NIRRT NVDINTEUIUNITOALTISUIUNTHARLH WIS AUR a8 Tusedulowea

Awagdlrsann

WSz Magnssaed

v !
1 = a d

endnusihidudrumnilvainsfinwaumdngnsusayaninerrmanseuitauda
AU NIVIAAAAIENSUTEENARAEINGINITAN
AAIYIAINFIENSLAZINGINITADNNIADS
ANIEINEIANENS PHBINTANNINYFE
Un1sfinen 2564

SUAVSURIPIRIN TN

SCHEDULING OF PRESSING PROCESS IN MULTI-LAYER PRINTED

CIRCUIT BOARD MANUFACTURING VIA MILP AND HEURISTIC

Mr. Teeradech Laisupannawong

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Applied Mathematics and
Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2021

Copyright of Chulalongkorn University

Dissertation Title SCHEDULING OF PRESSING PROCESS IN MULTI-LAYER
PRINTED CIRCUIT BOARD MANUFACTURING VIA MILP
AND HEURISTIC

By Mr. Teeradech Laisupannawong
Field of Study Applied Mathematics and Computational Science
Dissertation Advisor Assistant Professor Boonyarit Intiyot, Ph.D.

Dissertation Co-advisor Associate Professor Chawalit Jeenanunta, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

.......... /Z//// ﬂywh/’ﬂ' veviivieeeano... Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

DISSERTATION COMMITTEE

.......... 'J:%—’ Chair External Examiner

(Associate Professor Jirachai Buddhakulsomsiri, Ph.D.)

............... %ﬂ?@ Dissertation Advisor

(Assistant Professor Boonyarit Intiyot, Ph.D.)

......... Q AU 7; S......... Dissertation Co-advisor

(Associate Professor Chawalit Jeenanunta, Ph.D.)

... Committee

(Associate Professor Krung Sinapiromsaran, Ph.D.)

................. V-/ 2 Commnittee

(Associate Professor Phantipa Thipwiwatpotjana, Ph.D.)

............................... Committee

(Assistant Professor Kitiporn Plaimas, Ph.D.)

v

F3210Y Iagnssauaed @ N133AMISI9VBINTEUIUNIT A UIIAUTUNITHER LHY
2sRuivanetuseduleuoafiuazdq3afin. (SCHEDULING OF PRESS-
ING PROCESS IN MULTI-LAYER PRINTED CIRCUIT BOARD MAN-
UFACTURING VIA MILP AND HEURISTIC) 8. fivsnuinendnusndn -

HALAS.UaVE BuTied, 8. AUSN¥INe 1 INUSIIN ¢ 9A.05.9980 Juetiud 121

P,

NITUIUNNTOAUTIAULTNOUTE aaﬁ‘lumﬁamwmua%u finann1sUsznUAUYDIEIU

q

Usznausne o ieadauiusasiiuivanetu nszuiunsiiludiumidlunisndnuwediy

a 4] LY < o Ao 68 ¥ 1 S
Rsfinsivang tuaraunsa I lu g msdnniseandingusvasdiviaiuaauyull
A Tgn INeInusUUIEUEAILUUMUUANTTRUEUTI T UILAN MU UNAN AD 967
WU (Fuwuuiinilaiag Muuufan) wagdi3aRndanaf7uiiiied three-phase-
PCB-pressing heuristic (3P-PCB-PH) @913UN1330A1519NIZUIUNITIARTIOU A2
wuuiaendunsusuugenndmuuuinisluiivesvunvesdiuuuuaz iR veefinys
Ardulaunei fMluuaetuaysanadiiy 3P-PCB-PH gnihanldundaynaaeud
A3°99INU0YAITIIINUTINANEAUNUIDTNUAUMINTS HANITNARDINUTWIUUUNFDS

aunsnvna was Nwune g dmsu Jeynaaeulavans Jayvnunnndtdawuuninile

waz dUTEANTANANINAILUUN NI TULI AN FU D ULTITUIN AL ANUFULDULTINTT

[
=

mwnlagldianlunisaunandiniduuuninislaewds 34.71% uonainil daned
#iu 3P-PCB-PH annsautnndaymmegeusazlvinaaasimansngavsenaaaeiilng
wiangngatagldiatunisiwintdosndt 1 il Favungauuindunsuntuldlums

U URLLENAMNITUITIVDINITHERALALIDTAUN

AP AdeERsway aeilodenan Droas Tkadnmoned
Avemseeniwes awilete o fiUinumdn . gﬁi @
a1 adesansussend meilede o.qiSnwdam.. oL D0
WAZINYINITAU

UnsAnen 2564

6172822123 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS : PRESSING PROCESS / PRINTED CIRCUIT BOARD / SCHEDULING /
MIXED-INTEGER LINEAR PROGRAMMING / HEURISTIC
TEERADECH LAISUPANNAWONG : SCHEDULING OF PRESSING PROCESS IN
MULTI-LAYER PRINTED CIRCUIT BOARD MANUFACTURING VIA MILP AND
HEURISTIC. ADVISOR : ASST. PROF. BOONYARIT INTIYOT, Ph.D., DISSERTA-

TION COADVISOR : ASSOC. PROF. CHAWALIT JEENANUNTA, Ph.D., 121 pp.

The pressing process aims to press the panel which is the stack of materials to form
a multi-layer printed circuit board (PCB). This process is a part of multi-layer PCB fabri-
cation and can be considered as a scheduling problem with the objective of minimizing the
makespan. In this dissertation, two mixed-integer linear programming models (Models 1
and 2) and a three-phase-PCB-pressing heuristic (3P-PCB-PH) algorithm for scheduling
the pressing process are presented. Model 2 is an improvement of Model 1 in terms of
the model size and the dimensionality of some decision variables. Both models and the
3P-PCB-PH algorithm are used to solve the test problems that are generated from the
actual data from a PCB company. The results show that Model 2 can find an optimal
solution in more test problems than Model 1 and outperform Model 1 in terms of the size
complexity and the computational complexity with 34.71% average relative improvement
of the computational time. Moreover, the 3P-PCB-PH algorithm can solve all test prob-
lems and give an optimal solution or a near optimal solution using the computational time

of less than 1 second, which is very practical in the real PCB manufacturing industry.

Department : Mathematics and Student’s SignatureTe‘."'!"’:J.e."."'. Laisupannaong

Field of Study :

Academic Year : 2021

vi

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Assistant Professor Dr. Boonyarit Intiyot,
and my co-advisor, Associate Professor Dr. Chawalit Jeenanunta, for their invaluable
help, guidance, and supervision. They always gave excellent advice and encouragement
when I had difficulties and problems about this research. I could not accomplish this

dissertation without their expertise and support.

I also would like to thank all of my dissertation committees, Associate Professor
Dr. Jirachai Buddhakulsomsiri, Associate Professor Dr. Krung Sinapiromsaran, Associate
Professor Dr. Phantipa Thipwiwatpotjana, and Assistant Professor Dr. Kitiporn Plaimas
for their recommendations and suggestions, which were very helpful in developing and

improving this research.

In addition, I am grateful to all instructors who educated me all along. I am also
thankful to my friends, AMCS students, for their suggestions and their help, especially
Mr. Thanet Markchom who helped me in English and Dr. Supphakorn Sumetthapiwat

who helped me in computer programming.

Moreover, I would like to give thanks to the Development and Promotion of Science
and Technology Talents Project (DPST) for funding and supporting all of my Ph.D.

program study.

Finally, I am most grateful to my family, especially my mother and brother for their
encouragement and support. They always foster me throughout the study and everything

in my life.

CONTENTS

Page

ABSTRACT IN THATI e iv

ABSTRACT IN ENGLISH v

ACKNOWLEDGEMENTS e vi

CONTENTS . . . s vii

LIST OF TABLES e ix

LIST OF FIGURES e xi
CHAPTER

1 INTRODUCTION e 1

1.1 Motivation 1

1.2 Background Knowledge o . 3

1.2.1 Multi-layer PCB fabrication., 3

1.2.2 Linear programming)

1.2.3 Nonsimultaneous constraints 8

1.2.4 Heuristico 10

1.2.5 Flexible job-shop scheduling problem 13

1.2.6 Performance measures for comparing MILP models 16

1.3 Research Objectiveso v oo 17

1.4 Research Contributions 17

1.5 Overview of Dissertation 18

2 LITERATURE REVIEW 20

2.1 Literature review about processes in multi-layer PCB manufacturing 20

2.2 Literature review about improving and comparing the performance of

MILP models for various types of scheduling problems 22

3 PROBLEM DESCRIPTION AND METHODOLOGY 25
3.1 Problem description of the pressing process scheduling 25
3.2 Proposed MILP model (Model 1) 28
3.3 Improved MILP model (Model 2) 36

3.4 Proposed 3P-PCB-PH Algorithm 44

CHAPTER

4 EXPERIMENTS AND RESULTS
4.1 Data and test problems

4.2 Computational results of Model 1

4.2.1
4.2.2
4.2.3
424

4.3 Computational results of Model 2

4.3.1
4.3.2
4.3.3
4.3.4

4.4 Computational results of the 3P-PCB-PH algorithm

441

4.4.2

4.4.3

444

4.5 Discussions
5 CONCLUSIONS
5.1 Conclusions
5.2 Future works
REFERENCES
APPENDICES

BIOGRAPHY

Computational results of Model 1 for the small problems
Computational results of Model 1 for the medium problems . . .
Computational results of Model 1 for the large problems.

Computational results of Model 1 for the extra-large problems . . .

Computational results of Model 2 for the small problems
Computational results of Model 2 for the medium problems . . .
Computational results of Model 2 for the large problems.

Computational results of Model 2 for the extra-large problems . . .

Computational results of the 3P-PCB-PH algorithm for the

small problems oo

Computational results of the 3P-PCB-PH algorithm for the

medium problems

Computational results of the 3P-PCB-PH algorithm for the

large problems

Computational results of the 3P-PCB-PH algorithm for the

extra-large problems

viii

Table

1.1
1.2
1.3
14
1.5
3.1
3.2
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

4.14
4.15
4.16
4.17
4.18

X

LIST OF TABLES

The standard form of maximization and minimization problems of LP. 5
The canonical form of maximization and minimization problems of LP. 6
A feasible schedule for PMSP using LPT heuristic. 12
A feasible schedule for PMSP using load balancing heuristic. 13
An example of FJSP with 3 jobs and 4 machines. 15
The size complexity of Model 1. 35
The size complexity of Models 1and 2. 43
The data for generating the test problems. 52
Sizes and gaps of each panel type. L L 53
Sizes of each SST. 53
Formulas for finding the number of panels of type ¢ per book using SST

size kand layout [. oL 54
The small problems. 55
The medium problems. 55
The large problems.o . 56
The extra-large problems.o 56
Computational results of Model 1 for the small problems. 57
Computational results of Model 1 for the medium problems. 59
Computational results of Model 1 for the large problems. 60
List of 2 values which is equal to 1 in the optimal solution of Problem

L1 using Model 1. o 61
List of X, values which is equal to 1 in the optimal solution of Problem

L1 using Model 1.o 61
Computational results of Model 1 for the extra-large problems. 64
Computational results of Models 1 and 2 for the small problems. 67
Computational results of Models 1 and 2 for the medium problems. 70
Computational results of Models 1 and 2 for the large problems.. 73

Computational results of Models 1 and 2 for the extra-large problems. 77

4.19

4.20

4.21

4.22

4.23

4.24

Computational results of the 3P-PCB-PH algorithm and Models 1 and 2

for the small problems.

Computational results of the 3P-PCB-PH algorithm and Models 1 and 2

for the medium problems.

Computational results of the 3P-PCB-PH algorithm and Models 1 and 2

for the large problems.

List of @, values which is equal to 1 in the optimal solution of Problem

L1 using the 3P-PCB-PH algorithm.

List of X4, values which is equal to 1 in the optimal solution of Problem

L1 using the 3P-PCB-PH algorithm.

Computational results of the 3P-PCB-PH algorithm and Models 1 and 2

for the extra-large problems. L

. 89

el

LIST OF FIGURES

Figure

1.1 Typesof PCB. 2
1.2 Multi-layer PCB manufacturing. 3
1.3 The steps of the multi-layer PCB fabrication. 4
1.4 Gantt chart of the solution of PMSP using LPT heuristic. 13
1.5 Gantt chart of the solution of PMSP using load balancing heuristic. 14
1.6 Gantt chart of a solution of the FJSP example. 15
31 Anexampleofapanel. 25
3.2 Inner and outer gaps. 26
3.3 Processes in one cycle of a press machine. L. 26
3.4 Interpretation of Constraints (3.28) and (3.29). 41
3.5 Interpretation of Constraints (3.13) and (3.14). 42
3.6 An Oven_ Schedule Listexample. 46
3.7 An Oven_Idle Time_ Listexample. 48
3.8 An example of finding start _time oven. 49
4.1 lustration of eight layouts. 54
4.2 Gantt chart of press machines for Problem L1 using Model 1. 62
4.3 Gantt chart of ovens for Problem L1 using Model 1. 62
4.4 NBV comparison of Models 1 and 2 for the small problems. 68
4.5 NCV comparison of Models 1 and 2 for the small problems. 68
4.6 NC comparison of Models 1 and 2 for the small problems. 68
4.7 CPU time comparison of Models 1 and 2 for the small problems. 69
4.8 NBV comparison of Models 1 and 2 for the medium problems. 71
4.9 NCV comparison of Models 1 and 2 for the medium problems. 71
4.10 NC comparison of Models 1 and 2 for the medium problems. 71
4.11 CPU time comparison of Models 1 and 2 for the medium problems. 72
4.12 NBV comparison of Models 1 and 2 for the large problems. 74
4.13 NCV comparison of Models 1 and 2 for the large problems. 74

Xii

Figure Page
4.14 NC comparison of Models 1 and 2 for the large problems. 75
4.15 CPU time comparison of Models 1 and 2 for the large problems. 75
4.16 Timej,. comparison of Models 1 and 2 for the large problems. 75
4.17 NBYV comparison of Models 1 and 2 for the extra-large problems. 78
4.18 NCV comparison of Models 1 and 2 for the extra-large problems. 78
4.19 NC comparison of Models 1 and 2 for the extra-large problems. 79
4.20 CPU time comparison of Models 1 and 2 for the extra-large problems. 79
4.21 Timej,. comparison of Models 1 and 2 for the extra-large problems. 79
4.22 Gantt chart of press machines for Problem L1 using the 3P-PCB-PH algorithm. 87

4.23

Gantt chart of ovens for Problem L1 using the 3P-PCB-PH algorithm. 87

CHAPTER 1

INTRODUCTION

1.1 Motivation

A printed circuit board (PCB) plays an important role in modern times [1]. PCBs
are boards used to connect electronic devices and are essential parts of various electronic
products in everyday life, such as air conditioners, televisions, refrigerators, computers,
and mobile phones. Because of the high demand of these electronic products, the demand
of PCBs increases rapidly at present. It is therefore no surprise that the PCB production
has become a competitive market [2]. Almost all PCB manufacturers are encountering
the challenge of enhancing production efficiency to deal with the intense competition. In
every aspect of production, the productiveness and cost are important points. Hence,
every PCB manufacturer aims to reduce the manufacturing cost and to maximize the

efficiency of production machines.

In accordance with the number of layers, PCBs can be characterized into three
types as single-layer PCBs, double-layer PCBs, and multi-layer PCBs. Figure 1.1 shows
each type of PCBs. Single-layer PCBs have just one layer of base material and consist
of circuits and electronic components on the only single side. They are mostly used in
simple circuitry, such as calculators, radios, and printers. In double-layer PCBs, the
circuit pattern is available on both sides. This type of PCBs is mostly used in industrial
control, converter, and LED lighting. The multi-layer PCBs expand the technology used
in double-layer boards. This PCB type has more than two layers. It is very complex
and used in large applications like satellite systems, GPS technology, medical equipment,
data storage, and computers. Each PCB type has different manufacturing procedures
and consists of many stages or processes. A PCB manufacturer must provide a good

scheduling plan for any process in the manufacturing so that the production time and

e
\

Top layer

=il
Copper layer <— Substrate
T I

(a) Single-layer PCB (b) Double-layer PCB

Copper foil

Prepreg

(c) Multi-layer PCB

Figure 1.1: Types of PCB.

cost are reduced.

Multi-layer PCBs are the most complex type of PCBs and are used in high technol-
ogy products. Their manufacturing procedure consists of many stages, and their produc-
tion cost is very high because of the complexity of the manufacturing process. According
to Khandpur [3], multi-layer PCB manufacturing has four stages as shown in Figure 1.2,
which include the design, the fabrication, the assembly, and the testing. The design stage
aims to create the circuit patterns using a PCB design software. The fabrication stage
focuses on constructing a PCB or bare board. The assembly stage aims to set electronic
devices, such as transistors, resistors, and capacitors on specified positions on a bare
PCB. Lastly, the PCB testing is the stage of inspection to assure that PCBs meet the
customer’s requirements and standards. Note that each stage also contains many pro-
cesses. Every PCB company tries to reduce the cost or production time in every process

but still maintains the product quality.

In multi-layer PCB manufacturing, the pressing process is a part of the fabrication
stage. It is a time- and cost-consuming process and consists of many materials and costly
machines. In the pressing process, the production time can be reduced while the utilization

of machines can be increased by providing a suitable schedule. In reality, the pressing

1. Design 2. Fabrication 4. Testing

Figure 1.2: Multi-layer PCB manufacturing.

process is scheduled manually by PCB staffs, which may not yield the best utilization of
resources. Mathematical optimization can help produce an optimal schedule, which uses

assignment and sequencing.

Despite the importance of the pressing process scheduling in the PCB manufacturing
industry, there is no research study in the literature that investigates the pressing process
scheduling. Therefore, this dissertation focuses on the pressing process scheduling and
aims to fulfill this gap by providing some approaches for solving the pressing process
scheduling with the objective of maximizing the resource utilization. These approaches
will provide an option for an optimal schedule or a good schedule for the pressing process

in any PCB manufacturing industries to reduce their production time and cost.

1.2 Background Knowledge

In this section, the background knowledge for this research study is presented. The
details of multi-layer PCB fabrication are described in the first section. Then, a brief
background in linear programming, nonsimultaneous constraints, and heuristic are given.
Next, a flexible job-shop scheduling problem, which is a type of scheduling problems and
has similar backgrounds as the pressing process scheduling, is introduced. Lastly, the

comparison of the performance of mixed-integer linear programming models is explained.

1.2.1 Multi-layer PCB fabrication

Multi-layer PCB fabrication is a stage in multi-layer PCB manufacturing. This
stage aims to construct PCB or a bare board. A variety of processes are currently used for
fabricating multi-layer PCBs by each PCB manufacturer. However, most of the processes

are identical or similar. According to Khandpur [3], copper clad laminate, prepreg, and

copper foil are the main materials in the multi-layer PCB fabrication. The fabrication of

multi-layer PCBs is comprised of the following steps:

1. The sheets of copper clad laminate are cut to the proper size in the cutting process.

2. The original designed pattern is transferred to the copper surface of the laminate
sheet, and the copper is then removed from undesirable areas in order to get the
desired circuit pattern on the laminate in the etching process. In this dissertation,

an etched laminate is called a core.

3. A number of cores are stacked together, and a prepreg is put between each pair
of them. Also, a copper foil is placed on the top and bottom layers. In this
dissertation, this stack is called a panel. The panel is pressed using pressure and
heat in the pressing process to form a multi-layer board. More details about the

pressing process will be described in Chapter 3.

4. The pressed boards are sent to the drilling process, where holes will be drilled in

the pressed boards and, on the external surfaces, the circuit pattern will be created.

5. The other steps are the labeling and final inspection processes.

Cutting Process Etching Process
Drilling Process

Labeling and
Final Finished
I::>’|:> Inspection E>
Processes

Pressing Process

Figure 1.3: The steps of the multi-layer PCB fabrication.

Figure 1.3 summarizes the steps of the multi-layer PCB fabrication. The multi-layer

PCB fabrication is complex and composes of several processes. However, this dissertation

only focuses on the pressing process. Actually, the pressing process is related to a math-
ematical optimization since it can be considered as a scheduling problem. The problem

description of the pressing process will be explained in Chapter 3.

1.2.2 Linear programming

A linear programming (LP) problem is a class of mathematical optimization prob-
lems. An LP problem can be a maximization problem or a minimization problem. The
objective of an LP problem is a linear function, and constraints in an LP problem are also
linear, which can be linear equalities or inequalities. The variables in an LP problem are
continuous. There are two general forms of an LLP problem, i.e., standard and canonical

forms [4].

An LP problem is in the standard form when all constraints are equalities and all
variables are nonnegative. A maximization problem and a minimization problem of LP
can be mathematically formulated in the standard form as shown in Table 1.1. Note
that a minimization problem in the standard form can be transformed into an equivalent
maximization problem in the standard form (and conversely) by multiplying the given

objective function by —1, i.e.,

min z = —max — z.

Table 1.1: The standard form of maximization and minimization problems of LP.

Maximization problem Minimization problem
n n
max z = chxj min z = Z Cjx;
j=1 j=1
n n
s.t. Zaijxj :bl (Z: 1,2,...,m) s.t. Zaijxj :bl (’L: 1,2,...,m)
j=1 j=1
z; >0 (j=1,2,...,n) ;>0 (j=12,..,n)

A maximization problem or a minimization problem of LP is in canonical form
when all constraints are of the < type or of the > type, respectively, and all variables

are nonnegative. A maximization problem and a minimization problem of LP can be

Table 1.2: The canonical form of maximization and minimization problems of LP.

Maximization problem

Minimization problem

n

max 2 = E Cij

J=1

n
s.t. Zaijzj < bz (’L = 1,2, ,m)
J=1

z; >0 (j=12,...,n)

n

min =z = E CiTj

J=1

n
s.t. Zaij:z:j > bl (’L = 1, 2, ,m)
J=1

mathematically formulated in the canonical form as shown in Table 1.2.

In the canonical form, a minimization problem can be transformed into a maxi-

mization problem (and conversely) by simple manipulations as follows.

o The objective of minimization can be converted to maximization by multiplying

the given objective function by —1.

e A given constraint, which is in > type, in a minimization problem can be converted

to the constraint in < type by multiplying the inequality by —1.

In both the standard and canonical forms, all variables must be nonnegative. If a
variable z; in the problem is unrestricted in sign, it can then be replaced by z; —z”/, where
m; > 0 and a:g-’ > 0. Moreover, an LP problem in the canonical form can be converted to

the standard form as follows.

e In a maximization problem, a given constraint in < type can be converted to an

equation form by adding a nonnegative slack variable x,41,

n n
E aj;r; < by — E ai;Tj + Ty = b;.
= j=1

e In a minimization problem, a given constraint in > type can be converted to an

equation form by subtracting a nonnegative surplus variable z,1,
n n
E Qijxj > bz — E AijTj — Tp4l = bz
j=1 j=1

On the other hand, an LP problem in the standard form can be converted to the

canonical form as follows.

n
o If the problem is a maximization problem, an equation of the form Z a;;x; = b
j=1
can be transformed into the following two inequalities,

n n n
E Qi Tj = bz — E Q5T < bz and — E Q5T < —bi.
j=1 j=1 j=1

n
e If the problem is a minimization problem, an equation of the form Z ai;r; = b;
j=1
can be transformed into the following two inequalities,

n n n
E A5 = bl 7 E Ai5L > bl and — E A% > —bi.
=1 j=1 =1

In an LP problem, a set of values of variables x1, o, ..., x, satisfying all the linear
constraints is called a feasible solution. The set of all feasible solutions constitutes a feasi-
ble region. The LP problem aims to find a feasible solution that maximizes or minimizes
the objective function, which is called an optimal solution. A well-known approach used
for solving an LP problem is the simplex method. In addition, if all variables in an LP
problem are restricted to be integer, the LP problem becomes an integer linear program-
ming (ILP) problem. If all variables are restricted to be only 0 or 1, the problem becomes
a binary integer linear programming (BILP) problem. The classical solution approaches

for solving an ILP and BILP are branch and bound and cutting plane [5].

Furthermore, in an LP problem, if some of the variables are restricted to be integer,
the problem is called a mized-integer linear programming (MILP) problem. An integer

variable in a MILP problem can be discrete or binary. Let Zar be the set of all nonnegative

integers. A MILP problem can be mathematically formulated in the standard form [5] as

follows.

n p
max z = cha:j + deyk
j=1 k=1
n p
s.t. Zaijxj —I—Zgikyk =b (i=12,...,m)
j=1 k=1

xzj >0 (1=1,2,..,n)

Yk EZ(')|r (k=1,2,...,p)

The classical solution approaches for solving a MILP problem are also branch and
bound as well as cutting plane [5]. Nowadays, MILP is widely used in many application

areas, such as scheduling, production planning, and supply chain management.
1.2.3 Nonsimultaneous constraints

In an LP problem, a set of constraints is nonsimultaneous if only some constraints
in the set must be satisfied in the problem. Nonsimultaneous constraints do not follow
the assumption of LP and MILP because all constraints must be satisfied simultane-
ously. However, we can convert a problem that includes nonsimultaneous constraints to
an equivalent problem which has all simultaneous constraints using binary variables. If
the original formulation of the problem fits an LP format except the part of nonsimulta-
neous constraints, introducing binary variables can transform the problem into a MILP

problem.

An example of nonsimultaneous constraints, which can be applied in various sit-
uations, is either-or constraints. This constraint type will also be used in our proposed
models for the pressing process scheduling in Chapter 3. In either-or constraints, at least
one of two constraints must be hold but not necessarily both. A general form of either-or

constraints can be expressed as follows.

Either f(x1,29,...,25) < di

or g($15$2a"'7xn) Sd?

Note that, for an LP problem, the functions f and g in (1.1) are linear. To convert
either-or constraints (1.1) to simultaneous constraints, let F; and Fy be the sets of all
feasible solutions of the first and the second constraint in (1.1), respectively. Assume that
all constraints in (1.1) are bounded in the intersection of F} and Fj, i.e., there exists
M; € R such that Y(z1,x9,...,xy) € F1 N Fy, f(x1,29,...,2,) < M; and there exists
M, € R such that V(z1,22,...,2,) € F1 N Fy, g(x1,22,...,2,) < Ms. The either-or
constraints can be converted to two simultaneous constraints using an auxiliary binary

variable y and a large positive number M, where M > max{M;j, M>}, as follows.

T1,%2, ..., xp) <di+ M
[z, 22) 1+ My 12)

g(xlaan“'?xn) §d2+M(1_y)

From (1.2), if y = 0, the second constraint, g(z1, z2, ..., x,) < d2 + M, is redundant
while the first constraint, f(z1,z2,...,2,) < di, is satisfied. If y = 1, the constraint
flx1,29,...;x,) < dy + M is redundant while the other constraint, g(x1, 2, ..., z,) < do,
is satisfied. Hence, the either-or constraints (1.1) can be added to an LP problem using

the form (1.2). The new problem becomes MILP due to the auxiliary binary variable y.

A following example illustrates how to reformulate an LP problem with either-or

constraints into a MILP problem.

Example 1.2.1. Consider the LP problem

max 50x1 4+ 60x2
5.t 221 + 22 < 300 (1.3)
Either 3z + 4x9 < 509 (1.4)
or 4x1 + Tze < 812 (1.5)

] ZouxQ 20

Let M be a large positive number and y be a binary variable. This LP problem

can be reformulated into a MILP problem (P;) as follows.

10

(P1) max 50x1 + 60z
st. 2x1+x9 <300
3z + 4xo <509+ My
dxy + Tog <812+ M(1 —vy)

xz1 > 0,29 >0,y € {0,1}.

A possible value of M for Problem P; can be chosen as follows. From Constraints
(1.3) = (1.5), if 22 = 0, the largest value of 21 is max{33?, 209 812} = 203. On the other
hand, if 1 = 0, the largest value of x2 is max{300, %, 8121 — 300. From either-or
constraints (1.4) — (1.5), the maximum value of the left hand side (LHS) of Constraint
(1.4) is 321 + 4x2 < 3(203) +4(300) = 1809 =: M;, while the maximum value of LHS of
Constraint (1.5) is 41+ 7zg < 4(203)47(300) = 2912 =: My. Let M = max{M;, My} =
max{1809,2912} = 2912. This value can be a possible value of M for Problem P;.

1.2.4 Heuristic

In a mathematical optimization, a heuristic is a technique designed for solving a
problem more quickly when classical methods cannot find an optimal solution within an
acceptable time. Many optimization problems from the real world are very large and are
not easy to find an optimal solution. Therefore, heuristic algorithms are preferred tools
for finding an approximated solution of an optimization problem within a reasonable
time. The solution from a heuristic algorithm may not be the best of all solutions to
the problem, but it is acceptably good. In general, a heuristic algorithm will be designed

upon a problem at hand.

In this section, two examples of heuristics for solving the parallel machine scheduling

problem (PMSP) [6] are explained. The problem description of PMSP is as follows:

e There are m identical parallel machines.

o There are n jobs to be processed, where each job requires a single operation and

can be processed on anyone of the m machines or on anyone that belongs to a given

11

subset of the m machines.

e The objective of PMSP is to minimize the maximum completion time over all jobs,
which is called makespan (Chax), i-€., Cmax = max{C1, Cy, ..., Cp,} where Cj is the

completion time of job j € {1,2,...,n}.

Two heuristics for solving PMSP that are explained here include the longest pro-
cessing time (LPT) and load balancing. The idea of LPT and load balancing are as

follows.

1. LPT: All jobs are arranged in descending order of processing times. The jobs that
have large values of processing times are given high priority for scheduling on the
parallel machines. The m longest jobs are firstly assigned to the m machines. The
longest job among the unprocessed jobs is then assigned to the machine that can

start the job as fast as possible until all jobs are scheduled.

2. Load balancing: This heuristic tries to balance load in each machine. Firstly,
the tentative load per machine can be computed from %, where Ty, is the total
processing time of all jobs. Then, all jobs are partitioned into m groups, where the
total processing time of all jobs in each group must be equal to or similar to the

tentative load per machine.

A following example [6] illustrates how to solve PMSP using the LPT and load

balancing heuristics.

Example 1.2.2. Consider PMSP with 9 jobs (Ji, Jo, ..., Jy) and 4 machines (M1, Ma, M3,
My), where the processing time of each job (p;) is shown in the following table. Solve

this PMSP using the LPT and load balancing heuristics.

Job Jl Jg J3 J4 J5 JG J7 Jg Jg
pi | T | 7|66 55 |4 4]4

Solution using LPT

12

Firstly, all jobs are sequenced in descending order of processing times. Because
jobs in the table have already been arranged according to processing times, we get

the LPT sequence as J; — Jo — J3 — Jy — J5 — Jg — J7 — Jg — Jy.

Next, jobs Ji — Jy are assigned to machines M; — My, respectively, as shown in
Table 1.3. These jobs can be started at time 0 on these machines because each job

is firstly scheduled on each machine.

Job J5 is then selected to be scheduled. It is assigned to a machine that can start
this job as early as possible, which can be machines M3 or My. Assume that job
J5 is assigned to process on machine M3 at time 6. Similarly, the next job (Jg) will

be started at time 6 in machine My, as shown in Table 1.3.

The next two unscheduled jobs, which are J7 and Jg, will be scheduled on machine

My and M; at time 7, respectively, as shown in Table 1.3.

The last job or Jy can be scheduled on any machine because it can be started as
early as possible at time 11 on every machine. Assume that job Jg is scheduled on
machine M; as shown in Table 1.3. We get a solution of this PMSP because all
jobs are already scheduled. Figure 1.4 shows the Gantt chart of this solution, and

the makespan of this solution is 15.

Table 1.3: A feasible schedule for PMSP using LPT heuristic.

] Starting time | Processing time | Completion time
Job | Machine
(5;) 22 (Cj)
J1 M, 0 7 7
Jo Mo 0 7 7
Js Ms 0 6 6
Jy M, 0 6 6
J5 Ms 6 5 11
Jg My 6 5 11
J7 M, 7 4 11
Jg Mo 7 4 11
Jo M, 11 4 15

13

M 14 I8
o Ms 13 Js
=
g
Mz 12 Ja
My 1 i) 17 3

Figure 1.4: Gantt chart of the solution of PMSP using LPT heuristic.

Solution using load balacing

In this problem, the tentative load per machine is % = % = 12. Then, all 9 jobs
are partitioned into 4 groups, where the total processing time of all jobs in each group
must be equal to or similar to 12. One possible combination is shown in Table 1.4. Figure
1.5 shows the Gantt chart of this solution. The makespan of this solution is 12, which is

better than the makespan of the solution from LPT heuristic.

Table 1.4: A feasible schedule for PMSP using load balancing heuristic.

Machine | Job group | Total processing time in the group
My {J1, J5} T+5=12
Mo {Ja, Js} 7T+5=12
Ms {J3, Ju} 6+6=12
My {J7, Jg, Jo} 4+4+4=12

1.2.5 Flexible job-shop scheduling problem

A flexible job-shop scheduling problem (FJSP) is a type of scheduling problems
which uses assignment and sequencing to obtain an optimal solution. This problem is
related to the pressing process scheduling problem that will be considered in this disser-
tation because they utilize the same techniques (assignment and sequencing) for solving

the problem. The problem description of FJSP is as follows [7].

14

M 17 I8 Ig
o M7 13 I4
=
E
Wt
=

Mz 1 12 L

My N 15

0 1 2 3 7 8 9 10 1 1z

Figure 1.5: Gantt chart of the solution of PMSP using load balancing heuristic.

o This problem has n jobs (J1, Ja, ...

, Jn) and m machines (M, Mo, ..., Mp,).

« Each job J;, wherei € {1,2,...,n}, consists of a sequence of operations (O;1, O;2, ...Ojn,)

to be processed to complete the job.

+ Each operation O;;, where j € {1,2,...,n;}, can be processed on any machine or

on anyone that belongs to a given subset of the m machines.

o The processing time of each operation is known and depends on a machine.

o Each machine can process only one operation at a time.

o The problem is to assign each operation to a suitable machine (assignment) and to

sequence the operations on the machines (sequencing) so that the makespan (Cipax)

is minimized.

An example of FJSP with 3 jobs and 4 machines [8] is shown in Table 1.5. There

are two, three, and two operations in Jy, Jo, and Js, respectively. The number in each

cell represents the processing time of that operation on the corresponding machine. The

“-” in this table means that the machine cannot process the corresponding operation.

A feasible solution or feasible schedule of this problem is shown in Figure 1.6. In this

solution, operations O11, 012, and O are assigned to machine M7, whereas operations

15

Table 1.5: An example of FJSP with 3 jobs and 4 machines.

Machi
Job | Operation acne
M, | My | Ms | My
O11 4 7 6 5
J1
O12 2 6 5
091 4 5 7 -
J2 022 5 - 6 3
O3 - 5 4 7
O- R
s 31 5 3 6
O3z - - 4 -

O39 and Oo3 are assigned to machine Ms. Besides, operations Os; and Og9 are assigned

to machines My and My, respectively. The sequencing of operations on each machine

is also illustrated in Figure 1.6. In this figure, we can see that all operations in each

job are processed according to the sequence of ordered operations. Furthermore, each

machine executes only one operation at a time, i.e., any two operations do not overlap.

The makespan of this solution is 17. Note that, in Figure 1.6, the same color represents

the operations of the same job.

Machine

M

M1'

022
O3z 023
()]
0o11 012 011
0 1 2 3 5 6 7 8 9 10 11 12 13 W 15 1 17

Figure 1.6: Gantt chart of a solution of the FJSP example.

FJSP has been comprehensively studied in literature. Many techniques have been

presented to solve FJSP, such as a mathematical model [9,10], a genetic algorithm (GA)

[7,11], a hybrid of artificial immune and simulated annealing (AISA) algorithm [10], and

16

a hybrid of GA and tabu search algorithm [12].

1.2.6 Performance measures for comparing MILP models

Normally, a mathematical model is the initial step to study an optimization problem
[13], especially a new one. Mathematical programming models have commonly been
proposed for finding an optimal solution for a scheduling problem, in particular MILP
models [14]. This is because a MILP model can clearly explain the constraints, objective,
and the specifications of the scheduling problem. It can also be used as an idea to
design a heuristic algorithm for solving the problem [15]. Furthermore, MILP is a type of
optimization model that allows an exact method, such as branch and bound and cutting
plane, to solve an optimization problem and provides an optimal solution if one exists. In
genaral, if an optimization problem can be formulated in MILP, there always exist many
alternative formulations of MILP for representing the optimization problem [5]. One
alternative may be easier to solve than others. Therefore, there must be some criteria for

comparing their efficiency.

There are many factors that affect the efficiency of a MILP model. According to
Meng et al. [16], the number of binary variables (NBV), the number of constraints (NC),
the number of continuous variables (NCV), the dimensionality of decision variables, and
the constraints’ tightness all affect the performance of a MILP model. Furthermore, the
coefficient of decision variables is another factor because it affects the quality of the LP
relaxation of the MILP model [5]. NBV is the most important factor that influences the

model’s performance, and NC is the next most important factor [17].

There are two common performance measures of size complexity and computational
complexity [13,16,18,19] that are used to evaluate the performance of any two alternative
MILP models. The size complexity is measured by counting NBV, NCV, and NC, which
are generated by the MILP model. If NBV, NCV, and NC in a model are less than
NBV, NCV, and NC in another model, respectively, the first one is absolutely better
than the second one in terms of the size complexity. However, the performance of a

MILP model does not only depend on the model size because there are other factors such

17

as the constraints’ tightness and the coefficient of decision variables. Many researchers
also evaluate the performance of MILP models in terms of the computational complexity,
which is measured by the computational time for solving the problem. If a MILP model
can solve the problem faster than another MILP model, the first one is better than the
second one in terms of the computational complexity. When a MILP model, says the
first model, outperforms another model, says the second model, in terms of both size and
computational complexities, it can be concluded that the first model is better than the

second model.

1.3 Research Objectives

This dissertation focuses on the pressing process scheduling in multi-layer PCB

manufacturing. The objectives of this dissertation are summarized as follows.

1. This work aims to propose a MILP model (hereafter Model 1) for the pressing pro-
cess scheduling in multi-layer PCB manufacturing with the objective of minimizing

the makespan.

2. This work aims to propose an alternative MILP model of the same problem (Model

2), which is an improvement of Model 1.

3. This work aims to present a heuristic algorithm (three-phase-PCB-pressing heuris-

tic algorithm or 3P-PCB-PH algorithm) for solving the pressing process scheduling.

In this work, some actual data of the pressing process were acquired from a PCB
company. The test problems in this work are generated from the actual data and are

solved using all the proposed methods to compare their performances.

1.4 Research Contributions

The contributions of this dissertation can be summarized as follows.

1. To the best of the authors’ knowledge, this work is the first research study on the

18

scheduling of the pressing process, which is a real application from PCB manufac-

turing industry and has never been investigated in literature.

2. This work proposes two novel MILP models for solving the pressing process schedul-
ing, i.e., Models 1 and 2. In this work, Model 2 is an improved version of Model 1,
where Model 2 is superior than Model 1 in terms of both size and computational

complexities.

3. Because of the complication of the pressing process scheduling, a 3P-PCB-PH al-
gorithm for solving this problem is also proposed. The 3P-PCB-PH algorithm can
find a good solution to the pressing process scheduling within a reasonable amount

of time.

4. The proposed Models 1 and 2 as well as the 3P-PCB-PH algorithm can be options
to find an optimal schedule or a high quality schedule for any PCB manufacturer

to reduce their production time and cost.

1.5 Overview of Dissertation

This dissertation contains five chapters and is organized as follows. Chapter 1
provides the introduction of this research study, which includes motivation, background
knowledge, research objectives, and research contributions. The background knowledge
consists of multi-layer PCB fabrication, LP, nonsimultaneous constraints, heuristic, FJSP,
and performance measures for comparing alternative MILP models. Chapter 2 is the
literature review which is related to processes in multi-layer PCB manufacturing as well
as improvement and comparison of the performance of MILP models of various scheduling
MILP models. Chapter 3 explains the problem description and the proposed methodology,
which are divided into four sections. In the first section, the pressing process scheduling is
described in detail. The proposed MILP models, which are Models 1 and 2, are presented
in the second and third sections, respectively. In this work, Model 2 is improved from
Model 1, where it has a smaller model size and uses less computational time than Model

1 for solving the pressing process scheduling problem. The last section proposes the 3P-

19

PCB-PH algorithm. Numerical examples are shown in Chapter 4. Finally, the conclusions

of this research study are in Chapter 5.

CHAPTER 11

LITERATURE REVIEW

The literature review of this dissertation is divided into two parts. The first part
reviews the related studies about processes in multi-layer PCB manufacturing, and the
second part reviews the related studies about improving and comparing the performance

of MILP models for various types of scheduling problems.
2.1 Literature review about processes in multi-layer PCB manufacturing

As stated in Chapter 1, multi-layer PCB manufacturing has four stages, i.e., the
design, the fabrication, the assembly, and the testing. There are many research studies
that are related to the fabrication, the assembly, and the testing. In the multi-layer PCB
fabrication, there are many time- and cost-consuming processes, such as cutting and
drilling processes. Every PCB manufacturer wants to keep the waste areas from laminate
cutting to a minimum in the cutting process. The two-dimensional cutting stock problem
(2DCSP), which is a well-known problem in optimization, can represent this process. In
the drilling process, every PCB company wishes to determine an optimal path for drilling
the hole in the specified positions in the circuit pattern in order to reduce the travel time
of the drilling device. An optimization problem that is related to the drilling process is

the drilling path optimization problem (DPOP).

2DCSP has been extensively studied in the literature. The first mathematical model
for 2DCSP was presented by Gilmore and Gomory [20], and the model was solved via a
column generation technique. An exact arc-flow model, which is an ILP formulation, for
2DCSP with two stages and guillotine cutting constraints was presented in [21]. An exact
branch-and-price algorithm was also proposed for solving 2DCSP with two stages and
guillotine cutting constraints [22]. For 2DCSP with multiple stock sizes, several heuristic

algorithms based on column generation were developed such as [23,24]. In addition, some

21

research studies on the cutting process used real data from PCB manufacturers [25, 26].
In [25], many appropriate heuristic algorithms were presented for solving 2DCSP with
multiple stock sizes using real problems from a PCB company. Moreover, a mathematical
model for 2DCSP with fixed size usable leftover was proposed and solved using a column

generation technique with real instances from a PCB company [26].

DPOP can be modeled as a traveling salesman problem (TSP), which is a very well-
known problem in optimization. In drilling process, the drilling device should be steered
to the position of each hole exactly once in order to minimize the total travel time of
the drilling device. Numerous heuristic techniques have been proposed for solving DPOP,
such as GA [27], an ant colony system [28], a particle swarm optimization (PSO) [29], a

cuckoo search algorithm [30,31], and a hybridized cuckoo search-genetic algorithm [32].

The PCB assembly is a time-consuming process in the manufacturing of PCB that
involves setting electronic components at the predefined places on a bare board. Nor-
mally, there are a lot of placement machines in a PCB assembly line. Because of many
configurations and types of the placement machines, several machines can have different
unit assembly times for the same component. Each bare PCB goes through all machines
to finish the placement of components. Thus, the components must be served to suitable
machines in order to minimize the assembly time. This conducts the workload balance
problem in the PCB assembly line. The goal of this problem is to minimize the maximum
assembly time among all placement machines in the line for a specific PCB type, which is
called the cycle time of the assembly line. GA [33] and a branch-and-bound-based opti-
mization algorithm [34] have been presented for solving this problem. Moreover, a MILP
formulation for a workload balance problem in the PCB assembly line with additional
constraints, such as precedence constraints between components and the use of feeder
modules, was proposed in [35]. Furthermore, a hierarchical heuristic for solving the in-
tegrated workload balancing and the single machine optimization problem was presented

in [36].

The testing process is the final stage in the PCB manufacturing. Before PCBs are

22

used in the field, environmental stress screening chambers are regularly used on PCBs to
inspect primal fallouts. A chamber can test many PCBs at the same time, i.e., PCBs can
be processed in batches. The processing time of a batch is the longest processing time
among all jobs that constitute the batch. Consequently, the PCB testing process can be
considered as a batch processing machine scheduling problem (BPMSP), which has been
widely studied in literature. In [37], a simulated annealing (SA) algorithm was presented
for solving a single BPMSP with the objective of minimizing the makespan. Reference [38]
proposed a PSO algorithm for solving a nonidentical parallel BPMSP with the objective
of minimizing the makespan. A MILP model, which has the objective of minimizing
the makespan, was proposed for the flow-shop scheduling problem (FSP) with batch
processing machines [39]. Moreover, a simulation-based intelligence optimization method
was proposed for solving FSP with multiple heterogeneous batch processing machines
and the objective of minimizing the makespan [1]. Furthermore, a nonidentical parallel
BPMSP with the objective of minimizing the total weighted tardiness was considered

in [40], and the problem was solved using a PSO algorithm.

2.2 Literature review about improving and comparing the performance of

MILP models for various types of scheduling problems

In general, a scheduling problem is formulated in a form of a MILP model [14]. Since
there always exist many, possibly infinite, alternative formulations for a given integer
programming problem [5], many researchers aim to improve MILP models so that they

can solve scheduling problems more effectively.

There are many research studies that aim to compare and improve the performance
of MILP models for various types of a scheduling problem. In [41], the authors considered
the flow-shop, permutation flow-shop, job-shop, and open-shop scheduling problems (FSP,
PFSP, JSP, OSP) with limited waiting time constraints and the objective of minimizing
the makespan. For each problem, the authors presented two MILP models and determined
the best model by comparing the size complexity between them. Reference [42] considered

OSP with the objective of minimizing the total tardiness. The authors proposed four

23

MILP models for OSP and determined the best model by comparing the performance
in terms of both size and computational complexities. In [43], a MILP model for FJSP
with sequence dependent setup time (SDST-FJSP) and the objective of minimizing the
toal tardiness was presented. The proposed MILP model was shown that it outperformed
the existing model for SDST-FJSP from [44] in terms of both size and computational
complexities. Besides, two MILP models for FJSP with the objective of minimizing the
makespan were proposed in [10]. Both MILP models were evaluated the performance with
the existing models for FJSP [9,45,46]. The results showed that they are better than the

existing models [9,45,46] in terms of both size and computational complexities.

As for the hybrid flow-shop scheduling problem (HEFSP), four MILP models with
the objective of minimizing the makespan were proposed in [18]. The authors determined
the best model for HFSP by comparing the performance of these models in terms of both
size and computational complexities. In [13], the distributed job-shop scheduling prob-
lem (DJSP) was considered, where the objective was to minimize the makespan. A MILP
model for DJSP was proposed and shown that it outperformed the existing model for
DJSP from [47] in terms of both size and computational complexities. In addition, refer-
ence [16] studied HFSP with unrelated parallel machines (UPM-HFSP) and the objective
of minimizing the makespan. Eight MILP models for this problem were proposed, and
the authors evaluated the performance of these models with the existing model from [48]
to determine the best model. Moreover, distributed FJSP (DFJSP) with the objective
of minimizing the makespan was studied in [19]. Four MILP models for DFJSP were
proposed and evaluated the performance in terms of both size and computational com-

plexities to determine the best model for DFJSP.

After extensively reviewing the literature, we can see that many processes in multi-
layer PCB manufacturing are investigated, but there is no research study on the pressing
process. Therefore, the pressing process is a new application, and this dissertation focuses
on this process. The goals of this dissertation are to provide effective approaches for solv-
ing the pressing process scheduling. Two MILP models with the objective of minimizing

the makespan for the pressing process scheduling are presented, and these models will be

24

compared the performance in terms of both size and computational complexities. Note
that the objective of minimizing the makespan can imply a good utilization of available
resources [49], which is generally the main objective of any PCB manufacturer. Further-
more, a heuristic algorithm for solving the pressing process scheduling is also presented.

The details of all the proposed approaches are in Chapter 3.

CHAPTER III

PROBLEM DESCRIPTION AND

METHODOLOGY

This chapter is divided into four sections. Section 1 describes the problem descrip-
tion of the pressing process scheduling. Sections 2 — 4 present the proposed approaches
for solving the pressing process scheduling, which include Model 1, Model 2, and the

3P-PCB-PH algorithm, respectively.
3.1 Problem description of the pressing process scheduling

This section explains the pressing process in multi-layer PCB manufacturing. The
aim of the pressing process is to press the stack of core, prepreg, and copper foil to form
a multi-layer board. In this study, the stack is called a panel as shown in Figure 3.1. The

details of the pressing process are as follows.

Copper foil \

Prepreg

Core «—

Figure 3.1: An example of a panel.

e A certain number of panel types (I) and the demand of each panel type (d;;i €
{1,2,...I}) are given.

o The company has (K) sizes of stainless-steel templates (SSTs) and L layouts. A
layout is a pattern of panel arrangement on SST. The result from a placement of

panels on SST is called a book.

« To arrange panels on SST, outer and inner gaps are required. The outer gap (G)

is the minimal gap between each panel and the SST’s edges, and the inner gap (g)

26

is the minimal gap between two panels in a book as shown in Figure 3.2. Both
inner and outer gaps depend on each panel type. The number of panels on a book
depends on these gaps, the SST size, the panel size, and the layout. Generally, a
PCB manufacturer has its own formula for calculating the number of panels on a

book using SST and a layout.

Outer gap (G)

\ Inner gap (g)

Panel «—

— SST

Book

Figure 3.2: Inner and outer gaps.

]

]

| SST .
i [-warp (length) > -
! I .
| g lll u
: "N :
1 =

| = U
i panel J- :
1 bOOk = '
1

1

press machine

“‘<:|
S

finished goods

Pressing phase
Cool-down phase

Figure 3.3: Processes in one cycle of a press machine.

27

e A cycle of a press machine in the pressing process has three phases as shown in

Figure 3.3, which consist of the following:

1. Lay-up phase: A number of panels of the same type, a SST size, and a layout
are used to create books. Then, the books are loaded into all openings (slots)

of the press machine.

2. Pressing phase: The press machine which is completely inserted with books is
put into an oven, where the books are pressed and heated. The press machine

is taken out of the oven after finishing the press.

3. Cool-down phase: In the press machine, the pressed books are cooled down.
Lastly, the books are removed from the press machine to finish a press machine

cycle.
o Each phase in the pressing process has a certain processing time.

o All three phases of a cycle of a press machine must be processed without interrup-

tion.

o After a press machine has completed a cycle, it can instantaneously start the next
cycle. For an oven, after the current pressing phase is done, it is immediately

available for the pressing phase of another press machine.

« A certain number of ovens (O) and press machines (P) are given, where each press

machine has m openings.

o A planning horizon of the pressing process scheduling is considered, such as 3 days,
where the maximum number of available cycles (T') of each press machine to operate
the pressing process is given. Actually, the production planning department of the
PCB company can approximate this value from the resources and the order of the

customer.

Moreover, this work has the following assumptions:

1. For each SST size, the number of SSTs is unlimited.

28

2. Within the planing horizon and available resources, the demands of panels from
the customers can be met, i.e., the demands or inputs from the customers yield a

feasible schedule.

3. This work considers the problem in a simple case, where the processing time of

each phase in the pressing process is the same (n).

The constraints in pressing process scheduling are as follows:

1. In a cycle of a press machine, all books that are inserted in all openings must have
the same patterns, i.e., all books are created using the same panel type, the same
SST size, and the same layout. This constraint is required to make sure that the
pressure from the press machine can be distributed equally over each panel on the

book.

2. Only one of the pressing phase of a press machine can be performed in an oven at

a time.

3. The number of finished goods or outputs of each panel type must satisfy the de-

mand.

The objective of the pressing process is to minimize the makespan, which is the

maximum completion time of all press machine cycles that operate the pressing process.

3.2 Proposed MILP model (Model 1)

This section proposes the first MILP model, which is called Model 1, for scheduling
the pressing process as explained in the previous section. The following notations are
used in the formulation of Model 1.

Indices:

29

The index of panel types.

k The index of sizes of SST.
l The index of layouts.
P The index of press machines.
0 The index of ovens.
t The index of cycles of a press machine.
Parameters:
I The number of panel types.
K The number of sizes of SST.
L The number of layouts.
P The number of press machines.
0] The number of ovens.
T The maximum number of available cycles of each press machine.
m The number of openings of each press machine.
n The processing time of each phase in the pressing process, i.e., the lay-up,
pressing, and cool-down phases.
@ikl The number of panels of type i per book (or per opening) using stainless size
k and layout [. If a;p; = 0, it means that panel type i is not compatible with
SST size k and layout [.
d; The demand of panel type 3.
M A large positive number.
Sets:
I The set of all panel types, I = {1,2,....1T}.
K The set of all sizes of SST, K = {1,2,...,K}.
L The set of all layouts, L = {1,2,...,L}.
P The set of all press machines, P = {1,2,...,P}.
O The set of all ovens, O = {1,2,...,0}.
T The set of all number of available cycles of each press machine,

T={1,2,..T}

30

Decision variables:

Likipt

X pto

thp’t’o

D pto

1
pt

Cmax

Binary variable which is equal to 1 if panel type ¢ is assigned with SST size

k and layout [to press machine p at cycle ¢.

Binary variable which is equal to 1 if press machine p at cycle ¢ is sent into
oven o for operating the pressing phase.

Binary variable which is equal to 1 if press machine p at cycle ¢ precedes
press machine p’ at cycle ¢ in oven o.

Continuous variable representing the starting time of the lay-up phase of
press machine p at cycle t.

Continuous variable representing the starting time of the pressing phase of
press machine p at cycle t in oven o.

Continuous variable representing the completion time of press machine p at
cycle t.

Continuous variable representing the completion time of the pressing phase of
press machine p at cycle ¢ in oven o.

The auxiliary continuous variable, which is equal to Cpy; if a panel type, a SST
size, and a layout are assigned to press machine p at cycle t. Otherwise, it is
equal to 0. The necessity of this variable will be explained later.

Continuous variable representing the makespan, which is the maximum
completion time of the last cycle of all press machines that operate the

pressing process.

The proposed Model 1 can be stated as follows.

Objective:

min = Chax (3.1)

The objective function (3.1) is to minimize the makespan of the overall process.

Subject to the following constraints:

31

1. Panel-SST-layout assignment constraint:

I K L
ZZZ%W <1,VpePNteT (3.2)

i=1 k=1 [l=1

Constraint (3.2) makes sure that at most one panel type, one SST size, and one
layout can be assigned in each press machine cycle. When a panel type, a SST size,
and a layout are assigned to a cycle of a press machine, it means that all books that are
loaded into all openings in this cycle have the same pattern. On the other hand, if this
press machine at this cycle has no assignment of these materials, it means that this press

machine cycle is empty or does not do any work.

2. Panel-SST-layout compatibility constraint:
Tikipt < aips, Vi € I,Yk € K.Vl e L¥pe PVt e T (3.3)

Constraint (3.3) ensures that if panel type ¢ cannot be used with SST size k and
layout [(a;x; = 0), then this pattern cannot be assigned to any cycle of a press machine.
This is because if a;;; = 0, for some i € f7k € K,l € I:, then variable x;p:, for all

pE P,t e T on LHS is equal to 0.

3. Demand constraint:

PO R b
DD DD wimpt(meam) > di, Viel (3.4)

k=1 I=1 p=1 t=1

Constraint (3.4) makes sure that the total outputs of each panel type must satisfy
the demand. Note that the value m - a;; on LHS is the total outputs of panels of

type i (using SST size k and layout [) from one cycle of a press machine, and the term
K L P T

Yo >0 >0 > @ikpe(m-ap) represents the total outputs of panels of type i from all cycles
k=11=1p=1t=1

and all press machines after finishing the overall process.

32

4. Constraint for arranging the working cycles in sequential order:

I K L I K L))
ZZZ Tikip(t—1) Zzzzl‘iklm, Vpe P,VteT — {1} (3.5)

=1 k=1 [=1 i=1 k=1 [=1

Constraint (3.5) enforces that a panel type, a SST size, and a layout must always
be assigned to sequential cycles (starting from cycle 1) of a press machine if possible.
In other words, this constraint helps push all empty cycles to be appeared after non-
empty cycles (the cycles that have a panel-SST-layout assignment or the cycles that
really perform the pressing process). This is because if cycle t — 1 of press machine p has

EOK] L
no panel-SST-layout assignment <Z > Tikip(t—1) 0>, then, from Constraint (3.5),

=1k=11=1

0
the right hand side (RHS) term Z Z Z Zikipe = 0 for any cycle that is after cycle ¢ — 1.
i=1k=11=

This means that any cycle ' of press machine p that has a panel-SST-layout assignment

I K L
(1 e. Z Z > Tikipy = 1) must be before cycle t — 1.
=1i=1

5. Press machine assignment constraint:

@]
> Xpo=1V¥pe P, VteT (3.6)
o=1

Constraint (3.6) ensures that each press machine cycle must be only assigned to

one oven to do the pressing phase.

6. Constraint for setting times of the pressing phase of a cycle where X, = 0:
Byto + Dpto < (Xpt0)M, ¥p € P,¥t € T,Yo € O (3.7)

Constraint (3.7) assures that the starting and end times of the pressing phase of
press machine p at cycle ¢ in oven o can be any non-negative value (due to the large
positive number M in RHS) if press machine p at cycle t is assigned to do the pressing
phase in oven o (Xpi, = 1). Otherwise (X1, = 0), these values are set to be 0 since RHS
of Constraint (3.7), which is equal to 0, will force both values of By, and Dy, on LHS

to be 0.

33

7. Precedence constraint of cycles of a press machine:
Ay > Chiq, Vpe PVt e T — {1} (3.8)

Constraint (3.8) ensures that any press machine cycle can be started if and only if

the previous cycle has been done.

8. Constraint for setting the starting time of the pressing phase of any press machine
cycle:
0]
ZBpto =Ap+n, VpePVteT (3.9)
o=1
Constraint (3.9) enforces the starting time of the pressing phase of press machine
p at cycle ¢ in its assigned oven, say oven o', to be equal to the starting time of this cycle
(Apt) plus the processing time n required in the lay-up phase. It should be noted that the
O
term) B, on LHS is equal to the starting time of the pressing phase of press machine
o=1

p at cycle t in oven o' because the value of B, for all o € O — {0’} is equal to 0 from

Constraint (3.7).

9. Constraint for setting the completion time of any press machine cycle:
Cpt = Apt +3n, Vpe PVt e T (3.10)

Constraint (3.10) represents that the completion time of press machine p at cycle ¢
(Cpt) is equal to the starting time of this cycle (Ap) plus the processing time 3n, which

is the processing time of one cycle.

10. Constraint for setting the completion time of the pressing phase of any press machine

cycle:

(Bpto + 1) — (1 — Xpto)M < Dy, ¥p € PVt €T, Yo € O (3.11)

Dypto < (Bpto + 1) + (1 — Xpio)M, ¥p € PNVt € T,Yo € O (3.12)

Constraints (3.11) and (3.12) make sure that if press machine p at cycle ¢ is assigned

34

to perform the pressing phase in oven o (Xp;, = 1), the end time of the pressing phase of
press machine p at cycle ¢ in oven o (D) is equal to the starting time (Bp,) plus the
processing time n required in this pressing phase (Dpto = Bpto+n). Otherwise (Xpio = 0),

these constraints are redundant.
11. Constraint for avoiding an overlap in an oven:

Bpto > Dp’t’o - (}/ptp’t’o)Mv Vp,p/ € pa p 7é p/, Vtvt/ € Tn Vo € O (313)

Bp’t’o > Dpto - (1 - }/Zl)tp't'O)M7 Vpap/ € Pv p 7é p/7 Vt,t/ € T, Vo € O (314)

Constraints (3.13) and (3.14) enforce that the pressing phase of press machine p at
cycle t and the pressing phase of press machine p’ at cycle ¢/, which are assigned in the
same oven o (Xpto = Xppo = 1), cannot be operated at the same time. These constraints,

which are either-or constraints, help avoid an overlap of tasks in an oven.

12. Constraint for setting the auxiliary variable Cz’)t:

Ja sy,
Cpt — (ZZ szklpt> Cpy, ¥p € PNteT (3.15)
1

i=1 k=11
I K L
Cp < Cpr + M <1 = Z Z inklpt> , Vpe P,VteT (3.16)
i=1 k=1 =1
I K L
Cpu <M (Z > Zwiklpt> L VpeP el (3.17)
i=1 k=1 I=1

Constraints (3.15) — (3.17) ensure that if a panel type, a SST size, and a layout are

assigned in cycle ¢ of press machine p <i f i Tikipt = 1>, then variable C, is equal
i=1k=11=1 kL

to Cp. Otherwise it is equal to 0. Note that if Z > > Zikpe = 1, then Constraints

(3.15) and (3.16) imply that Cj, = Cy, and Conls?;;i;‘tl(:?il?) becomes redundant. On

the other hand, if i f EL: Tigipe = 0, then Constraints (3.15) and (3.16) are redundant,

and Constraint (SlT;)k:étl: iariable Cpi = 0. The variable Cj, will be used to determine

the makespan in Constraint (3.18).

35

13. Constraint for determining the makespan:
Cinax > Cly, Ype PVt ET (3.18)

Constraint (3.18) defines the makespan, which is the maximum completion time of

the last cycle of press machines that indeed perform the pressing process.

14. Constraint of decision variables:

Tipr € {0,1} VieVke K,\Vle LVpe P,vteT
Xpo € {0,1} Vpe P,VteT,Yoe O
Yoo € {0,1} Vp,p' € P, p£p, Vt,t' €T, Yoe O
Ay >0 VpePNteT
Bpto >0 Vp e PVt e T Yo e O (3.19)
Do > 0 Vp e PVt e T ,Yoe O
Cpt >0 Vpe PVteT
7, >0 Vpe P VteT
Cmax > 0

The size complexity of Model 1, which includes NBV, NCV, and NC, is shown in

Table 3.1.
Table 3.1: The size complexity of Model 1.
Type Model 1
Binary variable IKLPT + PTO + P(P - 1)T?0
Continuous variable 3PT +2PT0O+1
Constraint 8PT +2P(T — 1)+ 2P(P —1)T?0 +3PTO + IKLPT + 1

The proposed Model 1 demonstrates an application of MILP to solve the pressing
process scheduling. From the solution of Model 1, the proper panel type, the SST size, and
the layout which could be assigned to each press machine cycle are provided. Furthermore,

the solution gives the details that which press machine cycle will be sent into which oven

36

for performing the pressing phase as well as its starting and end times. Model 1 can be

an option to find an optimal schedule of the pressing process for any PCB manufacturer.

3.3 Improved MILP model (Model 2)

Although Model 1 in the previous section can be a MILP model for the pressing
process scheduling, the size complexity of this model is still large due to a lot of binary
variables and constraints. It uses a large number of binary variables and constraints to
formulate the constraint for avoiding an overlap in an oven. Furthermore, the starting
time of the pressing phase of a press machine cycle is defined using too many continuous
variables in Model 1. In addition, it defines the completion time variables, which is not
necessary to be defined in the model. These can cause poor performance to the MILP
model. This section proposes the second MILP model, which is called Model 2, for
scheduling the pressing process. The proposed Model 2 is an improvement of Model 1,
where NBV, NCV, NC, and the dimensionality of some decision variables in the model

are reduced. The notations used in Model 2 are as follows.

Indices:

Parameters: The indices, parameters, and sets used in Model 2 are the same as in Model 1.

Sets:

Decision variables:

Zikipt Binary variable which is equal to 1 if panel type 7 is assigned with SST size k&
and layout [to press machine p at cycle ¢ (The same as in Model 1).

Xpto Binary variable which is equal to 1 if press machine p at cycle t is sent into
oven o for operating the pressing phase (The same as in Model 1).

Yyt Binary variable which is equal to 1 if press machine p at cycle ¢ precedes press
machine p’ at cycle ¢’ in the same oven.

Apt Continuous variable representing the starting time of the lay-up phase of press
machine p at cycle ¢t (The same as in Model 1).

Byt Continuous variable representing the starting time of the pressing phase of press

machine p at cycle .

/
Ay

Cmax

min

s.t.

and,

37

The auxiliary continuous variable, which is equal to A, if a panel type, a SST

size, and a layout are assigned in press machine p at cycle t. Otherwise, it is

equal to 0.

Continuous variable representing the makespan (The same as in Model 1).

The proposed Model 2 for scheduling the pressing process can be stated as follows.

Cmax

I K L

E E g Tigipt < 1
i=1 k=1 1=1

Tikipt < Aikl

K L P T

Z Z Z Z Tikipt (M- Qi) > d;

k=11=1p=1t=1

I K L K L
E E E xiklp(t—l)zg E E Tikipt
i=1 k=1 I=1 i=1 k=1 1=1

16)

Z Xpto == 1
o=1

Apt Z Ap7t_1 + 3n

By = Apt +n
By > Bp +1n — (3= Yoipre — Xpto— Xp’t’o)M
Bpt > Bp’t’ +n— (2 + Y;Jtp’t’ i Xpto il Xp’t’())M

M~
M=
M=

/
fviklpt> < Ay

s
Il
_
=~
Il
-
Il
-

Il
—
B
Il
-

"ih;\ ”SEB
A AN
=
—
+
- =
MN/:\
Mhﬁ\
2 IM-
=
\“/NMN
=
8
=
"51
~

=~
Il
-
~
I
A

(3.20)
Vpe PNteT (3.21)

VielVke K,Vle LNpe P,vteT

(3.22)
Viel (3.23)
Vpe P VteT —{1} (3.24)
Vpe P VteT (3.25)
Vpe PvteT —{1} (3.26)
Vpe PNteT (3.27)

Vp,p' € P,p<p Vt,t' € T,Yoe O
(3.28)

Vp,p' € Pp < p' Vt,t' € T\Yoe O

(3.29)
Vpe PVteT (3.30)
Vpe P¥teT (3.31)
Vpe PNteT (3.32)
Vpe P VteT (3.33)

38

Tippe € {0,1} VieILVke K,Vle L,¥pe P,vteT,
Xpio € {0,1} Vpe PVte T, Yoe O,

Yy €{0,1} Vp,p' € P, p<p/, Vt,t' €T,

Ap >0 Vpe PVteT,
By >0 Vpe P VteT,
Al >0 Vpe PNteT,
CmaXZOo

The objective function (3.20) and Constraints (3.21) — (3.25) in Model 2 are the

same as the objective function (3.1) and Constraints (3.2) - (3.6) in Model 1, respectively.

Constraint (3.26) in Model 2 is equivalent to Constraint (3.8) in Model 1. Constraint
(3.26) combines Constraints (3.10) and (3.8) by replacing variable Cp; with Ay + 3n (as
indicated in Constraint (3.10)) in Constraint (3.8). It ensures that the starting time of
a cycle of a press machine (Ap;) must be greater than or equal to the completion time
of the previous cycle. Note that the starting time of the previous cycle (Ap;—1) plus the

processing time of one cycle (3n) is equal to the completion time of the previous cycle.

Constraint (3.27) in Model 2 is equivalent to Constraint (3.9) in Model 1. Constraint
(3.27) represents that the starting time of the pressing phase of press machine p at cycle ¢
(Bpt) is equal to the starting time of this cycle (Ay¢) plus the processing time (n) required
in the lay-up phase. Note that RHS of Constraints (3.27) and (3.9) are the same while
LHS of both constraints also represent the same value, which can be explained as follows.
From LHS of Constraint (3.9), there is only one non-zero value of variable By (assume
that press machine p at cycle ¢ is assigned to oven o' or X,y = 1) because all variables
Byto, Yo € O — {0’} will be 0 from Constraint (3.7), while LHS of Constraint (3.27) or
By is the starting time of the pressing phase of press machine p at cycle ¢ in its assigned
oven or oven o' (from variable X,). Hence, LHS of both constraints are also the same

value, and it means that Constraint (3.27) is equivalent to Constraint (3.9).

The role of Constraints (3.28) and (3.29) in Model 2 are equivalent to the role of

Constraints (3.13) and (3.14) in Model 1. These constraints assure that the pressing phase

39

of press machine p at cycle t and the pressing phase of press machine p’ at cycle ¢/, which
are assigned in the same oven, cannot be operated simultaneously. More details will be

explained later.

Constraints (3.30) — (3.32) in Model 2 are similar to constraints (3.15) — (3.17) in
Model 1. These constraints are used to enforce that if a panel type, a SST size, and a
layout are assigned in cycle ¢ of press machine p, then A;t = Ay Otherwise A;t = 0. The
auxiliary variable Aj, will be used to determine the value of the makespan in Constraint

(3.33).

Constraint (3.33) in Model 2 determines the makespan, which is equivalent to con-

straint (3.18) in Model 1.

Compared with Model 1 in Section 3.2, Model 2 contains various improved parts

as follows:

1. The new binary variable Y}, in Model 2 replaces the old binary variable Ypp /0.
Note that both variables have the same role to prevent an overlap of any two tasks of the
pressing phase that are assigned in the same oven. Nevertheless, the oven is not referenced
in the definition of Y. Model 2 can still retrieve the information of the oven from

variables Xy, and Xpro.

For example, suppose that variables X117 = X201 = 1. This means that the pressing
phases in cycle 1 of press machine 1 and in cycle 2 of press machine 2 will be processed
in the same oven 1. Assume that Y71927 = 1 in Model 1 and Y7192 = 1 in Model 2. The
variable Y11291 = 1 in Model 1 means that the pressing phase in cycle 1 of press machine
1 is processed before the pressing phase in cycle 2 of press machine 2 in oven 1. On the
other hand, variable Y7199 = 1 in Model 2 means that the pressing phase in cycle 1 of
press machine 1 is processed before the pressing phase in cycle 2 of press machine 2 in the
same oven. Even though the information of the oven is not provided by variable Y7129,
variables X111 = Xao91 = 1 still tells that the pressing phases in both cycle 1 of press

machine 1 and cycle 2 of press machine 2 are performed in oven 1.

40

Due to the replacement of variable Y4170 by Ypiprer, NBV in the model is reduced.
It can also reduce the dimensionality of decision variables because variable Y4, has

five indices, but variable Y}, has four indices.

2. Model 2 uses NC less than Model 1 to formulate the constraint for avoiding an overlap
in an oven. The non-overlapping constraints (3.28) and (3.29) in Model 2 are formulated
only for cases p < p/, while the non-overlapping constraints (3.13) and (3.14) in Model 1
are formulated for cases p # p’. In fact, to prevent an overlap in an oven, the constraint
only for cases p < p’ is required, which can be explained as follows. From Constraints
(3.28) and (3.29) in Model 2, either one of them will be active for any two pressing phases
of press machine p at cycle ¢t and press machine p’ at cycle ¢/, which are performed in the
same oven o (Xpo = Xpro = 1). If both tasks are not performed in the same oven o,
both Constraints (3.28) and (3.29) will be redundant. If both tasks are performed in the
same oven o and Yy = 1, Constraint (3.28) is active (since Yppr = Xpto = Xprvo = 1)
while Constraint (3.29) is redundant. The activation of Constraint (3.28) means that the
completion time of the pressing phase of press machine p at cycle ¢ must be less than
or equal to the starting time of the pressing phase of press machine p’ at cycle ¢ in the
same oven as shown in Figure 3.4(a). In other words, the task from press machine p
at cycle t is operated before the task from press machine p’ at cycle #. On the other
hand, if Ypyp = 0, Constraint (3.29) is active (since Yy = 0 and Xpo = Xppo = 1)
while Constraint (3.28) is redundant. The activation of Constraint (3.29) means that the
completion time of the pressing phase of press machine p’ at cycle ¢ must be less than
or equal to the starting time of the pressing phase of press machine p at cycle ¢ in the
same oven as shown in Figure 3.4(b). In other words, the task from press machine p at
cycle t is processed after the task from press machine p’ at cycle . These assure that any
two pressing phases from any two press machine cycles assigned to the same oven cannot
be done at the same time, according to the cases p < p’. Therefore, the non-overlapping

condition in the oven is clearly defined, and the constraints in cases p > p’ is not necessary.

Note that, from Constraints (3.13) and (3.14) in Model 1, the constraint only in
cases p < p’ are needed to prevent an overlap in an oven with the similar reason as

explained for Constraints (3.28) and (3.29) in Model 2. This is because if Yy = 1,

41

Machine
Oven o (p, t) (. t)
n 1
|_|_| .
f f Time
0 Bpt (Bpt + Tt)
B pltf
(a) Case Yy =1
Machine
Oven 0 .t (p,t)
n 1
I_I_I .
f f »T1ime
0 Bp’t’ (Bpltr + n)
Bpt

(b) Case Ypprr =0

Figure 3.4: Interpretation of Constraints (3.28) and (3.29).

Constraint (3.13) is redundant while Constraint (3.14) is active, which means that the
starting time of the pressing phase of press machine p’ at cycle ¢’ (in oven o) must be
greater than or equal to the completion time of the pressing phase of press machine p at
cycle ¢ (in oven o) as shown in Figure 3.5(a). On the other hand, if Yp¢+0 = 0, Constraint
(3.14) is redundant while Constraint (3.13) is active, which means that the starting time
of the pressing phase of press machine p at cycle ¢ (in oven o) must be greater than or
equal to the completion time of the pressing phase of press machine p’ at cycle ¢’ (in oven
0) as shown in Figure 3.5(b). According to the cases p < p/, it assures that any two tasks
in the same oven cannot overlap. Thus, the constraint in cases p > p’ is not necessary. In
fact, the constraint in cases p > p’ have the same role or are equivalent to the constraint
in cases p < p/, i.e., the constraint in cases p > p’ are redundant. Therefore, Model 1 have
the redundant constraints while Model 2 eliminates these redundant constraints from the

model. NC for avoiding an overlap of tasks in an oven in Model 2 is halved comparing

42

Machine
Oven 0 (p.t) ('t
n 1
I_I_I .
} } Time
0 B pto D pto
Bp tho
(a) Case YVypiro =1
Machine
Oven o (. t") (®t)
n 1
|_I_| .
! } » Time
0 Bp’t’o Dp’ t'o
Bpto

(b) Case Ypipriro =0

Figure 3.5: Interpretation of Constraints (3.13) and (3.14).

with Model 1.

3. The new continuous variable B,; in Model 2, which is without reference to the oven,
replaces the old continuous variable B,,. Both variables represent the starting time of the
pressing phase of press machine p at cycle ¢ in its assigned oven. For simplicity, assume
that the pressing phase in cycle ¢ of press machine p is processed in oven o'. In Model
1, Constraint (3.7), which controls variable By, Yo € O — {0’} to be zero, is needed in
order to have only the non-zero value of B, in the model. Nevertheless, this constraint
is not necessary in Model 2 since the model uses variable B,;, which does not reference
the oven. Even though the information of the oven is not provided by variable B, for

the task from press machine p at cycle ¢, it can be retrieved from variable X,.

For example, suppose that variable X901 = 1. This means that oven 1 will perform

the pressing phase of press machine 2 at cycle 2. Assume that variable Bgs; = 480

43

minutes in Model 1, and variable Bgy = 480 minutes in Model 2. The former means that
the pressing phase in cycle 2 of press machine 2 is started at time 480 in oven 1, while
the latter means that the pressing phase in cycle 2 of press machine 2 is started at time
480. Even though the information of the oven is not provided by variable Bao, variable
X991 = 1 still tells that the pressing phase in cycle 2 of press machine 2 is performed in

oven 1.

Due to the replacement of variable By, by By, NCV in the model is reduced. It
can also reduce the dimensionality of decision variable because variable B, has three
indices, but variable B, has only two indices. Furthermore, NC is also reduced because

it can eliminate Constraint (3.7) from the model.

4. The completion time variables are not used in Model 2, which include the completion
time of press machine p at cycle ¢ (Cp) and the completion time of the pressing phase of
press machine p at cycle t in oven o (Dpy,). This is because these values can be retrieved
after the model is solved, where the former is equal to A,; 4 3n and the latter is equal to
Bpi+n. This can reduce NCV in the model. In addition, NC is also reduced because it can
eliminate some constraints that contain the completion times, which include Constraint

(3.7) and Constraints (3.10) — (3.12).

Table 3.2: The size complexity of Models 1 and 2.

Type Model 1 Model 2
Binary variable IKLPT + PTO + P(P — 1)T20 IKLPT + PTO 4 £2-DT*
Continuous variable 3PT 4+ 2PTO + 1 3PT +1

8PT +2P(T — 1)+ 2P(P — 1)T?0 + TPT +2P(T — 1)+ P(P - 1)T?0 +
3PTO + IKLPT +1 IKLPT +1

Constraint

NBV, NCV, and NC that are used to formulate Model 2 are shown in Table 3.2.
From Table 3.2, it could be concluded that Model 2 outperforms Model 1 in terms of the
size complexity because NBV, NCV, NC that Model 2 generated are less than those in
Model 1. Both Models 1 and 2 show applications of MILP to solve the pressing process
scheduling and can be used to find an optimal schedule of the pressing process for any

PCB manufacturer. The computational complexities of both models will be compared in

44

Chapter 4.
3.4 Proposed 3P-PCB-PH Algorithm

Since the pressing process scheduling is complicated, a MILP model can be
unsuitable when the problem size is large. A heuristic algorithm, which is called a three-
phase-PCB-pressing heuristic (3P-PCB-PH) algorithm, is proposed in this section for
solving the pressing process scheduling. In this algorithm, the pressing process scheduling
problem is solved in three phases. Phase 1 aims to match each panel type with an
appropriate SST size as well as a layout and find the number of cycles required to satisfy
the demands. In Phase 2, then, all cycles that must be used are scheduled to find the
number of working cycles on each press machine, as well as their starting and end times.
Lastly, each panel type is assigned to a working cycle of a press machine in Phase 3,
together with its selected SST size and layout from Phase 1. The parameters in the 3P-
PCB-PH algorithm are similar to those in Models 1 and 2. The 3P-PCB-PH algorithm
has five steps, which are described below.

Step 1: Take the inputs I, K, L, P,O, T, m,n, a;y, Vi € I.ke K,leL,and d;,Viel.

Step 2 (Phase 1): Choosing a SST size and a layout for each panel type.

Algorithm 1 Phase 1 of the 3P-PCB-PH algorithm.

Input: [,K,L,m,d;, Vi€l and ayy, Vie I,k e K,l € L
1: For each i € I, find l%,-ef{,l_ieﬁ.
2: Compute dci:[d —‘,ViEf.

ma;g.i.

I
3: Compute d. = Z de,.
i=1

Output: d,, d,,,Vi e I and k;, I;,Vi € I

The inputs of Phase 1 consist of I, K, L, m,d;,Vi € Tand ayy,VieI,ke K,l € L.
In this phase, each panel type ¢ € I will be matched with a suitable SST size and a layout.
A SST size k; and a layout I; which provide the maximum number of panels of type i per

book are selected. From this selection, the number of panels of type ¢ per book is a7,

45

and the number of panels of type i that can be obtained per cycle is ma,j ;. Let d., be

the minimum number of cycles required for pressing each panel type i. This value can be
di
ma;g.g,

calculated from d., = { -‘ , where the expression [x]| is the smallest integer that is

not smaller than . The minimum number of total cycles required to satisfy the demands

T
of all types of panels can be calculated by d. = Z dc,. Due to the assumption that the
i=1
demands of panels from customers have a feasible schedule, the value d. is not greater
than the number of all available cycles P x T'. The algorithm for Phase 1 of 3P-PCB-PH

is shown in Algorithm 1. The time complexity of Phase 1 algorithm is O(IKL).

Step 3 (Phase 2): Scheduling the press machines and ovens.
To produce a schedule that minimizes the makespan, all d. cycles are distributed

to all press machines in this phase. The components of Phase 2 consist of the following.

1. Starting time matrix

The starting time matrix (A = [Ap]px7) stores the starting time of the lay-up
phase of press machine p at cycle ¢ (the starting time of press machine p at cycle t). In

the beginning, A is initialized to be [0] px7.
2. Completion time matrix
The completion time matrix stores the completion time of press machine p at cycle
t. In the beginning, C is initialized to be [0] px.
3. Candidate list

The candidate list (Can) represents the next earliest available cycle number to use
each press machine. In the beginning, Can is initialized to be [1];xp because the cycle

that is available to start for each press machine is cycle 1.

4. Scheduled pressing job

The starting and end times of the pressing phase of a press machine cycle are
collected in a scheduled pressing job, which is notated by (start_time, end_time,
press_machine, cycle). The elements in a scheduled pressing job tuple represent the

starting time, the completion time, the press machine number, and the cycle number,

46

respectively. Assume that we have a scheduled pressing job (240,360, 1, 1), for example,
it tells the information that this pressing job is processed from time 240 to 360 minutes

and is the task of press machine 1 at cycle 1.

5. Oven schedule list

The oven schedule list (Oven__ Schedule_List) stores the schedule pressing jobs to
use in each oven in a sequential order. Each element in Oven_ Schedule_ List is also
a list that contains the schedule pressing job tuples assigned in the corresponding oven.
An example of Qven_ Schedule_List is shown in Figure 3.6, where O = 3 and n = 120.
From the first list in Oven__Schedule__List, two pressing jobs have already been assigned
to oven 1. The first pressing job (120,240, 1,1) means that oven 1 has to perform the
pressing phase of press machine 1 at cycle 1 from 120 to 240 minutes, while the second
pressing job (480,600, 1,2) means that oven 1 has to perform the pressing phase of press
machine 1 at cycle 2 from 480 to 600 minutes. Likewise, the list for oven 2 contains only
one pressing job (120,240,2,1) that is already assigned. The third list (the list for oven
3) is empty, which means that there is currently no job assigned to oven 3 at this time. In
the beginning, Oven_ Schedule_ List is initialized to be the list of O empty lists [[]]ixo-

Later, the Phase 2 algorithm will append it with appropriate jobs.

el i e Ll
| 1
I Oven_Schedule_List = [[(120,240,1,1), (480,600, 1,2)],[(120,240,2,1)],[]| !
1 N P J

1 I | T |
! Jobs in oven 1 Jobs in oven 2 Jobs in oven 3 :

Figure 3.6: An Oven_ Schedule_ List example.

6. Oven idle time interval list

The oven idle time interval list (Oven_ Idle Time_ List) stores idle time intervals
of each oven in a consecutive order. Each element in Oven_ Idle Time List is also a
list that contains all idle time intervals in the corresponding oven. Figure 3.7 shows an
example of Qven_ Idle_Time_ List, which is corresponding to Oven__Schedule__List in
Figure 3.6. Note that, in the beginning, there is only one idle time interval [0, c0) in each

oven because there is no task that had been assigned to it yet.

47

Algorithm 2 Phase 2 of the 3P-PCB-PH algorithm.

1

10:

1

12:
13:
14:
15:

16:

17:
18:
19:
20:
21:

—_

Input: P,O,T,n,d,
: Set A =[0]pxr, C = [0]pxr, Can = [1]1xp,
Oven__Schedule_ List = [[]]1x0,
Oven__Idle_Time_List = [[[0,00)]]1x0

: for j =1 to d. do
Find p’, which is the press machine that has the minimum workload.
if Can[p’] == 1 then
Set start_time_ press_machine = 0
else
Set start_time_press_machine = C[p'|[Can[p’] — 1]
end if
Find o/, which is the oven that has the minimum workload.
if Total processing time of oven o’ == 0 then
Set A[p'|[Can[p’]] = start_time_press_machine,
Clp'|[Can(p']] = start_time_press_machine + 3n,
start_time__oven = start_time_ press_machine + n,
end_time_oven = start_time_oven +n
Add (start_time_ oven,end_ time oven,p’,Can[p']) to Oven_ Schedule List[o’]
Update Oven__Idle. Time_ List[0]
else
Examine each idle time interval in Oven_ Idle_Time_ List[0] from left to
right to find start_time_oven and end_time_ oven for press machine p’ at
cycle Can[p'] in oven 0.
Set A[p'][Can[p']] = start_time__oven — n,
Clp'|[Can(p']] = end_time_oven +n
Add (start_time_oven, end_time_oven,p’,Can|p']) to Oven__Schedule_ List[o’]
Update Oven__Idle_Time_ List[0']
end if
Set Can[p’] = Can[p'] + 1
end for

Output: A, C, and Oven_ Schedule__ List

1

| Oven_Idle_Time_List = [[[0,120], [240,480],[600, c0)], [[0,120],[240, 00)], [[0,0)]]
: L T J] L J
1
1

[
Idle time intervals Idle time intervals Idle time intervals
inoven 1 in oven 2 in oven 3

Figure 3.7: An Oven_ Idle_Time_ List example.

Following the introduction of all components, the Phase 2 algorithm is presented
as follows. The inputs for the algorithm include P, O, T', n, and d.. The value d. is the
total number of iterations of this algorithm. In each iteration, a press machine that has
the minimum workload is chosen, say press machine p’. Then, the algorithm checks to

see if the next earliest available cycle of this press machine (Can[p']) is the first cycle.

o If yes, set the starting time in cycle Can[p] of press machine p’ to 0.

o Otherwise, set the starting time in cycle Canp'] of press machine p’ to the com-

pletion time of the previous cycle.

Let start_time_press_machine be the starting time of press machine p’ at cycle
Can[p']. Note that this value does not yet represent the final starting time for this press
machine cycle because we must first examine the feasibility with its assigned oven. To
do the pressing phase, the cycle Can[p/] of press machine p’ will then be assigned to the
oven that has the minimum workload, say oven o. After that, we check to see if oven o

has been used yet.

o If not, Oven_Idle Time_ List[0'] contains only one idle time interval [0, 00). The
press machine p’ at cycle Can[p’] can begin the lay-up phase at
start_time_press_machine, and it is put into oven o’ sequentially to begin the

pressing phase at start_time_press_machine 4+ n.

o If yes, all idle time intervals in Oven_ Idle_ Time_ List[o'] from left to right will
be checked to find the earliest time that cycle Clan[p'] of press machine p’ can begin

the pressing phase in oven o’. Figure 3.8 illustrates an example. Assume that oven

49

o' is oven 1 which was previously assigned the pressing phase of press machine 1
at cycle 1, and suppose that n = 120 minutes. Assume that p’ is press machine
2, and Can[2] is cycle 1. We have start_time_press_machine = 0 because this
is the first cycle. However, all idle time intervals in Oven_ Idle_Time_ List[1]
will be examined from left to right because oven 1 has been used. From Figure
3.8, Oven_ Idle_Time__List[1] = [[0,120],[240,00)]. The first idle time interval
[0,120] is obviously infeasible to begin the pressing phase of this press machine
cycle because the lay-up phase has not yet been completed. Thus, cycle 1 of
press machine 2 can begin the pressing phase in oven 1 as quickly as possible at
time 240 minutes in the second idle time interval [240, c0). For simplicity, let this
time be start_time_oven. Consequently, the finishing time of the pressing phase
(end__time_oven), the real starting time, and the real completion time of press

machine p at cycle Can[p'] can be obtained as follows:

o end_time__oven = start_time__oven + n,
o Alp][Canlp']] = start_time oven — n,

o Cp'][Can[p]] = end__time__oven + n.

(press machine, cycle)

_——— = -y

oven 1 (1,1) (2,1)

t t t t 1 » time (minute)
120 240 360 480 600

Figure 3.8: An example of finding start_time_ oven.

After finding the start_time_oven, end_time_oven, A[p'][Can[p']], and
C[p'][Can[p']], these values are updated in matrices A, C', Oven_ Schedule_ List[o'], and
Oven__Idle_Time_List[o']. Also, the value Can[p/] is increased by one in order to set

the next cycle of press machine p’ to be a new candidate. The algorithm will repeat until

20

all d. cycles are scheduled. The Phase 2 algorithm of 3P-PCB-PH is shown in Algorithm

2. The time complexity of the algorithm for Phase 2 is O(P?T?).

Step 4 (Phase 3): Assigning the panel-SST-layout combinations to press machine working
cycles.

The input for Phase 3 includes I, d.,, Vi € I ,and k;, 1;,Vi € I. Recall that Phase
2 provides the number of working cycles of each press machine. In Phase 3, each panel
type is assigned to a working cycle of a press machine, together with its selected SST size

and layout from Phase 1 as follows:

o For the first panel type, the d., cycles are assigned to the first cycles of all press

machines such that the work is equally distributed among the press machines.

o For the second panel type, the d., cycles are assigned to the next available cycles

of all the press machines in order that the work is equally distributed, and so on.

Algorithm 3 Phase 3 of the 3P-PCB-PH algorithm.

Input: I, d.,,Vi € f, and k;, ;,Vi €)
1: for:=1to I do
2: Distribute d., cycles for panel type i (with SST size k; and layout I;) to the
earliest available cycles of all press machines equally as possible.
3: end for

Output: The value @, which is equal to 1.

The algorithm for Phase 3 of 3P-PCB-PH is shown in Algorithm 3. The output
from this panel-cycle assignment can be used to interpret variable z;z,;. Note that, from
this assignment, the same-type panels are finished in a group, which is preferred in the
real-world situation. An example of the result of this panel-cycle assignment will be shown

in the next chapter. The time complexity of the Phase 3 algorithm is O(PT).

Step 5: Interpreting the outputs.

o1

After solving the problem using the proposed algorithm, we can get the outputs as

follows.

1. Total number of finished goods of each panel type i € I: This value is equal to

(mail_t .)dCz

b

2. Schedule of press machines: The Gantt chart of press machines can be created from

matrices A and C.

3. Schedule of ovens: The Gantt chart of ovens can be created from

Owven Schedule List.

4. Variable x;pp:: Variable @, Vi € f,Vk: e K.Vl € ﬁ,Vp € p,Vt € T, which is

equal to 1, can be interpreted from Phase 3.

5. Makespan: The makespan (Chax) is the maximum element in matrix C.

From the 3P-PCB-PH algorithm, the time complexity includes O(I K L) from Phase
1, O(P?T?) from Phase 2, and O(PT) from Phase 3. Therefore, the total time complexity
of the 3P-PCB-PH algorithm is O(P>T? + IKL).

It is worth noting that PCB manufacturers prefer to complete each type of PCB
in a group because it is convenient to provide materials and arrange the next work.
The proposed Models 1 and 2 in Sections 3.2 and 3.3, respectively, can find an optimal
schedule for a pressing process, but cycles of panels of the same type may not be scheduled
continually. The proposed MILP models have this limitation while the proposed 3P-PCB-
PH algorithm can handle this preference. Hence, the 3P-PCB-PH algorithm is more

practicable to the real-world PCB production.

CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter, numerical experiments were conducted to evaluate the performance
of all proposed approaches. We acquired real-world data from a PCB company and used
it to generate the test problems. All problems were solved using Models 1 and 2 as well as
the 3P-PCB-PH algorithm, and their results were compared. Section 4.1 shows the data
and test problems. The computational results from Models 1 and 2 as well as the 3P-
PCB-PH algorithm are shown in Sections 4.2 — 4.4, respectively. Lastly, the discussions

are drawn in Section 4.5.
4.1 Data and test problems

The data obtained from a PCB company included the number of panel types (1),
SST sizes (K), layouts (L), press machines (P), openings of a press machine (m), and
ovens (O) as shown in Table 4.1. The company considered the planing horizon of 3 days.
We assumed that the processing time of each phase in the pressing process (n) was 120
minutes, and the maximum number of available cycles of each press machine (T") was 12
as shown in Table 4.1. This is because a press machine cycle takes 360 minutes (6 hours).

In three days, a press machine can conduct up to 12 cycles if it works continually.

Table 4.1: The data for generating the test problems.

Data type Parameter | Value
Number of panel types 1 7
Number of SST sizes K 6
Number of layouts L 8
Number of press machines P 6
Number of openings m 10
Number of ovens @] 3
Processing time of each phase in the pressing process n 120 min
Maximum number of available cycles of a press machine T 12

23

Table 4.2 shows the information of each panel type, which consisted of the length

or warp (a), width or fill (b), outer gap (G), and inner gap (g). Table 4.3 shows the sizes

of each SST, which consisted of the warp (X) and fill (V).

Table 4.2: Sizes and gaps of each panel type.

Panel | Warp (a) | Fill (b) | Outer gap (G) | Inner gap (g)
1 20.5 24 0.25 0.5
2 25.65 22.25 0.5 1
3 26 24 0.25 0.5
4 26.5 22.5 0.5 1
) 19 22.25 0.25 0.5
6 15 23.8 0.25 0.5
7 27.75 20.5 0.25 0.5

Table 4.3: Sizes of each SST.
SST size | Warp (X) | Fill (Y)
1 50 44
2 50 53
3 50 o6
4 50 o8

) 43 25.5
6 43 27

The illustration of eight layouts are shown in Figure 4.1. Note that only examples of

the direction of an arrangement of panels on a SST are shown in this figure. The number

of panels in the book is not limited to those depicted in this figure. For instance, the

layout with two horizontal sections is illustrated in Figure 4.1(a), where the panels are

positioned vertically in each section. The formulas for calculating the number of panels

of type i € I per book when panel type 4 is used with SST size k € K and layout [€ L

(aiki) of the PCB company are shown in Table 4.4. Note that the expression |z| is the

largest integer that is not greater than .

In addition, for a variety of the problem sizes, this study also considered the planning

horizons of 1.5, 2, and 4 days, with the maximum number of available cycles of each press

SST £ill (Y)

o4

11

(]
| L

SST warp (X)
(a)

]

(h)

(8)

®

Figure 4.1: Illustration of eight layouts.

Table 4.4: Formulas for finding the number of panels of type ¢ per book using SST
size k and layout [.

Layout Akl
G
: B g
| Py e
e)
e e il R e =5l
| (e et
. X -2(G-9)

]
8 e

machine of 6, 8, and 16, respectively. The test problems were generated using the acquired
data. Furthermore, for different problem sizes, parameters P and O in some test problems

differed slightly from the real data. In each problem, the demand of each panel type i (d;)

95

was randomly generated. The test problems were classified into four groups, i.e., small,
medium, large, and extra-large problem, according to NBV. The small, medium, large,
and extra-large problems consisted of Problems S1 — S5, M1 - M8, L1 — L9, and E1 — E9,
respectively, as shown in Tables 4.5 — 4.8. A problem that has three panel types consists
of panel types 1 — 3 in Table 4.2. Likewise, a problem with four, five, six, or seven panel

types corresponds to panel types 1 —4, 1 -5, 1 -6, or 1 — 7 in Table 4.2, respectively.

Table 4.5: The small problems.

No. | I | K|L|P|O|T| djiel

S1 |36 |8|3]|2]6]110, 150,125

S2 |36 |81 3|2/ 8200 220,230

S3 3|6 |83 2/|12] 270,250, 210

S4 3|6 8|42 110, 150, 125

S5 |31 6| 8|43/ 6110, 150,125

Table 4.6: The medium problems.

No.|I|K|L|P|O|T di,i el
Ml [3|6|8|6]|3]6 300, 300, 300
M2 3| 6|8/|6/|3]|38 450, 480, 500
M3 [3|6[8]|6|3]12 720, 900, 600
M4 4] 6 | 8|6 |36 200, 300, 400, 100
M5 4] 6 |8|6|3]8 300, 400, 200, 500
M6 |[4] 6 | 8] 6|3 |12] 500,700, 700, 500
M7 |56 | 8] 6| 3] 6 |200, 250, 200, 250, 200
M8 | 5|6 | 8] 6| 3| 8 |400, 300, 200, 250, 300

4.2 Computational results of Model 1

In this section, IBM ILOG CPLEX 12.6 software was used to solve all test problems
using Model 1 on a personal computer with 8 GB RAM and a core i7 2.20 GHz CPU.

The time limit for solving each problem was set as 2 hours.

Table 4.7: The large problems.

No.|I|K|L|P|O|T di,i eI

L1 [5] 6 | 8|6 | 3|12 500, 500, 500, 500, 500

L2 (5] 6 | 8| 7] 3|12 500, 500, 500, 500, 500

L3 [5] 6 | 8|6 | 4|12 500, 500, 500, 500, 500

L4 |6 6 | 8|6 | 3|12 500, 360, 220, 180, 380, 720

L5 |6 6 | 8| 7| 3|12 500, 360, 220, 180, 380, 720

L6 6| 6 | 8|6 | 4|12 500, 360, 220, 180, 380, 720

L7 | 7] 6 | 8|6 | 3|12 300, 325, 290, 425, 450, 475, 200

L8 [7] 6 | 8| 7| 3 |12 300, 325, 290, 425, 450, 475, 200

L9 | 7] 6 | 8|6 | 412|300, 325, 290, 425, 450, 475, 200
Table 4.8: The extra-large problems.

No.|I|K|L|P|lO|T di,ielT

El1 |5 6 | 8|6 | 3|16 660, 525, 740, 850, 480

E2 |56 |8 7|3 |16 660, 525, 740, 850, 480

E3 |5 6 | 8|6 |4]16 660, 525, 740, 850, 480

E4 16| 6 | 8] 6| 3|16 400, 495, 800, 630, 700, 800

E5 6| 6 | 8| 7|3]16 400, 495, 800, 630, 700, 800

E6 6| 6 | 8| 6 | 416 400, 495, 800, 630, 700, 800

E7 | 7] 6 | 8] 6 | 3 |16 | 500,420, 595, 375, 330, 680, 580

E8 | 7] 6 | 8| 7 | 3 |16 | 500,420, 595, 375, 330, 680, 580

E9 | 7] 6 | 8] 6 | 4 |16 | 500,420, 595, 375, 330, 680, 580

4.2.1 Computational results of Model 1 for the small problems

26

Table 4.9 shows the model size and computational results of Model 1 for the small

problems. The model size consisted of NBV, NCV, and NC. The results consisted of the

number of outputs or finished goods of each panel type, the makespan (Ciax), and CPU

time.

As shown in Table 4.9, all small problems could be solved using Model 1 within

a small computational time.

NBYV of each small problem is less than 8,500.

In each

problem, the optimal makespan was found, and the output of each panel type satisfied

o7

‘uorynyos rewndQ,

«080°T SQT'¢ 09T ‘09T ‘02T | 66%9 | LIC | ¥28% | SCT 0STOTT | 9 | € | ¥ | 8| 9 | €| ¢S
L00C°T S QTR 09T ‘09T ‘02T | €96°G | 697 9P [GET ‘0STOTT | 9 | ¢ | ¥ | 8| 9 || ¥S
«0CS°'C S 1€ 0%¢ ‘08¢ ‘08¢ | €16 | €S¢ | ¥86'9 | 01 ‘0S¢ 0L |¢T | ¢ | € |8 | 9 | €| €S
«001°C S Q¥'C 0%¢ ‘0¥ ‘00T | €286 | 691 TLT'Y | 08T 0cC 002 | S || €189 |¢| cS
LOFF'T S IET 09T ‘09T ‘02T | TvL'S | LI 090°¢ [GZT ‘0STOTT | 9 | ¢ | €8] 9 |¢&]| 1S
(urta) ¥*@y | swry, NgD | smdinQ ON | ADN | AGN
'p L|O|d|T|XM|1I| ©°N
sjmsoy 9ZIS [9POIN

‘swa[qoad [[ews a1} I0J T [OPOIA Jo sjnsal feuonyeinduio)) :6°F o[qel,

o8

the demand. For example, Problem S1 had the optimal makespan of 1,440 minutes, and
the number of finished goods of panel types 1 — 3 were 120, 160, 160, respectively. The
maximum computational time for solving the small problems to get an optimal solution
is only 8.15 seconds in Problem S4. Note that the demands of Problems S1, S4, and S5
are the same. According to the results of Problem S4, if the number of press machines
of Problem S1 was increased by one, the makespan of Problem S1 could be reduced from
1,440 to 1,200 minutes (i.e., the pressing process of Problem S1 could be finished earlier
for 240 minutes). However, if the number of press machines and ovens were increased
by one from Problem S1, in accordance with Problem S5, the makespan of Problem S1
could be reduced from 1,440 to 1,080 minutes. These show that Model 1 can be used to

determine which resources should be increased in order to reduce the production time.

4.2.2 Computational results of Model 1 for the medium problems

Table 4.10 shows the model size and computational results of Model 1 for the
medium problems. NBV of each medium problem is between 8,500 to 30,000. The re-
sults show that Model 1 could solve all medium problems to an optimal solution. The
computational times for solving the medium problems are still acceptable for a real-life
application. The maximum computational time for solving the medium problems opti-
mally is 9 minutes 31 seconds in Problem M7. Note that this value increased significantly
when compared to the maximum computational time for solving the small problems that

is only 8.15 seconds in Problem S4.

4.2.3 Computational results of Model 1 for the large problems

The model size and computational results of Model 1 for the large problems are
shown in Table 4.11. NBYV of each large problem is around 30,000 to 46,000. The results
show that only Problems L1, L2, and L4 could be solved optimally using Model 1 within
the 2-h time limit. For the other problems that could not be solved optimally, the best
feasible solution that could be obtained within the time limit (incumbent solution) was
reported in Table 4.11. When comparing the maximum computational time for solving

large problems optimally (48 minutes 14 seconds in Problem 1.4) to that for solving the

29

‘uornyos rewnndQ,

L025°C S 1€°6¥ 0Z€ ‘082 ‘00Z ‘0T€ ‘007 | S¥6'€c | €€F | V¥ LT | 00€ ‘09T ‘00T ‘00€ 00V | 8 | € | 9 | 8| 9 | ¢ | SN
L0T6'T STEW 6 | 00% ‘08¢ ‘00 ‘08¢ ‘00T | L6L'GT | Gg& | 886°'TT | 00G ‘0SC ‘00g ‘0S¢ ‘00 | 9 | € | 9| 8| 9 |G| LN
«096°€¢ sguy 02S ‘0g.L ‘02l ‘03 VOT'TV | 6F9 | 000°LG 00¢ ‘00 ‘00L ‘006G ¢1| €989 |7 | 9IN
L082°C S 6G W g 02S ‘00g ‘00¥ ‘0gE 0v9°1g | €67 | 0CT°GT 00¢ ‘00g ‘00% ‘00€ 8 |€(19(8]9 |¥| SN
L008°'T S 69°0% 02T ‘00% ‘02€ ‘008 890FT | Gg€ | 092°0T 00T ‘00% ‘00€ ‘008 91¢€]9(8]9 |7 | VWIN
L009°€ S Qg W T 009 ‘026 ‘02.L LV9LE | 6%9 | TISET 009 ‘006 ‘0TL ¢I| €989 €] €EN
L008°C S 6L91 0TS ‘08F “08¥ Gee'6T | €E7 | 91I8°CT 00¢ ‘08 ‘0S¥ 8 1€]9(8]9 |¢| N
L0961 S 18°¢¢ 02€ ‘02 ‘03€ 6€€°CT | Go& | 0eg's 00€ ‘00€ ‘00€ 91¢€]9(8]9|¢| 1IN
(urox) **Wy | ewLy, NdD sindinQ ON | ADN | AGN
— ——— 'p L|O|d|T|M|I| °N

.wEQMQOHQ wnipawa 9y} I0] T [9POJAN JO S}HISal ﬂmgoﬁwﬁpﬂgaoo O0T'¥ 9l9el

60

‘T [OPOJN WO} UOIIN[OS JUSUIIOUL oY,

‘uorjnjos rewydQ,

ﬁ 002 ‘06 ‘087 h ﬁ 00T ‘GLY ‘0S¥
10TL€E e L I€€°09 | €6L | 09L°T¥ o eI 61
0¥ ‘02 ‘09¢ ‘03¢ Gey ‘06 ‘GeE ‘00€
F 002 ‘06 ‘08 " F 00T ‘GLY ‘0S¥
109€‘e 1g L T0T'99 | LGL | 039°9¥ o Al 8T
0¥¥ ‘0%€ ‘09 ‘05€ agy ‘06g ‘GeE ‘00€
n 002 ‘067 ‘087 “ n 00Z ‘6.7 ‘05
10TL€E e L CLV'IG | 679 | 89€°LE T 4l L1
0F¥ ‘03¢ ‘09€ ‘0TE Geh ‘06T ‘Gee ‘00€
ﬁ 0LL ‘007 ‘00T A ﬁ 0GL “08¢€ “08T
109€°€¢ e L 7.8°9G | €6L | ¥0E'8E LR > 4l 97
0¥C ‘09€ ‘05G 02g ‘09€ ‘008
ﬁ 0L, ‘00% ‘008 h ﬁ 02 ‘08¢ ‘08T
1000°€ i e 890°C9 | LGL | 88G‘Ch - eI a1
0¥¢ ‘09€ ‘02 08¢ ‘09€ ‘008
ﬁ 0L, ‘00% ‘00¢ “ F 02 ‘08¢ ‘08T
L09€°€ S y1 W 8y ./ 8108y | 679 | GI6°EE LS eI 71
0¥¢ ‘09¢ ‘03 02¢ ‘09€ ‘008
1080°F qg 02S ‘0TS ‘02S ‘0TS ‘08S | LIF'€S | €6L | 8¥8'FE | 00S ‘00¢ ‘00S ‘00S ‘00 | GT €1
L009°€ Sgywes | 086G ‘028G ‘08S ‘088 ‘0TS | GE0'8G | LGL | 99G°8€ | 00S ‘00S ‘00S ‘00S ‘00G | T o1
«080'% SQE W FF | 085 ‘02S ‘085 ‘08S ‘0TS | T9S'FY | 6F9 | 9SF°0€ | 00S ‘00S ‘00S ‘00S ‘00S | T 11
(urur) =5 | oW, NdD syndnQ ON | ADN | AN .
K ‘0
symsay 9ZIS [PPOIA P L N

‘swayqoad a81e[o) 10J T [OPOIN Jo sjnsal [euoryeinduwo)) :TT°F o[qeL,

61

Table 4.12: List of x4, values which is equal to 1 in the optimal solution of

Problem L1 using Model 1.

Press

Machine

Non-zero T;kipt

1
2
3
4
)
6

13111, 51212, 24213, L51214, £33215, L51216, 51217, £24218, 43219, £3221,10, T4321,11
T14621, £53622, 53223, L54524, £32225, L12626, 43227, 44228, £32229, £1222,10, £3222,11
23431, 51532, L44233, L43234, L43235, L43236, £12437, 34238, 12239, £2343,105 L4423,11
L14141, 43242, 32243, £24244 , L13445, L32246, £32247, 32248, L24649, L5414,105 L5134,11
T121515 L14352, L54553, L23454, L32255, L23656 5 L£42257, £32258, L43259, £2365,10

T51361, £13362, £24663 L42264, L24665, L23466 5 L24467, L54468, L11269, £1126,105 £3426,11

Table 4.13:

List of X, values which is equal to 1 in the optimal solution of Problem
L1 using Model 1.

Press

Machine

Non-zero Xyt

1
2
3
4
5
6

X111, X122, X131, X142, Xis1, X161, X171, X181, X191, X1,10,3, X1,11,3
Xo12, Xoo3, Xo33z, Xoar, Xos3, Xogz, Xora, Xog2, Xog2, Xo,10,1, X2,11,1
X311, X322, X331, X341, X353, X363, X373, X383, X303, X3,10,2, X3,11,2
X2, Xao1, Xazz, Xaao, Xus1, Xde1, Xaro, Xago, Xug1, X4.10,1, X4,11,3
X513, X522, X531, X543, X553, X563, X573, X581, X593, X5,10,2
X613, X623, X632, X643, X652, X662, X673, X681, X692, X6,10,35 X6,11,1

medium problems (9 minutes 31 seconds in Problem MT7), it should be noted that the

maximum computational time for solving large problems increased significantly.

The following is an example of an optimal solution from the proposed model. For

the results of Problem L1, there were 520 outputs of each panel type, which satisfied the

demand. Tables 4.12 and 4.13 show variables w;x,; and X,,, which were equal to 1, in

the optimal solution of Problem L1, respectively. In addition, Figures 4.2 and 4.3 show

the Gantt charts of press machines and ovens, respectively, from the optimal solution of

Problem L1. Note that the same color in Figures 4.2 and 4.3 represents the same panel

type.

From Table 4.12, the values x;y,:, which were equal to 1, were sorted by the index

62

"I TPPOJN 8ulsn T WOl I0J SUSAO JO 1IeYD jjuer) :g'§F 2anSIg

(S2anuw) 2w

096E O¥BE OZLE OQOSE 08FE O%EE OF¥ZE OZTIE O0OOE 088 09[Z O¥9Z 0252 00vZ OBZZ 0912 O¥0Z OZ6T O0OST OB9T 09ST OFFT OZET OOZL O80T 0% OFE 024 009 O8F 0% O 021 O
T:_NUT:_Q_ Tﬁ:d TE_E_ 7 (61| (6'%) a_mu_ {=31] _ﬁm.ei 7 :_g_ 7 G_u_ G_L 7 E_i ﬁm_z_ 7 #.L :..u_ ﬂm_L (e _M_L 7 R.L _ :_57 :.L
T_H_L _aﬁ.m_ TS_L 7 a_N; a_i _ {{=34] E_L 7 :d_ (e 7 E E 7 ﬁm.m; R.L a_i AN_L _ :_L :_i
Tﬁ._”_c?._”i_ 73_5 TE_B_ (6 _ﬁm_mui _ E_L 7 :._mL _:._mu_ (£'a) E.ﬂi G_n__ G.mL _“m.mui ﬁm_mui nm_mu_ :a.ﬂi 7 :__.u“__ 7 _“m.i _m_m; 7 nm.ﬁi _“N.Bi S_m“__ 7 :.37

(2347 Jaquinu sulyew ssaud)
T M@ﬁuoz mﬁwwﬁ 1T EQMQOHﬁH ,HOw m@ﬁwﬂoﬁa ssoxd wO QHNQO pwﬁ@.@ A 74 O.:.—erm_”
(s=2qnuw} awng
020F 096t OFBE OZLE 009t 0BFE 09EE OFZE OITIE O00E 08B 09LZ OF¥SZ 0ZSE 00VZ 0BZZ 0912 OFOZ OZGT 0081 0891 0950 OFFT OZET OOZL 080T 09 OF8 OZL 009 08 O0SE OFE OZT O
i i
{0F = Jndino) {0f = Indino) {0F = Jndino) {0F = ndino) {o% = ndino} {oF = Indina) {0f = Indino) {0t = Indino) (0¥ = Indino) (oF = ndino} {0F = Indina}
(f 2dA3 lsued) | (£ adAy jsued) | (§ 2dAy j)sued) | (z 2dA3 lsued) | (5 =2dAy jsued) | (5 2dAyjsued) | (£ 2dA3 lsued) | (5 2dAy jsued) | (Z 2dA3 lsued) | (5 2dAy jsued) | (1 2dA3 |2ued)
11 21242 01 2342 6 =[3hA L] FiE =] g 3|2h g 2342 + 31240 £ 324D 7 2342 1 2242
{0F = Jndino) {0f = Indino) {0F = Jndino) {0F = ndino) {0F = ndino) {0F = ndino) {0f = Indino) {0t = Indino) (0t = ndino) (oF = ndino} {0F = Indina}
(g 2dAy jpued) | (T 2dAy j2ued) | (g 2dAy |sued) | (y 2dA3 |3ued) | (p 2dAy j2ued) | (1 2dA3 jpued) | (g =2dA3 jgued) | (g adAysued) | (g adAyjsued) | (g adAy jsued) | (1 2dA3 jl2ued)
11 =242 01 2242 & 2|24 g 2242 [2242 g 3242 g 3242 L] £ 3242 Z 3242 1 31242
(0F = Indino) | (0F = Indano) | (o = Indino} | (0F = ndino) | {0fF = IndIno) (0F = ndano) | {oF = ndano} | (Dp = Indino) | (of = Indno} | (o = Indino} | (0f = Indano)
(2dA3 j2ued) | (z 2dA3 pued) | (1 2dAy j]sued) | (g 2dAy jsued) | (1 2dAy |2ued) {t 2dA3 jpued) | (§ 2dA3]pued) | (2dA3 j2ued) | (F 2dA3]2ued) | (g 2dAy j2ued) | (z 2dA3 |[2ued)
11 21242 01 21242 6 2|24 g 21242 [2242 g 21242 g 2242 ¥ 21242 £ 21242 Z 31242 T 21242
(oF = andwno} | {oF = Indno} | {gF = ndana) | (pf = Indino) | (oF = ndino) | (oF = Indinc) | {pF = Indno} | (Of = IndIno) | (o = Indno) | (OF = Indine) | (oF = Indino}
{g adAy jpued) | (g =2dAy jpued) | (g 2dA3 |3ued) | (g =2dAy|zued) | (g 2dA3 jpued) | (g 2dA3 |gued) | (1 2dAy jsued) | (g 2dA3 jsued) | (g =dAy j2ued) | (§ 2dA3 jlpued) | (1 2dA3 |sued)
11 2242 01 21242 6 21242 g 2|242 I 3242 g 21242 g 2242 ¥ 21242 £ 21242 7 21242 T 21242
(0F = 3ncino) | (pF = Indno) | {0F = Indino} | (0f = ndyno) | {oF = Indno) | (oF = jndno} | (Dg = Indina) | {oF = Indno} | (OfF = Indno} | (pp = Indino)
(z 2dA3 j2ued) | (f 2dA3 j]2ued) | (g 2dAy jsued) | (# 2dA3 |]sued) | (z 2dA3 |sued) | (g 2dA3 jlpued) | (g 2dA3 2ued) | (g 2dAy jsued) | (1 2dA3 jpued) | (1 =2dAy j2ued)
01 21242 & 2242 | 2242 £ 2282 g 2242 g 2|2A2 + 2242 £ 2242 Z 2242 1 2242
(0 = andino} | (0% = indine} | (0F = indino) | (oF = nding) | (OfF = Indino) | (OF = Indino} | {oF = andang) | (O = Indino} | (0f = Indana} | (o = nding) | (oF = Inding)
(£ 2dA3]2ued) | (1 =2dA3)2ued) | (T =2dA3 l2ued) | (g =2dAy |sued) | (g =2dA3 |2ued) | (z =2dA3 |sued) | (z =2di3 |2ued) | (# =2dA3 j2ued) | (Z =2dA3 |2ued) | (1 =2dA3 j2ued) | (g =2dA3 |2ued)
1T 212A2 01 21242 6 2242 | 2242 T EL>] g 2242 g 22k + 2242 £ 2242 Z 2242 1 2242

~

daquuinu usao

L]

J20WNU BUyIewW ssaud

63

of cycle numbers in ascending order. For example, x13111 means that panel type 1, SST
size 3, and layout 1 were used to create books for press machine 1 at cycle 1. Therefore,
x13111 appears before x51212 in Table 4.12. In addition, the values Xy, which were equal
to 1, in Table 4.13 were sorted in a similar manner. For example, X912 means that the
pressing phase of press machine 2 at cycle 1 was processed in oven 2. Therefore, Xs1o

appears before X993 in Table 4.13.

Figure 4.2 shows the starting and completion times of each press machine cycle,
while Figure 4.3 shows the time of the pressing phase for each press machine cycle. For
instance, press machine 1 at cycle 1 operated the lay-up phase at 120 — 240 minutes
(Figure 4.2), performed the pressing phase in oven 1 at 240 — 360 minutes (Figure 4.3),
and cooled down at 360 — 480 minutes (Figure 4.2). The minimal makespan of this

problem was 4,080 minutes (Figure 4.2).

4.2.4 Computational results of Model 1 for the extra-large problems

The model size and computational results of Model 1 for the extra-large problems
are shown in Table 4.14. NBV of each extra-large problem is greater than 46,000. The
results show that all extra-large problems could not be solved by Model 1 to reach opti-
mality within the 2-h time limit. Therefore, Table 4.14 reports the incumbent solution
that could be obtained within the time limit for each problem. When the problem size
increased from small to extra large, it should be noted that NBV and NC of the test
problems increased rapidly. A lot of binary variables and constraints in extra-large prob-
lems can cause a long computational time because NBV is the most important factor that

influences the MILP model’s performance, and NC is the next most important factor [17].

From numerical experiments, the results show that Model 1 is appropriate for solv-
ing small and medium problems, where NBV is less than 30,000. Model 1 could solve all
small and medium problems using an acceptable time for a real-life application. However,
only three large problems could be solved using Model 1, and the computational time to
solve these problems optimally seem to be large when compared to the computational

time for solving small and medium problems. The other problems in large problems and

64

‘T [OPON WO UOIN[OS JUSQUINOUL YT,

" 009 ‘004 ‘09¢ F ” F 085 ‘089 ‘0¢€
1091°G e L €08°G6 | LG0T | 09€°€9 o 91 6
00% ‘009 ‘0F¥ ‘0TS ¢Le ‘G6S ‘02¥ ‘00S
h 009 ‘00 ‘09¢ “ “ ﬁ 08¢ ‘089 ‘0€€
10967 e L GOz 70T | 600°T | ¥2& 0L o 91 8
00% ‘009 ‘0F¥ ‘0TS ¢LE ‘G6S ‘02¥ ‘00S
ﬁ 009 ‘00 ‘09¢ ﬁ ﬁ 08G “089 “0€€
109T°G qg o GIT'08 | G98 | ¥8G°GS e b 91 LA
00¥% ‘009 ‘0%¥ ‘03S GLE ‘G6S 0TV ‘009
ﬁ 0¥8 ‘02L ‘0¥9 n n ﬁ 008 ‘00 ‘0€9
1038°G qg L V616 | LG0T | GGL'8S P 91 9d
008 ‘02 ‘007 008 ‘G6% ‘00%
h 0¥8 ‘02 ‘0¥9 F “ : 008 ‘00 ‘0€9
1008°F e S 88886 | 600°'T | 8¥8F9 LK = 91 ¢
008 ‘02S ‘007 008 ‘G67 ‘00%
" 0¥8 ‘02L ‘079 F F 008 ‘004 ‘0€9
1036°¢G e % 9PG'GL | Q98 | 9L6°0G r S, 91 jZC!
008 ‘0TS ‘00¥ 008 ‘S6¥ ‘00%
109T°¢G qg 08% ‘088 ‘09L ‘09¢ ‘089 | G8G'98 | LSO'T | PFI'FS | 08% ‘0S8 ‘OFL ‘GES ‘099 | 9T SCI
10967 qg 08% ‘088 ‘09L ‘09¢ ‘089 | TTSG'€6 | 600°T | cL¥'6S | 08F ‘0S8 ‘OFL ‘GS ‘099 | 9T 4C|
10826 qg 08% ‘088 ‘09L ‘09¢ ‘089 | L€6°0L | G98 | 89€°9F | 0S¥ ‘0S8 ‘0FL ‘GZS ‘099 | 9T 1d
(urux) **Wy | ewiLy, NdD sindinQ ON | ADN | AN
'p L "ON
synsoy 9ZIS [9POIN

‘swe[qord o8I1r[-RI)X6 o) 10} T [OPOJA JO symsal [euonpeindwo)) 1 F S[qel

65

all extra-large problems could not be solved optimally by Model 1 within the 2-h time

limit.

4.3 Computational results of Model 2

In this section, IBM ILOG CPLEX 12.6 software was used to solve all test problems
using Model 2 on the same hardware environment as in the previous section. The time
limit for solving each problem was also set as 2 hours. The results from Model 2 were

compared with the results from Model 1 in the previous section.

The performance measures of size and computational complexities [10,13,16,18,19]
were used to compare the performance between Models 1 and 2. The size complexity is
measured by counting NBV, NCV, and NC, which are generated by the MILP model. If a
MILP model produces fewer numbers of each size complexity factor than another model,
it is more superior in terms of the size complexity. For the computational complexity,
the criterion for deciding the performance between two MILP models consisted of the

following.

1. If the first model could solve the problem to reach optimality within the time limit
while the second model could not, the first model is clearly better than the second

model in terms of the computational complexity.

2. If both models could solve the problem optimally within the time limit, the com-
putational times for solving the problem using each model were compared. The

lower the computational time value, the higher the model’s performance.

3. If both models could not solve the problem to reach optimality within the time

limit,

o The incumbent solutions that could be obatined from each model were com-
pared. Since the pressing process scheduling problem is a minimization prob-
lem, the smaller the incumbent makespan value, the higher the model’s per-

formance.

66

o The %gap from both models were compared if the incumbent solutions from

both models have the same quality, i.e., the makespans from both incumbent

BestBound —BestInteger
BestInteger

solutions are the same value. The %gap is computed from
x100%, which is the relative gap tolerance of the objective value for the solu-
tion from CPLEX. The BestBound is the current lower bound that the model
could obtain within the time limit, while the BestInteger is the objective value
of the incumbent solution that could be obtained from the model within the
time limit. The %gap is equal to 0 when the problem could be solved to reach

optimality. The lower the %gap value, the higher the model’s performance.

o If the incumbent makespan and %gap from both models are the same, the
computational times to reach the incumbent solution (timej,.) from each
model were compared. The lower the time;,. value, the higher the model’s

performance.

4.3.1 Computational results of Model 2 for the small problems

The model size and computational results of Models 1 and 2 for the small problems
are shown in Table 4.15. In addition, RPIijne was reported in the last column of Table

. te CPUtimenodelt —CPUtimenodel2 : te :
4.15. RPlijne is computed from B ttmen e X 100%, which is the relative

percentage improvement of the CPU times of Model 2 over Model 1. From Table 4.15,
NBV, NCV, and NC of each small problem in Model 2 were less than those in Model 1.
Figures 4.4 — 4.6 show NBV, NCV, and NC, respectively, that each model produced in
each small problem. These show that Model 2 is evidently better than Model 1 in terms
of the size complexity for the small problems. In each small problem, an optimal solution
could be found by both Models 1 and 2, but Model 2 used smaller CPU time to find an
optimal solution for each small problem. Figure 4.7 demonstrates the CPU times that
Models 1 and 2 used for solving each small problem. This shows that Model 2 is also
better than Model 1 in terms of the computational complexity for the small problems.
The last column in Table 4.15 shows RPI;;ye of each small problem, and the last row of
Table 4.15 shows that Model 2 had superior CPU time with average RPIijye of 36.84%

for the small problems.

67

‘PIOq UI 9Ie SonfeA 19999q o1, ‘uonnjos rewndQ,

%F89¢ | oSrroAy
%YT'ey | «080°T | S #8'T | 09T ‘09T ‘0CT | €96% | €L | ¥PL‘E€ | 080T | S8T'E | 09T ‘09T ‘031 | 667’9 | LIC | ¥e8'F% | GS
%606 | «00G'T | S 62°G | 09T ‘09T ‘03T | T€S'F | €L | 03L‘€ | L00T'T | SGT'8 | 09T ‘09T ‘0CT | €9G°G | 691 | 89€F | ¥S
%0€° €Y | «03G'C | S 8T | OVC ‘08¢ ‘08¢ | €€G°L | 60T | 889°G | .02S'C | STC'E | OVC ‘08¢ ‘08¢ | €16'6 | €SC | ¥86'9 | €S
%€0°6C | «09T°C | S 9L'T | OV ‘0FC ‘00G | LEV'F | €L | 969°€ | .091°C | S8F'C | OFC ‘0VC ‘00T | €L€°G | 691 | TLeV | @S
%EITE | LOFF'T | S TQ'T | 09T ‘09T ‘0CT | €8T‘€ | GG | 984°C | LOPF'T | STET | 09T ‘09T ‘05T | T¥L'€ | Lol | 090°€ | 1S
(urur) | ewurg, (urur) | euurg,
xowsy | a0y sndinQ ON | ADN | AN xeuy | 0d0 s;ndimQo | DN | ADN | A9N
swny 1Y s)nsoy 9ZIS [9POIN s)nsoy 9ZIS [9POIN ‘ON

Z [9POIN JO S3Nsoy

T [OPOIAl Jo synsoy

‘swafqoad [[ews o1} I0J g Pu® T S[OPOA JO sj)nsal [euonyeinduo)) :QT'§ o[qel,

#0007 —w— Model 1

=& Model 2
6,000 1
E 5,000 1

=

4,000 4
3,000 1

T T T T T

51 52 53) 55

Problem

Figure 4.4: NBV comparison of Models 1 and 2 for the small problems.

= Model 1
—&— Model 2

NCW
g 5 B

]
4
]
£
n

Problem

Figure 4.5: NCV comparison of Models 1 and 2 for the small problems.

9,000 1 —»— Model 1

—a— Model 2
8,000 1

7,000 1
2 5,000
5000 1

4,000 4

3,000 -

53 54
Problem

w1
4]
i

Figure 4.6: NC comparison of Models 1 and 2 for the small problems.

69

[=L I I =]

CPU time (s)

L LN

[=]

Praoblem

Figure 4.7: CPU time comparison of Models 1 and 2 for the small problems.

4.3.2 Computational results of Model 2 for the medium problems

Table 4.16 shows the model size and the computational results of Models 1 and 2
for the medium problems. For each medium problem, NBV, NCV, and NC that Model
2 generated were less than those that Model 1 generated. Figures 4.8 — 4.10 show NBV|
NCV, and NC, respectively, that each model produced in each medium problem. This
shows that, for the medium problems, Model 2 is better than Model 1 in terms of the
size complexity. An optimal solution of each medium problem could be found by both
Models 1 and 2, but Model 2 used smaller CPU time for solving each medium problem
to an optimal solution. Figure 4.11 shows the CPU times that were used for solving each
medium problem using Models 1 and 2. It shows that, for the medium problems, Model
2 is also better than Model 1 in terms of the computational complexity, and Model 2 had

superior CPU time with average RPIne of 69.98%.

4.3.3 Computational results of Model 2 for the large problems

Table 4.17 shows the model size and computational results of Models 1 and 2 for
the large problems. The results consisted of the outputs, CPU time, makespan, and
%gap. The column “CPU time” in Table 4.17 represents the computational time that
CPLEX took to solve the model to reach optimality (%gap = 0), or 2 hours if CPLEX
could not solve the model to reach optimality within the time limit (%gap # 0). Note

that it requires more computational time than 2 hours to solve the problem optimally

70

"PIoq UI 8Ie sonfeA 19939 Y], "uonmnios rewndQ,

%8669 | deroay
h 02€ ‘08¢ . . n 02€ ‘08¢ h “
%82°68 | «08S°C S 92'. o G0L'LT | SPT | ¥T9‘TT | .00SC | STE6V | . . . SH6'Ce | €8F | PeP LT | SIN
00T ‘0Z€ ‘00¥ 00Z ‘02€ ‘00%
“ 002 ‘08¢ .) n 002 ‘08¢ h F
%e99¢ | «0C6'T [segwg | L6TCT | 60T 8826 | .006'T |sTgwe | . L6L'GT | GZ& | SS6'IT | LN
00T ‘08T ‘002 00Z ‘082 ‘00%
ﬁ 02S ‘0Tl . . ﬁ 02S ‘0Z. n A
%FS 16 | «096'C | S 8%°0T o PCHLZ | L1 | 002°9T | ,096'C | sgw¥ o FOT'TV | 679 | 000°2¢ | 9N
0zl ‘0Ts 0Tl ‘0TS
ﬂ 02S ‘00 / . n 025 ‘00 h F
%069L | «08¢C | S 12°6S o 00%‘GT | SPT | 0ZE'OT | .08C'C | S6S W ¢ o 0¥9'1Z | €% | 02I'ST | SN
00% ‘02€ 00% ‘02¢
h 021 ‘00% ; { n 021 ‘00% h “
%8¢°88 | +008°T s 0%°2 . 89%°0T | 60T 09G‘L | L008°T | $¢€907 o 890'FT | S2¢ | 09201 | ¥IN
0Z¢ ‘002 0Z€ ‘002
%L0TL | «009°C | S 9¥°9T | 009 ‘026 ‘0¢L | L96°€T | LIT | ¥PLCT | .009°C | S8 WL T | 009 ‘0T6 ‘0TL | L¥9°2E | 6F9 | ¥¥S°€C | €N
%¥ec9 | «02S°C S 62°9 02S ‘0S¥ ‘0S¥ | S60°CT | SPI 9T0‘8 | «02S'C | S6L9T | 0TS ‘08% ‘08% | SE€E'6T | €¢F | 918'CI | CIN
%FS LS | «09S°T | S €6°€T | 02€ ‘02¢ ‘0¢E | 6£L‘8 60T 2€8‘G | L09S°T | S 1I8¢E | 02¢€ ‘02¢ ‘0z¢ | 6€€CT | GTe 788’8 | TIN
(urur) | owy, (urar) | ewury,
. sndinQ ON | ADN | AGN | ,ow sindinQ ON | ADN | AN
0 ndo o) ndo
PWNTIY sjnsay 9ZIS [9POIN sjmsaYy 9ZIS [9POIN *ON]

T [PPOIN Jo synsey

T [9POIN jO s}nsey

‘swafqoad wnIpaw oY} I0j g pue T S[PPOIN JO

symsaz reuoryeindwo)) 91§ d[qe],

71

== Model 1

25,000 1 —a— Model 2
20,000 A

@
= 15,000
10,000
5000 4
T T T T T T T T
M1 M2 M3 14 M5 Mé& M7 Ma
Problem

Figure 4.8: NBV comparison of Models 1 and 2 for the medium problems.

—w— Model 1

B00 1 —e— Model 2
500 -
a 400 4

=
300 -
200 4
100 4
T T T T T T T T
M1 M2 M3 M4 M5 M& M7 18
Problem

Figure 4.9: NCV comparison of Models 1 and 2 for the medium problems.

40,000 4 —— Model 1
—a— Model 2
35,000 4

30,000
g 25,000
20,000
15,000

10,000 A

Problem

Figure 4.10: NC comparison of Models 1 and 2 for the medium problems.

72

= Model 1
500 —a— Model 2
400
i1
E 300
z
o200
100 +
e
M1 M2 M3 M4 M5 Ma M7 M5

Problem

Figure 4.11: CPU time comparison of Models 1 and 2 for the medium problems.

for the problem with the solution that is obtained within the time limit and %gap # 0.
The column “Ci.x” represents the optimal makespan or incumbent makespan that could
be obtained within the time limit. The time;,. is also reported in Table 4.17, which is
the computational time to reach the incumbent solution. For the problem that could
be solved to reach optimality, the timej,. is the time that it first reached the optimal
solution, but the optimality status at that time was not verified yet since the %gap #
0 at that time. RPI;ne and RPIi?rCne are also reported in the last column of Table 4.17,

. . t' < - t. N .
where RPI}C . is computed from (timeine Jmodert — (timeine)moaer2 10%, which represents the
ime (timeinc) Model1

relative percentage improvement of time;,. of Model 2 over Model 1.

From Table 4.17, NBV, NCV, and NC of each large problem in Model 2 were less
than those in Model 1. Figures 4.12 — 4.14 show NBV, NCV, and NC, respectively, that
each model produced in each large problem. It shows that, for the large problems, Model

2 is obviously better than Model 1 in terms of the size complexity.

Moreover, from Table 4.17, only three large problems (Problems L1, L2, and L4)
could be solved optimally by Model 1 within the time limit. However, these problems
could be solved optimally by Model 2 using smaller CPU time. Model 1 could not solve
Problems L6, L7, and L9 to reach optimality within the time limit because %gap # 0,
while these problems could be solved by Model 2 to reach optimality within the time
limit (%gap = 0%). For Problems L3, L5, and L8, both models could not solve them

optimally, where the incumbent makespans from both models were the same, and the

73

"PIO] UL 018 SON[RA 19330 OY, [OPOUL Y} WOIY UOIIL[OS JUSQUINOUL O,

‘uwonn[os reund,

%90°28
o8eIoAy
/%09°T€
002 002
%Ve Gl s 1¢ s 1% . . . S 6 . . .
J%er e w T L0ZL'e %0 w 8T U 1 06% ‘087 ‘0VF | gitr‘eh 412 ov9‘9z w g [0TL'e | %eTE ug 06V ‘08 ‘0¥¥ | 1££'09 €6L 0941V 61
N ‘0ze ‘09¢ ‘0Te ‘oze ‘09¢ ‘0ce
002 002
%9€"LL s vT . . . s 9¢ . . .
09€‘e %LS€ gz 06V ‘08V ‘OVV | LTT‘L¥ €92 00g‘TE 09€'e | %LS'E uzg 06¥ ‘087 ‘OFF | 10199 282 029°9% 81
/%0 wg |7 o wor | e
0z€ ‘09¢€ ‘0ce 0z€ ‘09¢ ‘0ze
002 002
%VV'C6 s g1 sz . . . s zg . . .
. L0ZL'e %0 06V ‘08V ‘0¥V¥ | g6L‘se 412 89g°0T 0zL'e | %191 ug 06¥ ‘08% ‘0¥¥ | <L¥‘lg 679 89€°LE Pist
/%1892 w T w6z Y T w 9T !
‘0ze ‘09¢ ‘0Te ‘oze ‘09¢ ‘0ze
%08°€6 s gg 0L ‘00¥% ‘00T s 12 | 0LL ‘00¥ ‘00T
. S LL'VT L09€‘e %0 . h) 889°8¢ L1T v81‘6T 109€°€ %LG°€ uz . . . 7,899 €6L 70€‘8€E 971
/%L0°0T w Ly YT ove ‘09€ ‘028 w 9 0¥z ‘09¢ ‘0Tg
%G1 LL s vg 0L ‘00¥% ‘002 S 61 | 0LL ‘00¥ ‘00T
1000°€ %V qz . . . 780°‘eV €92 897°LT 1000°€ %V uz . . . 8909 LGL 88G°Cy o1
/%0 w T 0¥z ‘09€ ‘028 w g 0¥z ‘09¢ ‘0Tg
%L9°L6 s €T 0L ‘00¥ ‘00T) S ¥1 0LL ‘00¥ ‘00T
s gg'zzT L09€°€ %0 : . . 8€E‘vE .12 ZIT‘€T L09€‘€ %0 . . . 8TO0‘SY 679 cre‘ee 1
/%298 w 9 0vZ ‘09€ ‘028 w 9T w gy 0¥z ‘09¢ ‘0Tg
%ET 6L sg . o 028 ‘0TS : . s gl J ol 0zg ‘0Tg . .
1080°F %V6°C 9z . . | T0Z‘SE LTT 8TL‘6T 1080°% %V6°C uzg . . . LIV'€S €6L 8¥8‘VE €1
/%0 w T 0%g ‘02§ ‘028 w g 02g ‘0Tg ‘0Ts
%ILLG s 09 s €% 02S ‘028 s Ty s Ty 0zg ‘029
+009°€ %0 . . / 190°'6¢ €92T 9€7°eT 009 %0 . . . Se0°8S 282 955°8¢€ Tl
/%0108 w g w 02S ‘0TS ‘02§ w 9 w gg 02S ‘0TS ‘0T$
%V1°88 s ve 02g ‘028 S B s 8¢ 0zg ‘0Tg
s 89°'g¢ +080°F %0 . . . 188‘0¢ L1T 999°6T «080°% %0 . . . 198'7¥ 679 98¥°0€ 11
/%02 LV w gz 02S ‘0TS ‘0TS w § w By 02$ ‘02§ ‘0T$
(ugur) eury, (urux) oy,
SUlauury, — deSy, ndo syndnQ ON ADN AIN Stlowuy, — deSy, ndo syndinQ ON ADN | A€9N
suury
ouildt symsey 2ZIS [9POIN symsoy 2ZIS [9POIN ‘ON
/2"y

T [9POIN JO symsoy

1 [PPOINl JO s3nsoyq

‘swo[qo1d a81e[o1} I0J 7 pur T S[EPOJA JO symsal [ruorjeindwo)) :4T1°F o[qelL,

74

45,000
40,000
35,000
S
=
30,000
25,000
—— Model 1
20,000 —e— Model 2
1 Lz 5 L4 L5 L6 L7 L& L9
Prablem

Figure 4.12: NBV comparison of Models 1 and 2 for the large problems.

800
. W
B00
- —w— Model 1
¥ 500 —e— Model 2
400
300
- w
L1 L2 L3 L4 LS L6 L7 L& L9
Problem

Figure 4.13: NCV comparison of Models 1 and 2 for the large problems.

Y%gap values from both models were also the same in each problem. Nevertheless, to reach

the incumbent solution, Model 2 used smaller time;,. than Model 1 for these problems.

The CPU time and timey,. for solving each large problem using Models 1 and 2
are shown in Figures 4.15 and 4.16, respectively. As shown in Figure 4.15, the CPU
times for solving Problems L3, L5, and L8 using Models 1 and 2 overlapped at 2 hours
because both models could not solve these problems to reach optimality, but a significant
difference in the CPU times between Models 1 and 2 was noticeable for the other problems.
Furthermore, from Figure 4.16, the timey,. to reach the incumbent solution for each large
problem using Model 2 was lower than that using Model 1. Model 2 yielded better CPU
time with average RPIyme of 31.60% and better timey,. with average RPIC of 82.06%
for the large problems. These show that Model 2 is also better than Model 1 in terms of

the computational complexity for the large problems.

65,000 4
50,000 4
55,000 4

50,000 4

NC

45,000 -

40,000 +
35,000 - === Model 1

30,000 4

L1 L2 L3 L4 LS L& L7 L8 L9
Prablem

Figure 4.14: NC comparison of Models 1 and 2 for the large problems.

7,000 1
6,000 +
5,000 4

4,000 +

CPU time is)

3,000 4

2,000 A

—s— NModel 1

1.000 4
—&— Model 2

L1 L2 L3 L4 LS L& L7 L8 L9

Figure 4.15: CPU time comparison of Models 1 and 2 for the large problems.

1.000 4 —— Model 1
—a— Model 2
800
600
H]
LE]
E 4001
20 W\.
I] 1 T T T T T T T T T
L1 L2 L3 L4 LS L& L7 L8 L9
Problem

Figure 4.16: Time;,. comparison of Models 1 and 2 for the large problems.

76

4.3.4 Computational results of Model 2 for the extra-large problems

The model size and computational results of Models 1 and 2 for the extra-large
problems are shown in Table 4.18. Model 2 has fewer NBV, NCV, and NC as opposed
to Model 1 in all extra-large problems. Figures 4.17 — 4.19 show NBV, NCV, and NC,
respectively, that each model produced in each extra-large problem. It shows that, for

the extra-large problems, Model 2 is better than Model 1 in terms of the size complexity.

Moreover, from Table 4.18, Model 2 could solve Problem E1 to reach optimality
within the time limit, while Model 1 could not. Both models could not solve Problems
E2 — E9 to reach optimality within the time limit. For Problem E2, the incumbent
makespans from both models were the same, but the %gap from Model 2 (4.39%) was
less than that from Model 1 (5.26%). For Problem E8, Model 2 could find an incumbent
solution (Cpax = 4,440 min), which is better than that (Cpax = 4,560 min) by Model
1. For Problems E3 — E7 and E9, the incumbent makespans from both models were the
same. However, to reach the incumbent solution, Model 2 used less timej,. than Model 1

for these problems.

The CPU time required to solve each extra-large problem using each model was
shown in Figure 4.20. The CPU time required to solve Problem E1 using Model 2 was
less than that using Model 1, while the CPU times required to solve the other problems
using both models overlapped at 2 hours since they could not be solved to reach optimality
within the time limit. Nevertheless, Figure 4.21 shows that Model 2 used smaller time;jy,.
to reach the incumbent solution for all extra-large problems. Compared with Model 1,
hence, Model 2 could save a lot of CPU time to reach the incumbent solution, where the
incumbent solution from Model 2 was of no worse quality than that from Model 1. In
particular, Model 2 used a time;,. of 14 minutes 16 seconds to reach the incumbent solution
(Cmax = 4,440 minutes) in Problem E8, compared to 44 minutes 4 seconds (Cpax = 4,560
minutes) for Model 1. For the other problems, the time;,. used to reach the incumbent
solution using Model 2 is only 1 — 4 minutes. The difference in time;,. between Model 1

and Model 2 is especially notable in Problem E2 and E5. In Problem E2, Model 2 used

77

"PIO] UL oI SON[RA 19330 OYJ, [OPOUL 9} WOy UON[OS JUSGUINOUL oY T,; “Uuornios rewydQ),

%0L'88
o8eroAy
/%8¢
009 009
0, N S s 0¢ . . .
%el'16 S [00T°e | ueee vz ‘00L ‘09¢ ‘00v | ggs‘so | 68T | 08V'Og e 109T'G | %geT 9z 00L ‘09¢ ‘00¥ | £08'¢6 | L20°T | 09€'€9 | 6d
< 3
/%0 e ‘009 ‘OFV ‘02 ‘009 ‘OFV ‘0gS
009 009
o, . s sy . ‘
%8949 ot 0y | %ouT qg ‘00 ‘09€ ‘00% | 688‘0L | g€ | PrE‘eV N 1096y | %9z'g qz ‘00 ‘09€ ‘00% | goz‘vOT | 600°T | ¥rzior | sm
/%0 v ‘009 ‘0¥¥ ‘0TS " ‘009 ‘0¥¥ ‘0Tg
009 009
0, . S 8T S 6 ‘ f f ¢
#E6TT6 s 09T‘g %EE'T L4 ‘002 ‘09€ ‘00% | ggT‘og 68T vge‘og 09T'S | %EET 9z 00L ‘09€ ‘00% | GIT‘08 698 rgeag | L™
/%0 w T ' w 9T i o
‘009 ‘OFV ‘0CS ‘009 ‘OFV ‘0TS
%01°26 S TT 0¥8 ‘0T ‘0¥9 p - S 69 J 0v8 ‘0zL ‘0%9 . . .
: g‘s | %LT V6T'T6 LG0°T | eeL'sg o
%0 w 1 10Tg‘s %L1'T 9z <008 ‘0zc ooy | 2T6S 68¢ zL8'18 4 o 1028's | %LT'T 9z 008 ‘028 ‘0¥ g
rp—
%LL96 s zg ov8 ‘0zL ‘0v9 s 9z) ov8 ‘0TL ‘0v9 . .)
‘ %08 zIS‘eo 88 896°LE 008‘F | %09°C 9z . 88886 600°T | 8¥8‘F9 od
/%0 w g 1008w wosre T ‘008 ‘0Tg ‘00F weryr | F ‘008 ‘08¢ ‘00¥
- — : “0zL 079
%67°€8 s vP . ov8 ‘0zL ‘0v9 / . s 0g) i ov8 ‘0zL ‘O .)
: 08S's | %L1'C 1z oveial G98 9609 jZc
/%0 w o 10eee wite te ‘008 ‘0Tg ‘00¥ 2rs 1 AL VT w QT C % ‘008 ‘0T¢ ‘00¥
%08°16 s 6T) 087 ‘088 sy } 08¥ ‘088 . . .
%0 w T 109T°G %EE'T qz oo/ lds i LT9°PG 682 v9Z°LT Mor 109T°g %EE'T qz ‘092 ‘09 ‘089 G85'08 LG0T PYIvS €
%SE'T6 s g%) 087 ‘088 s gg . i 087 ‘088) . .
/%0 w g 10987 | %6€'% &4 ‘092 ‘095 ‘089 SeT‘09 LE€ z65°Ce o 10987 | %9¢'g L4 091 ‘098 ‘089 118'€6 600°T | TLV'6¢ e
0 < < <
:
%TS06 s €T s 8¢ 087 ‘088 s 6¥ .) 087 ‘088) .
9T‘s %0 L£6'97 68C 89T°LT 08%‘s | %SS'¥ L4 LE6'0L g98 8959V jici
/%€S° LY w T -0 % wzyT | ‘09L ‘09¢ ‘089 w gl E ‘092 ‘09¢ ‘089
(uru) owry, - (urux) oy,
! fouut de3o syndyn ON ADN A9N
SUlawry, — deSy, ndo sindnQ ON ADN AIN M xewp, % ndo o
ouury
ouildt symsoy 2ZIS [9POIN symsoy azIS [9POIN ‘ON
/2"y

T [9POIN JO s3nsoy

1 [PPOIN JO s3nsoyq

‘suroqold a8Ie[-eIlXo oY) I0J g puw T S[PPOIN JO symsal [euonjeinduo)) :QT1°F o[qel,

78

70,000
£0,000
= 50,000
=
40,000
30,000 —— Maodel 1
! —&— Madel 2
El Ez E3 Ed ES E6 E7 EB E9
Problem

Figure 4.17: NBV comparison of Models 1 and 2 for the extra-large problems.

1,000
500
800
-~ 700 == Model 1
= —a— Madel 2
£00
500
400
W] e —— o —
El E2 E3 Ea ES E6 E7 E8 E9

Problem

Figure 4.18: NCV comparison of Models 1 and 2 for the extra-large problems.

a timey,. of only 3 minutes 43 seconds to reach the incumbent solution, while Model 1
used a time;,. of 48 minutes 35 seconds to reach the incumbent solution with the same
makespan. Model 2 used a time;,. of only 2 minutes 32 seconds to reach the incumbent
solution of Problem E5 compared to 78 minutes 26 seconds for Model 1 with the same
makespan. Moreover, Model 2 had superior CPU time with average RPIjye of 5.28% and
superior time;,. with average RPIit?gle of 88.70%. These show that, for the extra-large

problems, Model 2 is also better than Model 1 in terms of the computational complexity.

From all numerical experiments of both models, Model 2 was found to outperform
Model 1 in terms of all three factors of the size complexity because NBV, NCV, and NC
that Model 2 used for each problem were less than that Model 1 used, but Model 2 is
still equivalent to Model 1. For the problems that both models could solve optimally,

Model 2 used a smaller computational time than Model 1 to find an optimal solution.

79

100,000 4
90,000 A
80,000 A
)
=
70,000 4
60,000 A
—— Maodel 1
50.000 - —o— Model 2
T T T T T T T T T
E1l E2 E3 E4 ES E& ET ES E9
Problem

Figure 4.19: NC comparison of Models 1 and 2 for the extra-large problems.

7,000 4
6,500
6,000

5500 4

CPU time (5)

5,000 4

4,500
—s— NModel 1

4000 1 —o— Model 2

El £z E3 E4 ES E6 E7 EB ES
Problem

Figure 4.20: CPU time comparison of Models 1 and 2 for the extra-large problems.

—w— Model 1
4,000 1 —a~— Model 2
= 3,000
H
[
E 2,000
=
1,000 -
N r”.\ﬁ-h_ﬁ—/\.
E1l E2 E3 E4 ES EE E7 ES ES

Prablem

Figure 4.21: Time;,. comparison of Models 1 and 2 for the extra-large problems.

80

An optimal solution for some large and extra-large problems could also be newly verified

by Model 2. The average RPIme of all problems (small to extra-large problems) is

5(36.84)+8(69.98)+9(31.60)+9(5.28) _
5+8+9+9 = 34.71%.

For the problems that both models could not
solve optimally within the 2-h time limit, Model 2 used a smaller computational time to
find the incumbent solution, where the incumbent makespan from Model 2 is superior

inc
time

to or equal to the incumbent makespan from Model 1. The average RPI of the large
and extra-large problems were 82.06% and 88.70%, respectively, which are very high.
Therefore, it could be concluded that Model 2 also outperformed Model 1 in terms of the
computational complexity. Note that the timej,. of each large problem and extra-large
problem using Model 2 was acceptable in real-life applications. The time;,. of all large
problems and extra-large problems using Model 2 are less than 3 minutes and 15 minutes,
respectively. This shows that Model 2 is capable of finding a good solution to large-sized
problems in a short amount of time. In practice, if a problem takes a long computational
time to solve, a PCB manufacturer may not need to find an optimal solution. Instead, the
manufacturer would prefer to find a good solution for the problem as quickly as possible.

Thus, Model 2 can satisfy this preference and is a practicable option for providing a well

quality schedule for the pressing process in any PCB manufacturing industry.

4.4 Computational results of the 3P-PCB-PH algorithm

In this section, the 3P-PCB-PH algorithm implemented in Python 3.7.3 was used
to solve all test problems on the same hardware environment as in the previous section.
To capture the variation in the computational time, each problem was run 10 times. The
results from the 3P-PCB-PH algorithm were compared with the results from Models 1
and 2.

4.4.1 Computational results of the 3P-PCB-PH algorithm for the small prob-

lems

Table 4.19 shows the results of the 3P-PCB-PH algorithm as well as Models 1 and
2 for the small problems. The results from the 3P-PCB-PH algorithm consisted of the

number of finished goods of each panel type (outputs), the makespan, and the average

81

‘PIoq UI 8Ie senfea 199)9q oY, ‘uonnjos rewndQ,

(s 1.€00°0)
«080°T | 09T ‘09T ‘02T | S¥8'T | 080°T | 09T ‘09T ‘02T | S QT°'E | «080°T | 09T ‘09T ‘0¢T | €S
S 60200°0
(s Z¥€00°0)
«002°T | 09T ‘09T ‘02T | S 62°C | +00C°T | 09T ‘09T ‘02T | S GT'8 | «002°T | 09T ‘09T ‘0¢T | ¥S
S 86200°0
(s 9%£00°0)
«0CS'C | 07T ‘08T ‘08¢ | S 28T | «02G'C | OVC ‘08¢ ‘08¢ | S 1¢°€ | «02SC | 0¥¢ ‘08¢ ‘08¢ | €S
S 86900°0
(s 9%200°0)
«00T°C | OFC ‘0¥ ‘00T | S 9L°T | «091°C | OFC ‘0%C ‘00¢ | S 8F'¢ | «091°C | 0F¢ ‘0¥¢ ‘00T | TS
s 88%00°0
(s g8000°0)
LOFFT | 09T ‘08T ‘0T | ST1G'T | «OFF'T | 09T ‘02T ‘02T | S 1€¢C | «OFF'T | 09T ‘02T ‘0¢T | IS
S 67£00°0
(as) owILT, oL,
xew sndinQ xew sndinQ xeu sndinQ
owl], NdD 8SAV ndon ndo
w03y HA-dDd-d€ ‘0N

Jo symsoy

Z [OPOIAl JO s3NsoY

T [OPOIAl JO synsoy

.mEGMQOMQ [[ews 94} 10} ¢ pue T S[OPOJN pue Eﬂuﬁhowﬁﬁ Hd-dDd-d¢ 2Y?3 Jo sjnsal ﬁNQOw@ﬁw‘DQEOO 6L°'¥ 219el

82

CPU time over 10 runs (Avg CPU time). The results show that each small problem could
be solved to a feasible solution by the 3P-PCB-PH algorithm, where the makespan of
the solution from the 3P-PCB-PH algorithm is equal to the optimal makespan from both
Models 1 and 2, i.e., the 3P-PCB-PH algorithm could also find an optimal solution for
all small problems. The number of outputs of each panel type satisfied the demand in
each problem. Although the small problems could be solved by Models 1 and 2 using
only a small CPU time (2 — 9 seconds for Model 1 and 1 — 6 seconds for Model 2), these
problems could be solved by the 3P-PCB-PH algorithm using less CPU time than both
Models 1 and 2. On average, the 3P-PCB-PH algorithm could solve each small problem
in less than 0.01 seconds, and the standard deviation (SD) of CPU time is less than 0.01

seconds. This shows that the 3P-PCB-PH algorithm is effective and efficient.

4.4.2 Computational results of the 3P-PCB-PH algorithm for the medium

problems

The results of the 3P-PCB-PH algorithm as well as Models 1 and 2 for the medium
problems are compared in Table 4.20. The results show that the 3P-PCB-PH algorithm
could find a feasible solution with the same makespan as the optimal solution from Model
1 and Model 2 for each problem, i.e., the 3P-PCB-PH algorithm could also solve all
medium problems to an optimal solution. From Table 4.20, although the CPU times for
solving the medium problems using Model 2 were lower than that using Model 1, the
3P-PCB-PH algorithm still used lower CPU time than Model 2 for solving each medium
problem. On average, the 3P-PCB-PH algorithm could solve each medium problem in
less than 0.01 seconds and with SD of CPU time of less than 0.01 seconds. This shows

the effectiveness and efficiency of the 3P-PCB-PH algorithm.

4.4.3 Computational results of the 3P-PCB-PH algorithm for the large prob-

lems

Table 4.21 shows the results of the 3P-PCB-PH algorithm as well as Models 1 and
2 for the large problems. For Problems L1, L2, and L4, the 3P-PCB-PH algorithm could

find an optimal solution because the makespan of the solution from the 3P-PCB-PH

83

‘PIoq UI oIe sonfeA 19999q o1, ‘uonnjos rewndQ,

Jo symsoy

Z [9POIN Jo symsey

I [9POIN Jo symsoy

(s 1££00°0) ﬁ 03¢ ‘082 “ 02€ ‘08¢ ﬁ 0G€ ‘08
) 088 | S0z, | «085C | . ., STE6V | «028C | . . . 8N
S 60600°0 002 ‘02€ ‘007 00Z ‘0Z€ ‘00 00Z ‘02¢ ‘00¥
(s 28200°0) “ 00T ‘08¢ S 69) 002 ‘08¢ s 1€ ﬁ 002 ‘08¢
L0T6°T | L0067 | L0867 [, LIN
S 89.00°0 00Z ‘08¢ ‘00T | w9 00Z ‘08¢ ‘00 | w6 00 ‘08Z ‘00¢
(s 60500°0) ﬁ 025 ‘0gL ﬁ 02¢ ‘0gL ST ﬁ 02S ‘02.
L096€ | S8Y°0% | «096°C | . 006 | 9N
s LZ600°0 02 ‘02% 02L ‘025 w 02 ‘02¢
(s 2¥€00°0) ﬁ 02¢ ‘002 ﬁ 02¢ ‘00 S 69 ﬁ 0%¢ ‘002
L082C | STC'GS | L08¢°C | ., 08¢ | SIN
S 89.00°0 00¥% ‘02€ 007 ‘0% w ¢ 007 ‘02¢
(s 99200°0) p 02T ‘00 A 0G1 ‘00¥ ﬁ 0gT ‘00¥
L08T | SOV'C | «008°T | $G9°0C | 008°T | . _ . TN
S 66500°0 02€ ‘007 02€ ‘002 0Z€ ‘00T
Am mwNOO.Ov 4 3 3 3 4 4 s wN 4 4 4
2009€ | 009 ‘026 ‘02L | S 97'9Z | «009°€ | 009 ‘026 ‘0TL -009°¢ | 009 ‘026 ‘07L | €N
S 82900°0 w |
Aw wwNOO.OV 4 3 3 3 4 [4 4 4 4
. L0TG°C | 02G ‘08F ‘08% | S6C'9 | «085°C | 0TS ‘08% 08V | S 6L°9T | «025'C | 028G ‘08¥ ‘08 | TN
S 61200°0
Aw H“WHOO.OV ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
X L09G°T | 0Z€ ‘02€ ‘02¢ | S €6'ET | «09G°T | 0TE ‘0TE ‘0zE | S 18°CE | «094°'T | 02€ ‘0g€ ‘0T | TIN
S 69%00°0
ouwIl ouII
(as) Xeu syndingQ nL xeu ~ smdinQ nL xeu sndingQ
swly, NdD AV ndo ndo
w03y HAd-d0d-d€ ON

‘swa[qold WNIpaw oY} I0] g pue T S[PPOJN pue wyjiodfe HJ-GDd-d€E 22 Jo synsal reuoryeindwo)) :0Z'% 9[qel,

84

"PIOq UL oI SoN[eA 10330 O, ‘[OPOW JIIN 9} WOIj UOI[0S JUSUNOUL oY J,; “uornios rewydQ,

002 002 00
(s 99500°0) N s 1€ S TP (%0) | ., S 6 (weze) | . .,
. L0TL'E | ‘06F ‘08F ‘OFF " 06 ‘08F ‘0FF it h 067 ‘0S¥ ‘0FF | 61
S L5010°0 o wy o | weryI | oL08ke |, w 9 ogLe |
02€ ‘09¢ ‘0ge 02€ ‘09¢ ‘0ge 02€ ‘09¢ ‘0g¢
002 002 00
(s ¥0<00°0) S I S 4 (%r8€¢) | . s 9¢ (%Lr8€) | .,
. 09¢‘e | ‘067 ‘0S¥ ‘OF¥ 13z k 06 ‘08 ‘07 g h 06F ‘08% ‘0FF | 81T
$ 092100 o w g 09ge | T w 0T 00ge | T
0z€ ‘09¢ ‘0ge 0z€ ‘09¢ ‘0ge 0z€ ‘09¢ ‘0gE
002 002 002
(s 61£00°0) S S QL SC (%0) | . s z¢ (%19°1) | .
L0TL'E | ‘06F ‘08F ‘OFF ﬁ 06 ‘08F ‘0FF it , 06% ‘0S¥ ‘0FF | LT
S GTOTO0'0 o wi | WeEYT | L08LE | w 91 oaLe |
0z€ ‘09¢ ‘0gE 0z€ ‘09¢ ‘0ge 0z€ ‘09¢ ‘0g¢
(s 5.500°0) ooeie | 04 007 008 | - $ GG (%0) | 0LL ‘00F ‘00T s 1¢ @ (%28°€) | 0LL ‘007 ‘005 o1
S £6600°0 : ‘07 ‘09¢ ‘02 WY | L09€'e | ‘0FE ‘09€ ‘068 | w9 109€e | ‘0FZ ‘09¢ ‘028
(s 16200°0) ooo'e | 04 ‘007 ‘00Z | S ¥S = (%) | 0L ‘007 ‘00c | S 61 @ (%¥) | 0LL ‘00F ‘00 -
S 80600°0 ‘0vg ‘09¢ ‘0z | W I 1000°€ | ‘0¥z ‘09¢ ‘Oz | W 1000°€ | ‘0FE ‘09¢ ‘028
(s 92£00°0) sosie | 04 007 008 | @ S €3 (%0) | 0LL ‘00% ‘00T S) S ¥1 (%0) | 0LL ‘00¥ ‘00 .
S L6600°0 : ‘0vT ‘09¢ ‘0TS 9 L09€¢ | ‘0¥g ‘09¢ ‘0ge | W 9T wey | ,09¢'¢ | ‘0¥E ‘09€ ‘08¢
(s L¥¥00°0) - 03S ‘06S $ ¢ > (%¥62) 038 ‘068 ser "z (%¥62) 02S ‘028 -
S L18600°0 ‘02S ‘025 ‘0ze | W T [080°F | ‘0GS ‘0eS ‘0gs | w g 10807 | ‘08S ‘0aS ‘082S
(s L6200°0) — 0GS ‘028 s 0G s ¢p (%0) 02S ‘02S s gy S gp (%0) 02S ‘02S -
S 81600°0 : ‘02S ‘02S ‘0TS w g u 009 | ‘08¢ ‘02S ‘0cs w9 weg | ,009°€ | ‘0TS ‘05S ‘08
(s 9%£00°0) 080 025 ‘02 oo S ¥g (%0) 02S ‘02 S ¥ s 8¢ (%0) 025 ‘025 -
S 82600°0 : ‘02S ‘02S ‘0TS w g L0807 | ‘03¢ ‘02g ‘0c¢ w Wy | L080F | ‘038G ‘05S ‘08
auul de3o awl de3do
(as) xeut sndinQ PUWILT, nL (meBV sndinQ UL, " wa&v sindinQ
owL, NdD Sav ndo o) ndo o)
w03y Hd-d0d-d€ *ON

Jo symsoy

Z [9POIA JO synsoy

T [9POIA JO synsay

‘swa[qoad a81e] 91} 10J g puUR T S[EPOJN pue WIIos[e HI-dDd-dE 24} Jo sjnsal [euonyeinduio)) :1g'F o[qel

85

algorithm is equal to the optimal makespan from both MILP models. Note that the CPU
times for solving Problems L1, L2, and L4 optimally using Model 1 are large, and the
CPU times for solving these problems using Model 2 are less than that using Model 1.
Nevertheless, the 3P-PCB-PH algorithm could find an optimal solution for these problems
using an average and SD of CPU time of less than 0.01 seconds each. For Problems L6,
L7, and L9, the optimality could be verified by Model 2, which took a large CPU time
(greater than 1 hour) in each problem. Although the timej, for solving these problems
using Model 2 is small (the maximum value is 1 minute 31 seconds in Problem L9) and less
than that using Model 1, the 3P-PCB-PH algorithm could still find an optimal solution
for these problems using an average and SD of CPU time of less than 0.1 seconds each.
For Problems L3, L5, and L8, Models 1 and 2 could not verify optimality but could find an
incumbent solution for each problem with the same makespan within the 2-h time limit.
The timej, to reach the incumbent solution for each problem using Model 2 is small and
less than that using Model 1, but the 3P-PCB-PH algorithm could find a solution with
the same makespan as the incumbent solution from each model for each problem using a
very small CPU time. Both the average and SD of CPU time for solving Problems L3,
L5, and L8 using the 3P-PCB-PH algorithm are only less than 0.1 seconds. These results

demonstrate that the 3P-PCB-PH algorithm is very effective and efficient.

The following is an example of a solution from the 3P-PCB-PH algorithm. For
the results of Problem L1, variables ;x,; and X, which were equal to 1, are shown in
Tables 4.22 and 4.23, respectively. Figures 4.22 and 4.23 show the Gantt charts of the
press machine and oven, respectively. These Gantt charts were different from the Gantt
charts in Figures 4.2 and 4.3 from Model 1, i.e., Problem L1 has an alternative optimal
schedule. The makespan of the overall process of this problem was 4,080 minutes. It is
worth noting that, in Figure 4.22, each panel type is finished in a group, which is preferred

in the real world because it makes material preparation easier for the PCB manufacturer.

86

Table 4.22: List of x;,; values which is equal to 1 in the optimal solution of
Problem L1 using the 3P-PCB-PH algorithm.

Press

) Non-zero T;ript
Machine

211211, 11212, 11213, 23214, £23215, £32216, £32217, 43218 £43219, £5121,10; L5121,11
11221, 11222, 23223, £23224, £23225, £32226, £32227, 43228, £43229, £5122,10, L5122,11
211231, L11232, 23233, £23234, £32235, £32236, £32237, 43238, 43239, £5123,10, L5123,11

1

2

3

4 T11241, T11242, 23243, 23244, £32245, £32246, L43247, T43248, T43249; L5124,105 T5124,11
5 T11251, £11252; 23253, L23254, £32255, £32256, L43257, T43258, T51259; L5125,105 L5125,11
6

T112615L11262, L232635 £23264, L32265; L32266, L43267, L43268, L512695 L5126,10

Table 4.23: List of X, values which is equal to 1 in the optimal solution of Problem
L1 using the 3P-PCB-PH algorithm.

Press
Non-zero X,
Machine
1 X1, X121, X131, X1a1, Xis1, Xie1, Xir1, Xis1, Xio1, X1,10,1, X1,11,1

2 Xo12, Xo22, X032, Xo4o, Xosa, Xoe2, Xora, Xoga, Xog2, X2 10,2, X2,11,2
3 X313, X303, X333, X343, X353, X363, X373, X383, X303, X3,10,3, X3,11,3
4 Xun1, Xuo1, Xuz1, Xaar, Xust, Xae1, Xar1, Xas1, Xao1, X4,10,1, Xa,11,1
5 X512, X522, X532, X542, X552, X562, X572, X582, X592, X5,10,2, X5,11,2
6 X613, X623, X633, X643, X653, X663, X673, X683, X693, 56,10,3

87

‘wjIo8re HJ-g0d-d¢ 29Ul Suisn [wWe[qolJ 10J SUSAO JO }IeTd jjuer) :gg'F oanlrg

(S2anuw) 2w

096E O¥BE OZLE OQOSE 08FE O%EE OF¥ZE OZTIE O0OOE 088 09[Z O¥9Z 0252 00vZ OBZZ 0912 O¥0Z OZ6T O0OST OB9T 09ST OFFT OZET OOZL O80T 0% OFE 024 009 O8F 0% O 021 O
T:_q%:d_ 75@3 T:_u_ 7 a_L (6'T) _ E_L (=31 7 :_z_ :_i 7 G_z_ G_i 7 E.L ﬁ.d_ 7 ?6_7 :}__ 7 (e'%) ﬁm_i 7 R.L AN.L _ :_L :.i
T:_m%:_u_ TE_E TE_NH_ 7 a_mui 18'2) _ (g's)| (2'd) 7 :_.u_ :._N; 7 G_u_ G_N; 7 m_i ﬁ.u_ 7 :-.L :_&_ 7 (e'g) ﬁmdi 7 a_m; AN_L _ :_m; :_37

Tﬂ._”_m__ TE_E To._”_m__ 7 nm_i _ﬁm.mui _ (8'a) ..m.mui 7 E_Q_ _“h_mui 7 nm_m_“__ _“m_mui 7 ﬁm_mui _“m_mu_ 7 ?.97 S_.ﬂ_ 7 (£'a) ﬁm_.ﬂi 7 HN.B* _“N.mui _ :_i _ﬁ._”.mui
(2347 Jaquinu sulyew ssaud)
.Sﬂpaowﬂm mmumomunﬁm @Qp wﬂﬁmﬁ T EQMQOM& ,Ho.w m@gwﬂoﬁa ssoxd wO um@gu ppﬂﬁ@ a4 4 @.HSWTH
(s=2qnuw} awng
020F 096E OFBE OZLE O09E OBFE 09EC OFZIE OLIE oo_om 0882 09L2 O0F9C om_mn 00FZ cm_mn c_u_Hm E..Hom _um_mﬁ 008T 089T 09sT ..._&_3” OZET O0ZL 080T 09 oOF8 O0ZL 009 08¢ O0SE OFE OZT O
(0t = Indino) {0t = Indino) {0F = ndino} {0F = ndino} {0F = ndino} {0F = Indino) {0F = Indino) (0¥ = Indino) (0¥ = Indino} {0t = Indino) (ot = ndno}
{5 adAy jsued) | (g adAy jsued) | (§ 2dAy lsued) | (f 2dAy lsued) | (£ 2dAy lsued) | (£ 2dAy jsued) | (z 2diy)sued) | (z 2dA jsued) | (1 2dfy j2ued) | (1 2dAy jsued) | (T 2dA3 jsued)
1T 21342 01 21242 [L] | 234 P L] o 3342 g 32D + 3340 £ 2342 i E] T 2342
(0t = ndino) (0% = Indino) {0F = ndino) {0F = ndino) {0F = ndino) {0f = Indyno) {0F = Jndino) {0f = Indino) {0F = Indino) {0F = Jndino) (0¥ = Indino}
{g adAy jpued) | (g =2dAy jpued) | (2dA3 |3ued) | (p 2dAy |j2ued) | (g 2dA3 jpued) | (g 2dAy jlsued) | (g 2dAy |sued) | (z 2dA3 jsued) | (z =dA3 j2ued) | (1 2dA3 jlpued) | (1 2dA3 |sued)
11 2242 QT =242 § 2242 g 2242 £ 3242 o 23|242 g 3242 ¥ 21242 £ 3242 Z 3242 1 3242
(ot = ndano) | {oF = Indina} | (OF = Indino} | (of = Indano) | (oF = IndIno) | (o = Indno) | (OF = Indino} | (OF = Indno} [(O = IndIno) | (0F = Indinc) | (o = IndIno)
{g 2dAy j]pued) | (g 2dA3y j2ued) | (f 2dA3 |3ued) | (f 2dA3 j2ued) | (g 2dA3 jpued) | (g 2dA3 j|2ued) | (g 2dAy)sued) | (g 2dA3 j2ued) | (z 2dA3 jsued) | (1 2dA3 jlpued) | (1 2dA3 |sued)
11 2242 Q1 21242 6 2|24 g 2242 £ 3242 g 21242 g 2242 ¥ 21242 £ 21242 Z 31242 T 21242
{0F = indine} | {of = ndno} | (oF = Indno} | (o = Indyno} | {oF = ndne} | (o = Indino} | (op = ndno} | (OF = IndIno} | {of = ndano} | (oF = ndno} | (Ot = Indino)
(g adAy jsued) | (g adAy jpued) | (§ 2dAy jsued) | (2dA3 3ued) | (p 2dAy jsued) | (g 2dA3 jlpued) | (g =2dA3 jsued) | (g 2dAy jsued) | (z 2dA3 jsued) | (1 =dAy j2ued) | (1 2dA3 jl2ued)
11 21242 01 2242 6 2|24A2 g 21242 [2|2A2 g 3242 g 2242 & 2242 £ 2242 Z 21242 1 21242
(0t = andino} | {pF = ndno) | (O = 3ndino} | (Of = ndyno} | {oF = Indno} | (o = ndino) | (op = Indino) | (OF = ndano} | (Df = Indyno) | (op = Indno) | (OF = 3ndino)
(g 2dA3 jpued) | (g 2dAy jpued) | (g 2dAy|sued) | (# 2dA3 |3ued) | (f 2dA3 |2ued) | (g 2dA3 jlpued) | (g 2dA3 |2ued) | (g 2dA3 |2ued) | (z 2dA3 j2ued) | (1 =2dAy j2ued) | (1 2dA3 j]2ued)
11 21282 o1 2|2h2 & 2242 g 2242 L 2|2R2 g 2242 g 2242 + 2242 £ 3242 Z 2242 1 21242
(0t = ndano) | {oF = Indino} | (OF = Indino} | (oF = Indano} | (o = Indino) | (o = Indno) [(OF = 3Indino) | (DF = Indino} | (o = IndIno) | (OF = Indino)
{g 2dA3]2ued) | (g =2dAy |zued) | (§ =2dA3)2ued) | (f 2dA3]2ued) | (g€ 2dA3 jzued) | (g =2dA3]sued) | (g =2dA3 j2ued) | (z =2dA3 j2ued) | (1 =2dA3 j2ued) | (1 =2dA3 j2ued)
01 21242 & 2242 g 2242 L 2|2A2 g 2242 g 2242 + 2242 £ 3242 Z 21242 1 2242

—

~

daquuinu usao

L]

J20WNU BUyIewW ssaud

38

4.4.4 Computational results of the 3P-PCB-PH algorithm for the extra-large

problems

Table 4.24 shows the results of extra-large problems from the 3P-PCB-PH algorithm
compared with the results from Models 1 and 2. For Problem El1, the 3P-PCB-PH
algorithm could find an optimal solution since the makespan of the solution from the
3P-PCB-PH algorithm is equal to the optimal makespan from Model 2. The solution
from the 3P-PCB-PH algorithm (Cpax = 5,160) is also better than the solution from
Model 1 (Cipax = 5,280). However, the CPU time for solving Problem E1 optimally
using Model 2 is large (1 hour 2 minutes 58 seconds). The 3P-PCB-PH algorithm could
find an optimal solution for this problem using a small average and SD of CPU time of
less than 0.1 seconds each, and this Avg CPU time is also less than the time;,. value
using Model 2. For Problem ES8, the 3P-PCB-PH algorithm could find a feasible solution
with the same makespan as the incumbent solution from Model 2 (Cyax = 4, 440), which
is better than the incumbent solution from Model 1 (Cyax = 4,560). The 3P-PCB-PH
algorithm used Avg CPU time (and SD CPU time) of less than 0.1 seconds for solving
this problem, which is much less than the time;,. value using Model 2. For Problems E2 —
E7, and E9, the 3P-PCB-PH algorithm could find a solution with the same makespan as
the incumbent solution from both Models 1 and 2, but the 3P-PCB-PH algorithm used
less CPU time than the timej,. value from both Models 1 and 2. Both the average and
SD of CPU time for solving Problems E2 — E7 and E9 using the 3P-PCB-PH algorithm
are only less than 0.1 seconds. These results show the effectiveness and efficiency of the

proposed 3P-PCB-PH algorithm.

Furthermore, the results from the 3P-PCB-PH algorithm can give helpful informa-
tion. For example, from Problems E1 — E3 in Table 4.8, all of the parameters in these
problems are the same, with the exception of the number of press machines and ovens,
which were increased by one in Problems E2 and E3, respectively, from Problem E1. Ac-
cording to the results of these problems in Table 4.24, the makespan of Problems E1 — E3
were 5,160 minutes, 4,560 minutes, and 5,160 minutes, respectively. This means that the

makespan of Problem E1 could be reduced from 5,160 to 4,560 minutes when the num-

89

‘PIOq UI 9I€ SanfeA 19999q 9],

[opowt JT[IN 9Y) WO UOIN[OS JUdqUINOUL o], ‘uornfos rewndQ,

009 009 009
(s 8%900°0) N I s/ (%eee) | s 0¢ (%eee) | .
. 09T‘G | ‘004 ‘09¢ ‘00¥ 1z " 00L ‘09€ ‘00% it F 00L ‘09€ ‘00F | 6d
S GELT00 o w | 091G | T T w gy 091G | T T
009 ‘0¥F ‘02 009 ‘OFF ‘028 009 ‘0¥F ‘02
009 . 009 . 009
(s 09€00°0) N A s 91 (%oLe) | . sy (%9ze) | . .,
0vF'y | ‘004 ‘09€ ‘00F 1z “ 002 ‘09¢ ‘00% L4 F 00L ‘09€ ‘00% | 8d
s $IL10°0 oo w pT 117 2 I w 0957 | T T
009 ‘OFF ‘02 009 ‘0VF ‘02 009 ‘0VF ‘025
009 009 009
(s g€500°0) N I S 8T (weeT) | . ., S 6 (%eee) | . .,
09T‘G | ‘004 ‘09¢ ‘00% qz r 00L ‘09€ ‘00% it ﬁ 00L ‘09€ ‘00% | LA
S LL910°0 o w | 091G | T T w 97 091G | T T
009 ‘O¥F ‘02 009 ‘O¥F ‘02 009 ‘0¥F ‘025
(s 06900°0) oeas | 078 ‘0aL ‘079 s T1 ay (%L1°2) | 0F8 ‘0TL ‘079 S 6¢ @ (%21°T) | 0F8 ‘0gL ‘0F9 o
S 6SST0°0 ‘008 ‘0TS ‘00F | W T 025G | ‘008 ‘028 ‘007 | W T 1025 | ‘008 ‘0GS ‘00
(s g¥800°0) ooy | 78 ‘0L ‘079 s € = (%0S°2) | 0F8 ‘0aL ‘0F9 s 9g @ (%09°2) | 0F8 ‘0aL ‘0F9 -
S ¥8910°0 ‘008 ‘02< ‘00 w g 10087 | ‘008 ‘02S ‘00F | W8T U T 10087 | ‘008 ‘02 ‘00¥
(s T6700°0) oze's | 078 ‘0L ‘079 S ¥¥ A (%L1°2) | 0F8 ‘0TL ‘079 s 0g "z (%21°T) | 0¥8 ‘0cL ‘0F9 .
S 9ZST0°0 ‘008 ‘08 ‘00F w T 10256 | ‘008 ‘02S ‘00¥ w (] 1028°G | ‘008 ‘03S ‘00%
(s 5¥500°0) - 08F ‘088 S 61 53 (%eee) 08F ‘088 sy "z (%e€7) 08¥ ‘088 -
s 0VF10°0 ‘094 ‘096 ‘089 | W T [09T°G | ‘09L ‘09G ‘089 | W 9T 109T°G | ‘094 ‘09G ‘089
(s 69£00°0) A 0S¥ ‘088 s ¢ (%6¢7) 0S¥ ‘088 s ¢g (%9z°¢) 0S¥ ‘088
. me w 4 ¢ 4 ﬁ— N 4 4 ¢ 4 g N 4 ¢ 4 [4 Nm
S TLET0°0 09 ‘09G ‘089 | wg 10967 | ‘09 ‘09 ‘089 | W 8y 10957 | ‘094 ‘09G ‘089
(s 80500°0) oor'e 08F ‘088 s el S 8 (%0) 08F ‘088 S 67 "z (%57) 08F ‘088 .
S GTET0°0 : ‘09096 089 | W T | WZUT | L09TC | ‘09L‘09¢ ‘089 | Wl 10826 | ‘094 ‘09G ‘089
(as) owry, | (deSy) oury, | (deSy)
xeul sndinQ PUWILT, S sndinQ WLy, S sndinQ
owL], NdD 8V ndo o) ndo o)
w03y Hd-d0d-d€ *ON

Jo symsoy

Z [9POIA JO synsoy

T [OPOIA JO synsoy

‘swe[qoad a81e[-eIIX0 9} 10} g pue T S[PPOJN Pue WILI0Z[R HI-dDd-dE 213 Jo synsal [euorpeindwoy) ' § o[qel,

90

ber of press machines is increased by one, but the makespan could not be reduced when
the number of ovens is increased by one from Problem E1. Therefore, the 3P-PCB-PH
algorithm can also be used to determine which resources should be increased in order to

reduce the production time.

From all numerical experiments, the results show that the 3P-PCB-PH algorithm
is appropriate for solving all sizes of problems. For the problems that Model 1 or Model
2 could solve optimally, it could find an optimal solution for these problems using a
much less computational time. For the other problems that both models could not solve
optimally, the 3P-PCB-PH algorithm could find a solution with the same makespan as
the incumbent solution from Model 2, which is less than or equal to the makespan of the
incumbent solution from Model 1. The computational times of the 3P-PCB-PH algorithm
seem to be very fast due to its simplicity, where all problems could be solved within 1
second. The 3P-PCB-PH algorithm could therefore save a large amount of computational
time at finding a good schedule for the pressing process scheduling and is practical for

practitioners in the real PCB manufacturing industries.

4.5 Discussions

In this research, Model 1 was firstly proposed for solving the pressing process
scheduling. Although this model could be used to find a solution of the pressing pro-
cess scheduling, it is not effective due to its large size complexity. It used a large number
of constraints and binary variables, especially in the constraints for avoiding an overlap
in an oven. In addition, the model used too many continuous variables for defining the
starting time of the pressing phase of a press machine cycle. Furthermore, it also used the
completion time variables, which are not need to be defined in the model. These can lead
to a poor model performance because the model required a large computational time to
be solved. The results showed that Model 1 could solve the small and medium problems
to reach optimality, while it could solve only some large problems optimally. Model 2,
which is an improved version from Model 1, was then proposed. Model 2 is better than

Model 1 in all three factors of the size complexity, where NBV, NCV, and NC in Model

91

2 are less than those in Model 1. A large number of binary variables and constraints in
Model 2 were reduced from Model 1, especially in the constraints for avoiding an overlap
in an oven, since Model 2 replaced the binary variable Yo by Yy and could reduce
half of NC of the constraints for avoiding an overlap in an oven. NBV of Y410 and Yy
are significantly different, and NC in the constraints for avoiding an overlap in an oven
from both models are quite different when the size of problem becomes large or extra-
large. Since the most important factor that influences the MILP model’s performance is
NBV, followed by NC [17], reducing these in Model 2 can help solve large-sized problems
more efficiently. The results showed that Model 2 used smaller CPU time and time;jy,
than Model 1 for solving all problems, where the solution from Model 2 was of no worse
quality than that from Model 1, i.e., Model 2 also outperformed Model 1 in terms of the

computational complexity.

In addition, the time;j,. from Model 2 to reach the incumbent solution of large and
extra-large problems are small and practicable. In practice, many PCB companies need
to find a good schedule for the pressing process scheduling in a short amount of time,
and an incumbent solution may be just what they need. Therefore, a PCB manufacturer
can use Model 2 to find an optimal schedule or a good schedule for the pressing process

scheduling by setting a small time limit, such as 5 minutes, or a small %gap, such as 5%.

The 3P-PCB-PH algorithm is the last approach that was presented for solving the
pressing process scheduling. The main idea of this heuristic algorithm was to balance
workload in all press machines and ovens. The results showed that the 3P-PCB-PH
algorithm could solve problems of every size using a very small computational time because
of its simplicity. The schedule from the 3P-PCB-PH algorithm is also preferable in the
real situation than the schedule from both Models 1 and 2 because each panel type is
finished in a single group, while cycles of the same panel type in the solution from Model

1 or Model 2 may not need to be scheduled consecutively.

The proposed MILP models have the benefit that they can guarantee to find an

optimal solution if the problem could be solved to reach optimality within the time limit.

92

The solution from a MILP model can also be used as a reference solution to decide
the quality of the solution from the proposed heuristic algorithm. On the contrary, the
proposed 3P-PCB-PH algorithm has the benefit that it can save a lot of computational
time to find a good solution for the problem, but it cannot guarantee to find an optimal

solution.

The proposed models can be easily expanded to make them more useful in real-
world applications. For example, the objective of the proposed models is to minimize the
makespan of the pressing process, where the demands must be satisfied. Nevertheless,
the surplus output of each panel type may be too large. The term
€ Z f i i i Tikipt(Maiky) — d; | can be added to the objective function if we also
Want t]f) elrllf(}rzé_eltthat the surplus output of each type of panels should not be too large

with the main objective makespan. Note that the constant e should be very small so that

it does not affect minimizing the main objective makespan.

Furthermore, both proposed models and the proposed heuristic algorithm can be

beneficial in the real-world situations as follows.

1. The proposed models or the proposed heuristic algorithm can be used to find an
optimal schedule or a good schedule for the pressing process scheduling by a PCB
company which manually schedules the pressing process. The solution from the
proposed models or the proposed heuristic algorithm can be used to compare with
the manual schedule of the PCB company, and the manager of the PCB company

can select the better schedule to manage in the real situation.

2. If a PCB company receives a rush order, the proposed models or the proposed
heuristic algorithm can be used to decide which resources should be increased in
order to reduce the production time before executing the production plan in the
real-world situation. For example, the manager of the PCB company can adjust
the parameters in the proposed models or the proposed heuristic algorithm, such
as the number of press machines or ovens, to see how much the makespan can be

reduced.

CHAPTER V

CONCLUSIONS

This chapter summarizes the conclusion of this dissertation and provides some ex-

tensions that could be future research.
5.1 Conclusions

This dissertation studied the pressing process scheduling, a real-world application
in the PCB manufacturing industry. In a cycle of a press machine, the panels are created
and inserted into a press machine (lay-up phase) and then sent into an oven so that they
are heated and pressed in the oven (pressing phase). After that, the pressed books are
cooled down for a while in the press machine (cool-down phase). The press machines have
to be processed several cycles so that the demands of panels are satisfied. The pressing
process scheduling uses assignment and sequencing to obtain an optimal solution, i.e., the
assignment of a panel type, a SST size, and a layout in creating a book, the assignment
of a press machine to an oven, and the sequencing of tasks from press machines in an
oven. The objective of the pressing process is to minimize makespan, which can imply
increasing the utilization of the available resources and is the main objective of any PCB

manufacturer.

In this dissertation, three approaches for solving the pressing process scheduling
were proposed, which consisted of Model 1, Model 2, and the 3P-PCB-PH algorithm.
Both Model 1 and Model 2 are MILP, which is an exact method, while the 3P-PCB-
PH algorithm is a heuristic method. Both Model 1 and Model 2 illustrated possible
applications of MILP that can cope with a complicate problem from an actual industry.
The MILP model has the benefit that it can give an optimal solution of the problem if
one exists, while the heuristic algorithm has the benefit that it can find a good solution

of the problem within a reasonable time. In this work, we acquired real data from a PCB

94

company, and the data was used to generate the test problems, which included the small,
medium, large, and extra large problems. Model 1 could solve all small and medium
problems optimally within the 2-h time limit, but it could find an optimal solution for
only some large problems and could not solve all extra-large problems optimally. This is
because the size complexity of Model 1 is large, where it used too many constraints and
binary variables to formulate the model. This led to a poor model performance (poor
computational complexity). Therefore, we aimed to develop another MILP model. The
development of MILP model is challenging since the new model may verify a new optimal
solution for the problems that the previous model could not solve optimally or may find

a better feasible solution.

Model 2 is an improved version of Model 1, where it outperformed Model 1 in terms
of both size and computational complexities. NBV, NCV, and NC in Model 2 are less
than those in Model 1. It took lower computational time than Model 1 to solve all the
problems that Model 1 could solve optimally and could newly verify the optimal solution
for some problems that Model 1 could not. Model 2 yielded a better computational time
with average RPIme of 34.71% for finding an optimal solution. Model 2 could also find an
incumbent solution for the large and extra-large problems using less computational time
compared with Model 1, where the incumbent solution from Model 2 is superior or of
the same quality as the incumbent solution from Model 1. Model 2 also yielded a better
computational time to reach the incumbent solution with average RPIXC. of 82.06%
and 88.70% for large and extra-large problems, respectively. These show that Model

2 is suitable for finding a good solution for the large-sized pressing process scheduling

problems.

As for the 3P-PCB-PH algorithm, the main idea was to balance workload in all
press machines and ovens. The algorithm is simple but effective and could find an optimal
solution or a near-optimal solution for the test problems using a very small computational
time. The solution from the 3P-PCB-PH algorithm is of the same quality as the solution
from Model 2 for all test problems, which is no worse than that from Model 1. When

the size of problem increased from small size to extra-large size, the computational time

95

of the 3P-PCB-PH algorithm are not hugely increased due to its simplicity, which is
different from the computational time of the MILP models since there are a large number
of feasible solutions to be verified for optimality owing to a lot of decision variables. The
3P-PCB-PH algorithm could solve all problems using the computational time of less than
1 second, which is very practical in the real situation. All proposed models and heuristic
algorithm can be options to provide an optimal schedule or a high quality schedule for
the pressing process in any PCB manufacturing industries to reduce their production cost

and time.

The limitations of this research are that the pressing process is assume to have
the same size of press machines and ovens as well as the same processing time of all
panel types. Furthermore, the approach of MILP model is not suitable for solving the
pressing process scheduling problems with long planning horizons, such as, a month.
In addition, the proposed heuristic algorithm is specific for only the pressing process
scheduling problem with the assumptions as described above and cannot be used for the
problem with new additional constraints or other assumptions. However, the idea of
workload balancing, assignment, and sequencing from the proposed heuristic algorithm

can be applied to similar problems from other industries.

5.2 Future works

This section provides further developments that could be future research, which

include the following.

1. In the pressing process, some additional constraints can be introduced, which con-
sists of the following:
o A press machine cycle can press multiple types of panels at the same time.
o The panel types have different cycle times.

o Some panel types have a higher priority to be finished before other panel
types.

o Machine maintenance is required for the press machines or ovens.

96

o A cycle of a press machine can leave some openings to be empty.

e There are many sizes of press machines and many sizes of ovens.

Adding these factors to the problem can be very interesting for further

research, but it would also increase the complication of the problem.

2. The development of a new MILP model which can outperform the proposed models

for the pressing process scheduling in this dissertation is also very challenging.

3. The development of new heuristic or metaheuristic algorithms for solving the press-

ing process scheduling problem can also be another future research line.

1]

REFERENCES

A. Noroozi and H. Mokhtari, “Scheduling of printed circuit board (PCB) assembly
systems with heterogeneous processors using simulation-based intelligent optimiza-

tion methods,” Neural. Comput. Appl., vol. 26, no. 4, pp. 857-873, 2015.

W. Qin, Z. Zhuang, Y. Liu, and O. Tang, “A two-stage ant colony algorithm for
hybrid flow shop scheduling with lot sizing and calendar constraints in printed circuit

board assembly,” Comput. Ind. Eng., vol. 138, p. 106115, 2019.

R. S. Khandpur, Printed circuit boards: Design, fabrication, assembly and testing.

Tata McGraw-Hill Education, 2005.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and network

flows. John Wiley & Sons, 2008.

D. S. Chen, R. G. Batson, and Y. Dang, Applied integer programming: Modeling and
solution. John Wiley & Sons, 2011.

I. M. Alharkan, “Algorithms for sequencing and scheduling,” Industrial Engineering

Department, King Saud University, Riyadh, Saudi Arabia, 2005.

F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the flexible
job-shop scheduling problem,” Comput. Oper. Res., vol. 35, no. 10, pp. 3202-3212,
2008.

A. Thammano and A. Phu-Ang, “Flexible production scheduling on parallel machines

in manufacturing industry,” KMITL IT J., vol. 2, no. 1, 2016, (in Thai).

C. Ozgiiven, L. Ozbakir, and Y. Yavuz, “Mathematical models for job-shop schedul-
ing problems with routing and process plan flexibility,” Appl. Math. Model., vol. 34,
no. 6, pp. 15639-1548, 2010.

[10]

[20]

98

V. Roshanaei, A. Azab, and H. ElMaraghy, “Mathematical modelling and a meta-
heuristic for flexible job shop scheduling,” Int. J. Prod. Res., vol. 51, no. 20, pp. 6247—
6274, 2013.

G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the flexible job-shop
scheduling problem,” Ezpert Syst. Appl., vol. 38, no. 4, pp. 3563—-3573, 2011.

X. Li and L. Gao, “An effective hybrid genetic algorithm and tabu search for flexible
job shop scheduling problem,” Int. J. Prod. Econ., vol. 174, pp. 93-110, 2016.

B. Naderi and A. Azab, “An improved model and novel simulated annealing for
distributed job shop problems,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1, pp. 693—
703, 2015.

B. Naderi and R. Ruiz, “The distributed permutation flowshop scheduling problem,”
Comput. Oper. Res., vol. 37, no. 4, pp. 754-768, 2010.

Y. Unlu and S. J. Mason, “Evaluation of mixed integer programming formulations for
non-preemptive parallel machine scheduling problems,” Comput. Ind. Eng., vol. 58,

no. 4, pp. 785-800, 2010.

L. Meng, C. Zhang, X. Shao, B. Zhang, Y. Ren, and W. Lin, “More MILP models
for hybrid flow shop scheduling problem and its extended problems,” Int. J. Prod.
Res., vol. 58, no. 13, pp. 3905-3930, 2020.

C. H. Pan, “A study of integer programming formulations for scheduling problems,”

Int. J. Syst. Sci., vol. 28, no. 1, pp. 33-41, 1997.

B. Naderi, S. Gohari, and M. Yazdani, “Hybrid flexible flowshop problems: Models
and solution methods,” Appl. Math. Model., vol. 38, no. 24, pp. 5767-5780, 2014.

L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear programming
and constraint programming formulations for solving distributed flexible job shop

scheduling problem,” Comput. Ind. Eng., vol. 142, p. 106347, 2020.

P. C. Gilmore and R. E. Gomory, “Multistage cutting stock problems of two and

more dimensions,” Oper. Res., vol. 13, no. 1, pp. 94-120, 1965.

[21]

[24]

99

R. Macedo, C. Alves, and J. V. De Carvalho, “Arc-flow model for the two-dimensional
guillotine cutting stock problem,” Comput. Oper. Res., vol. 37, no. 6, pp. 991-1001,
2010.

M. Mrad, I. Meftahi, and M. Haouari, “A branch-and-price algorithm for the two-
stage guillotine cutting stock problem,” J. Oper. Res. Soc., vol. 64, no. 5, pp. 629637,
2013.

R. Alvarez-Valdes, A. Parajon, and J. M. Tamarit, “A computational study of LP-
based heuristic algorithms for two-dimensional guillotine cutting stock problems,”

OR Spectr., vol. 24, no. 2, pp. 179-192, 2002.

F. Furini, E. Malaguti, R. M. Duran, A. Persiani, and P. Toth, “A column generation
heuristic for the two-dimensional two-staged guillotine cutting stock problem with

multiple stock size,” Fur. J. Oper. Res., vol. 218, no. 1, pp. 251-260, 2012.

K. Tieng, S. Sumetthapiwat, A. Dumrongsiri, and C. Jeenanunta, “Heuristics for
two-dimensional rectangular guillotine cutting stock,” Thail. Stat., vol. 14, no. 2,

pp. 147-164, 2016.

S. Sumetthapiwat, B. Intiyot, and C. Jeenanunta, “A column generation on two-
dimensional cutting stock problem with fixed-size usable leftover and multiple stock

sizes,” Int. J. Logist. Manag., vol. 35, no. 2, pp. 273-288, 2020.

W. Wei, L. Jian-Yong, and W. Heng, “Path optimization for PCB NC-drilling using
genetic algorithm,” CEA., vol. 44, no. 229, 2008.

M. S. Saealal, A. F. Abidin, A. Adam, J. Mukred, K. Khalil, Z. Yusof, Z. Ibrahim,
and N. Nordin, “An ant colony system for routing in PCB holes drilling process,”

IJIMIP, vol. 3, no. 1, pp. 50-56, 2012.

G. Onwubolu and M. Clerc, “Optimal path for automated drilling operations by
a new heuristic approach using particle swarm optimization,” Int. J. Prod. Res.,

vol. 42, no. 3, pp. 473-491, 2004.

[30]

[33]

[38]

100

W. C. E. Lim, G. Kanagaraj, and S. Ponnambalam, “Cuckoo search algorithm for op-
timization of sequence in PCB holes drilling process,” in Emerging trends in science,

engineering and technology, pp. 207-216, Springer, 2012.

W. C. E. Lim, G. Kanagaraj, and S. Ponnambalam, “PCB drill path optimization

by combinatorial cuckoo search algorithm,” Sci. World J., vol. 2014, 2014.

G. Kanagaraj, S. Ponnambalam, and W. C. E. Lim, “Application of a hybridized
cuckoo search-genetic algorithm to path optimization for PCB holes drilling process,”
in 2014 IEEE International Conference on Automation Science and Engineering

(CASE), pp. 373-378, IEEE, 2014.

P. Ji, M. Sze, and W. B. Lee, “A genetic algorithm of determining cycle time for
printed circuit board assembly lines,” Eur. J. Oper. Res., vol. 128, no. 1, pp. 175-184,
2001.

D. M. Kodek and M. Krisper, “Optimal algorithm for minimizing production cycle
time of a printed circuit board assembly line,” Int. J. Prod. Res., vol. 42, no. 23,

pp. 5031-5048, 2004.

S. Emet, T. Knuutila, E. Alhoniemi, M. Maier, M. Johnsson, and O. S. Nevalainen,
“Workload balancing in printed circuit board assembly,” Int. J. Adv. Manuf. Tech-
nol., vol. 50, no. 9-12, pp. 1175-1182, 2010.

T. He, D. Li, and S. W. Yoon, “A heuristic algorithm to balance workloads of high-
speed SMT machines in a PCB assembly line,” Procedia Manuf., vol. 11, pp. 1790
1797, 2017.

P. Damodaran, K. Srihari, and S. S. Lam, “Scheduling a capacitated batch-processing
machine to minimize makespan,” Robot. Comput. Integr. Manuf., vol. 23, no. 2,

pp- 208-216, 2007.

P. Damodaran, D. A. Diyadawagamage, O. Ghrayeb, and M. C. Vélez-Gallego,

“A particle swarm optimization algorithm for minimizing makespan of nonidenti-

[41]

[44]

[45]

[46]

[47]

101

cal parallel batch processing machines,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9,
pp. 1131-1140, 2012.

P. Damodaran and K. Srihari, “Mixed integer formulation to minimize makespan in
a flow shop with batch processing machines,” Math. Comput. Model., vol. 40, no. 13,
pp. 1465-1472, 2004.

M. Hulett, P. Damodaran, and M. Amouie, “Scheduling non-identical parallel batch
processing machines to minimize total weighted tardiness using particle swarm opti-

mization,” Comput. Ind. Eng., vol. 113, pp. 425-436, 2017.

J.-S. Chen and J.-S. Yang, “Model formulations for the machine scheduling problem
with limited waiting time constraints,” J. Inf. Optim. Sci., vol. 27, no. 1, pp. 225-240,
2006.

B. Naderi, S. Fatemi Ghomi, M. Aminnayeri, and M. Zandieh, “A study on open
shop scheduling to minimise total tardiness,” Int. J. Prod. Res., vol. 49, no. 15,

pp. 46574678, 2011.

M. Mousakhani, “Sequence-dependent setup time flexible job shop scheduling prob-
lem to minimise total tardiness,” Int. J. Prod. Res., vol. 51, no. 12, pp. 3476-3487,

2013.

M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling with tabu search
algorithms,” Int. J. Adv. Manuf. Technol., vol. 32, no. 5, pp. 563-570, 2007.

P. Fattahi, M. S. Mehrabad, and F. Jolai, “Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems,” J. Intell. Manuf., vol. 18,
no. 3, pp. 331-342, 2007.

V. Roshanaei, H. EIMaraghy, and A. Azab, “Sequence-based MILP modeling for

i

flexible job shop scheduling,” in IIE Annual Conference Proceedings, p. 1, Institute

of Industrial and Systems Engineers (IISE), 2012.

B. Naderi and A. Azab, “Modeling and heuristics for scheduling of distributed job
shops,” Exp. Syst. Appl., vol. 41, no. 17, pp. 7754-7763, 2014.

102

[48] F. Wang, Q. Tang, Y. Rao, C. Zhang, and L. Zhang, “Efficient estimation of distri-
bution for flexible hybrid flow shop scheduling,” Acta. Autom. Sin., vol. 43, no. 2,
pp. 280-293, 2017.

[49] M. Pinedo, Scheduling, vol. 29. Springer, 2012.

APPENDICES

104

APPENDIX A : IBM ILOG OPL CPLEX code for Model 1.

This section demonstrates the CPLEX code for Model 1, which includes .mod file

and .dat file as follows.

1 |%.mod file
2 | /*x* Parameters *xx*/
3 |int I = 5;
4 |range panels = 1..I;
5 |int K = 6;
6 |range stainlesses = 1..K;
7 |int L = 8;
8 |range layouts = 1..L;
9 |int P = 6;
10 |range pressmachines = 1..P;
11 |int 0 = 3;
12 |range ovens = 1..0;
13 |int T = 12;
14 |range cycles = 1..T;
15 |range cyclesl = 1..(T-1);
16 |int m = 10;
17 |int n = 120;
18 |int M = 10000;
19
20 | /#** Import the values of a(ikl) from excel file **x/
21 |int temp[l..IxKxL] = ...;
22 |int a[i in panels, k in stainlesses, 1 in layouts]= temp[1+L*(k-1)+K*L
*(1-1)1;
23 |int d[panels] = [500, 500, 500, 500, 500];
24
25 | /*x* Decision Variables **x*/
26 |dvar boolean x[panels] [stainlesses] [layouts] [pressmachines] [cycles];
27 |dvar boolean X[pressmachines] [cycles] [ovens];

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44

45
46
47
48

49
50
o1

52
53
54
95

dvar boolean Y[pressmachines] [cycles] [pressmachines] [cycles] [ovens];
dvar float+ A[pressmachines] [cycles];

dvar float+ B[pressmachines] [cycles] [ovens];

dvar float+ Cl[pressmachines] [cycles];

dvar float+ D[pressmachines] [cycles] [ovens];

dvar float+ Ch[pressmachines] [cycles]; %Ch is C'

dvar float+ Cmax;

/*** Objective function **x*/

minimize Cmax;

/***x Constraints **xx/
subject to {

forall(p in pressmachines, t in cycles)

sum(i in panels, k in stainlesses, 1 in layouts) x[i] [k] [1] [p] [t

1 <= 1;

forall(i in panels, k in stainlesses, 1 in layouts, p in
pressmachines, t in cycles)

x[1] (k] [11[pl [t] <= ali] [k][1];
forall(i in panels)
sum(k in stainlesses, 1 in layouts, p in pressmachines, t in

cycles)x[i] [k [1] [p] [t]1*(m+a[i] [k]1[11) >= d[il;

forall(p in pressmachines, t in cyclesl)

sum(i in panels, k in stainlesses, 1 in layouts)x[i] [k] [1] [p] [t]

>= sum(i in panels, k in stainlesses, 1 in layouts)x[i] [k][

11 [pl [t+1]1;

forall(p in pressmachines, t in cycles)

sum(o in ovens) X[p][t][o] == 1;

105

56
57
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
7

78
79
80
81

82
83
84

forall(p in pressmachines, t in cycles, o in ovens)

Blpl [t] [o]+D[p] [t] [o] <= X[p] [t] [o]*M;

forall(p in pressmachines, t in cyclesl)

Alpl [t+1] >= Clp]l[t];

forall(p in pressmachines, t in cycles)

sum(o in ovens) B[p] [t][o] == A[p] [t]+n;

forall(p in pressmachines, t in cycles)

Clpl [t] == A[p] [t]+3#n;

forall(p in pressmachines, t in cycles, o in ovens)

D[p] [t][o] >= Blp] [t] [o]+n-(1-X[p] [t] [o])*M;

forall(p in pressmachines, t in cycles, o in ovens)

D[pl [t]1[o] <= B[pl[t] [o]+n+(1-X[p] [t] [o])*M;

forall(p in pressmachines, t in cycles, pp in pressmachines:pp!=p,

tt in cycles, o in ovens)

Blp] [t] [o] >= D[ppl [tt] [o]-Y[p] [t] [ppl [tt] [0]*M;

forall(p in pressmachines, t in cycles, pp in pressmachines:pp!=p,

tt in cycles, o in ovens)

Blppl [tt] [o] >= Dlpl[t]lol-(1-Y[p] [t][pp] [tt] [o])*M;

forall(p in pressmachines, t in cycles)

Clp]l [t]-M*(1- sum(i in panels, k in stainlesses, 1 in layouts)x[

i1 [k]1 (11 [p]l [t]) <= Chlp][t];

forall(p in pressmachines, t in cycles)

Chlp] [t] <= Clp] [t]+M*(1- sum(i in panels, k in stainlesses, 1

in layouts)x[i] [k] [1] [p] [t]);

106

85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115

forall(p in pressmachines, t in cycles)
Chlp]l [t] <= M*(sum(i in panels, k in stainlesses, 1 in layouts)x
(il (k] (11 [p] [£1);
forall(p in pressmachines, t in cycles)
Cmax >= Ch[p] [t];
}
/**x The following is written to report some results ***/

execute {

% Report the output of each panel type
writeln("Total products");
for (var i in panels) {

var Totali = O;

for (var k in stainlesses){

for (var 1 in layouts){
for (var p in pressmachines){
for (var t in cycles){
Totali = Totali+x[i] [k] [1] [p] [t]*(m*a[i] [k][1])
}
}
}

}

writeln("Total products of panel",i," are ", Totali);
}
writeln(" ");
% Report the variable x(iklpt) that is equal to 1
writeln("x[i] [k] [1] [p] [t] that is equal to 1 sort according to p,t")
for (var p in pressmachines){

for (var t in cycles){

107

116
117
118
119
120

121
122
123
124
125
126
127
128

108

for (var i in panels) {
for (var k in stainlesses){
for (var 1 in layouts){
if (x[i] (k] [1][p] [t] == 1D{
writeln("x[",1i,"1[",k,"1[",1,"1[",p,"1[",t,"]=
“,x[i] [k] (1] [p] [£1);
writeln("al",i,"1[",k,"1[",1,"]1= ",alil[k]1[1]1);

%.dat file
SheetConnection sheetInput("aiklbpanel.xls");

temp from SheetRead(sheetInput,"Sheetl1!A1:A240");

109

APPENDIX B : IBM ILOG OPL CPLEX code for Model 2.

This section demonstrates the CPLEX code for Model 2, which includes .mod file

and .dat file as follows.

1 |%.mod file
2 | /*x* Parameters *xx*/
3 |int I = 5;
4 |range panels = 1..I;
5 |int K = 6;
6 |range stainlesses = 1..K;
7 |int L = 8;
8 |range layouts = 1..L;
9 |int P = 6;
10 |range pressmachines = 1..P;
11 |int 0 = 3;
12 |range ovens = 1..0;
13 |int T = 12;
14 |range cycles = 1..T;
15 |range cyclesl = 1..(T-1);
16 |int m = 10;
17 |int n = 120;
18 |int M = 5000;
19
20 | /#** Import the values of a(ikl) from excel file **x/
21 |int temp[l..IxKxL] = ...;
22 |int a[i in panels, k in stainlesses, 1 in layouts]= temp[1+L*(k-1)+K*L
*(1-1)1;
23 |int d[panels] = [500, 500, 500, 500, 500];
24
25 | /*x* Decision Variables **x*/
26 |dvar boolean x[panels] [stainlesses] [layouts] [pressmachines] [cycles];
27 |dvar boolean X[pressmachines] [cycles] [ovens];

28
29
30
31
32
33
34
35
36
37
38
39
40

41
42

43
44
45
46

47
48
49

50
o1
52
53
54
95

110

dvar boolean Y[pressmachines] [cycles] [pressmachines] [cycles];
dvar float+ A[pressmachines] [cycles];

dvar float+ B[pressmachines] [cycles];

dvar float+ Ah[pressmachines] [cycles]; %Ah is A'

dvar float+ Cmax;

/*** Objective function **x*/

minimize Cmax;

/**x Constraints **x/
subject to {
forall(p in pressmachines, t in cycles)
sum(i in panels, k in stainlesses, 1 in layouts) x[i][k][1][p][t

1 <= 1;

forall(i in panels, k in stainlesses, 1 in layouts, p in
pressmachines, t in cycles)

x[1] (k] [11 [p] [t] <= alil [k][1];

forall(i in panels)
sum(k in stainlesses, 1 in layouts, p in pressmachines, t in

cycles)x[i] [k] [1] [p] [t]*(m*a[i] [k] [1]) >= d[il;

forall(p in pressmachines, t in cyclesl)
sum(i in panels, k in stainlesses, 1 in layouts)x[i] [k] [1] [p] [t]
>= sum(i in panels, k in stainlesses, 1 in layouts)x[i] [k][

11 [pl [t+1]1;

forall(p in pressmachines, t in cycles)

sum(o in ovens) X[p][t][o] == 1;

forall(p in pressmachines, t in cyclesl)

Alp] [t+1] >= A[p] [t]+3*n;

56
57
o8
59
60

61

62
63

64

65
66
67

68
69
70

71
72
73

74
75
76
7
78
79
80
81

111

forall(p in pressmachines, t in cycles)

Blpl [t] == A[p] [t]+n;

forall(pp in pressmachines, tt in cycles, p in pressmachines:p<pp, t
in cycles, o in ovens)
Blppl [tt] >= Blpl [t]1+n-(3-Y[p] [t] [pp] [tt]1-X[p] [t] [o]1-X[ppl [tt] [0

1) *M;

forall(pp in pressmachines, tt in cycles, p in pressmachines:p<pp, t
in cycles, o in ovens)
Blpl [t] >= Blpp] [tt]l+n-(2+Y[p] [t] [pp] [tt]-X[p] [t] [o]-X[pp] [tt] [0
1) *M;

forall(p in pressmachines, t in cycles)
Alp] [t]-M*(1- sum(i in panels, k in stainlesses, 1 in layouts)x[

i1 [k] (11 [p] [t]) <= Ah[p][t];

forall(p in pressmachines, t in cycles)
Ah[p] [t] <= Alp] [t]+M*(1- sum(i in panels, k in stainlesses, 1

in layouts)x[i] [k][1][p] [t1);

forall(p in pressmachines, t in cycles)
Ah[p] [t] <= Mx(sum(i in panels, k in stainlesses, 1 in layouts)x

(i1 [k1 (1] [p] [t1);

forall(p in pressmachines, t in cycles)

Cmax >= Ah[p] [t]+3%*n;

/*** The following is written to report some results **x*/

execute {

% Report the output of each panel type

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

107
108
109
110
111
112

112

writeln("Total products");
for (var i in panels) {
var Totali = O;
for (var k in stainlesses){
for (var 1 in layouts){
for (var p in pressmachines){
for (var t in cycles){

Totali = Totali+x[i] [k] [1] [p] [t]*(m*al[i] [k] [1])

}
writeln("Total products of panel",i," are ", Totali);
}

writeln(" ");

% Report the variable x(iklpt) that is equal to 1
writeln("x[i] [k] [1] [p] [t] that is equal to 1 sort according to p,t")
for (var p in pressmachines){
for (var t in cycles){
for (var i in panels) {
for (var k in stainlesses){
for (var 1 in layouts){
if (x[i1 k1011 [p]1 [t] == 1){
writeln("x[",i,"I1[",%k,"1[",1,"1[",p,"1[",t,"]=
“,x[11 k111 [p]1 [t]);

writeln("a[",i,"][",k,"1[",1,"]= ",ali] [k] [1]);

113

113 }
114 |}

1 |%.dat file
2 |SheetConnection sheetInput("aikl5panel.xls");

3 |temp from SheetRead(sheetInput,"Sheetl!A1:A240");

APPENDIX C : Python code for the 3P-PCB-PH.

114

The following code is used to find the list aikl. This list collects the matrices that

correspond to panel types, and each matrix contains the number of panels of type i € I

per opening using SST size k € K and layout I € L. The list aikl will be used as an input

in the 3P-PCB-PH algorithm.

(S B RV VN

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import numpy as np

I=7
K=6
L=28

outer gap

aikl = []

for i in range(I):

panel_data = np.array([[20.5, 24, 0.5, 0.25], #warp, fill, inner gap,

[25.65, 22.25, 1, 0.5],
[26, 24, 0.5, 0.25],
[26.5, 22.5, 1, 0.5],
[19, 22.25, 0.5, 0.25],
[15, 23.8, 0.5, 0.25],

[27.75, 20.5, 0.5, 0.25]])

stainless_data = np.array([[50, 44], #warp, fill

(50, 53],
[50, 561,
[50, 58],
[43, 25.5],

(43, 2711

temp = np.zeros((X,L))

a = paneldata[i] [0]

b = paneldatal[i] [1]
g = paneldatal[i] [2]
G = paneldatali] [3]

26

27

28

29

30

31

32

33

34

35

36
37

© 00 N O Ut = W NN =

— = =
N = O

115

for k in range(K):
X = stainless[k] [0]
Y = stainless[k] [1]

temp[k] [0] = int(np.floor ((X-2%(G-g/2))/(a+g)) * np.floor((Y-2x(G-g
/2))/(b+g)))

temp[k] [1] = int(np.floor ((X-2*(G-g/2))/(b+g)) * np.floor((Y-2x(G-g
/2))/(atg)))

temp [k] [2] = int(np.floor((X-2*(G-g/2))/(at+g)) + (np.floor((X-2*(G
-g/2))/(b+g)) * np.floor ((Y-b-G-2%(G-g/2))/(a+g))))

temp [k] [3] = int(np.floor((Y-2x(G-g/2))/(at+g)) + (np.floor((Y-2*(G
-g/2))/(b+g)) * np.floor ((X-b-G-2%(G-g/2))/(a+g))))

temp [k] [4] = int(np.floor ((X-2%(G-g/2))/(b+g)) + (np.floor((X-2*(G
-g/2))/(a+g)) * np.floor ((Y-a-G-2%(G-g/2))/(b+g))))

temp [k] [5] = int(np.floor ((Y-2x(G-g/2))/(b+g)) + (np.floor((Y-2*(G

-g/2))/(atg)) * np.floor((X-a-G-2*(G-g/2))/(b+g))))

temp [k] [6] int (np.floor ((X-2*(G-g/2))/(a+g)))
temp[k] [7] = int(np.floor ((X-2%(G-g/2))/(b+g)))

aikl.append (temp)

The following is the code for the 3P-PCB-PH algorithm.

import time
import numpy as np
import statistics

list_collect_time = []

#Input

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

m = 10
n = 120
di = [500, 420, 595, 375, 330, 680, 580]

for z in range(10):

time_start = time.time()

#udHHHARHH# A Phasel #########H#H##H
xikl = [] #collect [i,kbar,lbar,aiklbar] of each panel type i
for i in range(I):
aiklbar = np.amax(aikl[i])
position = np.where(aikl[i] == aiklbar)
listOfCordinates = list(zip(position[0], position[1]))
xik1l.append([i, listOfCordinates[0] [0], listOfCordinates([0][1],

aiklbar])

list_dci = []

for i in range(I):
list_dci.append(np.ceil(di[i]/(m*xik1[i] [3])))

dc = int(sum(list_dci))

#print ('number of cycles that satisfies demand =', list_dci)

#print("dc =", dc)

H#SHHHHHH# A Phase 2 ###########HH
A = np.zeros((P,T))
C = np.zeros((P,T))
Can = []
for i in range(P):
Can.append (0)
Oven_Scedule_List = []
for i in range(0):

Oven_Scedule_List.append([])

116

45
46
47
48
49
50
o1
52
53
54
95
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

for j in range(dc):
#Choose press machine p_p

p_p = Can.index(min(Can))

#Choose oven o_p
temp2 = []
for i in range(0):
temp2.append (len(Oven_Scedule_List[i]))
o_p = temp2.index(min(temp2))

if Can[p_p] == 0:

I
o

start_time_press_machine
else:

start_time_press_machine = C[p_p] [Can[p_p]l-1]
if len(Oven_Scedule_List[o_p]l) ==

Alp_p] [Can[p_pl] = start_time_press_machine

Clp_p] [Can[p_p]l] start_time_press_machine + 3*n
start_time_oven = start_time_press_machine + n
end_time_oven = start_time_oven + n
temp3 = [start_time_oven, end_time_oven, p_p, Can[p_p]]
Oven_Scedule_List[o_p] .append(temp3)

Can[p_pl] = Can[p_pl+1

else:

find idle_time (Oven_Idle_Time List)
sorted(Oven_Scedule_List[o_p], key = lambda x: x[0])
idle_time = []
if len(Oven_Scedule_List[o_p]) == 1:

idle_time.append([0,0ven_Scedule_List[o_p] [0][0]1])

idle_time.append([Oven_Scedule_List[o_p] [0][1], float('inf')])
else:

for i in range(len(Oven_Scedule_List[o_pl)):

if i ==
if Oven_Scedule_List[o_p][i]1[0] != O:

idle_time.append([0,0ven_Scedule_List[o_p] [i] [0]1])

117

78
79

80

81

82
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

118

elif i == len(Oven_Scedule_List[o_pl)-1:
if Oven_Scedule_List[o_p][i-1][1] != Oven_Scedule_List[o_p
1[il[o]:
idle_time.append([0Oven_Scedule_List[o_p] [i-1][1],
Oven_Scedule_List[o_p] [i][0]])
idle_time.append([0Oven_Scedule_List[o_p] [i][1], float('inf'
D
else:
if Oven_Scedule_List[o_p] [i-1][1] != Oven_Scedule_List[o_p
1[il[o]:
idle_time.append([Oven_Scedule_List[o_p]l [i-1][1],

Oven_Scedule_ List[o_p][i] [0]1])

for i in range(len(idle_time)): # for else

if idle_time[i] [0] > start_time_press_machine+n:

star = i
case = 0
break
else:
case = 1

start_time_oven = start_time_press_machine+n
end_time_oven = start_time_oven+n

Alp_pl [Can[p_pl] = start_time_oven-n

Clp_pl [Can[p_p]] = end_time_oven+n
temp3 = [start_time_oven, end_time_oven, p_p, Can[p_p]l]
Oven_Scedule_List[o_p] .append(temp3)

Can[p_pl] = Can[p_pl+1

if case == 0:
for i in range(len(idle_time)):
if i < star:
if (start_time_press_machine+n)+n <= idle_time[i] [1]:

start_time_oven = start_time_press_machine+n

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

end_time_oven = start_time_oven+n

Alp_p]l [Can[p_pl] start_time_oven-n

end_time_oven+n

Clp_pl [Can[p_pl]

temp3 = [start_time_oven, end_time_oven, p_p, Can[p_p]l]

Oven_Scedule_List[o_p] .append(temp3)
Can[p_pl] = Can[p_pl+1
break
else:
if idle_time[i] [0]+n <= idle_time[i] [1]:
start_time_oven = idle_time[i] [0]

end_time_oven = start_time_oven+n

Alp_p]l [Can[p_pl] start_time_oven-n

Clp_pl [Can[p_pl] = end_time_oven+n

temp3 = [start_time_oven, end_time_oven, p_p, Can[p_p]l]

Oven_Scedule_List[o_p] .append(temp3)
Can[p_pl] = Canl[p_pl+1

break

####H#HH#HHHE Phase 3 ###########H#

xiklpt = []

t =0

p=20

for i in range(I):

for j in range(int(list_dcil[i])):

xiklpt.append ([xik1[i] [0], xik1[i][1], xik1[i]l[2], p ,tl)

p = ptl
if p == P:
p=20
t = t+1

###HHHHRHHHHE Print Output ######HHHE#1TE
finished_goods = []

for i in range(I):

119

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

temp4 = m*xxik1[i] [3]*1list_dcil[il
finished_goods.append (temp4)

print('finished_goods = ', finished_goods)

print('A =',A)

print('C =',C)

print ('xiklpt = ',xiklpt)

for i in range(len(Oven_Scedule_List)):

print('Oven_Scedule_List[',i,']=',0ven_Scedule_List[i])

print('Cmax = ', C.max())

print("This is end of", z, "iteration")

time_end = time.time()

print('time of this iteration',z,'is ', time_end-time_start)
list_collect_time.append(time_end-time_start)

pI'iIlt("***")

print(list_collect_time)
print('mean of run time is ', statistics.mean(list_collect_time))

print('SD of run time is ', statistics.stdev(list_collect_time))

120

Name

Date of Birth

Place of Birth

Educations

Publications

121

BIOGRAPHY

Mr. Teeradech Laisupannawong
November 23, 1993
Ratchaburi, Thailand

B.S. (Mathematics) (First Class Honours),
Kasetsart University, 2016
M.Sc. (Applied Mathematics and Computational Science),

Chulalongkorn University, 2018

o Laisupannawong, T., Intiyot, B., & Jeenanunta, C. (2021). Mixed-Integer Linear Pro-

gramming Model and Heuristic for Short-Term Scheduling of Pressing Process in Multi-

Layer Printed Circuit Board Manufacturing. Mathematics, 9(6), 653.

o Laisupannawong, T., Intiyot, B., & Jeenanunta, C. (2021). Improved Mixed-Integer

Linear Programming Model for Short-Term Scheduling of the Pressing Process in Multi-

Layer Printed Circuit Board Manufacturing. Mathematics, 9(21), 2653.

