CHAPTER 1II
MAIN RESULTS

This section derives an explicit formula for conditional expectations of a product
of a P-EA transform of ECIR process with parameters 7,a,P s mand 7 N {0},
Furthermore, the result is simplified to the standard CIR model with constants «, 9 and
a

In this work, the assumption of Maghsoodi is assumed to guarantee that rt > 0 for
all t G[0,00), which is stated as follow.
Assumption The parameter functions 9{t),K,(t) and o(t) are positive and continuous
on [0, T] such that the dimension parameters () := °f the ECIR process (1.3)
is bounded and S(t) >2forall t 6 [0,T).

3.1 ECIR process

Theorem 3.1. Suppose that Vf follows the ECIR process (1.3) with 7,0, 136 IR Assume
that the Assumption holds and let

MOI0} (V) 1) = Ep o TGaNMROELY =T (31)
forv>0andT=T- t>0. Then.

AQOW,T) = ALk (32)
given that the Serigs converges, where
Alt) = exp J ~792(T— B{ ) +k(T- )6{T— )B()—k(T— )jdu (33
andfor k 6 N

A-fcW = exp 0 QYT — ol
Exp Q7.fo(T— )du P-t-k+i(T- )AL-k+i{s)ds (34)
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Wwhere

(=40 (- Al2(r) + k(£)9(t) (39)
( —k)a2(T)B(T —t) + k(t)9(t)B(T —t) —(7 —fe)i(r)  (36)

p~)-kHi(r)
Q7-&T)

and ;
aexp - | k(T— )du
B(r) = S (37)
1a[ r YT ) exp ._J[) k(T- )du ds
Proo/ By the definition of (3.1), ™'@"( ,r) is the conditional expectations of a P-
EA transform under the ECIR process of V). By applying the Feynman-Kac Theorem,

we are seeking for the solution in the form
= §'a\v T)= ;A 7f(r)"-feBM A, (38)

which satisfies the corresponding PDE

0 = ] (A o s

f o+ ,
o T d2pP o1/
Ot * 07 (T - 1r)w KT - )T ) - T

e (WOEO AoA ke k+ "B (1) ANK(T)VA kL

+-a2(T -T)veB(TP+)

7 fe(n@- o' - A- Dn7fe2
fc=0

+2P (A T,fc(r)(7 - k)vy~k~1+ P 2(r)A7_fo(r)n7 fe
tk(T- 1) [0(T-71)-V] X
eBMut3f ; [a7,,(t)(7- fc)™-"-1+ B (r)A k(r)v k . (39)

From (3.1) with condition at T = 0, we get the terminal condition *1Bv, () =
7eav+s. To solve (3.9), we need the conditions on A and B, which are obtained via
the terminal condition,

BO)=a AIQ) =1 and Ay fo(0) =0, (310)
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when k GN.
Since eB(MvH) > o, the PDE in (39) is simplified to

0=- £ A ALk(r)vy~k+ -~ B{T)AL k(T)vi~k#! (B

F1a2(T - 1)iX] [A -k(Mh - K)(1 - k- T fc2
+fi(r)A7_fe(r)(7 - Kv~'"~k~1+ 7- fo)li7~fc1 + B2(r)A7_fr)n7 fe
tk(T-1)[0(T-1)- 1™ [i47 fc(r)(p - o)z fct + tB(r)A7_fc(n?7 fc

Collecting the coefficients of power of -, we et

0= BAAME)+ICrr - t)B2t)ANt) - k(T- T)B(TAYT) L
()- + 20T - ¢)B{t)A7(r)(7)

P2 TEMEMAMM+ - EMid7 i(T)
FH(T - YT~ BNAT() - K(T- DALY )- K(T- t)B(t)AL i(t)

ce - T L - A 5(0AT al)
=2

1 S ARBR(ne -A+2)( - Atd)

+ d(T - 1)B(rA7 fora(ry - A+ 1)+ "ar2(T - r)B2(r)/l7_fdr)

+K(r- n0(T - T)Ay-k4r)( - k+2) + KT - t)o{T - r)B(r)yl7 ie+i(r)

- K(T- AT fori(ry@ - A+ D) - k(T - T)B(T)Ay-k{r) T-fe+! (312)

Considering (3.12) as a power series of , we obtain the followings.
(i) The coefficient function of 71 can be written as a deterministic PDE

Ab(t)=\a\T - t)B2t)- k{T- r)B(r) (313)
whose solution according to the condition of B in (3.10) is

aexp —f k(T— )du
B[t) = N 61
i-a[ 7 2{T- Jexp ._JB k(T— )du ds
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(in Using the coefficient of 7, we obtain functional relationship between Ay(r),

A7 i(t) )&*

+202(TX t)B(MA7(t)(7) + cr2(T - r)B(r)A7(r)(7)
#A 21 - eyeac )AYI() + K(T- 1)0(T - 1)B(r)A7(r)
-k(T- NA7(N(7) - k(T - e cora7 1) (3.15)
Using (3.14) and igitial condition on A in (3.10) yields
Ay(r) = exp J (aaT- B()+k(T- )B(T- B()- k(T- )id
(3.16)
(i) Similarly, using (3.12) and initial conditions on Ay fc in (3.10), the coefficients
of vek+ fork € {2,3,4,...}, give
T ATTCHI(r) = Q7 A+i(T - 1yIT fora(r) + PINA(T - 1)A7 foor),  (3.17)

where

P7 foro(M) = ( -k+2 A -k+1)et)+k(t)6(t) and  (3.18)
Qy-k+ir) = @—k + fj2(R(T =) + k(t)6(t)B(T —T)
-(7 - k+1)k(t). (319
This gives the solutions in the form
AT a+l(r) = exp J/0 Q7-feti(T - )dU \f) y : tg Q7-fc+i(T - )du
Blk2(J1~ )77t ) C. (320)
as required.

Remark 3.2. Note that s (+) is unbounded if
k(t):=  "azT-s)exp JBk(T_ A ds=— (321)

Since /i(r) is an increasing function in r with fi(0) = 0, then -B(r) is bounded given
that Te (0,T] where p(T) < Therefore, if ft < p(T), then it guarantees that J3(r)
is bounded for all TG [0,T],
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Remark 3.3. The result of the Theorem 3.1 can produce the same result of Rujivan
[11] for Ep\Vj, I\t = ] when a and /3are set to be 0 in (3.1).

The following corollary describes a consequence that is deduced from Theorem 3.1
when7 = 1- , the explicit form is reduced into the closed-form as shown in the
following corollary.

Corollary 3.4. Suppose that M follows the ECIR process (L.3) where , ,0 GMand
7 satisfies

=1 Zkr(rg ?)(t) (32)
for all T> 0. Then, (3.2) is reduced into the form
200 v, t) = (3.23)
exp B(t)v+0+J (a2T- u)B()+k(T-u)T-u)B( ) (T- uyjdu
Proof It is obvious from (3.5) when k = Lthat Py =0if7 = 1— for all

r > o. Therefore, (34) implies Ay-k(T) —0 for all k GN, and the remaining term of
(32) Is Ay.

The result of Theorem 3.1 can be simplified into a finite sum in the case when 7 is
a non-negative integer, as stated in the following result.

Theorem 3.5. Suppose that t follows the ECIR process (1.3) with /3GM Let le
a non-negative integer. Then,

ANCLO) (y 1) = eD{T)v+0’3\_% Ai(TIV], (324)
Where

An(r) = exp J (a2T- )B()HK(T - )g(T—)B( ) —uk(T—)jdu
(3.25)

Ai(r) = exp 3 Qj(T— )du rexp =) Qj(T— )du x
Pj+\(T - AJ+I( ))ds\, (3.26)
Pit\(r) = (j+1) N<72(t) +k(t)0(t) and (3.27)
QAt) = ia2(r)B(T-t)+k(t)6(t)B(T-t) - jK(r), (3.29)
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forj G{1,23,., —1}, and 8(x) is given by (3.7). In addition. ~'0"*(i',r) is
strictly increasing with respect to Vfor any T > 0,

Proof  From the result of Theorem 3.1, let 7 =  be a non-negative integer when
k= +1 (35) gives Po(t) —0. Therefore, from (34), we get A_i(r) = 0. Similarly,
by setting k = +2 +3 +4....we obtain recursively A 2(t) = 0,A_2(t) = 0.......
respectively. Thus, (3.2) is reduced to a finite sum in the form

™f)(v,r) =eD "B An-k(T)vn~k. (329
Setting k =n —j. the sum (3.29) can be rewritten as
N\ T) = eB{TvH"2A - (T)v, (3.30)
3=0
where the indexes of Ay(r), Ay-fc(r), Py-k+1(T) and Qy-k in (3.3)(3.6) become An(r),
Aj(t). Pj+i(t) and Qj as shown in (3.25)-(3.28), respectively.
Furthermore, since from (3.27) Pj+i(r) > 0 for all r > 0, and (3.25) and (3.26)

guarantee that Aj(t) >0 forj 6{0,1,2,..., }, wecan conclude that, *'Qtf\v, r) is
strictly increasing with respect to v for r > 0 and v >0. |

Calculations of the expectation (L.7) when K(t),d(t) and <ft) are constants for all
0<t<T, the ECIR model (1.3) reduces to the CIR, model (1.2) as stated in Theorems
36 and 38,
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3.2 CIR process

Theorem 3.6. Suppose that \t follows the CIR process with K(t) = K, 9(t) = 9 and
a(/)=(T Let7,a,PEM Then,
AT\ V,t) = Ep y i6aVT+0 \yt=v

20K 29k 2t
X @+ el 2k —aa2) ' B+ TKTH

2k <9[>82~k6)
aa2+eKl (2 - aa2)
a2+ eKzr%k —3a?) + 3+ (T kKT + 23k2
KT 1 \ ke
(. A ﬁ”"-l) (aCfZLg/cr (2k —OCT2) (3.31)
where
1-MH = (T+ 1 Q(7 - m)a2+Kg) (3.32)

when m e {t,2,.., k}.

Proof  From (3.3)-(3.7), when k(£), 9(t) and o(f) are constants, (3.7) can be written
s

(r) = Qexp Kiu 1—a /‘0 %&Eexp L_Yg) SKdy 0§ ! (3.33)

a2+ eKLr(Zk —aal) (334)
Thus, we have
B(u)du = 2K (335)
Jb JJo MR+ ekJ(2k —aa2) '
2
KT+ 10 202+ kT (2 - 2a2) (3.36)
Consider Ay(r) from (3.3), we have
Ar(t)=exp  7KT+ (a2+k9) § o (337)
—(r@+k)
=eop THYY | s 339)
Letting

07 foM) = - KaB(T- 1) +KB{T- 1)- (7- |t (339
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yields
op  QF-feT— )du =exp -(7 - KKT + ((y —k)a2+ k9) JE B(u)du  (340)
=eXp (y - k)kt 4*"2%.[1

2k \ ((7 k)a24+()

acr2+ e"T(2k - acr2) (3-41)
From the result presented in (3.4), we obtain
! A AT-K)KT+& & 2k (( -k)<j2+k0)
A" e acr2 + eKT (2 —acr2)
Ry g % I 4] -Kp2HrB)
acn + eKT (2 —acr2) Aot ()
(342)
for « € N. Using the inductive hypothesis
A (v = 1k I— (7a2+K0)
alURL eKT (2k —acr2) (343
with
ATI() = o0 s e}gf?g( —ar) VY- Dk Bz
ekT - 1
' ar2+ ek (2 —aad) (344)
yields

g , S 2010t
Ak ok R&e "’EB :a-é-rgfw 34y - KT+ T

ekKr- 1
cr2+ eKT (2 —acr2) (345)

for k ¢ N. The formula 3.3?) Is ontaintd by inserting Ay fe(r), « € {0,1,2,...} into
(3.2). |

Similarly, for ECIR case, the following corollary shows a consequence that is deduced
from Theorem 3.6 when y = 1—"Y. the explicit form is reduced to a closed-form as
shown in the following corollary,
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Corollary 3.7. Suppose that Vi follows the CIR process with K(t) = K, 6{t) =0 and 7
satisfies

y=i- 2 (3.46)
Then,
_ 2a
) = e aa2+eKF(2Kk- aa2) "+
K T« o) - 26

MOfj2 + eKT(2l - 822)1 (347)

Proof  Similar to the proof of Corollary 34, from (3.32) when k = L that p~ = 0 if

7=1- %6 forall r >0 Therefore, (345) implies 4« /c(r) = 0 for all k ¢ N and the
remaining term of (3.31) is Az,

Similarly, the result of Theorem 3,6 can be simplified into a finite sum in the case
when y is a non-negative integer, as stated in the following result.

Theorem 3.8. Suppose that Mt follows the CIR, process with Kt) = K %t) = 0 and
a(t) = a. Let be anon-negative integer. Then,

WA 1) = Er Vieal+0 1=y

2K
x+ ek (2k—aa)) TRT KI¥

K fil+2+Kkb)
aa2+ eKl 2k —0JR)

|
A 20k
TReXD aa0+ eir (x—oc) VP +IKT +

2n~i 2k 2 +0
™ )l acr2+ eKT 2k —aad)

m=1
ekT- 1 N
aa2+eKT (2k —aa2) (34)

forall V>0 and T=T —t >0 where Pn_m+1={ —m+ 1) (|(n —m)a2+ k9) when
mMG{L23.. -j} forjc{123.., -1}

- % 2

26k2t

Proof  From the result of Theorem 36, for 7 =  be a non-negative integer and
k —n+1, (3.32) gives -Po(r) = 0. Therefore, from (344), we get A (r) = 0. Similarly,



by setting k = +2 +3 +4,..we obtain recursively A-2(t) = 0,As(r) =
0,A,4(r) = 0,..., respectively. Thus, (32) is reduced to a finite sum in the form

§ a0lv,r) = eE* v+0J 2 An-k{r)vn-k. (349)
Setting k — —j, the sum (3.49) can be rewritten in the form
ug'afi)v,T) = eE{TBY JAj (T)yj, (3.50)
j=0

as required.
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