
CHAPTER II
PRELIMINARIES

In this chapter, we propose more importantly of mathematical backgrounds involved 
in the financial processes. We provide the processes based on Wiener process or Brow­
nian motion, in particular of ECIR process and collect some properties for proving the 
main result. This chapter is divided into four sections, Stochastic processes, CIR process 
and ECIR process, Simulation issue and Feynman-Kac theorem.

2.1 Stochatic processes
In order to achieve the main results, we describe here the concepts of stochastic 

differential equation to understand the ECIR process.

D e fin it io n  2.1. A stochastic process x t =  X{-, t), t >  0 is a family of random variables 
X  : p  X [0, oo) —» M with t H> X(üü, t) continuous for all iป G P.

D e fin it io n  2 .2 . A stochastic process พ  = { พ t t > 0} is called a Brownian motion 
or a Wiener process if the following conditions hold

(i) W o  = 0,

(ii) W t has independent increments, that is, if ร < t < น < V, then wv — พน  and 
พ t — พร are independent stochastic variables,

(iii) พ t is normally distributed as dWt ~  7V(0, f),

(iv) พ t is continuous in t > 0.

R em a rk  2.3. A Wiener process that is drawn from a standard normal distribution, 
Ar(0,1) could be called a standard Wiener process.
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Levy [8] collected some properties of dWt := Wt+dt — Idrt which are often used in the 
stochastic calculus.

(i) E [dWt] = 0,

(ii) Var[dWf] = dt1
(iii) E [Wt+dt I Ft\ = พน
(iv) Cov[Ws, Wt] = min(s, f).

From the second condition of the Wiener process, the increments dWt are independent 
of past values, we can further state that a Brownian process is also a Markov process. 
Moreover, the third property implies that the Brownian process is also a martingale 
process.
D e fin it io n  2 .4 . A stochastic differential equation (SDE) is a differential equation in 
one or more stochastic process terms. A one factor SDE has the following form

dXt = Ufdt + VtdWt, ( 2.1)

where บ is referred to the drift of the stochastic process, V is referred to the volatility 
and Wt is a Wiener process.
D e fin it io n  2 .5 . An Ito process or stochastic integral is a stochastic process x t which 
can be written in the form

X, = x 0 + / Usds + / VsdWs, (2.2)

. [ v-where / VsdWs is the ltd integral. When written in SDE form we get
dXt = Utdt + VtdWt. (2.3)

R em a rk  2 .6 . From an ltd integral, for a Wiener process Wt, we have that IF)2 is an 
ltd process

w t2 =  j o ds +  2 j  พ ร d W ร, (2.4)
and since Wt is not differentiable, its differentiation is different from the usual differen­
tiation. namely,

d{W?) = dt + 2WtdWt. (2.5)
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T h e o r e m  2 .7  (Ito  lem m a ). Let Wf be a Wiener process and St be an ltd process that 
satisfies the SDE

dSt = เท(St, t)dt + a(St ,t)dW t . (2.6)

Let Yt = G(St,t) be a new stochastic process such that G(s,t) is a function of ร and 
t. If G(s,t) is a twice continuously differentiable scalar function, then the process Yt is 
also an ltd process, given by

dYt = d̂ - + p (S u t ) d̂ + l- a 2(S u t ) d̂ dt + a(St,t) ^ -d W t. os
Proof See details in [8].

T h e o r e m  2 .8  (Ito  p r o d u c t  ru le ). The expressions for the product of two stochastic 
processes. In this case, (j) —> f ( X i ,X 2) with

dX\ = a\dt + b\dW\ and dX  2 = 0 2  dt + b2dW2. (2-7)

Then, the product rule is

d(X 1x 2) = X 2dX 1 + Xx dX2 + E [dXldX2]. (2.8)

For the special case where X 1 is a Wiener process but x 2 has no random term, i.e.,

dX\ = X\p,\dt + X \ 0 \dW\ and d x 2 =ะ x 2เท2dt. (2-9)

We obtain HL{dX\dX2] — 0 and we have

d(X 1x 2) = X 2dX  1 + Xi d x 2. (2.10)

Proof See details in [8]. ■

2.2 CIR process and ECIR process
As introduced in the first chapter 1 the evolution of interest rates is an important part 

for explaining CIR process, and the movement of interest rates is described in the type 
of short-term form. The process is applied to estimate the interest rate of derivatives.
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It was introduced in 1985 by Cox, Ingersoll and Ross as an improvement of Vasicek 
process. Its form is

drt =  k (9 — rt)dt + yJTtodWt, (2.11)
where K is the parameter that corresponds to speed of adjustment, 9 is the equilibrium 
interest rate, (7 is the volatility and Wt is the standard Brownian motion.

In order to improve the inconveniences of the CIR process, the ECIR process [7] is 
considered for time dependent parameters. Its form was stated by Hull and White in 
1990 as

drt = n(t)(9(t) -  rt)dt + x/กิ(cr(t)dWt, (2.12)
where K, 0 and a are generalized functions of time t.

2.3 Simulations of SDE
Although we already have the ECIR model, it will be difficult to work with when the 

closed-form solution is not known. One way to overcome this problem is by employing 
the MC simulation. The MC simulation is basically used to obtain the derivative prices. 
We present here one of the simplest MC approximation, known as the Euler-Maruyama 
(EM) scheme. The EM approximation is a method for approximating numerical solu­
tions of SDE. Suppose that พ  is a Wiener process and a process s t satisfies SDE

dSt = v(S t,t)d t + a(St,t)dW t , (2.13)

for all t G [0, T). If we discretize the interval [0. T ] into N  partitions with equal time step
Ati = ti+1 — ti and AWi = พ น +l — พน  f°r i £ {0)1.......A/"}. The EM approximation
is defined as

รน+1 = รน + + a(St,t)AW t 1. (2.14)
where Aพน is approximated by \/At. 1 77(0,1). The EM approximation converges to 
the explicit solution as N  —» ๐๐ which, in practice, uses a lot of computational time. 
To reduce the computational time, one needs to go through the difficulty by finding an 
explicit solution where the idea is described in the next section.
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2.4 Feynman-Kac theorem
In order to avoid costly computation using MC simulation as described above, one 

needs a way to obtain the exact formula for the ECIR process. One standard technique 
is the usage of the Feynman-Kac theorem, where the expectations of the process of SDE 
are obtained by solving PDEs.

T h e o r e m  2 .9  (F ey n m a n -K a c  th e o r e m ). Suppose that St follows the ltd process

dSt = p(St. t)dt + <j(Sf, t)dWt, (2.15)

where w t is a Wiener process. Let K  ç  E  be a compact support and น := น(ร, t) G
c 2,1(iv X [0,T]) follows the PDE driven by

~dt + 2a2(M )^  ~~ ^ (S4)w + /(M ) = 0, (2.16)
subject to the terminal condition น(ร. T) = 4 (ร) for all ร and V is bounded below. Then.
the solutions, น(ร, t) satisfies

น(ร, t) = E 6- fir V[Sr,r)dr^s 7,) + JT 6-  f f  V {รq1.g)dqf (31' ^ dr St = ร (2.17)

Proof The summaries of the proof based on [10] is as follows. Let น(ร, t) be a solution 
to the (2.16). Applying ltd lemma to the process

Y (r) = e ~ i ïv lSr'r)dru(ST,T) + J T e~ f f  V(S^ dqf(S r,r)dr, (2.18)

yields
dY(r) = d ( V  ft V(Sr,r)drj  u(51.17.) + 6- f f  V(Sr.r)drdu(5,r 17.)

1 p i  , 1

+ e- f f V{S"'q)dqf(S T.T)dT,
= c~ ft V' (Sr,r)dr (~ V (S t,t )u(St, t) + f(S T,r) + เ ^  + p (s ,t )^ f  +

+ e-ftTv^ dro(ST.T )^fdW T. (2.19)
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By the assumption, the first term vanishes. Then

dY (r) = e~ftTy(s' dra(Sr,T) เ ^ ( 2.20)

Integrating (2.20) from t to T, we get

E [ Y ( T ) - Y ( t ) \S t = s] = E

= 0 .

j \ - I t T V ( S r , r ) d r a { S T T ) ^ i d W T St = ร
( 2 .21 )

Thus.
E [Y(T) I St = ร] = E [Y(t) I St = ร} = น{ร, t) (2.22)

as stated. ■
For the uniqueness of the solution, we refer to the theorem below.

T h e o r e m  2 .1 0 . If พ{ร, t) is a bounded solution to (2.17) with the terminal condition 
พ(ร, T) = T (ร) for ร e K , then พ(ร, t) = น(ร, t).

Proof See details in [10]. ■

Next chapter, we take a closer look on our problem of explicit formulas for condi­
tional expectations of the product of P-EA transform, Ep [r).earT+‘3 I rt = r] ■ We start 
with an assumption to ensure that the conditional expectations of the P-EA transform 
of the ECIR process exists.
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