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CHAPTER I

INTRODUCTION

1.1 Motivation and literature surveys

Cox–Ingersoll–Ross (CIR) process [16] is one of the most popular processes in financial

mathematics particularly to describe the evolution of interest rates and price the derivatives.

Actually, all parameters of this process are constants. Thus, this CIR process has been extended

to the time-dependent parameters called the extended CIR (ECIR) process [39]. The ECIR pro-

cess is one of the most widely used processes in financial mathematics, which was first considered

in 1990 by Hull and White [39] to generalize models constructed by Vasicek in 1977, see [76].

The ECIR process is usually applied to price financial derivatives, such as zero-coupon bond,

ex-coupon, interest rate swaps (IRSs) and options, which often involves evaluation of conditional

expectations, see e.g. [5,35,56]. Moreover, the process is a continuous-time Markov process that

posses some useful properties including mean reversion and analytical formulas for its expecta-

tion and variance, in which there are a number of methods readily available for the calibration

of the ECIR process parameters, see more details in [80]. Thus, mathematical properties of the

ECIR process are challenging topics for observing and applying in financial applications.

In the context of the ECIR process, rt, the drift factor of the ECIR process is identical

to that of the extended Vasicek process [39]. The only difference between the ECIR and the

extended Vasicek process is the diffusion term which prevents rt from being negative [44]. In

contrast to the extended Vasicek process, the ECIR process has rt approaching zero as well as

the diffusion term. This characteristic of the ECIR process makes rt to have non-negative value,

which is a main reason that the process becomes famous for the study of the behavior of interest

rates.

However, there are some evidences to support that the nonlinearity in the drift factor

may be suitable for studying of financial derivatives described by dynamics of interest rates, for

details see [11, 41, 53]. In particular, Chan et al. [10] provided the empirical analysis that gives

a number of interesting results between a financial derivative and the drift and diffusion terms

of the process. Some extensions of the CIR process are required.

The generalized CIR process is one of the most widely used processes in financial math-

ematics particularly to describe the evolution of interest rates and price their derivatives which

can be separated into many types of process. In literature, the generalized CIR processes are
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considered in two important names: the nonlinear drift constant elasticity of variance (NLD-

CEV) diffusion and the Pearson diffusion processes. They are widely utilized to describe var-

ious real-world applications, e.g., in derivative pricing of interest rate swaps [56] and variance

swaps [9, 29,67].

The moments and conditional moments play significant roles in many real-world applica-

tions and are especially beneficial for estimating parameters, pricing financial derivatives, etc.

In fact, these moments can be directly calculated by applying the transition probability den-

sity function (PDF), which is often unknown or unavailable in closed form. The formulas for

the conditional moments of the stochastic differential equation (SDE) may be unavailable in

closed form as well. Based on solving the partial differential equation (PDE) corresponding

to the Feynman–Kac representation, the closed-form formulas for the moments and conditional

moments are obtained. The approach does not require any knowledge of eigenfunctions or the

transition PDF.

The main objective of this dissertation is to obtain closed-form formulas of conditional

moments of both generalized CIR processes, namely, the NLD-CEV diffusion and the Pearson

diffusion. Basic knowledge and details of these processes are given as the followings.

1.1.1 The NLD-CEV processes

An extended case of the constant elasticity of variance (CEV) process was first proposed

by Marsh and Rosenfeld [58] which becomes the CIR process when β = 1. In this study, we

extend their CEV process by replacing the constant parameters with time dependent functions.

We subsequently call this process the NLD-CEV process which is of the form

dRt = κ(t)
(
θ(t)R

−(1−β)
t −Rt

)
dt+ σ(t)R

β/2
t dWt, β ∈ [0, 2) ∪ (2,∞), (1.1)

with a positive initial value Rt0 and satisfies some sufficient conditions that make Rt > 0 for

all t ∈ [t0, T ], where θ(t), κ(t) and σ(t) are time dependent functions and Wt is the standard

Brownian motion. Comparing with (1.1), the diffusion factor σ(t)Rβ/2
t is identical to that of the

standard CEV process studied by Cox [16] and Black [7]. While, the difference between (1.1) and

the standard CEV process is the nonlinear drift factor κ(t)
(
θ(t)R

−(1−β)
t −Rt

)
. Moreover, when

considered as mean reversion processes, the NLD-CEV process becomes an ECIR process [39]

when β = 1, becomes a lognormal process studied by Merton [59] as β → 2, and behaves like

Ornstein–Uhlenbeck (OU) process [76] when β = 0. In extension, for β ∈ (2,∞), the NLD-CEV

process exhibits the mean-reverting feature, e.g., an inverse Feller (IF) process or 3/2-stochastic

volatility model (SVM) when β = 3. However, a number of empirical evidences are presented to

support that the mean-reverting drift is not necessary and the nonlinearity in the drift factor may
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be suitable for the financial derivative described by the dynamics of interest rates, see [11,41,53].

In particular, Chan et al. [10] provided the empirical analysis that gives a number of interesting

results between a financial derivative and its characteristic parameters β of the model. Moreover,

they also concluded that β > 2 is more suitable to capture the dynamics of the short-term rate

better than those of β < 2.

In this work, we provide two novel forms of the process (1.1) on two different cases with

respect to β. First, when 0 ≤ β < 2 with β = 2α−1
α , (1.1) can be written as

dRt = κ(t)
(
θ(t)R

α−1
α

t −Rt

)
dt+ σ(t)R

2α−1
2α

t dWt, α ≥ 1
2 . (1.2)

Second, when β > 2 with β = 2α+1
α , (1.1) can be written as

dRt = κ(t)
(
θ(t)R

α+1
α

t −Rt

)
dt+ σ(t)R

2α+1
2α

t dWt, α > 0. (1.3)

Note that, from (1.1), (1.2) and (1.3), α→ ∞ if and only if β → 2.

Under the probability measure P and σ-field Ft, in this work we propose closed-from

formulas for conditional moments based on the NLD-CEV process,

E
[
R

γ
α

T | Ft

]
= E

[
R

γ
α

T | Rt = R
]
, 0 ≤ t ≤ T, (1.4)

where R > 0 for any order γ ∈ R of α ≥ 1
2 for (1.2) and α > 0 for (1.3).

The formulas would be advantageous for market practitioners who require closed-form for-

mulas for pricing a derivative in which the NLD-CEV model is adopted to describe the dynamics

of volatility or interest rates. For instance, in 1999, Ahn and Gao [1] derived the conditional

ν-moments of the process (1.1) in case 3/2-SVM (also known as the IF process, when β = 3

which corresponds to the case of α = 1 in (1.3)) for studying the distribution of their model with

term-structure data. Their obtained formula involves both the Kummer’s and Gamma functions

in the integral forms which cannot be exactly evaluated and the formula is unavailable in a close

form. In 2003, Zhou [81] needed the conditional moments vector of the process (1.1) in the case

of β ∈ [0, 2), which is equivalent to our constructed process (1.2), to estimate parameters by

using the generalized method of moments (GMM). Because the needed vector has no closed-

form, Zhou merely approximated the first and second moments through a diffusion process by

exploiting the Itô’s lemma. In 2011, in order to make the Heston hybrid model affine, Lech and

Oosterlee [36] used the first-order Taylor expansion to approximate the conditional 1
2 -moment

for the CIR process or the process (1.2) with α = 1 and constant parameter functions κ(t), θ(t)

and σ(t). In 2014, Rujivan and Zhu [67] needed to calculate the first and second conditional
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moments in order to obtain a closed-form solution for a pricing discretely-sampled variance swap

based on ECIR process in the Heston model. Moreover, pricing and hedging by using variance

and higher-order moment swaps are challenging problems. The skewness and kurtosis swaps

are nowadays traded in practice. These two special types of moment swaps have been widely

studied and more useful. Recently, Chumpong et al. [14] proposed analytical formulas for pricing

discretely-sampled skewness and kurtosis swaps for comodities.

The study of the NLD-CEV process in this research is presented in Chapter 2, which is

published in Applied Mathematics and Computation, see [73].

1.1.2 The Pearson diffusion processes

A class of Pearson diffusions is defined by linear drift as the CIR process, but having a

quadratic squared diffusion coefficient which extends the CIR process in this respect. It satisfies

an SDE in the form

dXt = θ (µ−Xt) dt+
√
2θ (aX2

t + bXt + c) dWt, (1.5)

when Xt is in the state space, where θ > 0 and a, b, c are real constants such that the quadratic

squared diffusion term in (1.5) is well-defined. The well-known term Wt is a Wiener process.

The parameters contained in (1.5) are often referred as follows: the parameter θ corresponds

to the speed of adjustment to the mean of the invariant distribution, and the parameters a, b, c

determine the state space of the diffusion as well as the shape of the invariant distribution.

Well-known instances for the class of stationary distributions reduced from the full Pearson

diffusion processes are OU, CIR, Jacobi processes which have been well investigated and applied

in practice. In contrast, the processes with heavy-tailed distributions such as Fisher–Snedecor,

reciprocal gamma and Student processes are poor studied and hard to work with. In particular,

using the criteria based on the characteristic property of the polynomial d(x) yields the six cases

as follows.

1. OU diffusion: deg(d) = 0,

2. CIR diffusion: deg(d) = 1,

3. Jacobi diffusion: deg(d) = 2, ∆(d) > 0, a < 0,

4. Fisher–Snedecor diffusion: deg(d) = 2, ∆(d) > 0, a > 0,

5. Reciprocal gamma diffusion: deg(d) = 2, ∆(d) = 0, a > 0,

6. Student diffusion: deg(d) = 2, ∆(d) < 0, a > 0,

where d(x) = aθx2 + bθx+ cθ and the discriminant ∆(d) := b2 − 4ac.
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Even though the Pearson diffusion processes (1.5) have very general forms consisting of the

OU diffusion, CIR diffusion (also known as squared diffusion), Jacobi diffusion, Fisher-Snedecor

diffusion, reciprocal gamma diffusion and Student diffusion processes, they have constant pa-

rameters which are not suitable for describing time-varying data. A number of strong empirical

evidences which have been found that an extreme movement in finance-based practices tends to

be followed by time, see [37,39,55]. Therefore, the dynamics of the diffusion processes might be

governed by time-varying parameter functions as follows,

dXt = θ(t) (µ(t)−Xt) dt+
√
2θ(t) (a(t)X2

t + b(t)Xt + c(t)) dWt, (1.6)

where 0 ≤ t ≤ T and parameters θ, µ, a, b, c are changed to be time-dependent functions. Well-

known instances deduced by the process (1.6) are the extended Ornstein–Uhlenbeck (EOU) and

the ECIR processes, see Hull and White [39].

In 2003, the explicit formulas for conditional polynomial moments of a subclass of the

Pearson diffusions are first applied for GMM estimation by Zhou [81]. Since the needed vector

has no closed-form expression, Zhou merely approximated the first and second moments through

the diffusions by utilizing the Itô’s lemma. However, in 2005, the statistical inference of the most

of the Pearson diffusions was investigated by Bibby et al. [6], who derived a closed-form formula

of the conditional first moment and the correlation for the diffusion-type processes with the given

marginal distribution. It should be noted that the closed-form formula given by Bibby is only

for the first moment and only on Student diffusion. Note that most of the conditional moments

based on the Pearson diffusion processes were studied in 2008 by Forman et al. [32] under some

sufficient conditions that the conditional moments (1.7) hold, see Kessler [43]. Those moments

were presented as recurrence relations involving eigenvalues and eigenfunctions. Actually, the

eigenvalues and eigenfunctions are solved from Fokker–Planck equation which is complicated for

obtaining the conditional moments. Thus, one may say that any closed-form formula of the

moments for Pearson diffusion processes has not yet been satisfactorily achieved.

In this work, under the probability measure P and σ-field Ft, we propose the integral

form formula for conditional moments of the extended Pearson diffusion (1.6) in the form

E [Xγ
T | Ft] = E [Xγ

T | Xt = X] , 0 ≤ t ≤ T, (1.7)

for real order γ and X > 0. In this work, the closed-form formulas for conditional moments of the

extended Pearson diffusion processes (1.5) are provided. Furthermore, some properties for each

of the classification are given in the concise forms, e.g., conditional variance, central moment,

covariance and correlation. The study of this part of the research is described in Chapter 3,
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which is published in Communications in Nonlinear Science and Numerical Simulation, see [71].

1.1.3 Interest rate swap pricing by using ECIR process

An ECIR process [39] is one of the most widely used processes in financial mathematics.

If the parameters are constant, then the process becomes the well-known CIR process [18]. The

ECIR process is usually applied to price financial derivatives, such as IRSs.

A swap is a derivative contract for two parties involving the exchange of a series of cash

flows. In this section, we consider a fixed-to-floating IRS where a buyer agrees to pay a floating

interest rate on a predetermined principle, called a notional principle P , in order to receive a

fixed one from a seller over a specified period of time [t, T ]; see more details in [56]. The IRSs are

the most traded swaps at present and have many potential uses in practice, such as in hedging,

portfolio management, and speculation.

In this part of dissertation, we provide an extension of the recent results given by Sutthimat

et al. [72] and propose an analytical formula for a conditional expectation of a path-dependent

product of polynomial and exponential functions described in the form

EP

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=1

α
(l)
k rtk | rt1 = r

 , (1.8)

where n,m ∈ N, l = 1, 2, 3, . . . ,m, 0 ≤ t1 < t2 < t3 < · · · < tm = T < ∞, λ(l)j , α
(l)
k ∈ R and

{rt}0≤t≤T is assumed to follow the ECIR process. We consider primarily on the case that the

exponential term depends on the values rt1 , rt2 , rt3 , . . . , rtm at a fixed times t1, t2, t3, . . . , tm, as

described in (1.8), for valuation of IRS described above or some other financial products having

similar behaviour as IRS. The study of this work is described in Chapter 4 which is published

in Research in the Mathematical Sciences, see [74].

1.2 Research objective and dissertation overview

The aims of this dissertation are the followings: (i) to derive the closed-form formulas

and their properties for conditional moments of the generalized NLD-CEV and inhomogeneous

Pearson diffusion processes, (ii) to extend the result of ECIR process for application of IRS.

In the dissertation, we collect all three research articles related to the topic of the dis-

sertation as follows: (i) the result of the NLD-CEV process is presented in Chapter 2, (ii) the

result of the Pearson diffusion process is presented in Chapter 3, and (iii) the extension result

of ECIR process with application for IRS is given in Chapter 4. Moreover, the conclusion of the

dissertation is provided in Chapter 5.
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Abstract

This paper studied a generalized case of the constant elasticity of variance diffusion (CEV)

process whereas the drift term is substantially nonlinear in the short rate. Well-known in-

stances deduced by this process are the extended Cox–Ingersoll–Ross (ECIR) process and the

extended inverse Feller (EIF) process or 3/2-stochastic volatility model (SVM). We found par-

ticular sufficient conditions of existence and uniqueness of a positive pathwise strong solution

for time-dependent parameter functions, and obtained closed-form formulas for conditional mo-

ments based on Feynman–Kac theorem. The accuracy and validity of the formulas were further

investigated based on Monte Carlo simulations.

Keywords: nonlinear drift CEV process, ECIR process, 3/2-SVM, conditional moment, closed-

form formula

2.1 Introduction

The constant elasticity of variance diffusion (CEV) process introduced in 1975 by Cox [16]

is considered as an extension of the Ornstein–Uhlenbeck (OU) process [76] for applications in

finance, which are subsequently studied, extended and generalized for applications in many areas.

Recently, Araneda et al. [3] provided a study of sub–fractional CEV model and Cao et al. [9]

priced variance swaps under hybrid CEV and stochastic volatility. The first generalized case of

Cox’s CEV process was proposed by Marsh and Rosenfeld [58] by considering time dependent

parameters with nonlinear drift term. We subsequently refer to this process as the nonlinear

drift CEV (NLD-CEV) process, which is written in the form of

dRt = κ(t)
(
θ(t)R

−(1−β)
t −Rt

)
dt+ σ(t)R

β/2
t dWt, β ∈ [0, 2) ∪ (2,∞), (2.1)

where θ(t), κ(t), and σ(t) are time dependent parameters for t ∈ [t0, T ] with an initial value Rt0 >

0. Note that the diffusion factor σ(t)Rβ/2
t in (2.1) is identical to those of the standard Cox’s CEV

process [16] and Black [7], while the difference is the nonlinear drift factor κ(t)(θ(t)R−(1−β)
t −Rt).

By considering different values of the parameter β, one can see the followings: for β = 1, the

NLD-CEV process becomes an extended Cox–Ingersoll–Ross (ECIR) process [39] as a mean

reversion processes; for β = 0, it behaves like OU process [76]; and for β → 2, it is a lognormal

process studied by Merton [59]. In extension for β ∈ (0,∞), the NLD-CEV process also exhibits

the mean-reverting feature, e.g., when β = 3 it becomes an inverse Feller (IF) process (or 3/2-

stochastic volatility model, SVM).

There are some evidences to support that the nonlinearity in the drift factor may be
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suitable for studying of financial derivatives described by dynamics of interest rates, for details

see [11,41,53]. In particular, Chan et al. [10] provided the empirical analysis that gives a

number of interesting results between a financial derivative and its characteristic parameter β of

the model, and concluded that β > 2 is more suitable to capture the dynamics of the short-term

rate than those of β < 2.

In this study, we consider two novel forms of the process (2.1) in two different cases

according to β. For the first case for 0 ≤ β < 2, we set β = 2α−1
α , (2.1) can be written as

dRt = κ(t)
(
θ(t)R

α−1
α

t −Rt

)
dt+ σ(t)R

2α−1
2α

t dWt, α ≥ 1
2 . (2.2)

For the second case for β > 2, we set β = 2α+1
α , (2.1) can be written as

dRt = κ(t)
(
θ(t)R

α+1
α

t −Rt

)
dt+ σ(t)R

2α+1
2α

t dWt, α > 0. (2.3)

Note from (2.1) that β → 2 is equivalent to α→ ∞ for both (2.2) and (2.3).

In this work we propose closed-form formulas for conditional moments based on the NLD-

CEV process under the probability measure P and σ-field Ft in the form of

E
[
R

γ
α

T | Ft

]
= E

[
R

γ
α

T | Rt = R
]
, 0 ≤ t ≤ T, (2.4)

for order γ ∈ R and R > 0. The obtained analytical formulas would benefit market practitioners

who require formulas for pricing financial derivatives in which the NLD-CEV model is adopted

to describe the dynamics of volatility or interest rates. For instance, in 1999 Ahn and Gao [1]

derived the conditional νth moments of the process 3/2-SVM (corresponding to (2.1) with β = 3

or (2.3) with α = 1) to study the distribution of their model with term-structure data; this

process is also known as the inverse Feller (IF). In their work, the formula involves the integral

form of the Kummer’s and Gamma functions which is not available in closed-form. In 2003,

Zhou [81] required the conditional moments of the process (2.1) in the case of β ∈ [0, 2) to

estimate parameters using the generalized method of moments (GMM). Because the required

moment has no closed-form, Zhou merely approximated the first and second moments through

a diffusion process by exploiting Itô’s lemma. In order to make the Heston hybrid model affine,

in 2011 Lech and Oosterlee [36] applied the first-order Taylor expansion to approximate the

conditional 1/2-moment for the CIR process (corresponding to process (2.2) when α = 1 with

constant parameters). In 2014, Rujivan and Zhu [67] calculated the first and second conditional

moments to obtain a closed-form value of discretely-sampled variance swap based on ECIR

process in the Heston model. Pricing and hedging by using variance and higher-order moment
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swaps are also challenging, the skewness and kurtosis swaps have been widely studied, e.g.,

Chumpong et al. [15] proposed analytical formulas for pricing discretely-sampled skewness and

kurtosis swaps for commodities.

The rest of paper is organized as follows. In Section 2.2, we provide the sufficient conditions

required for the study of NLD-CEV process. In Section 2.3, the formulas for conditional moments

are technically derived based on the solution of PDE for the NLD-CEV process, and some

special cases of the formulas are observed according to parameters. In this section,we also

provide the closed-form formulas for unconditional moments for the case of constant parameters.

The analysis of convergences is also mentioned here. Experimental validation of the accuracy

and efficiency of the proposed formulas are presented in Section 2.4 based on Monte Carlo

simulations, and the case that formulas having infinite series forms are also discussed some

examples. Section 2.5 provides the discussion and conclusion of the study.

2.2 Conditions for existence and uniqueness

An analysis of the distribution of the process Rt in (2.1) has been also studied by Marsh

and Rosenfeld [58]. Their idea is utilizing the Itô’s lemma together with the transformation

Vt = R2−β
t in the process (2.1) to yield the following ECIR process

dVt = A(t) (B(t)− Vt) dt+ C(t)
√
VtdWt, (2.5)

where A(t) = (2 − β)κ(t), B(t) = θ(t) + (1−β)σ2(t)
2κ(t) and C(t) = (2 − β)σ(t). In this paper, we

apply their idea combining with the parameters β = 2α−1
α and β = 2α+1

α in the process (2.5),

which is corresponding to the processes (2.2) and (2.3), respectively.

In order to perform with the process Vt in (2.5) for some cases of β, we provide some

sufficient assumptions. In 1987, Rogers and Williams [63] proposed the theoretical study of the

ECIR process (2.5) using the Yamada–Watanabe theorem to guarantee the existence of a unique

pathwise strong solution for ECIR process (2.5) under Assumption 2.1.

Assumption 2.1. The functions A(t), B(t) and C(t) in ECIR process (2.5) are strictly positive

and smooth functions depending on the temporal variable t ∈ [0, T ]. Moreover, A(t)/C2(t) is

locally bounded on [0, T ].

Assumption 2.2. For the process (2.5), the following inequality holds

lim
V→0

(
µ(V, t)− 1

2

∂δ2

∂V
(V, t)

)
≥ 0,

where µ(V, t) = A(t) (B(t)− V ) and δ(V, t) = C(t)
√
V .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Recently, Ekström et al. [24] mentioned that if the Assumption 2.2 holds for ECIR pro-

cess (2.5), the boundary at the zero is non-attainable for the process Vt. In the other word,

P(Vt > 0, for all t > 0) = 1 for each the initial value V > 0. However, in this study, the analysis

of the boundary conditions is focused on two different cases; 0 ≤ β < 2 and β > 2.

2.2.1 Sufficient conditions for 0 ≤ β < 2

It is not difficult to observe that the Assumptions 2.3 and 2.4 given below significantly

imply the Assumptions 2.1 and 2.2, respectively.

Assumption 2.3. The functions κ(t), θ(t) and σ(t) in the NLD-CEV process (2.1) are strictly

positive and smooth functions depending on the temporal variable t ∈ [0, T ]. Moreover, κ(t)/σ2(t)

is locally bounded on [0, T ].

Assumption 2.4. The process Rt in (2.1) holds the inequality, 2κ(t)θ(t) ≥ σ(t)2.

Technically speaking, for the Assumption 2.3, if the parameters κ(t), θ(t) and σ(t) in (2.1)

hold, the parameters A(t), B(t) and C(t) in (2.5) also hold for the Assumption 2.1 from the

definitions of A, B, C in (2.5). Next, since 2 − β > 0, the process Rt in (2.1) holds with the

Assumption 2.4 for the functions κ(t), θ(t) and σ(t), we have that

2A(t)B(t) = (2− β)
(
2κ(t)θ(t) + (1− β)σ2(t)

)
≥ (2− β)

(
σ2(t) + (1− β)σ2(t)

)
= C2(t).

It is easy to see that ∂δ2

∂V (V, t) = C2(t) as V → 0. This makes that the parameters A(t), B(t)

and C(t) in (2.5) hold for the Assumption 2.2. Afterward, in 2015, Alfonsi [2] further presented

Assumption 2.2 which is sufficient to guarantee that the process Vt in (2.5) avoids zero almost

surely with respect to a probability measure P for all t ∈ [0, T ]. From the transformation

Vt = R2−β
t , the held properties in the process Vt also imply directly to the process Rt in (2.1).

Therefore, the process Rt has a pathwise unique strong solution that almost surely avoids zero

regarding to a probability measure P for all t ∈ [0, T ].

2.2.2 Sufficient conditions for β > 2

In the case of the process (2.3), under Assumption 2.5 given below, it is easy to see that

all parameter functions A(t), B(t), C(t) in the process (2.5) satisfy Assumption 2.1. Next,

considering Assumption 2.2 yields 2κ(t)θ(t) ≤ σ2(t) for all t ∈ [0, T ]. Since 2 − β < 0, we also

have

2A(t)B(t) = (2− β)
(
2κ(t)θ(t) + (1− β)σ2(t)

)
≥ (2− β)

(
σ2(t) + (1− β)σ2(t)

)
= C2(t),
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for all t ∈ [0, T ]. Thus, Assumption 2.5 implies that all parameters in ECIR process (2.5)

correspond to Assumptions 2.1 and 2.2.

Assumption 2.5. The functions −κ(t), θ(t) and −σ(t) in the NLD-CEV process (2.1) are

strictly positive and smooth functions depending on the temporal variable t ∈ [0, T ]. Moreover,

κ(t)/σ2(t) is locally bounded on [0, T ].

2.3 Main results

In this section, we derive the closed-form formulas of the conditional moments of the

process (2.1) according to the two cases depending on the range of β, and provide some inves-

tigation of the results. Firstly, the formulas are derived as integral-forms for the processes (2.2)

and (2.3), then applied to the cases of constant parameters to get closed-forms. The key idea

relies on the Feynman–Kac formula by expressing solution of the corresponding partial differ-

ential equation (PDE) as an infinite series and solving the coefficients to receive a closed-form.

The motivation of the expressing form for the conditional moments is similar to that presented

in [13,32,61,71,74].

2.3.1 The conditional γ
α -moments of the process when 0 ≤ β < 2

The strategy for constructing a closed-form formula of all conditional moments in the

process (2.2) is provided. The concept of Feynman–Kac formula is applied to solve the explicit

formula of (2.4) which is assumed in term of the infinitely sum (2.6) as shown in the following

theorem.

Theorem 2.1. Suppose Rt follows the NLD-CEV process (2.2) and the Assumptions 2.3 and 2.4

are assumed for all 0 < t ≤ T . The conditional γ
α -moment for γ ∈ R, R > 0 and τ = T − t ≥ 0

is defined by

U ⟨γ⟩
α (R, τ) := E

[
R

γ
α

T | Rt = R
]
=

∞∑
k=0

A⟨k⟩
α (τ)R

γ−k
α , (2.6)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) which the infinite series in (2.6) uniformly converges on

D
⟨γ⟩
α . Then, the coefficients in (2.6) can be expressed by


A⟨0⟩

α (τ) = e−
γ
α

∫ τ
0

κ(T−ξ)dξ,

A⟨k⟩
α (τ) =

∫ τ

0

e−
γ−k
α

∫ τ
η

κ(T−ξ)dξB⟨k−1⟩
α (T − η)A⟨k−1⟩

α (η)dη,
(2.7)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

for k ∈ Z+, where

B⟨j⟩
α (τ) =

(
γ − j

α

)(
1

2

(
γ − j

α
− 1

)
σ2(τ) + κ(τ)θ(τ)

)
. (2.8)

Proof. First, the Feynman–Kac formula is applied to solve U
⟨γ⟩
α (R, τ) := U in (2.6) which

satisfies the following PDE

Uτ − 1

2
σ2(T − τ)R

2α−1
α URR − κ(T − τ)

(
θ(T − τ)R

α−1
α −R

)
UR = 0 (2.9)

for all R > 0 and 0 < τ ≤ T , subject to the initial condition

U ⟨γ⟩
α (R, 0) = E

[
R

γ
α

T | RT = R
]
= R

γ
α . (2.10)

Next, comparing the coefficients between (2.6) and (2.10), we obtain the following conditions

A
⟨0⟩
α (0) = 1 and A

⟨k⟩
α (0) = 0 for k ∈ Z+. After that, we compute (2.9) using (2.6) to find the

partial derivatives Uτ , Urr and Ur. Then, we have

0 =
∞∑
k=0

d

dτ
A⟨k⟩

α (τ)R
γ−k
α − 1

2
σ(T − τ)R

2α−1
α

∞∑
k=0

((
γ − k

α

)(
γ − k

α
− 1

)
A⟨k⟩

α (τ)R
γ−k
α −2

)

− κ(T − τ)
(
θ(T − τ)R

α−1
α −R

) ∞∑
k=0

((
γ − k

α

)
A⟨k⟩

α (τ)R
γ−k
α −1

)

or it can be simplified as

0 =

(
d

dτ
A⟨0⟩

α (τ) +
γ

α
κ(T − τ)A⟨0⟩

α (τ)

)
R

γ
α

+
∞∑
k=1

(
d

dτ
A⟨k⟩

α (τ) +

(
γ − k

α

)
κ(T − τ)A⟨k⟩

α (τ)−B⟨k−1⟩
α (T − τ)A⟨k−1⟩

α (τ)

)
R

γ−k
α .

Under the assumptions of the infinite series in (2.6) over D⟨γ⟩
α , the above equation can be solved

through the following system of ODEs,
d

dτ
A⟨0⟩

α (τ) +
γ

α
κ(T − τ)A⟨0⟩

α (τ) = 0,

d

dτ
A⟨k⟩

α (τ) +

(
γ − k

α

)
κ(T − τ)A⟨k⟩

α (τ)−B
⟨k−1⟩
h (T − τ)A⟨k−1⟩

α (τ) = 0,
(2.11)

with their initial conditions A⟨0⟩
α (0) = 1 and A

⟨k⟩
α (0) = 0 for k ∈ Z+. Therefore, the coefficients

in (2.6) can be directly obtained by solving the system (2.11) in the form of recursive relation,

which gives the results (2.7).

Next, examining (2.6) in Theorem 2.1 when γ = n ∈ Z+, the infinitely sum in (2.6) is
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terminated at the finite order and can be expressed as in the following theorem.

Theorem 2.2. Suppose Rt follows the NLD-CEV process (2.2) and n ∈ Z+
0 . Then,

U ⟨n⟩
α (R, τ) := E

[
R

n
α

T | Rt = R
]
=

n∑
k=0

A⟨k⟩
α (τ)R

n−k
α , (2.12)

for all (R, τ) ∈ D
⟨n⟩
α ⊂ (0,∞) × [0,∞) and τ = T − t ≥ 0 where the coefficients A⟨k⟩

α in (2.12)

are defined by (2.7) and (2.8). Moreover, lim
R→0+

U ⟨n⟩
α (R, τ) > 0.

Proof. By considering (2.8), when k = n = γ, we obtain B⟨n⟩
α (τ) = 0 that implies the coefficients

A
⟨k⟩
α (τ) = 0 for all integers k ≥ n+1. Thus, the infinite sum (2.6) can be reduced to the finitely

sum (2.12). Moreover, lim
R→0+

U ⟨n⟩
α (R, τ) = A⟨0⟩

α > 0.

The following theorem is another one of the convergent cases of (2.6) that can be observed

from Theorem 2.1.

Theorem 2.3. Suppose Rt follows the NLD-CEV process (2.2) and

γ = α− 2ακ(τ)θ(τ)

σ2(τ)
+m, (2.13)

for some m ∈ Z+
0 and for all τ = T −t ≥ 0. In the other word, γ in (2.13) is a constant function.

Then,

U ⟨γ⟩
α (R, τ) =

m∑
k=0

A⟨k⟩
α (τ)R

γ−k
α , (2.14)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞), where A⟨k⟩

α (τ) is defined in (2.7).

Proof. The proof is directly shown from (2.8) by inserting γ in (2.13) and getting B⟨m⟩
α (τ) = 0

for all τ ≥ 0. This makes A⟨m+1⟩
α (τ) = 0 which implies that A⟨k⟩

α (τ) = 0 for all k ≥ m+ 1.

Next, we focus to the case that the parameters κ(t), θ(t) and σ(t) are constant functions.

In this case, all integral functions in above theorem can be exactly integrated as presented in

the following theorems.

Theorem 2.4. Suppose Rt follows the NLD-CEV process (2.2) such that κ(t) = κ, θ(t) = θ and

σ(t) = σ for R > 0 and τ = T − t ≥ 0. Then, the conditional n
α -moment is given by

U ⟨γ⟩
α (R, τ) := E

[
R

γ
α

T | Rt = R
]
=

∞∑
k=0

e−
γκτ
α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
γ−k
α , (2.15)
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for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) which the infinite series in (2.15) uniformly converges on

D
⟨γ⟩
α , where

B̄⟨j⟩
α =

(
γ − j

α

)(
1

2

(
γ − j

α
− 1

)
σ2 + κθ

)
. (2.16)

Note that, if the product of B̄⟨j⟩
α in (2.15) runs on j from 0 to −1, the product term is defined

to be 1.

Proof. Since each coefficient A⟨k⟩
α (τ) is produced from the previous coefficient starting at A⟨0⟩

α (τ),

observing the coefficients order-by-order yields

A⟨0⟩
α (τ) = e−

γκτ
α ,

A⟨1⟩
α (τ) = B̄⟨0⟩

α

∫ τ

0

e−
γ−1
α (τ−η)κA⟨0⟩

α (η)dη = B̄⟨0⟩
α e−

γκτ
α

(
αe

κτ
α − α

κ

)

and for all k = 2, 3, 4, . . .,

A⟨k⟩
α (τ) = B̄⟨k−1⟩

α

∫ τ

0

e−
γ−k
α (τ−η)κA⟨k−1⟩

α (η)dη

=
e−

(γ−k)κτ
α

(k − 1)!κk−1

k−1∏
j=0

B̄⟨j⟩
α

∫ τ

0

e−
kκη
α

(
αe

κη
α − α

)k−1

dη

=
e−

(γ−k)κτ
α

(k − 1)!κk−1

k−1∏
j=0

B̄⟨j⟩
α

 e−
kκτ
α

(
αe

κτ
α − α

)k
kκ

=
e−

γκτ
α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

 .

Under the assumption that (2.15) converges uniformly on D
⟨γ⟩
α , this proof completes.

Similarly to the previous theorem, in the case that the parameters are constants, given a

positive integer n yields the closed-form formula as the following theorem.

Theorem 2.5. Suppose Rt follows the NLD-CEV process (2.2) such that κ(t) = κ, θ(t) = θ and

σ(t) = σ. For n ∈ Z+
0 , the conditional n

α -moment is exactly given by

U ⟨n⟩
α (R, τ) := E

[
R

n
α

T | Rt = R
]
= e−

nκτ
α R

n
α +

n∑
k=1

e−
nκτ
α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
n−k
α ,

(2.17)

for R > 0 and τ = T − t ≥ 0 where B̄⟨j⟩
α is defined by (2.16). Also, lim

R→0+
U ⟨n⟩
α (R, τ) > 0.
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Proof. The proof is rather trivial by combining Theorem 2.2 with Theorem 2.4.

In addition, the special case of Theorem 2.3 is also provided.

Theorem 2.6. Suppose Rt follows the NLD-CEV process (2.2) such that κ(t) = κ, θ(t) = θ,

σ(t) = σ, and

γ = α− 2ακθ

σ2
+m, (2.18)

for m ∈ Z+
0 . Then,

U ⟨γ⟩
α (R, τ) = e−

γκτ
α R

γ
α +

m∑
k=1

e−
γκτ
α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
γ−k
α . (2.19)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) and τ = T − t ≥ 0. Note that, if the sum term in (2.19)

runs on k from 1 to 0, the sum term is defined to be 0.

Proof. Obviously obtained from Theorem 2.3.

Note that a simple closed-form formula of the conditional moments for the class of ECIR

process in the case that α = 1 of (2.2) agrees with that of formulas presented in [71]. Moreover,

for the class of CIR process, in Theorem 2.1 of Dufresne’s formula [22] also reduces to our

formula (2.17) in Theorem 2.5 after simplification.

2.3.2 The conditional γ
α -moments of the process when β > 2

This subsection is constructed in parallel to the previous subsection, and the proofs are

similar to those in the previous subsection, which will be omitted depending on suitability. In

the case that the process (2.3) is applied, the expression in (2.6) changes to (2.20). The proof

is a straightforward analogy to the first theorem and the formula is available to use as shown in

the following theorems.

Theorem 2.7. Suppose Rt follows the NLD-CEV process (2.3) and the Assumptions 2.5 is

assumed for all 0 < t ≤ T . The conditional γ
α -moment for γ ∈ R, R > 0 and τ = T − t ≥ 0 is

defined by

V ⟨γ⟩
α (R, τ) := E

[
R

γ
α

T | Rt = R
]
=

∞∑
k=0

A⟨k⟩
α (τ)R

γ+k
α , (2.20)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) which the infinite series in (2.20) uniformly converges on
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D
⟨γ⟩
α . Then, the coefficients in (2.20) can be expressed by


A⟨0⟩

α (τ) = e−
γ
α

∫ τ
0

κ(T−ξ)dξ,

A⟨k⟩
α (τ) =

∫ τ

0

e−
γ+k
α

∫ τ
η

κ(T−ξ)dξB⟨k−1⟩
α (T − η)A⟨k−1⟩

α (η)dη,
(2.21)

for k ∈ Z+, where

B⟨j⟩
α (τ) =

(
γ + j

α

)(
1

2

(
γ + j

α
− 1

)
σ2(τ) + κ(τ)θ(τ)

)
. (2.22)

Proof. The proof is similarly to Theorem 2.1 and omitted.

For n is a negative integer, the above theorem can be reduced to the finite sum as shown

in the following theorem.

Theorem 2.8. Suppose Rt follows the NLD-CEV process (2.3) and n ∈ Z−
0 . Then,

V ⟨n⟩
α (R, τ) := E

[
R

n
α

T | Rt = R
]
=

|n|∑
k=0

A⟨k⟩
α (τ)R

n+k
α , (2.23)

for all (R, τ) ∈ D
⟨n⟩
α ⊂ (0,∞) × [0,∞) and τ = T − t ≥ 0 where the coefficients A⟨k⟩

α in (2.23)

are defined by (2.21) and (2.22). Moreover, lim
R→0+

V ⟨n⟩
α (R, τ) > 0.

Proof. By considering (2.22), when k = −n = −γ, we obtain B
⟨−n⟩
α (τ) = 0 that implies the

coefficients A⟨k⟩
α (τ) = 0 for all integers k ≥ 1− n. Thus, the infinitely sum (2.6) can be reduced

to the finitely sum (2.12).

The next following result looks exactly the same state as Theorem 2.3.

Theorem 2.9. Suppose Rt follows the NLD-CEV process (2.3) and

γ = α− 2ακ(τ)θ(τ)

σ2(τ)
−m, (2.24)

for m ∈ Z+
0 and τ = T − t ≥ 0. In the other word, γ in (2.24) is a constant function. Then,

V ⟨γ⟩
α (R, τ) =

m∑
k=0

A⟨k⟩
α (τ)R

γ+k
α , (2.25)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞), where A⟨k⟩

α (τ) is defined in (2.21).

Proof. The proof is similarly to Theorem 2.3 and omitted.
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The specific issue that the parameters κ(t) = κ, θ(t) = θ and σ(t) = σ are constant

functions is also given in the following theorems.

Theorem 2.10. Suppose Rt follows the NLD-CEV process (2.3) such that κ(t) = κ, θ(t) = θ

and σ(t) = σ for R > 0 and τ = T − t ≥ 0. Then, the conditional n
α -moment is given by

V ⟨γ⟩
α (R, τ) := E

[
R

γ
α

T | Rt = R
]

=
∞∑
k=0

e−
(γ+k)κτ

α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
γ+k
α , (2.26)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) which the infinite series in (2.26) uniformly converges on

D
⟨γ⟩
α , where

B̄⟨j⟩
α =

(
γ + j

α

)(
1

2

(
γ + j

α
− 1

)
σ2 + κθ

)
. (2.27)

Note that, if the product of B̄⟨j⟩
α in (2.26) runs on j from 0 to −1, the product term is defined

to be 1.

Proof. The proof is rather similarly to Theorem 2.4. We show only the major part, i.e.,

A⟨k⟩
α (τ) = B̄⟨k−1⟩

α

∫ τ

0

e−
γ+k
α (τ−η)κA⟨k−1⟩

α (η)dη

=
e−

(γ+k)κτ
α

(k − 1)!κk−1

k−1∏
j=0

B̄⟨j⟩
α

∫ τ

0

e−
(γ+k)κη

α

(
αe

κη
α − α

)k−1

dη

=
e−

(γ+k)κτ
α

(k − 1)!κk−1

k−1∏
j=0

B̄⟨j⟩
α

 (αeκτ
α − α

)k
kκ

=
e−

(γ+k)κτ
α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

 .

for all k = 2, 3, 4, . . ..

In the case that the parameters are constants, given a negative integer n yields the closed-

form formula as the following theorem.

Theorem 2.11. Suppose Rt follows the NLD-CEV process (2.3) such that κ(t) = κ, θ(t) = θ
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and σ(t) = σ. For n ∈ Z−
0 , the conditional n

α -moment is exactly given by

V ⟨n⟩
α (R, τ) := E

[
R

n
α

T | Rt = R
]
= e−

nκτ
α R

n
α +

|n|∑
k=1

e−
(n+k)κτ

α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
n+k
α ,

(2.28)

for R > 0 and τ = T − t ≥ 0 where B̄⟨j⟩
α is defined by (2.27). Also, lim

R→0+
V ⟨n⟩
α (R, τ) > 0.

Proof. The proof is rather trivial by combining Theorem 2.8 with Theorem 2.10.

The special case of Theorem 2.9 is also provided as follows.

Theorem 2.12. Suppose Rt follows the NLD-CEV process (2.3) such that κ(t) = κ, θ(t) = θ,

σ(t) = σ, and

γ = α− 2ακθ

σ2
−m, (2.29)

for all m ∈ Z+
0 . Then,

V ⟨γ⟩
α (R, τ) = e−

γκτ
α R

γ
α +

m∑
k=1

e−
(γ+k)κτ

α

k!

(
αe

κτ
α − α

κ

)k
k−1∏

j=0

B̄⟨j⟩
α

R
γ+k
α , (2.30)

for all (R, τ) ∈ D
⟨γ⟩
α ⊂ (0,∞)× [0,∞) and τ = T − t ≥ 0. Note that, if the sum term in (2.30)

runs on k from 1 to 0, the sum term is defined to be 0.

Proof. Obviously obtained from Theorem 2.9.

2.3.3 The unconditional n
α -moments of the processes when τ → ∞

Under the conditions proposed in Section 2.2, this section provides two theorems which

are reduced from the formula for conditional moments described in Theorems 2.5 and 2.11 to

the unconditional moments as τ → ∞. This should be noted that the formulas are no longer

depend on the initial value R, and they are simplified to finite product as follows.

Theorem 2.13. Suppose Rt follows the NLD-CEV process (2.2) such that κ(t) = κ, θ(t) = θ

and σ(t) = σ are satisfied the Assumptions 2.3 and 2.4. Then, for all n ∈ Z+, R > 0 and

τ = T − t,

L⟨n⟩
α := lim

τ→∞
U ⟨n⟩
α (R, τ) = lim

T→∞
E
[
R

n
α

T | Rt = R
]
=

n∏
j=1

2ακθ − ασ2 + jσ2

2ακ
. (2.31)
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Proof. According to (2.17) in Theorem 2.5, we denote that the coefficient terms of Rn−k
α ap-

proach to 0 as τ → ∞ for k = 0, 1, 2, . . . , n − 1. Here, we derive the formula only for the

remainder term, the case that k = n,

L⟨n⟩
α = lim

τ→∞

e−
nκτ
α

n!

(
αe

κτ
α − α

κ

)n
n−1∏

j=0

B̄⟨j⟩
α

R
n−n
α

=
1

n!κn

n−1∏
j=0

B̄⟨j⟩
α

 lim
τ→∞

(
α− αe−

κτ
α

)n
=

αn

n!κn

n−1∏
j=0

B̄⟨j⟩
α ,

where B̄⟨j⟩
α is defined by (2.16). After substituting this expression B̄

⟨j⟩
α to the above equation,

it can be reformulated to the factorization in the form of product,

L⟨n⟩
α =

αn

n!κn

n−1∏
j=0

(
n− j

α

)(
1

2

(
n− j

α
− 1

)
σ2 + κθ

)
=

n∏
j=1

2ακθ − ασ2 + jσ2

2ακ
,

as required.

Next, for the process (2.3), we obtain the following theorem.

Theorem 2.14. Suppose Rt follows the NLD-CEV process (2.3) such that κ(t) = κ, θ(t) = θ

and σ(t) = σ are satisfied the Assumptions 2.5. Then, for all n ∈ Z−, R > 0 and τ = T − t,

M ⟨n⟩
α := lim

τ→∞
V ⟨n⟩
α (R, τ) = lim

T→∞
E
[
R

n
α

T | Rt = R
]
=

n∏
j=1

ακθ − (j + 1)ασ2

κ
. (2.32)

Proof. The proof is rather similar to the previous theorem and omitted here.

2.3.4 The analysis of the convergence

This section discusses in detail the essentials of infinite sum in a way of convergence se-

ries that is necessary for Theorems 2.4 and 2.10. According to Theorem 2.4, the series (2.15)

converges if and only if B̄⟨j⟩
α = 0 for some j ∈ Z+

0 . For the process (2.2), there are two cases that

produce B̄⟨j⟩
α = 0 for some j ∈ Z+

0 , i.e., γ = n ∈ Z+
0 and γ = α− 2ακθ

σ2 +m for some m ∈ Z+
0 . The

convergences of the series (2.15) for each case have been shown in Theorems 2.5 and 2.6, respec-

tively. However, the parameter γ that B̄⟨j⟩
α ̸= 0 for all j ∈ Z+

0 , it affects that the series (2.15)

diverges as shown below. We first denote A⟨k⟩
α (τ) := e−

γκτ
α

k!

(
αe

κτ
α −α
κ

)k (∏k−1
j=0 B̄

⟨j⟩
α

)
. Suppose
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that B̄⟨j⟩
α ̸= 0 for all j ∈ Z+

0 , for each R, we have

lim
k→∞

∣∣∣∣∣A⟨k+1⟩
α (τ)R

γ−k−1
α

A
⟨k⟩
α (τ)R

γ−k
α

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣∣
e−

γκτ
α

(k+1)!

(
αe

κτ
α −α
κ

)k+1 (∏k
j=0 B̄

⟨j⟩
α

)
R

γ−k−1
α

e−
γκτ
α

k!

(
αe

κτ
α −α
κ

)k (∏k−1
j=0 B̄

⟨j⟩
α

)
R

γ−k
α

∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣∣
(
αe

κτ
α − α

) (
γ−k
α

) [
1
2

(
γ−k
α − 1

)
σ2 + κθ

]
(k + 1)κR

∣∣∣∣∣∣ .
Note that the above expression is O(k) as k → ∞, thus by ratio test (2.15) diverges.

Similarly, Theorem 2.10 in the process (2.3), there are two cases that make B̄⟨j⟩
α = 0 for

some j ∈ Z+
0 . That are γ = −n ∈ Z−

0 and γ = α − 2ακθ
σ2 −m for some m ∈ Z+

0 . In each case,

the convergences of the series (2.26) have been shown in Theorems 2.11 and 2.12, respectively.

Similarly, for the parameter γ other than above, the series (2.26) diverges.

2.4 Experiments

In this section, the verifications of formulas in Section 2.3 are given though comparisons

with Monte Carlo (MC) simulations based on the following NLD-CEV process

dRt = κ

(
σ2
0de

2σ1t

4κ
R

−(1−β)
t −Rt

)
dt+ σ0e

σ1tR
β/2
t dWt. (2.33)

Comparing (2.33) with (2.1) gives κ (t) = κ, θ (t) = dσ2(t)
4κ and σ (t) = σ0e

σ1t, where κ and σ0

are positive constants, σ1 and σ2 are nonnegative constants and d is a positive integer. Observe

that the presented process (2.33) was introduced by Maghsoodi [55] for β = 1 and its transition

density was also proposed.

Moreover, we have that the corresponding parameters κ(t), θ(t) and σ(t) in the pro-

cess (2.33) can apply with Theorems 2.1 and 2.7, whose integrals can be always evaluated after

substituting these parameters into A⟨k⟩
α . Hence, A⟨k⟩

α also has an exact form, and we can express

U and V in Theorems 2.1 and 2.7, respectively, in the following explicit forms

U ⟨γ⟩
α (R, τ) = e−

γκτ
α

∞∑
k=0

1

k!

k−1∏
j=0

(γ − j)(αd+ 2(γ − j − α))

(σ2
0e

2σ1(T−τ)
(
e2σ1τ+κτ

α −1
)

4α(2ασ1+κ)

)k

R
γ−k
α ,

(2.34)

V ⟨γ⟩
α (R, τ) = e−

γκτ
α

∞∑
k=0

1

k!

k−1∏
j=0

(γ + j)(αd+ 2(γ + j − α))

(σ2
0e

2σ1(T−τ)
(
1−e2σ1τ−κτ

α

)
4α(κ−2ασ1)

)k

R
γ+k
α .

(2.35)
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Here, we set that the product terms of the above formulas are 1 when an initial index k =

0. However, if we use parameters κ(t), θ(t) and σ(t) other than the above parameters, it

is possible that the integral in A
⟨k⟩
α in Theorems 2.1 and 2.7 cannot be integrable, then the

numerical integrations can be utilized to approximate its value, see [8]. Note that the formulas for

U
⟨γ⟩
α (R, τ) and V ⟨γ⟩

α (R, τ) presented in (2.34) and (2.35) diverge as mentioned in Subsection 2.3.4,

i.e., for sufficiently large k,
∣∣∣∣A⟨k+1⟩

α (τ)R
γ−k−1

α

A
⟨k⟩
α (τ)R

γ−k
α

∣∣∣∣ > 1. However, the formula (2.34) can be reduced

to the finite sum when γ = n or γ = α
2 (2 − d) + n, for n ∈ Z+

0 . Similarly, the formula (2.35) is

also a finite sum when γ = −n or γ = α
2 (2− d)− n.

In this experiments, we apply Euler–Maruyama (EM) discretization to the process (2.33).

The qualitatively correct numerical approximations by using EM method to the class of mean-

reverting square root processes such as the ECIR process are technically provided by Higham

and Mao [38]. We denote by R̂ a time-discretized approximation to R. The EM approximation

of (2.33) on the interval [0, T ] by discretizing N time steps, 0 = t0 < t1 < . . . < tN = T , is

defined by

R̂ti+1
= R̂ti + κ(ti)

(
θ(ti)R̂

−(1−β)
ti − R̂ti

)
∆t+ σ(ti)R̂

β
2
ti

√
∆tZi+1 (2.36)

with the initial R̂t0 = Rt0 , ∆t = ti+1 − ti and Z is independent N dimensional standard normal

random vector. We first denote U ⟨γ,M⟩
α , V ⟨γ,M⟩

α the approximations of U ⟨γ⟩
α , V ⟨γ⟩

α obtained by MC

simulations, respectively. To make our results more tangible, the following example illustrates

the results in practice.

2.4.1 Validation of closed-form formulas for (2.2) with MC simulations

This subsection provides a major numerical example to illustrate the experimental valida-

tion of the closed-form formulas proposed in Theorem 2.2 via MC simulations. Before starting

the example, we observe that the Assumptions 2.1 and 2.2 hold for the functions κ(t), θ(t) and

σ(t) defined in (2.33).

Example 2.1. The formulas (2.34) with α = 0.5, 1, 1.5, 2 for γ = 1, 2 and τ = 0.01:

For γ = 1 yields

U ⟨1⟩
α (R, τ) = e−

κτ
α

1∑
k=0

1

k!

k−1∏
j=0

(1− j)(αd+ 2(1− j − α))

(σ2
0e

2σ1(T−τ)
(
e2σ1τ+κτ

α −1
)

4α(2ασ1+κ)

)k

R
1−k
α

(2.37)
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and for γ = 2 yields

U ⟨2⟩
α (R, τ) = e−

2κτ
α

2∑
k=0

1

k!

k−1∏
j=0

(2− j)(αd+ 2(2− j − α))

(σ2
0e

2σ1(T−τ)
(
e2σ1τ+κτ

α −1
)

4α(2ασ1+κ)

)k

R
2−k
α

(2.38)

for all R > 0 and τ = T − t ≥ 0.

This example shows a formula based on the process (2.33) in the case of γ ∈ N which

actually obtains to the closed-form formula. To validate the closed-form formulas presented

in (2.37) and (2.38), the parameters d = 4, σ0 = 0.01, σ1 = 0.02 and κ = 0.03 in the process (2.33)

are applied for the formulas and MC simulations at each initial value R = 0.1, 0.2, . . . , 1.2 to

generate 10, 000 sample paths of Rt, where each path consisting of 10, 000 steps over the time

interval [0, 0.01]. The validations are performed as the comparisons between the formulas (2.37)

and (2.38) with MC simulations of two different γ = 1, 2 for each α = 0.5, 1, 1.5, 2.

As displayed in Figure 2.1(a), the results from MC simulations (colored circles) match

completely with the formula (2.37) (solid lines) for each R = 0.1, 0.2, . . . , 1.2. In the same way

that the results from the MC simulations looked completely match the results from (2.38) as

displayed in Figure 2.1(b). However, the major disadvantage of MC simulation is to consume

the costly computational time for approximating the value of each initial value of R. Contrarily,

our closed-form formulas can produce the exact solution at all initial values R > 0 and spend

inexpensive time for the implementations.

(a) The conditional 1
α -moments (b) The conditional 2

α -moments

Figure 2.1: The validations of U ⟨γ⟩
α (R, 0.01) for α = 0.5, 1, 1.5, 2 and R = 0.1, 0.2, 0.3, . . . , 2
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Example 2.2. The ECIR process, the formula (2.34) with α = 1 for γ = 1, 2, 3, 4 and

R = 0.5, 2: For γ = n ∈ Z+
0 yields

U
⟨n⟩
1 (R, τ) = e−nκτ

n∑
k=0

(
n

k

)k−1∏
j=0

(d+ 2(n− j − 1))

(σ2
0(e

τ(κ+2σ1)−1)e2σ1(T−τ)

4(κ+2σ1)

)k

Rn−k,

(2.39)

for all R > 0 and τ = T − t ≥ 0.

In this example, we illustrate that our formula covers some existing special cases of the

process (2.33). For the parameter α = 1, this process is known as ECIR process. Moreover,

our obtained formula with γ ∈ Z+ is also the closed-form formula. Hence, we validate the

formula (2.39) with the same parameters used in Example 2.1 via MC simulations by vary-

ing τ = 0, 1, 2, . . . , 10 at two initial values R = 0.5 and R = 2 as depicted in Figures 2.2(a)

and 2.2(b), respectively. Figure 2.2 shows that the results obtained from the formula (2.39) and

MC simulations completely match.

(a) R = 0.5 (b) R = 2

Figure 2.2: The validations of the first-forth moments for ECIR process U ⟨γ⟩
1 (R, τ) where

γ = 1, 2, 3, 4, with MC simulations for τ = 0, 1, 2, . . . , 10

Example 2.3. The formulas (2.34) with α = 0.5 for γ = α
2 (2− d) + n:

For d = 4 and γ = −0.5 yields

U
⟨−0.5⟩
0.5 (R, τ) = eκτR−1, (2.40)

and for d = 4 and γ = 0.5 yields

U
⟨0.5⟩
0.5 (R, τ) = eκτR+ eκτ

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+κτ

α −1
)

4α(2ασ1+κ)

)
R−1, (2.41)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

for all R > 0 and τ = T − t ≥ 0.

In this example, we display the formula that still provides a closed form for some γ /∈ Z+
0 .

For the same parameters as in Example 2.1, we obtain the closed-form formulas (2.40) when

γ = −0.5 and (2.41) when γ = 0.5. In addition, we validate our formulas by comparing with the

MC simulations. We can see that both formulas for γ = −0.5 and γ = 0.5 produce the results

that extremely match to the MC simulations as demonstrated in Figures 2.3(a) and 2.3(b),

respectively.

(a) The first inverse moments (b) The first moments

Figure 2.3: The validations of U ⟨γ⟩
α (R, τ) for R = 0.5, 1, 1.5, 2

2.4.2 Validation of closed-form formulas for (2.3) with MC simulations

This subsection provides a set of experiments using the same parameters of the previous

example, except σ0 = −0.01 and κ = −0.03 in the process (2.33), which are applied for the

formulas and MC simulations with initial value R = 0.8, 0.9, . . . , 2. In examples, the validations

are performed as the comparisons between the formulas (2.42) and (2.43) with MC simulations

of two different γ = −1,−2 for each α = 0.5, 1, 1.5, 2.

Example 2.4. The formulas (2.35) with α = 0.5, 1, 1.5, 2 for γ = −1,−2 and τ = 0.01:

For γ = −1 yields

V ⟨−1⟩
α (R, τ) = e

κτ
α

1∑
k=0

1

k!

k−1∏
j=0

(j − 1)(αd+ 2(j − 1− α))

(σ2
0e

2σ1(T−τ)
(
1−e2σ1τ−κτ

α

)
4α(κ−2ασ1)

)k

R
k−1
α

(2.42)
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and for γ = −2 yields

V ⟨−2⟩
α (R, τ) = e

2κτ
α

2∑
k=0

1

k!

k−1∏
j=0

(j − 2)(αd+ 2(j − 2− α))

(σ2
0e

2σ1(T−τ)
(
1−e2σ1τ−κτ

α

)
4α(κ−2ασ1)

)k

R
k−2
α

(2.43)

for all R > 0 and τ = T − t ≥ 0.

The results displayed in Figure 2.4 validate our formulas, i.e., for each γ and α at each the

initial value R, the MC simulations perfectly match with the results from closed-form formula.

(a) The conditional − 1
α -moments (b) The conditional − 2

α -moments

Figure 2.4: The validations of V ⟨γ⟩
α (R, 0.01) for α = 0.5, 1, 1.5, 2 and R = 0.8, 0.9, 1, . . . , 2

Example 2.5. The EIF process (3/2-SVM), the formula (2.35) with α = 1 for γ = 1, 2, 3, 4

and R = 0.5, 2: For γ = n ∈ Z−
0 yields

V
⟨n⟩
1 (R, τ) = enκτ

|n|∑
k=0

(
|n|
i

)i−1∏
j=0

(d+ 2(j − n− 1))

(σ2
0(1−eτ(κ−2σ1))e2σ1T−κτ

4(κ−2σ1)

)i

Rn+k, (2.44)

for all R > 0 and τ = T − t ≥ 0.

This example shows that our formula covers some exist special cases in the process (2.33)

for γ ∈ Z−. With parameter α = 1, this process is called the EIF process or 3/2-SVM. Our

obtained formula based on this process follows the closed form (2.44) when γ ∈ Z−. The

validation of (2.44) is tested with the MC simulations as depicted in Figure 2.5. Moreover, we

can see that the obtained results from both methods perfectly match.
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(a) R = 0.5 (b) R = 2

Figure 2.5: The validations of the first-forth inverse moments for the EIF process V ⟨γ⟩
1 (R, τ)

where γ = −1,−2,−3,−4, with MC simulations for τ ∈ {0, 1, 2, . . . , 10}

Example 2.6. The formulas (2.35) with α = 0.5 for γ = α
2 (2− d)− n:

For d = 4 and γ = −0.5 yields

V
⟨−0.5⟩
0.5 (R, τ) = eκτR−1, (2.45)

and for d = 4 and γ = −1.5 yields

V
⟨−1.5⟩
0.5 (R, τ) = e3κτR−3 + 3e3κτ

(
σ2
0e

2σ1(T−τ)
(
1−e2σ1τ−κτ

α

)
4α(κ−2ασ1)

)
R−1, (2.46)

for all R > 0 and τ = T − t ≥ 0.

For Example 2.6, we illustrate the case that γ /∈ Z−
0 for the process (2.33) and the formula

provides a closed form. In this example, we validate our obtained formulas (2.45) and (2.45) via

plotting graphs which are compared to the MC simulations as shown in Figures 2.6(a) and 2.6(b),

respectively. Also, the occurrence of results from both approaches completely matches.

2.4.3 Numerical approximation of our formulas with finite sum

According to Subsection 2.3.4, each case of the processes based on β the infinite series (2.6)

and (2.20) diverge except only when B
⟨j⟩
α = 0 for some j ∈ Z+. It is interesting to observe the

level of accuracy of our formulas proposed in Theorems 2.1, 2.4, 2.7 and 2.10 can be obtained

from their partial sum as demonstrated in the following examples.

Before studying the accuracy, for the case of process (2.2), we first denote U
⟨γ,K⟩
α an

approximate of U ⟨γ⟩
α described by a partial sum of the infinite sum (2.6) up to order γ − K.

Similarly, the case of process (2.3), V ⟨γ,K⟩
α denotes an approximate of V ⟨γ⟩

α as a partial sum of
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(a) The first inverse moments (b) The third inverse moments

Figure 2.6: The validations of V ⟨γ⟩
α (R, τ) for R = 0.5, 1, 1.5, 2

the infinite sum (2.20) up to order γ +K.

To consider a suitable K before comparing with MC simulations, we measure the signif-

icant difference of value of U ⟨γ,K⟩
α at each K ∈ Z+. In this work, that measure is defined by a

sequence of absolute relative differences

D
⟨γ,K⟩
Uα

(R, τ) :=

∣∣∣∣∣U ⟨γ,K⟩
α (R, τ)− U

⟨γ,K−1⟩
α (R, τ)

U
⟨γ,K⟩
α (R, τ)

∣∣∣∣∣ ,
for all (R, τ) ∈ (0,∞) × [0,∞). Moreover, to consider the accuracy of U ⟨γ,K⟩

α (R, τ) compared

with MC for some K ∈ Z+, we define the absolute relative errors

E
⟨γ,K⟩
Uα

(R, τ) :=

∣∣∣∣∣U ⟨γ,K⟩
α (R, τ)− U

⟨γ,M⟩
α (R, τ)

U
⟨γ,K⟩
α (R, τ)

∣∣∣∣∣ ,
for all (R, τ) ∈ (0,∞) × [0,∞). Similarly, for considering the accuracy of the process (2.3), we

can perform in the same way as the process (2.2) by replacing U by V .

The sequences of absolute relative differences of D⟨γ,K⟩
Uα

(R, 0.01) are shown in Table 2.1

for K = 1, 2, 3, 4 with parameters as in Example 2.1 except R = 0.01, 1, 5 for α = 0.5, 1, 2 and

γ = 0.5,−0.5. For the case of D⟨γ,K⟩
Vα

(R, 0.01), all parameters are the same as in Example 2.4,

and the results are shown in Table 2.1.

Now, we are interested in the case of infinite sum of U ⟨γ⟩
α (R, 0.01) and V

⟨γ⟩
α (R, 0.01) by

using the parameters α = 1, 2 and γ = 0.5,−0.5. From Table 2.1, we observe that the obtained

absolute relative differences are improved when K increases from 1 to 4, showing that for small

K, U ⟨γ,K⟩
α and V

⟨γ,K⟩
α are good approximations of U ⟨γ⟩

α and V
⟨γ⟩
α , respectively. To validate this

claim, the results of U ⟨γ,K⟩
α and V

⟨γ,K⟩
α with K = 2 are compared with MC simulations in the
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next example.

Table 2.1: The absolute relative differences D⟨γ,K⟩
Uα

(R, 0.01) and D
⟨γ,K⟩
Vα

(R, 0.01)

R K
α = 1 α = 2

γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

D
⟨γ

,K
⟩

U
α

(R
,0
.0
1)

0.01 1 3.7512e-05 1.2505e-05 1.5629e-06 9.3776e-07
2 2.3453e-10 2.3454e-10 7.3282e-13 4.3970e-13
3 2.9327e-15 1.4664e-14 2.2907e-19 2.2907e-19
4 1.3752e-19 1.6044e-18 8.9505e-26 3.7592e-25

1 1 3.7513e-07 1.2504e-07 1.5629e-07 9.3776e-08
2 2.3454e-14 2.3454e-14 7.3282e-15 4.3969e-15
3 2.9328e-21 1.4664e-20 2.2907e-22 2.2907e-22
4 1.3752e-27 1.6044e-26 8.9505e-30 3.7592e-29

5 1 7.5026e-08 2.5009e-08 6.9896e-08 4.1938e-08
2 9.3816e-16 9.3816e-16 1.4656e-15 8.7939e-16
3 2.3462e-23 1.1731e-22 2.0489e-23 2.0489e-23
4 2.2003e-30 2.5671e-29 3.5802e-31 1.5037e-30

D
⟨γ

,K
⟩

V
α

(R
,0
.0
1)

0.01 1 3.7513e-09 1.2504e-09 1.5629e-08 9.3776e-09
2 3.5181e-17 2.3454e-18 5.1298e-16 7.3282e-17
3 5.1323e-25 1.4664e-26 2.4052e-23 1.6035e-24
4 1.0108e-32 1.6044e-34 1.4473e-30 5.6388e-32

1 1 3.7513e-07 1.2504e-07 1.5629e-07 9.3776e-08
2 3.5181e-13 2.3454e-14 5.1298e-14 7.3282e-15
3 5.1323e-19 1.4664e-20 2.4052e-20 1.6035e-21
4 1.0108e-24 1.6044e-26 1.4473e-26 5.6388e-28

5 1 1.8757e-06 6.2522e-07 3.4948e-07 2.0969e-07
2 8.7952e-12 5.8635e-13 2.5649e-13 3.6641e-14
3 6.4154e-17 1.8330e-18 2.6891e-19 1.7928e-20
4 6.3174e-22 1.0028e-23 3.6183e-25 1.4097e-26

Example 2.7. The formulas (2.34) with γ = 0.5,−0.5 for α = 1, 2:

For γ = 0.5 yields

U ⟨0.5,2⟩
α (R, τ) = A⟨0⟩

α (τ)R
0.5
α +A⟨1⟩

α (τ)R− 0.5
α +A⟨2⟩

α (τ)R− 1.5
α

= e−
κτ
2αR

0.5
α +

σ2
0(α(d−2)+1)

(
e
κτ
α

+2σ1τ−1
)
e2σ1(T−τ)−κτ

2α

8α(2ασ1+κ) R− 0.5
α

−
σ4
0(α(d−2)−1)(α(d−2)+1)

(
e
κτ
α

+2σ1τ−1
)
2e4σ1(T−τ)−κτ

2α

128α2(2ασ1+κ)2 R− 1.5
α , (2.47)
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and for γ = −0.5 yields

U ⟨−0.5,2⟩
α (R, τ) = A⟨0⟩

α (τ)R− 0.5
α +A⟨1⟩

α (τ)R− 1.5
α +A⟨2⟩

α (τ)R− 2.5
α

= e
κτ
2αR− 0.5

α −
σ2
0(α(d−2)−1)e

κτ
2α

(
e
κτ
α

+2σ1T−e2σ1(T−τ)
)

8α(2ασ1+κ) R− 1.5
α

−
3σ4

0(α(d−2)−3)(α(d−2)−1)
(
e
κτ
α

+2σ1τ−1
)
2e

κτ
2α

+4σ1(T−τ)

128α2(2ασ1+κ)2 R− 2.5
α , (2.48)

for all R > 0 and τ = T − t ≥ 0.

The comparison results between the formulas U ⟨0.5,2⟩
α (R, τ) and U ⟨−0.5,2⟩

α (R, τ) from above

with the MC simulations are shown in Table 2.2. For MC simulations, we perform with 10,000,

20,000 and 40,000 sample paths using 10,000 discretized steps. Table 2.2 demonstrates the results

of MC simulations that completely match (very small E⟨γ,2⟩
Uα

(R, 0.01)) with our approximate

formulas (2.47) and (2.48), and more closely as the number of the sample paths increases.

Suggesting that the MC simulations likely converge to our approximate formulas. This confirms

that the finite-sum approximation from Example 2.7 is very accurate.

Table 2.2: The absolute relative errors E⟨γ,2⟩
Uα

(R, 0.01) between approximations U ⟨γ,2⟩
α (R, 0.01)

and the MC simulations

R No. of paths α = 1 α = 2

γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

0.01 10,000 4.9432e-06 6.0968e-06 1.8070e-06 2.4024e-06
20,000 4.3787e-06 5.5227e-06 1.6572e-06 2.0408e-06
40,000 2.8365e-06 3.5774e-06 1.7448e-06 9.9157e-07

1 10,000 4.7443e-05 6.2577e-05 2.6847e-05 3.5829e-05
20,000 4.4541e-05 4.5552e-05 2.2873e-05 1.6153e-05
40,000 1.9582e-05 3.1475e-05 6.9575e-06 1.3462e-05

5 10,000 1.8289e-04 2.3106e-04 7.4331e-05 9.1785e-05
20,000 1.4254e-04 9.8655e-05 7.2443e-05 7.5774e-05
40,000 6.2475e-05 6.5412e-05 4.5679e-05 4.4312e-05

Example 2.8. The formulas (2.35) γ = 0.5,−0.5 for α = 1, 2:

For γ = 0.5 yields

V ⟨0.5,2⟩
α (R, τ) = A⟨0⟩

α (τ)R
0.5
α +A⟨1⟩

α (τ)R
1.5
α +A⟨2⟩

α (τ)R
2.5
α

= e−
κτ
2αR

0.5
α −

σ2
0(α(d−2)+1)e−

3κτ
2α

(
e2σ1T−e

κτ
α

+2σ1(T−τ)
)

8α(κ−2ασ1)
R

1.5
α

+
3σ4

0(α(d−2)+1)(α(d−2)+3)
(
e
κτ
α −e2σ1τ

)
2e4σ1(T−τ)− 5κτ

2α

128α2(κ−2ασ1)2
R

2.5
α , (2.49)
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and for γ = −0.5 yields

V ⟨−0.5,2⟩
α (R, τ) = A⟨0⟩

α (τ)R− 0.5
α +A⟨1⟩

α (τ)R
0.5
α +A⟨2⟩

α (τ)R
1.5
α

= e
κτ
2αR− 0.5

α +
σ2
0(α(d−2)−1)e−

κτ
2α

(
e2σ1T−e

κτ
α

+2σ1(T−τ)
)

8α(κ−2ασ1)
R

0.5
α

−
σ4
0(α(d−2)−1)(α(d−2)+1)

(
e
κτ
α −e2σ1τ

)
2e4σ1(T−τ)− 3κτ

2α

128α2(κ−2ασ1)2
R

1.5
α , (2.50)

for all R > 0 and τ = T − t ≥ 0.

For Example 2.8, we approximate the values of V ⟨0.5,2⟩
α (R, τ) and V

⟨−0.5,2⟩
α (R, τ) via the

formulas (2.49) and (2.50), respectively, for the process (2.3). These obtained approximate

formulas are tested by comparing with the MC simulations that use the same parameters as in

Example 2.7. This example confirms that the finite-sum approximation is very accurate similar

to Example 2.7.

Table 2.3: The absolute relative errors E⟨γ,2⟩
Vα

(R, 0.01) between approximations V ⟨γ,2⟩
α (R, 0.01)

and the MC simulations

R No. of paths α = 1 α = 2

γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

0.01 10,000 6.3809e-06 4.6791e-06 2.5455e-06 2.8372e-06
20,000 4.8817e-06 3.2489e-06 1.9995e-06 1.8475e-06
40,000 3.5147e-06 1.8855e-06 8.5924e-07 9.9942e-07

1 10,000 5.2675e-05 3.6136e-05 2.0877e-05 1.6268e-05
20,000 4.7569e-05 2.9143e-05 1.8847e-05 1.4891e-05
40,000 3.2283e-05 1.7754e-05 9.6756e-06 9.8560e-06

5 10,000 2.1431e-04 1.2127e-04 5.4750e-05 4.1640e-05
20,000 2.7689e-04 9.5415e-05 4.9192e-05 4.1589e-05
40,000 1.9540e-04 7.7050e-05 4.1508e-05 3.5101e-05

2.5 Conclusion and discussion

In this work, the sufficient conditions of the existence and uniqueness for a positive path-

wise strong solution are provided for the NLD-CEV process (2.1) for the cases of β ∈ [0, 2)

and β ∈ (2,∞). We have derived the formulas of conditional moments for the processes for

the processes (2.2) and (2.3) separately based on the range of β. The derived formulas shown

in Theorems 2.1 and 2.7 are presented as the infinite summation, which are reduced to finite

summation for the following cases: (i) for γ ∈ Z as for Theorems 2.2 and 2.8 and (ii) for γ /∈ Z

under the conditions (2.13) and (2.24) for Theorems 2.3 and 2.9, respectively. For the case that

the processes have constant parameters where the coefficients in integral forms can be exactly

evaluated, the formulas can be expressed in closed forms as shown in Theorems 2.4, 2.5, and 2.6
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for the process (2.2) and Theorems 2.10, 2.11, and 2.12 for the process (2.3). In addition in cases,

the closed-form formulas for unconditional moments are also observed for both processes (2.2)

and (2.3) as described in Theorems 2.13 and 2.14, respectively. One primary concern for the

formulas (2.6) and (2.20) in Theorems 2.1 and 2.7 is the integral form of the coefficient Aα,

which might not be directly evaluated for time-dependent parameters in general. In this case,

a numerical integration method such as Simpson’s rule, trapezoidal rule, and Newton–Cotes,

is required for the approximation, e.g. one can applied an efficient method with high accuracy

such as the Chebyshev integration method proposed by Boonklurb et al. [8].

The validation of accuracy and efficiency of the formulas for processes (2.2) and (2.3)

is performed by comparing with MC simulations based on some experimental examples. As

described in Section 2.4, the experimental results show the agreement between the proposed

formulas and MC simulations: the example of process (2.2) with α = 1 (or the ECIR process) is

shown in Example 2.2; the process (2.3) with α = 1 (or the EIF process or 3/2-SVM) is shown in

Example 2.5. Note that for the case that moments γ having formula as an infinite summation,

the approximation is also valid by using partial summation at suitable order as illustrated in

Examples 2.7 and 2.8.

The closed-form formulas in this work would benefit market practitioners for pricing finan-

cial derivatives in which the NLD-CEV model is adopted to describe the dynamics of volatility

or interest rate such as interest rate swaps, where the required conditional moments can be

rapidly from the formula. In addition, the formulas can be applied for parameter estimations

of the observed data such as the volatility persistence and the risk premium, for instance, the

conditional mixed moments can be obtained and applied to implement the method of moments.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

CLOSED-FORM FORMULAS FOR CONDITIONAL MOMENTS
OF INHOMOGENEOUS PEARSON DIFFUSION PROCESSES

Phiraphat Sutthimat1 and Khamron Mekchay1,∗

1 Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn

1 University, Bangkok 10330, Thailand
∗ Corresponding author: khamron.m@chula.ac.th

This article was published in Communications in Nonlinear Science and Numerical Sim-

ulation, volume 106, number 106095, 2022, see [71]. (ISI / T1: 98.30% / Impact Factor: 4.260)

DOI: https://doi.org/10.1016/j.cnsns.2021.106095

Received: 3 June 2021

Revised: 10 September 2021

Accepted: 24 October 2021

Published: 27 October 2021



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

Abstract

Diffusion models have been thoroughly studied for their use in seeking stochastic differen-

tial equation (SDE) solutions and investigating their properties, such as moments and conditional

moments, which play significant roles in many real-world applications and are especially bene-

ficial for estimating parameters. In fact, these moments can be directly calculated by applying

the transition probability density function (PDF), which is often unknown or unavailable in

closed form; the formulas for the conditional moments of the SDE may be unavailable in closed

form, as well. In this work, we studied an extended case of Pearson diffusion processes, which

are a class of diffusions that have squared diffusion coefficients with time-dependent parameter

functions. A complete investigation was carried out for both light- and heavy-tailed Pearson

diffusion processes, including Ornstein–Uhlenbeck, Cox–Ingersoll–Ross, Fisher–Snedecor, recip-

rocal gamma, and Student. We introduce a simple but novel approach to closed-form formulas

for conditional moments of inhomogeneous Pearson diffusion processes. The approach does not

require any knowledge of eigenfunctions or the transition PDF. In each class of stationary dis-

tributions reduced from Pearson diffusions, the formula is explored and presented in a concise

form. The closed-form formulas obtained are also numerically validated by MC simulations.

Keywords: closed-form formula, conditional moment, Pearson diffusion, inhomogeneous diffu-

sion, light-tailed process, heavy-tailed process

3.1 Introduction

Pearson diffusions are diffusion models that satisfy the Pearson equation [62], and they

appear in a wide variety of applications in different branches of applied science, such as physics,

biology, and mathematical finance [18,37,39,47]; however, investigating their properties is still

challenging. In 2008, Forman and Sørensen [32] studied Pearson diffusions via stationary solu-

tions of SDEs characterized by the mean-reverting linear drift and squared diffusion coefficients.

SDEs that are studied through Pearson diffusions are now known as Pearson diffusion processes.

Pearson diffusions are classified into six stationary diffusion processes according to particular

characteristics, such as positive or negative, bounded or unbounded, symmetric or skewed, and

light- or heavy-tailed. Some well-known examples of stationary distributions reduced from Pear-

son diffusion processes are Ornstein–Uhlenbeck (OU), Cox–Ingersoll–Ross (CIR), and Jacobi

processes, which have been widely investigated for many applications. In contrast, heavy-tailed

distributions, such as Fisher–Snedecor, reciprocal gamma, and Student processes, are rarely

investigated or used in applications.
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The conditional moments of Pearson diffusion processes can be derived directly by using

the transition PDF. In the past several decades, transition PDFs of Pearson diffusion processes

have received much attention through the Fokker–Planck equation (see [4, 46,49–52]). If the

solution to the Fokker–Planck equation is not available, conditional moments are not accessible

from the transition PDF, and other efficient methods are required. Some explicit formulas for

conditional polynomial moments of a class of Pearson diffusions were first applied to the GMM

by Zhou [81] in 2003. In 2005, the statistical inference of Pearson diffusions was investigated

by Bibby et al. [6], who also derived closed-form formulas for the first conditional moment and

the correlation of diffusion processes with marginal distributions, such as the gamma distri-

bution, variance-gamma distribution, and hyperbolic distribution. Most statistically tractable

Pearson diffusion processes have been studied from a stochastic viewpoint, e.g., by Forman and

Sørensen [32] in 2008, who provided statistical applications based on their explicit formulas for

conditional moments and mixed moments. Under sufficient conditions, Kessler and Sørensen [43]

presented formulas for conditional moments as recurrence relations involving eigenfunctions of

the generators of the diffusions. However, among all classes of Pearson diffusion processes, most

formulas have not yet been satisfactorily achieved.

Based on a partial differential equation (PDE) according to the Feynman–Kac formula [42],

this work proposes a novel, simple closed-form formula for conditional moments and some statis-

tical properties, such as conditional variance, mixed moment, covariance, and correlation. The

formulas are derived by solving the PDE without requiring any knowledge of eigenfunctions or

transition PDFs. The presented formula significantly simplifies other approaches in the litera-

ture: the direct solution approach by Forman and Sørensen [32] and the use of the transition

PDF by Leonenko and Phillips [49], which is also more general in terms of time-dependent

parameters. In addition, the formulas of conditional moments for all six classes of Pearson dif-

fusions are further simplified in concise forms in terms of the original process, which could be

beneficial for other statistical applications.

The rest of the paper is organized as follows. Section 3.2 provides a brief overview of

Pearson diffusions and their complete classifications. The main methodology is proposed in

Section 3.3 to address the relevant concepts for our main results, which are closed-form formulas

for conditional moments of Pearson diffusion processes. Important properties of closed-form

formulas are provided and discussed in Section 3.4. Section 3.5 is divided into six classes: OU

diffusion, CIR diffusion, Jacobi diffusion, Fisher–Snedecor diffusion, reciprocal gamma diffusion,

and Student diffusion. This section provides important sufficient conditions for the obtained

closed-form formulas and also presents closed-form formulas for unconditional moments in special

cases. The proposed formulas for Pearson diffusion processes for time-inhomogeneous cases are
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discussed and illustrated in Section 3.6. Furthermore, this section also presents experimental

validations of the proposed formulas via MC simulations. Section 3.7 concludes the paper.

3.2 Pearson diffusion processes

A class of Pearson diffusions is defined via linear drift and quadratic squared diffusion

coefficients, which satisfy a stochastic differential equation (SDE):

dXt = θ (µ−Xt) dt+
√
2θ (aX2

t + bXt + c) dWt, (3.1)

where Xt is in the state space; θ > 0 and a, b, c are real constants such that the quadratic

squared diffusion term in (3.1) is well defined; and Wt is a Wiener process. The parameters in

(3.1) are often described as follows: θ corresponds to the speed of adjustment to the mean of

the invariant distribution µ, and a, b, c determine the state space of the diffusion and the shape

of the invariant distribution.

In this work, under the probability measure P and σ-field Ft, we first propose the integral-

form formula for the conditional moment of inhomogeneous Pearson diffusion processes, where

the parameters in (3.1) depend on time, in the form of

E [Xγ
T | Ft] = E [Xγ

T | Xt = x] , 0 ≤ t ≤ T, (3.2)

for real order γ.

Since the process Xt in (3.1) satisfies Markov properties, the conditional density of Xt

for a given Xs is known as the transition PDF, p(Xt, t | Xs, s). Moreover, for time-dependent

homogeneous processes, we have p(Xt, t | Xs, s) = p(Xt, t−s | Xs, 0). In practice, the conditional

moments (3.2) can be directly calculated by using the transition PDF. In 1930, Kolmogorov [45]

studied the transition PDF, p(x, t; y), via the Fokker–Planck equation under some known initial

distributions:

∂

∂t
p(x, t; y) = − ∂

∂x
(φ(x)p(x, t; y)) +

1

2

∂2

∂x2
(ψ(x)p(x, t; y)) , x ∈ R, t ≥ 0, (3.3)

where the linear drift is φ(x) = θµ − θx, and the quadratic squared diffusion ψ(x) = 2d(x),

where d(x) = aθx2 + bθx+ cθ. Kolmogorov found that the invariant density m of diffusion (3.1)

satisfies the Fokker–Planck equation (3.3) whenever it exists. In this case, (3.3) reduces to

m′(x)

m(x)
=
φ(x)− d′(x)

d(x)
=

(µ− b)− (1 + 2a)x

ax2 + bx+ c
. (3.4)
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Equation (3.4) is technically known as the Pearson equation, which satisfies Pearson diffusion

processes (3.1). Since a closed-form representation of the transition PDF satisfying (3.3) and

(3.4) is complicated or unavailable, the closed-form formulas for conditional moments (3.2) de-

rived from the transition PDF are also usually complicated or unavailable (see [4, 49,50]). For-

man and Sørensen [32] defined six classes of Pearson diffusions under the conditions of stationary

solutions based on the characteristic properties of the polynomial d(x) in (3.4), as follows:

1. Ornstein–Uhlenbeck (OU) diffusion: deg(d) = 0,

2. Squared diffusion: deg(d) = 1,

3. Jacobi diffusion: deg(d) = 2, ∆(d) > 0, a < 0,

4. Fisher–Snedecor diffusion: deg(d) = 2, ∆(d) > 0, a > 0,

5. Reciprocal gamma diffusion: deg(d) = 2, ∆(d) = 0, a > 0,

6. Student diffusion: deg(d) = 2, ∆(d) < 0, a > 0,

where ∆(d) := b2 − 4ac is the discriminant.

3.3 Conditional moments of Pearson diffusion processes

There is strong empirical evidence that extreme movements in practice tend to involve

time (see [37,39,55]); therefore, the dynamics of diffusion processes are usually governed by

time-varying parameters, called inhomogeneous Pearson diffusion:

dXt = θ(t) (µ(t)−Xt) dt+
√

2θ(t) (a(t)X2
t + b(t)Xt + c(t)) dWt, (3.5)

where 0 ≤ t ≤ T , and θ(t) > 0, µ(t), a(t), b(t), and c(t) are time-dependent continuous functions

such that the square root in (3.5) is well defined on [0, T ] when Xt is in the state space. Well-

known instances deduced by (3.5) are the extended Ornstein–Uhlenbeck (EOU) and extended

squared diffusion (or extended Cox–Ingersoll–Ross, ECIR) processes (see Egorov et al. [23] and

Hull and White [39]).

In this section, we derive an explicit formula for the conditional γ moment of (3.5) based on

the solution of the PDE according to the Feynman–Kac formula [42]. According to the diffusion

coefficient of (3.5), to ensure existence and uniqueness, we need the following assumption [60]:

Assumption 3.1. The drift θ(t)(µ(t) − Xt) and diffusion
√
2θ(t)(a(t)X2

t + b(t)Xt + c(t)) are

Borel-measurable and satisfy the local Lipschitz and linear growth conditions.

In the following Theorems 3.1 and 3.2, we first present the integral-form formula for

conditional moments of process (3.5), which is also valid for (3.1) when parameters are constant.
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The idea of the theorem relies on the Feynman–Kac formula [42] by expressing the solution of

the PDE as an infinite series (3.6) and solving its coefficients to obtain a closed-form formula.

The motivation for the form of the conditional moment, i.e., a solution to PDE, is based on

[32,68]; since Pearson diffusion has linear drift and quadratic squared diffusion coefficients, the

differential generator maps polynomials to polynomials (see more details in [32,68]).

Theorem 3.1. Suppose that Xt follows inhomogeneous Pearson diffusion (3.5). The γth condi-

tional moment for γ ∈ R is

U ⟨γ⟩(x, τ) := E [Xγ
T | Xt = x] =

∞∑
k=0

P
⟨γ⟩
k (τ)xγ−k, (3.6)

for τ := T − t, (x, τ) ∈ D⟨γ⟩ ⊂ R × [0,∞), D⟨γ⟩ is the domain in which the infinite series in

(3.6) converges uniformly, where the coefficients in (3.6) are expressed as

P
⟨γ⟩
0 (τ) = e

∫ τ
0

A
⟨γ⟩
0 (ξ) dξ,

P
⟨γ⟩
1 (τ) =

∫ τ

0

e
∫ τ
η

A
⟨γ⟩
1 (ξ) dξB

⟨γ⟩
0 (η)P

⟨γ⟩
0 (η) dη,

P
⟨γ⟩
k (τ) =

∫ τ

0

e
∫ τ
η

A
⟨γ⟩
k (ξ) dξ

(
B

⟨γ⟩
k−1(η)P

⟨γ⟩
k−1(η) + C

⟨γ⟩
k−2(η)P

⟨γ⟩
k−2(η)

)
dη,

(3.7)

for k = 2, 3, 4, . . ., and

A
⟨γ⟩
j (τ) = θ(T − τ) (γ − j) ((γ − j − 1) a(T − τ)− 1) ,

B
⟨γ⟩
j (τ) = θ(T − τ) (γ − j) ((γ − j − 1) b(T − τ) + µ(T − τ)) ,

C
⟨γ⟩
j (τ) = θ(T − τ) (γ − j) ((γ − j − 1) c(T − τ)) .

(3.8)

Proof. Using the Feynman–Kac formula [42], U ⟨γ⟩(x, τ) := U in (3.6) satisfies the PDE

Uτ − θ(T − τ) (µ(T − τ)− x)Ux − θ(T − τ)
(
a(T − τ)x2 + b(T − τ)x+ c(T − τ)

)
Uxx = 0

(3.9)

for all (x, τ) ∈ D⟨γ⟩, subject to the initial condition

U ⟨γ⟩(x, 0) = E [Xγ
T | XT = x] = xγ . (3.10)

By comparing the coefficients between (3.6) and (3.10), we obtain the conditions P ⟨γ⟩
0 (0) = 1

and P ⟨γ⟩
k (0) = 0 for k ∈ Z+. Computing (3.9) using (3.6) to find the partial derivatives Uτ , Uxx,
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and Ux, we have

0 =

∞∑
k=0

d

dτ
P

⟨γ⟩
k (τ)xγ−k − θ(T − τ) (µ(T − τ)− x)

∞∑
k=0

(
(γ − k)P

⟨γ⟩
k (τ)xγ−k−1

)
− θ(T − τ)

(
a(T − τ)x2 + b(T − τ)x+ c(T − τ)

) ∞∑
k=0

(
(γ − k) (γ − k − 1)P

⟨γ⟩
k (τ)xγ−k−2

)
.

Simplifying,

0 =

(
d

dτ
P

⟨γ⟩
0 (τ)−A

⟨γ⟩
0 (τ)P

⟨γ⟩
0 (τ)

)
xγ +

(
d

dτ
P

⟨γ⟩
1 (τ)−A

⟨γ⟩
1 (τ)P

⟨γ⟩
1 (τ)−B

⟨γ⟩
0 (τ)P

⟨γ⟩
0 (τ)

)
xγ−1

+
∞∑
k=0

(
d

dτ
P

⟨γ⟩
k+2(τ)−A

⟨γ⟩
k+2(τ)P

⟨γ⟩
k+2(τ)−B

⟨γ⟩
k+1(τ)P

⟨γ⟩
k+1(τ)− C

⟨γ⟩
k (τ)P

⟨γ⟩
k (τ)

)
xγ−k−2.

Under the assumptions of the infinite series in (3.6) over D⟨γ⟩, the above equation can be solved

through a system of ODEs:

0 =
d

dτ
P

⟨γ⟩
0 (τ)−A

⟨γ⟩
0 (τ)P

⟨γ⟩
0 (τ),

0 =
d

dτ
P

⟨γ⟩
1 (τ)−A1(τ)P

⟨γ⟩
1 (τ)−B0(τ)P

⟨γ⟩
0 (τ),

0 =
d

dτ
P

⟨γ⟩
k+2(τ)−A

⟨γ⟩
k+2(τ)P

⟨γ⟩
k+2(τ)−B

⟨γ⟩
k+1(τ)P

⟨γ⟩
k+1(τ)− C

⟨γ⟩
k (τ)P

⟨γ⟩
k (τ)

(3.11)

with initial conditions P ⟨γ⟩
0 (0) = 1 and P

⟨γ⟩
k (0) = 0 for k ∈ Z+. Therefore, the coefficients in

(3.6) are directly obtained by solving system (3.11) in the form of a recursive relation, which

produces the result (3.7).

Notice that the formula as an infinite series is obtained without solving for the eigenvalues

and eigenfunctions given by Forman and Sørensen [32].

Examining (3.6) in Theorem 3.1, when γ = n ∈ Z+, the infinite sum in (3.6) is terminated

at finite order and can be expressed as in Theorem 3.2.

Theorem 3.2. Suppose that Xt follows inhomogeneous Pearson diffusion (3.5). The nth condi-

tional moment for n ∈ Z+
0 is

U ⟨n⟩(x, τ) := E [Xn
T | Xt = x] =

n∑
k=0

P
⟨n⟩
k (τ)xn−k, (3.12)

for τ := T − t, (x, τ) ∈ D⟨n⟩, where the coefficients P ⟨n⟩
k (τ) in (3.12) are defined by (3.7) and

(3.8).

Proof. In (3.8), when γ = n, k = n + 1, we obtain B
⟨γ⟩
k−1(τ) = B

⟨n⟩
n (τ) = 0 and C

⟨γ⟩
k−2(τ) =
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C
⟨n⟩
n−1(τ) = 0, implying P

⟨γ⟩
k (τ) = P

⟨n⟩
n+1(τ) = 0. Considering the coefficients at k = n + 2, we

obtain C
⟨γ⟩
k−2(τ) = C

⟨n⟩
n (τ) = 0. Since P ⟨n⟩

n+1(τ) = 0 and C
⟨n⟩
n (τ) = 0, P ⟨γ⟩

k (τ) = P
⟨n⟩
n+2(τ) = 0.

Now, we have P ⟨n⟩
n+1(τ) = 0 and P

⟨n⟩
n+2(τ) = 0, and the coefficients Pk(τ) in (3.7) involve the

previous two coefficients; therefore, P ⟨γ⟩
k (τ) = 0 for all integers k ≥ n + 1. Thus, the infinite

sum (3.6) is reduced to the finite sum (3.12).

Remark 3.1. The presented formula in Theorem 3.2 for the nth conditional moment significantly

simplifies the approaches in the literature by Forman and Sørensen [32] and Leonenko and

Phillips [49], especially for time-dependent parameters.

If the parameters θ(t) = θ, µ(t) = µ, a(t) = a, b(t) = b, and c(t) = c are constant, the

integral in Theorem 3.2 can be exactly integrated, as presented in Theorem 3.3.

Theorem 3.3. Suppose that Xt follows the Pearson diffusion process (3.1). The nth conditional

moment for n ∈ Z+
0 is

U
⟨n⟩
P (x, τ) := E [Xn

T | Xt = x] =

n∑
k=0

P
⟨n⟩
k (τ)xn−k, (3.13)

for τ := T − t, (x, τ) ∈ D
⟨n⟩
P ⊂ R× [0,∞), where the coefficients in (3.13) are expressed as

P
⟨n⟩
0 (τ) = eτÃ

⟨n⟩
0 ,

P
⟨n⟩
1 (τ) =

B̃
⟨n⟩
0 eτÃ

⟨n⟩
0

Ã
⟨n⟩
0 −Ã

⟨n⟩
1

+
B̃

⟨n⟩
0 eτÃ

⟨n⟩
1

Ã
⟨n⟩
1 −Ã

⟨n⟩
0

,

P
⟨n⟩
k (τ) =

k∑
j=0

 ∑
X∈Dk,j

∏
i∈Zk−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zk\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
 eτÃ

⟨n⟩
j ,

(3.14)

for k = 2, 3, . . . , n, where

Dk,j = {X ∈ P (Zk−2 \ {j − 1}) | n(X ) ∈ {0, 1} or |u− v| ≥ 2 for all u, v ∈ X} .

The notation P refers to the power set, Zk = {0, 1, 2, . . . , k}:

Ã
⟨n⟩
j = θ (n− j) ((n− j − 1) a− 1) ,

B̃
⟨n⟩
j = θ (n− j) ((n− j − 1) b+ µ) ,

C̃
⟨n⟩
j = θ (n− j) ((n− j − 1) c) .

(3.15)

According to (3.14), when X = ∅, we define the sum and product as 0 and 1, respectively.

Proof. By applying the linear system of ODEs (3.11) for the case of the nth conditional moment
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with constant parameters, the system of ODEs using coefficients (3.15) can be written in the

form:



d
dτ P

⟨n⟩
0 (τ)

d
dτ P

⟨n⟩
1 (τ)

d
dτ P

⟨n⟩
2 (τ)
...

d
dτ P

⟨n⟩
n (τ)


=



Ã
⟨n⟩
0

B̃
⟨n⟩
0 Ã

⟨n⟩
1

C̃
⟨n⟩
0 B̃

⟨n⟩
1 Ã

⟨n⟩
2

. . . . . . . . .

C̃
⟨n⟩
n−2 B̃

⟨n⟩
n−1 Ã

⟨n⟩
n





P
⟨n⟩
0 (τ)

P
⟨n⟩
1 (τ)

P
⟨n⟩
2 (τ)

...

P
⟨n⟩
n (τ)


,



P
⟨n⟩
0 (0)

P
⟨n⟩
1 (0)

P
⟨n⟩
2 (0)

...

P
⟨n⟩
n (0)


=



1

0

0

...

0


.

We denote the above equation by d
dτ P(τ) = KP(τ) subject to the initial condition P(0) = P0,

where the solution can be given as P(τ) = eτKP0. Note that the coefficient matrix K is three-

band lower triangular with distinct diagonal entries, and thus, K is simple and has completely

n + 1 eigenvalues, Ã⟨n⟩
j for j ∈ Zn. The exponential matrix eτK is diagonalizable, and we can

write the solution as follows:

P(τ) = SeτΛS−1P0, (3.16)

where Λ and S are the eigenvalue and eigenvector matrices of K, respectively;

Λ = diag
{
Ã

⟨n⟩
0 , Ã

⟨n⟩
1 , Ã

⟨n⟩
2 , . . . , Ã

⟨n⟩
n

}
, and an eigenvector matrix is lower triangular S := [Sk,j ],

where k, j ∈ Zn, in which the jth column is an eigenvector of K corresponding to the eigenvalue

Ã
⟨n⟩
j . We can directly compute S from K to obtain the following:

Sk,j =



0 for k < j,

n∏
i=j+1

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
for k = j ∈ Zn−1,

n∏
i=j+2

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
B̃

⟨n⟩
k−1 for k = j + 1 ∈ Zn−1,

1

Ã
⟨n⟩
j −Ã

⟨n⟩
k

(
B̃

⟨n⟩
k−1Sk−1,j + C̃

⟨n⟩
k−2Sk−2,j

)
for k ≥ j + 2,

where the product from j to n for n < j is defined as 1; this means that Sn,n = Sn,n−1 = 1.

Since P0 is a standard unit vector at the first element, the multiplication S−1P0 produces the

first column of S−1 := [Qk,j ], where element Qk,j of S−1 can be calculated from the formula

Sk,j :

Qk,j =



0 for k < j,

1
Sk,k

for k = j,

−1
Sk,k

k−1∑
i=j

Sk,iQi,j for k ≥ j + 1.
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Computing the above, we have S−1P0 = [Q0,0, Q1,0, Q2,0, . . . , Qn,0]
⊤, and (3.16) is simplified to


P

⟨n⟩
0 (τ)

P
⟨n⟩
1 (τ)

...

P
⟨n⟩
n (τ)

 =



S0,0

S1,0 S1,1

...
... . . .

Sn,0 Sn,1 · · · Sn,n




eτÃ

⟨n⟩
0

eτÃ
⟨n⟩
1

. . .

eτÃ
⟨n⟩
n





Q0,0

Q1,0

...

Qn,0



=



S0,0Q0,0

S1,0Q0,0 S1,1Q1,0

...
... . . .

Sn,0Q0,0 Sn,1Q1,0 · · · Sn,nQn,0




eτÃ

⟨n⟩
0

eτÃ
⟨n⟩
1

...

eτÃ
⟨n⟩
n

 .

Thus, we have

P
⟨n⟩
k (τ) =

k∑
j=0

Sk,jQj,0 e
τÃ

⟨n⟩
j . (3.17)

For k = 0, 1, it is easy to obtain P
⟨n⟩
0 (τ) and P

⟨n⟩
1 (τ) by using the above formula (3.17):

P
⟨n⟩
0 (τ) = S0,0Q0,0 e

τÃ
⟨n⟩
0 = eτÃ

⟨n⟩
0 ,

P
⟨n⟩
1 (τ) = S1,0Q0,0 e

τÃ
⟨n⟩
0 + S1,1Q1,0 e

τÃ
⟨n⟩
1 =

(
B̃

⟨n⟩
0

Ã
⟨n⟩
0 −Ã

⟨n⟩
1

)
eτÃ

⟨n⟩
0 +

(
B̃

⟨n⟩
0

Ã
⟨n⟩
1 −Ã

⟨n⟩
0

)
eτÃ

⟨n⟩
1 .

For k ≥ 2, we see that formula (3.17) depends on both Sk,j and Qj,0 in the form of a recurrence

relation for linear difference equations. Fortunately, several schemes can be used to seek the

solution to these linear difference equations (see more details in [57] and references therein).

By using these schemes, we obtain the solutions of Sk,j and Qj,0. Finally, we simplify the

multiplication Sk,jQj,0 to an the explicit form for k ≥ 2 as follows:

Sk,jQj,0 =
∑

X∈Dk,j

∏
i∈Zk−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zk\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

) , (3.18)

where Dk,j = {X ∈ P (Zk−2 \ {j − 1}) | n(X ) ∈ {0, 1} or |u− v| ≥ 2 for all u, v ∈ X},

Zk = {0, 1, 2, . . . , k}. Consequently, after (3.18) is substituted into (3.17), we obtain P ⟨n⟩
k (τ) for

all k ≥ 2, coinciding with (3.14), as in Theorem 3.3.

In the next theorem, we present the formula of the nth unconditional moment for Pearson

diffusion processes (3.1) under some existing conditions on parameters. In general, uncondi-

tional moments can be calculated directly from the transition density by taking the final time T

approaching infinity for fixed t to obtain the stationary density. In this work, the unconditional
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moments are obtained by taking the limit T → ∞ of the conditional moments, as suggested in

[1, 64], which can be considered to be the interchanging of limits over the integration.

Theorem 3.4. Suppose that Xt follows the Pearson diffusion process (3.1) with condition a(n−

1) ≤ 1 for n ∈ Z+
0 . The nth unconditional moment is given by

L
⟨n⟩
P := lim

τ→∞
U

⟨n⟩
P (x, τ) = lim

T→∞
E [Xn

T | Xt = x] =
∑

X∈Dn,n

∏
i∈Zn−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zn\({n}∪(X+{1}))

(
−Ã⟨n⟩

i

) .

(3.19)

Proof. From the result in Theorem 3.3, the cases of n = 0 and 1 are straightforward; this proof

discusses only the case of n ≥ 2. From (3.15), under the condition a(n− 1) ≤ 1, Ã⟨n⟩
j ≤ 0 for all

j ≤ n gives Ã⟨n⟩
j = 0 only when j = n. According to Theorem 3.3, it is not difficult to see that,

for fixed t, we have

lim
T→∞

P
⟨n⟩
k (τ) = lim

T→∞

k∑
j=0

 ∑
X∈Dk,j

∏
i∈Zk−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zk\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
 eτÃ

⟨n⟩
j = 0, (3.20)

for all k < n. For the case of k = n, we have

lim
T→∞

P ⟨n⟩
n (τ) = lim

T→∞

n∑
j=0

 ∑
X∈Dn,j

∏
i∈Zn−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zn\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
 eτÃ

⟨n⟩
j

=

n∑
j=0

 ∑
X∈Dn,j

∏
i∈Zn−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zn\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
( lim

T→∞
eτÃ

⟨n⟩
j

)
.

Since lim
T→∞

eτÃ
⟨n⟩
j = 0 for all j < n and Ã

⟨n⟩
n = 0, lim

T→∞
eτÃ

⟨n⟩
n = 1, and we have

lim
T→∞

P ⟨n⟩
n (τ) =

∑
X∈Dn,n

∏
i∈Zn−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zn\({n}∪(X+{1}))

(
−Ã⟨n⟩

i

) . (3.21)

From (3.20) and (3.21), we obtain (3.19).

Remark 3.2. Since OU, CIR, and Jacobi processes satisfy the existing condition on parameters

in Theorem 3.4, the nth unconditional moments exist for all n ∈ Z+. However, for Fisher–

Snedecor, reciprocal gamma, and Student processes, the nth unconditional moments only exist

up to order n ≤ 1
a +1. This existing condition agrees with the results developed by Forman and
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Sørensen [68].

3.4 Mathematical Properties

This section presents the benefits of the results of Theorems 3.2 and 3.3, such as the first

and second conditional moments, conditional variance, conditional mixed moments of order 2,

conditional covariance of Pearson diffusion, and their combinations.

Example 3.1. The first and second conditional moments, E [XT | Xt = x] and E
[
X2

T | Xt = x
]

Assume that parameters θ(t), µ(t), a(t), b(t), and c(t) are time-dependent functions such

that the inhomogeneous Pearson diffusion process (3.5) is well-defined for all t ∈ [0, T ]. By

employing U ⟨1⟩(x, τ) in Theorem 3.2, the first conditional moment is obtained:

E [XT | Xt = x] = P
⟨1⟩
0 (τ)x+P

⟨1⟩
1 (τ) = e−

∫ τ
0

θ(T−ξ) dξ x+

∫ τ

0

θ(T−η)µ(T−η) e−
∫ η
0

θ(T−ξ) dξ dη,

where τ = T − t. The first moment does not involve parameters a(t), b(t), or c(t), and thus, the

formula of the conditional mean is the same for all classes. For constants θ, µ, a, b, and c, by

applying U ⟨1⟩
P (x, τ) in Theorem 3.3, the first conditional moment becomes

E [XT | Xt = x] = eτÃ
⟨1⟩
0 x+

(
eτÃ

⟨1⟩
0

Ã
⟨1⟩
0 −Ã

⟨1⟩
1

+ eτÃ
⟨1⟩
1

Ã
⟨1⟩
1 −Ã

⟨1⟩
0

)
B̃

⟨1⟩
0 = e−τθx+ µ

(
1− e−τθ

)
,

which agrees with the results in [20,32]. Similarly, applying U ⟨2⟩(x, τ) in Theorem 3.2 yields

the second conditional moment:

E
[
X2

T | Xt = x
]
= P

⟨2⟩
0 (τ)x2 + P

⟨2⟩
1 (τ)x+ P

⟨2⟩
2 (τ),

where

P
⟨2⟩
0 (τ) = e2

∫ τ
0

θ(T−ξ) (a(T−ξ)−1) dξ

P
⟨2⟩
1 (τ) = 2e−

∫ τ
0

θ(T−ξ) dξ

∫ τ

0

θ(T − ζ) (b(T − ζ) + µ(T − ζ)) e
∫ ζ
0
θ(T−ξ) (2a(T−ξ)−1) dξ dζ,

P
⟨2⟩
2 (τ) =

∫ τ

0

2θ(T − η)

(
µ(T − η) e−

∫ η
0

θ(T−ξ) dξ

∫ η

0

θ(T − ζ)(b(T − ζ)

+ µ(T − ζ))e
∫ ζ
0
θ(T−ξ)(2a(T−ξ)−1) dξ dζ + c(T − η) e2

∫ η
0

θ(T−ξ) (a(T−ξ)−1) dξ

)
dη.

For the constants θ, µ, a, b, and c, by applying U ⟨2⟩
P (x, τ) in Theorem 3.3, the second conditional
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moment becomes

E
[
X2

T | Xt = x
]
= eτÃ

⟨2⟩
0 x2 +

(
eτÃ

⟨2⟩
0

Ã
⟨2⟩
0 −Ã

⟨2⟩
1

+ eτÃ
⟨2⟩
1

Ã
⟨2⟩
1 −Ã

⟨2⟩
0

)
B̃

⟨2⟩
0 x+

(
eτÃ

⟨2⟩
0

Ã
⟨2⟩
0 −Ã

⟨2⟩
2

+ eτÃ
⟨2⟩
2

Ã
⟨2⟩
2 −Ã

⟨2⟩
0

)
C̃

⟨2⟩
0

+

(
eτÃ

⟨2⟩
0(

Ã
⟨2⟩
0 −Ã

⟨2⟩
1

)(
Ã

⟨2⟩
0 −Ã

⟨2⟩
2

) + eτÃ
⟨2⟩
1(

Ã
⟨2⟩
1 −Ã

⟨2⟩
0

)(
Ã

⟨2⟩
1 −Ã

⟨2⟩
2

) + eτÃ
⟨2⟩
2(

Ã
⟨2⟩
2 −Ã

⟨2⟩
0

)(
Ã

⟨2⟩
2 −Ã

⟨2⟩
1

)) B̃⟨2⟩
0 B̃

⟨2⟩
1

= e2θ(a−1)τx2 +
2(b+ µ)

2a− 1

(
e2θ(a−1)τ − e−θτ

)
x+

c

a− 1

(
e2θ(a−1)τ − 1

)
+

µ(b+ µ)

(a− 1)(2a− 1)

(
e2θ(a−1)τ + 2(a− 1)e−θτ − 2a+ 1

)
.

When a = 1, the second conditional moment becomes

E
[
X2

T | Xt = x
]
= x2 + 2(b+ µ)

(
1− e−θτ

)
x+ 2θ

(
µ(b+ µ)

(
e−θτ − 1

θ
+ τ

)
+ cτ

)

and when a = 1
2 ,

E
[
X2

T | Xt = x
]
= e−θτx2 + 2θτ(b+ µ) e−θτx+ 2e−θτ

(
µ(b+ µ)

(
−θτ + eθτ − 1

)
+ c

(
eθτ − 1

))
.

These moments obtained by Theorem 3.3 are simpler than other results in the existing litera-

ture, such as [14,32,43], because they do not require solving recurrence differential equations.

Moreover, this example contains useful information for investigating the other mathematical

properties in the next examples.

Example 3.2. The conditional variance and nth central moments

Based on inhomogeneous Pearson diffusion (3.5), the conditional variance of the diffusion

can be expressed as

Var [XT | Xt = x] := E
[
(XT − E [XT | Xt])

2 | Xt = x
]
= U ⟨2⟩(x, τ)−

(
U ⟨1⟩(x, τ)

)2
,

where U ⟨1⟩(x, τ) and U ⟨2⟩(x, τ) are provided in Example 3.1.

For Pearson diffusion (3.1), the variance becomes

Var [XT | Xt = x] = e2(a−1)θτx2 +
2(b+ µ)e−2θτ

2a− 1

(
e2aθτ − eθτ

)
x−

(
e−θτx+ µ

(
1− e−τθ

))2
+
µ(b+ µ)

2a− 1

(
e2(a−1)θτ − 1

a− 1
+ 2

(
e−θτ − 1

))
+

c

a− 1

(
e2(a−1)θτ − 1

)
.
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In general, the nth moment about the mean (nth central moment) is expressed as

µn(x, τ) := E [(XT − E [XT | Xt])
n | Xt = x] =

n∑
j=0

(−1)
n−j

(
n

j

)(
U ⟨j⟩(x, τ)

)(
U ⟨1⟩(x, τ)

)n−j

where the conditional zeroth moment U ⟨0⟩(x, τ) = 1. The first few central moments have intuitive

interpretations: µ0, known as the conditional zeroth central moment, is 1; the first central

conditional moment µ1 is 0; the conditional second central moment µ2 is called the conditional

variance; and for higher orders, the third and the fourth conditional central moments are used

to define conditional standardized moments, known as the skewness and kurtosis, respectively.

As a practical application, skewness and kurtosis swaps are currently used in trading, especially

their moment swaps, and they have been widely studied (see Chumpong et al. [14]).

Example 3.3. The conditional mixed moment of integer order

By using the tower property for 0 ≤ t < T1 ≤ T2, where τ1 = T1 − t and τ2 = T2 −T1, the

conditional mixed second moment of inhomogeneous Pearson diffusion (3.5) can be expressed as

E [XT1
XT2

| Xt = x] = E [XT1
E [XT2

| XT1
] | Xt = x] .

After applying Theorem 3.3 twice, we have

E [XT1XT2 | Xt = x] =

1∑
k=0

2−k∑
j=0

P
⟨1⟩
k (τ2)P

⟨2−k⟩
j (τ1)x

2−k−j

= P
⟨1⟩
0 (τ2)P

⟨2⟩
0 (τ1)x

2 + P
⟨1⟩
0 (τ2)P

⟨2⟩
1 (τ1)x+ P

⟨1⟩
0 (τ2)P

⟨2⟩
2 (τ1)

+ P
⟨1⟩
1 (τ2)P

⟨1⟩
0 (τ1)x+ P

⟨1⟩
1 (τ2)P

⟨1⟩
1 (τ1), (3.22)

where parameter functions dependent on time are given in Example 3.1. Moreover, the generality

of the formula for conditional mixed moments, E
[
Xn1

T1
Xn2

T2
· · ·Xnk

Tk
| Xt = x

]
, where n1, n2, . . . nk

∈ Z+ and 0 ≤ t < T1 ≤ T2 ≤ · · · ≤ Tk, can be analytically derived by using Theorem 3.3, as

well. The advantage of the mixed moment (3.22) is its simple closed form, which can be used to

estimate functions of the powers of the observed processes presented in Sørensen [70], Leonenko

and Šuvak [51,52], and Avram et al. [4]. In addition, in order to study integrated Pearson

diffusion processes, the mixed moments need to be calculated; however, the closed-form formula

is not available (see Forman and Sørensen [32]), and thus, (3.22) can be applied directly. This

result is also useful for the estimation of parameters; for instance, Gouriéroux and Valéry [34]

used conditional mixed moments to implement the method of moments and thereby captured

various features of observed data, such as the risk premium and possible volatility persistence.
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Example 3.4. The conditional covariance and correlation

The conditional covariance of inhomogeneous Pearson diffusion (3.5) is defined by

Cov [XT1
, XT2

| Xt = x] := E [(XT1
− E [XT1

| Xt]) (XT2
− E [XT2

| Xt]) | Xt = x]

= E [XT1XT2 | Xt = x]− E [XT1 | Xt = x]E [XT2 | Xt = x]

for 0 ≤ t < T1 ≤ T2, where τ = T2 − t, τ1 = T1 − t, and τ2 = T2 − T1. Applying the results from

Examples 3.1 and 3.3 yields

Cov [XT1
, XT2

| Xt = x] =
1∑

k=0

2−k∑
j=0

P
⟨1⟩
k (τ2)P

⟨2−k⟩
j (τ1)x

2−k−j − U ⟨1⟩(x, τ1)U
⟨1⟩(x, τ2). (3.23)

The conditional correlation of the diffusion is defined by

Corr [XT1 , XT2 | Xt = x] :=
Cov [XT1

, XT2
| Xt = x]√

Var[XT1
| Xt = x]

√
Var[XT2

| Xt = x]
.

Applying the results in Examples 3.2 and (3.23) yields

Corr [XT1
, XT2

| Xt = x] =

∑1
k=0

∑2−k
j=0 P

⟨1⟩
k (τ2)P

⟨2−k⟩
j (τ1)x

2−k−j − U ⟨1⟩(x, τ1)U
⟨1⟩(x, τ2)√

U ⟨2⟩(x, τ1)−
(
U ⟨1⟩(x, τ1)

)2√
U ⟨2⟩(x, τ)−

(
U ⟨1⟩(x, τ)

)2 .

(3.24)

We can generalize (3.23) and (3.24) by using Examples 3.1, 3.2, and 3.3 as the closed forms of

Cov
[
Xn1

T1
, Xn2

T2
| Xt = x

]
and Corr

[
Xn1

T1
, Xn2

T2
| Xt = x

]
, where n1 and n2 are positive integers.

Note that Examples 3.1–3.4 provide explicit forms of the estimators of unknown parameters,

which can be obtained by the GMM (see [4, 31,51,52,70]).

Example 3.5. Approximation using Taylor expansion

Suppose that f is a real analytic function on an open interval and infinitely differentiable

at x0 in its domain such that the Taylor series at x0 converges pointwise to f(x) for x in a

neighborhood of x0. For example, by Taylor expansion, f(x) =
√
x can be expressed as

√
x =

√
x0 +

(x− x0)

2
√
x0

− (x− x0)
2

8
√
x0

3 +
(x− x0)

3

16
√
x0

5 − 5(x− x0)
4

128
√
x0

7 +O

((
x− x0
x0

)5
)
.

Let Xt follow inhomogeneous Pearson diffusion (3.5) for 0 ≤ t ≤ T . Based on the first three

terms of the expansion, substituting x = XT and x0 = E [XT | Xt = x] and taking the conditional
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expectation yields

E
[√

XT | Xt = x
]
≈
√
U ⟨1⟩(x, τ) +

µ1(x, τ)

2
√
U ⟨1⟩(x, τ)

− µ2(x, τ)

8
√
U ⟨1⟩(x, τ)

3 ,

where µ1 and µ2 are given in Example 3.2. Since µ1 = 0, and µ2 is the conditional variance,

we have

E
[√

XT | Xt = x
]
≈
√
U ⟨1⟩(x, τ)− Var(x, τ)

8
√
U ⟨1⟩(x, τ)

3 .

This approach can also be applied to other functions, such as exponential, logarithmic, or trigono-

metric functions. There is no empirical analysis for the convergence condition of utilizing the

Taylor expansion in a stochastic environment in practice. Moreover, there is no empirical evi-

dence that higher-order Taylor expansions will provide better accuracy to approximate functions

of stochastic variables.

3.5 Classification of Pearson diffusion processes

In this section, concise forms of the formulas in Section 3.3 are further investigated for all

six classes of Pearson diffusion processes according to Theorems 3.3 and 3.4. Since the formulas

proposed in this section are the consequences of Theorems 3.3 and 3.4, validation based on MC

is not necessary and is omitted.

3.5.1 Ornstein–Uhlenbeck diffusion

As mentioned in the first section, the OU diffusion process has the polynomial degree

d = 0, corresponding to a = b = 0 in (3.1), which has the form

dXt = θ (µ−Xt) dt+
√
2θc dWt, (3.25)

where µ ∈ R and θ > 0. The classical process of Vasicek [76] can describe the short rate through

the OU process (3.25). With the mean reversion property of the drift term, Xt is pulled toward

the µ level, and the OU process becomes a basic model in pricing applications, for which µ

can be interpreted as the long-run (mean) interest rate, and θ serves as the speed of reversion.

The conditional moments of the OU diffusion process can be useful for investors who want

to price financial derivatives based on assets described by the Schwartz model [69]. In 2017,

Weraprasertsakun and Rujivan [78] proposed only the first and second conditional moments

by solving recursive ODEs. Recently, a simple formula for conditional moments was presented

by Chumpong et al. [14]. Even though their formulas are considered very general for integer

moments, solving the system of recursive equations is required, which might be complicated when

computing higher moments. In contrast to formulas in the literature, our formula in Theorem 3.3
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is applied without solving any recursive equations, thus efficiently resolving the issue. Based on

Examples 3.1 and 3.2, we obtain the following for OU diffusion:

E [XT | Xt = x] = e−θτx+ µ
(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e−2θτx2 + 2µe−2θτ

(
eθτ − 1

)
x+ e−2θτ

(
c
(
e2θτ − 1

)
+ µ2

(
eθτ − 1

)2)
,

Var [XT | Xt = x] = c
(
1− e−2θτ

)
.

Note that conditional moments can be obtained directly from the transition PDF, which

is known to have the form of Hermite polynomials as orthogonal eigenfunctions with respect to

the standard Gaussian density (see [12,49]). For the OU process (3.25), the transition PDF can

be rewritten in terms of a Gaussian distribution as

p(y, T | xt, t) =
1√

2cπ (1− e−2θτ )
exp

(
−
(y − µ−(xt − µ

)
e−θτ

)2
2c (1− e−2θτ )

)
, (3.26)

where τ = T − t. Alternatives for obtaining conditional and unconditional moments of the OU

process derived from the transition PDF are described in the following theorems.

Theorem 3.5. Suppose that Xt follows the OU process (3.25). The nth conditional moment for

n ∈ Z+
0 is

Û
⟨n⟩
O (x, τ) := E [Xn

T | Xt = x] =
n∑

k=0

(
1 + (−1)n−k

2

)(
n

k

)
Γ
(
n−k+1

2

)
Γ
(
1
2

) AkB
n−k

2 , (3.27)

for τ = T − t ≥ 0, where A = µ+ (x− µ) e−θτ and B = 2c
(
1− e−2θτ

)
.

Proof. Suppose that u = y−A√
B

; then, we have

E [Xn
T | Xt = x] =

∫ ∞

−∞
yn p(y, T | x, t) dy

=

∫ ∞

−∞
yn

1√
πB

e−
(y−A)2

B dy

=
1√
π

∫ ∞

−∞

(
A+

√
Bu
)n

e−u2

du

=
1√
π

∫ ∞

−∞

n∑
k=0

(
n

k

)(√
Bu
)n−k

Ake−u2

du

=
1√
π

n∑
k=0

(
n

k

)
AkB

n−k
2

∫ ∞

−∞
un−ke−u2

du.

With respect to the integrand, un−ke−u2 is an even function when n− k is even, and un−ke−u2
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is an odd function when n− k is odd. Thus,

E [Xn
T | Xt = x] =

1√
π

n∑
k=0

(
n

k

)
AkB

n−k
2

(
1 + (−1)n−k

) ∫ ∞

0

un−ke−u2

du

=
1√
π

n∑
k=0

(
n

k

)
AkB

n−k
2

(
1 + (−1)n−k

2

)∫ ∞

0

(
u2
)n−k+1

2 −1
e−u2

d
(
u2
)
.

Applying the Euler integral of the second kind [40] to the integral term, we obtain (3.27) as the

result.

Theorem 3.6. Suppose that Xt follows the OU process (3.25). The nth unconditional moment

at equilibrium, for all n ∈ Z+
0 and τ = T − t ≥ 0, is given by

L̂
⟨n⟩
O := lim

τ→∞
Û

⟨n⟩
O (x, τ) = lim

T→∞
E [Xn

T | Xt = x]

=
n∑

k=0

(
1 + (−1)n−k

2

)(
n

k

)
Γ
(
n−k+1

2

)
Γ
(
1
2

) µk (2c)
n−k

2 . (3.28)

Proof. The proof follows from Theorem 3.5, since A = µ and B = 2c as τ → ∞.

3.5.2 Squared diffusion

In 1951, Feller [25] studied a class of diffusion processes, including the square-root diffu-

sion, later called the Cox–Ingersoll–Ross (CIR) process:

dXt = θ (µ−Xt) dt+
√
2θbXt dWt. (3.29)

The CIR process was introduced by Cox, Ingersoll, and Ross [18] as a process to describe the

short rate. As with the OU process (3.25), the drift terms mean that the short rates Xt are

pulled back toward µ at the speed of adjustment θ. In contrast to the OU process, in the

CIR process, Xt approaches zero as well as its diffusion term. Because of this feature of the

process, Xt avoids non-negative values, which is the reason that the process quickly became

famous for studying the behavior of interest rates, such as in Hull and White [39], Filipović

[26,27], Filipović and Mayerhofer [30], and Alfonsi [2]. For the conditional moments of the CIR

process, Dufresne [22] proposed a closed-form formula for Ep [Xγ
T | Ft] = Ep [Xγ

T | Xt = x] for

real γ > −µ
b . An analytical approach presented by Rujivan [64] extended Dufresne’s work to

the ECIR process for real γ ∈ R. Recently, an exact formula for conditional expectations of the

product of polynomial and exponential functions of the affine transform EP
[
Xn

T e
αXT | Xt = x

]
was proposed by Sutthimat et al. [72] for the ECIR process for any real γ and α, which generalizes

the Rujivan result [64]. However, this section provides an alternative formula for conditional

moments, which is simpler than Rujivan’s result [64].
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In order to ensure the existence of a pathwise unique strong solution for the process Xt in

(3.29) and to avoid zero almost surely with respect to probability measure P for all t ∈ [0, T ], the

two following assumptions proposed by Maghsoodi [55] are required (see details in Theorems 2.1

and 2.4 in [55]). In practice, for the ECIR process (3.5), where a(t) = c(t) = 0, we require the

functions θ(t), µ(t), and b(t) to be strictly positive and smooth on [0, T ], with 1
b(t) being locally

bounded and µ(t) ≥ b(t) on [0, T ].

The following theorems are consequences of Theorems 3.3 and 3.4 for the CIR process.

Theorem 3.7. Suppose that Xt follows the CIR process (3.29). The nth conditional moment

for n ∈ Z+
0 is defined by

U
⟨n⟩
C (x, τ) := E [xnT | Xt = x] = e−nθτxn +

n∑
k=1

e−nθτ
(
eθτ − 1

)k
k! θk

(
k−1∏
i=0

B̃
⟨n⟩
i

)
xn−k, (3.30)

for x > 0 and τ = T − t ≥ 0.

Proof. We show that, from Theorem 3.3, the coefficients P ⟨n⟩
k in (3.13) are those defined in (30)

for the CIR process (29). The cases of k = 0, 1 are straightforward according to the coefficients

in (3.14) and (3.15) when a = c = 0. Here, we consider the case of k = 2, 3, . . . , n. Since

a = c = 0 in (3.15), Ã⟨n⟩
j = −θ (n− j) and C̃

⟨n⟩
j = 0 for all j ≤ n; then,

P
⟨n⟩
k (τ) =

k∑
j=0

 ∑
X∈Dk,j

∏
i∈Zk−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zk\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
 eτÃ

⟨n⟩
j = 0, (3.31)

for X ̸= ∅. For the case of X = ∅, the term
∏
i∈X

C̃
⟨n⟩
i = 1 and (3.31) can be reduced to

P
⟨n⟩
k (τ) =

k∑
j=0

e
τÃ

⟨n⟩
j

k∏
i=0
i ̸=j

(
Ã

⟨n⟩
j −Ã

⟨n⟩
i

)
k−1∏
i=0

B̃
⟨n⟩
i

=

k∑
j=0

e−θτ(n−j)

k∏
i=0
i ̸=j

θ(j−i)

k−1∏
i=0

B̃
⟨n⟩
i

=
e−nθτ

θk

k∑
j=0

ejθτ

j! (k−j)!(−1)j−k

k−1∏
i=0

B̃
⟨n⟩
i

=
e−nθτ

k! θk

k∑
j=0

k!(−1)k−jejθτ

j! (k−j)!

k−1∏
i=0

B̃
⟨n⟩
i

=
e−nθτ

(
eθτ − 1

)k
k! θk

k−1∏
i=0

B̃
⟨n⟩
i , (3.32)
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which yields (3.30).

Based on Theorem 3.7 and Example 3.2, we obtain the following for CIR diffusion:

E [XT | Xt = x] = e−θτx+ µ
(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e−2θτx2 + 2(b+ µ)e−2θτ

(
eθτ − 1

)
x+ µ(b+ µ)e−2θτ

(
eθτ − 1

)2
,

Var [XT | Xt = x] = 2be−2θτ
(
eθτ − 1

)
x+ µbe−2θτ

(
eθτ − 1

)2
.

Theorem 3.8. Suppose that Xt follows the CIR process (3.29). The nth unconditional moment

at equilibrium, for all n ∈ Z+
0 , x > 0, and τ = T − t ≥ 0, is given by

L
⟨n⟩
C := lim

τ→∞
U

⟨n⟩
C (x, τ) = lim

T→∞
E [Xn

T | Xt = x] =
n−1∏
j=0

(µ+ jb). (3.33)

Proof. According to (3.30) in Theorem 3.7, the coefficient terms of xn−k approach 0 as τ → ∞

for k = 0, 1, 2, . . . , n− 1, except in the case of k = n. Thus,

L
⟨n⟩
C = lim

τ→∞

e−nθτ
(
eθτ − 1

)n
n! θn

(
n−1∏
i=0

B̃
⟨n⟩
i

)

=
1

n! θn

n−1∏
i=0

B̃
⟨n⟩
i lim

τ→∞

(
1− e−θτ

)n
=

1

n! θn

n−1∏
i=0

B̃
⟨n⟩
i .

By substituting B̃⟨n⟩
i in (3.15) into the equation above, the product can be simplified to obtain

the form of (3.33).

Similar to the OU process, the conditional moments of the CIR process can be derived

directly from the transition PDF, which is known to have the form of a Laguerre polynomial and

the gamma density function (see [12, 49]). The significant difference between OU and CIR is

that the transition PDF for the CIR process is not in a concise form. The eigenvalue expansion

for the transition PDF of the CIR process can be written in the form

p(y, T | xt, t) = cτ e
−(u+v)

( v
u

)q/2
Iq
(
2
√
uv
)
, (3.34)

where

τ = T − t, cτ =
1

b (1− e−θτ )
, u = cτ xt e

−θτ , v = cτ y, q =
µ

b
− 1, (3.35)
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and Iq(·) is the Bessel function of the first kind:

Iq(y) =

∞∑
k=0

(y
2

)2k+q 1

Γ(k + 1)Γ(k + q + 1)
.

Based on the transition PDF, an alternative for conditional moments of the CIR process is given

in the following theorem.

Theorem 3.9. Suppose that Xt follows the CIR process (3.29). The nth conditional moment

for n ∈ Z+
0 is

Û
⟨n⟩
C (x, τ) := E [Xn

T | Xt = x] = c−n
τ e−u

∞∑
k=0

uk Γ(n+ k + q + 1)

Γ(k + 1)Γ(k + q + 1)
, (3.36)

for x > 0, τ = T − t, and u = cτ e
−θτx, where cτ is given in (3.35).

Proof. By using the transition PDF, we have

E [Xn
T | Xt = x] =

∫ ∞

0

ynp(y, T | x, t) dy

=

∫ ∞

0

c−n
τ vncτ e

−(u+v)
( v
u

)q/2
Iq
(
2
√
uv
) 1

cτ
dv

=

∫ ∞

0

c−n
τ vn e−(u+v)

( v
u

)q/2 ∞∑
k=0

(uv)
k+q/2 1

Γ(k + 1)Γ(k + q + 1)
dv

= c−n
τ e−u

∞∑
k=0

uk

Γ(k + 1)Γ(k + q + 1)

∫ ∞

0

e−vvn+k+q dv.

Applying the Euler integral of the second kind to the integral term, we obtain the result (3.36).

Next, by considering the marginal density of x given in (3.34) as τ → ∞, we have

cτ → 1

b
, u→ 0, v → x

b
.

Thus, the steady-state density function is the gamma distribution with the shape parameter µ
b

and scale parameter b,

π (y) := lim
τ→∞

p (y, T | xt, t) =
1

b

( v
u

) q
2

Iq
(
2
√
uv
)
=

e−
y
b

bΓ
(
µ
b

) (y
b

)µ
b −1

, (3.37)

and the unconditional moment for x is in the following theorem.

Theorem 3.10. Suppose that Xt follows the CIR process (3.29). The nth unconditional moment
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at equilibrium, for all n ∈ Z+
0 , x > 0, and τ = T − t ≥ 0, is given by

L̂
⟨n⟩
C := lim

T→∞
E [Xn

T | Xt = x] =
bn Γ

(
n+ µ

b

)
Γ
(
µ
b

) . (3.38)

Proof. The proof follows from (3.37).

Remark 3.3. Note that formula (3.36) obtained from the transition PDF involves the infinite

sum, in contrast to formula (3.30) in Theorem 3.7. We further investigated formula (3.36) and

reduced it to a finite sum by employing a confluent hypergeometric function 1F1. We show that

formula (3.36) can be transformed into formula (3.33) as follows.

Û
⟨n⟩
C (x, τ) = c−n

τ e−u
∞∑
k=0

uk Γ(n+ k + q + 1)

Γ(k + 1)Γ(k + q + 1)

=
c−n
τ Γ

(
n+ µ

b

)
e−cτe

−θτx

Γ
(
µ
b

) 1F1

(
n+

µ

b
;
µ

b
; cτe

−θτx
)
.

By referring to the identity 1F1(r; s; z) = ez 1F1(s− r; s;−z) and the relation between Laguerre

polynomials and the confluent hypergeometric function (see more details Lebedev [48]), we have

Û
⟨n⟩
C (x, τ) =

c−n
τ Γ

(
n+ µ

b

)
e−cτe

−θτ

x

Γ
(
µ
b

) ecτe
−θτx

1F1

(
−n; µ

b
;−cτe−θτx

)
=
c−n
τ Γ

(
n+ µ

b

)
Γ
(
µ
b

) n∑
k=0

(−n)k
(
−cτ e−θτx

)k(
µ
b

)
k
k!

= bn
(
1− e−θτ

)n Γ
(
n+ µ

b

)
Γ
(
µ
b

) n∑
k=0

(−n)k(
µ
b

)
k

(−1)
k

bk (eθτ − 1)
k
k!
xk

= bne−nθτ
(
eθτ − 1

)n (µ
b

)
n

n∑
k=0

(−n)n−k(
µ
b

)
n−k

(−1)
n−k (

eθτ − 1
)−(n−k)

bn−k(n− k)!
xn−k

=

n∑
k=0

e−nθτ
(
eθτ − 1

)k
bk(−1)n−k

( (
µ
b

)
n(

µ
b

)
n−k

(−n)n−k

(n− k)!

)
xn−k.

=

n∑
k=0

e−nθτ
(
eθτ − 1

)k
k!

(
k−1∏
i=0

(n− i) ((n− i− 1) b+ µ)

)
xn−k

= U
⟨n⟩
C (x, τ)

where (λ)k = λ(λ+1) · · · (λ+k−1) denotes the rising factorial, also known as the Pochhammer

polynomial. This shows that our proposed formula (3.30) is identical to the formula from the

transition PDF.

Remark 3.4. Similarly, one can show that formula (3.38) in Theorem 3.10 can be transformed

into the closed-form formula (3.33) in Theorem 3.8.
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3.5.3 Jacobi diffusion

The Jacobi diffusion process is considered one class of the Pearson diffusion process,

which is sometimes called the generalized Jacobi diffusion process. It is associated with Jacobi

polynomials through the Jacobi diffusion generator’s eigenfunctions. The Jacobi diffusion process

is a class of solvable diffusion processes whose solution follows the SDE:

dXt = θ (µ−Xt) dt+
√
2bθ Xt (1−Xt) dWt, (3.39)

obtained from process (3.1) when a = −b and c = 0 with a < 0. The values produced by this

process are always in [0, 1] with mean-reverting µ, and the boundary {0, 1} is inaccessible if and

only if b ≤ µ ≤ 1 − b (see Veraart and Veraart [77]). In the context of finance, Larsen and

Sørensen [47] used the Jacobi diffusion process to price the central bank’s exchange rates when

the pay-off is expressed in log-prices. Moreover, Larsen and Sørensen [47] also used the diffusion

process to model the dynamics of a correlation coefficient by setting Xt =
ρt+1
2 . By Itô’s lemma,

dρt = θ ((2µ− 1)− ρt) dt+
√
2bθ (1 + ρt) (1− ρt) dWt.

Note that the values produced by the process above are always in [−1, 1] with mean-reverting

2µ − 1. In particular, if we set Xt = ρt−ρmin
ρmax−ρmin

, the obtained process ρt will have values in

[ρmin, ρmax].

The next two theorems for the Jacobi process (3.39) are consequences deduced from

Theorem 3.3 for process (3.1) when c = 0.

Theorem 3.11. Suppose that Xt follows the Jacobi process (3.39). The nth conditional moment

for n ∈ Z+
0 is

U
⟨n⟩
J (x, τ) := E [Xn

T | Xt = x] = eτÃ
⟨n⟩
0 xn +

n∑
k=1

 k∑
j=0

eτÃ
⟨n⟩
j∏k

l=0
l ̸=j

(
Ã

⟨n⟩
j − Ã

⟨n⟩
l

) k−1∏
j=0

B̃
⟨n⟩
j

xn−k,

(3.40)

for 0 < x < 1, τ = T − t ≥ 0, where Ã⟨n⟩
j and B̃⟨n⟩

j are given in (3.15) with a = −b.

Proof. We show that, from Theorem 3.3, the coefficients P ⟨n⟩
k in (3.13) are those defined in

(3.40). The cases of k = 0, 1 are straightforward according to the coefficient functions in (3.14)

and (3.15), so we explore the cases of k = 2, 3, . . . , n. Since c = 0 in (3.15), C̃⟨n⟩
j = 0 for all
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j ≤ n,

P
⟨n⟩
k (τ) =

k∑
j=0

 ∑
X∈Dk,j

∏
i∈Zk−1\(X∪(X+{1}))

B̃
⟨n⟩
i ·

∏
i∈X

C̃
⟨n⟩
i∏

i∈Zk\({j}∪(X+{1}))

(
Ã

⟨n⟩
j − Ã

⟨n⟩
i

)
 eτÃ

⟨n⟩
j = 0, (3.41)

for X ̸= ∅. For the case of X = ∅, the term
∏
i∈X

C̃
⟨n⟩
i = 1; thus, (3.41) can be reduced to

P
⟨n⟩
k (τ) =

k∑
j=0

e
τÃ

⟨n⟩
j

k∏
l=0
l ̸=j

(
Ã

⟨n⟩
j −Ã

⟨n⟩
l

)
k−1∏
i=0

B̃
⟨n⟩
i , (3.42)

which yields (3.40) in this case.

Based on Theorem 3.11, we obtain the following for Jacobi diffusion:

E [XT | Xt = x] = e−θτx+ µ
(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e−2(b+1)θτx2 +

2(b+ µ)e−2(b+1)θτ

2b+ 1

(
e(2b+1)θτ − 1

)
x

+
µ(b+ µ)

(b+ 1)(2b+ 1)

(
b
(
2− 2e−θτ

)
+ e−2(b+1)θτ − 2e−θτ + 1

)
.

The variance is obtained according to Example 3.2, which does not have a simplified form as in

OU and CIR diffusions.

Theorem 3.12. Suppose that Xt follows the Jacobi process (3.39). The nth unconditional

moment at equilibrium for n ∈ Z+
0 , 0 < x < 1, and τ = T − t ≥ 0 is given by

L
⟨n⟩
J := lim

τ→∞
U

⟨n⟩
J (x, τ) = lim

T→∞
E [Xn

T | Xt = x] =

n−1∏
j=0

µ+ jb

1− ja
, (3.43)

where a = −b.

Proof. According to (3.40) in Theorem 3.11, since Ã⟨n⟩
j < 0 for all j < n, the coefficient terms

of xn−k given in (3.42) approach 0 as τ → ∞ for k = 0, 1, 2, . . . , n − 1, except in the case of

k = j = n, Ã⟨n⟩
n = 0, and thus,

L
⟨n⟩
J = lim

τ→∞
eτÃ

⟨n⟩
n

n∏
l=0
l ̸=n

(
Ã

⟨n⟩
n −Ã

⟨n⟩
l

) n−1∏
i=0

B̃
⟨n⟩
i = (−1)n

n−1∏
j=0

B̃
⟨n⟩
j

Ã
⟨n⟩
j

=
n−1∏
j=0

µ+ jb

1− ja

as required.

Note that one can obtain conditional moments directly using the transition PDF, which
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is the expansion in the form of Jacobi polynomials and the beta function (see [12,49]). In

this case, we discuss only the classical case given in (3.39), where eigenvalue expansion for the

transition PDF can be rewritten as

p(y, T | xt, t) = beta(y)
∞∑
j=0

e−λj(T−t)

wj
P

(α,β)
j (2xt − 1)P

(α,β)
j (2y − 1) . (3.44)

The invariant distribution is beta(y) =
yβ (1− y)

α

B (α+ 1, β + 1)
, where B(α, β) =

Γ(α) Γ(β)

Γ(α+ β)
is the

beta function, and

α =
1

b
− µ

b
− 1 > −1, β =

µ

b
− 1 > −1, λj = jbθ

(
j − 1 +

1

b

)
, w0 = 1

wj =
Γ(α+ 2)Γ(β + 2)Γ(α+ β + 4− j)

Γ(α+ 2− j) Γ(β + 2− j) Γ(α+ β + 3) (2j + α+ β + 1) j!
,

P
(α,β)
j (z) =

Γ(α+ j + 1)

Γ(α+ β + j + 1) j!

j∑
k=0

(
j

k

)
Γ(α+ β + j + k + 1)

Γ(α+ k + 1)

(
z − 1

2

)k

.

(3.45)

The conditional moments based on the transition PDF require the following lemma.

Lemma 3.1. Let m, n, and j be in Z+
0 . For m < j, we have

j∑
k=0

(−1)k
(
j

k

)
km = 0. (3.46)

Otherwise, it is greater than zero. Moreover, for n+ 1 ≤ j,

∫ 1

0

yn beta(y)P
(α,β)
j (2y − 1) dy = 0, (3.47)

where invariant distribution beta(y) is defined as in (3.44).

Proof. The key idea of the proof can be understood in terms of counting rather than using

induction by counting all onto functions from a domain with m members and a range with j

members. It is obvious that (3.46) is 0 for m < j, since there is no onto function. For the same

reason, for m ≥ j, (3.46) is greater than zero. By considering the left-hand side of (3.47) for

n+ 1 ≤ j,

∫ 1

0

yn beta(y)P
(α,β)
j (2y − 1) dy

=
Γ(α+ β + 2)Γ(α+ j + 1)

Γ(α+ 1)Γ(β + 1)Γ(α+ β + j + 1) j!

j∑
k=0

(−1)k
(
j

k

)
Γ(α+ β + j + k + 1)

Γ(α+ k + 1)
B (n+ β + 1, α+ k + 1)

=
Γ (α+ β + 2)Γ (α+ j + 1)Γ (n+ β + 1)

Γ (α+ 1)Γ (β + 1)Γ (α+ β + j + 1) j!

j∑
k=0

(−1)k
(
j

k

)
Γ (α+ β + j + k + 1)

Γ (α+ β + n+ k + 2)
.
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Since Γ(α+β+j+k+1)
Γ(α+β+n+k+2) is a polynomial function in k up to degree j − n − 1, which is less than j,

(3.46) implies (3.47).

Theorem 3.13. Suppose that Xt follows the Jacobi process (3.39). The nth conditional moment

for n ∈ Z+
0 is

Û
⟨n⟩
J (x, τ) := E [Xn

T | Xt = x]

=
n∑

j=0

(
e−λj τ P

(α,β)
j (2x− 1) Γ

(
1
b

)
Γ
(
1
b − µ

b + j
)
Γ
(
n+ µ

b

)
wj Γ

(
1
b − µ

b

)
Γ
(
µ
b

)
Γ (j + 1)Γ

(
1
b + j − 1

) j∑
k=0

(−1)k
(
j

k

)
Γ
(
1
b + j + k − 1

)
Γ
(
n+ 1

b + k
) )

,

(3.48)

for all 0 < x < 1 and τ = T − t, where P (α,β)
j (2x− 1), λj, wj, α, and β are given in (3.45).

Proof. By using the transition PDF,

E [Xn
T | Xt = x] =

∫ 1

0

ynp(y, T | x, t) dy

=
∞∑
j=0

e−λj τ

wj
P

(α,β)
j (2x− 1)

∫ 1

0

yn beta(y)P
(α,β)
j (2y − 1) dy.

From Lemma 3.1,

E [Xn
T | Xt = x]

=
n∑

j=0

e−λj τ

wj
P

(α,β)
j (2x− 1)

∫ 1

0

yn beta(y)P
(α,β)
j (2y − 1) dy

=

n∑
j=0

(
e−λj τ P

(α,β)
j (2x− 1) Γ

(
1
b

)
Γ
(
1
b − µ

b + j
)

wj Γ
(
1
b − µ

b

)
Γ
(
µ
b

)
Γ
(
1
b + j − 1

)
j!

j∑
k=0

(−1)k
(
j

k

)
Γ
(
1
b + j + k − 1

)
Γ
(
1
b − µ

b + k
) B

(
n+

µ

b
,
1

b
− µ

b
+ k

))

=
n∑

j=0

(
e−λj τ P

(α,β)
j (2x− 1) Γ

(
1
b

)
Γ
(
1
b − µ

b + j
)
Γ
(
n+ µ

b

)
wj Γ

(
1
b − µ

b

)
Γ
(
µ
b

)
Γ
(
1
b + j − 1

)
j!

j∑
k=0

(−1)k
(
j

k

)
Γ
(
1
b + j + k − 1

)
Γ
(
n+ 1

b + k
) )

,

as required.

By considering the marginal density of x given in (3.44), if τ → ∞, we have the uncondi-

tional moments for x in the following theorem.

Theorem 3.14. Suppose that Xt follows the Jacobi process (3.39). The nth unconditional

moment at equilibrium, for all n ∈ Z+
0 , 0 < x < 1, and τ = T − t ≥ 0, is given by

L̂
⟨n⟩
J := lim

T→∞
E [Xn

T | Xt = x] =
Γ
(
1
b

)
Γ
(
n+ µ

b

)
Γ
(
µ
b

)
Γ
(
n+ 1

b

) .
Proof. Note that a = −b < 0, and thus, λj > 0 for all j = 1, 2, . . . , n, but λ0 = 0. According to

(3.48) in Theorem 3.13, its partial sum from j = 1 to j = n approaches 0 as τ → ∞, except in
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the case of j = 0. Thus,

L̂
⟨n⟩
J =

P
(α,β)
0 (2x− 1) Γ

(
1
b

)
Γ
(
1
b − µ

b

)
Γ
(
n+ µ

b

)
Γ
(
1
b − 1

)
w0 Γ

(
1
b − µ

b

)
Γ
(
µ
b

)
Γ
(
1
b − 1

)
Γ
(
n+ 1

b

) .

Since w0 = 1 and P
(α,β)
0 (2x− 1) = 1, this completes the proof.

Remark 3.5. It is not difficult to confirm that the proposed formula (3.40) is identical to the

formula obtained from the transition PDF. For example, one can check this by using built-in

functions in Wolfram Mathematica 9 software. Since formula (3.48) involves Jacobi polynomials,

it is not easy to apply this result (3.48) in certain cases, such as the conditional mixed moment,

covariance, and correlation mentioned in Section 3.4.

Remark 3.6. In the literature, a generalized case of the Jacobi process is transformed using

an affine transformation. Indeed, applying ρt = ρmin + (ρmax − ρmin)Xt in (3.39), Itô’s lemma

gives

dρt = (ρmax − ρmin) dXt

= θ ((ρmax − ρmin)µ+ ρmin − ρt) dt+
√
2bθ (ρmax − ρt) (ρt − ρmin) dWt

(see also [19]). By applying the binomial theorem, the conditional moments of ρt are obtained

as

E [ρnT | ρt = ρ] = E [(ρmin + (ρmax − ρmin)XT )
n | ρt = ρ]

= ρnmin

n∑
k=0

(
n

k

)(
ρmax − ρmin

ρmin

)k

E
[
Xk

T | Xt = x
]
,

where x = ρ−ρmin
ρmax−ρmin

. In the general case, we can apply the above formula to evolution problems

of a Jacobi-type process using the results of Theorems 3.11, 3.12, 3.13, and 3.14.

3.5.4 Fisher–Snedecor diffusion

The last three diffusion processes, Fisher–Snedecor, reciprocal gamma, and Student, be-

long to the class with heavy-tailed invariant distributions described by the Pearson family dis-

tributions (see Pearson [62]). These diffusions are also called heavy-tailed Kolmogorov–Pearson

diffusions. Their properties in statistical analysis are the subject of great interest at present,

especially the study of their transition PDFs, which are useful in facilitating the estimation of

parameters (see more details in [4, 20,46]). Since closed-form formulas for the transition PDF

are unavailable, the statistical analysis and properties are difficult to obtain. However, in this

paper, the study of these properties is possible without using their transition PDFs.
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The Fisher–Snedecor process Xt is defined as the solution of the nonlinear SDE given by

dXt = θ (µ−Xt) dt+

√
2θXt

(
Xt

β/2− 1
+

µ

α/2

)
dWt (3.49)

for all t ≥ 0, where α > 0, β > 2 (see also [4, 46]). To guarantee that process (3.49) satisfies

Fisher–Snedecor diffusion, we check the following conditions: deg(d) = 2, ∆(d) > 0, and a > 0.

According to the study by Leonenko et al. [49], in the particular case of µ = β
β−2 , process (3.49)

is reformulated into

dXt = θ

(
β

β − 2
−Xt

)
dt+

√
4θ

α (β − 2)
Xt (αXt + β) dWt. (3.50)

The Fisher–Snedecor process is one of the Pearson diffusion process cases in which its transition

PDE is associated with the eigenfunctions produced by Rodrigues’s formula, Fisher–Snedecor

polynomials, and the solutions of the Sturm–Liouville equation (see more details in equations

(36)–(40) of Leonenko et al.’s work [49]). Since the transition PDE has a complicated solution

form, the conditional moments and their consequences are challenging to obtain in a concise

form.

Process (3.1) becomes (3.50) when a = 2
β−2 , b = 2β

α(β−2) , and c = 0. The next two theorems

are consequences deduced from Theorem 3.3. Observe that the only difference between Jacobi

(3.39) and Fisher–Snedecor processes (3.50) is the condition on a of the polynomial d(x). This

suggests that their closed-form formulas for conditional moments appear to be the same.

Theorem 3.15. Suppose that Xt follows the Fisher–Snedecor process (3.50). The nth conditional

moment for n ∈ Z+
0 is

U
⟨n⟩
F (x, τ) := E [Xn

T | Xt = x] = eτÃ
⟨n⟩
0 xn +

n∑
k=1

 k∑
j=0

eτÃ
⟨n⟩
j∏k

l=0
l ̸=j

(
Ã

⟨n⟩
j − Ã

⟨n⟩
l

) k−1∏
j=0

B̃
⟨n⟩
j

xn−k,

(3.51)

for τ = T − t ≥ 0, where Ã⟨n⟩
j and B̃⟨n⟩

j are given in (3.15) with a = 2
β−2 and b = 2β

α(β−2) .

Proof. The proof is the same as that of Theorem 3.11.
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Based on Theorem 3.15, we obtain the following for Fisher–Snedecor diffusion:

E [XT | Xt = x] = e−θτx+ µ
(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e−

2(β−4)θτ
β−2 x2 +

2(α+ 2)(β − 2)µe
(10−3β)θτ

β−2

α(β − 6)

(
e

2(β−4)θτ
β−2 − eθτ

)
x

+
(α+ 2)(β − 2)µ2

α(β − 6)(β − 4)

(
−2(β − 4)e−θτ + (β − 2)e−

2(β−4)θτ
β−2 + β − 6

)
.

The variance is obtained according to Example 3.2, which does not have a simplified form as in

OU and CIR diffusions.

According to Theorem 3.4 and Remark 3.2 for OU, CIR, and Jacobi processes with a

condition on parameter a, the nth unconditional moment at equilibrium exists for all n ∈ Z+,

while this not true for the Fisher–Snedecor, reciprocal gamma, and Student processes.

In fact, process (3.50) has unconditional moments of order n satisfying the condition
2(n−1)
β−2 = a(n− 1) ≤ 1, or n ≤ β

2 + 1. For example, the first and second unconditional moments

exist but not for higher orders when β = 3. Their closed-form formulas are given in the following

theorem.

Theorem 3.16. Suppose that Xt follows the Fisher–Snedecor process (3.50) with n ≤ β
2 + 1.

The nth unconditional moment at equilibrium for all n ∈ Z+ and τ = T − t ≥ 0 is given by

L
⟨n⟩
F := lim

τ→∞
U

⟨n⟩
F (x, τ) = lim

T→∞
E [Xn

T | Xt = x] =

n−1∏
j=0

µ+ jb

1− ja
, (3.52)

where a = 2
β−2 and b = 2β

α(β−2) .

Proof. The proof is similar to that of Theorem 3.12.

3.5.5 Reciprocal gamma diffusion

The reciprocal gamma diffusion process Xt is defined as the solution of the nonlinear SDE

given by

dXt = θ

(
α

β − 1
−Xt

)
dt+

√
2θ

β − 1
X2

t dWt, (3.53)

where α > 0 and β > 1 (see [51]). The reciprocal gamma diffusion process (3.53) has the

following conditions: deg(d) = 2, ∆(d) = 0, and a > 0. This diffusion process was first studied

by Linetsky [54] as an ergodic diffusion process that is widely studied, especially for its application

to the maximum likelihood method. One process deduced using the reciprocal gamma is known
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as the Dothan model [21], which became well known after it was used for the valuation formula

of the default-free bond and its properties.

Similar to Fisher–Snedecor diffusion, the reciprocal gamma process has a transition PDE

associated with eigenfunctions produced by Rodrigues’s formula, Bessel polynomials, and the

solutions of the Sturm–Liouville equation, and it has quite a complicated form for the calculation

of conditional moments.

Process (3.1) becomes (3.53) when a = 1
β−1 and b = c = 0, and the two theorems are

consequences deduced from Theorem 3.3. Note that the only difference between the Fisher–

Snedecor (3.50) and reciprocal gamma processes (3.53) is the condition on the discriminant

∆(d) of the polynomial d(x). Thus, the obtained closed-form formula for conditional moments

for process (3.53) is also similar to that of (3.51).

Theorem 3.17. Suppose that Xt follows the reciprocal gamma process (3.53). The nth condi-

tional moment for n ∈ Z+
0 is

U ⟨n⟩
r (x, τ) := E [Xn

T | Xt = x] = eτÃ
⟨n⟩
0 xn +

n∑
k=1

 k∑
j=0

eτÃ
⟨n⟩
j∏k

l=0
l ̸=j

(
Ã

⟨n⟩
j − Ã

⟨n⟩
l

) θkµkn!

(n− k)!

xn−k,

(3.54)

for τ = T − t ≥ 0, where Ã⟨n⟩
j and B̃⟨n⟩

j are given in (3.15), with a = 1
β−1 .

Proof. The proof is similar to that of Theorem 3.11 with the condition b = 0.

Based on Theorem 3.17, we obtain the following for reciprocal gamma diffusion:

E [XT | Xt = x] = e−θτx+
α

β − 1

(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e2(

1
β−1−1)θτx2 +

2α

β − 3

(
e−θτ − e−

2(β−2)θτ
β−1

)
x

+
α2

β − 3

(
e−

2(β−2)θτ
β−1 − 1

β − 2
+

2
(
1− e−θτ

)
β − 1

)
.

The variance is obtained according to Example 3.2, which does not have a simplified form as in

OU and CIR diffusions.

Referring to Theorem 3.4, as stated in Remark 3.2, the nth unconditional moment at

equilibrium only exists for order n satisfying the condition n−1
β−1 = a(n− 1) ≤ 1 or n ≤ β, given

in the following theorem.
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Theorem 3.18. Suppose that Xt follows the reciprocal gamma process (3.53) for n ∈ Z+ with

n ≤ β. The nth unconditional moment at equilibrium for τ = T − t ≥ 0 is given by

L⟨n⟩
r := lim

τ→∞
U ⟨n⟩
r (x, τ) = lim

T→∞
E [Xn

T | Xt = x] =
n−1∏
j=0

α

β − j − 1
. (3.55)

Proof. The proof is the same as that of Theorem 3.12, with b = 0, a = 1
β−1 , and µ = α

β−1 .

3.5.6 Symmetric Student diffusion

This section focuses on the symmetric Student process. This is a symmetric diffusion

process that has a heavy-tailed distribution according to the classification of Pearson diffusions.

As a practical application, the process is widespread in areas of financial mathematics (see [52]).

This diffusion was first studied by Wong [79], and applications for parameter estimation were

recently studied by Leonenko et al. [49, 52]. One well-known particular case of this diffusion is

the hypergeometric diffusion presented as a model of spectral expansions for Asian options by

Linetsky. Based on Leonenko et al. [49, 54], this symmetric Student process is given by

dXt = θ (µ−Xt) dt+

√√√√ 2θδ2

v − 1

(
1 +

(
µ−Xt

δ

)2
)
dWt, (3.56)

where δ > 0, v > 1, and µ ∈ R. The transition PDF for the symmetric Student process is

associated with eigenfunctions in terms of Romanovski polynomials and the Sturm–Liouville

equation solutions (see details in equations (48)–(52) of Leonenko et al.’s work [49]), and its

closed form is unavailable; thus, statistical analysis is quite complicated. However, a general

version of the Student process is also proposed in [49] as the Skew-Student diffusion process,

defined in the following form:

dXt = θ (µ−Xt) dt+

√
2αθ

(
δ2 (ν −Xt)

2
)
dWt, (3.57)

where µ, ν ∈ R, α > 0, and δ > 0. This process becomes a symmetric case when µ = ν and

v+1 = 1
α+2. Note also that Theorem 3.3 can be applied to this process to obtain the closed-form

formula.

In the cases of (3.56) and (3.57), the formulas in Theorems 3.3 and 3.4 can be applied to

obtain the conditional and unconditional moments and other mathematical properties similar to

those described in Section 3.4.
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Based on Example 3.1, we obtain the following for Student diffusion (3.57):

E [XT | Xt = x] = e−θτx+ µ
(
1− e−τθ

)
,

E
[
X2

T | Xt = x
]
= e2θτ(αδ

2−1)x2 +
2e−2θτ

2αδ2 − 1

(
2ναδ2 − µ

) (
eθτ − e2αδ

2θτ
)
x

+
ν2αδ2

αδ2 − 1

(
e2θτ(αδ

2−1) − 1
)
−
µ
(
2ναδ2 − µ

)
2αδ2 − 1

(
e2θτ(αδ

2−1) − 1

αδ2 − 1
+ 2e−θτ − 2

)
.

The variance is obtained according to Example 3.2, which does not have a simplified form as in

OU and CIR diffusions.

3.6 Inhomogeneous Pearson diffusion processes

Based on extended time-dependent parameters, the closed-form formula (3.12) in The-

orem 3.2 has a greater advantage over formulas presented in the previous section and in the

literature [39]. In this section, we only discuss the details of the EOU and ECIR processes, as

presented by Egorov et al. [23]. To validate the formulas, the values are compared with the

results of Monte Carlo simulations with 10,000 sample paths, where each path has 10,000 steps;

the model parameter values are taken from Table 1 in [23].

3.6.1 The extended Ornstein–Uhlenbeck process

The dynamics of the EOU process presented by Egorov et al. are governed by time-varying

parameters, given as

dXt = −θXt dt+ σ0e
σ1t dWt, (3.58)

where θ, σ0 are positive, and σ1 is a real number with a Gaussian transition PDF:

p(y, T | xt, t) = N
(
e−θτxt,

σ2
0

2 (θ + σ1)

(
e2σ1T − e2(σ1t−θτ)

))
, (3.59)

where τ = T − t. The nth conditional moment for n ∈ Z+
0 is obtained directly by Theorem 3.2

as

E [Xn
T | Xt = x] =

n∑
k=0

P
⟨n⟩
k (τ)xn−k

for τ = T − t ≥ 0, where

P
⟨n⟩
k (τ) =


e−nθτ , for k = 0,

e−nθτ+k(T−τ)σ1

(
σ2
0e

2(σ1+θ)τ−σ2
0

σ1+θ

) k
2 k! (nk)

2k( k
2 )!
, for positive even integer k,

0, for positive odd integer k.

(3.60)
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Furthermore, the fundamental properties presented in Section 3.4, such as the conditional vari-

ance, mixed moments, covariance, and correlation, are quickly produced by using the coefficients

in (3.60). Based on Examples 3.1 and 3.2, we obtain the following for EOU diffusion (3.58):

E [XT | Xt = x] = e−θτx,

E
[
X2

T | Xt = x
]
= e−2θτx2 + e−2θτ+2(T−τ)σ1

(
σ2
0e

2(σ1+θ)τ − σ2
0

2σ1 + 2θ

)
,

Var [XT | Xt = x] = e−2θτ+2(T−τ)σ1

(
σ2
0e

2(σ1+θ)τ − σ2
0

2σ1 + 2θ

)
.

To validate formula (3.12) in Theorem 3.2 with coefficients (3.60), we denote the formula

for conditional moments of the EOU process (3.58) by U ⟨n⟩(x, τ). Comparisons between formula

(3.12) and MC simulations were performed on process (3.58) presented in [23] with parameters

θ = 1, σ0 = 0.001, and σ1 = −0.001. Figure 3.1 displays the first and second conditional

moments from our formula (solid lines) compared with MC simulations (colored circles), showing

their agreement for each initial x = 0.02, 0.04, 0.06, 0.08.

(a) The first conditional moments (b) The second conditional moments

Figure 3.1: Comparisons of U ⟨γ⟩(x, τ) and MC simulations for x = 0.02, 0.04, 0.06, 0.08
at τ = 0, 0.1, 0.2, . . . , 1

Note that a more general version of the EOU process (3.58), known as the Hull–White

process, is defined by

dXt = θ (β + ζt−Xt) dt+ σ0e
σ1t dWt,

where θ and σ0 are positive numbers, and β, ζ, and σ1 are real numbers with the Gaussian

transition PDF given in [23]. In this case, the proposed formula (3.12) in Theorem 3.2 can be

applied to obtain conditional moments with slightly more complicated forms of coefficients than

those shown in (3.60), and they are omitted here.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66

3.6.2 The extended Cox–Ingersoll–Ross process

The dynamics of the ECIR process, sometimes called the ECIR(d) process, presented by

Egorov et al. are governed by time-varying parameters as

dXt = θ

(
σ2
0d

4θ
e2σ1t −Xt

)
dt+ σ0e

σ1t
√
Xt dWt, (3.61)

where θ, σ0, d are positive, and σ1 is a real number with the transition PDF:

p(y, T | xt, t) =
1

2
Ge−

λ+Gy
2

(
Gy

λ

) d−2
4

I d
2−1 (λGy) , (3.62)

where λ = xtv, G = eθτv, v = 8σ1

σ2
0
e−θτ

(
e2σ1T − e2σ1t

)
, τ = T − t, and Iq(·) is the modified

Bessel function of the first kind order q, which was first proposed by Maghsoodi [55]. Moreover,

he also provided sufficient conditions for the existence of a pathwise unique strong solution with

a non-attainable zero almost everywhere with respect to the probability measure (see details in

Theorems 2.1 and 2.4 of [55]). For process (3.61), the condition is rapidly deduced for d ≥ 2.

The nth conditional moment for n ∈ Z+
0 obtained directly by Theorem 3.2 is

E [Xn
T | Xt = x] =

n∑
k=0

P
⟨n⟩
k (τ)xn−k

for all x > 0 and τ = T − t ≥ 0, where

P
⟨n⟩
k (τ) =


e−nθτ , for k = 0,

e−nθτ

k!

k−1∏
j=0

(n− j)(d+ 2 (n− j − 1))

(σ2
0e

2σ1(T−τ)(e2σ1τ+θτ−1)
4(2σ1+θ)

)k

, for k ≥ 1.

(3.63)

Note that the fundamental properties presented in Section 3.4 are quickly obtained by the

coefficients in (3.63). Unlike the previous case, where the transition PDF of (3.58) is given in

closed form as (3.59), formula (3.62) is not a closed-form transition PDF for (3.61). In general,

the conditional moments for (3.61) can be derived by using (3.62); however, the formula obtained

by using the transition PDF is difficult to apply in some cases, e.g., when we need to compute

the mathematical properties mentioned in Section 3.4. Moreover, the transition PDF (3.62)

behaves like a Dirac delta function when the increment τ = T − t is very small, for instance,

τ = 0.01. Because the transition PDF may produce a large spike at the initial value X0, using

its transition PDF may produce inaccurate results when applying the usual integration methods

numerically (see [23]). This suggests that the formula based on the coefficients (3.63) produced

by Theorem 3.2 are more applicable than those obtained by using the transition PDF. Based on
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Examples 3.1 and 3.2, we obtain the following for ECIR diffusion (3.61):

E [XT | Xt = x] = e−θτx+ e−θτd

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+θτ − 1

)
8σ1 + 4θ

)
,

E
[
X2

T | Xt = x
]
= e−2θτx2 + e−2θτ (2d+ 4)

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+θτ − 1

)
8σ1 + 4θ

)
x

+ e−2θτd(d+ 2)

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+θτ − 1

)
8σ1 + 4θ

)2

,

Var [XT | Xt = x] = 4e−2θτ

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+θτ − 1

)
8σ1 + 4θ

)
x

+ 2de−2θτ

(
σ2
0e

2σ1(T−τ)
(
e2σ1τ+θτ − 1

)
8σ1 + 4θ

)2

.

To validate formula (3.12) in Theorem 3.2 with coefficients (3.63), we denote the formula

for conditional moments of the ECIR process (3.61) by U ⟨n⟩(x, τ). Comparisons between formula

(3.12) and MC simulations are performed on process (3.61) given in [23] with parameters d = 5,

θ = 0.5, σ0 = 0.15, and σ1 = 0.001. Figure 3.2 displays the first and second conditional moments

from our formula (solid lines) compared with MC simulations (colored circles), showing their

agreement for each initial x = 0.02, 0.04, 0.06, 0.08.

(a) The first conditional moments (b) The second conditional moments

Figure 3.2: The comparisons of U ⟨γ⟩(x, τ) and MC simulations for τ = 0.01, 1 at
x = 0.1, 0.2, 0.3, . . . , 1.6

Remark 3.7. One primary concern for our proposed formula in Theorem 3.2 is that the co-

efficients P ⟨n⟩
k (τ) in (3.7) may not be directly integrable to obtain the exact integration, and

some numerical integration methods are required to manipulate the integral terms, such as a

trapezoidal rule, Simpson’s rule, and Newton–Cotes. One efficient method that we use to han-

dle the integral terms is the Chebyshev integration method introduced by Boonklurb et al. [8],
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which has been demonstrated to produce higher accuracy than the other mentioned integration

methods when using the same discretizing nodes.

3.7 Conclusion

This work proposes formulas for conditional moments in integral forms for time inhomo-

geneous Pearson diffusion processes (3.5) introduced by Forman and Sørensen [32]. First, the

derived formula of process (3.5) in Theorem 3.1 is in the form of an infinite sum, and then it is

reduced to a finite sum for the case of γ ∈ Z+
0 in Theorem 3.2. Furthermore, we present more

concise formulas when the integral terms in the coefficients are analytically evaluated for the

case of constant parameters, as provided in Theorem 3.3. Additionally, the closed-form formula

for unconditional moments is also observed for processes in the case of constant parameters in

Theorem 3.4. The closed-form statistical inference is feasible for all time-inhomogeneous cases

of Pearson diffusion processes, as presented in Section 3.4.

Closed-form formulas are available for conditional and unconditional moments in all

classes of Pearson diffusion processes, including the OU, CIR, Jacobi, Fisher–Snedecor, recipro-

cal gamma, and Student diffusion processes. The conditional moments of the class of light-tailed

Pearson diffusion processes, namely, OU, CIR, and Jacobi processes, are provided directly using

their transition PDFs to compare them with the formulas solved by the Feynman–Kac formula.

The proposed formulas for each diffusion process were validated by comparing them with MC

simulations via several experimental examples, as presented in Section 3.5. We show the ad-

vantage of the proposed formula for computing the conditional moments of time-inhomogeneous

processes, such as EOU and ECIR processes, as given in (3.60) and (3.63).
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Abstract

This paper proposes an analytical formula for the conditional expectations of path depen-

dent product of polynomial and exponential function in the form of n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=1

α
(l)
k rtk

for n,m ∈ N, l = 1, 2, ...,m, 0 ≤ t1 < t2 < · · · < tm = T < ∞ and λ
(l)
j , α

(l)
k ∈ R, where

{rt}t∈[0,T ] corresponds to the extended Cox–Ingersoll–Ross (ECIR) process. The validation of

the analytical formula is illustrated for several examples by comparing the results from the

formula with those from Monte Carlo (MC) simulations. The efficiency of the formula is also

presented via the computational run-times as compared with MC simulation. Moreover, the

application of the analytical formula of this work is demonstrated for pricing arrears interest

rate swaps under the ECIR process.

Keywords: analytical formula, conditional expectation, ECIR process, path-dependent

4.1 Introduction

An extended Cox–Ingersoll–Ross (ECIR) process [39] is one of the most widely used pro-

cesses in financial mathematics, which was firstly considered in 1990 by Hull and White [39] to

generalize models constructed by Vasicek (1977), see [76]. The ECIR process is usually applied to

price financial derivatives, such as zero-coupon bond, ex-coupon, interest rate swaps (IRSs), and

options, which often involves evaluation of conditional expectations, see e.g. [5, 35,56]. More-

over, the process is a continuous Markov process that posses some useful properties including

mean reversion and analytical formulas for its expectation and variance, in which there are a

number of methods readily available for the calibration of the ECIR process parameters, see

more details in Yang [80]. Thus, mathematical properties of the ECIR process are challenging

topics for observing and applying in financial applications.

Let (Ω,Ft, {Ft}0≤t≤T , P ) be a filtered probability space generated by an adapted stochas-

tic process {rt}0≤t≤T satisfying the ECIR process which is governed by the stochastic differential

equation

drt = κ(t)(θ(t)− rt)dt+ σ(t)
√
rtdWt, 0 ≤ t ≤ T, (4.1)

where t and T are the initial and terminal times, respectively, θ(t) is the mean-reverting level,

κ(t) is the speed of adjustment, σ(t) is the state space of the diffusion, and {Wt}t∈[0,T ] is a
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Brownian motion. The drift factor κ(t)(θ(t) − rt) is identical to that of the extended Vasicek

process [39], respectively. Comparing (4.1) with Hull and White’s work [39], κ(t) and θ(t) in (4.1)

represent a(t) and θ(t)/a(t)+b in the extended Vasicek process. The only difference between the

ECIR and the extended Vasicek process is the standard deviation factor σ(t)√rt which prevents

rt from being negative [44]. In contrast to the extended Vasicek process, the ECIR process has

rt approaches zero as well as the diffusion term. This characteristic of the ECIR process makes

rt to have non-negative value, which is a main reason the process becomes famous for the study

of the behavior of interest rates. The case where the parameters are constant the process (4.1)

becomes the well-known CIR process [18]. Both processes are frequently applied to describe the

dynamics of observed data such as the interest rate, see e.g. [17, 39]. However, many empirical

evidences strongly suggest that parameters of the process should dependent on time, see e.g.

[37,39,55].

Many researchers focus on modeling the term-structure movements of interest rates such

as Kijima [44], Hull and White [39], Maghsoodi [55], Filipović [26,27], Filipović and Mayer-

hofer [55], Alfonsi [2] and Thamrongrat and Rujivan [75]. In 2001, Dufresne [22] proposed a

closed-form formula for Ep[rγT | Ft] = Ep[rγT | rt = r] for γ > − 2κθ
σ2 , in which rt is assumed to

follow the CIR process. An analytical approach for Ep[rγT | rt = r] presented by Rujivan [64] is

extended from Dufresne’s work [22] to ECIR process for any γ ∈ R. Recently, for ECIR process,

an exact formula for conditional expectations of product of polynomial and exponential function

of affine transform EP [rnT e
αrT | rt = r] was introduced by Sutthimat et al. [72] for nonnegative

integer n and any real number α, which also cover the results in those of Rujivan [64] in the

case of α = 0. The formulas provided in [72] are useful, for instance, Rujivan [65], Rujivan and

Rakwongwan [66], Rujivan and Zhu [67] applied the first and second conditional moments of the

CIR process to obtain an explicit formula for a pricing discretely-sampled variance swap of the

Heston model.

In this work, we provide an extension of the recent results by Sutthimat et al. [72] and

propose an analytical formula for a conditional expectation of a path-dependent product of

polynomial and exponential functions described in the form

Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=1

α
(l)
k rtk | rt1 = r

 , (4.2)

where n,m ∈ N, l = 1, 2, . . . ,m, 0 ≤ t1 < t2 < · · · < tm = T < ∞, λ(l)j , α
(l)
k ∈ R and {rt}0≤t≤T

is assumed to follow the ECIR process. In this work, we focus primarily on the case that the

exponential term depends on the values rt1 , rt2 , . . . , rtm at a fixed set of times t1, t2, . . . , tm,

as described in (4.2). With this idea, it is usually possible to apply the result to value some
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financial products, e.g., the discussion of the valuation of IRS is mentioned in Section 4.5, which,

in principle, depends on the complete path {rt}0≤t≤T over an interval [0, T ].

The remainder of the paper is structured as follows. The background knowledge that

is essential to understanding the problem and getting the aims of this paper is proposed in

Section 4.2. In Section 4.3, we provide the main results of the conditional expectation (4.2) in

an analytical form. Furthermore, the obtained results are also explored in some special cases.

Section 4.4 discusses in details the advantages of the analytical formulas compared with the

Monte Carlo (MC) simulations for the ECIR process. The formulas for pricing the arrears swap

is provided in Section 4.5. The aims of the paper are recapitulated and concluded in Section 4.6.

4.2 Background knowledge

In order to ensure that there exists a path-wise unique strong solution for the process rt
in (4.1) and to avoid zero almost surely with respect to probability measure P for all t ∈ [0, T ],

the two following assumptions proposed by Rogers and Williams [63] and Ekström et al. [24],

respectively, are extremely needed.

Assumption 4.1. The functions θ(t), κ(t) and σ(t) in the ECIR process (4.1) are strictly

positive, smooth and continuous time-dependent functions on [0, T ]. Moreover, κ(t)
σ2(t) is locally

bounded on [0, T ].

Assumption 4.2. The process rt defined by (4.1) holds the inequality, 2κ(t)θ(t) > σ(t)2.

Suppose that rt follows ECIR process (4.1) and both Assumptions 4.1 and 4.2 hold. By

Feynman-Kac theorem under the suitable constructions, an explicit formula of EP [rnT e
αrT |rt = r]

is proposed by Sutthimat et al. [72], where the formula is denoted by U (n,α)
E (r, τ). Note that the

subscripts E and C are used to denote the formula corresponding to the ECIR and CIR processes,

respectively. The proposed formula for ECIR process is given in the following theorem.

Theorem 4.1. Suppose that rt follows the ECIR process (4.1) with α ∈ R. Let n be a nonnegative

integer and 0 ≤ t ≤ T . Then, for r > 0 with τ = T − t ≥ 0,

U
(n,α)
E (r, τ) := EP [rnT e

αrT | rt = r] = erB(τ,α)
n∑

j=0

Aj(τ, α) r
j , (4.3)
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where

An(x, y) = exp
[∫ x

0

(
nσ2(T − u)B(u, y) + κ(T − u)θ(T − u)B(u, y)− nκ(T − u)

)
du

]
,

Aj (x, y) = exp
[∫ x

0

Qj(T − u, y) du

] ∫ x

0

exp
[
−
∫ s

0

Qj(T − u, y) du

]
Pj+1(T − s)Aj+1(s, y) ds,

Pj+1(x) = (j + 1)

(
1

2
jσ2(x) + κ(x)θ(x)

)
,

Qj(x, y) = jσ2(x)B(T − x, y) + κ(x)θ(x)B(T − x, y)− jκ(x),

for j = 0, 1, 2, . . . , n− 1. The function B is given by

B (x, y) =
2y exp

[
−
∫ x

0
κ (T − u) du

]
2− y

∫ x

0
σ2 (T − s) exp

[
−
∫ s

0
κ (T − u) du

]
ds
.

Note that the explicit formula which is described by (4.3) converges if

α ∈
(
−∞,

2

δ (τ)

)
, where δ (τ) =

∫ τ

0

σ2 (T − s) exp
[
−
∫ s

0

κ (T − u) du

]
ds. (4.4)

Moreover, for any initial r > 0 and nonnegative integer n, the monotone convergence theorem

gives that U (n,α)
E (r, τ) → ∞ as α → 2

δ(τ) . Calculating the expectation (4.3), when κ (t) = κ,

θ (t) = θ and σ (t) = σ are constants, the explicit formula is reduced into the CIR process,

denoted by U (n,α)
C (r, τ), as stated in the following theorem.

Theorem 4.2. Suppose that rt follows the CIR process with α ∈ R. Let n be a non-negative

integer and 0 ≤ t ≤ T . Then, for r > 0 with τ = T − t ≥ 0,

U
(n,α)
C (r, τ) := EP [rnT e

αrT | rt = r]

= exp
[

2ακ

ασ2 + eκτ (2κ− ασ2)
r + nκτ +

2θκ2τ

σ2

]
×
(

2κ

ασ2 + eκτ (2κ− ασ2)

) 2
σ2 (nσ

2+κθ)
rn

+
n−1∑
j=0

exp
[

2ακ

ασ2 + eκτ (2κ− ασ2)
r + jκτ +

2θκ2τ

σ2

]

×
n−j∏
m=1

Pn−m+1
2n−j

(n− j)!

(
2κ

ασ2 + eκτ (2κ− ασ2)

) 2
σ2 (jσ

2+κθ)

×
(

eκτ − 1

ασ2 + eκτ (2κ− ασ2)

)
rj ,

where Pn−m+1 = (n−m+1)( 12 (n−m)σ2+κθ) when m ∈ {1, 2, . . . , n−j}, for j ∈ {1, 2, . . . , n−1}.

As for Theorem 4.1, the convergent set of α in (4.4) can be applied to Theorem 4.2 directly.
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Furthermore, for CIR process, Theorem 2.1 in Dufresne [22] can be rewritten into the form of

U
(n,0)
C (r, τ).

4.3 Main results

This paper uniquely determines the law of the process rt by discretizing the continuous

time [0, T ] into 0 ≤ t1 < t2 < · · · < tm = T , m > 1, and define functions for all i = 1, 2, . . . ,m−1

as the following

• τ (i) = tm−i+1 − tm−i,

• ϕ(l) (i) = α
(l)
m−i +B

(
τ (i) , ϕ(l) (i− 1)

)
, where ϕ(l) (0) = α

(l)
m for l = 1, 2, . . . ,m,

• A0

(
τ (0) , ϕ(l) (−1)

)
= 1,

where the functions A0 and B are defined in Theorem 4.1.

The analytical formulas presented in the following is extended from the approaches pro-

posed in [72]. By applying the tower property, also known as nested conditional expectation

(see [28] for more details), and adopting the result in Theorem 4.1, we immediately obtain The

following result.

Theorem 4.3. Suppose that rt follows the ECIR process (4.1), h, l,m, n ∈ N with h < l ≤ m

and α
(l)
k = 0 for k = 1, 2, . . . , l − 1. Then the conditional expectation (4.2) can be reduced into

the form

V ∗ (r, tl, th) := Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=l

α
(l)
k rtk | rth = r

 ,
where 0 ≤ t1 < t2 < · · · < tm = T and λ(l)j , α

(l)
k ∈ R, and can be expressed as

V ∗ (r, tl, th) =

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)] n∑
j=0

λ
(l)
j U

(j,ϕ(l)(m−l))
E (r, tl − th)

 . (4.5)

Proof. The proof is separated into two cases. For the case of m = l, by using Theorem 4.1,
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V ∗ (r, tl, th) can be rewritten as

Ep

 n∑
j=0

λ
(l)
j rjtl

 eα
(l)
l rtl | rth = r

 =
n∑

j=0

λ
(l)
j Ep

[
rjtle

α
(l)
l rtl | rth = r

]

=
n∑

j=0

λ
(l)
j U

(
j,α

(l)
l

)
E (r, tl − th)

=

n∑
j=0

λ
(l)
j U

(j,ϕ(l)(0))
E (r, tl − th) . (4.6)

This satisfies Equation (4.5). The remaining is to prove the latter case, m > l. The tower

property is firstly applied with Theorem 4.1 to yield

V ∗ (r, tl, th) = Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=l

α
(l)
k rtk | rth = r


= Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−1∑
k=l

α
(l)
k rtk

Ep
[
eα

(l)
m rtm | rtm−1

]
| rth = r


= Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−1∑
k=l

α
(l)
k rtk

U
(0,α(l)

m )
E

(
rtm−1

, tm − tm−1

)
| rth = r


= Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−1∑
k=l

α
(l)
k rtk

ertm−1
B(tm−tm−1,α

(l)
m )A0

(
tm − tm−1, α

(l)
m

)
| rth = r


= A0

(
tm − tm−1, α

(l)
m

)
Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−1∑
k=l

α
(l)
k rtk

ertm−1
B(tm−tm−1,α

(l)
m ) | rth = r


= A0

(
τ (1) , ϕ(l) (0)

)
Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−1∑
k=l

α
(l)
k rtk

ertm−1
B(τ(1),ϕ(l)(0)) | rth = r


= A0

(
τ (1) , ϕ(l) (0)

)
Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−2∑
k=l

α
(l)
k rtk

e
rtm−1

(
α

(l)
m−1+B(τ(1),ϕ(l)(0))

)
| rth = r


=

[
1∏

i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)]
Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m−2∑
k=l

α
(l)
k rtk

ertm−1
ϕ(l)(1) | rth = r

 .

Note that, by applying the tower property in the first time to the fifth line in the above

equality, the summation in the exponent term from k = l to k = m − 1 is reduced to the

summation from k = l to k = m − 2. It is not difficult to see that, by applying the tower

property (m− l)th time, the summation will run from k = l to k = m− (m− l) = l, which has
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only one term. Thus, we obtain the followings.

V ∗ (r, tl, th) =

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)]
Ep

 n∑
j=0

λ
(l)
j rjtl

 ertlϕ
(l)(m−l) | rth = r


=

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)] n∑
j=0

λ
(l)
j Ep

[
rjtle

rtlϕ
(l)(m−l) | rth = r

]
=

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)] n∑
j=0

λ
(l)
j U

(j,ϕ(l)(m−l))
E (r, tl − th)

 .
This completes the proof.

In the case that α(l)
k ∈ R for all k = 1, 2, . . . ,m with l ≤ m, an extension of Theorem 4.3

can be derived as shown in the following theorem.

Theorem 4.4. Suppose that rt follows the ECIR process (4.1), l,m, n ∈ N and l ≤ m. Then,

the conditional expectation

V (r, tl) := Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=1

α
(l)
k rtk | rt1 = r

 , (4.7)

for l = 1, 2, 3, . . . ,m, where 0 ≤ t1 < t2 < · · · < tm = T and λ(l)j , α
(l)
k ∈ R, can be expressed as

V (r, tl) = erα
(l)
1

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)]

×

[
n∑

j1=0

λ
(l)
j1

(
j1∑

j2=0

j2∑
j3=0

· · ·
jl−2∑

jl−1=0

(
l−2∏
s=1

Ajs+1
(τ(m− l + s), ϕ(l)(m− l + s− 1))

)

×U
(jl−1,ϕ

(l)(m−2))
E (r, τ(m− 1))

)]
.

(4.8)

Proof. In what starts, for the case k = l, l + 1, . . . ,m, the proof mainly work with the tower
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property and the result obtained in Theorem 4.3.

V (r, tl) = Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=1

α
(l)
k rtk | rt1 = r


= Ep

e l−1∑
k=1

α
(l)
k rtk

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=l

α
(l)
k rtk | rt1 = r


= Ep

e l−1∑
k=1

α
(l)
k rtk

Ep

 n∑
j=0

λ
(l)
j rjtl

 e

m∑
k=l

α
(l)
k rtk | rtl−1

 | rt1 = r

 . (4.9)

So, Theorem 4.3 is applied here, the inner conditional expectation term of (4.9) is equal to

V ∗ (r, tl, tl−1).

V (r, tl) = Ep

e l−1∑
k=1

α
(l)
k rtk

V ∗ (r, tl, tl−1) | rt1 = r


=

[
m−l∏
i=0

A0

(
τ (i) , ϕ(l) (i− 1)

)]

×

 n∑
j1=0

λ
(l)
j1
Ep

e l−1∑
k=1

α
(l)
k rtk

U
(j1,ϕ(l)(m−l))
E

(
rtl−1

, τ (m− l + 1)
)
| rt1 = r

 . (4.10)

To address the right-hand side of Equation (4.10), only the conditional expectation term

is considered and the tower property is firstly applied.

Ep

e l−1∑
k=1

α
(l)
k rtk

U
(j1,ϕ(l)(m−l))
E

(
rtl−1

, τ (m− l + 1)
)
| rt1 = r


= Ep

e l−1∑
k=1

α
(l)
k rtk

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
rj2tl−1

ertl−1
B(τ(m−l+1),ϕ(l)(m−l))| rt1 = r


=

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
Ep

e l−1∑
k=1

α
(l)
k rtk

rj2tl−1
ertl−1

B(τ(m−l+1),ϕ(l)(m−l))| rt1 = r


=

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
Ep

e l−2∑
k=1

α
(l)
k rtk

rj2tl−1
e
rtl−1

(
α

(l)
l−1+B(τ(m−l+1),ϕ(l)(m−l))

)
| rt1 = r


=

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
Ep

e l−2∑
k=1

α
(l)
k rtk

rj2tl−1
ertl−1

ϕ(l)(m−l+1)| rt1 = r


=

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
Ep

e l−2∑
k=1

α
(l)
k rtk

Ep
[
rj2tl−1

ertl−1
ϕ(l)(m−l+1)| rtl−2

]
| rt1 = r


=

j1∑
j2=0

Aj2

(
τ (m− l + 1) , ϕ(l) (m− l)

)
Ep

e l−2∑
k=1

α
(l)
k rtk

U
(j2,ϕ(l)(m−l+1))
E

(
rtl−2

, τ (m− l + 2)
)
| rt1 = r

 .
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Continue the process through the remaining statements until applying the tower property

at (l − 2)th time to get

Ep

el−1∑
k=1

α
(l)
k rtk

U
(j1,ϕ(l)(m−l))
E

(
rtl−1

, τ (m− l + 1)
)
| rt1 = r


=

j1∑
j2=0

j2∑
j3=0

· · ·
jl−2∑

jl−1=0

(
l−2∏
s=1

Ajs+1

(
τ (m− l + s) , ϕ(l) (m− l + s− 1)

))

× Ep

[
eα

(l)
1 rt1 U

(jl−1,ϕ
(l)(m−2))

E (rt1 , τ (m− 1)) | rt1 = r

]

= erα
(l)
1

 j1∑
j2=0

j2∑
j3=0

· · ·
jl−2∑

jl−1=0

(
l−2∏
s=1

Ajs+1

(
τ (m− l + s) , ϕ(l) (m− l + s− 1)

))

× U
(jl−1,ϕ

(l)(m−2))
E (r, τ (m− 1))

)
. (4.11)

Since (4.11) is the term on the right side of (4.10), by inserting (4.11) into (4.10) yields (4.8),

and hence the theorem is proved.

Remark 4.1. Given l ∈ N. The result in Theorem 4.4 can show mathematically that whenever

α
(l)
k = 0 for k = 1, 2, . . . , l − 1, it reduces (4.8) into (4.5) of Theorem 4.3.

4.4 Numerical results and discussions

In this section, the verifications of results in Section 4.3 are given though comparisons

with MC simulations based on the following ECIR process

drt = κ

(
σ2
0d e

2σ1(t+σ2 sin (2π
√
t))

4κ
− rt

)
dt+ σ0e

σ1(t+σ2 sin (2π
√
t))√rt dWt. (4.12)

Comparing (4.12) with (4.1) gives κ (t) = κ, θ (t) = σ2
0d e

2σ1(t+σ2 sin (2π
√
t))/4κ and σ (t) =

σ0e
σ1(t+σ2 sin (2π

√
t)), where κ and σ0 are positive constants, σ1 and σ2 are nonnegative constants

and d is a positive integer. In fact, the process is specifically called ECIR(d) process, where d is

the dimension.

The transition density of ECIR(d) process Xt, represented by pX (x, s+ h | xs, s) for

x > 0, is introduced by Maghsoodi [55] and mentioned again by Egorov et al. [23]. Indeed, for

example, a special case of Theorem 4.4 can be computed as follows.

V (k, t2) = Ep
[
rt2e

−rt2−rt3 | rt1 = k
]

=

∫ ∞

0

∫ ∞

0

xe−x−y pr (y, t3 | rt2 = x, rt1 = k) pr (x, t2 | rt1 = k) dy dx.
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Remark that the transition density pX behaves like a Dirac delta function when the increment h

is small, for instant h = 0.01. Because pX may give a tall spike at the initial value X0, using pX
may produce inaccurate results if applying the usual integration methods numerically (e.g. the

trapezoidal rule), see [23,64]. Generally, the MC is widely used in practice and computationally

faster than calculating the transition density, especially, in the cases where the path needs to be

sampled at any specific points in order to approximate a conditional expectation of the path-

dependence.

The qualitatively correct approximations by using Euler-Maruyama (EM) discretization

to the mean-reverting square root process, such as the ECIR process, are deterministically

provided by Higham and Mao [38]. In this paper, a module of EM method in MATLAB is

applied numerically to obtain the values defined in (4.2). To make the results more tangible, the

following three examples illustrate that how to use the results in practice. Implementation of

EM method is straightforward based on (4.12), unless parameters κ(t), θ(t) and σ(t) are difficult

to evaluate.

Example 4.1. Consider the conditional expectation V (r, tm) with parameters m = 3, n = 1,

l = 2, α(2)
1 = 0, α(2)

2 = −1, α(2)
3 = −1, λ(2)0 = 0 and λ

(2)
1 = 1. From Theorem 4.4, (4.7) can be

given explicitly as

V (r, t2) := Ep
[
rt2e

−rt2−rt3 | rt1 = r
]
. (4.13)

In this example, we verify the accuracy and efficiency of the result in Theorem 4.4 by

comparing with MC simulations via EM method without any variance reduction techniques.

Moreover, the ECIR process (4.12) of this example is immediately deduced to the CIR process

by setting the parameters σ0 ∈ R+ and σ1 = σ2 = 0. Thus, all integral terms in Theorem 4.4

can be completely evaluated. Therefore, the obtained result (4.13) is the exact formula,

V (r, t2) = A0 (t3 − t2,−1)U
(1,ϕ(2)(1))
C (r, t2 − t1) = ω0 (ω1r + ω2) (4.14)
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for all r > 0 and 0 < t2 < t3, where ζ = 2κ+ σ2
0 and

δ1 =
−2κ

ζeκ(t3−t2) − σ2
0

δ2 =
2κ− σ2

0 + ζeκ(t3−t2)

2κσ2
0 − σ4

0 − ζ2eκ(t3−t1) + ζσ2
0e

κ(t3−t2) + σ4
0e

κ(t2−t1)

ω0 =

(
2κeκ(t3−t2)

ζeκ(t3−t2) − σ2
0

) d
2

ω1 = e2κδ2r+κ(t2−t1)(1+ d
2 )
(

2κδ2
δ1 − 1

)2+ d
2

ω2 =

(
σ2
0dδ2

(
eκ(t2−t1) − 1

)
2 (δ1 − 1)

)
e2κδ2r+κ(t2−t1)

d
2

(
2κδ2
δ1 − 1

) d
2

.

To validate the exact formula (4.14) the following parameters d = 2, κ = 0.3 and σ0 = 0.01

are used for MC simulations at each initial value r ∈ {0.1, 0.2, . . . , 2} to generate sample paths

of rt, where each path consisting of 10, 000 steps over [t1, t3]. The validations are shown as

the comparisons between the formula (4.14) and MC simulations for two different interval times

[0, 0.01], {t1 = 0, t2 = 0.005, t3 = 0.01} and [0, 5], {t1 = 0, t2 = 2.5, t3 = 5}.

In this section, the numerical computations for obtaining comparison results are imple-

mented by using MATLAB R2021a running on a laptop computer configured with the following

details: Intel(R) Core(TM) i7-5700HQ, CPU @2.70GHz, 16.0GB RAM, Windows 8, 64-bit Op-

erating System.

The comparison results between the formula (4.14) and the MC simulations with 10, 000

sample paths are shown in Figure 4.1. Figure 4.1 demonstrates that the results of MC simulations

completely match with the analytical formula (4.14), which validates the accuracy of the analyt-

ical formula (4.14) obtained from Theorem 4.4. Moreover, Table 4.1 shows the mean absolute

percentage error (MAPE) between the formula (4.14) and MC simulations and the average run-

time (AVRT) of the MC simulations for different numbers of sample paths from 5, 000 to 25, 000,

to validate the accuracy and efficiency of the formula. These illustrative AVRTs are the average

of consuming times to compute the MC simulations at each initial value r ∈ {0.1, 0.2, . . . , 2}. In

each of the terminal times t3, Table 4.1 is concluded the increasing of the sample path numbers

that the MAPEs do not only decrease, but the AVRTs do also increase. We can see that the

accuracy from the MAPEs in Table 4.1 are quite to vanish. Moreover, we can see the efficiency

of our obtained formula (4.14) from Theorem 4.4 that it provides the value of V (r, T ) exactly

for arbitrary value r, and also employs a small computational time around 0.3154 seconds.

Example 4.2. Consider the conditional expectation V (r, tm) with the same parameters in
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Figure 4.1: The comparisons between the formula (4.14) and MC simulations with 10, 000
sample paths for t3 = 0.01 and t3 = 5.

Table 4.1: The MAPEs and AVRTs between formula (4.14) and the MC simulations with
various numbers of sample paths for t3 = 0.01 and t3 = 5.

No. of paths Terminal time t3 = 0.01 Terminal time t3 = 5

MAPEs (%) AVRTs (s) MAPEs (%) AVRTs (s)

5, 000 1.8000E-03 24.3244 1.8207E-02 25.0730
10, 000 9.6656E-04 46.7345 1.2415E-02 50.6503
15, 000 8.4001E-04 70.2077 1.0702E-02 73.6469
20, 000 7.0942E-04 96.3160 9.4505E-03 98.0842
25, 000 5.8531E-04 123.1318 8.8071E-03 126.1908

Example 4.1. From Theorem 4.4, (4.7) can be given explicitly as

V (r, t2) := Ep
[
rt2e

−rt2−rt3 | rt1 = r
]
. (4.15)

This example provides two sets of experiments using the same parameters of the previous

example, except σ1 = 0.02 and σ2 = 0.03. The main difference of this example and the previous

example is that the process (4.12) is still ECIR process and some integral terms in Theorem 4.4

cannot be directly evaluated. Thus, (4.15) cannot be expressed as an exact formula. In order

to evaluate (4.15) by using Theorem 4.4, a numerical integration is required such as trapezoidal

rule, Simpson’s rule, Newton-Cotes, etc. Anywise, one efficient method that we choose to handle

the integral terms is the Chebyshev integration method (CIM) introduced by Boonklurb et

al. [8], which has been illustrated to produce a much higher accuracy than the other mentioned

integration methods when using the same discretizing nodes.
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Table 4.2 shows the comparisons between the approximate results from Theorem 4.4 by

the CIM with 15 discretizing nodes and the MC simulations for several numbers of sample paths

from 5, 000–25, 000, in terms of the average difference (AVDF) and the AVRT. Additionally,

this AVDF is measured by 1
n

∑n
i=1 |V (ri) −M(ri)|, where V (r) and M(r) are the results from

Theorem 4.4 via CIM and the MC simulations, respectively, and n is the number of initial values

r. The AVDF value is also used for measuring the validity of the formula in addition to the

MAPE. The closer the AVDF to zero, the better the approximation based on the proposed

formula, when compared with MC simulation.

The results produced in Table 4.2 for r ∈ {0.1, 0.2, . . . , 2} suggest that the proposed

formula in Theorem 4.4 is very accurate when compared with MC simulation as shown by the

very small values of AVDFs. Based on the AVRTs of MC, the computation for the expectation

usually quite expensive for MC simulation, especially when using a lot of of sample paths, as

compared to the proposed formula in Theorem 4.4 which only take around 1 second to produce

the result. In practice, MC simulation is one basic technique for obtaining accurate information

of observed data when time is allowed. The advantage of the proposed formula in this work is

clearly the time efficiency for obtaining required valued in financial application as illustrated in

the next section.

Table 4.2: The comparisons between approximate results from Theorem 4.4 and the MC
simulations.

No. of paths Terminal time t3 = 0.01 Terminal time t3 = 5

AVDFs AVRTs (s) AVDFs AVRTs (s)

5, 000 1.2787E-06 26.7712 1.8194E-04 29.1465
10, 000 1.0734E-06 54.7781 1.8150E-04 57.8478
15, 000 1.0640E-06 77.3101 1.8101E-04 77.6856
20, 000 1.0253E-06 95.4816 1.8084E-04 99.0211
25, 000 8.9991E-07 122.9427 1.8016E-04 128.6961

Example 4.3. Consider the special case of conditional expectation subject to the parameters

followed in Example 4.1 on terminal time t3 = 5 which is defined by

B(t, T ) := E
[
e−

∫ T
t

r(u) du
]
. (4.16)

In this example, Theorem 4.4 is applied to approximate (4.16) using the idea of the left

Riemann sum approximation. Technically speaking, the forward rate f(t, T ) represents the

instantaneous continuously compounded rate contracted at time t to maturity T , and r(t) :=

f(t, t) is the short rate at time t. The time-t price of a bond paying 1 maturing at T > t is given

in (4.16), where r(t) follows ECIR process. Let f̂(ti, tj) denote the discretized forward rate for
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maturity tj as of time ti, i ≤ j, and B̂(ti, tj) denote the corresponding bond price,

B̂(ti, tj) := e
−

j−1∑
l=i

f̂(ti,tl)(tl+1−tl)
,

where the initial values of the discretized bonds B̂(0, tj) to coincide with the exact values B(0, tj)

for all maturities tj , see [33] for more details. By uniquely considering at each path of f̂ , the

discretized short rate r̂ are extracted as

r̂(t1) = f̂(t1, t1), r̂(t2) = f̂(t2, t2), . . . , r̂(tm) = f̂(tm, tm),

where 0 = t1 < t2 < · · · < tm = T . In the case, a discount factor can be calculated as

D̂(tm) := e
−

m−1∑
i=1

r̂(ti)(ti+1−ti)
,

for the maturity tm = T . Suppose this repeats over n independent paths and let D̂(i)(T ) be

discount factors calculated at ith path. By a consequence of the strong law of large numbers in

term on n and the martingale property, it is almost surely that

1

n

n∑
i=1

D̂(i)(T ) → E
[
D̂(T )

]
= B̂(0, T ) = B(0, T ) = E

[
e−

∫ T
0

r(u) du
]
. (4.17)

This example is setup with parameters σ1 = 0.02 and σ2 = 0, which is still ECIR process.

By discretizing with m = 2n steps for n ∈ {1, 2, 3, 4, 5} and ∆t = ti+1 − ti = tm
m−1 for all

i ∈ {1, 2, . . . ,m− 1}, (4.17) can be rewritten as

B(0, tm; r) := E
[
e−

∫ tm
0

r(u) du | rt1 = r
]
≈ E

e−∆t
m−1∑
i=1

r̂ti | rt1 = r

 . (4.18)

Applying a consequence in Theorem 4.4 for r ∈ [0.1, 2], which the integral terms therein can be

completely evaluated. Thus, we have the exact value of right-hand-side term in (4.18) that is

used to estimate the value of expectation in its left-hand-side term. The values of B(0, tm; r)

for various discretizing m are shown in Figure 4.2. However, this example can be together

performed by the MC simulations, but it uses more computational time to obtain the values

especially, for the large value of discretized partitions m. Furthermore, we can see that the

right-hand-side term of (4.18) occurs from approximating the integral term by the left Riemann

sum with step size ∆t or discretizing node m. It is well known that the smaller ∆t or larger

m, the closer the value of the approximation to the real value of integration. In Figure 4.2, the

graphical results at different values m = 2n for n = 1, 2, 3, 4, 5, show the behavior of results
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Figure 4.2: Approximate values of bond prices (4.18) obtained from Theorem 4.4 for various
m.

ordering from left to right in each of the curve lines. We observe that a distant between each

curve is decreasing, so large value m should give the decent approximation. Therefore, we can

conclude that the green curve (m = 25) provides the best approximation of (4.18) than others

in Figure 4.2.

4.5 Interest rate swap pricing

A swap is a derivative contract for two parties involving the exchange a series of cash

flows. In this section, we consider a fixed-to-floating interest rate swap (IRS) where a buyer

agrees to pay a floating interest rate on a predetermined principle, called a notional principle P ,

in order to receive a fixed one from a seller over a specified period of time [t, T ]; see more details

in [56]. The IRSs are the most traded swaps at present and have many potential uses in practice,

such as in hedging, portfolio management, and speculation. For instance, Company A borrowing

5 million dollars from Bank B with an interest rate of 3% plus the London Interbank Offered

Rate (LIBOR) can sell a fixed-to-floating IRS to an IRS buyer to hedge against the exposure to

fluctuations in interest rates, see Figure 4.3. By selling the fixed-to-floating IRS, Company A

can pay fixed rate to the buyer to receive the floating rate. It then use the money received from

the buyer to pay Bank B. Instead of paying the floating rate whose value is uncertain, Company

A can now fix the interest rate it needs to pay. This may be much easier for Company A to

come up with a plan to allocate the capital to repay the debt.

As the IRSs are over-the-counter products, they can be customized differently to fulfil

buyers’ needs. We consider an IRS contract that the fixed and floating interest rate payments
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Company AIRS buyer Bank B
loanfixed rate

floating rate floating rate

Figure 4.3: Mechanic of a fix-to-floating IRS.

are exchanged at every specified period of time, such as every three, four, or six months, over

a pre-determined time, such as two, three, or ten years. A classic example of such swap is an

arrears swap. A floating payment for an arrears swap is based on an interest rate at a payment

time for a discrete time observation sampled at t = T0, T1, . . . , TN = T with the increment time

of ∆t. Thus, the payment date and the reset time coincide. This section provides an analytical

formula for pricing the arrears swap under the ECIR process (4.1) from the perspective of a

buyer, a company who pays a floating interest rate to receive a fixed rate.

Let P denote a notional principle, rfix denote a fixed rate, and rt denote a floating rate

at time t which follows the ECIR process (4.1). Suppose that an arrears swap has a initial time

t = T0, maturity T and M payment dates at Ti1 , Ti2 , . . . , TiM = TN = T in a fixed increment

time of ∆t∗. Figure 4.4 illustrates the payment mechanism of the arrears swap. At each payment

time, buyer pays an interest on the notional principle P specified by a floating interest rate at

the time of the payment and receives a fixed interest at the same time. In other words, the

payment time coincides with the reset time.

Tik−1 Tik
Tik+1

∆t∗

Receive: rfix ∆t∗ P Pay: rTik
∆t∗ P

Payment time

Figure 4.4: Interest payment of an arrears swap at time Tik .

t = T0 Ti1 Ti2 Tik−1 Tik Tik+1
TiM = T. . . . . .

(rfix − rTik
)∆t∗ P

(rfix − rTik
)∆t∗ P e−

∫ Tik
t r(s) ds

Figure 4.5: Present value of interest payment of an arrears swap at time Ti.
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The payoff of this swap from a buyer’s point of view at the kth payment time is (rfix −

rTik
)∆t∗ P , which is just the difference between the interest on a notional principle P determined

by the fixed interest rate rfix and by the floating interest rate at time Tik , rTik
; see Figure 4.4.

Thus, the present value of such payoff is

(
rfix − rTik

)
∆t∗ P e−

∫ Tik
t r(s) ds,

see Figure 4.5. By the fundamental theorem of asset pricing, the no-arbitrage price for the

arrears swap with the short rate discount, rt, can be expressed as

Valuation of swap := EQ

[
M∑
k=1

(
rfix − rTik

)
∆t∗ P e−

∫ Tik
t r(s) ds | rt = r

]

≈ ∆t∗ P EQ

 M∑
k=1

(
rfix − rTik

)
e
−∆t

ik−1∑
j=1

rTj | rt = r

 ,
where {Ti1 , Ti2 , . . . , TiM } ⊂ {T1, T2, . . . , TN} is the set of payment times.

Theorem 4.4 can be directly applied to the above expression to evaluate the price of the

swap. Moreover, the fixed rate rfix resulting in the fair valuation of the swap is

rfix =

EQ

 M∑
k=1

rTik
e
−∆t∗

ik−1∑
j=1

rTj | rt = r


EQ

 M∑
k=1

e
−∆t∗

ik−1∑
j=1

rTj | rt = r

 . (4.19)

Remark 4.2. This idea can be extended to price a premium for the buyer when the fixed interest

rate rfix does not correspond to the result in (4.19). Moreover, hedging by using higher-order

moment swaps such as the skewness and kurtosis swaps are nowadays traded. The idea of the

ECIR process presented here can be extended to other processes such as the Schwartz’s model,

for instance, Chumpong et al. [15] provided an analytical formula for pricing discretely-sampled

skewness and kurtosis swaps for commodities. However, the discounted rate in their work is a

constant and not governed by any stochastic process.

4.6 Conclusion

In this paper, the analytical formulas for conditional expectations of path-dependent prod-

uct of polynomial and exponential functions based on the ECIR process (4.1) have been proposed

via directly extending the recent research in [72]. The major development of the extension is

utilizing the tower property to transform the analytical formula for the conditional expectation
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of exponential function from a single step to multiple steps. In practically, for CIR process, our

analytical formula in Theorem 4.4 can be expressed to the exact formula by using the result in

Theorem 4.2.

To validate these formulas with MC simulation, we implement through MATLAB software

in order to illustrate the accuracy via the MAPE and the AVDF, and also show efficiency via the

AVRT. As a results, the obtained formulas extremely agree with the MC simulations as depicted

in several examples.

Finally, an application of our proposed formula in finance is illustrated by deriving an

analytical pricing formula for interest rate swap, namely, arrears swap under the ECIR pro-

cess (4.1). This suggests that the proposed formula in this work could be useful for the investor

in the market who wants a sufficient formula for hedging, portfolio management, and speculation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

Diffusion model has been thoroughly studied for its use in seeking a solution of an SDE and

investigating its properties, such as moments and conditional moments, which play significant

roles in many real-world applications and are especially beneficial for estimating parameters,

pricing financial derivatives, etc. In fact, these moments can be directly calculated by applying

the transition PDF. However, it is often unknown or unavailable in closed form. In addition, the

formulas for the conditional moments of the SDE may be unavailable in closed form, as well.

In this research, we study two generalized CIR processes: (i) a class of diffusions that

have nonlinear diffusion coefficients (NLD-CEV) and (ii) the Pearson diffusion processes. A

complete investigation was carried out for both light- and heavy-tailed processes, including 3/2-

SVM, Ornstein–Uhlenbeck, Cox–Ingersoll–Ross, Fisher–Snedecor, reciprocal gamma and Stu-

dent processes. Then, we introduce a simple but novel approach to find closed-form formulas

for conditional moments of the two generalized CIR processes. The main idea to obtain these

formulas is based on the Feynman–Kac representation. Particularly, this approach does not

require any knowledge of eigenfunctions or the transition PDF. In each class of stationary dis-

tributions reduced from the two processes, the formulas are explored and presented in a very

concise form. Also, the closed-form formulas obtained are numerically validated by comparison

with MC simulations.

The obtained results from all three research articles can be summarized in the followings.

In Chapter 2, we provide the sufficient conditions of the existence and uniqueness for a positive

pathwise strong solution of the NLD-CEV process (2.1) for β ∈ [0, 2) and β ∈ (2,∞). Based on

this process, we have derived the formulas of conditional moments for each range of β. Moreover,

in the case of constant parameters, the derived formulas can be expressed in closed forms. As a

consequence, the closed-form formulas obtained are also produced the formulas of unconditional

moments.

In Chapter 3, we propose the formulas of conditional and unconditional moments for

time-inhomogeneous Pearson diffusion processes (3.5), including the OU, CIR, Jacobi, Fisher–

Snedecor, reciprocal gamma and Student diffusion processes. Also, the proposed formulas can

be reduced to concise closed forms in the case of constant parameters which are validated by
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comparison with MC simulations. Furthermore, the advantage of these formulas is able to

compute the conditional moments of EOU and ECIR processes.

Finally, in Chapter 4, the analytical formulas for conditional expectations based on the

ECIR process (4.1) have been presented. As a consequence, the obtained formulas extremely

agree with the MC simulations as demonstrated via several examples. In addition, an application

in finance of the presented formula is shown in deriving an analytical formula for pricing IRS,

namely, arrears swap. Lastly, this suggests that the proposed formula could be useful for the

investor who wants a sufficient formula for hedging, portfolio management and speculation.

5.2 Future works

In this section, we provide some possible future works related to this dissertation. Similar

to this work, the idea can be extended to obtain closed-form formulas for the conditional moments

of multi-dimensional stochastic diffusion processes, e.g., the extended Heston-CEV hybrid model,

the Schwartz’s two-factor model and etc. Moreover, based on the processes discussed in this

work, one can also further investigate some essential mathematical and statistical properties,

namely, the conditional variance, covariance, central moment, mixed moment and correlation.

Finally, another aspect that could be possible for future research is to apply results in this work

for financial applications, such as calculating the fair strike price for a variance swap, pricing

interest rate swaps like arrears and vanilla, and so on.
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