
CH APTER  III

PROPOSED METHODOLOGY

The aim of this work is to develop the incremental learning algorithm to 

handle the streaming chunk of data under one-pass-thrown-away concept. เท real- 

world application, the data stream has some special characteristics including the data 

distribution that can be changed as time passes, the number of data increases with 

time pass. The number of classes presented in each chunk is random in real and it 

cannot be predicted at the time that the new class appears. An example of data 

stream in two-dimensional space is shown in Figure 2. For the first stage /1, there is 

only two classes identified by triangles and stars. After many stages pass, the data 

chunk with new class expressed in the circles is presented in stage 11.
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Figure 2: Example of streaming chunk data classification in two- 

dimensional space.

Furthermore, the proposed incremental learning algorithm is also dealing with a large 

size of data chunk. The proposed learning algorithm such that the number of 

repetitions of all learning «data of a chunk is bounded at 0 (n 2) . To reach the 

bound of 0(ท2) and eliminate the sensitivity of learning data sequence, the learning 

process is learned by one class at a time. Once the data in any class are learned, 

they are thrown away and never learned again forever. Furthermore, to reach the 

minimum number of required neurons for any class, it is essential to estimate the 
number of distributed sub-clusters first and capture these sub-clusters by a set of
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radial activation functions to reduce the effect of misclassification. To manage the 

most concerned factors which are (1) the number of uncontrollable iterations, (2) the 

unpredictable number of hidden neurons, and (3) the unknown prior data 

distribution, the following problems must be addressed.

(1) How can capture the data of each sub-cluster in any class within the 

bounded learning time complexity of o (ท?), where ท1 is the number of data in sub­

cluster / ?

(2) Given a set of data in all classes, what is the minimum number of neurons 

to be deployed so that the learning time complexity is bounded by 0 (n 2) , where ท 

is the number of a data chunk, regardless of classes ?

Since the size and direction of the radial activation function proposed in [4] can be 

algorithmically adjusted, it is adopted as a part of neuron operation. However the 

learning process cannot be directly adapted to resolve the studied problems. เท [4], 

an incremental learning algorithm for dealing with one datum at a time was 

proposed. Although multiple data points were available, the learning algorithm still 

used only one datum for parameter update. This may cause the problem of creating 

too many VEBF and increase unnecessary computational time during the learning 

process. Furthermore, the performance of their proposed algorithm is dramatically 
affected from the order of presented training data points and the case of streaming 

data chunk is also not considered. To improve this disadvantage, our algorithm learns 

more than one datum of any class at a time and threw them away afterwards.

เท this work, Data-throwaway Learning for streaming chunk data classification 

(DLSC) for Versatile Elliptic Basis Function Neural Network (VEBFNN) is proposed. 

Based on the class-wise learning, the proposed method can be dealing with the burst 
of new class. For each chunk, the pattern of presented data to the proposed learning 

process is class-wise as shown in Figure 3. 111 stands for data with the same class 

obtained from data chunk at stage i lh with the Ith class label.
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Figure 3: Example of class-wise streaming chunk in two-dimensional 

space.

3.1 Parameters Update

Let B  = {{X ',T }|X ' c l "  and tk e I+for i - 1,2,...} be a streaming chunk 

data chunk X 'w ith  class label t ' . The parameters update of a VEBF neuron for 

handling streaming chunk is concerned instead of feeding only one datum to VEBFNN 

at a time. Considering a chunk of data presented to the network at a time, each data 

chunk may consist of several sub-clusters distributed at different locations. A set of 

VEBF neurons is incrementally introduced during the learning process to cover each 

sub-cluster and the relevant VEBF parameters are updated according to the data in 

the sub-cluster. The learning process focuses on how to a VEBF neuron updating the 

relevant parameters of network to the incoming data chunk without keeping all 

previous learnt data chunk.

3.1.1 Center vector and covariance matrix update

Assume xc and ร care the current center vector and covariance matrix 

computed from the previous m data points, respectively. Let 

X  = {x( e l ” I i  = \,2,...,q] be a new data chunk with g samples and X, refers to the

local center vector computed from the new data chunk X  by X, = — y ' x  ■ The
q M

updated center vector xu with respect to the current and local center vectors, xc 

and xu, can be expressed by

m + q
X (mxc +qx,). (21)
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Theoretically, a covariance matrix ร u of both previous and current data sets is 

computed by

ร.. =■
1 m+q

m + q ๆะI  * ,* : - * „ * / , (22)

where the superscript T stands for transpose vector or matrix. However, this 

covariance matrix derived by this equation is not suitable for incremental manner. 

For incremental learning concept, the updated covariance matrix ร,, can be 

computed by

ร 1.=-
m

m + q (Sc+ *c* / ) + (23)

3.1.2 Width vector update

The concept of Data-throwaway Learning for streaming chunk data 

classification (DLSC) requires adjusting the width vector พ* of the /*VEBF 

y/kj (x: X*,พ*,บ*) to cover any new unlearned data. The unlearned data will be 

covered by the nearest VEBF y/kj (x:x* , พ *,บ*). Because all learned data are

already thrown away, by the similarity to the new center and covariance matrix 

computation, a recurrence function for computing the new width must be formed. 
Letw* = [พุ*1 พ*2 พ*,]7 be the width vector of the f h VEBF neuron. Suppose that

X* and X* are the centers of the neuron Q* before and after covering the 

unlearned data, respectively. The value of each พ*, is adjusted with respect to the 

orthonormal basis vectors บ* = [น*, น*2 ••• น*,] by the following equation.

พ!/ = พ!/+ 1 (x .L  - )7'u*/ I’ for I = 1 , 2 , . . . ,ท. (24)

9-VJ- 2 - 5 ?  1

•smraCtm— .r i.L Ü f i
. 1 -  ใ  5 ท ร
'น I ร « น บ  1

fc!
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However it is not guaranteed that the width vector adjusted by Equation (24) can 

cover all unlearnt data points y  1. e Y .  So, every data point y 1 is checked first by the 

following condition to see whether it is covered by the closest j ‘h VEBF.

maxva1 = m ax (^ ;(y ,,x^ ,พ ;,บ ;))  (25)

By definition 1, if maxva1 > 0, i.e. there exists a set of uncovered data, then adjusting 

the width vector by the following equation,

พ : = .พ :  (26)

where £ -  yjl + TJ* maxva1 and ๆ > 1. Based on Equation (26), there is no uncovered 

data as shown in Theorem 1 in Appendix.

The geometric interpretation of parameter update in two-dimensional space 

is illustrated in Figure 4(a) - Figure 4(e). A ll new incoming data of the same class are 

represented by stars. Suppose that those already learned data are covered by the 

VEBF shown in a form of elliptic shape in Figure 4(a). The center of VEBF is at X0111 and 

the widths are พ, and พ 2. To cover the new incoming data, the following steps are 

performed. The center of VEBF is moved to the new center xnew of data as shown in 

Figure 4(b). The vector d represents the center movement vector. The eigenvector 

น; of data is used to rotate and adjust the widths of VEBF, based on the absolute of 

scalar projection of the center movement vector d on each eigenvectorน,, all new 

incoming data as shown in Figure 4(c) to Figure 4(e), respectively.
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(a) A VEBF neuron with unlearned data (b) Comparison of before and after

update of center and covariance matrix

(c) Update the width vector by |d7น/ for l (d) Four uncovered data

= 1,2

(e) Update width vector

Figure 4: An example of how to cover new incoming data by 

updating VEBF parameters
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3.1.3 Merge Criterion

For the sub-hidden layer A* 1 hidden neurons adjust parameters every 

time when data chunk is presented. There are some redundant hidden neurons 

having common data points. Two hidden neurons Q *= (c* ,พ *,s f , N k) and 

Cik -  (Cj, พ*,ร*, N j )  are merged, if at least one hidden neuron cover another center 

identified by ^*(c* : c,*,พ*,บ*) <0or y/k(ck : c*,พ*,บ*) <0. The new parameters 

of the merged hidden neuron Q m = (cm,พ m,Sm,N  111) can be computed as follows

[4]:

K „ = N k+ N k, (27)

ร ิ. = 4- พ , ร ิ* + T T > .
m

(28)

ร .  = N ‘ s: + N- ๙' + N ‘ '  ๙  - T X T  - T ) r .
พ m ' m

(29)

w ,„ = \ /2 ; r l' l/ l> / = 1,2,...,ท (30)

where A/ is the /'''eigenvalue of the new covariance matrix Sm. The merge process 

for any two neurons is performed if and only if at least one neuron covers the center 
of another neuron. Two conditions of merge process are illustrated in Figure 5.

(a) One center is covered (b) Two centers are covered

Figure 5: Two cases of merge process.
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3.2 The Proposed Learning Algorithm

An example of how to apply the DLSC algorithm to 2-dimensional data in the 

same class is illustrated in Figure 6. Suppose there are four data samples denoted by 

four star signs as shown in Figure 6(a). First, a new ellipsoidal hidden neuron with 

initial width is created and a data point is randomly selected as the center of this 

new hidden neuron and covered by the neuron as shown in Figure 6(b). Next, 

without adjusting the size of the ellipsoidal neuron, the neuron is temporarily shifted 

towards the other new data point to cover it so that the new center is located in the 

middle between the old center and the new data point as shown in Figure 6(c) - 

Figure 6(e). During this process, any new data satisfying this condition is marked. 

Figure 6(c) - Figure 6(d) show two new marked data points. But some new data points 

in Figure 6(e) do not satisfy the condition because their locations are beyond the 

space possibly covered by the ellipsoidal neuron. The size of previously created 
ellipsoidal is adjusted to cover these two new marked data point as shown in Figure 

6(f). A ll covered data points are thrown away afterwards and only the center is kept 

as shown in Figure 6(g). เท Figure 6(h), the uncovered data point is covered by the 

second newly created ellipsoidal neuron.

เท this work, Data-throwaway Learning for streaming Chunk (DLSC) algorithm is 

proposed to handle a continuous learning scenario. The streaming chunk data with 

the same class label of training samples is successively presented to a learning 

system called a stream of training data chunks. Assume B  be a stream of training 

data chunks defined by © = {p' Ip' = |{X'; ,tu}^11, e l + for i = 1,2,...},

where C-'and p 1 is the class label of a data chunk x y and the number of class label 

of a data chunk p ' . The details of DLSC algorithm are summarized as follows:
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☆ ☆

(a) Four uncovered data point

☆

(c) Parameter update for the left most 

point

(e) Avoid the outside point for parameter 
update

(g)Throwaway the covered point

(b) Creating a new hidden neuron

☆

(d) Parameter update for the lowest 

point

(f) Updating parameter to cover three 

point

(h) Creating another new neuron

Figure 6: Example of the proposed method in two-dimensional space.
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3.2.1 Data-throwaway Learning streaming Chunk (DLSC) algorithm

Input: A data chunk p l = |{X'y, fÿ}£=1j and the VEBFNN with Ch idden 

neurons where .

Output: The VEBFNN r = {A l ,A 2,...,A '’} learned by DLSC algorithm.

Line 1: Let r  = {A1,A 2,...,A ''} and r  = 0.

Line 2: Initialize the width vector as พ 0 = [พ,0 พ0 • • - พ0]7 

Line 3: Present a data chunk p) = {{X'7,f'7}̂ =1}to the network r .

Line 4: For j=l,2,...,p 

Line 5: Present {X'7,rv}

Line 6: If t'J is a new class label then 

Line 7: Set r = r +1, dr = 0 and A r ะ= {}.

Line 8: Do

Line 9: Set dr - d r + 1.

Line 10: Create new hidden neuron by [Xy,D^ ] = CreateNewNeuron(X')

Line 11: Update parameters of Q rd by

[X'7 5 D.'d , update] = UpdateParameter(jๅ, X'7, Q!d , Y) .

Line 12: Add to A r by A" = A r น  {Çïd }.

Line 13: While X'7* 0

Line 12: Add the r"‘ sub-hidden layer A ''by  r  = r  u { A r}.

Line 14: Else 

Line 15: Do

Compute the center vector xfor data chunk X'7 by

[Xi!

Line 16



Line 17: Find the k'h sub-hidden layer A k corresponding to k = t,j.

Line 18: Assign the active VEBF neuron by

active = arg (x ะ c*, พ*,บ*)}
\<j<,dk

Line 19: [Xy, ท kac11ve, update] = UpdateParameter { ,ๆ X " , o. ปี,ve, Y)

Line 20: If update + 0 then

Line 21: Perform merging process by A k -  MergeProcess{active

Line 22: Else

Line 23: Go to Line 26

Line 24: Endlf

Line 25: While update *0 and X" + 0 .

Line 26: If X J * 0  then

Line 27: Do

Line 28: Set dk =d11+1.

Line 29: [Xv, ] = CreateNewNeuron(XiJ ).

Line 30: [X'y 5 . update] = UpdateParameter { ,ๆ X'' 5 Q  kdk, Y)

Line 31: Add ท *4 to A* =A* น  {ท*4} .

Line 32: While X!J + 0

Line 33: Endlf

Line 34: Endlf

Line 35: EndFor

Line 36: Stop training

Create the new hidden neuron Q  = (c, พ, ร, N ) . 

function [X,Q] = CreateNewNeuron{X)

Input: The data chunk X  .

Output: The data chunk X  reduced by one and the new hidden neuron Q .



Line 1: Select random ly a data vector X e X.

Line 2: Set the center vector c by c=x.

Line 3: Set the covariance matrix by ร = 0 where Ô is the nu ll matrix.

Line 4: Set the orthonormal basis by บ  = I„xn, where I„x„is identity matrix. 

Line 5: Set the number o f covered data by N  = \.

Line 6: Set Q = (c, พ ,ร, AO

Line 7: Discard X from X, X  = X-{x}.

Line 8: Return X a n d  Q .

Update Parameters

function [X, Q, update] = UpdateParam eter(ๆ, X, Q o, Y)

Input: The chunk data set X , the current hidden neuron Q 0 = (co,

พ 0, ร 0,N 0), the parameter ๆ , and the covered data set Y  .

Output: The remain data set X , the updated neuron Q = (c, พ ,ร , AO and 

update variable.

Line 1: Set update = 0 .

Line 2: Y  = Form CoveredD ata(X ,D .)

Line 3: If Y   ̂0then  

Line 4: update = 1

Do

Set z  =1Y  |,c0 = c*and N 0 = N ka .

Update N  by N  = N 11+ z .

Line 5: 

Line 6: 

Line 7: 

Line 8:
Com pute the center vector ÿ o f Y  by ÿ  =

-  y„eY



Line 9: Update the center vector c bye = —  (N0Co+Zy).
N

Line 10: Update the covariance matrix ร  by

s = ^ (S° + T)+N ^ y^

Line 11: Compute new orthonormal basis vectors u  = [น,,น

from the updated ร .

Line 12: Update the width vector พ = [พ1, พ2,...,พJ 7”by

พ1-=  พ0,+  l ( c - c 0) r น,. | for f = 1,2,...,ท

Line 13: Compute maxva1 = m a x (y (y  ะ c, พ, บ ))y,eY 4

Line 14: \f maxva 1 > 0 then

Line 15: พ = Yfyjl + ฦ* maxvu1

Line 16: Endlf

Line 17: Discard the covered data Y  from X  by X  = X - Y
Line 18: If x  = 0then

Line 19: Y  = 0.

Line 20: Else

Line 21: Y  = Form CoveredData(K, Q)

Line 20: Endlf

Line 22: While Y  ^  0

Line 23: Endlf

Line 24: Return X , Q  = (c, พ, ร , TV) and update

Form Covered Data Set Y  

function Y  = Form CoveredData(X,Q )

Input: The data chunk X an d  a active neuron Q  = (c ,พ ,ร ,TV). 

Output: The covered data set Y  .
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Line 1: Set Y  = 0 .

Line 2: For each vector X  e X.

Line 3: Com pute clmp = — --^ (Ac + x)

Line 4:
Com pute (//(x : c"',p, พ ,  บ) = ^]^—-

/=1

Line 5: If y/(x : c,mp, พ ,  บ) < 0 then

Line 6: Y  = Yu{x}.

Line 7: Endlf

Line 8: EndFor

Line 9: Return Y

Merging Process within the A:'''sub-hidden layer A* 

function A k -  M ergeProcess(i, A k )

Input; The index i o f checked neuron and the k 'h sub-hidden layer, A kd11. 

Output: The k ,h sub-hidden layer A k , after merging process.

Line 1: Apply PCA method with the covariance matrix ร* to obtain 

the orthonormal basis บ* = [น^]"=1 with corresponding

4  > 4

Line 2: For j  - 1 , 2 , . . i  + \,...,d k

Line 3: Apply PCA method with the covariance matrix ร* to  obtain

the orthonormal basis matrix บ* =[u*/]”=1 with corresponding

4 >  4 > - > 4 -

Line 4: Com pute (//*(c* : c*,พ*,บ*) and i//k(Cj :Ci,พ*,บ*).

Line 5: If (//*(c* ะ c*,พ*,บ*) < 0 or (//*(c* :c*,พ*,บ*) <0 then

Compute Nm- N k+ N k.Line 6:
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Line 7: Compute c„

Line 8:
Compute ร m = § s f  +^ - ร :  + ^ (c? -  c / x ?  ■- c/)r .

พ m ™  tท

Line :̂ Compute Wm = ^ I’ / = where /l; is the Ith

eigenvalue of the new covariance matrix ร m .

Line 10: Set Q* = (c«, พ,,,5 ร,,,, N m ).

Line 11: Delete Qk1 from the A:'''sub-hidden layer, A k = A*-{Q*}.

Line 12: Set dk = dk - \ .

Line 13: Go to line 17

Line 14: Endlf

Line 15: EndFor

Line 16: Return A k .

From DLSC algorithm, the VEBFNN starts with the K hidden neurons. Two cases of a 

class data chunk {X" บ 1'} are considered i.e., tij is new class label or tlj is an old 

class label. For the new class label, two main operations are successively performed 

called CreateNewNeuron and UpdoteParameter. The new sub-hidden layer 

responsible for the class Tand new hidden neuron are created for CreateNewNeuron 

process. Then, the created hidden neuron adapts itself through parameter update to 

cover as many data points in xy as possible for UpdateParameter process. Within 

UpdateParameter process, there is an important sub-process called 

FormCoveredData sub-process. This sub-process selects the set of data points in xy 
called covered data set Y . The parameters are updated only once for the covered 

data set Y .  The covered data points are thrown away from the data chunk X'y. The 

parameter update for a hidden neuron is repeated until there is no covered data 

point. These two main operations, CreateNewNeuron and UpdateParameter, are 
repeatedly performed until all data points in X'y are discarded entirely. For the old 
class label t ,J, the old hidden neurons constructed from previous data chunks 
handle the incoming data chunk x y . The learning process starts computing the 

mean vector of the data chunk xy. After assigning the closest hidden neuron with 

respect to the mean vector, the UpdateParameter process is performed. The
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distribution of the data with the class label t'J always obtains the stream of data 

chunks. Therefore, the merging process called MergeProcess is needed for the old 

hidden neuron dealing with an incoming data chunk. Both UpdoteParometer and 

MergeProcess are performed repeatedly until there is also no covered data. The rest 

data points in data chunk X'7 are viewed like case of new class label. The 

CreateNewNeuron and UpdateParameter processes are performed until the data 

chunk X'7 is empty. The time complexity Ta19 of the Data-throwaway Learning

Streaming Chunk (DLSC) algorithm is 0 ( K  + n2) , where K  is the number of hidden 

neurons before presenting a data chunk p . The proof of time complexity is given in 

Theorem 2 in Appendix.
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