	

				PAGE
IV	RESUL	TS AND	DISCUSSIONS	36
	4.1	Determ	ination of counting condition	36
		4.1.1	Determination of optimum gain setting	
			of liquid scintillation spectrometer	
			for radon counting	36
		4.1.2	Determination of discrimination levels	
			for radon counting	39
	4.2	Determ	ination of time required for	
		establ	ishment of equilibrium between radon	
		and it	s daughters	43
	4.3	Determ	ination of de-emanation conditions	47
		4.3.1	Effect of de-emanation time on	
			efficiency	47
		4.3.2	Effect of nitrogen flow rate	
			on efficiency	52
		4.3.3	Effect of particle size of silica gel	
			on efficiency	54
		4.3.4	Effect of weight of silica gel	
			on efficiency	56
		4.3.5	Effect of warm up time on efficiency.	58
		4.3.6	Effect of warm up temperature	
			on efficiency	59
		4.3.7	Effect of volume of liquid	
			scintillator on efficiency	61

	PAGE		
4.3.8 Effect of desorption temperature			
on efficiency	63		
4.4 Determination of detection limit	66		
4.5 Determination of content of radium-226			
in standard uranium ore	68		
4.6 Determination of radium-226 content. in			
monazite sample	70		
V CONCLUSION	74		
REFERENCE			
VITA			

LIST OF TABLES

TABLE		PAGI
1.1	Main decay chain of uranium-238 · · · · · · · · · · · · · · · · · · ·	5
3.1	The codes and sampling sources of the	
	monazite samples	•18
3.2	Factor for decay of radon-222, growth of	
	radon-222 from radium-226 and correction of	
	radon-222 activity for decay during counting	26
4.1	Variation of count rate as a function of gain	36
4.2	Variation of count rate as a function	
	of discriminator levels	39
4.3	Figure of Merit at various discriminator levels	42
4.4	Variation of count rate as a function of	
	decay time after de-emanation	43
4.5	Count rate as a function of decay time	46
4.6	Effect of de-emanation time on efficiency	
	at nitrogen flow rate between 100 and	
	250 cm ³ min ⁻¹	49
4.7	Effect of nitrogen flow rate on efficiency at a	
	ratio of 15 between the volume of nitrogen	
	to the volume of the de-emanation solution	52

	TABLE		PAGE
	4.8	Effect of particle size of silica gel	
		on efficiency	55
	4.9	Effect of weight of silica gel on efficiency	56
	4.10	Effect of warm up time on efficiency	58
	4.11	Effect of warm up temperature on efficiency	59
	4.12	Effect of volume of liquid scintillator	
		on efficiency	61
	4.13	Effect of desorption temperature	
		on efficiency	63
	4.14	Optimum conditions for de-emanation	
		and counting of radon	66
1	4.15	Detection limit	67
	4.16	Radium-226 content in a standard uranium ore	68
	4.17	Radium-226 content in monazite samples	70

LIST OF FIGURES

FIGU	FIGURE	
2.1	Block diagram of a two-photomultiplier	
	tube liquid scintillation counter with a single	
	analysis channel ·····	11
2.2	Principle of pulse height analysis	12
3.1	Schematic diagram of the digestion	
	apparatus ·····	19
3.2	Apparatus for de-emanation and trapping	
	of radon	20
3.3	Block diagram of liquid scintillation	
	spectrometer	22
3.4	Model 2425 Tri-carb liquid scintillation	
	spectrometer	23
4.1	Variation of count rate as a function	
	of gain	38
4.2	Variation of count rate as a function of	
	discrirminator levels	41
4.3	Ingrowth of radon-222	45
4.4	Decay of radon after establishment of	
	equilibrium between radon and its daughters	48

FIGUI	RE	PAGE
4.5	Effect of de-emanation time on efficiency at	
	nitrogen flow rate between 100 and 250 cm min -1	51
4.6	Effect of nitrogen flow rate on efficiency at	
	a ratio of 15 between the volume of nitrogen to	
	the volume of de-emanation solution	53
4.7	Effect of weight of silica gel on efficiency	57
4.8	Effect of warm up time on efficiency	60
4.9	Effect of warm up temperature on efficiency ······	62
4.10	Effect of volume of liquid scintillator on	
	efficiency	64
4.11	Effect of description temperature on efficiency	65