CHAPTER IV
NUMERICAL RESULTS

This chapter gives accuracies comparison between the explicit formulas and numer-
ical simulations by considering the following ECIR process
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where n(t) =« 9(t) = Ogde2% a(t) = aoeait and d, k. (7o.<7i are positive constants,
see [5| for more details of these parameters. In numerical test, we illustrate only The-
orems 3.1 and 35 by comparing the results between the explicit formulas and the MC
simulations,

4.1 Parameters of ECIR

Higham and Mao [] showed that the EM scheme is a simulation with correctly
qualities for square root process such as the ECIR process. The discretizing N time
steps, Af —" on [0, T], the EM scheme for the process gives (see section 2.3 for details)

WH =vk+«  —-- vti) At+ o=l . N(OD). (42

Our simulations generate 10,000 sample paths of v on [0,Tj], for T1=0.01,5,i = 12,
with parameters k = 0.03,¢ — 2 0 = 001 and o = 0.02. By observing the requirement
of the Assumption in Chapter 3, we have
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and bounded for all t G [0, Ti\. This guarantees positive values of \t for all t e [0,7)].
From now on, " 113, denotes the results obtained by MC simulations, an ap-
proximation of  ~'0'3*with parameters declared above.
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4.2 Comparisons results

This section provides seven examples of the comparisions between the explicit for-
mula and the MC simulations. Theorem 35 is compared with varied parameters 0
for IV="0and 2, and Theorem 31 with 7 = £" and K =2. In order to perform these
examples, we compute B(t) in (3.7), namely,

44)
where £ = K+ 2al. Notice that Bo(t) —0. Fora * 0, we set
WH(r) = Oi~tekT (45)

and obtain that a[Lr‘mwa(r) = 1. Without loss of generality, since Ep \VeaVr+0 1\t = |
eOEr [V.JeaVT IVt = ], we will assume that 0 = 0. In the case of the Theorem 3.1, we
define the finite sums *'00'L as the approximations up to order 7 - K of A0"",

421 Casea—0

As expected, Examples 13 (equations (4.6)-(4.8)) produce the same results ex-
pressed in Rujivan [LL]. These examples are illustrated the agreement with [11]

Example 1 N =2
Applying (3.24) yields the closed-form formula of Ep\'v [\t = 1] &

- e I Co.
L L L A 1

1T £Td(d + 2)1%%“4)204 (46)

forallv>0and T>0 wherer =T —.
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Example 22 7= 1 and K = 2.
Applying (3.2) yields a second-order approximation of Ep S Wt =v &
(V1) = e~ Tk
welSrroxr-fr ( - I)(e’;r- opZ:
8
I r+da T-2fr ( -3)(rf-1 2I)8(g"r= )24 )

forall :>0andt >0 wheret=T —.

Example 3: 7= ~2 and A'= 2.
Applying (3.2) yields a second-order approximation of Ep wf! V.=V &

" :!!Iy'l'-'n"- ;A
sf
STHgiT - (d - 5)(d- 3)(e" - hoa 5
128¢e I

forall V>0and T>0, wherer =T —t.

4.2.2 Testing Theorem 35

According to Theorem 35, the Examples 4 and 5 are presented to compared the
results from the closed-form formulas and the MC simulations with initial V= 0.1,0.2,
0.3,..., 2 and, for convenience, we set Q= 1

Example 4: N =0,
Applying (3.24) yields the closed-form formula of Ep [evT IVt =W as

UE 10)(v,r) = (Bi(r))2deBI (Tv+rT (49

forall V>0and r >0 wherer =T -t
The MC simulations with the same parameters are simulated using 10,000 sample
paths for final times T\ = 001 and T- = 5, and compared with the closed-form formula
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(4.9). The comparison values are displayed in Figure 4.1 showing that the closed-form
formula agrees very well with the MC simulation,
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Figure 4.1: Comparison values of the exact formula  "’10] and the MC simulations

oMOL0 AL QQ ancEy2  s"respectively.

Example 5. N =2
Applying (3.24) yields the closed-form formula of Ep [VeVr Ivt = ] as
N0 v, t) = e=2KTHBA v (i(r))2d4y
| c-KT+ar-$r+Bi (tvjd+2) @ - I(fo (WL'7)) 33
+ed,[T-2tT+Bl (v d{d + 2)(flfr - 1)200 (wA(7))irf+2  (4.10)
forall >0and T>0 where T=T-t
Similarly, the MC simulations are provided to compare with the closed-form for-

mula (4.10). The comparisons are displayed in Figure 4.2 showing that the closed-form
formula agrees very well with the MC simulation.
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Figure 4.2: Comparison values of the exact formula 2,10, and the MC simulations
iim210) w1 J.1_ Qo and 72- s, respectively.

The Examples 4 and 5 above confirm that the results from the exact formula for
Theorem 3.5 agree with the results from MC simulations for various values of parame-
ters. This gives the advantage in using the exact formula instead of the MC simulations
in terms of saving time-consuming, especially, for N that is not too large.

4.2.3 Testing Theorem 3.1

These examples illustrate the Theorem 3.1, where the closed-form formula, the infi-

nite sums ‘0" (v, T) are approximated by finite sums  A“(BK\v, r) using K —2 for

=+, For the tests, the MC simulations are also produced with the same parameters
followed Section 4.1 using initiall = 0.1,0.2,0.3,...,2.

Example 6: 7= |.
Applying (3.2) yields an approximation of Ep v)evT v, = } for K =22
M0Av ) = e-tTHBIW«( 1t)M+,5
+euT+2alT A T+B1(rv(d - 2)("T- 1)fi0 (w ())hdy-2 (4.12)

3Er+AT-2iT+8,{T(d - 3)(d g el - e 1-§
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forall v>0andr >0 wherer =T - t,

The MC simulations using the same parameters are simulated for 10,000 sample
paths for final times T\ —0.0L and T = 5 to compare with the approximate formula.
The comparisons are displayed in Figure 4.3 showing that the approximate formula
agrees with the MC simulation for varies initial v’s for T\ = 0.0L and T2=5

00 ' s @i A e T

Figure 4.3: Comparison values of the approximate formula *'102Land the MC sim-
ulations  A"10] for T\ = 0.01 and T2= 5, respectively.

Example 7. 7= —
Applying (3.2) yields an approximation of Ep v p evT v; = o for K —2s
ALY r) = 7)) -8
P THAIT-THBYTV( - 3)(AT- DN 4T ) ) w3 (412)
1c4fr+4gre-20T+BATP3 (- 5)(d - 3)(e*T- 1)2°p (Wi(L)) 56 31-1
forall v>0andr >0 wherer=T- t,
Similarly, the MC simulations are simulated for 10,000 sample paths to compare

with the approximate formula (4.12). The comparisons are displayed in Figure 4.4
showing that the formula agrees with the MC simulations.



26

—® (Y, 0.00)
cuf (v, 00
020 [ f
45 0
0 )
40
0 |
X
a0
0 R0
b M, ang % O
10 g by
00 05 10 15

Figure 4.4: Comparison values of the approximate formula Uy 2X072) anc[ 16 MC
simulations Ug" 2’L0MDL J1 = 0.01 and T. = 5, respectively.

As shown in the Figures 4.3 and 4.4, the results obtained from the approximate
formulas (4.11) and (4.12) are confirmed with the results from the and MC simulations,
for K =2 Note that, since (3.2) involves infinite series as function of (v, r), the series
might not converge for some values of (v,r). In this case, we cannot use finite sums to
approximate (3.2). To study more effectively in this case, the analytical approach to
approximate the explicit formula (3.2) is presented by using absolute relative error in
the next section.

4.3 Approximation results

It is more concern to study the accuracy of the explicit formula when  ~ {0} N
Since (4.11) and (4.12) in Example e and 7 are the approximations of " 101 and
g 5100 respectively, this section gives analytical approaches for the explicit formulas
in these examples. Note that, the power series (3.2) in Theorem 3.1 may not converge.
One can understand that the increasing of K in Ug'a™K\v,T) may not improve the
accuracy of the explicit formula. In order to determine the level of accuracy of the
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formulas in practice, we construct a sequence on K € N of absolute relative errors as

£(7,«.(3) (V,t)

yh.aPK)fy t)

MOKWvr) - M00K-1), o,

(413

for (v,t) £ R+ x [0,T], For convenience, the approximation A 'A0'K\v:r) is cor-
rect up to at least 16 significant digits, whereas £1“* g ,r) < 05 x 10~16. e
shall give approximations of Examples 6 and 7 up to order 7 —5, with initial V =
0.0001,0.001,0.01,0.1,1,2 and T\ = 001, 12= 5

'S 2 BN~ J TN O RSN N

K
1
2
3
4
5

V=00001
012 E-Q2
0.78 E-06
0.29 E-08
023 E10
028 E-12

V=00001
043
0.4
0.24
0.3
0.79

(vT) Ti=001
v=0001 v=001 V=01
01203 012E04 013E5
078 E-08 078E-10 078E-12
029El 029EW 07
023 E-14 0 0

0 0 0

AIOY L) -
V=000 v=001 V=01
070E0L 074 E-02 075 E03
026 E02 028 E-04 (.28 E-06
058 E-03 062E-06 063 E-09
027E03 029E07 029E-Il
020 E03 021 E08 o022 E-13

ARemark: Zeros signify £2'a'0\v ,t) < 0.5 x 1CTI6.

Table 4.1: Absolute relative errors

V=10
0.13 E-06
0.78 E-14

0
0
0

V=10
0.75 E-04
0.28 E-08
063 E-12
029 E-15

0

based on the ECIR process (4.1) with T\ = 0.01 and T2 —5.

V=20
063 E-07
020 E-14

0
0
0

V=20
037 E-04
0.70 E-09
0.79 E-13

0
0

r), using the explicit formula (3.2)
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£1 'Mvt) =oal
V=00000 V=0001 V=001 V=01 V=10 V=20
012E02 013E-03 013E-4 0I3E05 0I3E06 063 E07
070E05 070E07 070E-09 O70E-Il 070 E-13 0.8 E-13
0.73E-07 073E-10 073E13 o 0 0
011 E08 011E12 0 0 0 0
02ZE10 0BEL o 0 0 0

ROy =5
K V=000001 V=000 V=000 V=01 V=10 V=20
1 043  070E01 O74E02 075E03 0.5E04 037E04
2 059  02E0l 05E03 025E0 025E07 063E08
3 079  014E00 016E04 016E07 016 E10 020 E-ll
4
5

S TN ~Y FU R ORI

oss 0I13E01 QMEQ 014E0 014E13 09EI
090  0I5E0L 017ED06 OL7E-l o 0

Remark: Zeros signify &1 9™ (V.r) < 0.5 X 10"16.

Tahle 4.2: Absolute relative errors £ ™ *°\v, r), using the explicit formula (3.2)
based on the ECIR process (4.1) with Ti = 0.01 and 1o = 5.

Note that the speed of convergence is more apparent in the explicit formula (3.2)
when the initial Vis larger away from 0. Moreover, since the power series (3.2) is approx-
imated by  “'aPKi which is dominated by the term u7 fc, thus, the series  'aPK)
will diverges when V< 1as K increasing.

In particular, it is difficult to derive the convergent domain of A TB(v, T) because
the series is too complicate. In conclusion, by suitably choosing of Vand T, small T
and large V, can be inferred that the accuracy of the explicit formula improves when K
increases.
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