
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ตัวแบบความเสี่ยงอนุกรมเวลาค่าจํานวนเต็มที่มีการถอนตัวและการลงทุน

นางสาวนันทนัช ฟูสามป๊อก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา
ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2562

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTEGER-VALUED TIME SERIES RISK MODEL WITH SURRENDER AND

INVESTMENT

Miss Nuntanut Foosarmpok

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2019

Copyright of Chulalongkorn University



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Title INTEGER-VALUED TIME SERIES RISK MODEL WITH

SURRENDER AND INVESTMENT

By Miss Nuntanut Foosarmpok

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Assistant Professor Jiraphan Suntornchost, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chairman

(Assistant Professor Boonyarit Intiyot, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis Advisor

(Assistant Professor Jiraphan Suntornchost, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examiner

(Associate Professor Khamron Mekchay, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Examiner

(Assistant Professor Dawud Thongtha, Ph.D.)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv

นันทนัช ฟูสามป๊อก : ตัวแบบความเสี่ยงอนุกรมเวลาค่าจํานวนเต็มที่มีการถอนตัวและ
การลงทุน. (INTEGER-VALUED TIME SERIES RISK MODEL WITH SUR-

RENDER AND INVESTMENT) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จิราพรรณ
สุนทรโชต,ิ 84 หน้า.

ในการศึกษานี้ เราได้สร้างแบบจำลองความเสี่ยงเวลาไม่ต่อเนื่องโดยใช้แบบจำลองอนุกรม
เวลาค่าจำนวนเต็มโดยรวมแนวคิดของการถอนตัวและการลงทุน การถอนตัวที่ถูกพิจารณาใน
การศึกษาครั้งนี้คือผู้ถือกรมธรรม์จะออกจากกรมธรรม์ก่อนวันครบกำหนดสัญญา เรายังให้
คุณสมบัติความน่าจะเป็นของแบบจำลอง นอกจากนี้เราได้สร้างการประมาณความน่าจะเป็น
ของการล้มละลายของแบบจำลองความเสี่ยงที่สร้างขึ้น สุดท้ายนี้เราอภิปรายแนวโน้มของความ
น่าจะเป็นของการล้มละลาย และมูลค่าความเสี่ยงของแบบจำลองโดยการจำลองตัวเลขตัวเลข

ภาควิชา . . . . . . . . . . . . . . . . . . .คณิตศาสตร์และ. . . . . . . . . . . . ลายมือชื่อนิสิต . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .วิทยาการคอมพิวเตอร์ . . . . . . ลายมือชื่อ อ.ที่ปรึกษาหลัก . . . . . . . . . . . . . .

สาขาวิชา . . . . . . . . . . . . . . . . . . . . . . .คณิตศาสตร์ประยุกต.์ . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .และวิทยาการคณนา. . . . . . . .

ปีการศึกษา . . . . . . . .2562. . . . . . . . . . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

## 6071956323 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : RISK MODEL / RUIN PROBABILITY / INTEGER-VALUED TIME SERIES

/ SURRENDER / INVESTMENT / VALUE AT RISK

NUNTANUT FOOSARMPOK : INTEGER-VALUED TIME SERIES RISK MODEL

WITH SURRENDER AND INVESTMENT. ADVISOR : ASST. PROF. JIRAPHAN

SUNTORNCHOST, Ph.D., 84 pp.

In this study, we construct the discrete-time risk models based on integer-valued

time series models by incorporating the concepts of surrender and investment. The sur-

render considered in this study is the situation that the policyholder decides to exit the

policy before maturity date. In our study, we provide the probabilistic properties of the

model. Moreover, we derive approximation of ruin probabilities of the constructed risk

model. Finally, we discuss the trends of the ruin probability and the value at risk of the

model by numerical simulations.

Department : . . . . . . . . . . . . . . . . . .Mathematics . . . . .and . . . . . . . . . . Student’s Signature . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .Computer. . . . . . . . .Science. . . . . . . . . . Advisor’s Signature . . . . . . . . . . . . . . . . . . . . .

Field of Study : . . . . . . . . . . . .Applied . . . . . . . . . . . . . . .Mathematics. . . . .and.

. . . . . . . . . . . . . . . . . . . .Computational . . . . . . . . .Science. . . .

Academic Year : . . . . . . .2019. . . . . . . . . . . . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi

ACKNOWLEDGEMENTS

First of all, I would like to acknowledge to my thesis advisor, Assistant Profressor

Jiraphan Suntornchost, for excellent suggestion and support for all step of my work in

master degree with her immense knowledge, patience and motivation.

Also, I would like to express my thankfulness to my thesis committee, Assis-

tant Profressor Boonyarit Intiyot, Associate Profressor Khamron Mekchay and Assistant

Profressor Dawud Thongtha, for insightful comment that made this thesis more complete.

Finally, I would like to thank my family and friends for their support throughout

my study in Chulalongkorn University.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS
Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Random variable and moments of random variable . . . . . . . . . . . . . . . 4

2.2 Compound random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Binomial thinning operator and integer-valued time series . . . . . . . . . . 11

2.5 Risk model and ruin probability . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Integer-valued Moving Average Risk Model subject to Investment

and Surrender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The discrete-time risk model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Definition and properties of INMA(1) risk model . . . . . . . . . . . . . . . . 23

3.3 Adjustment coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Numerical example for the ruin probability . . . . . . . . . . . . . . . 38

3.4.1.1 Effects from premiums size, claim size and surrender value 39

3.4.1.2 Effects from the probabilities of claims and surrenders . . 43

3.4.2 Numerical example for the value at risk . . . . . . . . . . . . . . . . . 46

3.4.2.1 Effects from claim size and surrender values . . . . . . . . 47

4 Integer-valued Autoregressive Risk Model with Investment and

Surrender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The discrete-time risk model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii

CHAPTER Page

4.2 Definition and properties of INAR(1) risk model . . . . . . . . . . . . . . . . 51

4.3 Adjustment coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Numerical example for the ruin probability . . . . . . . . . . . . . . . 69

4.4.1.1 Effects from premiums size, claim size and surrender value 70

4.4.1.2 Effects from the probabilities of claims and surrenders . . 74

4.4.2 Numerical Example for the value at risk . . . . . . . . . . . . . . . . 77

4.4.2.1 Effects from claim size and surrender values . . . . . . . . 79

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix

LIST OF TABLES

Table Page

3.1 Parameter βX ∈ [0.5, 2] and their upper bound of ruin probability . . . . . . . . 40

3.2 Parameter βY ∈ [0.5, 2] and their upper bound of ruin probability . . . . . . . . 41

3.3 Parameter βZ ∈ [0.5, 10] and their upper bound of ruin probability . . . . . . . 42

3.4 Parameter I ∈ [1, 10] and their upper bound of ruin probability . . . . . . . . . 42

3.5 Parameter p ∈ (0, 1) and their upper bound of ruin probability . . . . . . . . . 44

3.6 Parameter q ∈ (0, 1) and their upper bound of ruin probability . . . . . . . . . 45

3.7 Parameter βY ∈ [0.5, 2] and VaR0.95 (S12) . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Parameter βZ ∈ [0.5, 2] and VaR0.95 (S12) . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Parameter βX ∈ [0.5, 2] and their upper bound of ruin probability . . . . . . . . 70

4.2 Parameter βY ∈ [0.5, 2] and their upper bound of ruin probability . . . . . . . . 71

4.3 Parameter βZ ∈ [0.5, 2] and their upper bound of ruin probability . . . . . . . . 72

4.4 Parameter I ∈ [1, 10] and their upper bound of ruin probability . . . . . . . . . 73

4.5 Parameter p ∈ (0, 0.9] and their upper bound of ruin probability . . . . . . . . 75

4.6 Parameter q ∈ (0, 0.9] and their upper bound of ruin probability . . . . . . . . . 76

4.7 Parameter βY ∈ [0.5, 2] and VaR0.95 (S12) . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Parameter βZ ∈ [0.5, 2] and VaR0.95 (S12) . . . . . . . . . . . . . . . . . . . . . . 80



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

LIST OF FIGURES

Figure Page

3.1 Trend of the ruin probability when βX increases . . . . . . . . . . . . . . . . . . 40

3.2 Trend of the ruin probability when βY increases . . . . . . . . . . . . . . . . . . 41

3.3 Trend of the ruin probability when βZ increases . . . . . . . . . . . . . . . . . . 42

3.4 Trend of the ruin probability when I increases . . . . . . . . . . . . . . . . . . . 43

3.5 Trend of the ruin probability when p increases . . . . . . . . . . . . . . . . . . . 44

3.6 Trend of the ruin probability when q increases . . . . . . . . . . . . . . . . . . . 45

4.1 Trend of the ruin probability when βX increases for INAR(1) risk model . . . . 71

4.2 Trend of the ruin probability when βY increases for INAR(1) risk model . . . . 72

4.3 Trend of the ruin probability when βZ increases for INAR(1) risk model . . . . 73

4.4 Trend of the ruin probability when I increases for INAR(1) risk model . . . . . 74

4.5 Trend of the ruin probability when p increases for INAR(1) risk model . . . . . 75

4.6 Trend of the ruin probability when q increases for INAR(1) risk model . . . . . 76



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I

INTRODUCTION

In actuarial science, the risk model or surplus process describes a measure-

ment of the aggregate amount of premiums and claims corresponding to the insur-

ance company’s portfolio. The classical risk model perform as a constant premium

rate over time and the aggregate claims process. In recent years, many models

have been introduced in the two different ways: (1) the stochastic risk model, and

(2) the discrete-time risk model.

The stochastic risk model usually assumes that the number of claims follows a

counting process. For example, Huang and Yu (2013) applied a generalized double

Poisson-Geometric into insurance risk model. For more precisely, many studies,

such as Temnov (2014) and Bao (2006), extended the model by considering the

stochastic premiums. Lebbe and Sendova (2009) studied risk models when both

premium and claim aggregate processes follow compound Poisson processes. Yu

and Huang (2015) introduced the concepts of surrender, where surrender is the

situation that the policyholder will get some money from the insurance company

if he decides to terminate before maturity date. They introduced surrender and

investment into risk models where the processes of claim and surrender follow the

thinning process of the premium process.

Beside the family of stochastic risk models, many studies focused on the dis-

crete time risk models where the number of claims follows an integer-valued time

series model. The concept of the integer-valued time series models was indepen-

dently introduced in Al-Osh and Alzaid (1987), McKenzie (1988), and Joe (1997).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Later, the integer-valued time series models were applied in insurance risk mod-

els. For example, Cossette (2010) suggested the discrete-time risk model based

on Poisson MA(1) and Poisson AR(1) for the number of claim process. Moreover,

Hu, Zhang and Sun (2018), Shi and Wang (2014) and Zhang et al. (2011) also

considered the discrete-time risk model with different settings.

In this thesis, we will apply the concepts of investment and surrender into the

discrete time risk models. The number of premiums, the number of claims and the

number of surrenders in the model follow (1) integer-valued moving average model

(2) integer-valued autoregressive model. We then derive probabilistic properties

of the model. In addition, we study the two risk measures of the model which are

ruin probability and value at Risk. We also derive the adjustment coefficient to

approximating ruin probability. Finally, we provide numerical examples to discuss

the trend of ruin probability and value at Risk comparing with the parameters of

premiums, claims and surrenders.

The organization of this thesis is as follows. Chapter 2 gives basic knowl-

edge of probability, definition and properties of integer-valued time series and the

concept of ruin probability.

In Chapter 3, we introduce a new risk model based on the first order integer-

valued moving average model with surrender and investment. In this model, the

numbers of premiums, claims and surrenders follow the first order integer-valued

moving average model. In our study, we give its probabilistic properties, derive

the adjustment coefficient function to obtain the approximation of ruin probabil-

ity of the model. Finally, we discuss the trend of ruin probability and value at

risk comparing with various parameters, such as premium sizes, claim sizes and

surrender values via numerical simulations.
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In Chapter 4, we introduce a risk model based on the first order integer-

valued autoregressive model. We derive probabilistic properties, derive the ad-

justment coefficient function. Moreover, numerical studies are also provided to

study the trend of ruin probability and value at risk comparing with parameters

of the model. Finally, conclusion of this thesis is provided.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we review some basic knowledge of probability theory that

will be used in this thesis. Moreover, we give the definition and properties of

integer-valued time series and a review of the ruin probability.

2.1 Random variable and moments of random variable

In this section, we first give some definitions of random variable and some

concept of its properties.

Definition 2.1.1. The sample space S is the set of all possible outcomes from a

random experiment, and the set {s ∈ S|X(s) ∈ R} is an event in S.

Definition 2.1.2. If S is a sample space and X is a real-valued function defined

over the elements of S, then X is called a random variable.

Definition 2.1.3. Let X be a random variable from the sample space S. The set

{x ∈ R|x = X(s), s ∈ S} is the space of the random variable X, denoted by RX .

Definition 2.1.4. A random variable X is said to be discrete if the space of X is

countable.

Definition 2.1.5. Let RX be the space of a discrete random variable X. The

function f : RX → [0, 1] which is defined by

f(x) = P (X = x)

is called the probability mass function of X.
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Definition 2.1.6. Let f(·) be the probability mass function of X. Then the

cumulative distribution of X, denoted by FX(·), is defined as

FX(x) =
∑
t≤x

f(t) for x ∈ R

Definition 2.1.7. Let RX be the space of the discrete random variable X and

f(·) be the probability mass function of X. Then

(a) f(x) ≥ 0 for all x ∈ RX ,

(b)
∑
x∈RX

f(x) = 1.

Definition 2.1.8. Let X be a discrete random variable with space RX , and prob-

ability mass function f(·). The expectation or mean of X, denoted by E(X), is

defined as

E(X) =
∑
x∈RX

xf(x).

Definition 2.1.9. The nth moment of the discrete random variable X about the

origin, denoted by E(Xn), is defined as

E(Xn) =
∑
x∈RX

xnf(x).

Definition 2.1.10. Let X be a discrete random variable with space RX . The

moment generating function of X, denoted by mX(·), is defined by

mX(t) = E(etX) =
∑
x∈RX

etxf(x),

for t ∈ R such that mX(t) exists.
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Definition 2.1.11. Let X be a discrete random variable with mean µX . The

variance of X, denoted by Var(X), is defined as

Var(X) = E([X − µX ]
2) = E(X2)− µ2

X .

Definition 2.1.12. Let X and Y be discrete random variables with means µX and

µY , respectively. The covariance of X and Y , denoted by Cov(X,Y ), is defined

as
Cov(X,Y ) = E([X − µX ][Y − µY ]) = E(XY )− µXµY .

The correlation of X and Y , denoted by Corr(X,Y ), is defined as

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

Definition 2.1.13. Let X be a discrete random variable with space RX . The

probability generating function of X, denoted by GX(·), is defined as

GX(t) = E(tX) =
∑
x∈RX

txf(x),

for t ∈ R such that GX(t) exists.

Lemma 2.1.1. Let GX(·) be the probability generating function of a random

variable X, then the probabilistic properties of X are as follows:

(a) E(X) = G′
X(1),

(b) E(X(X − 1)(X − 2) · · · (X − k + 1)) = G
(k)
X (1), for k ∈ N and G

(k)
X is kth

derivative of function GX(·).

Definition 2.1.14. Let X and Y be discrete random variables with the joint

density f(·, ·) and fY (·) is the marginal probability mass of Y . Then the function

is given by
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fX(x|y) =
f(x, y)

fY (y)
,

for each x ∈ RX is called the conditional distribution of X given Y = y.

Definition 2.1.15. Let X be discrete random variable and fX(x|y) be the value

of the conditional probability distribution of X given Y = y. Then the conditional

mean of X given Y = y is defined as

E(X|Y = y) =
∑
x∈RX

xfX(x|y).

Lemma 2.1.2. Let X and Y be discrete random variables. Then

(a) E(X) = E(E(X|Y ))

(b) Var(X) = E(Var(X|Y )) + Var(E(X|Y )).

Definition 2.1.16. Let X1, X2, ..., Xn be any n random variables with probability

mass functions fX1 , ..., fXn . They are identically distributed random variables if

and only if

fX1(x) = fX2(x) = . . . = fXn(x) for x ∈ R.

Definition 2.1.17. The random variables X1, X2, ..., Xn are said to be indepen-

dent random variables if and only if, x1, x2, ..., xn ∈ R

fX1,X2,...,Xn(x1, x2, ..., xn) = fX1(x1) · fX2(x2) · · · fXn(xn)

Remark 2.1.1. The random variables are independent and identically distributed,

denoted as i.i.d, if each random variable has the same probability distribution as

the others and all are mutually independent.
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2.2 Compound random variable

Next, we give the definition and properties of compound random variable.

Definition 2.2.1. Let X1, X2, ... be a sequence of independent and identically

distributed (i.i.d.) random variables which are independent of a non-negative

integer-valued random variable N . Then the random variable S defined as

S =
N∑
i=1

Xi

is called a compound random variable.

Lemma 2.2.1. The probability properties of the compound random variable S

defined in Definition 2.2.1 are as follows

(a) E(S) = E(N)E(X),

(b) Var(S) = E(N)Var(X) + Var(N)E(X),

(c) Cov(S,N) = Var(N)E(X).

Proof. (a) Since {X1, ..., Xn} are i.i.d. random variables,

E(S) = E

(
N∑
i=1

Xi

)

= E

(
E

(
N∑
i=1

Xi

∣∣∣∣∣N
))

= E

(
N∑
i=1

(EXi|N)

)

= E (NE (X)) (2.1)

= E(N)E(X),
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where we use the independence of X and N to obtain (2.1)

(b) From Lemma 2.1.2 (b) and the independent of X and N , we have

Var(S) = E

(
Var

(
N∑
i=1

Xi

∣∣∣∣∣N
))

+ Var
(
E

(
N∑
i=1

Xi

∣∣∣∣∣N
))

= E

(
N∑
i=1

Var (Xi|N)

)
+ Var

(
N∑
i=1

E (Xi|N)

)

= E (NVar (X)) + Var (NE (X))

= E (N)Var (X) + Var (N)E2 (X) .

(c) From (a), we have

Cov(S,N) = E(SN)− E(S)E(N)

= E (E (SN |N))− E(N)E(X)E(N)

= E

(
E

(
N

N∑
i=1

Xi

∣∣∣∣∣N
))

− E2(N)E(X)

= E

(
N

N∑
j=1

E (Xi|N)

)
− E2(N)E(X)

= E(N2E(X))− E2(N)E(X)

= (E(N2)− E2(N))E(X)

= Var(N)E(X).

Lemma 2.2.2. Let S1 =

N1∑
j=1

X1,j and S2 =

N2∑
j=1

X2,j be compound random vari-

ables where X1 = {X1,j}j=1,2,... and X2 = {X2,j}j=1,2,... are sequences of i.i.d.

random variables and are independent from N1 and N2, respectively. Then we

have

Cov(S1, S2) = Cov(N1, N2)E(X1)E(X2).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

Proof. Since X1 and X2 are mutually independent. Note that

E(S1S2) = E

(
N1∑
j=1

X1,j

N2∑
j=1

X2,j

)

= E

(
E

(
N1∑
j=1

X1,j

N2∑
j=1

X2,j

∣∣∣∣∣N1, N2

))

= E(N1E(X1)N2E(X2))

= E(N1N2)E(X1)E(X2).

Therefore,

Cov(S1, S2) = E(S1S2)− E(S1)E(S2)

= E(N1N2)E(X1)E(X2)− E(N1)E(X1)E(N2)E(X2)

= (E(N1N2)− E(N1)E(N2))E(X1)E(X2)

= Cov(N1, N2)E(X1)E(X2).

2.3 Distribution function

Definition 2.3.1. A random variable X is said to be the Bernoulli random vari-

able with parameter p, denoted by X ∼ Ber(p). If its probability mass function

of X is in the form of

f(x) = px(1− p)(1−x) for x = 0, 1.
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Theorem 2.3.1. If X is a Bernoulli random variable with parameter p. Then its

properties are given as follows:

(a) GX(t) = (1− p) + pet for t ∈ R,

(b) E(X) = p,

(c) Var(X) = p(1− p).

Definition 2.3.2. A random variable X is said to be the Poisson random variable

with parameter λ, denoted by X ∼ Poi(λ). If its probability mass function of X

is in the form of

f(x) =
e−λλx

x!
for x = 1, 2, ... and λ > 0.

Theorem 2.3.2. If X is a Poisson random variable with parameter λ. Then its

properties are given as follows:

(a) GX(t) = λ(et − 1) for t ∈ R,

(b) E(X) = λ,

(c) Var(X) = λ.

2.4 Binomial thinning operator and integer-valued time se-

ries

In this section, we provide the definitions and properties of the binomial

thinning operator and integer-valued time series.
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Definition 2.4.1. Let X be a non-negative integer-valued random variable and

α ∈ [0, 1]. The binomial thinning operator, denoted by ‘α◦’, is defined by

α ◦X =
X∑
i=1

δi

where δ1, δ2, ... is a sequence of i.i.d. random variables having the Bernoulli distri-

bution with parameter α and is independent of X.

Lemma 2.4.1. Let X and Y be non-negative integer-valued random variables.

Then the following properties hold:

(a) E(α ◦X) = αE(X),

(b) E((α ◦X)Y ) = αE(XY ),

(c) Gα◦X(t) = GX(1− α + αt),

(d) Var(α ◦X) = α(1− α)E(X) + α2Var(X),

(e) Cov(α ◦X,Y ) = αCov(X,Y ),

(f) Cov(α ◦X, β ◦ Y ) = αβCov(X,Y ).

Proof. (a) Note that α◦X =
X∑
i=1

δi where {δi}i=1,2,... is a sequence of i.i.d. Bernoulli

random variables with means α and are independent of X and Y .
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From Lemma 2.2.1 (a),

E(α ◦X) = E

(
X∑
i=1

δi

)

= E

(
E

(
X∑
i=1

δi

∣∣∣∣∣X
))

= E

(
X∑
i=1

E (δi|X)

)

= E(XE(δi))

= E(X)E(δi)

= αE(X).

(b) Consider

E((α ◦X)Y ) = E

(
Y

X∑
j=1

δj

)

= E

(
E

(
Y

X∑
j=1

δj

∣∣∣∣∣X
))

= E

(
X∑
j=1

E (Y δj|X)

)

= E(Y XE(δj))

= E(XY )E(δj)

= αE(XY ).
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(c) From Definition 2.4.1,

Gα◦X(t) = E
(
tα◦X

)
= E

(
t
∑X

i=1 δi
)

= E
(
E
(
t
∑X

i=1 δi

∣∣∣X))
= E

(
X∏
i=1

E
(
tδi
∣∣X))

= E
((

E
(
tδi
))X)

= GX (1− α + αt) .

(d) From Lemma 2.2.1 (b), we have

Var(α ◦X) = Var
(

X∑
i=1

δi

)

= E(X)Var(δ) + Var(X)E2(δ)

= α(1− α)E(X) + α2Var(X).

(e) From (a) and (b), we have

Cov(α ◦X,Y ) = Cov
(

X∑
i=1

δi, Y

)

= E

(
Y

X∑
i=1

δi

)
− E

(
X∑
i=1

δi

)
E(Y )

= αE(XY )− E(X)E(δ)E(Y )

= αE(XY )− αE(X)E(Y )

= α(E(XY )− E(X)E(Y ))

= αCov(X,Y ).
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(f) Note that β ◦ Y =
Y∑
i=1

γi where {γi}i=1,2,... is a sequence of i.i.d. Bernoulli

random variables with mean β and are independent of Y .

Since {δi}i=1,2,... and {γi}i=1,2,... are two mutually independent sequences of Bernoulli

random variables with parameters α and β, respectively. Then

Cov(α ◦X, β ◦ Y ) = Cov
(

X∑
i=1

δi,
Y∑
i=1

γi

)

= E

(
X∑
i=1

δi

Y∑
i=1

γi

)
− E

(
X∑
i=1

δi

)
E

(
Y∑
i=1

γi

)

= E

(
E

(
X∑
i=1

δi

Y∑
i=1

γi

∣∣∣∣∣X,Y

))
− E(X)E(δ)E(Y )E(γ)

= E(XE(δ)Y E(γ))− E(X)E(Y )E(δ)E(γ)

= E(XY )E(δ)E(γ)− E(X)E(Y )E(δ)E(γ)

= (E(XY )− E(X)E(Y ))E(δ)E(γ)

= αβCov(X,Y ).

Next, we will describe the integer-valued time series that will be used in

this thesis. The two integer-valued time series considered in this thesis are the

first order integer-valued moving average (INMA(1)) model and the first order

integer-valued autoregressive (INAR(1)).

Integer-valued time series, such as integer-valued moving average (INMA)

and integer-valued autoregressive (INAR), are independently introduced by Al-

Osh & Alzaid(1987), Mckenzie(1988) and Joe(1997).

Definition 2.4.2. Time series {Xt}t=1,2,... is a series of data points indexed in

{t = 1, 2, ...}. If Xt has integer valued, the time series is called the integer-valued

time series.
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Definition 2.4.3. A process {Xt}t=1,2,...,n is said to be nth-order weakly stationary

if all its joint moments up to order n exist and are time variant.

Definition 2.4.4. The first order integer-valued moving average (INMA(1)) model

for {Xt}t>0 can be defined as

Xt = α ◦ εt−1 + εt

where ‘◦’ is binomial thinning operator. The sequence ε1, ε2, ... is a sequence of

independent and identically distributed (i.i.d.) random variables.

Definition 2.4.5. The process {Xt}t=1,2,... is said to be the first order integer-

valued autoregressive (INAR(1)) model if it defined as

Xt = α ◦Xt−1 + εt

where ‘◦’ is binomial thinning operator defined in Definition 2.4.1 and ε1, ε2, ... is

a sequence of i.i.d. random variables.

2.5 Risk model and ruin probability

In this section, we will provide the basic of discrete time risk model and

review the ruin probability.

Let {Un;n ∈ N} be the surplus process of insurance company in period n.

The discrete time risk model can be defined as

Un = u+ πn− Sn = u+ πn−
n∑

i=1

Ni∑
j=1

Xi,j

where u is the initial capital and π is the constant premium rate. The process

{Sn;n ∈ N} is the aggregate claims amount in period n and can be written as
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Sn =
n∑

i=1

Ni∑
j=1

Xi,j where Xi,j is the jth claim size in period i and Ni is the number

of claim in period i.

The ruin probability is the one of risk measure for insurance company. To

find this measure, this section provides a brief discussion of ruin time, the ruin

probability and the adjustment coefficient function.

The first time that the surplus process {Un;n ∈ N} changes to be negative

which called that the ruin time, denoted by T . It can be written as

T = inf
n∈N

{n;Un < 0}

The probability that ruin time exists, we call that the ruin probability, de-

noted by Ψ(u) and can be written as

Ψ(u) = Pr(T < ∞|U0 = u)

In general, it is difficult to directly obtain the ruin probability. However,

there is approximation of ruin probability by Lundberg, proposed in [4], as follows

Ψ(u) ≃ e−Ru. (2.2)

The main result based on the asymptotic Lundberg type result

lim
u→∞

− ln(Ψ(u))

u
= R,

where R is Lundberg adjustment coefficient or adjustment coefficient.
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The adjustment coefficient R, introduced by Cossette et al.(2010), is the

unique positive solution to equation g(r) = 0. The function g(r) is called the

adjustment coefficient function and is defined as

g(r) = lim
n→∞

1

n
gn(r),

where gn(r) is the cumulative generating function of aggregate loss-profit process

Sn defined by

gn(r) = lnE(e−rSn). (2.3)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

INTEGER-VALUED MOVING AVERAGE

RISK MODEL SUBJECT TO INVESTMENT

AND SURRENDER

In this chapter, we construct the risk model by incorporating investment

and surrender based on the first order integer-valued moving average (INMA(1))

process. Firstly, Section 3.1 introduces the discrete-time risk model and notations

used in this chapter. Section 3.2 gives the definition and properties of the INMA(1)

risk model. In Section 3.3, we derive the adjustment coefficient function and obtain

the adjustment coefficient to calculate ruin probability. Finally, Section 3.4 shows

numerical examples of ruin probability and value at risk considering the trend of

ruin probability in terms of parameters in the model.

3.1 The discrete-time risk model

Let {Un;n ∈ N} be the surplus process of insurance company with incorpo-

rating investment and surrender at time n. For initial capital u, the discrete-time

risk model can be written as

Un = u+ Idn+
n∑

i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci, (3.1)

where I is the investment capital for I < u, d represents the investment income per

unit of time. The sequence {Ai; i ∈ N} is the sequence of aggregates of premium
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amounts in period i defined as

Ai =

Ni∑
k=1

Xi,k, (3.2)

where {Xi,k; k ∈ N} is the sequence of premium sizes in period i assuming to be

i.i.d. random variables, and Ni is the number of premiums in period i.

The sequence {Bi; i ∈ N} is the sequence of total of claim sizes in period i and is

defined as

Bi =

Ni(p)∑
k=1

Yi,k, (3.3)

where the sequence of i.i.d. random variables {Yi,k; k ∈ N} denotes claim sizes in

period i, and Ni(p) denotes the number of claims in period i. And we say that

Ni(p) is the p-thinning operator of Ni because the thinning operator of Ni(p) is

αp where 0 < p < 1 which is smaller than the thinning operator α of Ni.

The sequence {Ci; i ∈ N} is the sequence of aggregate of surrender values in period

i and is written as

Ci =

Ni(q)∑
k=1

Zi,k, (3.4)

where the sequence of i.i.d. random variables {Zi,k; k ∈ N} represents surrender

values in period i, and Ni(q) denotes the number of surrenders in period i and is

the q-thinning operator of Ni for 0 < q < 1 such that 0 < p+ q < 1.

From (3.1), we will write the model in the form of

Un = u+ Sn,
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where Sn is the loss-profit process defined as

Sn = Idn+
n∑

i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci. (3.5)

Next, we will give the expectations of aggregate of premium sizes, aggregate

of claim sizes and aggregate of surrender values as follows.

Proposition 3.1.1. The aggregate of premium amounts {Ai; i ∈ N}, defined in

(3.2), is the compound random variable having the expectation as follows.

EAi = ENiEX.

Proof. Assume that the sequence of premium sizes {Xi,k; k ∈ N} is a sequence of

i.i.d. random variables and is independent of the process {Ni; i ∈ N}, we have

EAi = E

[
Ni∑
k=1

Xi,k

]

= E

[
E

[
Ni∑
k=1

Xi,k

∣∣∣∣Ni

]]

= E

[
Ni∑
k=1

E

[
Xi,k

∣∣∣∣Ni

]]

= E[NiEX]

= ENiEX.

Similar to the Proposition 3.1.1, we can derive the formulas of the expec-

tations of aggregate of claim sizes and aggregate of surrender values as follows.
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Proposition 3.1.2. The aggregate of claim sizes {Bi; i ∈ N} defined in (3.3) is

the compound random variable having the expectation

EBi = ENi(q)EY.

Proposition 3.1.3. The aggregate of surrender valued {Ci; i ∈ N} defined in

(3.4) is the compound random variable having the expectation

ECi = ENi(q)EZ.

In order to perform a clear profit of insurance company, it is common to

assume that the net profit condition that is the expectation of the loss-profit

process Sn is greater than 0, written as E[Sn] > 0. In the following proposition,

we will introduce the factor that satisfies the condition. The factor is called the

positive relative safety loading.

Proposition 3.1.4. Under the net profit condition, the positive relative safety

loading, denoted by θ, can be defined as

θ =
Id+ ENiEX

ENi(p)EY + ENi(q)EZ
− 1 > 0,

where

• the processes {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} are stationary

processes,

• EX ̸= 0 and EY ̸= 0.
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Proof. Under the net profit condition, we have

0 < E[Sn]

= E

[
Idn+

n∑
i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci

]

= Idn+ E

[
n∑

i=1

Ai

]
− E

[
n∑

i=1

Bi

]
− E

[
n∑

i=1

Ci

]

= Idn+
n∑

i=1

E [Ai]−
n∑

i=1

E [Bi]−
n∑

i=1

E [Ci]

= Idn+
n∑

i=1

ENiEX −
n∑

i=1

ENi(p)EY −
n∑

i=1

ENi(q)EZ,

where we use Proposition 3.1.1 - 3.1.3 to obtain the last inequality.

Since Ni, Ni(p) and Ni(q) are stationary processes for i ∈ N, then we get,

0 < Idn+ nENiEX − nENi(p)EY − nENi(q)EZ.

For EX ̸= 0 and EY ̸= 0, we have

Id+ ENiEX

ENi(p)EY + ENi(q)EZ
− 1 > 0.

3.2 Definition and properties of INMA(1) risk model

In this section, we give definition and properties for the risk model based on

the INMA(1) process.

In the INMA(1) risk model considered in this chapter, we assume that each of

the processes {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} follows an INMA(1)

process described as follows.
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The process of the number of premiums {Ni; i ∈ N} can be defined as

Ni = α ◦ εi−1 + εi, (3.6)

where α ∈ [0, 1], where {εi}i=1,2,... is the sequence of i.i.d. random variables fol-

lowing the Possion distribution with mean λ and α ◦ εi−1 is the binomial thinning

operator defined as

α ◦ εi−1 =

εi−1∑
j=1

di−1,j,

where {di,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter α for all i and is independent of εi.

The process of the number of claims {Ni(p); i ∈ N} can be defined as

Ni(p) = (αp) ◦ γi−1 + γi, (3.7)

where {γi}i=1,2,... is the sequence of i.i.d. random variables following the Possion

distribution with mean λ and (αp)◦γi−1 is the binomial thinning operator defined

as

(αp) ◦ γi−1 =

γi−1∑
j=1

ei−1,j,

where {ei,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter αp for all i and is independent of γi.

The process of the number of surrenders {Ni(q); i ∈ N} can be defined as

Ni(q) = (αq) ◦ µi−1 + µi, (3.8)
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where {µi}i=1,2,... is the sequence of i.i.d. random variables following the Possion

distribution with mean λ and (αq)◦µi−1 is the binomial thinning operator defined

as

(αq) ◦ µi−1 =

µi−1∑
j=1

fi−1,j,

where {fi,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter αq for all i and is independent of µi.

Next, we will derive the properties of the number of premiums (Ni), the

number of claims (Ni(p)) and the number of surrender (Ni(q)).

Proposition 3.2.1. Let {Ni; i ∈ N} be defined in (3.6). Then {Ni; i ∈ N} has

the following properties, for i ∈ N

(1) GNi
(z) = eλ(z−1)(α+1) for z ∈ R,

(2) Ni is stationary process,

(3) E(Ni) = (1 + α)λ,

(4) Var(Ni) = (1 + α)λ,

(5) Cov(Ni, Ni−k) =


αλ, if k = 1

0, if k > 1,

(6) Corr(Ni, Ni−k) =


α

1 + α
, if k = 1

0, if k > 1.
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Proof. To prove (1), we will consider the probability generating function of

{Ni; i ∈ N}. From Lemma 2.4.1 (c), we note that, for z ∈ R

GNi
(z) = E

[
zNi
]

= E
[
zα◦εi−1+εi

]
= E[zα◦εi−1 ]E[zεi ]

= E[((1− α) + αz)εi−1 ]E[zεi ]

= eλ((1−α)+αz−1)eλ(z−1)

= eλ(z−1)(α+1), (3.9)

where we use the fact that {εi}i=1,2,... is the sequence of Poisson i.i.d. random

variables with mean λ.

To prove (2), from (3.9), we can see that GNi
(z) does not depended on i.

Therefore, GN1(z) = . . . = GNn(z). Hence, {Ni; i ∈ N} is a stationary process.

To prove (3), we note from (3.6) that

E(Ni) = E(α ◦ εi−1 + εi)

= E(α ◦ εi−1) + E(εi)

= αE(εi−1) + λ

= αλ+ λ

= (1 + α)λ.
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For (4), from (3.6)

Var(Ni) = Var(α ◦ εi−1 + εi)

= Var(α ◦ εi−1) + Var(εi)

= α(1− α)E(εi−1) + α2Var(εi−1) + Var(εi) (3.10)

= α(1− α)λ+ α2λ+ λ

= (α(1− α) + α2 + 1)λ

= (1 + α)λ, (3.11)

where we use Lemma 2.4.1 (d) to obtain (3.10) and use the fact that {εi}i=1,2,...

is a sequence of Poisson i.i.d. random variables with mean λ to obtain (3.11),

respectively.

To prove (5), we will consider into two cases which are k = 1 and k > 1.

For k = 1, we have

Cov(Ni, Ni−1) = Cov(α ◦ εi−1 + εi, α ◦ εi−2 + εi−1)

= Cov(α ◦ εi−1, α ◦ εi−2) + Cov(α ◦ εi−1, εi−1)

+ Cov(εi, α ◦ εi−2) + Cov(εi, εi−1)

= αCov(εi−1, εi−1) (3.12)

= αVar(εi−1)

= αλ, (3.13)

where we use Lemma 2.4.1 (e) to obtain (3.12) and the fact that {εi}i=1,2,... is a

sequence of independent random variables to obtain (3.13).
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For k > 1. Since {εi}i=1,2,... is the sequence of independent random variables, we

have

Cov(Ni, Ni−k) = Cov(α ◦ εi−1 + εi, α ◦ εi−k−1 + εi−k)

= Cov(α ◦ εi−1, α ◦ εi−k−1) + Cov(α ◦ εi−1, εi−k)

+ Cov(εi, α ◦ εi−k−1) + Cov(εi, εi−k)

= 0.

To prove (6), from Proposition 3.2.1 (4) and (5), we have

Corr(Ni, Ni−k) =
Cov(Ni, Ni−k)√

Var(Ni)
√

Var(Ni−k)

=


αλ

(1 + α)λ
, if k = 1

0, if k > 1,

=


α

1 + α
, if k = 1

0, if k > 1.

Similar to Proposition 3.2.1, we can obtain properties of the processes

{Ni(p); i ∈ N} and {Ni(p); i ∈ N} presented in Proposition 3.2.2 and Proposi-

tion 3.2.3, respectively.

Proposition 3.2.2. The number of claim process {Ni(p); i ∈ N}, defined in (3.7),

has properties as follows.

(1) GNi(p)(z) = eλ(z−1)(αp+1) for z ∈ R,

(2) Ni(p) is stationary process,
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(3) E(Ni(p)) = (1 + αp)λ,

(4) Var(Ni(p)) = (1 + αp)λ,

(5) Cov(Ni(p), Ni−k(p)) =


αpλ, if k = 1

0, if k > 1,

(6) Corr(Ni(p), Ni−k(p)) =


αp

1 + αp
, if k = 1

0, if k > 1.

Proposition 3.2.3. The number of surrenders process {Ni(q); i ∈ N}, defined in

(3.8), has properties as follows.

(1) GNi(q)(z) = eλ(z−1)(αq+1) for z ∈ R,

(2) Ni(q) is stationary process,

(3) E(Ni(q)) = (1 + αq)λ,

(4) Var(Ni(q)) = (1 + αq)λ,

(5) Cov(Ni(q), Ni−k(q)) =


αqλ, if k = 1

0, if k > 1,

(6) Corr(Ni(q), Ni−k(q)) =


αq

1 + αq
, if k = 1

0, if k > 1.

The following theorem shows the joint generating function of INMA(1) pro-

cess.
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Theorem 3.2.1. Let INMA(1) process {Ni; i ∈ N} be defined in (3.6). The joint

generating function of {Ni; i = 1, 2, ..., n} can be written as follows. For n ∈ N,

GN1,...,Nn(t1, ..., tn) = eλα(t1−1)eλ[(1−α)t1+αt1t2−1]eλ[(1−α)t2+αt2t3−1] · · · eλ[(1−α)tn−1+αtn−1tn−1]

× eλ(tn−1),

where (t1, ..., tn) ∈ Rn.

Proof. Consider the joint generating function of {Ni; i = 1, 2, ..., n} as follows.

GN1,...,Nn(t1, . . . , tn) = E[tN1
1 . . . tNn

n ]

= E

[
t
∑ε0

j=1 d0j+ε1
1 t

∑ε1
j=1 d1j+ε2

2 · · · t
∑εn−1

j=1 dn−1,j+εn
n

]
= E

[
t
∑ε0

j=1 d0j
1 tε11 t

∑ε1
j=1 d1j

2 tε22 · · · t
∑εn−1

j=1 dn−1,j

n tεnn

]
= E

[
t
∑ε0

j=1 d0j
1

]
E

[
tε11 t

∑ε1
j=1 d1j

2

]
· · ·E

[
t
εn−1

n−1 t
∑εn−1

j=1 dn−1,j

n

]
E [tεnn ] ,

(3.14)

where we use the fact that {εi}i=1,2,... are independent to obtain the last equation.

For the first term of (3.14), we have

E

[
t
∑ε0

j=1 d1j
1

]
= Gε0(1− α + αt1)

= eλ(1−α+αt1−1)

= eλα(t1−1). (3.15)

For the last term, from (3.14),

E[tεnn ] = eλ(tn−1). (3.16)
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For the other terms in (3.14), we note that, for k = 1, 2, ..., n− 1,

E

[
t
εk−1

k−1 t
∑εk−1

j=1 dk−1,j

k

]
= E

[
E

[
t
εk−1

k−1 t
∑εk−1

j=1 dk−1,j

k

∣∣∣∣εk−1

]]
= E

[
t
εk−1

k−1 E

[
t
∑εk−1

j=1 dkj
k

∣∣∣∣εk−1

]]
= E

[
t
εk−1

k−1 (Gd(tk))
εk−1
]

= E [(tk−1Gd(tk))
εk−1 ]

= E
[
e(ln(tk−1Gd(tk)))·εk−1

]
= Mεk−1

(ln(tk−1Gd(tk)))

= eλ(tk−1Gd(tk)−1) (3.17)

= eλ(tk−1(1−α+αtk)−1) (3.18)

= eλ[(1−α)tk−1+αtk−1tk−1], (3.19)

where we use the fact that {εk}k=1,2,... is a sequence of i.i.d. Poisson random

variables with mean λ to derive (3.17) and {di,j}i,j=1,2,... is the sequence of i.i.d.

Bernoulli random variables with parameter α to derive (3.18), respectively.

Substituting (3.15), (3.16) and (3.19) into (3.14), we get

GN1,...,Nn(t1, ..., tn) = eλα(t1−1)eλ[(1−α)t1+αt1t2−1]eλ[(1−α)t2+αt2t3−1] · · · eλ[(1−α)tn−1+αtn−1tn−1]

× eλ(tn−1).
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3.3 Adjustment coefficient

In this section, we first derive the adjustment coefficient function for the

INMA(1) risk model. We then obtain the adjustment coefficient to approximate

the ruin probability.

Theorem 3.3.1. The adjustment coefficient function of the risk model defined in

(3.1) is given by

g(r) = −rId+ λ
(
(1− α)MX(−r) + αM2

X(−r) + (1− αp)MY (r) + αpM2
Y (r)

+ (1− αq)MZ(r) + αqM2
Z(r)− 3

)
.

Proof. From(2.3) the adjustment coefficient function is defined as

g(r) = lim
n→∞

1

n
lnE(e−rSn). (3.20)

Therefore, we will first derive E
[
e−rSn

]
.

From (3.5) and the fact that {Ai; i ∈ N}, {Bi; i ∈ N} and {Ci; i ∈ N} are inde-

pendent, we have

E[e−rSn ] = E

e
−r

Idn+

n∑
i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci




= E
[
e−rIdn

]
· E
[
e−r

∑n
i=1 Ai

]
· E
[
er

∑n
i=1 Bi

]
· E
[
er

∑n
i=1 Ci

]
. (3.21)

For the second term of (3.21), note that the aggregate of premium amounts

{Ai; i ∈ N} defined in (3.2). Then
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E
[
e−r

∑n
i=1 Ai

]
= E

[
e−rA1 · · · e−rAn

]
= E

[
e−r

∑N1
k=1 X1,k · · · e−r

∑Nn
k=1 Xn,k

]
= E

[
E
[
e−r

∑N1
k=1 X1,k · · · e−r

∑Nn
k=1 Xn,k |N1, . . . , Nn

]]
= E[

(
Er−rX

)N1 · · ·
(
Er−rX

)Nn |N1, . . . , Nn]

= GN1,...,Nn (MX(−r), . . . ,MX(−r)) .

From Theorem 3.2.1, we obtain

E
[
e−r

∑n
i=1 Ai

]
= eλα(MX(−r)−1)eλ(n−1)[(1−α)MX(−r)+αM2

X(−r)−1]eλ(MX(−r)−1)

= exp{λ(αMX(−r)− α + (n− 1)MX(−r)− α(n− 1)MX(−r))

+ λ(α(n− 1)M2
X(−r)− (n− 1) +MX(−r)− 1)}

= exp{λ[(2α + n− αn)MX(−r)− (n+ α) + α(n− 1)M2
X(−r)]}

= exp
{
λ(n+ α)

[
(n(1− α) + 2α)MX(−r) + α(n− 1)M2

X(−r)

n+ α
− 1

]}
.

(3.22)

By the same technique, the last two terms of (3.21) can be obtained as follows

E
[
er

∑n
i=1 Bi

]
= GN1(p),...,Nn(p)(MY (r), ...,MY (r))

= exp
{
λ(n+ αp)

[
(n(1− αp) + 2αp)MY (r) + αp(n− 1)M2

Y (r)

n+ αp
− 1

]}
,

(3.23)

and

E
[
er

∑n
i=1 Ci

]
= GN1(q),...,Nn(q)(MZ(r), ...,MZ(r))

= exp
{
λ(n+ αq)

[
(n(1− αq) + 2αq)MZ(r) + αq(n− 1)M2

Z(r)

n+ αq
− 1

]}
.

(3.24)
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Substitute (3.22) - (3.24) into (3.21), we have

E[e−rSn ] = E
[
e−rIdn

]
· E
[
e−r

∑n
i=1 Ai

]
· E
[
er

∑n
i=1 Bi

]
· E
[
er

∑n
i=1 Ci

]
= exp

{
− rIdn

+ λ(n+ α)

[
(n(1− α) + 2α)MX(−r) + α(n− 1)M2

X(−r)

n+ α
− 1

]
+ λ(n+ αp)

[
(n(1− αp) + 2αp)MY (r) + αp(n− 1)M2

Y (r)

n+ αp
− 1

]
+ λ(n+ αq)

[
(n(1− αq) + 2αq)MZ(r) + αq(n− 1)M2

Z(r)

n+ αq
− 1

]}
.

(3.25)

Then, we consider the logarithm of the equation (3.25) as follows.

1

n
lnE[e−rSn ] =

1

n
lnE

[
exp

{
−r

(
Idn+

n∑
i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci

)}]

=
1

n

{
− rIdn

+ λ(n+ α)

[
(n(1− α) + 2α)MX(−r) + α(n− 1)M2

X(−r)

n+ α
− 1

]
+ λ(n+ αp)

[
(n(1− αp) + 2αp)MY (r) + αp(n− 1)M2

Y (r)

n+ αp
− 1

]
+ λ(n+ αq)

[
(n(1− αq) + 2αq)MZ(r) + αq(n− 1)M2

Z(r)

n+ αq
− 1

]}

= −rId

+ λ(1− α)MX(−r) +
2λαMX(−r)

n
+

λα(n− 1)M2
X(−r)

n
− λ(n+ α)

n

+ λ(1− αp)MY (r) +
2λαpMY (r)

n
+

λαp(n− 1)M2
Y (r)

n
− λ(n+ αp)

n

+ λ(1− αq)MZ(r) +
2λαqMZ(r)

n
+

λαq(n− 1)M2
Z(r)

n
− λ(n+ αq)

n
.
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Therefore, we can obtain the equation (3.20) as follows.

g(r) = lim
n→∞

1

n
lnE[e−rSn ]

= −rId+ λ(1− α)MX(−r) + λαM2
X(−r)− λ+ λ(1− αp)MY (r)

+ λαpM2
Y (r)− λ+ λ(1− αq)MZ(r) + λαqM2

Z(r)− λ

= −rId+ λ
(
(1− α)MX(−r) + αM2

X(−r) + (1− αp)MY (r) + αpM2
Y (r)

+ (1− αq)MZ(r) + αqM2
Z(r)− 3

)
.

Next, we will show the uniqueness of positive solution of adjustment coeff-

cient equation.

Proposition 3.3.1. The adjustment equation g(r) = 0 has the unique positive

solution R which is called the adjustment coefficent.

Proof. To show that g(r) = 0 has the unique positive solution, we will show the

function g(·) has following properties

(1) g(0) = 0,

(2) g′(0) < 0,

(3) g′′(r) > 0 for all r ∈ (0,∞),

(4) lim
r→∞

g(r) = ∞.

To prove (1), we can see that

g(0) = λ(1 + 1 + 1) + λα(1− 1 + p− p+ q − q)− 3λ = 0.
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To prove (2), we note that

g′(r) = −Id+ λ(−M ′
X(−r) +M ′

Y (r) +M ′
Z(r))

+ λα[−2MX(−r)M ′
X(−r) +M ′

X(−r) + 2pMY (r)M
′
Y (r)− pM ′

Y (r)]

+ λα[2qMZ(r)M
′
Z(r)− qM ′

Z(r)]. (3.26)

Substituting r = 0 into (3.26), we get

g′(0) = −Id+ λ(−EX + EY + EZ)

+ λα(−2EX + EX + 2pEY − pEY + 2qEZ − EZ)

= −Id+ λ(−EX + EY + EZ) + λα(−EX + pEY + qEZ)

= −Id− λ(1 + α)EX + λ(1 + αp)EY + λ(1 + αq)EZ

< 0,

where we use Propositions 3.1.4 and 3.2.1 – 3.2.3 (2) to obtain the last inequality.

Hence, g′(0) < 0.

To prove (3), we note that

g′′(r) = λ[M ′′
X(−r) +M ′′

Y (r) +M ′′
Z(r)]

+ λα[2(MX(−r)M ′′
X(−r) + (M ′

X(−r))2)−M ′′
X(−r)]

+ λα[2p(MY (r)M
′′
Y (r) + (M ′

Y (r))
2)− pM ′′

Y (r)]

+ λα[2q(MZ(r)M
′′
Z(r) + (M ′

Z(r))
2)− qM ′′

Z(r)]

= λ[(2αMX(−r)− α + 1)M ′′
X(−r) + α(M ′

X(−r))2]

+ λ[(2αpMY (r)− αp+ 1)M ′′
Y (r) + αp(M ′

Y (r))
2]

+ λ[(2αqMZ(r)− αq + 1)M ′′
Z(r) + αq(M ′

Z(r))
2]. (3.27)
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Since the moment generating function is always positive and 0 < α < 1. So,

the term of 2αMX(−r)−α+1 is greater than 0. For 0 < p, q < 1 and 0 < p+q < 1,

we get that the terms of 2αpMY (r)− αp+ 1 and 2αqMZ(r)− αq + 1 are greater

than 0. So, we can conclude that the right hand side of (3.27) is greater than 0.

Therefore g′′(r) > 0.

To prove (4), from Theorem 3.3.1, the adjustment coefficient function is

g(r) = −rId+ λ
(
(1− α)MX(−r) + αM2

X(−r) + (1− αp)MY (r) + αpM2
Y (r)

+ (1− αq)MZ(r) + αqM2
Z(r)− 3

)
= −rId+ λ

(
(1− α + αMX(−r))MX(−r) + (1− αp+ αpMY (r))MY (r)

+ (1− αq + αqMZ(r))MZ(r)− 3
)
. (3.28)

From the right hand side of (3.28), we can see that the term of 1 − α +

αMX(−r), 1 − αp + αpMY (r) and 1 − αq + αqMZ(r) are always greater than 0

for 0 < α < 1. Then, we use the fact that the moment generating function of the

right hand side of (3.28), determined by the term of MY (r) and MZ(r), perform as

exponential terms and the exponential growth is faster than polynomial growth.

Hence, lim
r→∞

g(r) = ∞.

3.4 Numerical example

In this section, we will apply numerical example to study the effect of the

ruin probability and the value at risk comparing with the parameters of premiums,

claims and surrenders by using Python and R programming.
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In section, we will study the behavior of the ruin probability and the value

at risk of the risk model by assuming that the premiums sizes (X), the claim sizes

(Y ) and the surrender values (Z) follow exponential distributions. The sequence

of premium sizes X = {Xi,k}i,k=1,2,... is a sequence of i.i.d. random variables

which are exponentially distributed with mean 1

βX

. The sequence of claim sizes

Y = {Yi,k}i,k=1,2,... is a sequence of i.i.d. random variables which are exponentially

distributed with mean 1

βY

. The sequence of surrender values Z = {Zi,k}i,k=1,2,...

is a sequence of i.i.d. random variables which are exponentially distributed with

mean 1

βZ

, respectively.

Therefore the moment generating functions of X, Y and Z are defined as

MX(−r) =
βX

βX + r
, MY (r) =

βY

βY − r
and MZ(r) =

βZ

βZ − r
, respectively, for

βY , βZ > r.

3.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability against the terms

of premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as

Ψ(u) ≃ e−Ru,

where R is the adjustment coefficient.

To approximate ruin probability, we will first calculate the adjustment co-

efficient from finding the unique positive solution of the adjustment coefficient

equation g(r) = 0 as follows.
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From Theorem 3.3.1, we will consider the function g(r) in the case of the

premium size, claim size and surrender values follow the exponential distribution.

0 = g(r)

= −rId+ λ
(
(1− α)MX(−r) + αM2

X(−r) + (1− αp)MY (r) + αpM2
Y (r)

+ (1− αq)MZ(r) + αqM2
Z(r)− 3

)
= −rId+ λ

(
(1− α)

(
βX

βX + r

)
+ α

(
βX

βX + r

)2

+ (1− αp)

(
βY

βY − r

)
+ αp

(
βY

βY − r

)2

+ (1− αq)

(
βZ

βZ − r

)
+ αq

(
βZ

βZ − r

)2

− 3

)
,

where 0 < p, q < 1 and 0 < p+ q < 1, where r < min{βY , βZ}.

Next, we will study the trend of ruin probability by varying various parame-

ters of premium size, claim size, surrender values and investment in Section 3.4.1.1.

In Section 3.4.1.2, we will study the trend of ruin probability by varying various

parameters of probabilities of claims and surrenders.

3.4.1.1 Effects from premiums size, claim size and surrender value

In insurance company, income and expenses are quite important to the com-

pany financial stability. In our risk model, the income are determined by the

premium size and investment and the expenses are determined by the claim size

and surrender value. So, this section will study the trends of ruin probability in

terms of means of premium size
(

1

βX

)
, claim size

(
1

βY

)
and surrender values(

1

βZ

)
by varying the parameter βX , βY and βZ , respectively. Moreover, we will

also study the ruin probability in term of investment by varying parameter I.
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For this section, we consider the following values of parameters I = 10, d =

0.2, λ = 2, α = 0.25, p = 0.4, q = 0.07 and the initial surplus u = 12.

Scenario 3.1 : The trend of ruin probability in terms of the parameter βX

where the parameters βY and βZ are fixed (βY = βZ = 1.5). In this scenario, we

consider different values of βX which are 0.5, 0.75, 1.0, 1.5 and 2.0, respectively.

The values of the upper bound of the ruin probability are given in Table 3.1. The

corresponding plot is presented in Figure 3.1.

Table 3.1: Parameter βX ∈ [0.5, 2] and their upper bound of ruin probability

βX 0.5 0.75 1.0 1.5 2.0
Upper bound 0.002942 0.006777 0.014604 0.056045 0.171677

Figure 3.1: Trend of the ruin probability when βX increases

From Table 3.1 and Figure 3.1, we can see that the ruin probability increases

when βX increases. That is the ruin probability increases when the mean of

premium size decreases.
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Scenario 3.2 : The trend of ruin probability in terms of the parameter βY

where the parameters βX and βZ are fixed (βX = 0.5 and βZ = 1.5). In this

scenario, we consider different values of βY which are 0.5, 0.75, 1.0, 1.5 and 2.0,

respectively. The values of the upper bound of the ruin probability are given in

Table 3.2. The corresponding plot is presented in Figure 3.2.

Table 3.2: Parameter βY ∈ [0.5, 2] and their upper bound of ruin probability

βY 0.5 0.75 1.0 1.5 2.0
Upper bound 0.515049 0.118524 0.029798 0.002830 0.000605

Figure 3.2: Trend of the ruin probability when βY increases

Table 3.2 and Figure 3.2 show that the ruin probability decreases as param-

eter βY increases. It means that the ruin probability decreases when the mean of

claim size decreases.

Scenario 3.3 : The trend of ruin probability in terms of the parameter βZ

where the parameters βX and βY are fixed (βX = 0.5 and βY = 1.5). In this

scenario, we consider different values of βZ which are 0.5, 0.75, 1.0, 1.5 and 2.0,

respectively. The values of the upper bound of the ruin probability are given in

Table 3.3. The corresponding plot is presented in Figure 3.3.
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Table 3.3: Parameter βZ ∈ [0.5, 10] and their upper bound of ruin probability

βZ 0.5 0.75 1.0 1.5 2.0
Upper bound 0.478468 0.110136 0.028787 0.003438 0.000897

Figure 3.3: Trend of the ruin probability when βZ increases

From Table 3.3 and Figure 3.3, we can conclude that the ruin probability de-

creases when parameter βZ increases. It means that the ruin probability decreases

when the mean of surrender value decreases.

Scenario 3.4 : The trend of ruin probability in terms of the investment I

where the parameters βX , βY and βZ are fixed (βX = 0.5 and βY = βZ = 1.5).

In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0,

8.0 and 10.0, respectively. The values of the upper bound of the ruin probability

are given in Table 3.4. The corresponding plot is presented in Figure 3.4.

Table 3.4: Parameter I ∈ [1, 10] and their upper bound of ruin probability

βZ 1.0 3.0 5.0 8.0 10.0
Upper bound 0.059467 0.031536 0.016207 0.005807 0.002942
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Figure 3.4: Trend of the ruin probability when I increases

Table 3.4 and Figure 3.4 show that the ruin probability decreases as the

investment increases. It means that the more the insurance company invests in

financial markets, the smaller value of ruin probability.

As we know that the closer the ruin probability to 1, the greater the possi-

bility that the insurance company will go bankrupt. From the result in Scenario

3.1 - 3.4, we can see that the ruin probability decreases as the mean of premiums

and investment, which are income of the model, increase and the means of claims

and surrender, which are expenses of the model, decrease. Therefore, in order to

control the risk of the bankrupt, the company should increase the premium values

or reduce the payments from claims and surrender.

3.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the trend of ruin probability in terms of the

probability of claims, denoted by parameter p and the probability of surrenders,

denoted by parameter q.
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For this section, we set the value I = 10, d = 0.2, λ = 2, α = 0.25, βX =

1, βY = 2, βZ = 1.5 and the initial surplus u = 12.

Scenario 3.5 : The trend of ruin probability in terms of probability of claims

p when q is fixed (q = 0.04). In this scenario, we consider different values of p

which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper

bound of the ruin probability are given in Table 3.5. The corresponding plot is

presented in Figure 3.5.

Table 3.5: Parameter p ∈ (0, 1) and their upper bound of ruin probability

p 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001437 0.001454 0.001635 0.002689 0.004278

Figure 3.5: Trend of the ruin probability when p increases

From Table 3.5 and Figure 3.5, we can see that the ruin probability increases

as the probability p increases. It means that the more claims occur, the higher

value of ruin probability.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

Scenario 3.6 : We consider the trend ruin probability in terms of probability

of surrenders q when p is fixed (p = 0.04). In this scenario, we consider different

values of q which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the

upper bound of the ruin probability are given in Table 3.6. The corresponding

plot is presented in Figure 3.6.

Table 3.6: Parameter q ∈ (0, 1) and their upper bound of ruin probability

q 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001383 0.001412 0.001729 0.003813 0.007421

Figure 3.6: Trend of the ruin probability when q increases

Table 3.6 and Figure 3.6 show that the ruin probability increases when pa-

rameter q increases. It means that the more surrenders occur, the higher value of

ruin probability.

From the result of Scenario 3.5 and 3.6, we can see that when either param-

eters p or q increases, the upper bound of ruin probability also increases. This

suggests that the insurance company will be in the high risk when either the

probability of claims or surrenders increases.
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3.4.2 Numerical example for the value at risk

In this section, we will study value at risk (VaR) which is a risk measure

measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level ω for the INMA(1) risk model,

denoted by VaRω(Sn), is the ω-quantile of the distribution of the loss-profit Sn of

the risk model. The VaRω(Sn) can be written as

VaRω(Sn) = inf{k ∈ R|FSn(k) > ω}, (3.29)

where FSn(k) be the cumulative distribution function of Sn. For our model, the

loss-profit process Sn, define in (3.5), can be express as

Sn = Idn+
n∑

i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci

= Idn+
n∑

i=1

Ni∑
k=1

Xi,k −
n∑

i=1

Ni(p)∑
k=1

Yi,k −
n∑

i=1

Ni(q)∑
k=1

Zi,k,

where {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} follow INMA(1) model,

defined in (3.6) - (3.8), respectively.

From (3.29), we can see that we need to know the distribution of Sn in order

to obtain the value at risk. However, it is difficult to obtain the distribution of Sn.

Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed

by Gray and Pitts (2012), to approximate the distribution of Sn.
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The characteristic function of Sn, denoted by ϕSn(r), can be written as follow,

Similar to provide E[e−rSn ] in the proof of Theorem 3.3.1, we have

ϕSn(r) = E[eirSn ]

= E[eirIdn] ·GN1,...,Nn(ϕX(r), ..., ϕX(r)) ·GN1(p),...,Nn(p)(ϕY (−r), ..., ϕX(−r))

·GN1(q),...,Nn(q)(ϕZ(−r), ..., ϕZ(−r)),

where

(1) GN1,...,Nn(ϕX(r), ..., ϕX(r))

= exp
{
λ

[
(n(1− α) + 2α)ϕX(r) + α(n− 1)ϕ2

X(r)− n− α

]}
,

(2) GN1(p),...,Nn(p)(ϕY (−r), ..., ϕX(−r))

= exp
{
λ

[
(n(1− αp) + 2αp)ϕY (−r) + αp(n− 1)ϕ2

Y (−r)− n− αp

]}
,

and

(3) GN1(q),...,Nn(q)(ϕZ(−r), ..., ϕZ(−r))

= exp
{
λ

[
(n(1− αq) + 2αq)ϕZ(−r) + αq(n− 1)ϕ2

Z(−r)− n− αq

]}
.

Next, we will study the trend of the value at risk by varying various param-

eters of claim sizes and surrender values.

3.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the

behavior of the value at risk against the loss parameters, which are the claim

size and surrender value. In this section, we study the trends of the value at

risk comparing with means of claims
(

1

βY

)
and surrenders

(
1

βZ

)
by varying the

parameters βY and βZ , respectively.
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For this section, we set the values of parameters I = 10, d = 0.2, λ = 2, α =

0.25, βX = 0.5, p = 0.4, q = 0.07 and n = 12.

Scenario 3.7 : The trend of value at risk in the terms of parameter βY where

the parameter βZ is fixed (βZ = 1.5). The confidence level considered in this

scenario is ω = 0.95. In this scenario, we consider different values of βY which are

0.5, 0.75, 1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 3.7.

Table 3.7: Parameter βY ∈ [0.5, 2] and VaR0.95 (S12)

βY 0.5 0.75 1.0 1.5 2.0
VaR0.95 (S12) 118.56 118.41 117.24 113.43 110.13

Table 3.7 show that the value at risk decreases as parameter βY increases.

That is the value at risk decrease when the mean of claim size decreases.

Scenario 3.8 : The trend of value at risk in terms of parameter βZ where the

parameter βY is fixed (βY = 1.5). The confidence level considered in this scenario

is ω = 0.95. In this scenario, we consider different values of βZ which are 0.5, 0.75,

1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 3.8.

Table 3.8: Parameter βZ ∈ [0.5, 2] and VaR0.95 (S12)

βZ 0.5 0.75 1.0 1.5 2.0
VaR0.95 (S12) 118.56 118.32 117.09 113.43 110.37

Table 3.8 show that the value at risk decreases as parameter βZ increases.

That is the value at risk decrease when the mean of surrender value decreases.
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The result from Scenario 3.7 and Scenario 3.8 show that the value at risk

decrease when either the mean of claim sizes or the mean of surrender values,

perform as the loss of the model, decreases. Therefore, it is reasonable that if the

claim sizes and surrender values decrease, the maximum loss of the company also

decrease.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

INTEGER-VALUED AUTOREGRESSIVE

RISK MODEL WITH INVESTMENT AND

SURRENDER

In Chapter 3, we constructed INMA(1) risk model. For this chapter, we

consider the first order integer-valued autoregressive (INAR(1)) process into the

risk model. Because the forecasted data in INAR(1) process have correlation with

all other previous data. Section 4.1 introduces the model and describes notations

used in this chapter. In Section 4.2, we provide definition and some properties

of INAR(1) risk model. We then obtain the adjustment coefficient function to

approximate the ruin probability in Section 4.3. Moreover, we also give numerical

examples to study the trend of ruin probability and value at risk in terms of model

parameters in Section 4.4.

4.1 The discrete-time risk model

Let {Un;n ∈ N} be the surplus process of insurance company with incorpo-

rating investment and surrender at time n. For initial capital u, the discrete-time

risk model can be written as

Un = u+ Idn+
n∑

i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci, (4.1)

where I is the investment capital for I < u, d represents the investment income

per unit of time. The sequence of aggregates of premium amounts in period i,
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denoted by {Ai; i ∈ N}, is defined as

Ai =

Ni∑
k=1

Xi,k, (4.2)

where {Xi,k; k ∈ N} is the sequence of premium sizes in period i assuming to be

i.i.d. random variables and Ni is the number of premiums in period i.

The sequence of aggregate of claim sizes in period i, denoted by {Bi; i ∈ N}, is

defined as, for 0 < p < 1,

Bi =

Ni(p)∑
k=1

Yi,k,

where the sequence of i.i.d. random variables {Yi,k; k ∈ N} denotes claim sizes in

period i, and Ni(p) is the p-thinning process of Ni denoting the number of claims

in period i.

The sequence of aggregate of surrender values in period i, denoted by {Ci; i ∈ N},

is defined as

Ci =

Ni(q)∑
k=1

Zi,k,

where the sequence of i.i.d. random variables {Zi,k; k ∈ N} represents surrender

values in period i, and Ni(q) is the q-thinning process of Ni denotes the number

of surrenders in period i for 0 < q < 1 such that 0 < p+ q < 1.

4.2 Definition and properties of INAR(1) risk model

In this section, we provide definition and some properties of the INAR(1)

risk model.
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For the INAR(1) risk model considered in this chapter, we suppose that the

processes {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} follow INAR(1) processes.

The processes are defined under the condition that N1, N1(p) and N1(q) follow

Poisson distribution with means λ

1− α
, λ

1− αp
and λ

1− αq
, respectively.

The structures of {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} are described as

follows.

The process of the number of premiums {Ni; i ∈ N} can be defined as

Ni = α ◦Ni−1 + εi, (4.3)

where α ∈ [0, 1], {εi}i=1,2,... is a sequence of i.i.d. random variables following the

Poisson distribution with mean λ and α ◦Ni−1 is the binomial thinning operator

defined as

α ◦Ni−1 =

Ni−1∑
j=1

di−1,j,

where {di,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter α for all i.

The process of the number of claims {Ni(p); i ∈ N} can be defined as

Ni(p) = (αp) ◦Ni−1(p) + γi, (4.4)

where {γi}i=1,2,... is the sequence of i.i.d. random variables following the Poisson

distribution with mean λ and (αp) ◦ Ni−1(p) is the binomial thinning operator

defined as

(αp) ◦Ni−1(p) =

Ni−1(p)∑
j=1

ei−1,j,

where {ei,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter αp.
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The process of the number of surrenders {Ni(q); i ∈ N} can be defined as

Ni(q) = (αq) ◦Ni−1(q) + µi, (4.5)

where {µi}i=1,2,... is the sequence of i.i.d. random variables following the Poisson

distribution with mean λ and (αq)◦Ni−1 is the binomial thinning operator defined

as

(αq) ◦Ni−1(q) =

Ni−1(q)∑
j=1

fi−1,j,

where {fi,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables with pa-

rameter αq.

Next, we give the properties of the number of premiums, the number of

claims and the number of surrenders, denoted by {Ni; i ∈ N}, {Ni(p); i ∈ N} and

{Ni(q); i ∈ N}, respectively.

Proposition 4.2.1. Let {Ni; i ∈ N} be defined in (4.3). Then {Ni; i ∈ N} has

the following properties, for all i ∈ N

(1) GNi
(z) = e

λ
1−α

(z−1) for z ∈ R,

(2) Ni is stationary process,

(3) E(Ni) =
λ

1− α
,

(4) Var(Ni) =
λ

1− α
,

(5) Cov(Ni, Ni−k) =
λαk

1− α
for k ≥ 1,

(6) Corr(Ni, Ni−k) = αk for k ≥ 1.
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Proof. To prove (1) and (2), we will show that Ni follow the Poisson distribution

with mean λ

1− α
for all i.

Note from the assumption that N1 has Poisson distribution with mean λ

1− α
.

Next, we will prove that {Ni; i ∈ N} is stationary process with mean λ

1− α
by the

mathematical induction as follows.

For the inductive step of the mathematical induction, we assume that GNi
(z) =

e
λ

1−α
(z−1). Then we have,

GNi+1
(z) = E[zNi+1 ]

= E[zα◦Ni+εi+1 ]

= E[zα◦Ni ]E[zεi+1 ] (4.6)

= E[((1− α) + αz)Ni ]E[zεi+1 ]

= e
λ

1−α
((1−α)+αz−1) (4.7)

= e
λ

1−α
(z−1),

where we use the fact that the process {Ni; i ∈ N} is independent of {εi}i=1,2,...

to obtain (4.6) and use the assumption that GNi
(z) = e

λ
1−α

(z−1) and the fact

that {εi}i=1,2,... is a sequence of i.i.d. random variables following the Poisson

distribution with mean λ to obtain (4.7).

Therefore, we can conclude that GNi
(z) = e

λ
1−α

(z−1) for all i ∈ N and {Ni; i ∈ N}

is a stationary process.

To prove (3), note that

E(Ni) = E(α ◦Ni−1 + εi)

= E(α ◦Ni−1) + E(εi)

= αE(Ni−1) + E(εi)
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From Proposition 4.2.1 (2), E(Ni) = E(Ni−1). Therefore,

E(Ni) =
E(εi)

1− α

=
λ

1− α
, (4.8)

where we use the fact that {εi}i=1,2,... has the Poisson distribution mean λ to obtain

(4.8).

To prove (4), from Lemma 2.1.1 (b), note that

G
(2)
Ni
(1) = E(Ni(Ni − 1)) = E(N2

i )− E(Ni)

Then, from Proposition 4.2.1 (1),

E(N2
i ) = G

(2)
Ni
(1) + E(Ni)

=

(
λ

1− α

)2

e
λ

1−α
(z−1)

∣∣∣∣
z=1

+
λ

1− α

=

(
λ

1− α

)2

+
λ

1− α
.

Therefore, we can obtain the variance of {Ni; i ∈ N} as follows.

Var(Ni) = E(N2
i )− E2(Ni)

=

(
λ

1− α

)2

+
λ

1− α
−
(

λ

1− α

)2

=
λ

1− α
.
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To prove (5), for k ≥ 1, we consider

Cov(Ni, Ni−k) = Cov(α ◦Ni−1 + εi, Ni−k)

= Cov(α ◦Ni−1, Ni−k) + Cov(εi, Ni−k)

= αCov(Ni−1, Ni−k) (4.9)

= αCov(α ◦Ni−2 + εi−1, Ni−k)

= α2Cov(Ni−2, Ni−k) (4.10)

= α2Cov(α ◦Ni−k + εi−2, Ni−3)

= α3Cov(Ni−3, Ni−k), (4.11)

where we use the fact that the process {Ni; i ∈ N} be independent of {εi}i=1,2,...

to obtain (4.9) – (4.11).

By recursively, we have

Cov(Ni, Ni−k) = αkCov(Ni−k, Ni−k)

= αkVar(Ni−k)

=
αkλ

1− α
.

To prove (6), from Proposition 4.2.1 (4) and (5), we have

Corr(Ni, Ni−k) =
Cov(Ni, Ni−k)√

Var(Ni)
√

Var(Ni−k)

=

(
αkλ

1− α

)(
1− α

λ

)
= αk.
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Similar to Proposition 4.2.1, we can provide the properties of the processes

{Ni(p); i ∈ N} and {Ni(q); i ∈ N} presented in Proposition 4.2.2 and Proposition

4.2.3, respectively.

Proposition 4.2.2. Let {Ni(p); i ∈ N} be defined in (4.4). Then {Ni(p); i ∈ N}

has the following properties, for all i ∈ N.

(1) GNi(p)(z) = e
λ

1−αp
(z−1) for z ∈ R,

(2) Ni(p) is stationary process,

(3) E(Ni(p)) =
λ

1− αp
,

(4) Var(Ni(p)) =
λ

1− αp
,

(5) Cov(Ni(p), Ni−k(p)) =
λ(αp)k

1− αp
for k ≥ 1,

(6) Corr(Ni(p), Ni−k(p)) = (αp)k for k ≥ 1.

Proposition 4.2.3. Let {Ni(q); i ∈ N} be defined in (4.5). Then {Ni(q); i ∈ N}

has the following properties, for all i ∈ N.

(1) GNi(q)(z) = e
λ

1−αq
(z−1) for z ∈ R,

(2) Ni(q) is stationary process,

(3) E(Ni(q)) =
λ

1− αq
,

(4) Var(Ni(q)) =
λ

1− αq
,

(5) Cov(Ni(q), Ni−k(q)) =
λ(αq)k

1− αq
for k ≥ 1,

(6) Corr(Ni(q), Ni−k(q)) = (αq)k for k ≥ 1.
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Next, following Joe (1997), we will give the dependence structure of the

process {Ni; i ∈ N} by writting Ni+1 in the terms of N1 for i ∈ N.

Theorem 4.2.1 ([8], p. 263). The dependence structure of the Poisson INAR(1)

process can be defined by,

Ni+1 =

N1∑
j=1

d21jd31j . . . di+1,1j +
i∑

k=2

εk∑
j=1

dk+1,kj . . . di+1,kj + εi+1

where {di,j}j=1,2,... is the sequence of i.i.d. Bernoulli random variables for all i.

The following theorem obtains the generating function of the sum of INAR(1)

process.

Theorem 4.2.2. Let INAR(1) process {Ni; i = 1, 2, ...} be defined in (4.3). The

generating function of the sum of {Ni; i = 1, 2, .., n} process can be written as

follows.

GPn(t) = exp
{
λ

(
2t

n−2∑
k=0

(αt)k + (1− α)t
n−2∑
k=0

(n− k − 2)(αt)k − (n− 1)

)
+

λ

1− α

(
αn−1tn − 1

)}
,

where Pn = N1 + · · ·+Nn for n = 2, 3, ...

Proof. From Theorem 4.2.1, we have

GPn(t) = E
[
tN1+···+Nn

]
= E

[
tN1t

∑n−1
i=1 Ni+1

]
= E

[
tN1t

∑n−1
i=1

∑N1
j=1 d21jd31j ···di+1,1j+

∑n−1
i=1

∑i
k=2

∑εk
j=1 dk+1,kj ···di,kj+

∑n−1
i=1 εi+1

]
.

(4.12)
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From Theorem 4.2.1 and the fact that N1 follows the Poisson distribution with

mean λ

1− α
, we will provide the generating function GPn(t) in the case of n = 2, 3.

For n = 2, from (4.12), we have

GP2(t) = E[tN1+N2 ]

= E
[
tN1t

∑N1
j=1 d21j tε2

]
= E

[
tN1+

∑N1
j=1 d21j

]
E (tε2)

= E
[
tN1E

[
t
∑N1

j=1 d21j
∣∣∣N1

]]
E (tε2) (4.13)

= E

[
tN1E

[
N1∏
j=1

td21j

∣∣∣∣∣N1

]]
E (tε2)

= E

[
tN1

N1∏
j=1

(1− α + αt)

]
E (tε2) (4.14)

= E
[
tN1(1− α + αt)N1

]
E (tε2)

= E
[
((1− α)t+ αt2)N1

]
E (tε2)

= e
λ

1−α
[(1−α)t+αt2−1]eλ(t−1), (4.15)

where we use the fact that the random variable N1 is independent of ε2 to obtain

(4.13), use the fact that {di,j}j=1,2,... be the sequence of i.i.d. Bernoulli random

variables with parameter α to obtain (4.14) and we use the fact that the random

variables N1 and ε2 be the Poisson distribution with means λ

1− α
and λ to obtain

(4.15).

For n = 3, from (4.12), we get

GP3(t) = E[tN1+N2+N3 ]

= E
[
tN1+

∑N1
j=1 d21j+

∑N1
j=1 d21jd31j t

∑ε2
j=1 d32j tε2+ε3

]
= E

[
tN1+

∑N1
j=1 d21j+

∑N1
j=1 d21jd31j

]
E
[
tε2+

∑ε2
j=1 d32j

]
E (tε3) (4.16)

= E
[
tN1+

∑N1
j=1 d21j+

∑N1
j=1 d21jd31j

]
eλ[(1−α)t+αt2−1]eλ(t−1), (4.17)
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where we use the fact that the random variable N1 is independent of {εi}i=1,2,... to

obtain (4.16) and the fact that {εi}i=1,2,... be the Poisson distribution with means

λ to obtain (4.17).

Next, we will separately consider the first term of (4.17). Then

E
[
tN1+

∑N1
j=1 d21j+

∑N1
j=1 d21jd31j

]
= E

[
tN1E

[
t
∑N1

j=1 d21jE
[
t
∑N1

j=1 d21jd31j
∣∣N1, d21j

] ∣∣∣∣N1

]]
= E

[
tN1E

[
t
∑N1

j=1 d21jE

[
N1∏
j=1

td21jd31j
∣∣N1, d21j

] ∣∣∣∣N1

]]

= E

[
tN1E

[
N1∏
j=1

td21j
N1∏
j=1

(1− α + αtd21j)
∣∣N1

]]
(4.18)

= E

[
tN1E

[
N1∏
j=1

(1− α)td21j + αt2d21j
∣∣N1

]]

= E

[
tN1

N1∏
j=1

(1− α)(1− α + αt) + α(1− α + αt2)

]
(4.19)

= E
[
tN1((1− α)2 + α(1− α)t+ α(1− α) + α2t2)N1

]
= E

[
((1− α)2t+ α(1− α)t2 + α(1− α)t+ α2t3)N1

]
= e

λ
1−α

[(1−α)t+α(1−α)t2+α2t3−1], (4.20)

where we use the fact that {di,j}j=1,2,... is the sequence of i.i.d. Bernoulli random

variables with parameter α to obtain (4.18) and (4.19) and we use the fact that

N1 be the Poisson distribution with mean λ

1− α
to obtain (4.20).

Substitute (4.20) into (4.17), we obtain

GP3(t) = e
λ

1−α
[(1−α)t+α(1−α)t2+α2t3−1]eλ[(1−α)t+αt2−1]eλ(t−1). (4.21)

By the same technique in obtaining (4.15) and (4.21), we can write in the general

form of GPn(t). For n = 2, 3, ..., we have
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GPn(t) = E
[
tN1+

∑n−1
i=1

∑N1
j=1 d21jd31j ···di+1,1j tε2+

∑ε2
j=1

∏n
i=3 di,2j tε3+

∑ε3
j=1

∏n
i=4 di,3j

· · · tεn−2+
∑εn−2

j=1

∏n
i=n−1 di,n−2j tεn−1+

∑εn−1
j=1 dn,n−1j tεn

]
= E

[
tN1+

∑n−1
i=1

∑N1
j=1 d21jd31j ···di+1,1j

]
E
[
tε2+

∑ε2
j=1

∏n
i=3 di,2j

]
E
[
tε3+

∑ε3
j=1

∏n
i=4 di,3j

]
· · ·E

[
tεn−2+

∑εn−2
j=1

∏n
i=n−1 di,n−2j

]
E
[
tεn−1+

∑εn−1
j=1 dn,n−1j

]
E (tεn)

= e
λ

1−α
[(1−α)t+α(1−α)t2+α2(1−α)t3+···+αn−2(1−α)tn−1+αn−1tn−1]

· eλ[(1−α)t+α(1−α)t2+α2t3+···+αn−3(1−α)tn−2+αn−2tn−1−1] · · · eλ[(1−α)t+αt2−1]eλ(t−1)

= eλ[t+αt2+α2t3+···+αn−2tn−1]e
λ

1−α
[αn−1tn−1]

· eλ[(1−α)t+α(1−α)t2+α2t3+···+αn−3(1−α)tn−2+αn−2tn−1−1] · · · eλ[(1−α)t+αt2−1]eλ(t−1)

= exp
{
λ

(
2t

n−2∑
k=0

(αt)k + (1− α)t
n−2∑
k=0

(n− k − 2)(αt)k − (n− 1)

)
+

λ

1− α

(
αn−1tn − 1

)}
.

4.3 Adjustment coefficient

In this section, we derive the adjustment coefficient function for the INAR(1)

risk model and adjustment coefficient to obtain the approximation of ruin proba-

bility.

Theorem 4.3.1. The adjustment coefficient function of the risk model defined in

(4.1) is given by

c(r) = −rId+ λ(1− α)MX(−r)

(
1

1− αMX(−r)

)
+ λ(1− αp)MY (r)

(
1

1− αpMY (r)

)
+ λ(1− αq)MZ(r)

(
1

1− αqMZ(r)

)
− 3λ,

for all r such that MY (r) <
1

αp
and MZ(r) <

1

αq
.
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Proof. From (2.3), the adjustment coefficient function is defined as,

c(r) = lim
n→∞

1

n
lnE(e−rSn). (4.22)

Therefore, We will first derive E[e−rSn ].

From (3.5) and the fact that {Ai; i ∈ N}, {Bi; i ∈ N} and {Ci; i ∈ N} are inde-

pendent, we have

E[e−rSn ] = E

e
−r

Idn+

n∑
i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci




= E
[
e−rIdn

]
· E
[
e−r

∑n
i=1 Ai

]
· E
[
er

∑n
i=1 Bi

]
· E
[
er

∑n
i=1 Ci

]
. (4.23)

For the second term of (4.23), note that the aggregate of premium amounts

{Ai; i ∈ N} defined in (4.2). Then

E
[
e−r

∑n
i=1 Ai ]

= E[e−rA1 · · · e−rAn ]

= E[e−r
∑N1

k=1 X1,k · · · e−r
∑Nn

k=1 Xn,k ]

= E[E[e−r
∑N1

k=1 X1,k · · · e−r
∑Nn

k=1 Xn,k |N1, . . . , Nn]]

= E
[
(MX(−r))N1 · · · (MX(−r))Nn

]
= GPn(MX(−r)),

where Pn = N1 + · · ·+Nn.
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From Theorem 4.2.2, we obtain

E
[
e−r

∑n
i=1 Ai

]
= exp

{
λ

(
2MX(−r)

n−2∑
k=0

(αMX(−r))k + (1− α)MX(−r)
n−2∑
k=0

(n− k − 2)(αMX(−r))k
)

+
λ

1− α

(
αn−1Mn

X(−r)− 1
)
− λ(n− 1)

}
= exp

{
2λMX(−r)

n−2∑
k=0

(αMX(−r))k + λ(1− α)MX(−r)(n− 2)
n−2∑
k=0

(αMX(−r))k

− λ(1− α)MX(−r)
n−2∑
k=0

k(αMX(−r))k

+
λ

1− α

(
αn−1Mn

X(−r)− 1
)
− λ(n− 1)

}
= exp

{
2λMX(−r)

(
1− (αMX(−r))n−1

1− αMX(−r)

)
+ λ(1− α)MX(−r)(n− 2)

(
1− (αMX(−r))n−1

1− αMX(−r)

)
− λ(1− α)MX(−r)

(
(n− 2)(αMX(−r))n−1

1− αMX(−r)
+

αMX(−r)− (αMX(−r))n−1

(1− αMX(−r))2

)
+

λ

1− α

(
αn−1Mn

X(−r)− 1
)
− λ(n− 1)

}
= exp

{
2λMX(−r)

(
1− (αMX(−r))n−1

1− αMX(−r)

)
+ λ(1− α)MX(−r)

(
n− 2

1− αMX(−r)
− αMX(−r)− (αMX(−r))n−1

(1− αMX(−r))2

)
+

λ

1− α

(
αn−1Mn

X(−r)− 1
)
− λ(n− 1)

}
. (4.24)

By the same technique, we can obtain the last two terms of (4.23) as the following,

E[er
∑n

i=1 Bi ] = GPn(p) (MY (r))

= exp
{
2λMY (r)

(
1− (αpMY (r))

n−1

1− αpMY (r)

)
+ λ(1− αp)MY (r)

(
n− 2

1− αpMY (r)
− αpMY (r)− (αpMY (r))

n−1

(1− αpMY (r))2

)
+

λ

1− αp

(
(αp)n−1Mn

Y (r)− 1
)
− λ(n− 1)

}
, (4.25)
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and

E[er
∑n

i=1 Ci ] = GPn(q) (MZ(r))

= exp
{
2λMZ(r)

(
1− (αqMZ(r))

n−1

1− αqMZ(r)

)
+ λ(1− αq)MZ(r)

(
n− 2

1− αqMZ(r)
− αqMZ(r)− (αqMZ(r))

n−1

(1− αqMZ(r))2

)
+

λ

1− αq

(
(αq)n−1Mn

Z(r)− 1
)
− λ(n− 1)

}
, (4.26)

where Pn(p) = N1(p) + · · ·+Nn(p) and Pn(q) = N1(q) + · · ·+Nn(q).

Substitute (4.24) – (4.26) into (4.23), we have

E[e−rSn ] = E
[
e−rIdn

]
· E
[
e−r

∑n
i=1 Ai

]
· E
[
er

∑n
i=1 Bi

]
· E
[
er

∑n
i=1 Ci

]
= exp

{
− rIdn+ 2λMX(−r)

(
1− (αMX(−r))n−1

1− αMX(−r)

)
+ λ(1− α)MX(−r)

(
n− 2

1− αMX(−r)
− αMX(−r)− (αMX(−r))n

(1− αMX(−r))2

)
+

λ

1− α

(
αn−1Mn

X(−r)− 1
)
− λ(n− 1)

+ 2λMY (r)

(
1− (αpMY (r))

n−1

1− αpMY (r)

)
+ λ(1− αp)MY (r)

(
n− 2

1− αpMY (r)
− αpMY (r)− (αpMY (r))

n

(1− αpMY (r))2

)
+

λ

1− αp

(
(αp)n−1Mn

Y (r)− 1
)
− λ(n− 1)

+ 2λMZ(r)

(
1− (αqMZ(r))

n−1

1− αqMZ(r)

)
+ λ(1− αq)MZ(r)

(
n− 2

1− αqMZ(r)
− αqMZ(r)− (αqMZ(r))

n

(1− αqMZ(r))2

)
+

λ

1− αq

(
(αq)n−1Mn

Z(r)− 1
)
− λ(n− 1)

}
.
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Then, we consider the logarithm of the last equation as follows.

1

n
lnE(e−rSn) =

1

n
lnE

[
exp

{
− r

(
Idn+

n∑
i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci

)}]
=

1

n

{
− rIdn+

(n− 2)λ(1− α)MX(−r)

1− αMX(−r)

+

(
λMX(−r) (−2 + α(3− α)MX(−r))

(1− αpMX(−r))2

)(
(αMX(−r))n−1 − 1

)
+

λα

1− α
((αMX(−r))n − 1) +

(n− 2)λ(1− αp)MY (r)

1− αpMY (−r)

+

(
λMY (r) (−2 + αp(3− αp)MY (r))

(1− αpMY (r))2

)(
(αpMY (r))

n−1 − 1
)

+
λαp

1− αp
((αpMY (r))

n − 1) +
(n− 2)λ(1− αq)MZ(r)

1− αqMZ(r)

+

(
λMZ(r) (−2 + αq(3− αq)MY (r))

(1− αpMY (r))2

)(
(αqMZ(r))

n−1 − 1
)

+
λαq

1− αq
((αqMZ(r))

n − 1)− 3λ(n− 1)

}
(4.27)

Since 0 < αMX(−r) < 1, then the limit of the term (αMX(−r))n

n
as n approaches

infinity is equal to zero. From the assumption that αpMY (r) < 1 and αqMZ(r) <

1, then the terms of (αpMY (r))
n

n
and (αqMZ(r))

n

n
go to zero as n go to infinity.

Then we will take the limit into (4.27) as n approaches infinity, we have

c(r) = lim
n→∞

1

n
lnE(e−rSn)

= −rId+ λ(1− α)MX(−r)

(
1

1− αMX(−r)

)
+ λ(1− αp)MY (r)

(
1

1− αpMY (r)

)
+ λ(1− αq)MZ(r)

(
1

1− αqMZ(r)

)
− 3λ.
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Next, we will show that the solution of adjustment equation is the unique

positive solution.

Proposition 4.3.1. The adjustment equation c(r) = 0 has the unique positive

solution R which is called the adjustment coefficient.

Proof. To show that c(r) = 0 has the unique positive solution, we will show the

function c(·) has following properties

(1) c(0) = 0,

(2) c′(0) < 0,

(3) c′′(r) > 0 ∀r ∈ (0,∞),

(4) lim
r→∞

c(r) = ∞.

To prove (1), we will substitute r = 0 into the adjustment coefficient c(r) defined

in Theorem 4.3.1, then we have

c(0) = λ(1− α)

(
1

1− α

)
+ λ(1− αp)

(
1

1− αp

)
+ λ(1− αq)

(
1

1− αq

)
− 3λ

= 0.

To prove (2), note that

c′(r) = −Id+ λ(1− α)

(
−(1− αMX(−r))M ′

X(−r)− αMX(−r)M ′
X(−r)

(1− αMX(−r))2

)
+ λ(1− αp)

(
(1− αpMY (r))M

′
Y (r) + αpMY (r)M

′
Y (r)

(1− αpMY (r))2

)
+ λ(1− αq)

(
(1− αqMZ(r))M

′
Z(r) + αqMZ(r)M

′
Z(r)

(1− αqMZ(r))2

)
= −Id+ λ(1− α)

(
−M ′

X(−r)

(1− αMX(−r))2

)
+ λ(1− αp)

(
M ′

Y (−r)

(1− αpMY (r))2

)
+ λ(1− αq)

(
M ′

Z(−r)

(1− αqMZ(r))2

)
. (4.28)
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Then we substitute r = 0 into (4.28) and get,

c′(0) = −Id+ λ(1− α)
−EX

(1− α)2
+ λ(1− αp)

EY

(1− αp)2

+ λ(1− αq)
EZ

(1− αq)2

= −Id− λ

1− α
EX +

λ

1− αp
EY +

λ

1− αq
EZ

< 0,

where we use Proposition 3.1.4 and Propositions 4.2.1 – 4.2.3 (2) to obtain the

last inequality.

Hence, c′(0) < 0.

To prove (3), consider

c′′(r) = λ(1− α)

(
(M ′′

X(−r)(1− αMX(−r))2 + 2α(M ′
X(−r))2(1− αMX(−r))

(1− αMX(−r))4

)
+ λ(1− αp)

(
M ′′

Y (r)(1− αpMY (r))
2 + 2αp(M ′

Y (r))
2(1− αpMY (r))

(1− αpMY (r))4

)
+ λ(1− αq)

(
M ′′

Z(r)(1− αqMZ(r))
2 + 2αq(M ′

Z(r))
2(1− αqMZ(r))

(1− αqMZ(r))4

)
= λ(1− α)

(
M ′′

X(−r)

(1− αMX(−r))2
+

2α(M ′
X(−r))2

(1− αMX(−r))3

)
+ λ(1− αp)

(
M ′′

Y (r)

(1− αpMY (r))2
+

2αp(M ′
Y (r))

2

(1− αpMY (r))3

)
+ λ(1− αq)

(
M ′′

Z(r)

(1− αqMZ(r))2
+

2αq(M ′
Z(r))

2

(1− αqMZ(r))3

)
.

As we know that moment generating function is always positive. From the fact

that 0 < MX(−r) < 1 and 0 < α < 1. So, the term of 1−αMX(−r) is greater than

0. Since MY (r) <
1

αp
and MZ(r) <

1

αq
, we can get that the terms of 1−αpMY (r)

and 1 − αqMZ(r) are greater than 0 for 0 < p, q < 1 and 0 < p + q < 1. Hence,

we can conclude that the right hand side of the last equation is positive.

Therefore, c′′(r) > 0.
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To prove (4), From Theorem 4.3.1, the adjustment coefficient can be express as

c(r) = −rId+ λ(1− α)MX(−r)

(
1

1− αMX(−r)

)
+ λ(1− αp)MY (r)

(
1

1− αpMY (r)

)
+ λ(1− αq)MZ(r)

(
1

1− αqMZ(r)

)
− 3λ.

From the right hand side of the equation, we can see that the terms of moment

generating functions MY (r) and MZ(r) grow faster than the polynomial term,

determined by the term of −rId. Moreover, from Proposition 4.3.1 (3), we have

1 − αMX(−r), 1 − αpMY (r) and 1 − αqMZ(r) are positive for 0 < p, q < 1 and

0 < p+ q < 1. Hence, lim
r→∞

c(r) = ∞.

4.4 Numerical example

In this section, we study the effect of ruin probability and value at risk

comparing with the parameters of premiums, claims and surrenders via numerical

example by using Python and R programming.

Our examples are performed for a special case where we assume that the se-

quence of premium sizes X = {Xi,k}i,k=1,2,... is a sequence of i.i.d. random variables

which are exponentially distributed with mean 1

βX

, the sequence of claim sizes

Y = {Yi,k}i,k=1,2,... is a sequence of i.i.d. random variables which are exponentially

distributed with mean 1

βY

and the sequence of surrender values Z = {Zi,k}i,k=1,2,...

is a sequence of i.i.d. random variables which are exponentially distributed with

mean 1

βZ

, respectively.
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Therefore, the moment generating functions of X, Y and Z are defined by

MX(−r) =
βX

βX + r
, MY (r) =

βY

βY − r
and MZ(r) =

βZ

βZ − r
, respectively, for

r < min{βY , βZ}.

4.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability in the term of

premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as

Ψ(u) ≃ e−Ru

where R is the adjustment coefficient.

Firstly, we will calculate the unique positive solution of the adjustment co-

efficient equation as follows.

From theorem 4.3.1, we have,

0 = c(r)

= −rId+ λ(1− α)MX(−r)

(
1

1− αMX(−r)

)
+ λ(1− αp)MY (r)

(
1

1− αpMY (r)

)
+ λ(1− αq)MZ(r)

(
1

1− αqMZ(r)

)
− 3λ

= −rId+ λ(1− α)

(
βX

(1− α)βX + r

)
+ λ(1− αp)

(
βY

(1− αp)βY − r

)
+ λ(1− αq)

(
βZ

(1− αq)βZ − r

)
,

where 0 < p, q < 1, 0 < p+ q < 1 and r < min {(1− αp)βY , (1− αq)βZ}.
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Next, we will study the effect of ruin probability by changing the parameters

of premium size, claim size, surrender values and investment in Section 4.4.1.1. In

Section 4.4.1.2, we will consider the effect of ruin probability in terms of proba-

bilities of claims and surrenders.

4.4.1.1 Effects from premiums size, claim size and surrender value

In this section, we will discuss the trend of ruin probability comparing with

income and expenses of insurance company where the income are determined by

the premium sizes and investments and the expenses are determined by the claim

sizes and surrender values, respectively. The parameters of the model considered

in this section are the mean of premiums
(

1

βX

)
, the mean of claims

(
1

βY

)
and

the mean of surrenders
(

1

βZ

)
and investment (I).

For this section, we set the values of I = 10, d = 0.2, λ = 2, α = 0.25, p =

0.4, q = 0.07 and the initial surplus u = 12.

Scenario 4.1 : The trend of ruin probability in terms of the parameter βX

where the parameters βY and βZ are fixed (βY = βZ = 1.5). In this scenario, we

consider different values of βX which are 0.5, 0.75, 1.0, 1.5 and 2.0, respectively.

The values of the upper bound of the ruin probability are given in Table 4.1. The

corresponding plot is presented in Figure 4.1.

Table 4.1: Parameter βX ∈ [0.5, 2] and their upper bound of ruin probability

βX 0.5 0.75 1.0 1.5 2.0
Upper bound 0.003013 0.006638 0.013735 0.049486 0.145657
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Figure 4.1: Trend of the ruin probability when βX increases for INAR(1) risk model

From Table 4.1 and Figure 4.1, we can see that the ruin probability increases

when βX increases. That is the ruin probability increases when the mean of

premium size decreases.

Scenario 4.2 : The trend of ruin probability in terms of the parameter βY

where the parameters βX and βZ are fixed (βX = 0.5 and βZ = 1.5). In this

scenario, we consider different values of βY which are 0.5, 0.75, 1.0, 1.5 and 2.0,

respectively. The values of the upper bound of the ruin probability are given in

Table 4.2. The corresponding plot is presented in Figure 4.2.

Table 4.2: Parameter βY ∈ [0.5, 2] and their upper bound of ruin probability

βY 0.5 0.75 1.0 1.5 2.0
Upper bound 0.656398 0.189402 0.060250 0.008994 0.002348
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Figure 4.2: Trend of the ruin probability when βY increases for INAR(1) risk model

Table 4.2 and Figure 4.2 show that the ruin probability decreases and reaches

to 0 as parameter βY increases. It means that the ruin probability decreases when

the mean of claim size decreases.

Scenario 4.3 : The trend of ruin probability in terms of the parameter βZ

where the parameters βX and βY are fixed (βX = 0.5 and βY = 1.5). In this

scenario, we consider different values of βZ which are 0.5, 0.75, 1.0, 1.5 and 2.0,

respectively. The values of the upper bound of the ruin probability are given in

Table 4.3. The corresponding plot is presented in Figure 4.3.

Table 4.3: Parameter βZ ∈ [0.5, 2] and their upper bound of ruin probability

βZ 0.5 0.75 1.0 1.5 2.0
Upper bound 0.558193 0.156177 0.050661 0.008994 0.002994
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Figure 4.3: Trend of the ruin probability when βZ increases for INAR(1) risk model

From Table 4.3 and Figure 4.3, we can see that the ruin probability decreases

and reaches to 0 when parameter βZ increases. It means that the ruin probability

decreases when the mean of surrender value decreases.

Scenario 4.4 : The trend of ruin probability in terms of the investment I

where the parameters βX , βY and βZ are fixed (βX = 0.5 and βY = βZ = 1.5).

In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0,

8.0 and 10.0, respectively. The values of the upper bound of the ruin probability

are given in Table 4.4. The corresponding plot is presented in Figure 4.4.

Table 4.4: Parameter I ∈ [1, 10] and their upper bound of ruin probability

Investment 1.0 3.0 5.0 8.0 10.0
Upper bound 0.053791 0.029349 0.015519 0.005795 0.003013
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Figure 4.4: Trend of the ruin probability when I increases for INAR(1) risk model

Table 4.4 and Figure 4.4 show that the ruin probability decreases when

the investment increase. It means that the more amount the insurance company

invests in financial markets, the smaller value of ruin probability.

From the result in Scenario 4.1 - 4.4, we can see that the ruin probability

increases as the income of the model, determined by the mean of premiums and

investment, decrease. Whereas the ruin probability decreases as the expenses of

the model, determined by means of claims and surrender, decrease.

4.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the change of the ruin probability in terms of

the probability of claims (p) and the probability of surrenders (q).

For this section, we set the values of I = 10, d = 0.2, λ = 2, α = 0.25, βX =

1, βY = 2, βZ = 1.5 and the initial surplus u = 12.
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Scenario 4.5 : The trend of ruin probability in terms of probability of claims

p when q is fixed (q = 0.04). In this scenario, we consider different values of p

which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper

bound of the ruin probability are given in Table 4.5. The corresponding plot is

presented in Figure 4.5.

Table 4.5: Parameter p ∈ (0, 0.9] and their upper bound of ruin probability

p 0.001 0.01 0.1 0.5 0.9
Upper bound 0.00129 0.00127 0.001471 0.002683 0.005553

Figure 4.5: Trend of the ruin probability when p increases for INAR(1) risk model

From Table 4.5 and Figure 4.5, we can see that the ruin probability increases

as the probability p increases. It means that the more claims occur, the higher

value of ruin probability.

Scenario 4.6 : The trend of ruin probability in terms of probability of claims

q when p is fixed (p = 0.04). In this scenario, we consider different values of q

which are 0.001, 0.01, 0.01, 0.5 and 0.9, respectively. The values of the upper
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bound of the ruin probability are given in Table 4.6. The corresponding plot is

presented in Figure 4.6.

Table 4.6: Parameter q ∈ (0, 0.9] and their upper bound of ruin probability

q 0.001 0.01 0.1 0.5 0.9
Upper bound 0.001241 0.001267 0.001561 0.004093 0.011302

Figure 4.6: Trend of the ruin probability when q increases for INAR(1) risk model

Table 4.6 and Figure 4.6 show that the ruin probability increases when pa-

rameter q increases. It means that the more surrenders occur, the higher value of

ruin probability.

The result of Scenario 4.5 and 4.6 show that the increased in the probability

of claims (p) and the probability of surrenders (q) make more the value of ruin

probability.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77

4.4.2 Numerical Example for the value at risk

In this section, we will study the value at risk (VaR) which is a risk measure

measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level ω for the INAR(1) risk model,

denoted by VaRω(Sn), is the ω-quantile of the distribution of the loss-profit Sn of

the risk model. The VaRω(Sn) can be written as

VaRω(Sn) = inf{k ∈ R|FSn(k) > ω}, (4.29)

where FSn(k) be the cumulative distribution function of Sn.

For our model, the loss-profit process Sn, define in (3.5), can be expressed as

Sn = Idn+
n∑

i=1

Ai −
n∑

i=1

Bi −
n∑

i=1

Ci

= Idn+
n∑

i=1

Ni∑
k=1

Xi,k −
n∑

i=1

Ni(p)∑
k=1

Yi,k −
n∑

i=1

Ni(q)∑
k=1

Zi,k,

where {Ni; i ∈ N}, {Ni(p); i ∈ N} and {Ni(q); i ∈ N} follow INAR(1) model,

defined in (4.3) - (4.5), respectively.

From (4.29), we can see that we need to have the distribution of Sn in order

to obtain the value at risk. However, it is difficult to obtain the distribution of Sn.

Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed

in [5], to approximate the distribution of Sn.
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The characteristic function of Sn, denoted by ϕSn(r), can be written as fol-

lows. Similar to provide E[e−rSn ] in the proof of Theorem 4.3.1, we have

ϕSn(r) = E[eirSn ]

= E[eirIdn] ·GPn(ϕX(r)) ·GPn(p)(ϕY (−r)) ·GPn(q)(ϕZ(−r)),

where Pn = N1+ · · ·+Nn, Pn(p) = N1(p)+ · · ·+Nn(p) and Pn(q) = N1(q)+ · · ·+

Nn(q), where

(1) GPn(ϕX(r))

= exp
{
2λϕX(r)

(
1− (αϕX(r))

n−1

1− αϕX(r)

)
+ λ(1− α)ϕX(r)

(
n− 2

1− αϕX(r)
− αϕX(r)− (αϕX(r))

n

(1− αϕX(r))2

)
+

λ

1− α

(
αn−1ϕn

X(r)− 1
)
− λ(n− 1)

}
,

(2) GPn(p)(ϕY (−r))

= exp
{
2λϕY (−r)

(
1− (αpϕY (−r))n−1

1− αpϕY (−r)

)
+ λ(1− αp)ϕY (−r)

(
n− 2

1− αpϕY (−r)
− αpϕY (−r)− (αpϕY (−r))n

(1− αpϕY (−r))2

)
+

λ

1− αp

(
(αp)n−1ϕn

Y (−r)− 1
)
− λ(n− 1)

}
,

and

(3) GPn(q)(ϕZ(−r))

= exp
{
2λϕZ(−r)

(
1− (αqϕZ(−r))n−1

1− αqϕZ(−r)

)
+ λ(1− αq)ϕZ(−r)

(
n− 2

1− αqϕZ(−r)
− αqϕZ(−r)− (αqϕZ(−r))n

(1− αqϕZ(−r))2

)
+

λ

1− αq

(
(αq)n−1ϕn

Z(−r)− 1
)
− λ(n− 1)

}
.
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Next, we will study the trend of the value at risk by varying various param-

eter of claim size and surrender values.

4.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the

behavior of the value at risk against the loss parameters, which are the claim size

and surrender value. In this section, we study the trend of the value at risk in

terms of mean of claims
(

1

βY

)
and the mean of surrenders

(
1

βZ

)
by varying the

parameters βY and βZ , respectively.

For this section, we set the values of parameters I = 10, d = 0.2, λ = 2, α =

0.25, βX = 0.5, p = 0.4, q = 0.07 and n = 12.

Scenario 4.7 : The trend of value at risk in the terms of parameter βY where

the parameter βZ is fixed (βZ = 1.5). The confidence level considered in this

scenario is ω = 0.95. In this scenario, we consider different values of βY which are

0.5, 0.75, 1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 4.7.

Table 4.7: Parameter βY ∈ [0.5, 2] and VaR0.95 (S12)

βY 0.5 0.75 1.0 1.5 2.0
VaR0.95 (S12) 118.47 117.96 116.40 112.44 110.22

Table 4.7 shows that the value at risk decreases when parameter βY increases.

That is the value at risk decreases when the mean of claim size decreases.
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Scenario 4.8 : The trend of value at risk in terms of parameter βZ where the

parameter βY is fixed (βY = 1.5). The confidence level considered in this scenario

is ω = 0.95. In this scenario, we consider different values of βZ which are 0.5, 0.75,

1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 4.8.

Table 4.8: Parameter βZ ∈ [0.5, 2] and VaR0.95 (S12)

βZ 0.5 0.75 1.0 1.5 2.0
VaR0.95 (S12) 118.50 117.81 116.19 112.44 110.37

Table 4.8 shows that the value at risk decreases as parameter βZ increases.

That is the value at risk decreases when the mean of surrender value decreases.

From Scenario 4.7 and Scenario 4.8, we can conclude that the value at risk,

described as the maximum loss of the company, decreases when the either claim

sizes or surrender values decreases.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis, we introduce two discrete-time risk models by incorporating

the concepts of investment and surrender where the number of premiums, claims

and surrenders follow integer-valued time series.

In chapter 3, we construct the first order integer-valued moving average

risk model with investment and surrender. We also provide some properties of

the model. Moreover, we study the risk measures for this model which are the

approximation of ruin probability and the value at risk. Finally, we discuss the

risk measures of the model by numerical simulations.

In chapter 4, we construct the first order integer-valued autoregressive risk

model with investment and surrender and derive some of its properties. Then,

we provide the approximation of ruin probability of the model. We derive the

adjustment coefficient of this model and prove that it has a unique positive solu-

tion. We discuss the trend of ruin probability and value at risk against the model

parameters by numerical simulations in the last section of this chapter.

The research can be extended in many direction. For example, we can con-

sider the concepts of investment and surrender to the higher orders of integer-

valued moving average and integer-valued autoregressive processes of our data.

We can also consider other general time series models such as autoregressive mov-

ing average process.
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