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CHAPTER 1

INTRODUCTION

In actuarial science, the risk model or surplus process describes a measure-
ment of the aggregate amount of premiums and claims corresponding to the insur-
ance company’s portfolio. The classical risk model perform as a constant premium
rate over time and the aggregate claims process. In recent years, many models
have been introduced in the two different ways: (1) the stochastic risk model, and

(2) the discrete-time risk model.

The stochastic risk model usually assumes that the number of claims follows a
counting process. For example, Huang and Yu (2013) applied a generalized double
Poisson-Geometric into insurance risk model. For more precisely, many studies,
such as Temnov (2014) and Bao (2006), extended the model by considering the
stochastic premiums. Lebbe and Sendova (2009) studied risk models when both
premium and claim aggregate processes follow compound Poisson processes. Yu
and Huang (2015) introduced the concepts of surrender, where surrender is the
situation that the policyholder will get some money from the insurance company
if he decides to terminate before maturity date. They introduced surrender and
investment into risk models where the processes of claim and surrender follow the

thinning process of the premium process.

Beside the family of stochastic risk models, many studies focused on the dis-
crete time risk models where the number of claims follows an integer-valued time
series model. The concept of the integer-valued time series models was indepen-

dently introduced in Al-Osh and Alzaid (1987), McKenzie (1988), and Joe (1997).



Later, the integer-valued time series models were applied in insurance risk mod-
els. For example, Cossette (2010) suggested the discrete-time risk model based
on Poisson MA(1) and Poisson AR(1) for the number of claim process. Moreover,
Hu, Zhang and Sun (2018), Shi and Wang (2014) and Zhang et al. (2011) also

considered the discrete-time risk model with different settings.

In this thesis, we will apply the concepts of investment and surrender into the
discrete time risk models. The number of premiums, the number of claims and the
number of surrenders in the model follow (1) integer-valued moving average model
(2) integer-valued autoregressive model. We then derive probabilistic properties
of the model. In addition, we study the two risk measures of the model which are
ruin probability and value at Risk. We also derive the adjustment coefficient to
approximating ruin probability. Finally, we provide numerical examples to discuss
the trend of ruin probability and value at Risk comparing with the parameters of

premiums, claims and surrenders.

The organization of this thesis is as follows. Chapter 2 gives basic knowl-
edge of probability, definition and properties of integer-valued time series and the

concept of ruin probability.

In Chapter 3, we introduce a new risk model based on the first order integer-
valued moving average model with surrender and investment. In this model, the
numbers of premiums, claims and surrenders follow the first order integer-valued
moving average model. In our study, we give its probabilistic properties, derive
the adjustment coefficient function to obtain the approximation of ruin probabil-
ity of the model. Finally, we discuss the trend of ruin probability and value at
risk comparing with various parameters, such as premium sizes, claim sizes and

surrender values via numerical simulations.



In Chapter 4, we introduce a risk model based on the first order integer-
valued autoregressive model. We derive probabilistic properties, derive the ad-
justment coefficient function. Moreover, numerical studies are also provided to
study the trend of ruin probability and value at risk comparing with parameters

of the model. Finally, conclusion of this thesis is provided.



CHAPTER 11

PRELIMINARIES

In this chapter, we review some basic knowledge of probability theory that
will be used in this thesis. Moreover, we give the definition and properties of

integer-valued time series and a review of the ruin probability.

2.1 Random variable and moments of random variable

In this section, we first give some definitions of random variable and some

concept of its properties.
Definition 2.1.1. The sample space S is the set of all possible outcomes from a
random experiment, and the set {s € S|X(s) € R} is an event in S.

Definition 2.1.2. If S is a sample space and X is a real-valued function defined

over the elements of S, then X is called a random variable.

Definition 2.1.3. Let X be a random variable from the sample space S. The set

{z € Rlx = X (s),s € S} is the space of the random variable X, denoted by Rx.

Definition 2.1.4. A random variable X is said to be discrete if the space of X is

countable.

Definition 2.1.5. Let Ry be the space of a discrete random variable X. The

function f: Rx — [0, 1] which is defined by

is called the probability mass function of X.



Definition 2.1.6. Let f(-) be the probability mass function of X. Then the

cumulative distribution of X, denoted by F'x(-), is defined as

Fx(z)=) f(t) forzeR

t<x

Definition 2.1.7. Let Rx be the space of the discrete random variable X and

f(+) be the probability mass function of X. Then

(a) f(x) >0 for all z € Ry,

(b) Y flo)=1.

TERX

Definition 2.1.8. Let X be a discrete random variable with space Rx, and prob-
ability mass function f(-). The expectation or mean of X, denoted by F(X), is
defined as

E(X)= Z zf(z).

TERx

Definition 2.1.9. The n*» moment of the discrete random variable X about the

origin, denoted by F(X™), is defined as

rERX

Definition 2.1.10. Let X be a discrete random variable with space Rx. The

moment generating function of X, denoted by mx(-), is defined by

mx(t) = B(e™) = ) " f(a),

TERXx

for t € R such that mx(t) exists.



Definition 2.1.11. Let X be a discrete random variable with mean py. The

variance of X, denoted by Var(X), is defined as

Var(X) = B([X — jx)?) = B(X?) - 1.

Definition 2.1.12. Let X and Y be discrete random variables with means px and
iy, respectively. The covariance of X and Y, denoted by Cov(X,Y), is defined

as

Cov(X,Y) = E([X — pux][Y — py]) = E(XY) — pxpy.

The correlation of X and Y, denoted by Corr(X,Y), is defined as

Cov(X,Y)

O Y bE JVar(X)y/Var(Y)

Definition 2.1.13. Let X be a discrete random variable with space Rx. The

probability generating function of X, denoted by Gx (), is defined as

Gx(t)=E@) = > _ ' f(x),

TzERx
for t € R such that Gx(t) exists.

Lemma 2.1.1. Let Gx(-) be the probability generating function of a random

variable X, then the probabilistic properties of X are as follows:
(a) E(X)=G%(1),

(b) B(X(X —1)(X =2)--- (X —k+1)) = GP(1), for k € Nand G is kth

derivative of function Gx(+).

Definition 2.1.14. Let X and Y be discrete random variables with the joint
density f(-,-) and fy(-) is the marginal probability mass of Y. Then the function

is given by



f(z,y)

Ix(zly) = Fr(y)

for each x € Ry is called the conditional distribution of X given Y = y.

Definition 2.1.15. Let X be discrete random variable and fx(x|y) be the value
of the conditional probability distribution of X given Y = y. Then the conditional

mean of X given Y = y is defined as

EX[Y =y)= > afx(zly).

rERx

Lemma 2.1.2. Let X and Y be discrete random variables. Then
(a) E(X)=E(EX]Y))
(b) Var(X) = E(Var(X|Y)) + Var(E(X|Y)).

Definition 2.1.16. Let X, X5, ..., X, be any n random variables with probability
mass functions fx,, ..., fx,. They are identically distributed random variables if

and only if

fx,(z) = fx,(x) = ... = fx, (x) for xeR.

Definition 2.1.17. The random variables X7, X5, ..., X, are said to be indepen-

dent random variables if and only if, z1, 2o, ...,z, € R

Ix1Xo X (X1, T2y oy Tn) =[x (@1) - fx, (22) -+ fx, (Tn)

Remark 2.1.1. The random variables are independent and identically distributed,
denoted as i.i.d, if each random variable has the same probability distribution as

the others and all are mutually independent.



2.2 Compound random variable
Next, we give the definition and properties of compound random variable.

Definition 2.2.1. Let X;, X5, ... be a sequence of independent and identically
distributed (i.i.d.) random variables which are independent of a non-negative

integer-valued random variable N. Then the random variable S defined as

is called a compound random variable.

Lemma 2.2.1. The probability properties of the compound random variable S

defined in Definition 2.2.1 are as follows

(b) Var(S) = E(N)Var(X) + Var(N)E(X),

(c) Cov(S,N) = Var(N)E(X).

Proof. (a) Since {X1,..., X,,} are i.i.d. random variables,

E(S)=E ZX)
—E|E <ZX

)

— E(NE (X)) (2.1)




where we use the independence of X and N to obtain (2.1)

(b) From Lemma 2.1.2 (b) and the independent of X and N, we have

Var(s) = & (var (Z X N)) Vs <E (Z X N>)

—FE (Z Var (XAN)) + Var (Z E (Xi|N)>

=1 i=1

E (NVar (X)) + Var (NE (X))
E(N)Var (X) + Var (N) E* (X) .

(c) From (a), we have

Cov(S,N) = B(SN) — E(S)E(N)

= E(E(SN|N)) — E(N)E(X)E(N)
—E (E <N i X;

ZE <Ni E (Xi|N)> — E*(N)E(X)

il

N)) — E*(N)E(X)

= E(N*E(X)) - E*(N)E(X)
= (E(N*) — E*(N))E(X)

= Var(N)E(X).

]

Ny N2
Lemma 2.2.2. Let S = ZXW and Sy = ZXQJ‘ be compound random vari-
j=1 Jj=1

ables where X7 = {Xj;};=12. and Xy = {X5;};=12,. are sequences of ii.d.

........

random variables and are independent from N; and N, respectively. Then we

have

Cov(Sy, Ss) = Cov(Ny, No) E(X1) E(Xs).
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Proof. Since X; and X5 are mutually independent. Note that

Ny No
E(5,8,) =E (Z X1,y XQ,])
j=1 j=1
N1 No
—E (E (Z X1 ) X,
j=1 j=1

= E(N1E(X1)N2E(X3))

)

Therefore,

COV(Sl, SQ) = E(Slsg> 4 E(Sl)E(SQ)
= E(N1N2) E(X1)E(X3) — E(N1)E(X1)E(N2) E(X>)
= (E(N1N2) — E(N1) E(N,)) E(X1) E(X>)

= Cov(Ny, No)E(X)) E(X).

2.3 Distribution function

Definition 2.3.1. A random variable X is said to be the Bernoulli random vari-
able with parameter p, denoted by X ~ Ber(p). If its probability mass function

of X is in the form of

f(x) =p"(1 —p)t= for x =0, 1.



11

Theorem 2.3.1. If X is a Bernoulli random variable with parameter p. Then its

properties are given as follows:

(a) Gx(t) = (1 —p) + pe' for t € R,
(b) E(X) =p,
(c) Var(X) =p(1—p).

Definition 2.3.2. A random variable X is said to be the Poisson random variable
with parameter A, denoted by X ~ Poi(\). If its probability mass function of X

is in the form of

e AN
flx) = O forz =1,2,...and A > 0.

Theorem 2.3.2. If X is a Poisson random variable with parameter \. Then its

properties are given as follows:

(a) Gx(t) = Met —1) fort € R,

2.4 Binomial thinning operator and integer-valued time se-

ries

In this section, we provide the definitions and properties of the binomial

thinning operator and integer-valued time series.
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Definition 2.4.1. Let X be a non-negative integer-valued random variable and

a € [0,1]. The binomial thinning operator, denoted by ‘ao’, is defined by

X
O[OXIZ(Si
i=1

where 1, ds, ... i a sequence of i.i.d. random variables having the Bernoulli distri-

bution with parameter o and is independent of X.

Lemma 2.4.1. Let X and Y be non-negative integer-valued random variables.

Then the following properties hold:

(a) E(aoX)=aB(X),

(b) E((a o X)Y) = aB(XY),

() Gaox(t) = Gx(1—a + at),

(d) Var(ao X) = a(l — a)E(X) + a?Var(X),
(e) Cov(aoX,Y) = aCov(X,Y),

(f) Cov(ao X,B0Y)=afCov(X,Y).

X
Proof. (a) Note that a0 X = Z 9; where {6; }i=12

i=1
random variables with means « and are independent of X and Y.

is a sequence of i.i.d. Bernoulli

geee



From Lemma 2.2.1 (a),

=F E(iéz

=1

)

-5 iE(MX))

(b) Consider

E(aoX)Y)=FE Yi(%)

j=1

X
—E|E (Yzcsj

e

)
=E iE(Y5j|X)>

— E(YXE(5)))

— B(XY)E(5))

= aE(XY).



(¢) From Definition 2.4.1,

(d) From Lemma 2.2.1 (b), we have

Var(awo X) = Var <Z (5i>

=1

= E(X)Var(§) + Var(X)E?(9)

=a(l — a)B(X) + o*Var(X).

(e) From (a) and (b), we have

Cov(ao X,Y) = Cov (Z 5Z~,Y>
=’ <Y§:5i> - E (Zd) E(Y)

= aE(XY) — E(X)E(§)E(Y)
= aE(XY) — aE(X)E(Y)
= a(E(XY) — E(X)E(Y))

= aCov(X,Y).

14
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Y
(f) Note that foY = Z% where {7;}i—12.. is a sequence of i.i.d. Bernoulli

i=1
random variables with mean (8 and are independent of Y.
Since {6;}i=12, and {7;}i=12,.. are two mutually independent sequences of Bernoulli

random variables with parameters o and 3, respectively. Then

X 1%
Cov(ao X,50Y) = Cov (Z 0, Z%>
=1 i=1

I
&=
.
S|
S
)~<
oo

|
&
3
&=
=
S5!
=
5
2

Next, we will describe the integer-valued time series that will be used in
this thesis. The two integer-valued time series considered in this thesis are the
first order integer-valued moving average (INMA(1)) model and the first order

integer-valued autoregressive (INAR(1)).

Integer-valued time series, such as integer-valued moving average (INMA)
and integer-valued autoregressive (INAR), are independently introduced by Al-
Osh & Alzaid(1987), Mckenzie(1988) and Joe(1997).

Definition 2.4.2. Time series {X;};—12. . is a series of data points indexed in

goor

{t =1,2,...}. If X; has integer valued, the time series is called the integer-valued

time series.
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Definition 2.4.3. A process {X;}1—12.» is said to be nth-order weakly stationary

if all its joint moments up to order n exist and are time variant.

Definition 2.4.4. The first order integer-valued moving average (INMA (1)) model
for {X;}i~0 can be defined as

Xt:Oéoﬁt_1+€t

where ‘o’ is binomial thinning operator. The sequence ¢1, €9, ... is a sequence of

independent and identically distributed (i.i.d.) random variables.

Definition 2.4.5. The process {X;};—12 . is said to be the first order integer-

valued autoregressive (INAR(1)) model if it defined as
Xy =aoX; | +¢&

where ‘o’ is binomial thinning operator defined in Definition 2.4.1 and &1, &9, ... is

a sequence of i.i.d. random variables.

2.5 Risk model and ruin probability

In this section, we will provide the basic of discrete time risk model and

review the ruin probability.

Let {Un;n € N} be the surplus process of insurance company in period n.

The discrete time risk model can be defined as

Un:u+7m—5n:u+7m—ZZXm

i=1 j=1

where u is the initial capital and 7 is the constant premium rate. The process

{Sn;n € N} is the aggregate claims amount in period n and can be written as
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n N;

S, = Z Z X;; where X ; is the jth claim size in period ¢ and NV; is the number
i=1 j=1

of claim in period .

The ruin probability is the one of risk measure for insurance company. To
find this measure, this section provides a brief discussion of ruin time, the ruin

probability and the adjustment coefficient function.

The first time that the surplus process {U,;n € N} changes to be negative

which called that the ruin time, denoted by T'. It can be written as

T= érellg{n, U, <0}

The probability that ruin time exists, we call that the ruin probability, de-

noted by ¥(u) and can be written as

U(u) = Pr(T < oco|lUy = u)

In general, it is difficult to directly obtain the ruin probability. However,

there is approximation of ruin probability by Lundberg, proposed in [4], as follows

W(u) ~ e i, (2.2)

The main result based on the asymptotic Lundberg type result

tim — W) g

U—>00 u

where R is Lundberg adjustment coefficient or adjustment coefficient.
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The adjustment coefficient R, introduced by Cossette et al.(2010), is the
unique positive solution to equation g(r) = 0. The function g(r) is called the

adjustment coefficient function and is defined as

g(r) = lim ~g,(r),

n—oo N,

where g, (r) is the cumulative generating function of aggregate loss-profit process

S, defined by

Gn(r) = In B(e™™), (2.3)



CHAPTER III

INTEGER-VALUED MOVING AVERAGE
RISK MODEL SUBJECT TO INVESTMENT

AND SURRENDER

In this chapter, we construct the risk model by incorporating investment
and surrender based on the first order integer-valued moving average (INMA(1))
process. Firstly, Section 3.1 introduces the discrete-time risk model and notations
used in this chapter. Section 3.2 gives the definition and properties of the INMA (1)
risk model. In Section 3.3, we derive the adjustment coefficient function and obtain
the adjustment coefficient to calculate ruin probability. Finally, Section 3.4 shows
numerical examples of ruin probability and value at risk considering the trend of

ruin probability in terms of parameters in the model.

3.1 The discrete-time risk model

Let {U,;n € N} be the surplus process of insurance company with incorpo-
rating investment and surrender at time n. For initial capital u, the discrete-time

risk model can be written as
Up=u+Idn+) A-Y Bi—-)» C (3.1)
i=1 i=1 i=1

where [ is the investment capital for I < u, d represents the investment income per

unit of time. The sequence {A;;i € N} is the sequence of aggregates of premium
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amounts in period i defined as

N;
A= X, (3.2)
k=1

where {X;; k € N} is the sequence of premium sizes in period ¢ assuming to be
i.i.d. random variables, and N; is the number of premiums in period 7.
The sequence {B;;i € N} is the sequence of total of claim sizes in period i and is

defined as

Ni(p)

Bi=> Y, (3.3)
k=1

where the sequence of i.i.d. random variables {Y; x; k € N} denotes claim sizes in
period i, and N;(p) denotes the number of claims in period i. And we say that
N;(p) is the p-thinning operator of N; because the thinning operator of N;(p) is
ap where 0 < p < 1 which is smaller than the thinning operator a of N;.

The sequence {C;; i € N} is the sequence of aggregate of surrender values in period

7 and is written as
Ni(q)
Ci - Z Zi,k7 (34)
k=1

where the sequence of i.i.d. random variables {Z; ;; k € N} represents surrender
values in period i, and N;(q) denotes the number of surrenders in period 7 and is

the g-thinning operator of N; for 0 < ¢ < 1 such that 0 <p+¢ < 1.

From (3.1), we will write the model in the form of

Un:u+Sn7



21

where 5, is the loss-profit process defined as

1=1 i=1

=1

Next, we will give the expectations of aggregate of premium sizes, aggregate

of claim sizes and aggregate of surrender values as follows.

Proposition 3.1.1. The aggregate of premium amounts {A4;;i € N}, defined in

(3.2), is the compound random variable having the expectation as follows.

FA, = EN,EX.

Proof. Assume that the sequence of premium sizes {X,;; k € N} is a sequence of

i.i.d. random variables and is independent of the process {V;;i € N}, we have

N;
FA, =F X; k]

— 7 | JE

Similar to the Proposition 3.1.1, we can derive the formulas of the expec-

tations of aggregate of claim sizes and aggregate of surrender values as follows.
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Proposition 3.1.2. The aggregate of claim sizes {B;;i € N} defined in (3.3) is

the compound random variable having the expectation

Proposition 3.1.3. The aggregate of surrender valued {C;;i € N} defined in

(3.4) is the compound random variable having the expectation

In order to perform a clear profit of insurance company, it is common to
assume that the net profit condition that is the expectation of the loss-profit
process S, is greater than 0, written as F[S,] > 0. In the following proposition,
we will introduce the factor that satisfies the condition. The factor is called the

positive relative safety loading.

Proposition 3.1.4. Under the net profit condition, the positive relative safety

loading, denoted by 6, can be defined as

Id+ EN; X
Ak —1>0,

where

« the processes {N;;i € N}, {N;(p);i € N} and {N;(¢);? € N} are stationary

processes,

e EX #0and BEY # 0.
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Proof. Under the net profit condition, we have

0 < E[S,]
i=1 i=1 =1
=1 =1 =1

:[dn+zn:E[Ai]—iE[Bi]_iE[Ci]

i=1

= Idn + zn: EN,EX — Xn: EN;(p)EY — zn: EN;(q)EZ,

=1 =1 i=1

where we use Proposition 3.1.1 - 3.1.3 to obtain the last inequality.

Since NV;, N;(p) and N;(q) are stationary processes for ¢ € N, then we get,
0 < Idn + nEN,EX — nEN,(p)EY — nEN;(q)EZ.

For EX # 0 and EY # 0, we have

Id+ EN;EX

—1>0.

3.2 Definition and properties of INMA (1) risk model

In this section, we give definition and properties for the risk model based on

the INMA(1) process.

In the INMA(1) risk model considered in this chapter, we assume that each of
the processes {N;;i € N}, {N;(p);i € N} and {N;(q);¢ € N} follows an INMA(1)

process described as follows.
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The process of the number of premiums {N;;7 € N} can be defined as
Ni =@o¢g;_1+ &, (36)

where o € [0, 1], where {¢;},—12,. is the sequence of i.i.d. random variables fol-
lowing the Possion distribution with mean A and ao¢;_; is the binomial thinning

operator defined as

€i—1

Qog; 1= E dz’—l,j7
j=1

where {d; ;};j=12.. is the sequence of i.i.d. Bernoulli random variables with pa-

rameter « for all 7 and is independent of &;.

The process of the number of claims {N;(p);i € N} can be defined as

Ni(p) = (ap) o vi-1 + 7, (3.7)

where {v;}i—12,. is the sequence of i.i.d. random variables following the Possion
distribution with mean X\ and (ap) o~y;_; is the binomial thinning operator defined

as
Yi—1

(ap) ©Yi—1 = E €i—1,5,
j=1

where {e; ;};—12,. is the sequence of i.i.d. Bernoulli random variables with pa-

rameter ap for all ¢ and is independent of ~;.

The process of the number of surrenders { N;(¢q); ¢ € N} can be defined as

Ni(q) = (aq) o pri—1 + i, (3.8)
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where {p;}i=12. . is the sequence of i.i.d. random variables following the Possion
distribution with mean A and (aq)o ;1 is the binomial thinning operator defined

as

Hi—1

(ag) o pi—1 = Z fi—14s
j=1

where {f;;}j=12,.. is the sequence of i.i.d. Bernoulli random variables with pa-

rameter aq for all ¢ and is independent of ;.

Next, we will derive the properties of the number of premiums (1V;), the

number of claims (N;(p)) and the number of surrender (N;(q)).

Proposition 3.2.1. Let {N;;i € N} be defined in (3.6). Then {N;;i € N} has

the following properties, for 7 € N
(1) Gy, (z) = XD for 2 € R,
(2) N; is stationary process,

(3) E(N:) = (1+a)A,

(4) Var(N;) = (1 + a)\,

a\, ifk=1
(5) COV(Ni, Nz—k) =
0, if k>1,
ifk=1

Y

(6) Corr(N;, N;_;) =<4 1Lt
0, if > 1.
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Proof. To prove (1), we will consider the probability generating function of

{N;;i € N}. From Lemma 2.4.1 (c), we note that, for z € R

Gn(2) =E [ZNZ}
= F [Zozosi_1+si}
= Bz B
= E[((1 — a) + az)" ]| B[]
— M-a)taz—1) Az—1)

=N 6)\(7;71)(0{4*1)’ (39)

where we use the fact that {g;},-12 . is the sequence of Poisson i.i.d. random

goae

variables with mean .

To prove (2), from (3.9), we can see that Gy, (z) does not depended on i.

Therefore, Gy, (z) = ... = Gy, (z). Hence, {N;;i € N} is a stationary process.

To prove (3), we note from (3.6) that

E(N;)=FE(aoe;_1+¢;)
=FE(aoegi_1)+ E(s)
=aFE(gi_1) + A
=alA+ A

=1+ a)A
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For (4), from (3.6)

Var(V;) = Var(aoeg;_1 + &)
= Var(aog;_1) + Var(g;)
=a(l — a)E(g;i_1) + a®Var(e;_;) + Var(e;) (3.10)
=a(l—a)A+a’X+ A
= (a(l—a)+a?+1)A

= (1+a)), (3.11)

where we use Lemma 2.4.1 (d) to obtain (3.10) and use the fact that {g;}i—12, .
is a sequence of Poisson i.i.d. random variables with mean A to obtain (3.11),

respectively.

To prove (5), we will consider into two cases which are k = 1 and k > 1.

For k = 1, we have

COV(NZ', Ni—l) = COV(Of 0&i_1+&,x0g_o+ 51’—1)
= Cov(aog;i_1,a0¢g;_9)+ Cov(aoeg;_1,61)

+ COV(Ei, QO €iA2) it COV(EZ', 81',1)

= ozCov(a‘,-,l, 81;1) (312)
= a\/ar(ai_l)
= al, (3.13)

where we use Lemma 2.4.1 (e) to obtain (3.12) and the fact that {e;};—12 . is a

goee

sequence of independent random variables to obtain (3.13).
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For k > 1. Since {¢;};=12.. is the sequence of independent random variables, we

gean

have

COV(Ni, Nz—k) = COV(Oé o0& 1+ Ei, X0 Ej_k_q + 5i—k>
= Cov(awog; 1,00, 1)+ Cov(aoe; 1,6 k)
-+ COV(Si, Qo 5z‘—k;—1) + COV(E,‘, 5i—k)

=0.

To prove (6), from Proposition 3.2.1 (4) and (5), we have

COV(NZ', Ni—k)
\/Var(Ni)\/Var(Ni_k)

Corr(N;, Ni—y) =

a\
—  ifk=1
_larax ]
0, if k>1,
, ifk=1
_J14+a
0, if k> 1.

\

Similar to Proposition 3.2.1, we can obtain properties of the processes
{Ni(p);i € N} and {N;(p);i € N} presented in Proposition 3.2.2 and Proposi-

tion 3.2.3, respectively.

Proposition 3.2.2. The number of claim process { N;(p);i € N}, defined in (3.7),

has properties as follows.

(1) Gy (2) = D) for 2 € R,

(2) N;(p) is stationary process,



(3) E(Ni(p)) = (14 ap)A,

(4) Var(Ni(p)) = (1 + ap)A,

apr, ifk=1
(5) COV(Ni<p)7 Nzek(P)) =
0, if k>1,
W k=1
(6) Corr(Ni(p), Ni—x(p)) = I+ap
0, if k> 1.
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Proposition 3.2.3. The number of surrenders process {N;(q);¢ € N}, defined in

(3.8), has properties as follows.

(1) Gry(g)(z) = XDt for » € R,
(2) N;(q) is stationary process,
(3) E(Ni(g)) = (1 +ag)A,

(4) Var(Ni(q)) = (1 + ag)A,

ag\, ifk=1
(5) Cov(Ni(q), Ni—r(q)) =
0, ifgk N
YW k=1
(6) Corr(Ni(q), Ni_x(q)) = { 1+ 4
0, if > 1.

The following theorem shows the joint generating function of INMA(1) pro-

Cess.
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Theorem 3.2.1. Let INMA(1) process {N;;i € N} be defined in (3.6). The joint

generating function of {V;;i =1,2,...,n} can be written as follows. For n € N,

GN17,,,7Nn (tl, e tn) — e}\a(tl—1)e)\[(l—a)tl—‘ratltg—l]e)\[(l—a)tg—l-atztg—l] .. 6)\[(1—a)tn,1+atn,1tn—l}

% eA(tn—l)’

where (ty,...,t,) € R™,

Proof. Consider the joint generating function of {N;;i = 1,2,...,n} as follows.

Gry,on, (B, oy ty) = BN )]

_E _tZﬁl d0j+€1t2§1:1 dijtez _tzjifl dn—l,j+€n]
- 1 2 n
: 0 doj L dyy i dpot
= B | Migmgin Migee s I’thf]
i =0, doj L dyj i oy
— | ‘“} E {tiltzjl “} B [ti"—ftnz“ 1”} E[te],

(3.14)

where we use the fact that {e;},—1 2 . are independent to obtain the last equation.

For the first term of (3.14), we have

0 diy
E [tlzjl ' } =G, (1l —a+aty)

_ e)\(l—a—l-atl—l)

= -, (3.15)
For the last term, from (3.14),

E[ter] = X, (3.16)

n
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For the other terms in (3.14), we note that, for k =1,2,...,n — 1,

{ {gk A o dkl]&v—l”
R Ek L
|:tkk 11E |:tk = 5k—1”

Eh Zéi d—1,
E [tk’“ftk =t J}

Ek 1 Gd tk; é‘k 1]

FE |t
E[(tk-1Galty)) ]
FE

[ (ln(tk—lgd(tk)))'fkfl]

M, (In(tx-1Ga(tr)))

I

— e Mte1Galtr)—1) (3.17)
/a ek(tkvl(l—a"‘atk)_l) (318)
— M(1-a)ti—1tatiiti—1] (3.19)

where we use the fact that {e}r—12 . is a sequence of ii.d. Poisson random

gene

variables with mean A to derive (3.17) and {d;;}; =12, . is the sequence of ii.d.

gees

Bernoulli random variables with parameter o to derive (3.18), respectively.

Substituting (3.15), (3.16) and (3.19) into (3.14), we get

GNl ..... N (tl, e tn) — e)\a(t1—1)e)\[(lva)t1+at1t2~1]ek[(l*&)t2+at2t3fl] .. e)\[(lfoé)tn,1+atn71tnfl}

% eA(tn—l) )
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3.3 Adjustment coefficient

In this section, we first derive the adjustment coefficient function for the
INMA(1) risk model. We then obtain the adjustment coefficient to approximate

the ruin probability.

Theorem 3.3.1. The adjustment coefficient function of the risk model defined in

(3.1) is given by

g(r) = —rld+ )\((1 — a)Mx (=) + aMi(—7r) + (1 — ap) My (r) + apME(r)

+ (1 — aq)Mz(r) + agMi(r) — 3).
Proof. From(2.3) the adjustment coefficient function is defined as

§(r) = Tim ~1n E(e~"5). (3.20)

n—o0 1

Therefore, we will first derive F [6_7"5"].
From (3.5) and the fact that {A4;;i € N}, {B;;i € N} and {C;;i € N} are inde-

pendent, we have

—r (IdnJr i Az - i BZ - i Cz)
i=1 i=1 =1

Ele™™"] =E |e

g E [eirldn] . E [efrz;?:l A’L:| . E |:6TZ:'L=1 Bl] . E |:€TZ;L=1 C’b:| . (321)

For the second term of (3.21), note that the aggregate of premium amounts

{A;;7 € N} defined in (3.2). Then
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[e—ml e e—mn]
[ D IID WSS S Xn,k}
( (BrYM NG, LN

NiyoNy (Mx(=1), ..., Mx(—1)).
From Theorem 3.2.1, we obtain

E [e—rZ?zlAi] — Pa(Mx (=1)=1) An=1)[(1=0) Mx (~r)+aM% (=r)=1] A(Mx (=1)—1)

= exp{MaMx(—r) —a+ (n=1)Mx(—r) —a(n — 1)Mx(—r))
+ Ma(n — )Mz (=r) — (n — 1)+ Mx(—r) — 1)}

= exp{\(2a+n —an)Mx(—7) — (n+a) + a(n — )Mz (—r)]}
e g [ )l ARG}

n—+«a

(3.22)

By the same technique, the last two terms of (3.21) can be obtained as follows

E |:€TZ?:1 B’} = G Nalp) (My (), o; My (7))

. | {A(n ALON [(n(l —ap) + QaP)f:(;)]UvL ap(n — Mp(r) _ 1] } ’

and

E [eTZ?ﬂa] =GNy (g Na(q) (Mz(7), ..., Mz(7))
[0 )t = DA |

n + aq



34

Substitute (3.22) - (3.24) into (3.21), we have

E[B_TS":I = E [e_rldn} . E |:€_TZ;L:1 A1j| . E |:6TZ;Z”:1 Blj| . E [GTZ?ZI Clj|

— exp { — rIdn
A+ {(n(l —a)+ 204)MX7§—+TL+ aln — )M3(-r) 1}
| Aot ap) {(n(l o)+ 20p)Mrle)  opln = D) 1]
At a0 {(n(l = o6) 20 M(0) + agln = DM0) 1}

(3.25)

Then, we consider the logarithm of the equation (3.25) as follows.

1 1
—InE[e"™"]=—-InE
n n

exp{_r (Idn+ilA,- —ilBi —ila) }]

1
= —{ —rldn
n

+ AGED) {(n(l —a)+ QQ)MXyg_fLJF a(n —1)M}(=r) 1}
+A( 4 ap) {(n(l —ap)+ zap)i\ji(;); ap(n — DME(r) 1}
+A(n+ ag) [(n(l —aq) + 2aq)17\ﬁ(;)q+ aq(n — )M3(r) 1} }
— —rld
+ (L= )My (—r) + zAaM;((—r) N Aa(n — 12M§((_r) - A(n; a)
(L= ap) My (r) + 2P | Aapln Z M) At o)

2 aqMy(r) N Aag(n = 1)MZ(r)  An+ ag)
n n n

+ M1 —aq)Mz(r) +
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Therefore, we can obtain the equation (3.20) as follows.

glr) = Jim 1 Ele ")
= —rld+ A1 —Q)Mx(=r) + daMi(—r) — X+ X1 — ap) My (r)
+ AapME(r) — A+ A1 — aq) Mz (r) + AagM2(r) — A
= —rld+ A((1 — a)Mx(—r) + aM3(—r) 4+ (1 — ap) My (r) + apM;-(r)

+ (1 — aq)Mz(r) + agMz(r) — 3).

Next, we will show the uniqueness of positive solution of adjustment coeff-

cient equation.

Proposition 3.3.1. The adjustment equation g(r) = 0 has the unique positive

solution R which is called the adjustment coefficent.

Proof. To show that g(r) = 0 has the unique positive solution, we will show the

function ¢(-) has following properties

(3) ¢"(r) > 0 for all r € (0, 00),
(4) lim g(r) = oc.

r—00

To prove (1), we can see that

g0 =A1+14+1)+ Al —14+p—p+q—q)—3r=0.
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To prove (2), we note that

g'(r) = —Id+ MN=Mx(=r) + My (r) + My(r))
+ Aa[=2Mx (=) My (=r) + M (=r) + 2pMy (r) My (r) — pMy(r)]

+ Aa[2g Mz (r)M 7, (r) — qMy(r)]. (3.26)

Substituting r = 0 into (3.26), we get

gd0)=—-Id+ N—-EX +EY + EZ)
+ Aa(—2EX + EX + 2pEY — pEY +2qEZ — EZ)
=—Ild+ N—-EX+EY +EZ)+ \a(—EX +pEY +qEZ)
=—Ild—AN1+a)EX+ A1+ ap)EY + N1+ aq)EZ

<0,

where we use Propositions 3.1.4 and 3.2.1 ~ 3.2.3 (2) to obtain the last inequality.
Hence, ¢'(0) < 0.

To prove (3), we note that

g"(r) = AIMx (=) + My (r) + Mz(r)]
+ Aa2(Mx (=r) M (=) + (M (=r))*) = Mx(—=r)]
+ Xaf2p(My (r) My (r) + (M (r))*) — pMy(r)]
+Xaf2q(Mz(r)My(r) + (My(r))*) — qMy(r)]
= Al(2aMx (=7) — o+ DMy (=) + a(Mx(=1))’]
+Al2apMy (r) — ap + 1) M (r) + ap(My.(r))?]

+ A[(2aqgMz(r) — ag + 1) M(r) + aq(My(r))?. (3.27)
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Since the moment generating function is always positive and 0 < o < 1. So,
the term of 2aMx (—r)—a+1 is greater than 0. For 0 < p,¢ < land 0 < p+¢q < 1,
we get that the terms of 2apMy (r) — ap + 1 and 2aqMz(r) — ag + 1 are greater
than 0. So, we can conclude that the right hand side of (3.27) is greater than 0.

Therefore g”(r) > 0.

To prove (4), from Theorem 3.3.1, the adjustment coefficient function is

g(r)=—rld+ )\((1 — a)Mx(—r) + aMz(—r) + (1 — ap) My (r) + apMz(r)
+ (1 — aq)Mz(r) + agMZ(r) — 3)
= —rId+ A(1 — o+ aMx(—r))Mx(—r) + (1 — ap + apMy (r)) My (r)

+ (1 — ag + agMz(r))Mz(r) — 3). (3.28)

From the right hand side of (3.28), we can see that the term of 1 — o +
aMx(—r), 1 —ap + apMy(r) and 1 — aq + agMy(r) are always greater than 0
for 0 < a < 1. Then, we use the fact that the moment generating function of the
right hand side of (3.28), determined by the term of My (r) and Mz(r), perform as
exponential terms and the exponential growth is faster than polynomial growth.

Hence, lim g(r) = oc.
r—o0

3.4 Numerical example

In this section, we will apply numerical example to study the effect of the
ruin probability and the value at risk comparing with the parameters of premiums,

claims and surrenders by using Python and R programming.
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In section, we will study the behavior of the ruin probability and the value
at risk of the risk model by assuming that the premiums sizes (X), the claim sizes
(Y) and the surrender values (Z) follow exponential distributions. The sequence
of premium sizes X = {X;}ir=12.. is a sequence of i.i.d. random variables

1
which are exponentially distributed with mean —. The sequence of claim sizes

X
Y = {Yir}ik=12. . is asequence of i.i.d. random variables which are exponentially
1
distributed with mean 5— The sequence of surrender values Z = {Zi7k}i7k:172’.__
Y

is a sequence of i.i.d. random variables which are exponentially distributed with

mean —, respectively.
Bz

Therefore the moment generating functions of X, Y and Z are defined as

= BX/BT(FT’ My (r) = yﬁir and My(r) = 5zﬁi7" respectively, for

By, Bz > 1.

Mx(—’r’)

3.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability against the terms

of premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as

U (u) ~ e,

where R is the adjustment coefficient.

To approximate ruin probability, we will first calculate the adjustment co-
efficient from finding the unique positive solution of the adjustment coefficient

equation g(r) = 0 as follows.
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From Theorem 3.3.1, we will consider the function g(r) in the case of the

premium size, claim size and surrender values follow the exponential distribution.

:—Hd+A(1—aAh— r) + aMi(—r) + (1 — ap) My (r) + apM(r)

+ (1 — ag)Mz(r) + agM(r) — 3)

= —rld+ Al (1-a) 5X_|_r>+a(5x+7")
+(1—04p)<5y_ ) (ﬁy—r)
+(1 - aq) (ﬂzﬁir) 7/ (ﬁzﬁi) _3>’

where 0 < p,qg <1 and 0 < p+ g < 1, where r < min{ Sy, 5}

Next, we will study the trend of ruin probability by varying various parame-
ters of premium size, claim size, surrender values and investment in Section 3.4.1.1.
In Section 3.4.1.2, we will study the trend of ruin probability by varying various

parameters of probabilities of claims and surrenders.
3.4.1.1 Effects from premiums size, claim size and surrender value

In insurance company, income and expenses are quite important to the com-
pany financial stability. In our risk model, the income are determined by the
premium size and investment and the expenses are determined by the claim size
and surrender value. So, this section will study the trends of ruin probability in

terms of means of premium size (ﬁ—), claim size (—
X

By

1
(ﬂ_) by varying the parameter Sx, Sy and (7, respectively. Moreover, we will
z

also study the ruin probability in term of investment by varying parameter I.

) and surrender values
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For this section, we consider the following values of parameters I = 10,d =

0.2,A=2,aa=0.25,p =0.4,q = 0.07 and the initial surplus u = 12.

Scenario 3.1 : The trend of ruin probability in terms of the parameter Sy
where the parameters Sy and [z are fixed (8y = 7 = 1.5). In this scenario, we
consider different values of Sx which are 0.5, 0.75, 1.0, 1.5 and 2.0, respectively.
The values of the upper bound of the ruin probability are given in Table 3.1. The

corresponding plot is presented in Figure 3.1.

Table 3.1: Parameter Sx € [0.5,2] and their upper bound of ruin probability

Bx 0.5 0.75 1.0 1.5 2.0
Upper bound 0.002942 0.006777 0.014604 0.056045 0.171677

0.175

0.150 1

0.125

0.100 1

0.075 1

Ruin probability

0.050 1

0.025 1

0.000

0a 03 10 12 14 16 18 210
e

Figure 3.1: Trend of the ruin probability when Sx increases

From Table 3.1 and Figure 3.1, we can see that the ruin probability increases
when Sy increases. That is the ruin probability increases when the mean of

premium size decreases.
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Scenario 3.2 : The trend of ruin probability in terms of the parameter Sy
where the parameters Sx and [z are fixed (8x = 0.5 and gz = 1.5). In this
scenario, we consider different values of By which are 0.5, 0.75, 1.0, 1.5 and 2.0,
respectively. The values of the upper bound of the ruin probability are given in

Table 3.2. The corresponding plot is presented in Figure 3.2.

Table 3.2: Parameter By € [0.5,2] and their upper bound of ruin probability

By 0.5 0.75 1.0 1.5 2.0
Upper bound 0.515049 0.118524 0.029798 0.002830 0.000605

5 1

04 A

03 1

02 1

Buin probability

01 1

00 1

06 0.8 10 i) 14 16 15 20
B

Figure 3.2: Trend of the ruin probability when Sy increases

Table 3.2 and Figure 3.2 show that the ruin probability decreases as param-
eter By increases. It means that the ruin probability decreases when the mean of

claim size decreases.

Scenario 3.3 : The trend of ruin probability in terms of the parameter Sz
where the parameters fx and [y are fixed (6x = 0.5 and Sy = 1.5). In this
scenario, we consider different values of 57 which are 0.5, 0.75, 1.0, 1.5 and 2.0,
respectively. The values of the upper bound of the ruin probability are given in

Table 3.3. The corresponding plot is presented in Figure 3.3.
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Table 3.3: Parameter 8z € [0.5,10] and their upper bound of ruin probability

Bz 0.5 0.75 1.0 1.5 2.0
Upper bound 0.478468 0.110136 0.028787 0.003438 0.000897

05

04 -

03 1

02 -

Ruin probability
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00 1

0.6 0.8 10 12 14 16 15 20
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Figure 3.3: Trend of the ruin probability when 7 increases

From Table 3.3 and Figure 3.3, we can conclude that the ruin probability de-
creases when parameter 8z increases. It means that the ruin probability decreases

when the mean of surrender value decreases.

Scenario 3.4 : The trend of ruin probability in terms of the investment [
where the parameters Sy, Sy and (7 are fixed (6x = 0.5 and By = Bz = 1.5).
In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0,
8.0 and 10.0, respectively. The values of the upper bound of the ruin probability

are given in Table 3.4. The corresponding plot is presented in Figure 3.4.

Table 3.4: Parameter I € [1,10] and their upper bound of ruin probability

Bz 1.0 3.0 2.0 8.0 10.0
Upper bound 0.059467 0.031536 0.016207 0.005807 0.002942
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Figure 3.4: Trend of the ruin probability when I increases

Table 3.4 and Figure 3.4 show that the ruin probability decreases as the
investment increases. It means that the more the insurance company invests in

financial markets, the smaller value of ruin probability.

As we know that the closer the ruin probability to 1, the greater the possi-
bility that the insurance company will go bankrupt. From the result in Scenario
3.1 - 3.4, we can see that the ruin probability decreases as the mean of premiums
and investment, which are income of the model, increase and the means of claims
and surrender, which are expenses of the model, decrease. Therefore, in order to
control the risk of the bankrupt, the company should increase the premium values

or reduce the payments from claims and surrender.

3.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the trend of ruin probability in terms of the
probability of claims, denoted by parameter p and the probability of surrenders,

denoted by parameter q.
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For this section, we set the value I = 10,d = 0.2, = 2,a = 0.25,8x =

1, By = 2,87 = 1.5 and the initial surplus u = 12.

Scenario 3.5 : The trend of ruin probability in terms of probability of claims
p when ¢ is fixed (¢ = 0.04). In this scenario, we consider different values of p
which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper
bound of the ruin probability are given in Table 3.5. The corresponding plot is

presented in Figure 3.5.

Table 3.5: Parameter p € (0,1) and their upper bound of ruin probability

D 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001437 0.001454 0.001635 0.002689 0.004278

0.0045 1

0.0040 1

0.0035 1

0.0030 1

Ruin probability

0.0025 1

0.00:20 1

0.0015 1

0.0 0z 04 0.6 03 10

Figure 3.5: Trend of the ruin probability when p increases

From Table 3.5 and Figure 3.5, we can see that the ruin probability increases

as the probability p increases. It means that the more claims occur, the higher

value of ruin probability.
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Scenario 3.6 : We consider the trend ruin probability in terms of probability
of surrenders g when p is fixed (p = 0.04). In this scenario, we consider different
values of ¢ which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the
upper bound of the ruin probability are given in Table 3.6. The corresponding

plot is presented in Figure 3.6.

Table 3.6: Parameter ¢ € (0,1) and their upper bound of ruin probability

q 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001383 0.001412 0.001729 0.003813 0.007421

0.008 -

0.007 1

0.006 1

0.005 1

0.004 1

RBuin probakbility
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0.002 1
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Figure 3.6: Trend of the ruin probability when ¢ increases

Table 3.6 and Figure 3.6 show that the ruin probability increases when pa-
rameter ¢ increases. It means that the more surrenders occur, the higher value of

ruin probability.

From the result of Scenario 3.5 and 3.6, we can see that when either param-
eters p or ¢ increases, the upper bound of ruin probability also increases. This
suggests that the insurance company will be in the high risk when either the

probability of claims or surrenders increases.
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3.4.2 Numerical example for the value at risk

In this section, we will study value at risk (VaR) which is a risk measure

measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level w for the INMA(1) risk model,
denoted by VaR,,(S,), is the w-quantile of the distribution of the loss-profit .S,, of

the risk model. The VaR,(S,) can be written as
VaR,(S,) = inf{k € R|Fs, (k) > w}, (3.29)

where Fg, (k) be the cumulative distribution function of S,,. For our model, the

loss-profit process S, define in (3.5), can be express as

=1

n N(p n Ni(q)
—Idn+ZZsz—ZZY;k— Zik,
i=1 k=1 i=1 k=1 i=1 k=1

where {N;;i € N}, {N;(p);i € N} and {N;(q);¢ € N} follow INMA(1) model,
defined in (3.6) - (3.8), respectively.

From (3.29), we can see that we need to know the distribution of S, in order
to obtain the value at risk. However, it is difficult to obtain the distribution of S,,.
Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed

by Gray and Pitts (2012), to approximate the distribution of S,,.
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The characteristic function of S,,, denoted by ¢g, (r), can be written as follow,

—TSn]

Similar to provide Ele in the proof of Theorem 3.3.1, we have

¢s,(r) = Ele"]

= Bl Gy, (0x (1), o 05 (1)) - Gy () () (B3 (=T, o0, dx (=)

where

(1) G (D7), o Hx(0))
= exp {)\ {(n(l — ) +2a)0x(r) +a(n — 1)¢%(r) —n — a] }
(2) Gy, N ) (DY (1), o0y dx (=T))
= exp {2 (01~ ap) + 2ap)oy (1) + apln — DA () = - ap |,
and
(3) Gyt (S2(=r)s s 87(—1))

= exp {A{mu = )+ 200)bz(=r) F alg(n — 1) (~r) —n aq} }

Next, we will study the trend of the value at risk by varying various param-

eters of claim sizes and surrender values.
3.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the
behavior of the value at risk against the loss parameters, which are the claim
size and surrender value. In this section, we study the trends of the value at
risk comparing with means of claims (ﬁi) and surrenders (Bi) by varying the

Y z
parameters By and [z, respectively.
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For this section, we set the values of parameters I = 10,d = 0.2, A = 2,a =

0.25, Bx = 0.5,p = 0.4, ¢ = 0.07 and n = 12.

Scenario 3.7 : The trend of value at risk in the terms of parameter By where
the parameter 8z is fixed (87 = 1.5). The confidence level considered in this
scenario is w = 0.95. In this scenario, we consider different values of Sy which are

0.5, 0.75, 1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 3.7.

Table 3.7: Parameter By € [0.5,2] and VaRg.95 (S12)

By 05 075 10 1.5 2.0
VaRoos (S12) 11856 118.41 117.24 113.43 110.13

Table 3.7 show that the value at risk decreases as parameter [y increases.

That is the value at risk decrease when the mean of claim size decreases.

Scenario 3.8 : The trend of value at risk in terms of parameter S where the
parameter [y is fixed (By = 1.5). The confidence level considered in this scenario
is w = 0.95. In this scenario, we consider different values of 57 which are 0.5, 0.75,

1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 3.8.

Table 3.8: Parameter 3z € [0.5,2] and VaRgg5 (S12)

B 05 0.7 1.0 15 2.0
VaRoos (S12) 11856 118.32 117.09 113.43 110.37

Table 3.8 show that the value at risk decreases as parameter (5 increases.

That is the value at risk decrease when the mean of surrender value decreases.
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The result from Scenario 3.7 and Scenario 3.8 show that the value at risk
decrease when either the mean of claim sizes or the mean of surrender values,
perform as the loss of the model, decreases. Therefore, it is reasonable that if the
claim sizes and surrender values decrease, the maximum loss of the company also

decrease.



CHAPTER IV

INTEGER-VALUED AUTOREGRESSIVE
RISK MODEL WITH INVESTMENT AND

SURRENDER

In Chapter 3, we constructed INMA(1) risk model. For this chapter, we
consider the first order integer-valued autoregressive (INAR(1)) process into the
risk model. Because the forecasted data in INAR(1) process have correlation with
all other previous data. Section 4.1 introduces the model and describes notations
used in this chapter. In Section 4.2, we provide definition and some properties
of INAR(1) risk model. We then obtain the adjustment coefficient function to
approximate the ruin probability in Section 4.3. Moreover, we also give numerical
examples to study the trend of ruin probability and value at risk in terms of model

parameters in Section 4.4.

4.1 The discrete-time risk model

Let {U,;n € N} be the surplus process of insurance company with incorpo-
rating investment and surrender at time n. For initial capital u, the discrete-time

risk model can be written as

Un:u+ldn+iAi—iBi—i(]i, (4.1)
i=1 =1 i=1

where [ is the investment capital for I < u, d represents the investment income

per unit of time. The sequence of aggregates of premium amounts in period 1,



o1

denoted by {A;;i € N}, is defined as

N;
A= X, (4.2)
k=1

where {X,; k € N} is the sequence of premium sizes in period ¢ assuming to be
i.i.d. random variables and N; is the number of premiums in period .
The sequence of aggregate of claim sizes in period i, denoted by {B;;i € N}, is

defined as, for 0 < p < 1,

Ni(p)

B =Y Y,
k=1

where the sequence of i.i.d. random variables {Y;x; k € N} denotes claim sizes in
period ¢, and N;(p) is the p-thinning process of N; denoting the number of claims
in period .

The sequence of aggregate of surrender values in period i, denoted by {C;;i € N},

is defined as

Ni(q)
Oi — Z Zi,k:?
do= T

where the sequence of i.i.d. random variables {Z; ;k € N} represents surrender
values in period ¢, and N;(q) is the ¢-thinning process of N; denotes the number

of surrenders in period ¢ for 0 < ¢ < 1 such that 0 < p+ ¢ < 1.

4.2 Definition and properties of INAR(1) risk model

In this section, we provide definition and some properties of the INAR(1)

risk model.
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For the INAR(1) risk model considered in this chapter, we suppose that the
processes {N;;i € N}, {N;(p); 1 € N} and {N;(q); i € N} follow INAR(1) processes.

The processes are defined under the condition that Ny, Ni(p) and Ni(q) follow
A A

Poisson distribution with means , and , respectively.
l—a 1—ap 1—aq

The structures of {N;;i € N}, {N;(p);i € N} and {N;(¢);7 € N} are described as

follows.

The process of the number of premiums {N;; 7 € N} can be defined as
Ni = @O Ni—l + Eis (43)

where a € [0,1], {&;}iz12.. s a sequence of i.i.d. random variables following the
Poisson distribution with mean A and o N;_; is the binomial thinning operator

defined as

Ni_1
aoNj_; = E di—l,ja
Jj=1

where {d; ;};=12,.. is the sequence of i.i.d. Bernoulli random variables with pa-

goee

rameter « for all 1.

The process of the number of claims {N;(p);i € N} can be defined as

Ni(p) = (ap) o Ni_1(p) + i, (4.4)

where {7;}i—12,.. is the sequence of i.i.d. random variables following the Poisson
distribution with mean A and (ap) o N;_1(p) is the binomial thinning operator

defined as

N;—1(p)

(ap) o Ni_1(p) = Z €i—1,55

Jj=1

where {e; j};—12,. is the sequence of i.i.d. Bernoulli random variables with pa-

oo

rameter ap.
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The process of the number of surrenders {N;(¢);7 € N} can be defined as

Ni(q) = (aq) o Ni-1(q) + pi, (4.5)

where {y;}i=12,. is the sequence of i.i.d. random variables following the Poisson
distribution with mean A and («q)o N;_; is the binomial thinning operator defined

as
Ni-1(q)
(ag) o Nialg) = > firjs
j=1

where {fi;}j=12.. is the sequence of i.i.d. Bernoulli random variables with pa-

rameter agq.

Next, we give the properties of the number of premiums, the number of
claims and the number of surrenders, denoted by {V;;i € N}, {N;(p);i € N} and

{Ni(q);1 € N}, respectively.
Proposition 4.2.1. Let {N;;i € N} be defined in (4.3). Then {N;;i € N} has
the following properties, for all 1 € N
_ oToelF)
(1) Gn,(2) = eT-a for z € R,

(2) N; is stationary process,

k
(5) Cov(N;, Ni_y) = IAO‘

for k > 1,
-«

(6) Corr(N;, N;_p,) = o for k > 1.
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Proof. To prove (1) and (2), we will show that N; follow the Poisson distribution

with mean for all 1.
-«
Note from the assumption that N; has Poisson distribution with mean .
-«
Next, we will prove that {N;;i € N} is stationary process with mean . by the
-«

mathematical induction as follows.
For the inductive step of the mathematical induction, we assume that Gy, (z) =

25 (z-1)
eT-a . Then we have,

GN¢+1<Z) N E[ZNHI]
— E[ZaoNﬁsH.l]
= B[N B[2f+1] (4.6)
~ E[(1 ~ a) + 02) ] B["]

A

/A eg((l—a)—&-az—l) (47)

A
. =2(z-1)
SR -

where we use the fact that the process {N;;i € N} is independent of {e;}i—1.

to obtain (4.6) and use the assumption that Gy, (z) = ema) and the fact

that {g;};=12, . is a sequence of i.i.d. random variables following the Poisson

distribution with mean A to obtain (4.7).
Therefore, we can conclude that Gy, (2) = e=a Y for all i € N and {N;;1 € N}

is a stationary process.

To prove (3), note that

E(NZ) = E(a 9) Ni—l + €Z‘)
— E(ao Ni1) + E(&)

=aF(N;_1) + E(s;)
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From Proposition 4.2.1 (2), E(N;) = E(N;_1). Therefore,

- (4.8)

where we use the fact that {e;};=1 2 has the Poisson distribution mean A to obtain

goos

(4.8).

To prove (4), from Lemma 2.1.1 (b), note that

Therefore, we can obtain the variance of {N;;i € N} as follows.

Var(N;) = E(N?) — E*(N;)

A 2+ A Ay
C\1l-a 1l—a 1l -«
A

1—a’




To prove (5), for k > 1, we consider

Cov(N;, N;—x) = Cov(awo N;_1 + &4, N;_)
= Cov(a o N;_1, N;_) + Cov(e;, N;_i)
= aCov(N;_1, N;_x)
= aCov(ao N;_o+¢€;-1, N;_x)
= a?Cov(N;_y, Ni_y)
= a?Cov(a o Nij_ + €i_2, Ni_3)

= OéSCOV(Ni—s, Ni—k)a

where we use the fact that the process {V;;i € N} be independent of {e;}i—1 2

to obtain (4.9) — (4.11).

By recursively, we have

COV(NZ', Nz—k:) — akCOV(NZ'_k, Nz—k)

= o*Var(N;_;)
af )

11—«

To prove (6), from Proposition 4.2.1 (4) and (5), we have

Cov(Ns, Ni_)
\/Vzr(Ni)\/Var(Ni_k)
_ <1oz_)\a> (1 ; a)

= Oék.

Corr(N;, N;_y) =

26

(4.9)

(4.10)

(4.11)

gooe
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Similar to Proposition 4.2.1, we can provide the properties of the processes
{N;(p);i € N} and {N;(q);i € N} presented in Proposition 4.2.2 and Proposition

4.2.3, respectively.

Proposition 4.2.2. Let {N;(p);i € N} be defined in (4.4). Then {N;(p);i € N}

has the following properties, for all i € N.

(1) Gy (2) = eV for z € R,

(2) N;(p) is stationary process,

3) ENp) = =
() Ve = 1,
(5) Cov(Ni(p), Ni_i(p)) = i@@; ek

(6) Corr(N;(p), Ni_x(p)) = (ap)k for k > 1.
Proposition 4.2.3. Let {N;(¢);i € N} be defined in (4.5). Then {N;(q);i € N}
has the following properties, for all 7 € N.

(1) Gro)(2) = eV for 2 € R,

(2) N;(q) is stationary process,

) EM{0) = 1=
(@) Var(Nig) = o
(5) Cov(Ni(q), Ni—k(q)) = i\(fi); for k> 1,

(6) Corr(N;(q), Ni_x(q)) = (aq)* for k > 1.
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Next, following Joe (1997), we will give the dependence structure of the

process {N;;i € N} by writting N;;; in the terms of N; for 7 € N.

Theorem 4.2.1 ([8], p. 263). The dependence structure of the Poisson INAR(1)
process can be defined by,

7 €k

Ny
Nipr = E darjdzyj - - diy115 + E E Arg1kj - dig1hg + Eigt
j=1

k=2 j=1

where {d; j};=12, . is the sequence of i.i.d. Bernoulli random variables for all .

gooe

The following theorem obtains the generating function of the sum of INAR(1)

process.

Theorem 4.2.2. Let INAR(1) process {N;;7 = 1,2, ...} be defined in (4.3). The
generating function of the sum of {N;;i = 1,2,..,n} process can be written as

follows.

n

Gp,(t) = exp {)\(275 = (at) + (1 - a)tz_:(n —k—2)(at)* — (n — 1))

A ("1™ — 1) }

+1—a

where P, = Ny +---+ N, forn =23, ...

Proof. From Theorem 4.2.1, we have

Gp,(t) = B [thr ]
=F [tNltZ?;11 Ni+1}
— N — i —
—F [tNl I DD DAY SPT PSS RPED D) D RS LY. SRV LD NVED iy 5i+1] _

(4.12)
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From Theorem 4.2.1 and the fact that N; follows the Poisson distribution with

mean , we will provide the generating function Gp, (t) in the case of n = 2, 3.

For n = 2, from (4.12), we have

Gp,(t) = B[]
= B [ dm‘tﬁ?]

—E|tME {tiéﬁl a1 N1H E (t2) (4.13)
3 Ny -

=E |tME ][]t N1] E(t)
L Jj=1 i
AR :

=E|t" ][ -a+at)| E(t?) (4.14)
L Jj=1 N

E[tN(1—a+at)M'] E(t?)
=E (1= a)t+ at®)™M] E (1)

— eroall=a)t+at®—1] A (t=1), (4.15)

where we use the fact that the random variable N is independent of €5 to obtain

(4.13), use the fact that {d;;};=12, . be the sequence of i.i.d. Bernoulli random

oo

variables with parameter « to obtain (4.14) and we use the fact that the random

and A to obtain

variables N; and e be the Poisson distribution with means

—
(4.15).
For n = 3, from (4.12), we get
GP3 (t) _ E[tN1+N2+N3]
—FE _tNl +Z;V:11 d21j+2§\7:11 do15d31; tz?:l d3a; t82+€3:|
- F _tN1+Z;V:11 d21j+2§\7:11 d21jd31j:| E [t52+222:1 d32j:| E(t83) (416)
— E -tNl-i-Z;V:ll d21j+2;-v:11 d21jd31ji| 6)\[(1—01)t+at2_1]€)\(t—1) (417)




where we use the fact that the random variable Ny is independent of {e;};=12 . to

goee

obtain (4.16) and the fact that {e;},—12 . be the Poisson distribution with means

gooe

A to obtain (4.17).
Next, we will separately consider the first term of (4.17). Then
E tNlJrZ;V:ll d21j+2§\7:11 d21jd31j:|

=E |t"E tzjy:lldij[tzjvzlld21jd3lj|N1,d2lj]

%)

Ny
H 42154315 |N17 d21j] 'N1] ]

— B [tVE [Zh e p

L i =1
r [Ny N
= |t"ME thm H(l —a+ atdQlj)|N1” (4.18)
L Lj=1 Jj=1
- y
=E |tVME |J](1—a)t® + at*® \N1”
L Lj=1
.
=E[t" [0 - )1 —a+at) +a(l —a+at?) (4.19)
L J=1
=E[t"((1-a)’+a(l—a)t+a(l—a)+a?t*)M]
=E[(1=a)’t+a(l—a)t®+a(l —a)t+o?t*)M]
— eI 2 2 [(1—a)t+a(l—a)t?+a?t3— 1}’ (420)

where we use the fact that {d; ;};—12 . is the sequence of i.i.d. Bernoulli random

goee

variables with parameter « to obtain (4.18) and (4.19) and we use the fact that

N; be the Poisson distribution with mean to obtain (4.20).

-«
Substitute (4.20) into (4.17), we obtain

Gpg( ) . el —[(1-a)t+a(l—a)t?>+at3 1] /\[(l—a)t+at2—1]e>\(t—1)' (4‘21)

By the same technique in obtaining (4.15) and (4.21), we can write in the general

form of Gp,(t). For n = 2,3, ..., we have
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_ N n n
G, (t) = B[tV Ein Tt dangdanediga oot £52, T oot 252, Tl iy
n
En_ n En—
oo g2t P Ty din—2j pen 14300 dny te”]
N+Y P M doyjdayjoeedig 1y e24+352, [Tis di2j es+ 520 [l diss
— E ™ i=1 j=1 42154315 Gi41,15 E 152 j=111li=3 44,25 E t°3 g=111li=4 %3]

.. E |:t5n—2+22212 H?:n,1 di,n72ji| E |:t5n—1+zjzzl dn,nflji| E (t5n)

_ 6ﬁ[(lfa)t+a(1fo¢)t2+a2(lfa)t3+---+a”’2(1fa)t”*1+a"*1t"71]

X eA[(l—a)t—f—a(l—a)t2+a2t3+~~~+cx"_3(l—cx)t”_2+an_2tn_l—1] L. )\[(l—a)t+at2—1]e)\(t—1)

(&

— Alttat’ ot tan T2l 20 A_[an—Lln—1]

. ex[(l—a)t+a(1—a)t2+a2t3+~~+a"*3(1—a)t"*2+a”*2t"*1—1] . e)\[(l—a)t+o¢t2—1]6)\(t—1)

= exp {)\(Qt:;:(at)k T — a)t:;:(n —k —2)(at)* — (n — 1))
("Mt — 1)}.

A

+1—a

4.3 Adjustment coefficient

In this section, we derive the adjustment coefficient function for the INAR(1)
risk model and adjustment coefficient to obtain the approximation of ruin proba-

bility.

Theorem 4.3.1. The adjustment coefficient function of the risk model defined in

(4.1) is given by

lr) = =431 = () (s )+ 30— a0 (s

A1 = ag)My(r) (W) 3,

1 1
for all r such that My (r) < — and Mz(r) < —.
ap aq
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Proof. From (2.3), the adjustment coefficient function is defined as,

c(r) = lim lln E(e™). (4.22)

n—oo N,

Therefore, We will first derive E[e™"5"].
From (3.5) and the fact that {A;;i € N}, {B;;i € N} and {C;;i € N} are inde-

pendent, we have

—T(Idn—i— Xn:AZ - Xn:BZ — Zn: Cl)
=1 =1 =1

Ele™™"] = E |e

= E I:e—’/‘fdn] . E [e_TZ?Zl A'L:l . E [QTZ?ZI B1:| . E |:6r2?:1 Cl:| . (423)

For the second term of (4.23), note that the aggregate of premium amounts

{A;;1 € N} defined in (4.2). Then

E [6_7" iz Ai]
— E[e‘”‘l g e*rAn]
= Ele™" PIALHD PR IS i) Xnb]
= BE[e Sk Xun . L e T Xuk | Ny L N]]
= B [(Mx(=r))™ - (Mx(=r))"™]

= Gp,(Mx(-1)),

where P, =Ny +---+ N,.
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From Theorem 4.2.2, we obtain

E [e_rZ?ilA]
= ex { <2MX i (aMx(— (1 —a)Mx(—r) H(n — k- 2)(aMX(—T))k>
k=0
+ ] i\ - (" 'ME(=r) = 1) = A(n — 1)}
= exp {2)\MX i aMx(—r))* + A1 — a) Mx(—r)(n — 2) “(OzMx(—T‘))"’

k=0

b
Il

0
—2

— A1 —a)Mx(— ZkaMX
k=0

lja(anl Mg(=r)—1) — )\(n—l)}

— exp {2>\MX(_7~) (1 2 (onX(—r))) —1>

1 —OéMx(—T
i tait )
1—0(Mx(— )

+

+ A1 — a)Mx(=r)(n — 2)(

(n = 2)(aMx(—r))""  aMx(-r) = (@Mx(=r))"""
— A1 - Oz)MX(—T)( 1 —aMx(—r) (1 — aMy(—r))? )

A ("' ME(=r)—1) = A(n — 1)}

1l—«
o (5o

+

n—2 aMy(=r) = (aMx(=r))""!
+ A1 —a)Mx(—r) <1 —aMx(=r) "~ (1— aMy(—r))? )
T i ~(a" Mg (=r) = 1) = A(n — 1)}- (4.24)

By the same technique, we can obtain the last two terms of (4.23) as the following,

Ele" =215 = Gp, () (My (1))
1 — (apMy (r))"*
= exp {2/\My(7“)( 1 — apMy (r) )
n—2 _apMy(r) — (OZPMY(T))TL_I)
1 — apMy(r) (1 —apMy(r))?

((ap)”_lM{}(r) — 1) — A(n — 1)}, (4.25)

+Au—amme(

A

+1—04]9
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and

Ele"X=1%] = Gp, () (Mz(r))

1 — (agMy(r))"!
= exp {QAMZ(T)< 1 — agMy(r) )
(=2 agMy(r) — (agMy(r)
+ A1 — agq)My( )(1 g My () (1 — agMy(r))? )
(00 a0) — 1) = A= D, 20

where P,(p) = Ni(p) + -+ + Na(p) and F,(q) = Ni(q) + -+ + Nu(q).
Substitute (4.24) — (4.26) into (4.23), we have

E[e—rsn] - B [6_T1dn} . E [6—7"2?:1 Ai] . E [67"2?:1 Bi] B [67"2?:1 Ci]
AN (aMX(—r))”l)
1 —aMx(—r)
nd M) leb o)
1 — aMx(—r) (1 —aMx(—r))?

= exp { —rldn + 2/\Mx(—7’)(

+ (1 — a)MX(—r)<

1 i —(a" MR (1) = 1) = Mn - 1)
-2 ()

n—2 apMy (r) — (apMy (r))"
+ g w A< (1 TopMy(r) T (1— apMy(r))? )

A
1—ap

+ 2\M (1) (

((ap)”_lM{E(r) - 1) —A(n-1)

1-— (OéqMZ(T))"1>
1 — agMy(r)

+ A1 — aq)Mz(r) (

A
1—aq

n—2 _agMy(r) - (OéC_IMZ(T))n)
1 —agMy(r) (1 —agMz(r))?

((aq)"‘lMg(r) — 1) —An — 1)}
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Then, we consider the logarithm of the last equation as follows.

1 _Tsn 1 n n n
glnE(e ):ElnE{exp{—r(]dn—kZAi—;Bi—;C’i)}]

(n—2)A(1 —:a)MX(—T)
1 —aMx(—r)
MM (1) (-2 + (3 — 0) My (1) o
! ( (1= aphx(—1))? ) (ede(=r)™ =)

A " (n —2)A(1 — ap) My (r)
o (@Mx (=) = Dt = apMy (—r)
LIS AL PR
% (n —2)A(1 — aq)Mz(r)
1—ap ((OépMy<7’)) = 1) + 1 — O((]Mz(r>

AMz (1) (=2 + ag(3 — ag) My (1)) n-1_
* ( (= apMy ()2 ) (eahz(r)™ =1)

((agMz(r))" —1) — 3X\(n — 1)} (4.27)

n

1
= —{ —rldn +

_|_

Aap

Aag
1—aq

M _ n
Since 0 < aMx(—r) < 1, then the limit of the term M as n approaches
n

infinity is equal to zero. From the assumption that apMy (r) < 1 and agMz(r) <

(apMy (r))* . (agMy(r))"

1, then the terms of

go to zero as n go to infinity.

Then we will take the limit into (4.27) as n approaches infinity, we have

1
c(r) = lim =In E(e ")

n—oo M

— —rId+ A(1 — a)Mx(—r) (%)

+ A1 — ap)My(r) (m>
1

+ A1 — aq) My (r) (TW) 3.
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Next, we will show that the solution of adjustment equation is the unique

positive solution.

Proposition 4.3.1. The adjustment equation ¢(r) = 0 has the unique positive

solution R which is called the adjustment coefficient.

Proof. To show that ¢(r) = 0 has the unique positive solution, we will show the

function ¢(+) has following properties

(3) '(r) >0 Vr e (0,00),

(4) lim ¢(r) = oo.

7—00

To prove (1), we will substitute » = 0 into the adjustment coefficient ¢(r) defined

in Theorem 4.3.1, then we have

¢(0) = A(1 — oz)(lia) (1 —ozp)(l _1ap> A —ozq)(l faq) _3)
=0.

To prove (2), note that

(ﬂﬂ:_Jd+M1_®(—u—aM&«w»Mﬂ—w—aMxemM&vw»

(1 —aMx(—r))?

(1 — apMy (r)) M (r) + apMy (1) M (1)
*A“‘a”< (1= apMy () )

(1 — aqM(r) My(r) + aqMy(r) My (r)
*A“‘a”< (0 — aghy ()2 )

=—-Id+ M1 - «) <<1 __i\j\;}izjn)y) +A(—ap) ((1 —]\ﬁog\}:zﬂV)

+ M1 — ag) ((1 _Ailzq(]\};zr))z) . (4.28)
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Then we substitute » = 0 into (4.28) and get,

—-FEX LEY
'(0) = —Id+ X1 — A1 — —_—
EZ
A1 — —_—
=—Id— A EX + A EY + A EZ
-« 1—ap 1 —aq
<0,

where we use Proposition 3.1.4 and Propositions 4.2.1 — 4.2.3 (2) to obtain the
last inequality.
Hence, ¢(0) < 0.

To prove (3), consider

() = M1 - a) ((W(‘”“ — M (=) + 20(Mie(—r))*(1 - aMx<—r>>)

(1 —aMx(-r))*

M (r) (L — apMy ()2 + 20p(My(r)2(1 — apMy (1)
M1~ ap) ( (1~ aphly (r))? )

M) (1 — agM(r))? + 20q(My(r)2(1 — agMa(r))
M1~ ag) ( (= agM(r)* )

.

= aMy(—r)P " (1= abx(-1))
. M(r) 20p( My (r))?
T Al - op) ((1 TapMy (e I apMY<r>>3)
. My (r) 20q(My(r))’
(o) A i)

As we know that moment generating function is always positive. From the fact
that 0 < Mx(—r) < land 0 < o < 1. So, the term of 1 —aMx(—r) is greater than
0. Since My (r) < ozip and My(r) < oziq’ we can get that the terms of 1 —apMy ()
and 1 — agMy(r) are greater than 0 for 0 < p,¢ < 1 and 0 < p+ ¢ < 1. Hence,
we can conclude that the right hand side of the last equation is positive.

Therefore, ¢’(r) > 0.
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To prove (4), From Theorem 4.3.1, the adjustment coefficient can be express as

1) = =t .30 = i) (s ) 30 i) ()

AL = ag)My(r) (#MZM) N

From the right hand side of the equation, we can see that the terms of moment
generating functions My (r) and Mz(r) grow faster than the polynomial term,
determined by the term of —rId. Moreover, from Proposition 4.3.1 (3), we have
1 —aMx(—r), 1 — apMy(r) and 1 — agMy(r) are positive for 0 < p,q < 1 and

0 <p+q < 1. Hence, lim ¢(r) = oo. ]

=00

4.4 Numerical example

In this section, we study the effect of ruin probability and value at risk
comparing with the parameters of premiums, claims and surrenders via numerical

example by using Python and R programming.

Our examples are performed for a special case where we assume that the se-
quence of premium sizes X = {X; s }i x=12.. is a sequence of i.i.d. random variables

1
which are exponentially distributed with mean 5—, the sequence of claim sizes
X

Y = {Yir}tik=12. . is asequence of i.i.d. random variables which are exponentially

1
distributed with mean — and the sequence of surrender values Z = {Z; 1. }i k=12,
Y

is a sequence of i.i.d. random variables which are exponentially distributed with

1
mean —, respectively.
Bz
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Therefore, the moment generating functions of X, Y and Z are defined by

Mx(r) = 25y = P

r << min{@y, 5z}

respectively, for

and Myz(r)

B 52—7‘7

4.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability in the term of

premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as
W(u) ~e

where R is the adjustment coefficient.

Firstly, we will calculate the unique positive solution of the adjustment co-
efficient equation as follows.

From theorem 4.3.1, we have,

0=c(r)

= —rId+ A1 — a)Mx(—r) (%) + A(1 — ap) My (r) (m)

AL = ag)My(r) (W) 3

:—r[d—l—)\(l—a)( Bx )—i—)\(l—ap)(( By )

(1—a)Bx +r 1L—ap)By —r

+A(1—aq)( oz )

(1—aq)Bz—r

where 0 < p,g<1,0<p+¢g<1andr <min{(l — ap)fy, (1 —aq)Bz}.
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Next, we will study the effect of ruin probability by changing the parameters
of premium size, claim size, surrender values and investment in Section 4.4.1.1. In
Section 4.4.1.2, we will consider the effect of ruin probability in terms of proba-

bilities of claims and surrenders.
4.4.1.1 Effects from premiums size, claim size and surrender value

In this section, we will discuss the trend of ruin probability comparing with
income and expenses of insurance company where the income are determined by
the premium sizes and investments and the expenses are determined by the claim
sizes and surrender values, respectively. The parameters of the model considered

1 1
in this section are the mean of premiums <6—>, the mean of claims (5_) and
X Y

1
the mean of surrenders (ﬁ_) and investment ().
z

For this section, we set the values of I = 10,d = 0.2, A\ = 2,a = 0.25,p =

0.4,q = 0.07 and the initial surplus u = 12.

Scenario 4.1 : The trend of ruin probability in terms of the parameter Sx
where the parameters Sy and (7 are fixed (By = 7 = 1.5). In this scenario, we
consider different values of Sx which are 0.5, 0.75, 1.0, 1.5 and 2.0, respectively.
The values of the upper bound of the ruin probability are given in Table 4.1. The

corresponding plot is presented in Figure 4.1.

Table 4.1: Parameter Sx € [0.5,2] and their upper bound of ruin probability

Bx 0.5 0.75 1.0 1.5 2.0
Upper bound 0.003013 0.006638 0.013735 0.049486 0.145657
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Figure 4.1: Trend of the ruin probability when Sy increases for INAR(1) risk model

From Table 4.1 and Figure 4.1, we can see that the ruin probability increases
when Sy increases. That is the ruin probability increases when the mean of

premium size decreases.

Scenario 4.2 : The trend of ruin probability in terms of the parameter [y
where the parameters Sx and 7 are fixed (6x = 0.5 and Sz = 1.5). In this
scenario, we consider different values of Sy which are 0.5, 0.75, 1.0, 1.5 and 2.0,
respectively. The values of the upper bound of the ruin probability are given in

Table 4.2. The corresponding plot is presented in Figure 4.2.

Table 4.2: Parameter By € [0.5,2] and their upper bound of ruin probability

By 0.5 0.75 1.0 1.5 2.0
Upper bound 0.656398 0.189402 0.060250 0.008994 0.002348
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Figure 4.2: Trend of the ruin probability when Sy increases for INAR(1) risk model

Table 4.2 and Figure 4.2 show that the ruin probability decreases and reaches
to 0 as parameter By increases. It means that the ruin probability decreases when

the mean of claim size decreases.

Scenario 4.3 : The trend of ruin probability in terms of the parameter S5
where the parameters fx and [y are fixed (6x = 0.5 and Sy = 1.5). In this
scenario, we consider different values of 57 which are 0.5, 0.75, 1.0, 1.5 and 2.0,
respectively. The values of the upper bound of the ruin probability are given in

Table 4.3. The corresponding plot is presented in Figure 4.3.

Table 4.3: Parameter 3z € [0.5,2] and their upper bound of ruin probability

Bz 0.5 0.75 1.0 1.5 2.0
Upper bound 0.558193 0.156177 0.050661 0.008994 0.002994
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Figure 4.3: Trend of the ruin probability when Sz increases for INAR(1) risk model

From Table 4.3 and Figure 4.3, we can see that the ruin probability decreases
and reaches to 0 when parameter 3 increases. It means that the ruin probability

decreases when the mean of surrender value decreases.

Scenario 4.4 : The trend of ruin probability in terms of the investment [
where the parameters Sy, Sy and Sz are fixed (6x = 0.5 and By = Bz = 1.5).
In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0,
8.0 and 10.0, respectively. The values of the upper bound of the ruin probability

are given in Table 4.4. The corresponding plot is presented in Figure 4.4.

Table 4.4: Parameter I € [1,10] and their upper bound of ruin probability

Investment 1.0 3.0 5.0 8.0 10.0
Upper bound 0.053791 0.029349 0.015519 0.005795 0.003013
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Figure 4.4: Trend of the ruin probability when I increases for INAR(1) risk model

Table 4.4 and Figure 4.4 show that the ruin probability decreases when
the investment increase. It means that the more amount the insurance company

invests in financial markets, the smaller value of ruin probability.

From the result in Scenario 4.1 - 4.4, we can see that the ruin probability
increases as the income of the model, determined by the mean of premiums and
investment, decrease. Whereas the ruin probability decreases as the expenses of

the model, determined by means of claims and surrender, decrease.

4.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the change of the ruin probability in terms of

the probability of claims (p) and the probability of surrenders (g).

For this section, we set the values of I = 10,d = 0.2, A = 2, = 0.25, Bx =

1, By = 2,87 = 1.5 and the initial surplus u = 12.
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Scenario 4.5 : The trend of ruin probability in terms of probability of claims
p when ¢ is fixed (¢ = 0.04). In this scenario, we consider different values of p
which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper
bound of the ruin probability are given in Table 4.5. The corresponding plot is

presented in Figure 4.5.

Table 4.5: Parameter p € (0,0.9] and their upper bound of ruin probability

D 0.001 0.01 0.1 0.5 0.9
Upper bound 0.00129 0.00127 0.001471 0.002683 0.005553
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Figure 4.5: Trend of the ruin probability when p increases for INAR(1) risk model

From Table 4.5 and Figure 4.5, we can see that the ruin probability increases
as the probability p increases. It means that the more claims occur, the higher

value of ruin probability.

Scenario 4.6 : The trend of ruin probability in terms of probability of claims
g when p is fixed (p = 0.04). In this scenario, we consider different values of ¢

which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper
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bound of the ruin probability are given in Table 4.6. The corresponding plot is

presented in Figure 4.6.

Table 4.6: Parameter ¢ € (0,0.9] and their upper bound of ruin probability

q 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001241 0.001267 0.001561 0.004093 0.011302
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Figure 4.6: Trend of the ruin probability when g increases for INAR(1) risk model

Table 4.6 and Figure 4.6 show that the ruin probability increases when pa-
rameter ¢ increases. It means that the more surrenders occur, the higher value of

ruin probability.

The result of Scenario 4.5 and 4.6 show that the increased in the probability
of claims (p) and the probability of surrenders (¢) make more the value of ruin

probability.
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4.4.2 Numerical Example for the value at risk

In this section, we will study the value at risk (VaR) which is a risk measure

measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level w for the INAR(1) risk model,
denoted by VaR,,(S,), is the w-quantile of the distribution of the loss-profit .S,, of

the risk model. The VaR,(S,) can be written as
VaR,,(S,) = inf{k € R|F, (k) > w}, (4.29)

where Fg, (k) be the cumulative distribution function of S,.

For our model, the loss-profit process S, define in (3.5), can be expressed as

=1

n N(p n Ni(q)
—Idn+ZZsz—ZZY;k— Zik,
i=1 k=1 i=1 k=1 i=1 k=1

where {N;;i € N}, {N;(p);i € N} and {N;(q);i € N} follow INAR(1) model,
defined in (4.3) - (4.5), respectively.

From (4.29), we can see that we need to have the distribution of S,, in order
to obtain the value at risk. However, it is difficult to obtain the distribution of S,,.
Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed

in [5], to approximate the distribution of S,,.
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The characteristic function of S,,, denoted by ¢g, (), can be written as fol-

—TSn]

lows. Similar to provide Ele in the proof of Theorem 4.3.1, we have

¢s,(r) = Ble"™]

= Ele" "] - Gp,(¢x(r)) - G, (9y(=1)) - Gp, () (02(-7)),

where P, = Ny +- -+ Ny, Po(p) = Ni(p) +- -+ Na(p) and Po(q) = Ni(q) +-- -+
N, (q), where

(1) Gp,(px(r))
= exp {2>\¢X(T) <1 _1 (—ai);ir():; )
n=2  agx(r)— (a(bX(r))n)
T—agx(r)  (1—aox(r))?

(a™ () — 1) — A(n — 1>},

A —a>¢>x<r>(
A
1 -«

(2) Gp.)(¢v(=7))

o Lo (L= (por (-
- P {ZM)Y( >< 1 — apoy(—r) >

n—2 _ appy (—r) — (04P¢Y(_7°))n)
1 — apgy (—r) (1 —appy(—r))?

()™ (=) — 1) — A(n — 1>},

+

A ap>¢y<—r>(

n A
1—ap

and
(3) Gru(o)(92(=7))
— oxp {sz(_r) (1 - (aqqﬁz(—r))”‘l)

1 —aqpz(—)
n—2 B aqopz(—r) — (QQ¢Z<_T))n>
1 —aqpz(—r) (1= agpz(—r))?

(06 (—r) — 1) — A(n — 1>}.

(- aqwz(—r)(

A

+
1—agq
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Next, we will study the trend of the value at risk by varying various param-

eter of claim size and surrender values.
4.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the
behavior of the value at risk against the loss parameters, which are the claim size
and surrender value. In this section, we study the trend of the value at risk in
terms of mean of claims (%) and the mean of surrenders (%) by varying the

Y z
parameters By and [z, respectively.

For this section, we set the values of parameters I = 10,d = 0.2, A = 2,a =

0.25,8x =0.5,p=04,¢g =0.07 and n = 12.

Scenario 4.7 : The trend of value at risk in the terms of parameter 3y where
the parameter 8z is fixed (87 = 1.5). The confidence level considered in this
scenario is w = 0.95. In this scenario, we consider different values of Sy which are

0.5, 0.75, 1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 4.7.

Table 4.7: Parameter By € [0.5,2] and VaRg.95 (S12)

By 05 0.7 1.0 15 2.0
VaRoos (S12) 11847 117.96 11640 112.44 110.22

Table 4.7 shows that the value at risk decreases when parameter fy increases.

That is the value at risk decreases when the mean of claim size decreases.
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Scenario 4.8 : The trend of value at risk in terms of parameter 5, where the
parameter [y is fixed (By = 1.5). The confidence level considered in this scenario
is w = 0.95. In this scenario, we consider different values of 57 which are 0.5, 0.75,

1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 4.8.

Table 4.8: Parameter 8z € [0.5,2] and VaRg.95 (S12)

Bz 0.5 0.75 1.0 1.5 2.0
VaRgo5 (S12) 11850 117.81 116.19 112.44 110.37

Table 4.8 shows that the value at risk decreases as parameter §; increases.

That is the value at risk decreases when the mean of surrender value decreases.

From Scenario 4.7 and Scenario 4.8, we can conclude that the value at risk,

described as the maximum loss of the company, decreases when the either claim

sizes or surrender values decreases.



CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis, we introduce two discrete-time risk models by incorporating
the concepts of investment and surrender where the number of premiums, claims

and surrenders follow integer-valued time series.

In chapter 3, we construct the first order integer-valued moving average
risk model with investment and surrender. We also provide some properties of
the model. Moreover, we study the risk measures for this model which are the
approximation of ruin probability and the value at risk. Finally, we discuss the

risk measures of the model by numerical simulations.

In chapter 4, we construct the first order integer-valued autoregressive risk
model with investment and surrender and derive some of its properties. Then,
we provide the approximation of ruin probability of the model. We derive the
adjustment coefficient of this model and prove that it has a unique positive solu-
tion. We discuss the trend of ruin probability and value at risk against the model

parameters by numerical simulations in the last section of this chapter.

The research can be extended in many direction. For example, we can con-
sider the concepts of investment and surrender to the higher orders of integer-
valued moving average and integer-valued autoregressive processes of our data.
We can also consider other general time series models such as autoregressive mov-

ing average process.
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