CHAPTER |
INTRODUCTION

Fermat’s little theorem says that for a prime number p and an integer a with
p\a, we have ap~l = I(mod p). Then we get the integer

which is called the Fermat quotient of p base & Another integer in which we
are interested is called the Wilson quotient of a prime number p, denoted
by (). This quotient is induced from the Wilson’s theorem stating that for a
prime number p. (p- 1)! = —(mod p). Then we obtain

In 1905. Lerch [7] studied the Fermat quotients and the Wilson quotients and gave
some congruence relations of them.

In general, Euler improved Fermat’s little theorem for an integer > 2 Let
a be an integer with (a.n) = L We have agnl = I(mod ) where 4n) is the
Euler function given by the number of positive integers which are less than  and
relatively prime to . Then we also get the integer

B, J:= ket

which is called the Euler quotient of base a In addition. Gauss generalized
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the Wilson’s theorem to any positive integer. He proved that for an integer > 2

| = en(mod )
M)=1

where en = —1if = 2,4.//" or 20k where p is an odd prime and k is a positive
integer and en = 1 otherwise. Let p(n) = . Then for an integer > 2 we

obtain the Wilson quotient of s the i#t)esgjér

Q)

Surely, there are many researchers who developed the results of Lerch [7] by using
the Euler quotients and the Wilson quotients defined by Gauss such as Agoh,
Dilcher and Skula [1], [2]

The next quotient is the main idea in our work. Let > 2 be all integer.
From the Euler’s theorem, for an integer a with (3, ) = 1 afnl= I(mod )
By the well-ordering principle, there is the smallest positive integer / such that
al=1( lod ) for all integers a with (8, ) = L and the number I is called the
Carmichael function of , denoted by A( ). In other words, A(n) is the least
common multiple of the orders of all elements ill (Z/nZ)x. We call write the
Carmichael function in form of the Euler function as follows

) for =24 orpQ
where p is an odd prime and a > ..
Aln) := <-L(n) for =2° where a >3,
lem {A(PT). A@3?). ... AP} for n=piips .. po

where p; is a prime and «; € N.

Now, we have aAn) —I(mod ). so this congruence gives ail integer which is called



the Carmichael quotient of hase a

This quotient was introduced by Sha [L1] and he also studied the Euler quotients
and the Carmichael quotients and gave some congruence relations of these quo-
tients.

Theorem 1.1. [11] For an integer > 2 and an integer a with (a.n) = L we
write (a) for the subgroup of (Z/nZ)x generated by a and o(a) —I(a) I. Then

/\\ L ) S
C(a,n) = (n) Z ”is [%J (mod n).
9

where [-) denotes the greatest integer function.

For a finite group G1the least common multiple of the orders of all elements
in G is called the exponent of G, denoted by exp(G). Note that exp(G) divides
G|. In addition, if G —G\ X G2 then exp(G) = lom {exp(G'i). exp(G2)}. For a
commutative ring 1Zwith identity 1, the exponent of 7Zis the exponent of its unit
group 7ZX. Let biz be an ideal of 1Z generated by b« 12 If IZ/bIZ is finite, then we
can define \(b) = exp((iz/biz)x) similar to A( ) = exp((Z/nZ)x). Hence, we may
develop the Carmichael quotients over other rings which have close properties to
.

The first ring is the ring of integer 0 K of a number field K (Section 2.1). We
are interested in this ring because Bamunoba [3 studied the Euler quotients over
0k Where ok i@ PID. He used the fact that for all me o« \ {0}, the cardinality
of the quotient ring Ok/tuOk Is finite to define his Euler quotient of m and also
developed congruence relations similar to [1]. In general, the ring Ok may not
be a PID or even a UFD, but this ring has no zero divisor. Then it satisfies the
cancellative law, so the definition of quotient in any o« is well defined. Hence,
We can construct the Wilson quotients and the Carmichael quotients over a ring
of integers o« and study congruence relations of them in Chapter I1.
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The second ring is the polynomial ring ¥q[r] over a finite field ¥1L This ring is a
Euclidean domain and has infinitely many prime elements as z. In 2010. Meemark
and Chinwarakorn [10] studied the Euler quotients over Fo[X] and obtained some
congruence relations of them as the Lerclv theorem for F([ T Recently, lamthong
and Meemark [6] generalized the results in [10] by weakening the assumption. They
replaced the polynomial ring ¥ 20x] over a finite field F( with the polynomial ring
R[x] over a finite local ring R. Note that ¥q[x] is a UFD. but /2[X] may contain
zero divisors and has no unique factorization property. However, lamthong and
Meemark could define the Euler quotients and the Wilson quotients over R[x] by
using the division algorithm. For our work, we construct the Carmichael quotients
over the polynomial ring over a finite local ring and study the congruence relations
in Section 3.1.

Moreover, lamthong and Meemark [ defined the dill power residue symbol
over R[x] which induces the Euler quotient of degree d over R[X] and studied
congruence relations of them. We also get the inspirations to defing the new
symbol which we call A ritil power residue symbol over i?[x] in Section 3.2. Finally,
in Section 3.3, we construct the Carmichael quotients of degree d induced from the
our new symbol and study relations of these quotients and the Euler quotients of
degree d and the Wilson quotients defined by lamthong and Meemark [6]
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