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CHAPTER III

PROLBEM FORMULATION

Energy consumption and execution time are closely related but they 

cannot be directly inferred from one another. If a given task spends time /1 on CPU 

a but it spends time t2 </, on CPU b , then the consumed energy by CPU a may 

not be more the energy consumed by CPU b . However, suppose there are two tasks 

running on the same CPU. The first task spends less time than the second task. เท 

this situation, the first task obviously does consume less energy than the second 

task. To estimate the amount of energy consumption by any CPU, the frequency of 

CPU clock cycle must be involved besides the CPU execution time. This study did 

not concern the problem of how to estimate the energy consumption as a function 

of CPU clock frequency and computational time. The following assumptions are 

established in this study.

•  There exists a mathematical function in terms of CPU clock frequency and 

the execution time of a task used for estimating the energy consumption 

of the task.

•  There exists an algorithm for estimating the execution time of a task.

•  For any processing unit, the energy consumed by the operating system and 

the methods for alleviating the energy consumption by the operating 

system such as lowering the clock frequency or dimming the brightness of 

screen of the processing unit are assumed to be considered by the energy 

estimating algorithm.

•  The amount of energy and energy consumption rate used in this study, 

such as those reported in [35], [36], [37], [38], are assumed to be provided 

by the energy estimating algorithm.

Three sets of information were involved in this study. The first set is a set of 

dependent tasks captured in forms of a dependency task graph with the estimated 

execution time of each task. The second set is a set of energy consumption rate of 

each processing unit. This energy consumption rate is based on the above 

assumption of the existence of energy estimating algorithm. The last set is a set of 

types of task executable on each processing unit. Each processing unit is capable of
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executing at least one type of task. This study consists of two relevant scheduling 

aspects. The first aspect concerns the problem of how schedule a given dependent 

task graph to achieve minimum total energy consumption of all involved processing 

units. The second aspect is how to achieve the minimum scheduling length with 

minimum energy consumption not exceeding the amount of energy given to each 

processing unit prior to the execution. This aspect also involves the computational 

time and energy consumption for performing the scheduling algorithm and executing 

each scheduled task.

Define a dependent task graph G  to be a function of tasks V  and their 

dependencies E ,  that is G  =  { V , E ) .  F consists of a set of tasks V,., F = {v,,...,v)1} 

and E  represents a set dependency edges among the tasks, E  =  { ( v n v 1( )  \ v(5 v k e V } . 

The notation ( v , , v k )  represents the sequence of execution of V1 then vk . A set of 

tasks occurs on client sites which can be a mobile phone or a PC and executed 

either on client or server sites. Because processing units on client or server machines 

can be used to execute tasks, they are indistinguishable and referred to as processing 

unit. Each processing unit is capable of processing more than one task and there can 

be more than one processing unit which can process the same task. The amount of 

energy consumed by a processing unit a to process task V1is denoted by ea{y 1).

3.1 Scheduling to minimize total energy consumption

Assume that the number of tasks is greater than the number of processing 

units, the problem in this scenario case is formulated to minimize ^  e((v7).
\<i<m,vJegl

The implemented method will partition tasks V, e V into m  groups of tasks 

(g , , . . . , g„,} such that group g ; can be performed on processing unit j  to attain the 

minimum total energy consumed by all processing units.

3.1.1 Constraints on energy-aware during processed a tasks

The total amount of energy consumed by a processing unit is considered to 

be a combination of execution energy, transmission energy, and idle energy. 

Execution energy is calculated using server competency and task characteristics. Let 

fa(v )be  the amount of time used by processing unit a to execute task v( and ac1
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be the energy per unit time consumed by processing unit a to execute a task. The 

execution energy for processing unit a to execute task v(. is thus ocuta{y1.).

Transmission energy occurs while data are being transferred between 

processing units as dictated by their data dependencies. It is computed by Aada(v;), 

where Aa is the transmission energy characteristic of processing unit a and da(v1) 

the amount of data in task V, which is transferred from processing unit a to other 

processing units in the same dependency path of G .

Assume that when a processing unit is not processing any tasks, it is in idle 

state. When task vi is transferred to processing unit a , the processing unit is activated 

but remains in idle state for พ0(v;) unit time until all related data of V, have been 

received. Therefore, the idle energy, Pa, depends on energy waste during data 

transfer period before the processing unit is activated and energy consumed during 

the processing unit is idle. That is/?a(iI'aiv 1) + พa{y 1)), where 1) is the time that 

processing unit a is in idle state before it is activated.

However, if a task is the last task of G , so called a leaf vertex, processing this 

task will incur no idle or transmission energy. Two constants, namely, Ka e {0,1} and 

fj.a e {0 ,l} , are thus introduced to identify whether a task V, executed by processing 

unit a is a leaf or internal vertex in G . When the number of out-degrees of vi is 

zero, Ka = 0, and when the number of in-degrees of V, is zero, jua = 0. otherwise, 

both constants are equal to 1 . Hence, the total energy of G 1 rc 1 is calculated from

rG = X e>/) + X PaVaty 1)
\<a<m,Vjega 1 <a<m,vjega

= X a J a ^ i ) + K A d a(y i ) + ^ aPaM>a{vj ) (1)
\<a< nr, Vy€g„

+ X feo 1)
\<a<1ทไ\viçga
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3.1.2 Energy-efficient process clustering assignment (EPC) algorithm

เท the scope of this study, it is assumed that the values of ta(v 1), aa, da(y1), 

A 1, พa(v1), and Pa for any processing unit a can be determined prior to the task 

assignment. Each processing unit is capable of processing more than one kind of 

tasks unless it is specified otherwise. Let Pv represent a set of processing units which 

is capable of processing task v(. . The steps in EPC algorithm proceed as follows.

1) Identify primary, secondary and tertiary candidate processing units for each 

task V,. A primary candidate processing unit for task v( is the processing unit 

which consumes the least energy to process task V, compared to all 

processing units in Pr . The remaining processing unit a in Pv is termed a 

secondary candidate processing units if a j n(v1) < T , otherwise it is termed a 

tertiary candidate processing unit. The algorithm for this step is given in EPC 

Algorithm 1.

2) Re-evaluate the energy consumption for primary and secondary candidate 

processing units defined in the previous step to identify actual candidate 

processing units. When a task V( is assigned to a candidate processing unit a, 

other dependent tasks of V, are virtually assigned to a, if they are 

executable by a. Taking this into account, energy consumption of the 

primary and secondary candidate processing units is re-evaluated and 

compared. The candidate processing unit which consumes the least energy is 

defined as an actual candidate processing unit. The algorithm for this step is 

given in EPC Algorithm 2.

3) Perform task scheduling for each actual candidate processing unit. This step is 

divided into two phases. เท the first phase, a set of dependent tasks are 

arranged in the order according to their dependency paths in G . Each task is 

represented by its processing time at each server. The scheduling is arbitrary 

for independent tasks. As for every task processing, there is an interval of idle 

time, the schedule sequence at any processing units will therefore consists of 

alternating time slots between the task processing duration and idle time 

duration. The algorithm for this phase is given in EPC Algorithm 3. เท the
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second phase, tasks are re-assigned to minimize idle energy of the whole 

system. As one task is executable by more than one processing unit, a task is 

re-assigned to other possible processing unit if the new total energy is not 

increased. The algorithm for this phase is given in EPC Algorithm 4.

A lgorithm  1 Identifying Preliminary Candidate Processing Units
Require: Vj. P v%. ;and G .

1: for f'j € G  do
2: Let 0 be the number of out-degrees of i ' j .

3: r  =  minaep1,1(^a^a(*'i)) H“ lllftXa.çPt1. ( O t i a \ a d a { V i ) L* a  d a  น-'a  ( นi ) )
4: for each processing unit a  € P Vi do
5: if a a t a  ( Vi ) < r  then
(i: mark a  ;IS a secondary candidate processing unit.
7 : else
ร: mark a  ■<IS a tertiary candidate processing unit.
9: end if

10: end for
11: end for

Figure 1 EPC algorithm  1: Identifying prelim inary candidate processing units.
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Algorithm 2 Identifying Actual Candidate Processing Units 
Require: rj .  Pv1. ga. and G.

1: for Cj £  G  do
2: for each secondary candidate processing unit (I £  p '1.1 do
H: Let ga = o  for all a .

1: for all ancestors C j 'ร of Cj do
5: if Cj  is executable by II then
น: Let g0 = gu บ {<•_,■ }.
7: end if
ร: end for
ท: for all descendants i - p ร of Cj do

111: if <g. is executable by II then
11: Let g( 1= gH บ { r k. } .

12: end if
It: end for
11: end for
1": end for
10: Descendinglv sort |ga |.
17: Mark any processing unit II £ p  11 having maximum |g„| and lowest exe­

cution energy as a primary candidate processing unit.
แร: Mark the rest of processing units in pv 1 as a secondary candidate process­

ing units, 
hi: for r i 6 G  do
20: for each secondary candidate processing unit I) £  P Vi do
21: Compute energy I b ( i ' i ) -

22: if 3 candidate processing unit a  £  P t.1 such that < b ( i ' i )  <  < a ( r i )  then
22: Mark processing unit II as a tertiary candidate processing unit.
24: Mark processing unit I) as a primary candidate processing unit.
2">: end if
20: end for
27: end for

Figure 2 EPC algorithm  2: Identifying actual candidate processing units
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Algorithm 3 Phase-1 Preliminary Task Scheduling in Processing Units 
Require: . P V i. and G .

1: Let V f  he tile latest task in its primary processing unit in pv 

2: Let G f l)e the finishing time of task I ' f .

3: Descendingly sorted task Vj at first level of G  by execution time on its 
primary processing unit.

1: for each sorted task I'i at hist level of G  do
5: if primary processing unit pv 1 is an empty slot then
G: Assign I ' i to its primary processing unit in Ft,.1.
7: else
ร: Assign I ' i to its primary processing unit in P V( at time G f + 1.
il: end if

10: end for
11: while 3 unassigned I ' i do
12: Let ร he a set of I'k having all ancestor tasks already assigned to their

primary processing units.
13: for each task Vk e ร  do
14: Let A Vlc he a set of ancestor tasks of I 'k already assigned to their primary

processing units.
15: Find a task l'j G A Vk having the latest finishing time at time G j-

น): end for
17: Find a task I 'k  € ร having earlier finishing time Gj Olid the shortest

execution time on its primary processing unit.
18: if time slot G j  + “ ’a ( i ’k ) of primary processing unit in PVk is empty then
19: Assign I'k to its primary processing unit in PVk at time slot Gj +  «■ „((>).

20: else
21: Assign I'k to its primary processing unit in P Vk at time slot G f + 1-
22: end if
23: end while

Figure 3 EPC algorithm  3: Phase-1 prelim inary task scheduling in precessing 

units.
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Algorithm  4 Phase-2 Minimizing Idle Energy in Task Scheduling
R e q u i r e :  a  list of scheduled tasks in each g  a and G.

1: Let ร  be a  set of |g a | sorted  in descending order.
2: fo r  each co rresponding g  a  €  ร  d o  
3: Let Vk  be th e  last task  in go.
4: w h ile  task  I'k is not the  first task  in ga d o
5: T raverse th e  task  list upw ard s ta r tin g  a t  V k  until an  em pty  slo t E  is found an d  let

V j  be th e  task  next to  th is  idle slot.
0: Let A VJ be a  set of ancestors of V j .

7: fo r  all tasks Vj ร AVj  d o
8: i f  th e re  ex ists a  processing un it b w ith  an  em p ty  slot a n d  th e  d a ta  dependency

of Vi  and  its  ancestors in any processing un its is no t v io la ted  t h e n  
9: T em porarily  rem ove Vi from th e  present slot.

10: In sert Vi to  th e  beginning of th is  new em pty  slot.
11: R eschedule all tasks whose s ta r tin g  tim es are  after th e  ending  tim e of Vi  by

using A lgorithm  3.
12: Let G' be the  new dependency task  g raph  after th e  tem p o ra ry  assignm ent of

Vi-
13: C om pu te  th e  to ta l energy
14: if  r ^ /  >  r c, th e n
15: Rem ove Vi  from processing un it b and assign it back to  its original processing

unit.
10: e ls e
17: P erm anen tly  assign Vi  to  th is  new em pty  slot on processing u n it b.

18: e n d  if
19: e n d  if
20: e n d  fo r
21: i f  V k  is not th e  first task  in ga th e n
22: Let V k  be a  new task  found after traversing  list g a  upw ard s ta r tin g  from  the

em p ty  slo t E.

23: e n d  if
24: e n d  w h ile
25: e n d  fo r

Figure 4 EPC algorithm 4: Phase-2 minimizing idle energy in task scheduling.
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Task graphs

The four algorithms will be described through their implementations on a 

dependent task graph G shown in Figure 5. From the figure, there are 17 tasks 

represented by V, to V, 7 and 4 processing units a, b, c, and d . Tasks are 

represented by graph vertices with the name of the tasks written in the circles and 

the processing units capable of processing the tasks written in the parentheses 

placed to the right of the vertices. For example, it can be taken from this graph that 

task V, is executable by processing units «and c .

Table 1 Energy consumption constants for each processing units i e {a ,b ,c ,d }. 

a, is the execution energy at peak state per unit time. Pt is the idle energy at 

idle state per unit time. And \  is the transmission energy per unit data.

Energy constants Processing Units

a b c d

îe{a,b,c,d) 0.067 0.065 0.064 0.062

0.029 0.031 0.029 0.029

0.045 0.047 0.050 0.048

hypothetical values for all variables in Equation (1) for the task graph are 

given in Table 1, Table 2, and Table 3. The amount of processing energy per unit 

time («0), waiting energy per unit time (/?,), and transmission energy per unit 

amount of data (Au) of each processing unit aare presented in Table 1 . 

Transmission speed of the link between each processing unit pair in unit amount of 

data per unit time are presented in Table 2. The data transmission time among 

processing units calculated from the transmission speed presented in Table 2 along 

with the amount of transmitted data of each task v(. are presented in Table 3. The 

method used to estimate energy consumption is shown through the activities of task 

V1-



17

Table 2 Estimated data transmission rate rah between any processing unit pairs

in unit amount of data per unit time.

Processing Unit a b c d

a - 1 0.5 1
b 1 - 0.5 1.25

c 0.5 0.5 - 1.25

d 1 1.25 1.25 -

Table 3 Initial values of output data size and estimated execution time of each 

task by each processing unit in the first study case.

Task Amount of transmitted data Amount of execution time

v, da(v1) '> / ) h (V,) '1/0 ,)
1 60 260 - 760 -

2 80 350 160 - -

3 10 - - 890 820

4 60 420 150 - -

5 90 - - 940 430

6 30 - 400 - 560

7 50 670 - 850 -

8 40 300 - - 630

9 50 - 470 - -

10 30 920 - - 950

11 80 - 550 120 -

12 10 - 200 - 130

13 90 - 100 790 -

14 40 940 - 580 -

15 50 - - 350 310

16 40 930 - - 750

17 70 - 370 - -
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Table 4 Estimated execution energy for each task on each processing unit in the

first study case.

Task Execution energy

v, ««,*>/) aM v1) aM v1) aM v1)
1 17.42 - 48.64 -

2 23.45 10.40 - -

3 - - 56.96 50.84

4 28.14 9.75 - -

5 - - 60.16 26.66

6 - 26.00 - 34.72

7 44.89 - 54.40 -

8 20.10 - - 39.06

9 - 30.55 - -

10 61.64 - - 58.90

11 - 35.75 7.68 -

12 - 13.00 - 8.06

13 - 6.50 50.56 -

14 62.98 - 37.12 -

15 - - 22.40 19.22

16 62.31 - - 46.50

17 - 24.05 - -

From Table 1 and Table 3, the processing energy, att, and the amount of 

time to process task V, on a processing unit o ,ta(v1), are 0.067 and 260, 

respectively. Thus, if task V, is executed on processing unit a 1 the execution energy 

aJo(V| ) = 0.067x260 = 17.42 . The execution energy for other tasks are calculated in 

a similarly manner and the results are shown in Table 4.
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(a ,c)

(a ,c )

Figure 5 A dependent task graph G . Each graph vertex represents a task. The 

names of the tasks, V, to v | 7 , are written in the circles and the candidate 

processing units which are capable of executing each task are written in the 

parentheses placed to the right of each vertex.
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Once task V, has been processed, the results will be sent to its descendant 

tasks which are tasks v4, v5, v6, and v7. As descendent tasks can be executed by 

processing units other than น, data transfer between processing unit pairs will incur 

transmission energy. For example, if data are sent from V, to v7 and suppose that 

processing unit c has been assigned to v7, data will be transferred from processing 

units a to processing unit c . The transmission energy for this transfer is calculated 

from Aada(v,) = 0.045x60 = 2.71 where the values for Aa and r/„(v,) are taken from 

Table 1 and Table 3. The values of transmission energy for other processing unit pairs 

are calculated in the same manner.

Idle energy can be determined from data transmission rate between the 

sending and receiving processing unit. Consider data transfer between tasks v6 and vs. 

Assume that processing unit d is assigned to process task v6 and processing unit a 

to process task Vg. From Table 3, the amount of data of task v6 to be transmitted 

from processing unite/ is ^ (v 6) = 30 and the data transmission rate from d to a is 

rJa = 1. The data transmission time พ0(v 8) is calculated from

e/rf(v6) / r /u = 30/1 = 30. Thus, the idle energy at processing unit a for Vg is equal to 

Pa wa(v8) = 0.029x30 = 0.87.
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(a)

Figure 6 Diagrams show 2(a) task V,, 2(b) task v8, and 2(c) task vl5, along with 

their ancestor and descendent tasks. Also shown in the diagrams are the values 

for maximum idle energy, maximum transmission energy, and execution energy 

required to process the tasks. Idle energy appears when data are passed from a 

processing unit of an ancestor task to that of the current task. The maximum 

values determined from all candidate processing units in each transmission are 

denoted next to graph incoming edges. Transmission energy appears when data 

are passed from a processing unit of a current task to that of a descendent 

task. The maximum values determined from all candidate processing units in 

each transmission are denoted next to graph outgoing edges. The values for 

execution energy for both possible processing units are denoted next to the 

graph vertices.



22
Algorithms implementation

The results produced from EPC Algorithms 1 to 4 are explained. เท EPC 

Algorithm 1, tasks are categorized into three types. The first type includes tasks with 

no incoming degree such as task V , . The second type includes tasks which have both 

incoming and outgoing degrees such as task v8. And the third type includes task with 

no outgoing degree such as task vl5. Minimum energy r is estimated from every 

processing units in p  . For tasks V, 1 v8 and V,51 the values for T are

r = m in ^  {a ktk(+1 )) + maxie/, ( ()KkXkd k(+1) + MkPkwk(v, ))

= 17.42 + 3x3 + 0 

= 26.42

r = mini£/>s (a ktk(+8)) + max*e,,8 ( ()KkAkd k(+8) + Mkp kwk(vg))

= 20.10 + 2x1.92 + 1.74 

= 25.68

r = min46/; 15 (aktk (v,5)) + maxi€/, 15 ( oKk\ d k (+15) + n kPkพk (v„5 ))

= 19.22 + 0 + 4.64 

= 23.86

Note that becauseV, has no incoming degree, the term /uk{311พk(v1) becomes zero.

By calculating T , secondary and tertiary candidate processing units for each 

task can be identified. From Figure 6, as a j 0(v,) <T and actc(+1) > โ, processing 

units a and c are selected as the secondary and tertiary candidate processing units, 

respectively. Figure 7 shows all secondary candidate processing units for each task 

after applying EPC Algorithm 1.
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Figure 7 Identifies secondary candidate processing units for tasks V, to vl7. The 

processing units are identified using EPC Algorithm 1 and are shown in the 

parentheses next to the tasks. Note that for tasks V,0 and vl5, both of their 

executable processing units are identified as secondary candidate processing 

units.

The result from EPC Algorithm 1 is used to identify the actual candidate 

processing units by EPC Algorithm 2. เท this step, if a task is only assigned to one 

secondary candidate processing unit, the secondary candidate processing unit 

becomes primary candidate processing unit. If more than one secondary candidate 

processing unit is assigned to the task, the algorithm counts the number of ancestor 

and descendent tasks which are assigned to the same processing units. The 

secondary candidate processing unit which has the greatest number of ancestor and 

descendent tasks assigned to it is set as primary candidate processing unit. The 

energy consumptions for each primary and secondary candidate processing unit are 

then computed.
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Figure 8 Diagrams show tasks V,0 and V ,5 along with their ancestor and 

descendent tasks. เท 4(a) task V,0 is executed by processing unit a, 4(b) task V,0 

is executed by processing unit d , 4(c) task V ,5 is executed by processing unit c , 

and 4(d) task V ,5 is executed by processing unit d . Also shown in the diagrams 

are the values for idle energy, transmission energy and execution energy. The 

values are denoted next to the graph incoming edges, outgoing edges, and 

vertices, respectively.
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Figure 8 shows diagrams of data dependencies for tasks V,0 and V,5 which 

have two secondary candidate processing unit after applying EPC Algorithm 2. For 

task v10, both processing units a and d have the same number of ancestor and 

descendent tasks assigned to them. เท this case, processing unit d is set as a primary 

candidate processing unit because its execution energy on task V,0 is lower. For task 

V ,5, the number of ancestor and descendent tasks which can be assigned to 

processing unit c is 3 (including task vl5) and that of processing unit d is zero. Thus, 

processing unit c is set as the primary candidate processing unit.

After candidate primary candidate processing units for all tasks have been 

identified, energy consumptions based on both primary and secondary candidate 

processing units of each task are calculated. The results are used in the next step to 

identify actual candidate processing units. Consider task v10, the energy 

consumptions of processing units a and d to execute task v10 are shown in Figure 

8(a) and Figure 8(b), respectively. They are calculated from

e«0,o) = 10) + M A O , o) +
= 61.64 + 2x1.35 + 2.61 

= 66.95

for processing unit a and

e, O,0 ) = «A 0,0 ) + M A  0,0 )+Mj P j Wj 0,0 )
= 58.90 + 2x1.44 + 1.45 

= 63.23

for processing unit d . As e 11 O|0) is (ess than ea0,o)> processing unit d is selected 

as the actual candidate processing unit for task V,0.
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Similar calculation can be performed on task vl5. Energy consumptions of 

processing units c and d to execute task V,5 are shown in Figure 8(c) and Figure 8(d), 

respectively. They are calculated from

e c ( v is )  =  a J M + l < A < X v t s ) + M A w M s )
= 22.40 + 0 + 0 

= 22.40

for processing unit c and

e d  ( v.5 )  =  a J j  ( v >5)  +  k A A  0 ,5  )  +  M d & W j  0 ,5  )
= 19.22 + 0 + 1.856 

= 21.076

for processing unit d and. As e(/(v,0) is less than e.(vl0), processing unit d is 

selected as actual candidate processing unit for task vl5. Actual candidate processing 

units for all tasks in the dependent task graph G determined from EPC Algorithm 2 

are shown in Figure 9.

เท EPC Algorithm 3, tasks are scheduled and assigned to their corresponding 

actual candidate processing units identified by the previous step. For example, 

consider tasks V,, v2 and V. in the first level. The actual candidate processing units 

for tasks V, 1 v2 and v3 are processing units a , b , and d , respectively. From Table 4, 

the execution time become /0(v,) = 260, ^ (v2) = 160, and ^ (v3) = 820. Thus, task 

v2 which has the least execution time is scheduled and assigned first, followed by 

task V, and task V,. Next, tasks whose ancestor tasks have been scheduled, in this 

case tasks v4, v5, v6 and v7, are considered. Because task v2 has the least execution 

time compared to other scheduled tasks, it also has the earliest finishing time. 

Hence, task v6 which is a descendent task of v2 is the next task to be scheduled. 

Because the finished time of task V, is next to that of task v2, tasks v4 which is the 

descendent task of V, is scheduled next. The next set of tasks that reach its finished 

time is that of tasks v,and v4. Therefore, the next task to be scheduled and assigned 

is task v8 which is a descendent task of V, and v4. เท the case that a task shares
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common ancestor tasks with other tasks, such as tasks v5 and v7 which are both 

descendent tasks of v3, the task which has lower execution time is scheduled first. เท 

this case, tasks v5 is scheduled before task v7 as 111 (v5) < ta(v7). The list of all tasks 

in the task graph G scheduled by EPC Algorithm 3 is illustrated in Figure 10(a).

Figure 9 A depend task graph G with actual candidate processing units 

determined from EPC Algorithm 2. The actual candidate processing units for 

each task are written in the parentheses next to the graph vertices. Arrows 

linking tasks represent the direction of data transmission. Solid arrows represent 

data transmission between different processing units. Dashed arrows represent 

data transmission within the same processing unit. Thick arrows represent data 

transmission from when data are transferred to more than one a task with the 

same processing unit, e.g., v8 to vn and vl4.
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(b)

Figure 10 Lists o f scheduled task after (a) EPC Algorithm s 3 is applied and (b) 

after EPC A lgorithm  4 is applied. เท this example, on ly task v7 is rem oved from  

processing unit a and re-assigned to  processing unit c.

Idle energy of the scheduled task is minimized further by reducing empty 

slots in the processing time-line using EPC Algorithm 4. เท Figure 10(a), the latest tasks 

to be executed on processing unit d is task v15. The algorithm thus considers V,5 

and progresses upward on the time line until it finds the first empty slot next to task 

v16. The empty slot corresponds to idle energy between V , 6 and its ancestor tasks V,2 

and v l 3 . Tasks vl2 and V,3 are then re-assigned to other processing units. Although 

the re-assignment causes no data dependency violation, the empty slot remains and 

the total energy consumption increases. Thus, tasks V ,2 and v , 3  are not re-assigned. 

The next empty slot is found between tasks V ,0 and its ancestor tasks v5, v6, and 

v 7 . เท this case, the idle energy and consequently total energy is reduced when task 

v7 is re-assigned to processing unit c . The assigned processing unit for task v7 is 

changed from a to c . Tasks on other processing units are re-scheduled similarly and 

the result is depicted in Figure 10(b).
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3.1.3 Experim ental results

The HEFT, LSH, and EPC algorithms were tested using three study cases with 

different scheduling scenarios to evaluate their performance. The dependent task 

graph G in Figure 5 was used in the first case. A task graph in the second case was 

taken directly from [30] to be used as a validation benchmark. The scenario for the 

third case was extended from the first case to include more complex tasks graphs 

and shifted the emphasis from transmission load to execution of intensive scenario.

Table 5 Clock rates and power consum ption at peak and id le states for 

benchm ark desktop CPUs. The values were taken from  [35] and [36] and are 

used to  determ ine energy consum ption o f each processing un it in the 

experiments.

Processing

unit

CPU Clock

(GHz)

Power consumption (พ)

peak idle

a Intel Core i7-975 XE 3.33 240 105

b Intel Core 2 Extreme QX6850 3.00 233 110

c Intel Core 2 Extreme QX6700 2.66 229 106

d Intel Core i7-920 2.66 224 105

Simulation environments for all experiments consist of four heterogeneous 

processing units. Each processing unit has their unique competency and different 

energy consumption during peak or idle states. The energy consumption for the four 

processing units are shown in Table 5. The values were selected from the database 

of experimentally acquired energy consumption for commercially available CPU [35] 

and [36].

To use in the calculation, the energy consumption in watts taken from the 

database was converted to watts per seconds. For example, the execution energy 

per unit time for unit a is equal to aa =240/3600 = 0.067 and the waiting energy 

per unit time for unit a is equal to /?,= 105/3600 = 0.029. The values for 

transmission energy assigned to each processing unit pair were randomly generated 

although the generated values were constrained between the energy consumption
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during peak state and the energy consumption during idle state of both processing 

units in each pair. The values for the execution energy per unit time, waiting energy 

per unit time, and transmission energy per unit data used in the experiments are 

shown in Table 1. Delay time during data transmission were calculated from the 

network transmission speed of the processing unit pairs presented in Table 2.

เท the first case, the dependent task graph G 1 as shown in Figure 5, contains 

17 tasks, v,-vl7, and 4 processing units, a, b, c, and d . Each task has unique 

attributes and each processing unit has different competency to handle task 

execution. Also shown in Figure 5, in the parentheses next to each graph vertices, are 

initial assignment of processing units which are capable of executing the tasks 

denoted at the vertices. The estimated execution time of each task by each 

processing unit and the size of the output data defined at the beginning of the 

simulation are presented in Table 3. The values for total execution energy 

consumption of each processing unit for each task are shown in Table 4.

Although in the HEFT algorithm, energy consumption is not considered their 

cost functions, they have been employed as scheduling algorithms. Thus, their 

performance on the study cases are worth considered. The present value for the EPC 

algorithm is determined by setting up execution, transmission, and idle energy as 

cost functions of each processing unit during the scheduling process. The result 

scheduled tasks after applying the HEFT and LSH algorithms are depicted in Figure

11. The execution time and idle time are presented as dark and striped slot, 

respectively. The obtained values for system finish time are 3922, 3410, and 3924 for 

the LSH, HEFT, and EPC algorithms, respectively. For the performance comparison, 

the system finish time are not considered as important factor as it could be 

allocated off-line.

Table 6 to Table 8 shows the values for execution, transmission, and idle 

energy consumption of each processing unit obtained from the HEFT, LSH, and EPC 

algorithm, respectively. As seen from the tables, the HEFT algorithm mainly involves 

optimization of idle and execution time, it yields the least execution time. The 

algorithm is ranked second place when total energy consumption is considered. The
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EPC algorithm focuses on optimizing server assignment to minimize both execution 

and transmission energy consumption. The algorithm yields reasonably low 

execution energy, the least idle energy and proceeded to give the lowest total 

energy consumption. As time-line is not a prime direction of the EPC algorithm, it is 

not optimized.

Table 6 Values fo r energy consum ption o f each processing un it as a result o f

applying the  LSH algorithm  to  the  first study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 144.05 12.15 14.79 170.99

b 107.25 14.57 46.81 168.63

c 44.80 10.00 75.40 130.20

d 151.28 9.12 42.98 203.38

Total 447.38 45.84 179.98 673.20

Table 7 Values fo r energy consum ption o f each processing un it as a result o f

applying the  HEFT algorithm  to  the  first study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

A 152.09 10.35 4.35 166.79

B 97.50 13.16 44.02 154.68

c 67.20 4.00 68.44 139.64

อ 171.12 6.24 17.75 195.12

Total 487.91 33.75 134.56 656.22
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Table 8 Values fo r energy consum ption o f each processing un it as a result o f

applying the  EPC algorithm  to  the  first study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 37.52 9.90 14.79 62.21

b 107.25 15.98 46.87 170.10

c 99.20 15.00 49.94 164.14

d 210.18 7.68 15.49 233.35

Total 454.15 48.56 127.09 629.80

Figure 11 List o f tasks in processing units a, b, c and d o f a depen dent task 

graph G o f the  first study case scheduled using (a) LSH and (b) HEFT.
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A task graph for the second study case was taken from [30] and is shown in 

Figure 12. The numbers written next to each edge of the graph represent 

transmission time. เท this case, delay time was used to calculate transmission energy 

and was defined to be different for every task. The execution energy depends on the 

characteristic of each processing unit. Waiting energy was taken to be 50% of the 

obtained execution energy. The scheduling is performed under the constrained that 

processing units can only consume one unit of execution energy per one unit of 

execution time and one unit of transmission energy per one unit of transmission 

time.

M . c )

Figure 12 D ependent task graph used in the  second study case [30], The 

num bers w ritten next to  each edge o f the graph represent transmission tim e 

and are sim ilar fo r a ll transmission.
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Table 9 Execution energy fo r a ll tasks described in the  depen den t task graph o f 

Figure 12 [30] in the  second study case.

Task Execution energy

vi < v > , ) (v1) aM v1)
1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

Table 10 Values fo r energy consum ption o f each processing un it as a result o f

applying the  LSH algorithm  to  the  second study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 36.00 44.00 11.00 91.00

b 27.00 27.00 26.50 80.50

c 28.00 67.00 0.00 95.00

Total 91.00 138.00 37.50 266.50

Table 11 Values fo r energy consum ption o f each processing un it as a result o f

applying the  HEFT algorithm  to  the  second study case.

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Total

Energy

a 18.00 27.00 22.00 67.00

b 43.00 42.00 18.50 103.50

c 49.00 71.00 0.00 120.00

Total 110.00 140.00 40.50 290.50
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Table 12 Values fo r energy consum ption o f each processing un it as a result o f 

applying th e  EPC algorithm  to  the  second study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 127.00 0.00 0.00 127.00

b 0.00 0.00 0.00 0.00

c 0.00 0.00 0.00 0.00

Total 127.00 0.00 0.00 127.00

(a)

0 10 20 30 40 50 60 70 80 90

(b)

Figure 13 List o f tasks in processing units a, b , c and d o f a depen dent task 

graph G o f the  second study case scheduled using (a) LSH, (b) HEFT, and (c)

EPC.
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The LSH, HEFT, and EPC algorithms yielded system finish time of 80, 80, and 

127, respectively. It is not surprising that HEFT algorithm gave the shortest 

computation time but failed to deliver optimal energy consumption. This is because 

minimizing execution time is the main focus of this algorithm while the energy 

consumption issue is not of concerned. An implementation of the EPC algorithm to 

this case gave zero transmission and idle energy consumption. Since all processing 

units can process any tasks, transmission and idle energy consumption can be 

reduced to zero if only one processing unit are selected to execute every task. 

Because the total execution energy consumption of processing unit a is minimum 

compared to those of other processing units, processing unit a is chosen by the EPC 

algorithm. Total energy consumption cost by this algorithm is the total execution 

energy consumption of processing unit a .
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A task graph used in the third study case is shown in Figure 14. For this case, 

the transmission time was taken to be 10% of the execution time. The defined 

amount of transmitted data and execution time for each tasks are shown in Table 

13. The estimated energy consumption and data transmission coefficients are shown 

in Table 1, which were used in the first case, are also adopted in this case.

Figure 14 Dependent task graph used in the  th ird  study case.
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Table 13 A m ount o f transm itted data da(vl ) and am ount o f execution tim e 

ta(v,) by each processing un it fo r a ll tasks V1 in the  th ird  study case.

Task Amount of transmitted data Amount of execution time

v1 d M ) ' » » ' » ' »
1 25 350 - 570 430

2 30 430 270 - -

3 20 - - 510 450

4 45 590 710 - -

5 60 - 920 - 790

6 70 360 480 - -

7 30 - - 840 720

8 55 - 710 380 -

9 20 390 670 - 380

10 25 - - 550 580

11 15 - - - 620

12 65 870 790 720 -

13 20 560 - - 540

14 10 430 410 - -

15 85 280 260 270 250

16 35 - 520 480 -

17 20 - 380 390 420

18 15 610 690 - -

19 30 250 - 270 480

20 10 - - 620 710

21 70 760 - 890 -

22 30 - 540 - -

23 35 580 - - -
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Table 14 Values fo r energy consum ption o f each processing un it as a result o f

applying the  LSH algorithm  to  the  th ird  study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 234.50 12.83 80.56 327.89

b 104.00 4.23 97.28 205.51

c 176.00 9.50 68.87 254.37

d 232.50 15.60 0.00 248.10

Total 747.00 42.16 246.71 1035.87

Table 15 Values fo r energy consum ption o f each processing un it as a result o f

applying the  HEFT algorithm  to  the  th ird  study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 255.27 12.38 41.18 308.83

b 156.65 5.88 62.43 224.96

c 142.72 8.50 41.12 192.34

d 239.32 18.96 0.00 258.28

Total 793.96 45.72 144.73 984.41

Table 16 Values fo r energy consum ption o f each processing unit as a result o f

applying the  EPC algorithm  to  the  th ird  study case.

Processing Execution Transmission Idle Total

Unit Energy Energy Energy Energy

a 326.96 11.70 16.53 355.19

b 77.35 6.58 89.59 173.52

c 193.28 13.50 31.03 237.81

d 159.96 5.52 0.00 165.48

Total 757.55 37.30 137.15 932.00
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Figure 15 List o f tasks in processing units a, b, c and d o f a dependent task 

graph G o f the  th ird  study case scheduled using (a) LSH, (b) HEFT, and (c) EPC.
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The results are illustrated in Figure 15 and the system finish time of LSH, 

HEFT, and EPC algorithms are 6278, 5230, and 5450, respectively. From the results, 

HEFT algorithm yielded the least system finish time while the EPC algorithm yielded 

the least total energy consumption. For the EPC algorithm, the reduction of idle 

energy significantly decreased the system finish time although incurred a small 

amount of execution and transmission energy.

It can be seen from this study case that EPC algorithm can be employed to 

complete the assignment using the lowest total energy consumption. However, the 

issues often found in real system such as the limitation to system finish time or 

battery supply were not investigated. These issues will be addressed in the next 

section.
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3.2 Scheduling to minimize total energy consumption and schedule length with 

limited power supply

เท this section, the problem constraints are extended such that it is closer 

the real system as much as possible. เท this case, each processing unit can carry its 

own work load according to user's request, locally invoked applications, and resident 

programs. Tasks will be assigned to be executed on a designated processing unit by 

the scheduler. One processing unit is dedicated to be the main processing unit which 

handles task scheduling. Thus, apart from the compulsory execution energy, this 

processing unit will consume additional energy during task scheduling and additional 

waiting energy for the final result from other processing unit.

The proposed algorithm is aimed to find a method to schedule tasks V,. e V

and arrange them as a group ga in such a way that the scheduling length is the 

shortest and the energy consumption is minimum. เท other words, the objective is to 

optimize ea, where ea denotes the amount of energy consumed by processing unit 

a when tasks V, 6 ga is executed, it is assumed in this case that the battery supply 

for processing units a which will perform on a dependent task graph G is limited.

3.2.1 Constraints on energy-sufficiency scheduling

The total amount of energy consumed by a processing unit is defined in 

the same manner as Section 3.1.1. That is, execution, transmission, and idle energy. 

Now inclusion of energy consideration focuses on scheduling energy and time 

complexity. Time complexity Ta]g of a scheduling algorithm is another parameter 

which affects the scheduling energy. The parameter refers to the amount of time 

taken by an algorithm to schedule a task on a processing unit. For example, TaX (C) 

is the amount of time taken by processing unit a in algorithm c and aaTa 11,(C) is 

defined as the energy consumed by processing unit a during task scheduling. The 

value of time complexity depends on the size of a task graph G which includes the 

number of tasks (v), the number of processing units ( p ) , and the number of levels 

(/) in the task graph.
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By including the scheduling energy, the total energy consumption of a 

processing unit is calculated from

ea =  X  (aJ M ) +  ๆaKda(v,) +  M„PawÀv1 ))

+  T ( & V / a ( v J ) )  +  Ta ( a aTalg( C )  +  /J ay /a ( v f ) )

The total energy represented by equation (2) includes energy from task 

scheduling and task execution. Task scheduling is performed one level at a time only 

by the main processing unit under the prerequisite that some tasks are only 

executable on designated processing units. The predecessors and successors of a 

task are determined when the task has been assigned to a processing unit. The 

execution of a task is considered local if the task and its predecessors and successors 

are assigned to the same processing unit. เท this case, no transmission energy is 

expended and ๆa -  0. If the execution is not local, transmission energy will be 

included, ๆa = \ .เท this case, the successor has to be in a wait state before the data 

from the predecessors are sent over. This sets n a -1  as idle energy is added to the 

total energy cost. If there is no waiting time, na is set to 0. เท the case that the final 

leaf task vf  is not executed on the main processing unit, additional idle energy will 

incur on the main processing unit during the time it needs to wait for the result from 

the task V , . This additional energy is represented by setting Ta =  1 in equation (2). 

For other processing units including the main processing unit when it is free from 

scheduling assignment, Ta =  0. เท this case, the total energy consumption is 

contributed by execution energy, idle energy, and transmission energy.

เท real working environment, the battery power supplies are often limited. 

Thus, an energy reserve option is introduced in this part of the study. The algorithm 

has been written based on a careful analysis of previous execution scenarios. The 

option is proved to handle the situation where battery power supply is limited and 

its scheme is outlined as follows.

เท the task scheduling step, the mandate for assignment completion under 

limited power supply is to ensure that there will be adequate amount of energy on 

each processing unit to execute tasks. Because of the prerequisite that some tasks 

are only executable on particular processing units, battery power should be reserved 

for the execution of these tasks. Let ¥ 0 = (v, IV1. e v &  ¥ 0 € ¥ }  be the set of tasks
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designated to be executed on processing unit a. The energy required to execute a 

task, pa, is calculated from

Pa = X (a Ja 0) + ๆaK<  0, )) (3)
เท the task execution step, dependencies of the current task to its 

predecessor and successors are identified in order to determine the required idle 

energy. Define level k in a task graph G as the level under current consideration 

and level h  as the last level where the designated task for each processing unit is. 

For all processing unit other than the main processing unit, the idle energy is 

calculated from level k  to /7. Because the main processing unit needs to wait until 

the last task is executed, its idle energy has to be calculated from level k  to the last 

level / (leaf). Let <Jk a  be the amount of idle energy reserved at level k  for 

processing unit a, where k ,h < E  M .  average (/0 (v 1)) be the average execution time 

of task V1 and p is the number of processing units. That is

° k.a =A
P - 1

ร  1 average(t 110 , ) ) -  X  A ) (4)

The implementation of ESL algorithm will be described in the following section.
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3.2.2 Energy-sufficiency level assignment (ESL) algorithm

เท this section, formulation of the proposed energy-sufficiency level (ESL) 

assignment algorithm is described. Let Pv represent a set of processing units which 

is capable of processing task V1. It is assumed that the characteristics of each task V1 

are different such that the competency of each processing unit on each task is 

different. เท other words, each processing unit requires different amount of energy to 

process the same task and, inversely, each task requires different amount of energy 

to be run on the same processing unit. The values for Aa, Pa, ta{v 1), da(v:) , y/a 1 

and พa for a processing unit a are also assumed prior to the application of the 

algorithm.

The scheduling scheme employed by ESL algorithm contains two phases. เท 

the first phase, tasks are scheduled to attain the shortest system finish time using ESL 

Algorithm 1. The remaining idle slots after all tasks are scheduled are shorten in the 

second phase using ESL Algorithm 2 to further reduce the system finish time. The 

algorithm proceeds as follows.

1) Candidate processing units for each task V, are selected from a set Pv . The 

earliest finish time (EFT) of all tasks, in each level / in the dependent task 

graph G 1 on all available processing units are estimated. The first task to be 

assigned to its candidate processing units on each level is the task which gives 

the longest EFT. When the first task has been assigned, the EFT of all the 

remaining tasks were recalculated. The next task to be assigned is the task 

which gives the longest EFT in the recalculation. The process repeats until all 

tasks are assigned. The primary candidate processing units for a task is the 

processing unit which when executes the task gives the shortest EFT. The 

processing unit is marked as the secondary candidate processing unit for a 

task when it gives the second shortest EFT. เท a similar manner, the 

processing unit is marked as the tertiary candidate processing unit if it gives 

the third shortest EFT. The detail of this step is given in ESL Algorithm 1. เท 

case that battery power supply is limited, the BotteryCheck function is 

applied to reserve the energy for task execution using Equations 3 and 4. 

Details of the BotteryCheck function is described below. เท case battery 

supply is unlimited, the BotteryCheck function will be skipped and the 

scheduling is made according to ESL Algorithm 1.

2) Reduce the remaining idle slots in some of the processing unit to minimize 

system finish time. An idle slot can be shortened by reassigning a task to be
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executed in this slot. For example, if there is an idle slot preceding the 

current task induced by its immediate parent tasks assigned to another 

processing unit, given that the parent task can be processed at the same 

processing unit as the current task and the current start can be executed 

earlier than the original schedule, the parent task will be reassigned to this 

processing unit. The detail of this step is implemented in ESL Algorithm 2 

which is described below.
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A lgorithm  1 Level-based task scheduling
R e q u i r e :  <1, v a , and  G.

1: Let ipvita be th e  E S T  of 1\  on processing un it a.

2: L et (v i:a be th e  E F T  of ta sk  Vi  on processing u n it a .

3: fo r  all levels l in g rap h  G d o  
4: L et ร1 be a  set of tasks  V1 on level I.

5: F ind  ta sk  V i  e  (รI ก V a )  th a t  can be executed  on only one processing un it a .

G: A ssign V i  to  th is  processing un it a t  tim e slot ipV i ,a  an d  rem ove V i  from  5(.
7: C o m pu te  'Ÿ'v 1,a of each V1 £ (5;.
ร: w h i le  El unassigned  Vi  in / d o
จ: fo r  all task s  V i  6 Si d o  > build  E F T  can d id a te  task  list

10: fo r  a ll can d id a te  processing u n it a of r>, d o
11: i f  Vi can  be inserted  in front of task  Vk t h e n
12: cVi,a —  Cvk,a “b (-pVi,a T  ta{vi) <pvk,a)

13: e ls e
14: Cvt ,a =  -ri’j.a T  ia L ’i)
15: e n d  if
16: M arked v% as Vk if it has th e  largest Çu 1.10.
17: e n d  fo r
18: e n d  fo r
19: L et a be th e  processing u n it th a t  gives th e  sh o rte s t E F T  for Vk-

20: M ark a as p rim ary  can d id a te  processing un it.
21: M ark th e  processing un it w ith  th e  nex t sh o rte s t E F T  as secondary, te r t ia ry  cand i­

d a te  processing un it and so on.
22: Let P Ufc be th e  set of can d id a te  processing u n its  of Vk so rted  in o rder of can d id a te

processing un it.
23: B a tte r y C iie c k ( Cfc, P u  (1.. G )
24: A ssign Vk to  th e  first o rder of can d id a te  processing u n it in p „ fc a t  tim e  slot !~Pvk,a■

25: Rem ove V k  from  <5;.
26: M ark an cesto r ta sk  นvk as th e  la te st finish receiving d a ta  of task  Vk-

27: e n d  w h ile
28: e n d  fo r
29: r e t u r n  T h e  scheduled  list of tasks Vi  on its assigned processing un it.

Figure 16 ESL algorithm 1: Level-based task scheduling.
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fu n c tio n  BatteryC heck( î.'j. P  1.1., G) 

fo r all n G P tj do
T em p o ra rily  insert V i  on can d id a te  processing u n it a  a t  tim e  slo t i p V i .a -  

L et e'a  be th e  energy consum ption  afte r assigned ta sk  V i  to  processing u n it a .  

c ’a  =  e a +  & k , a  +  P a  +  ( o a f a ( î ’i )  +  V a ^ a d a ( l ’i )  +  M a d a tr ’a ( ’Vi ) )
if (■[1 > B a th e n

R em ove a from  p tlj. 
e n d  if 

e n d  for
if  p  1.. 1 IS em p ty  th e n  

H alt th e  system , 
e n d  if 
r e tu r n  P L,1. 

e n d  fu n c tio n

Figure 17 Function Battery check for ESL algorithm.
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A lgorithm  2 Reducing idle slot in task scheduling
R e q u ire : Vi, II 1,. 1 G, an d  scheduled list of tasks Vi.

1: Let <I>G be th e  system  finish tim e.
2: L et Vic be th e  la te s t ta sk  to  finish.
3: w h ile  ta sk  Vk is not in th e  first level d o
4: T raverse th e  task  list upw ard s ta r tin g  a t  Vic un til an  em p ty  slot is found an d  let Vi be
5: th e  ta sk  before th is  idle slot.
0: if นบ, can  be executed  on th e  sam e processing u n it as Vi t h e n
7: T em porarily  move แบ1 from the  present slot an d  insert นบ, a t  E S T  of processing
8: u n it a.

9: Let <1?Q be th e  new system  finish tim e.
10: L et c'a be new energy consum ption  after tem p o rarily  insert ta sk  «บ, on processing

un it น.
l k  c a =  (“a "t Oa f a ( นบ 1 ) -+- l  l a  Aa (/a ( แบ1 ) -j- P a  da น, a (น  V i  ) <̂  d*,-,)
12: i f  ‘I’q < <I>G and  c'a <  Da t h e n
13: P erm anen tly  assign นบ 1 to  th is  E S T  on processing u n it a.

14: else
15: Rem ove นบt from processing u n it a an d  p u t it back to  th e  orig inal processing

unit.
10: en d  if
17: en d  if
18: M ark th is  ta sk  นบ. to  be Vic-

19: e n d  w h ile
20: r e tu r n  T he scheduled list of tasks Vi on its assigned processing un it.

Figure 18 ESL algorithm 2: Reducing idle slot in task scheduling.
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The first experimental case will be used to illustrate the implementation of 

the two algorithms. เท this experimental case, the dependent task graph is taken 

from that of Figure 19 and the cost taken from Table 17. For this task graph, a root 

vertex is connected to its dependent vertices by direct edges. The weight on each 

edge denotes transmission time. The vertices are labeled by their name along with 

the names of the processing units which are able to execute the tasks in the 

parenthesis. The values for the variables which will be used to estimate the energy 

consumption include the amount of processing energy per unit time («0), waiting 

energy per unit time (/?a), transmission energy per unit amount of data (Ao), and 

data transmission rate rah. These values are given in Table 19 and Table 20.

Table 17 A list of execution time ta(v 1) for each processing unit in the

dependent task graph of Figure 19 (first case).

Task Execution time

v , ' > 1) ' » ' »
1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

Values of energy consumption are calculated in the following examples. 

Processing unit execution time 111(v1) for all tasks in the dependent task graph of 

Figure 19 on all processing units are presented in Table 17. From the table, 

11,(v 1) = 9. Given that the execution energy per unit time ac =0.058, the estimated 

execution energy is determined from actL.(vt) = 0.058x9 = 0.52 .
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Transmission energy is calculated at the sender site as data are transmitted 

across the network. For example, transmission energy of processing unit c executing 

task V, is calculated from the results of 9 and 11 unit of data sent to v4 and v5 on 

processing unit b . เท the meantime, the result of 12 unit of data sent to v3 on 

processing unit a . Because v2 and v6 are also executed on processing unit c , no 

transmission energy incurred. The transmission energy expended by processing unit 

c is equal Acd c(v,) = 0.050 x(9 + l 1 + 12) = 1.60.

Idle energy is calculated from the time unit that a processing unit is put on 

wait state. For example, consider the execution of task v4 on processing unit b . 

Because task v4 is a descendent task of task V,, processing unit b is put on a wait 

state for 9 units of time when task V, is being executed on processing unit c and 9 

units of time for the delay before the result from processing unit c is sent to 

processing unit b . For processing unit b , the idle energy at wait state is equal to 

Ph = 0.017 thus the idle energy is calculated from 

A K ( v , )  +  ^ ( v4))  =  0 .0 1 7 x (9 +  9) =  0 .31 .

As the time complexity of the ESL algorithm is in the order of 

m a x |o ^ v 2 X /? ) / / ) ,o (v 2) j 1 scheduling time for the assignment using the

dependent task graph of Figure 19 is calculated from 

TaXi (ESL) =  max^io2 x3)/4,102 j = max(75,100) = 100 , where v = 10, p =  3, and

1 = 4. Thus the energy due to scheduling is equal to auTa]6 [ESL) = 0.059X100 

= 5.90.

(a, b , c )

Figure 19 A dependent task graph with similar transmission and execution costs 

as that of [30] (first case).
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เท the case of no limitation to the battery supply, scheduling can be 

performed following ESL Algorithm 1 and 2. From the depend task graph of Figure 

19, there is one unassigned task in the first level, that is V, e<5j. Processing unit c is 

marked as a primary processing unit for task V, since, in comparison with processing 

unit a and b , processing unit c gives the shortest EFT, Ç c =9 in units of time.

For the level which contains more than one task, the EFT of all tasks on 

each processing unit are calculated and the task with the longest EFT will be the first 

task to be considered. เท the second level of the dependent task graph of Figure 19, 

there are five tasks, v2,v3,v4,v5,v6 e ร2. The task with the longest EFT is task V, 

executed on processing unit b 1 £1,1 11 =46. เท comparison with other processing units, 

processing unit c gives the shortest EFT when executing task v2, that is, Ç =27. 

Thus, processing unit c is marked as a primary processing unit for task v2. Next, the 

EFT of all tasks excluding task v2, which has already been assigned on each 

processing unit are recalculated. This time, the task with the longest EFT is task v3 

executed on processing unit c, £1,1 c =46. This makes task v3 the second task to be 

considered. For task v3, the minimum EFT is achieved when it is executed on 

processing unit a 1 £  =32, thus processing unit a is assigned as a primary

processing unit of task v3. The next longest EFT determined are that for task v6 with 

£1,611 =45. As £  c =36 is the shortest EFT for task v6, processing unit c is assigned 

as a primary processing unit of task v6. The last task to be assigned in the second 

level is task v4 with £ c = 44. The shortest EFT of task v4 is £  11 = 26 which 

defines processing unit b as a primary processing unit of task v4. For v5, the values of 

shortest EFT and primary processing unit are £  11 =39 and b 1 respectively.

There are three tasks in the third level v7,v8, v9 e ร3. By using the same 

scheme as employed in the second level, the first task to be assigned is task v9 with 

the longest EFT £v9 c = 72 and the shortest EFT £  11 -  55. Thus, processing unit b is 

marked as a primary processing unit of task v9. After the recalculation of EFT, the 

longest EFT is determined from task v7 with £ 11 =70. As the shortest EFT for task 

V7 is £  =39, the processing a is assigned as a primary processing unit of task v7.

Following this scheme, processing unit a is assigned to task v8 with the shortest EFT 

£1.81,=  58 and, in the fourth level, processing unit b assigned to task V,0 with 

£  7,=  76. The result from ESL Algorithm 1 is summarized in Figure 20.
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c V i v2 v6

b V4 vs v9 v 10

a V 3 v7 v8
0  10  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0

Figure 20 Results obtained from  Algorithm  1 applied to  the  depen dent task 

graph o f Figure 19.

After the final task has been assigned, the system finish time will be 

reduced by employing ESL Algorithm 2. As seen in Figure 20, the final task to be 

executed is task V ,0 on processing unit b  . Thus, task V ,0 is taken as a starting point 

and the ESL Algorithm 2 will traverse upwards from task vl0. The next empty slot 

preceding task v10 is the slot between task V ,0 and its ancestor task v 8 , denoted as 

น in ESL Algorithm 1.

The ESL Algorithm 2 will temporarily move v 8 to the earliest start time 

(EST) of task v g on the same processing unit as task v ] 0 . This results in reducing the 

system finish time by 73 unit of time thus task v s is reassigned to processing unit b . 
เท  the next step, task v 8 will be taken as a starting point and the process is repeated. 

For this dependent task graph, no other moves can reduce the system finish time 

and the result from ESL Algorithm 2 is presented in Figure 21. The result energy 

consumption for processing units a, b , and c are £0 =9.12, eh =333 and 

^ .=  5.12, respectively, with the total energy of 17.57 .

c V1 v2

b V4 Vs v9 v8 v10

a v3 v7
0 10  20  3 0  4 0  5 0  6 0  7 0  8 0  90

Figure 21 Results obtained from  Algorithm  2 applied to  the  depen dent task 

graph o f Figure 19.
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3.2.3 Experimental results

Experiments were conducted on six experimental cases comparing six 

algorithms, namely, HEFT, PETS, Lookahead, CEFT, PEFT, and the proposed ESL 

algorithms. Comparisons were made on the energy consumption aspect of all 

comparative algorithms with an emphasis on system finish time, scheduling energy, 

and task execution energy. The experiments were performed under the assumption 

of unlimited battery supply. เท the case that the power supply is limited, only the 

ESL algorithm can be performed till completion of the assignment. The performance 

of ESL algorithm under limited battery supply is demonstrated in the seventh 

experimental case.

เท the first six experimental cases, dependent task graphs and their 

corresponding weights were taken from the literature for fair comparison. The 

dependent task graph employed in case 1 was taken from the problem set up for 

the HEFT [30], case 2 from the problem set up for the PETS [31], case 3 from the 

problem set up for the Lookahead [32], case 4 from the problem set up for the CEFT 

[33], case 5 from the problem set up for the PEFT [34], and case 6 from [39], The 

dependent task graph used in case 7 was the same as that in case 6 except for the 

added limitation on the battery supply, other parameters involved in the energy 

consumption calculation including the execution time of each graph on each 

processing unit, ta(v 1), the weight of data transfer delay time for each edge, พa(v1), 

and the amount of data transmitted between processing units, da(v,), were 

assumed at the beginning of the simulation. The same scheme as demonstrated in 

Section 3.1.2 was used to calculate the total energy consumption.

There are four available unique processing units in this simulation. The 

operating parameters of the simulation as well as the capability and power 

consumption for all processing units are shown in Table 19 and Table 20. For this 

simulation three processing unit were used for only task execution saved one 

processing unit which was set as the main processing unit and was used to perform 

scheduling as well as task execution. For example, if processing unit a is selected as 

the main processing unit, additional energy due to scheduling a j "01 (c) and

addition idle energy Pay a{vf ) will be added on top of its regular energy 

consumption.
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Table 18 Power consumption of benchmark desktop CPUs taken from [37] and 

[38], The values were used to evaluate energy consumption for peak and idle 

state of each processing unit in the experiment.

Processing

unit

CPU Clock

(GHz)

Power consumption (พ)

peak state idle state

a Intel Core 2 Extreme QX9770 3.2 211 92

b AMD FX-8350 4.0 210 61

c Intel Core Ï7-3960X 3.3 210 57

d Intel Core Î7-3930K 3.2 206 57

The values for energy consumption constants including execution energy at 

peak state per unit time {a 1), waiting energy at idle state per unit time (/?), 

transmission energy per unit data ( / l) ,  and data transmission rate between 

processing unit a and b {ra 11) used in this study are presented in Table 19 and 

Table 20. The values for cr and (3 1 were determined from the power consumption 

presented in Table 18. For example, for processing unit a, aa = 211 a-3600 = 0.059 

and Pa = 92 a-3600 = 0.026. The values for A' were randomly generated in the range 

between a  1 and /?, and the values for rab were taken from [39],

Table 19 Energy consumption constants for each processing unit i e {a ,b ,c ,d }. 

a, is the execution energy at peak state per unit time, /?, is the idle energy at 

wait state per unit time, and A, is the transmission energy per unit data.

Energy

constants

Processing Units

a b c d

/̂ €{a,b,c,d} 0.059 0.058 0.058 0.057

fii&{a,b,c,d) 0.026 0.017 0.016 0.016

i€{a,b,c,d} 0.043 0.038 0.037 0.037
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Table 20 Data transmission rate rab for all processing unit pairs in unit amount

of data per unit time.

Processing Unit a b c d

a — 1 0.5 1

b 1 — 0.5 1.25

c 0.5 0.5 _ 1.25

d 1 1.25 1.25 —

The dependent task graph used in the first experimental case is shown in 

Figure 19 and the execution time of each task on each processing unit ta{v 1) is given 

in Table 17. Also shown in the task graph are the values for the data transfer delay 

พ1,(v 1). It can be deduced from the task graph that the values become v = 10, 

p - 3, and I = 4. For this experimental case, พ0(v(.) were used instead of the 

amount of transmitted data da(vj ) to estimate transmission energy incurred when 

data were transferred between processing units. The energy consumptions as a result 

of each algorithm can be calculated using the scheme described in Section 4.2. The 

results are presented in Table 21 to Table 26.

Table 21 Energy consumption in each processing unit as a result of the F1EFT 

algorithm (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

idle

Energy

Scheduling

Energy

Total

Energy

a 1.06 1.16 1.61 17.70 21.53

b 2.49 1.60 0.63 0.00 4.72

c 2.84 2.63 0.000 0.00 5.47

Total 6.39 5.39 2.24 17.70 31.72
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Table 22 Energy consum ption in each processing un it as a result o f the  PETS

algorithm  (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.06 1.16 1.53 23.60 27.35

b 2.73 0.00 0.51 0.00 3.24

c 2.61 4.00 0.00 0.00 6.61

Total 6.40 5.16 2.04 23.60 37.20

Table 23 Energy consumption in each processing unit as a result of the

Lookahead algorithm (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 3.72 2.75 0.49 132.75 139.71

b 1.57 1.03 0.94 0.00 3.54

c 0.58 0.48 0.40 0.00 1.46

Total 5.87 4.26 1.83 132.75 144.71

Table 24 Energy consumption in each processing unit as a result of the CEFT 

algorithm (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.95 2.88 0.81 177.00 183.64

b 2.32 1.03 0.70 0.00 4.05

c 0.52 0.56 0.45 0.00 1.53

Total 5.79 4.47 1.96 177.00 189.22
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Table 25 Energy consum ption in each processing un it as a result o f the PEFT

algorithm  (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.12 1.20 1.27 17.70 22.29

b 3.60 3.15 0.39 0.00 7.14

c 0.58 0.48 0.43 0.00 1.49

Total 6.30 4.83 2.09 17.70 30.92

Table 26 Energy consumption in each processing unit as a result of the ESL 

algorithm (first case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.06 0.73 1.43 5.90 9.12

b 2.96 0.00 0.37 0.00 3.33

c 2.09 3.03 0.00 0.00 5.12

Total 6.11 3.76 1.80 5.90 17.57

Calculated energy consumptions for each algorithm in the first 

experimental case are shown in Figure 22. The bars represent total energy 

consumption which includes the execution energy, transmission energy, and idle 

energy of processing unit a, b, and c, and the algorithm overhead (Al§.) energy 

incurred in the main processing unit. The energy consumptions for the Lookahead 

and CEFT algorithms were considerably larger than those of the other algorithms 

which are not shown in full size of the figure due to excessive scaling.
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Figure 22 Results of energy consumption on all processing unit for each 

scheduling algorithm (first case).

Calculated energy consumptions for each algorithm in the first 

experimental case are shown in Figure 22. The scheduled tasks on processing unit 

a, b, and c using HEFT, PETS, Lookahead, CEFT, PEFT, and ESL algorithms are 

shown in Figure 23 to Figure 27. From the figures, system finish times are 80, 77, 82, 

81, 85, and 73 units of time, respectively. It can be seen that ESL algorithm has the 

minimum energy consumption and the shortest system finish time.

0 10 20 30 40 50 60 70 80 90

Figure 23 Results of task scheduling using the HEFT Algorithm (first case).
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Figure 25 Results of task scheduling using the Lookahead Algorithm (first case).
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Figure 26 Results of task scheduling using the CEFT Algorithm (first case).
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Figure 27 Results of task scheduling using the PEFT Algorithm (first case).
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The dependent task graph used in the second experimental case is shown 

in Figure 28 and the execution time of each task on each processing unit 10(v1) is 

given in Table 27. Also shown in the task graph are the values for the data transfer 

delay พ a(v1). It can be deduced from the task graph that the values become V =  1 1,  

p -  3, and 1 = 5. The energy consumptions as a result of each algorithm are 

presented in Table 28 to Table 33.

a, b, c]

Figure 28 A dependent task graph with transmission and execution costs taken 

from [31] (second case).

Table 27 A list of execution time /a(v1) by each processing unit for dependent

task graph of Figure 28 (second case).

Task Execution time

v, ‘M K ( 'ง a o

1 4 4 4

2 5 5 5

3 4 6 4

4 3 3 3

5 3 5 3

6 3 7 2

7 5 8 5

8 2 4 5

9 5 6 7

10 3 7 5

11 5 6 7
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Table 28 Energy consum ption in each processing un it as a result o f the  HEFT

algorithm  (second case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.30 0.52 0.18 21.42 23.42

b 0.93 0.27 0.10 0.00 1.30

c 0.35 0.15 0.13 0.00 0.63

Total 2.58 0.94 0.41 21.42 25.35

Table 29 Energy consum ption in each processing unit as a result o f the  PETS 

algorithm  (second case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.48 0.3 0.05 28.85 30.68

b 0.75 0.27 0.12 0.00 1.14

c 0.35 0.19 0.10 0.00 0.64

Total 2.58 0.76 0.27 28.85 32.46

Table 30 Energy consum ption in each processing un it as a result o f the

Lookahead algorithm  (second case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.71 0.22 0.05 141.35 143.33

b 0.58 0.11 0.10 0.00 0.79

c 0.41 0.26 0.14 0.00 0.81

Total 2.70 0.59 0.29 141.35 144.93
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Table 31 Energy consum ption in each processing un it as a result o f the  CEFT

algorithm  (second case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.36 0.34 0.21 235.59 237.50

b 0.93 0.23 0.14 0.00 1.30

c 0.46 0.11 0.10 0.00 0.67

Total 2.75 0.68 0.45 235.59 239.47

Table 32 Energy consum ption in each processing un it as a result o f the  PEFT

algorithm  (second case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.59 0.30 0.00 21.42 23.31

b 0.52 0.23 0.19 0.00 0.94

c 0.35 0.15 0.10 0.00 0.60

Total 2.46 0.68 0.29 21.42 24.85

Table 33 Energy consum ption in each processing un it as a result o f the  ESL

algorithm  (second case).

Processing Execution Transmission idle Scheduling Total

Unit Energy Energy Energy Energy Energy

a 1.30 0.00 0.16 7.14 8.60

b 0.58 0.11 0.10 0.00 0.79

c 0.70 0.30 0.00 0.00 1.00

Total 2.58 0.41 0.26 7.14 10.39
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Calculated energy consumptions for each algorithm in the second 

experimental case are shown in Figure 29. The scheduled tasks on processing unit 

a, b, and c using HEFT, PETS, Lookahead, CEFT, PEFT, and ESL algorithms are 

shown in Figure 30 to Figure 35. From Figure 30 to Figure 35, the system finish time 

are 29, 27, 31, 31, 27, and 28 units of time, respectively. Although ESL algorithm did 

not give the shortest finish time, the resulting time was only slightly longer than the 

shortest value given by the PETS and PEFT algorithms. It can be seen that ESL 

algorithm consumes minimum energy within acceptable system finish time.

35
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Figure 29 Result o f energy consum ption on each processing un it fo r each 

scheduling algorithm  (second case).
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Figure 30 Results of task scheduling using the HEFT Algorithm (second case).
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Figure 31 Results of task scheduling using the PETS (second case).

Figure 32 Results of task scheduling using the Lookahead Algorithm (second 

case).
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Figure 33 Results of task scheduling using the CEFT (second case).
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Figure 34 Results of task scheduling using the PEFT Algorithm (second case).

Figure 35 Results of task scheduling using the ESL Algorithm (second case).



67

The dependent task graph used in the third experimental case is shown in 

Figure 36 and the execution time of each task on each processing unit ta{v ,) is given 

in Table 34. Also shown in the task graph are the values for the data transfer delay 

พ 0(v,). It can be deduced from the task graph that the values become V =  9 , p  = 3 , 

and 1 = 4. The energy consumptions as a result of each algorithm are presented in 

Table 35 to Table 40.

Figure 36 A dependent task graph with transmission and execution costs taken 

from [32] (third case).

Table 34 A list of execution time (11(v1) by each processing unit for dependent

task graph of Figure 36 (third case).

Task Execution time

V, ' > 1) ' » ' »
1 19 41 34

2 28 46 20

3 36 34 62

4 15 25 37

5 30 50 54

6 33 35 59

7 12 20 21

8 13 22 24

9 41 68 73
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I
Comparative algorithms

Figure 37 Result of energy consumption on each processing unit for each 

scheduling algorithm (third case).

Calculated energy consumptions for each algorithm in the third 

experimental case are shown in Figure 37. It can be seen from the figure that the 

total energy consumption of the Lookahead and CEFT algorithms are the largest due 

to their large algorithm overhead. The ESL algorithm, on the other hand, had the 

least algorithm overhead thus given the least total energy consumption.

The scheduled tasks on processing unit a, b, and c using HEFT, PETS, 

Lookahead, CEFT, PEFT, and ESL algorithms are shown in Figure 38 to Figure 43. From 

the figures, the system finish times are 260 and 257 for HEFT, PETS algorithms and 

184 for the Lookahead, CEFT, PEFT, and ESL algorithms.
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Table 35 Energy consum ption in each processing un it as a result o f the  HEFT

algorithm  (th ird  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 10.15 3.87 2.29 14.34 30.65

b 4.06 4.22 1.21 0.00 9.49

c 1.39 0.26 1.90 0.00 3.55

Total 15.6 8.35 5.40 14.34 43.69

Table 36 Energy consumption in each processing unit as a result of the PETS 

algorithm (third case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 11.92 6.32 1.43 18.90 38.57

b 2.44 3.23 2.07 0.00 7.74

c 0.00 0.00 0.00 0.00 0.00

Total 14.36 9.55 3.50 18.90 46.31

Table 37 Energy consumption in each processing unit as a result of the 

Lookahead algorithm (third case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 10.86 1.33 0.00 96.77 108.96

b 4.18 1.82 1.05 0.00 7.05

c 0.00 0.00 0.00 0.00 0.00

Total 15.04 3.15 1.05 96.77 116.01
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Table 38 Energy consum ption in each processing un it as a result o f the  CEFT

algorithm  (th ird  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 10.86 1.33 0.00 129.03 141.22

b 4.18 1.82 1.05 0.00 7.05

c 0.00 0.00 0.00 0.00 0.00

Total 15.04 3.15 1.05 129.03 148.27

Table 39 Energy consumption in each processing unit as a result of the PEFT 

algorithm (third case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 10.86 1.33 0.00 14.34 26.53

b 4.18 1.82 1.05 0.00 7.05

c 0.00 0.00 0.00 0.00 0.00

Total 15.04 3.15 1.05 14.34 33.58

Table 40 Energy consumption in each processing unit as a result of the ESL 

algorithm (third case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 10.86 1.33 0.00 4.78 16.97

b 4.18 1.82 0.61 0.00 6.61

c 0.00 0.00 0.00 0.00 0.00

Total 15.04 3.15 0.61 4.78 23.58
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Figure 39 Results of task scheduling using the PETS Algorithm (third case).
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Figure 40 Results of task scheduling using the Lookahead Algorithm (third case).
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Figure 41 Results of task scheduling using the CEFT Algorithm (third case).
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Figure 42 Results of task scheduling using the PEFT Algorithm (third case).
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Figure 43 Results of task scheduling using the ESL Algorithm (third case).
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The dependent task graph used in the fourth experimental case is shown in 

Figure 44 and the execution time of each task on each processing unit ta(yi ) is given 

in Table 41. Also shown in the task graph are the values for the data transfer delay 

W » .  It can be deduced from the task graph that the values become v = 10, 

p  = 3, and 1 - 5 .  The energy consumptions as a result of each algorithm are 

presented in Table 42 to Table 47.

{a,b,c)

Figure 44 A dependent task graph with transmission and execution costs taken 

from [33] (fourth case).

Table 41 A list of execution time 10(v1) by each processing unit for the 

dependent task graph of Figure 44 (fourth case).

Task Execution time

v, ' » ' > 1) ' > 1)
1 7 8 9

2 11 14 17

3 12 15 18

4 10 8 12

5 5 7 6

6 9 7 5

7 6 8 7

8 14 12 10

9 10 8 6

10 11 13 15
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Figure 45 Result of energy consumption on each processing unit for each 

scheduling algorithm (fourth case).

Calculated energy consumptions for each algorithm in the fourth 

experimental case are shown in Figure 45. The scheduled tasks on processing unit 

a, b, and c using HEFT, PETS, Lookahead, CEFT, PEFT, and ESL algorithms are 

shown in Figure 46 to Figure 51. From Figure 46 to Figure 51, the system finish times 

are 85, 73, 76, 73, 73, and 73 units of time, respectively. It can be seen that ESL 

algorithm yielded both the lowest total energy consumption and the shortest system 

finish time.
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Table 42 Energy consum ption in each processing un it as a result o f the  HEFT

algorithm  (fou rth  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.71 1.85 1.01 17.7 23.27

b 0.00 0.00 0.00 0.00 0.00

c 2.44 0.00 0.69 0.00 3.13

Total 5.15 1.85 1.70 17.70 26.40

Table 43 Energy consumption in each processing unit as a result of the PETS 

algorithm (fourth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.65 1.12 1.17 23.60 27.54

b 2.96 0.00 0.37 0.00 3.33

c 0.93 0.30 0.58 0.00 1.81

Total 5.54 1.42 2.12 23.60 32.68

Table 44 Energy consumption in each processing unit as a result of the

Lookahead algorithm (fourth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 3.01 0.00 0.65 106.20 109.86

b 0.00 0.00 0.00 0.00 0.00

c 2.61 1.22 0.00 0.00 3.83

Total 5.62 1.22 0.65 106.20 113.69
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Table 45 Energy consum ption in each processing un it as a result o f the CEFT

algorithm  (fou rth  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.65 1.12 1.17 177.00 180.94

b 1.33 0.84 0.20 0.00 2.37

c 2.44 0.00 0.50 0.00 2.94

Total 5.42 1.96 1.87 177.00 186.25

Table 46 Energy consumption in each processing unit as a result of the PEFT 

algorithm (fourth case).

Processing

Unit

Execution

Energy

Transmission

Energy

idle

Energy

Scheduling

Energy

Total

Energy

a 1.65 1.12 1.17 17.70 21.64

b 2.96 0.00 0.37 0.00 3.33

c 0.93 0.30 0.58 0.00 1.81

Total 5.54 1.42 2.12 17.70 26.78

Table 47 Energy consumption in each processing unit as a result of the ESL 

algorithm (fourth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 1.65 1.12 1.17 5.90 9.84

b 1.33 0.84 0.20 0.00 2.37

c 2.44 0.00 0.50 0.00 2.94

Total 5.42 1.96 1.87 5.90 15.15
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Figure 46 Results of task scheduling using the HEFT Algorithm (fourth case).
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Figure 47 Results of task scheduling using the PETS Algorithm (fourth case).
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Figure 49 Results of task scheduling using the CEFT Algorithm (fourth case).
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Figure 50 Results of task scheduling using the PEFT Algorithm (fourth case).
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Figure 51 Results of task scheduling using the ESL Algorithm (fourth case).
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The dependent task graph used in the fifth experimental case is shown in 

Figure 52 and the execution time of each task on each processing unit 10(v;) is given 

in Table 48. Also shown in the task graph are the values for the data transfer delay 

พ0(v,). It can be deduced from the task graph that the values become v = 10, 

p = 3, and 1 = 4. The energy consumptions as a result of each algorithm are 

presented in Table 49 to Table 54.

from [34] (fifth case).

Table 48 A list of execution time 10(v() by each processing unit for dependent

task graph of Figure 52 (fifth case).

Task Execution time

v, / > , ) h (t ) t M
1 22 21 36

2 22 18 18

3 32 27 43

4 7 10 4

5 29 27 35

6 26 17 24

7 14 25 30

8 29 23 36

9 15 21 8

10 13 16 33
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Figure 53 Result of energy consumption on each processing unit for each 

scheduling algorithm (fifth case).

Calculated energy consumptions for each algorithm in the fifth 

experimental case are shown in Figure 53. The scheduled tasks on processing unit a, 

b , and c using HEFT, PETS, Lookahead, CEFT, PEFT, and ESL algorithms are shown in 

Figure 54 to Figure 59. From Figure 54 to Figure 59, the system finish times are 133, 

147, 127, 126, 122, and 124 units of time, respectively. Although ESL algorithm did 

not give the shortest finish time, the resulting time was only slightly longer than the 

shortest value given by PEFT algorithm. It can be seen that ESL algorithm consumes 

minimum energy within acceptable system finish time.
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Table 49 Energy consum ption in each processing un it as a result o f the  HEFT

algorithm  (fifth  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 3.78 1.29 1.79 17.70 24.56

b 5.80 4.52 0.00 0.00 10.32

c 2.09 0.59 1.23 0.00 3.91

Total 11.67 6.40 3.02 17.70 38.79

Table 50 Energy consumption in each processing unit as a result of the PETS 

algorithm (fifth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.36 0.60 2.78 23.60 29.34

b 5.57 2.89 0.19 0.00 8.65

c 5.28 1.37 0.90 0.00 7.55

Total 13.21 4.86 3.87 23.60 45.54

Table 51 Energy consumption in each processing unit as a result of the

Lookahead algorithm (fifth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.71 0.39 2.11 132.75 137.96

b 7.31 2.55 0.02 0.00 9.88

c 1.62 0.85 0.45 0.00 2.92

Total 11.64 3.79 2.58 132.75 150.76
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Table 52 Energy consum ption in each processing un it as a result o f the  CEFT

algorithm  (fifth  case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 2.71 0.39 2.08 177.00 182.18

b 7.31 2.55 0.00 0.00 9.86

c 1.62 0.85 0.80 0.00 3.27

Total 11.64 3.79 2.88 177.00 195.31

Table 53 Energy consumption in each processing unit as a result of the PEFT

algorithm (fifth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 5.72 3.44 0.65 17.70 27.51

b 3.25 0.00 1.12 0.00 4.37

c 2.49 0.26 0.74 0.00 3.49

Total 11.46 3.70 2.51 17.70 35.37

Table 54 Energy consumption in each processing unit as a result of the ESL

algorithm (fifth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 3.42 0.69 1.72 5.90 11.73

b 6.03 2.85 0.34 0.00 9.22

c 1.28 1.89 0.61 0.00 3.78

Total 10.73 5.43 2.67 5.90 24.73
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Figure 54 Results of task scheduling using the HEFT Algorithm (fifth case).
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Figure 55 Results of task scheduling using the PETS Algorithm (fifth case).

c Vfi V4

b V1 v5 v2 Vg v9 v10

a v3 v7
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Figure 56 Results of task scheduling using the Lookahead Algorithm (fifth case).
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Figure 57 Results of task scheduling using the CEFT Algorithm (fifth case).



84

0 10 20 30 40 50 60 70 80 90 100 n o  120 130 140 150

Figure 58 Results of task scheduling using the PEFT Algorithm (fifth case).
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Figure 59 Results of task scheduling using the ESL Algorithm (fifth case).
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The dependent task graph used in the sixth experimental case is shown in 

Figure 60 and the execution time of each task on each processing unit {11(v1) is given 

in Table 55. It can be deduced from the task graph that the values become v = 23, 

p -  4, and 1 - 6 .  For this experimental case, additional constraints, which could 

come from security reason or other purposes, were imposed. The first constraint 

dictated each processing unit to have certain capability and security requirement 

such that some processing units could not execute some tasks. The second 

constraint defines that data transfer delay พa(v.) of each task are calculated from 

the transmission rate between connecting processing units ruh and the amount of 

transmission data da(v 1) with the values for rtth given in Table 20 and those for 

da{v 1) given in Table 55. For example, if processing unit a wants to send the result 

after executing task V, to processing unit b , the amount of data being transferred 

from processing unit a to b , da(v 1) = 25, with the data transmission rate from a to 

b, ''น A =1. Thus, data transmission delay พa(v,) is equal to da(vi) / r ab =25/1 = 25 . 

เท this way, the energy consumptions from each algorithm are calculated and the 

results are presented in Table 56 to Table 61.

(a, 6)
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Table 55 Transmission data da(vj ) of each task and execution time ta(v(.)

required by each processing unit (sixth case).

Task Amount of transmission data Execution time

O ) ' > 1-)

1 25 350 — 570 430

2 30 430 270 — —

3 20 _ _ 510 450

4 45 590 710 — —

5 60 — 920 — 790

6 70 360 480 — —

7 30 — — 840 720

8 55 — 710 380 —

9 20 390 670 — 380

10 25 — — 550 580

11 15 _ _ — 620

12 65 870 790 720 —

13 20 560 — — 540

14 10 430 410 — —

15 85 280 260 270 250

16 35 — 520 480 —

17 20 — 380 390 420

18 15 610 690 — —

19 30 250 — 270 480

20 10 — — 620 710

21 70 760 — 890 —

22 30 — 540 — —

23 35 580 — — —
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Figure 61 The result of energy consumption on each processing unit for each 

scheduling algorithm (sixth case).

Calculated energy consumptions for each algorithm in the sixth 

experimental case are shown in Figure 61. The scheduled tasks on processing unit 

a, b, and c using HEFT, PETS, Lookahead, CEFT, PEFT, and ESL algorithms are 

shown in Figure 62 to Figure 67. From Figure 62 to Figure 67, the system finish time 

are 5230, 5220, 5230, 4962, 5526, and 4420 units of time, respectively. The system 

finish times of most algorithms are considerably greater than that of the ESL. This 

could be because there was no provision in those algorithms to handle the applied 

constraints, it can be seen that ESL algorithm yielded both the lowest total energy 

consumption and the shortest system finish time.
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Table 56 Energy consumption in each processing unit as a result of the HEFT 

algorithm (sixth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 224.79 11.83 36.92 124.84 398.38

b 139.78 5.89 34.24 0.00 179.91

c 129.34 6.29 22.69 0.00 158.32

d 220.02 14.62 0.00 0.00 234.64

Total 713.93 38.63 93.85 124.84 971.25

Table 57 Energy consumption in each processing unit as a result of the PETS 

algorithm (sixth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 224.79 11.83 36.66 167.34 440.62

b 139.78 5.89 28.53 0.00 174.20

c 129.34 6.29 22.69 0.00 158.32

d 220.02 14.62 0.00 0.00 234.64

Total 713.93 38.63 87.88 167.34 1007.78

Table 58 Energy consumption in each processing unit as a result of the

Lookahead algorithm (sixth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 247.80 13.98 26.78 1914.27 2202.83

b 100.92 5.13 45.63 0.00 151.68

c 129.34 6.29 22.69 0.00 158.32

d 220.02 12.40 0.00 0.00 232.42

Total 698.08 37.80 95.10 1914.27 2745.25



89

Table 59 Energy consumption in each processing unit as a result of the CEFT 

algorithm (sixth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 184.08 12.47 47.89 2871.41 3115.85

b 182.12 6.27 20.60 0.00 208.99

c 162.98 16.65 20.35 0.00 199.98

d 176.13 3.15 6.08 0.00 185.36

Total 705.31 38.54 94.92 2871.41 3710.18

Table 60 Energy consumption in each processing unit as a result of the PEFT

algorithm (sixth case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 247.80 12.69 34.48 124.84 419.81

b 70.76 3.80 52.87 0.00 127.43

c 184.44 13.32 8.80 0.00 206.56

d 185.82 3.89 14.69 0.00 204.40

Total 688.82 33.70 110.84 124.84 958.20

Table 61 Energy consumption in each processing unit as a result of the ESL

algorithm (sixth case).

Processing Execution Transmission Idle Scheduling Total

Unit Energy Energy Energy Energy Energy

a 193.52 12.69 33.28 31.21 270.70

b 164.14 6.46 14.79 0.00 185.39

c 178.64 11.29 21.44 0.00 211.37

d 176.13 12.40 5.31 0.00 193.84

Total 712.43 42.84 74.82 31.21 861.30
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Figure 62 Results of task scheduling using the HEFT Algorithm (sixth case).

Figure 63 Results of task scheduling using the PETS Algorithm (sixth case).
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Figure 64 Results o f task scheduling using the  Lookahead A lgorithm  (sixth case).



91
V l 3 V n va

‘'ÎO Vis v2fl v16

V u V u Vis V12

a V, V, v6 v9 v19 v:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Figure 65 Results of task scheduling using the CEFT Algorithm (sixth case).
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Figure 66 Results of task scheduling using the PEFT Algorithm (sixth case).
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Figure 67 Results o f task scheduling using the  ESL A lgorithm  (sixth case).
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Table 62 A summary of system finish time of all algorithms in the first six 

experimental cases. The values of the shortest system finish time in each 

experimental case are written in bold face and underlined.

Graph HEFT PETS Lookahead CEFT PEFT ESL

case 1 80 77 82 81 85 11

case 2 29 21 31 31 21 28

case 3 260 257 184 184 184 184

case 4 85 73 76 11 11 11

case 5 133 147 127 126 122 124

case 6 5230 5220 5230 4962 5526 4420

The system finish times determined from all comparative scheduling 

algorithms in the first six experimental cases are summarized in Table 62. It can be 

seen from the table that no algorithm can achieve the shortest system finish time in 

all cases. Lookahead algorithm yielded the shortest system finish time in one case, 

two cases for PETS and CEFT algorithms, and four cases for PEFT and ESL algorithms. 

Although ESL algorithm could not give the shortest system finish time in case 2 and 

5, the achieved times are only slightly higher than the shortest system finished time 

yielded by PETS and PEFT algorithms.

Table 63 A summary of system energy consumption of all algorithms in the first 

six experimental cases. The values of the lowest energy consumption in each 

experimental case are written in bold face and underlined.

Graph HEFT PETS Lookahead CEFT PEFT ESL

case 1 31.72 37.20 144.71 189.22 30.92 17.57

case 2 25.35 32.46 144.93 239.47 24.85 10.39

case 3 43.69 46.31 116.01 148.27 33.58 23.58

case 4 26.40 32.68 113.69 186.25 26.78 15.15

case 5 38.79 45.54 150.76 195.31 35.37 24.73

case 6 971.25 1007.78 2745.25 3710.18 958.20 861.30
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The total energy consumptions determined from all comparative 

scheduling algorithms in the first six experimental cases are sumnharized in Table 63. 

It can be seen from the table that E5L algorithm could achieve the lowest total 

energy consumption in all cases.

The dependent task graph used in the seventh experimental case is the 

same as that in the sixth experimental case, except the additional constraint on the 

battery supply. เท this experimental case, performance of the energy reserve option 

introduced by ESL algorithm was investigated. From the sixth experimental case, the 

energy consumptions of the main processing unit are 398.38, 440.62, 2202.83, 

3115.85, 419.81, and 270.70 for HEFT, PETS, Lookahead, CEFT, PE FT, and ESL 

algorithm, respectively. By applying the energy reserve option, the energy 

consumption of the main processing unit determined by ESL Algorithm can be 

further reduced to 246.75, while other comparative algorithms cannot perform the 

assignment when the energy supply given to the main processing unit is lower than 

the values quoted above.

Equations (3) and (4) are employed in the battery reserve option to 

calculate the energy required by each processing unit to execute the task designated 

to that processing unit. Consider a processing unit d in the task graph as shown in 

Figure 60. If task vu is designated to be executed only on a processing unite/, the 

energy reserved by the processing unit d to execute task V, 1 can be determined 

from

pd = (aJ A vน) + / t / U vn)) = (0.057 x 620 + 0.037 X15) = 35.90.

As vn is in the third level of the dependent task graph, there will be a period of time 

when processing unit d is in wait state. Thus, idle energy will also need to be 

reserved. The idle energy used by processing unit d through the first, second, and 

third level is

Pci
4 - 1

Z t f v e r a g e ( ( v ,  1)
เพ'+['.3]

0.016
(7958.33-620) = 39.14

Therefore, the total energy reserved by processing unit d in the first level is

35.90 + 39.14 = 75.04. เท the case that the energy supply is greater than the energy

required to be reserved by the processing unit, the excess energy can be used for

task execution process. However, in case that the energy supply is less than the

required amount to be reserved, the system will halt.
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Table 64 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 275 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 193.52 12.69 33.28 31.21 270.70

b 164.14 6.46 14.79 0.00 185.39

c 178.64 11.29 21.44 0.00 211.37

d 176.13 12.40 5.31 0.00 193.84

Total 712.43 42.84 74.82 31.21 861.30

Table 65 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 270 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 172.28 14.62 45.76 31.21 263.87

b 182.12 6.27 14.79 0.00 203.18

c 185.60 9.07 21.44 0.00 216.11

d 176.13 12.40 5.31 0.00 193.84

Total 716.13 42.36 87.30 31.21 877.00

Table 66 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 265 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 172.28 14.62 45.76 31.21 263.87

b 182.12 6.27 14.79 0.00 203.18

c 185.60 9.07 21.44 0.00 216.11

d 176.13 12.40 5.31 0.00 193.84

Total 716.13 42.36 87.30 31.21 877.00
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Table 67 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 260 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 157.53 12.04 57.67 31.21 258.45

b 182.12 6.27 16.83 0.00 205.22

c 178.64 11.29 26.69 0.00 216.62

d 200.07 9.99 5.31 0.00 215.37

Total 718.36 39.59 106.50 31.21 895.66

Table 68 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 255 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 134.52 11.18 69.84 31.21 246.75

b 182.12 6.27 18.16 0.00 206.55

c 178.64 11.29 27.94 0.00 217.87

d 221.73 9.99 0.48 0.00 232.20

Total 717.01 38.73 116.42 31.21 903.37

Table 69 Energy consumption in each processing unit as a result of ESL

algorithm when the battery supply is limited to 250 unit (seventh case).

Processing

Unit

Execution

Energy

Transmission

Energy

Idle

Energy

Scheduling

Energy

Total

Energy

a 134.52 11.18 69.84 31.21 246.75

b 182.12 6.27 18.16 0.00 206.55

c 178.64 11.29 27.94 0.00 217.87

d 221.73 9.99 0.48 0.00 232.20

Total 717.01 38.73 116.42 31.21 903.37
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Figure 68 Results of task scheduling using ESL algorithm when the battery 

supply is limited to 275 unit (seventh case).
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Figure 69 Results of task scheduling using ESL algorithm when the battery 

supply is limited to 270 unit (seventh case).

0 500 1000 1500 2 ๓ 0  2500 3000 3 5 ๓  4 ๓ 0  4500 5 0 ๓  5500

Figure 70 Results o f task scheduling using ESL algorithm  when the  battery

supply is lim ited  to  265 un it (seventh case).
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Figure 71 Results of task scheduling using ESL algorithm when the battery 

supply is limited to 260 unit (seventh case).

Figure 72 Results of task scheduling using ESL algorithm when the battery 

supply is limited to 255 unit (seventh case).

Figure 73 Results of task scheduling using ESL algorithm when the battery 

supply is limited to 250 unit (seventh case).
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Figure 74 Energy consumption of each processing unit required by ESL algorithm 

as a function of the battery supply.

Figure 75 System finish time of ESL algorithm as a function of the battery 

supply.

As shown in Figure 74 and Figure 75 when the battery supplies on all 

processing units are greater than or equal to 275, the system finishing time remains 

at 4420. However, when the supplied battery energy is 250, the system finish time 

increases to 4826. When the supplied battery is reduced below 250, the algorithm is 

not able to perform the assignment and the system halts. Results of the scheduled 

tasks on processing unit a, b, and c using ESL algorithms under limited battery 

supply are shown in Figure 68 to Figure 73.
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