

ขั้นตอนวิธีทำซ้ำแบบนิวตันสำหรับการคำนวณพหุนามมอดุลาร์ผกผันภายใต้มอดุโล
xn ± 1 สำหรับบางรูปแบบของ n

นายศมากร ศรีพัฒนกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา
ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2564

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

NEWTON ITERATIVE ALGORITHM FOR POLYNOMIAL MODULAR

INVERSION MODULO xn ± 1 FOR SOME PATTERNS OF n

Mr. Samakorn Sripatthanakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2021

Copyright of Chulalongkorn University

Thesis Title NEWTON ITERATIVE ALGORITHM FOR POLYNOMIAL

MODULAR INVERSION MODULO xn ± 1 FOR SOME PAT-

TERNS OF n

By Mr. Samakorn Sripatthanakul

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Wutichai Chongchitmate, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. Chairman

(Associate Professor Krung Sinapiromsaran, Ph.D.)

. Thesis Advisor

(Wutichai Chongchitmate, Ph.D.)

. Examiner

(Thap Panitanarak, Ph.D.)

. External Examiner

(Assistant Professor Wittawat Kositwattanarerk, Ph.D.)

iv

ศมากร ศรีพัฒนกุล : ขั้นตอนวิธีทำซ้ำแบบนิวตันสำหรับการคำนวณพหุนามมอดุลาร์
ผกผันภายใต้มอดุโล xn ± 1 สำหรับบางรูปแบบของ n. (NEWTON ITERATIVE

ALGORITHM FOR POLYNOMIAL MODULAR INVERSION MODULO

xn ± 1 FOR SOME PATTERNS OF n) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : อ.ดร.วุฒิ
ชัย จงจิตเมตต์, 33 หน้า.

วิทยานิพนธ์ฉบับนี้นำเสนอขั้นตอนวิธีสำหรับการคำนวณมอดุลาร์ผกผันของพหุนามในริง
ของพหุนามเหนือฟิลด์จำกัด Fq ที่มีลักษณะเฉพาะ p เมื่อกำหนดพหุนาม f และจำนวนนับ r

โดยใช้แนวคิดของขั้นตอนวิธีทำซ้ำแบบนิวตัน จะได้ว่าเราสามารถหาขั้นตอนวิธีการหารแบบ
เร็วที่ใช้หาตัวผกผันของ f ภายใต้มอดุโล xpr − 1 , xpr + 1, x2pr − 1 และ xn − 1 เมื่อ
n = 2rd และ r, d ∈ N ได้ โดยเราได้มีการวิเคราะห์ความซับซ้อนในการคำนวณของขั้นตอน
วิธีภายใต้มอดุโลเหล่านี้ไว้ที่ O(n logn) ซึ่งมีประสิทธิภาพมากกว่าขั้นตอนวิธีแบบ Half-GCD

ในแง่ของการคำนวณสำหรับ n ขนาดใหญ่

ภาควิชาคณิตศาสตร์และ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตร์ประยุกต.์
. .และวิทยาการคณนา.

ปีการศึกษา2564. .

v

6270102823 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : DIVISION ALGORITHM / FINITE FIELD / ITERATIVE ALGORITHM /

MULTIPLICATION TIME

SAMAKORN SRIPATTHANAKUL : NEWTON ITERATIVE ALGORITHM FOR POLY-

NOMIAL MODULAR INVERSION MODULO xn ± 1 FOR SOME PATTERNS OF n.

ADVISOR : WUTICHAI CHONGCHITMATE, Ph.D., 33 pp.

This thesis presents an algorithm for computing the modular inverse of a polynomial

in a ring of polynomials over a finite field Fq with a characteristic p. Given a polynomial f

and a natural number r, by applying the idea of the Newton iteration algorithm, the fast

division algorithm used to find the inverse of f under modulo xpr −1, xpr

+1, x2pr −1 and

xn − 1 where n = 2rd for some r, d ∈ N, is established. The cost analysis for these cases

show that the algorithm has the computational complexity of O(n logn) which is more

efficient than the Half-GCD algorithm in terms of computational complexity for large n.

Department :Mathematicsand Student’s Signature .

.Computer.Science. Advisor’s Signature .

Field of Study :AppliedMathematics.and.

.ComputationalScience. . . .

Academic Year :2021. .

vi

ACKNOWLEDGEMENTS

It is difficult to express my gratitude to my advisor, Wutichai Chongchitmate,

Ph.D. for his enthusiasm, to inspire and efforts in explaining and clarify important

things related to this research. Throughout research writing period, he has provided

advice, taught basic knowledge for research and given lots of ideas with kindness. This

research would not have been completed without him.

I further would like to thank all of my thesis committees: Associate Professor

Krung Sinapiromsaran, Ph.D., Thap Panitanarak, Ph.D. and Assistant Professor Wit-

tawat Kositwattanarerk, Ph.D. for their insightful suggestions and improving the quality

of this research.

I wish to thank all of my teachers for sharing their knowledge and would like to

thank all other lecturers and staffs of the Department of Mathematics and Computer

Science, Faculty of Science, Chulalongkorn University, especially, Ms. Wipa Pimpapan

and Acting Sub Lt. Thinnakrit Sirisaengphraiwan, for their patience, encouragement

and impressive advising. Moreover, I would like to thank all friends and my seniors in

Applied Mathematics and Computer Science (AMCS) program for their useful advice,

helpful comments and friendship over the course of my study.

Finally, I am also grateful to the Development and Promotion of Science and

Technology Talents Project (DPST), Institute of the Promotion of Teaching Science and

Technology (IPST), Thailand, which has supported my study and given a scholarship

since 2015.

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation and Literature Surveys . 1

1.2 Research Objective . 1

1.3 Thesis Overview . 2

2 BACKGROUND KNOWLEDGE . 3

2.1 Algebraic Concept . 3

2.1.1 Finite Field . 3

2.1.2 The ring of polynomials over a finite field 4

2.2 Euclidean Algorithm . 6

2.3 Fast division of polynomials . 10

2.4 Half-GCD algorithm . 15

3 MAIN RESULTS . 18

3.1 Polynomial Modular Inversion . 18

3.2 On Cost Analysis . 23

3.3 Experiments and results . 27

4 CONCLUSIONS AND FUTURE WORK . 29

4.1 Conclusions . 29

4.2 Future work . 29

REFERENCES . 31

BIOGRAPHY . 33

CHAPTER I

INTRODUCTION

1.1 Motivation and Literature Surveys

Finding the modular inverse of a polynomial in a polynomial ring over a finite

field Fq with a characteristic p is a classic problem in number theory. However, the

algorithms for finding this problem is not efficiency in term of computational complexity,

especially for high degree polynomials. This modular inverse plays an important role in

error correcting codes and cryptography.

Let Fq be a finite field where q = pm and p is a prime number and Fq[x] be the set

of polynomials over Fq. The Euclidean algorithm is a well-known method for computing

the modular inversion polynomial over Fq. However, its complexity is O(n2 logn), which

is not efficient for large n, where n is the maximum of degrees of the dividend and the

divisor. The algorithm was improved for p = 2 by [1]. The improvement for more general

p was carried out by R.T.Moenck [2]. This algorithm, named Half-GCD, reduces the

performing steps by roughly half compared with the classic Euclidean algorithm. The

cost analysis showed that it has the complexity of O(n log2 n) which is more efficient

than the original Euclidean algorithm for every degree n. Cao and Cao [3] proposed an

iterative algorithm with the complexity of O(n logn) based on Newton idea [4] to find a

modular inverse for the modulo xn of an integer n ≥ 0.

1.2 Research Objective

Following the same idea as that of Cao and Cao, this paper proposes an algorithm

for finding the modular inverse of a polynomial under modulo xp
r − 1, xpr

+ 1, x2pr − 1

for characteristic p, and xn − 1 where p is a prime number and n = 2rd for some r, d ∈ N

for characteristic 2. In other words, given a polynomial f ∈ Fq[x], we want to find the

2

polynomial g ∈ Fq[x] such that fg ≡ 1 (mod hi) for i = 1, 2, 3, 4, where h1 = xp
r − 1,

h2 = xp
r

+ 1, h3 = x2p
r − 1 and h4 = xn − 1.

1.3 Thesis Overview

This thesis is separated into four chapters organized as follows. First, Chapter

1 gives the motivation, objective and the overall works. Chapter 2 will describe the

previous works and the properties of an algebraic concept used on our works. The main

result of our thesis is organized in Chapter 3, which presents the algorithm for finding a

modular inversion of a given polynomial in a polynomial ring over a finite field. The use

of the algorithm is also illustrated by examples in this chapter. The rest of this thesis is a

conclusion for summarizing our works and the future works which described in Chapter 4.

CHAPTER II

BACKGROUND KNOWLEDGE

2.1 Algebraic Concept

Algorithms used for calculating the inverse of polynomial modulo xn − 1 where n

is a form of 2rd and r, d is a positive integer, rely on algebra of polynomial rings. So, in

order to explain those, we need to be clear about understanding of fields and polynomial

rings with some more in-depth concepts like finite field and its characteristic. Along with

the algebra, a good understanding of some properties of polynomials is required.

2.1.1 Finite Field

We begin this section by recalling the notion of the finite field and their properties.

For the reference, see [5–9]. Some related definitions are shown in the following.

Definition 2.1. A field is a set F together with two binary operations + and · on F

such that (F,+) is an abelian group with the identity 0 and (F− {0}, ·) is also an abelian

group satisfying the following distributive law holds:

a · (b+ c) = (a · b) + (a · c), for all a, b, c ∈ F,

and for any field F, let F× = F− {0}.

Definition 2.2. Let F be a field. If the number of element in F is infinite, F is called

an infinite field. If the number of elements in F is finite, F is called a finite field or

Galois field.

So, for any finite field, there are additional characteristic starting as follow.

Definition 2.3. Let F be a field and e be its identity. If for any positive integer m,

we have me ̸= 0, then we say that the characteristic of F is 0 or that F is a field of

4

characteristic 0. If there exists a positive integer m such that me = 0, then the smallest

positive integer p satisfying pe = 0 is called the characteristic of F and F is called a field

of characteristic p.

Example 2.4. All ofQ , R , and C are fields of characteristic 0, and Zp := {0, 1, . . . , p− 1}

is a field of characteristic p.

Theorem 2.5. Let F be any field, then the characteristic of F is either 0 or a prime p.

Corollary 2.6. If F is a finite field, then the characteristic of F is not equal to 0.

Theorem 2.7. Let Fq be a field of characteristic p, p ̸= 0, and a, b be any two polynomials

of Fq[x], then

(a+ b)p = ap + bp.

Similarly, we get the following corollary.

Corollary 2.8. Let Fq be a field of characteristic p, p ̸= 0 and a, b be any two polynomials

of Fq[x], then

(a− b)p = ap − bp.

2.1.2 The ring of polynomials over a finite field

Let Fq be a finite field of q elements, whose characteristic is p. This section intro-

duces the polynomial over Fq. The structure of the set of all polynomials over Fq are

characterized and their properties are presented. For the general reference, we refer to [8].

Consider all polynomials of the form

a0 + a1x+ a2x
2 + ...+ anx

n, ai ∈ Fq

Here ai is called the ith coefficient of the polynomial. In this polynomial n is the largest

5

integer for which ai ̸= 0. As such an is called the leading coefficient and n is called

the degree of the polynomial. When the leading coefficient is 1, the polynomial is said

to be monic. A part of a polynomial aixi is called a term. In addition, the set of all

polynomials over Fq forms a ring, with addition and multiplication, called polynomial

ring over Fq[x] and it is denoted by Fq[x], where x is called the indeterminate or

variable. The next lemma presents a property on the degree of a polynomial as follows.

Lemma 2.9. Let f ∈ Fq[x] be a polynomial of degree m ≥ 1 with f(0) ̸= 0. Then there

exists a positive integer e ≤ qm − 1 such that f(x) divides xe − 1.

Definition 2.10. Let f ∈ Fq[x] be a nonzero polynomial. If f(0) ̸= 0, then the least

positive integer e for which f(x) divides xe − 1 is called the order of f and denoted by

ord(f) = ord(f(x)). If f(0) = 0, then f(x) = xhg(x), where h ∈ N and g ∈ Fq[x] with

g(0) ̸= 0 are uniquely determined; ord(f) is then defined to be ord(g).

Theorem 2.11. Let c be a positive integer. Then the polynomial f ∈ Fq[x] with f(0) ̸= 0

divides xc − 1 if and only if ord(f) divides c.

The greatest common divisor of two polynomials over a finite field is defined in the

following.

Definition 2.12. Let f1 and f2 be polynomials over a finite field Fq[x]. The polynomial

g ∈ Fq[x] is a greatest common divisor of f1 and f2 which is denoted by gcd(f1, f2) if

and only if g divides f1 and f2 and for every other element d ∈ Fq[x] such that d divides

f1 and f2, then g is a divisor of d.

We get some results on the divisor of certain polynomials related to the greatest

common divisor of their degrees.

Theorem 2.13. If e1 and e2 are positive integers, then the greatest common divisor of

xe1 − 1 and xe2 − 1 in Fq[x] is xd − 1, where d is the greatest common divisor of e1 and

e2.

Theorem 2.14. Let g, f ∈ F[x], where f ̸= 0. Then there exists a unique z ∈ F[x] such

that z ≡ g (mod f) and deg(z) < deg(f), namely, z := g mod f .

6

Theorem 2.15. Let g, f ∈ F[x], with f ̸= 0, and let d := gcd(g, f).

(i) For every h ∈ F[x], the congruences gz ≡ h (mod f) has a solution z ∈ F[X] if and

only if d | h.

(ii) For every z ∈ F[x], we have gz ≡ 0 (mod f) if and only if z ≡ 0 (mod f/d).

(iii) For all z, z′ ∈ F[x], we have gz ≡ gz′ (mod f) if and only if z ≡ z′ (mod f/d).

Part (iii) of Theorem 2.15 gives a cancellation law for polynomial congruences:

if gcd(g, f) = 1 and gz ≡ gz′ (mod f), then z ≡ z′ (mod f).

We may generalize the “mod” operation for accordance with our work as follow. Suppose

g, h, f ∈ F[x], with f ̸= 0, g ̸= 0, and gcd(g, f) = 1. If s is the rational function

h/g ∈ F[x], then we define s mod f to be the unique polynomial z ∈ F[x] satisfying

gz ≡ h (mod f) and deg(z) < deg(f).

Theorem 2.16. (Chinese Remainder Theorem) Let {fi}ki=1 be a pairwise relatively prime

family of non-zero polynomials in F[x], and let g1, . . . , gk be arbitrary polynomial in F[x].

Then there exists a solution g ∈ F[x] to the system of congruences

g ≡ gi (mod fi) (i = 1, . . . , k).

Moreover, any g′ ∈ F[x] is a solution to this system of congruences if and only if g ≡

g′ (mod fi), where f :=
�k

i=1 fi.

2.2 Euclidean Algorithm

The usual and well-known Euclidean division for integers is stated that for integers a, b >

0, there exists unique integers q > 0 and 0 ≤ r < a such that a = bq + r. This statement

can be translated to an analogous version in the ring of polynomials as follows.

7

Theorem 2.17. Let Fq be a finite field with characteristic p, let f, g ∈ Fq[x] be polynomials

of degrees ≥ 0 Then there exists unique polynomials pair q, r ∈ Fq[x] such that f = gq+ r

and deg(r) < deg(g).

Proof. In order to prove the following theorem, we first let

f(x) = a0 + a1x+ · · ·+ anx
n,

g(x) = b0 + b1x+ · · ·+ bmxm,

where n = deg(f),m = deg(g), with an ̸= 0, and bm ̸= 0 is a unit in Fq. It should be

noted that bm is the unit which guarantees that the existence of its inverse even though

inverses for other elements do not necessarily exist in R. According to [10], induction on

the degree n is applied to construct the proof.

As the base step of the induction, in the case of n = 0 and deg(g) > deg(f), we let r = f

and q = 0. Also, if deg(f) = deg(g) = 0, we let r = 0 and q = anb
−1
m .

Next, we assume the theorem is proved for all polynomials which the degree is less than

n. Also, we assume that deg(g) ≤ deg(f), because if this is not true, we just let q = 0

and r = f . Now, it can be written as

f(x) = anb
−1
m xn−mg(x) + f1(x),

where n > deg(f1). By applying the induction, we can find q1, r and write f as

f(x) = anb
−1
m xn−mg(x) + q1(x)g(x) + r(x)

with deg(r) < deg(g). Finally, to achieve the proof, we thus define

q(x) = anb
−1
m xn−m + q1(x).

In this respect, the previous theorem above proves only the existence of both q and r.

8

However, this makes no claim whether q and r are unique or not. To prove the uniqueness,

see more details in [10], Lang starts by assuming there exists two instances of q and r

such that

f = q1g + r1 = q2g + r2,

where deg(g) > deg(r1) and deg(g) > deg(r2). Reformatting the above equation yields

(q1 − q2)g = r2 − r1.

The leading coefficient of g was assumed to be a unit in R, we can conclude that

deg ((q1 − q2)g) = deg(q1 − q2) + deg(g).

However, we know that deg(g) > deg(r2−r1), and also know that it can be only if

deg(q1−q2) = 0, which means that q1 = q2. Therefore, we have consequently r1 = r2.

Euclidean algorithm is the process of applying Euclidean Division in succession

several times to find the greatest common divisor of polynomials and it is the well-know

method for computing the modular inversion polynomial over Fq which is the main point

of our project. The process of Euclidean algorithm is shown as follow.

Let Fq be a finite field with characteristic p and P0, P1 ∈ Fq[x] where n = degP0 >

degP1 ≥ 0. Then


P0

P1


 M1−−→


P1

P2


 M2−−→


P2

P3


 M3−−→ · · · Mh−1−−−→


Ph−1

Ph


 Mh−−→


Ph

0




where Mi =


Qi 1

1 0


 for some Qi ∈ Fq[x],


 Pi

Pi+1


 = Mi+1


Pi+1

Pi+2


,

for all i ∈ {1, . . . , h− 1}.

We illustrate this Euclidean division algorithm with an example.

Example 2.18. Let Fq = Z2, a(x) = x5 + x4 + x2 + 1 and b(x) = x3 + x+ 1.

9

The division algorithm can be performed with the help of the following scheme.

So we can obtain the quotient q(x) = x2 + x + 1 and the remainder r(x) = x2 and the

result can be written as

x5 + x4 + x2 + 1 = (x2 + x+ 1)(x3 + x+ 1) + x2.

For the convenience of writing and computing we denoted the polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

by simplified form anan−1...a1a0. For example, one can write the polynomials x5 + x4 +

x2+1 and x3+x+1 as 1 1 0 1 0 1 and 1 0 1 1 respectively. Doing this, the above scheme

can be simplified as

However, its complexity is O(n2 logn), which is not efficient for large n, where n

is the maximum of degrees of the dividend and the divisor. The algorithm was improved

for p = 2 by [1].

10

2.3 Fast division of polynomials

In Section 2.2, the Euclidean division is one of the key building blocks for the factor-

ization algorithm which presented later. Hence, it is important to have a fast implemen-

tation for it. Using the long division algorithm of polynomials, will yield an asymptotic

complexity of O(deg(a) deg(b)), where a, b ∈ Fq, which for all practical purposes is the

same as O(n2), where n is the maximum degree of their polynomials. Newton’s method is

a numerical method for finding a root of a real-valued function f(x). It starts by approxi-

mating, or just selecting any starting point x0 and then computing next approximation by

forming a tangent line through point (x0, f(x0)) and using the point where this tangent

intersects x-axis as the next approximation. This iterative step can be expressed as

xi+1 = xi −
f(xi)

f ′(xi)
.

Next, when we are given integers a, b > 0, we would like to compute integers q, r ≥ 0

such that a = bq + r and r < b. We observe that q may be computed as q = [a/b],

and when q is known, we can compute r = a−bq. So, to determine the value of q, it

suffices to get a close enough approximation of c = b−1 and then multiply ac and round it

down to the closest integer. This we can achieve by using Newton’s method on function

f(x) = x−1−b. With this, the iterative step is as follows:

xi+1 = xi −
x−1
i − b

−x−2
i

= 2xi − bx2i .

Now, as it turns out, this Newton’s method translates to polynomials over commutative

rings with unity too. In their publication Zhengjun Cao and Hanyue Cao [3] improve upon

some earlier version of this algorithm and provide all missing steps for implementing it.

Details of their work are out of the scope of this thesis, but the resulting algorithm will

be introduced next.

In 2012, an algorithm relied on the first reversing coefficients of a polynomial and com-

puting its modulo with a large power of variable x is proposed by Cao and Cao. Their

11

main idea is based on the iterative step of the Newton’s method. In their results, the

reversing coefficients of a polynomial f(x) is denoted with rev(f) = revdeg(f)(f) and can

be achieved with simply calculating xdeg(f)f(x−1). For example:

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

rev(f) = xnf
�
x−1

�

= xn
�
a0 + a1x

−1 + a2x
−2 + . . .+ anx

−n
�

= a0x
n + an−1

1 + . . .+ an−1x+ an.

According to Theorem 2.17, the Euclidean division for a polynomial, which states that

let R be a commutative ring, a, b ∈ R[x] be two polynomials with degrees greater than 0,

and b be monic. Up to unit factors, there exists a unique pair of polynomials q, r ∈ R[x]

such that a = bq + r where deg(r) < deg(b).

Cao and Cao begin setting a = bq+r by substituting x with x−1 and by multiplying with

xn, n = deg(a) and m = deg(b). We have

xna(x−1) = (xn−mq(x−1))(xmb(x−1)) + xn−m+1(xm−1r(x−1))

⇔

revn(a) = revn−m(q) · revm(b) + xn−m+1revm−1(r),

which becomes

revn(a) = revn−m(q) · revm(b) mod xn−m+1.

Roughly speaking, Cao and Cao mention that because b is monic, revm(b) has a constant

coefficient 1, and thus, revm(b) is invertible modulo xn−m+1. If we set g ∈ R[x] to be

invertible mod f , we then have to be capable to find a polynomial h ∈ R[x] such that

gh ≡ 1 mod f . This makes

revn−m(q) = revn(a) · revm(b)−1 mod xn−m+1,

12

and hence, we have

q = revn−m(revn−m(q)).

In brief, Cao and Cao [3] proposed an iterative algorithm with the complexity ofO(n logn)

based on Newton idea [4] to find a modular inverse for the modulo xn for an integer n ≥ 0.

In the other word, a problem of finding g(x) ∈ R[x] such that fg ≡ 1 mod xn, when

f(x) ∈ R[x] is given, f(0) = 1 and n ∈ N. Furthermore, they observe that when l is a

power of two, if fgi ≡ 1 mod x2
i , then

x2
i��(1− fgi),

x2
i+1��(1− fgi)

2,

x2
i+1��1− f(2gi − fg2i).

Hence, the iteration step to solve the problem is gi+1 = 2gi−fg2i and i ∈ {0, 1, 2, . . . , l−1}.

This leads to the following result:

Theorem 2.19. Let R be a commutative ring and f, g0, g1, . . . ,∈ R[x], with f(0) =

1, g(0) = 1 and

gi+1 ≡ 2gi − fg2i mod x2
i+1

for all i. Then fgi ≡ 1 mod x2
i for all i ≥ 0.

By Theorem 2.19, we can obtain the following algorithm to compute the inverse of

f mod xl. Note that the log in the pseudo code refers to the binary logarithm.

Algorithm 1 Newton Iteration Algorithm
Input: f ∈ R[x] with f(0) = 1, and l ∈ N.
Output: g ∈ R[x] satisfying fg ≡ 1 (mod xl).
1: Set initial g(0) ← 1, r ← ⌈log l⌉
2: for i = 1, 2, 3, . . . , r do

gi ← (2gi−1 − fg2i−1) rem x2i

3: return gr

13

When all these are combined, we get the following algorithm:

Algorithm 2 Fast Division Algorithm
1: If deg(a) < deg(b) return q = 0 and r = a

2: Let m = deg(a)−deg(b) and r = ⌈log(m) + 1⌉
3: Let f = rev(b)

4: for i = 1, 2, 3, . . . , r do
gi ← (2gi−1 − fg2i−1)mod x2i

5: Let s = rev(a)gr mod xm+1

6: return q = xm−deg(s)rev(s) and r = a− bq

Definition 2.20. Let R be a ring. A function M : N → R+ is called a multiplication

time for R[x] if polynomials in R[x] of degree less than n can be multiplied by using at

most M(n) operations in R.

Assume the multiplicative time satisfies

M(n)/n ≥ M(m)/m if n ≥ m, M(mn) ≤ m2M(n),

for all n,m ∈ N>0. So the first inequality yields the superlinearity properties

M(mn) ≥ mM(n), M(m+ n) ≥ M(m) +M(n) and M(n) ≥ n.

We determine the multiplicative time M(n) using Fast Fourier Transform (FFT) is the

same order as O(n logn), where n is the degree of polynomial.

Theorem 2.21. Algorithm 1 improves computational complexity which uses at most

3M(2r) + 2r ∈ O(M(n)) = O(n logn) operations in R, where n = ℓ = 2r.

Proof. Assume that fgi ≡ 1 (mod x2
i

) for all i ≥ 0, then

fgi+1 ≡ 1 (mod x2
i+1

).

14

It follow that we can reduce to fgi+1 ≡ 1 (mod x2
i

). Since gcd(f, x2i

) = 1, then

gi+1 ≡ gi (mod x2
i

) (2.1)

for all i ≥ 0. Consider the equation

gi ≡ 2gi−1 − fg2i−1 (mod x2
i

). (2.2)

In step 2 of Algorithm 1 and equation 2.1. The negative of the upper half of fg2i−1 modulo

x2
i is the same as gi and the lower half of gi is the same as the gi−1. So, the cost for one

iteration of the ith step is

• M(2i) for the computation of g2i−1

• M(2i−1) for the computation of product fg2i−1

• 2i−1 for the computation of the negative of upper half of fg2i−1

Thus, we have M(2i) +M(2i−1) + 2i−1 operations in step 2 of Algorithm 1. So the total

running time for this algorithm is

r�

i=1

�
M(2i) +M(2i−1) + 2i−1

�
≤

r�

i=1

�
3

2
M(2i) + 2i−1

�

≤
�

r�

i=1

2i−r

��
3

2
M(2r) + 2r−1

�

< 3M(2r) + 2r

∈ O (M(2r)) = O (n logn)

Hence the complexity of Newton iterative algorithm is O(n logn) as required.

15

2.4 Half-GCD algorithm

Let a ∈ Fq[x] and b ∈ Fq[x] be the dividend and the modulus, respectively. The

algorithm first determine a regular 2× 2 matrix, M , which reduces gcd(a, b) to gcd(c, d)

where c, d ∈ Fq[x], deg c ≥ (deg a)/2 > deg d, and M [a b]′ = [c d]′. Its complexity is

O(n log2 n) which is more efficient than the original Euclidean algorithm for all degree n.

The following figure describe the algorithm of Half-GCD and the Euclidean steps.

Let Fq be a finite field with characteristic p and P0, P1 ∈ Fq[x] where n = degP0 >

degP1 ≥ 0. Then


P0

P1


 M1−−→


P1

P2


 M2−−→ · · · Mk−−→


 Pk

Pk+1


 Mk+1−−−→


Pk+1

Pk+2


 Mk+2−−−→ · · · Mh−1−−−→


Ph−1

Ph


 Mh−−→


Ph

0




where Mi =


Qi 1

1 0


 for some Qi ∈ Fq[x],


 Pi

Pi+1


 = Mi+1


Pi+1

Pi+2


,

for all i ∈ {1, . . . , h− 1} and degPk ≥ degP0

2
> degPk+1.

The Half-GCD algorithm can be written in the following pseudo code with these notations.

• Let ∥A∥ denote the degree of polynomial A ∈ F[x].

• A regular matrix M is a product of zero or more elementary matrices

M = M1M2 . . .Mk, k ≥ 0

• (A div B) donote the quotient of A divided by B.

• (A mod B) denote the remainder of A divided by B.

16

Algorithm 3 Algorithm Polynomial HGCD(A,B)
Input: A,B are univariate polynomials with ∥A∥ > ∥B∥ ≥ 0.
Output: a regular matrix M which reduces (A,B) to (C ′, D′) where ∥C ′∥, ∥D′∥

straddle ∥A∥/2.
1: m ←

�∥A∥
2

�
; {This is the magic threshold}

if ∥B∥ < m then return (E);

2:

�
A0

B0

�
←

�
AdivXm

BdivXm

�
.

{now ∥A0∥ = m′ where m+m′ = ∥A∥}
R ← hGCD(A0, B0);
{
�
m′
2

�
is the magic threshold for this recursive call}�

A′

B′

�
← R−1

�
A

B

�
;

3: if ∥B′∥ < m then return (R);

4: Q ← A′divB′;

�
C

D

�
←

�
B′

A′ mod B′

�
;

5: l ← ∥C∥; k ← 2m− l; {now l −m <
�
m′
2

�
}

6: C0 ← CdivXk;D0 ← DdivXk; {now ∥C0∥ = 2(l −m)}
S ← hGCD(C0, D0);
{l −m is magic threshold for this recursive call.}

7: M ← R · ⟨Q⟩ · S; return (M);

17

Algorithm 4 Polynomial co-GCD Algorithm
Input: A pair of polynomials with degP0 > degP1.
Output: A regular matrix M = co-GCD(P0, P1) such that

�
P0

P1

�
M−→

�
GCD(P0, P1)

0

�
.

1: Compute M0 ← hGCD(P0, P1).
2: Recover P2, P3 via

�
P2

P3

�
← M−1

0

�
P0

P1

�
.

3: if P3 = 0 then return (M0).
else, perform one step of the Euclidean algorithm,

�
P2

P3

�
M1−−→

�
P3

P4

�
.

where M1 is an elementary matrix.
4: if P4 = 0 then return (M0M1).

else, recursively compute M2 ← co-GCD(P3, P4)

return (M0M1M2).

For the complexity analysis, the Half-GCD algorithm make two recursive calls to

itself. The work in each call to the algorithm, exclusive of recursion, is O(n logn). Hence

the computational complexity T ′(n) of this Half-GCD algorithm satisfies

T ′(n) = 2T ′(n/2) +O(n logn) = O(n log2 n).

Assume that T ′(αn) = O(αT ′(n)) for all constant α, then the computational complexity

T (n) of the co-GCD algorithm satisfies

T (n) = T ′(n) +O(n logn) + T (n/2)

= O(T ′(n) + T ′(n/2) + T ′(n/4) + · · ·)

= O(T ′(n) +
1

2
T ′(n) +

1

4
T ′(n) + · · ·)

= O(2T ′(n)) = O(T ′(n))

Theorem 2.22. The computational complexity of the Half-GCD algorithm is O(n log2 n).

CHAPTER III

MAIN RESULTS

3.1 Polynomial Modular Inversion

This section proposes the main result given in Theorem 3.1, 3.3, 3.4 and 3.5 for

finding a modular inverse of a polynomial f in Fq[x] under the modulo xp
r − 1, xpr

+ 1,

x2p
r − 1 and xn − 1 where n = 2rd for some r, d ∈ N. The key idea of the proof is similar

to that presented by Cao and Cao; see [3]. The two main differences between their results

and ours are the modulo and its domain. Their modulo is xn and the problem domain is

a polynomial ring over a ring, while our modulo is xn − 1 and our problem domain is a

polynomial ring over a finite field.

Theorem 3.1. Let f(x) be a polynomial over Fq of characteristic p. If f(1) ̸= 0 and

there exists a sequence {gi(x)}i≥0 of polynomials in Fq[x] with g0 = f(1)−1 satisfying the

iterative congruent relation

gi+1 ≡ fp−1gpi (mod xp
i+1 − 1) (i ≥ 0), (3.1)

if and only if gi is an inverse of f satisfying fgi ≡ 1 (mod xp
i − 1) for all i ≥ 0.

Proof. Assume that f(1) ̸= 0. Let {gi(x)}i≥0 be a sequence of polynomials over Fq with

g0 = f(1)−1 satisfying the iterative congruent relation

gi+1 ≡ fp−1gpi (mod xp
i+1 − 1) (i ≥ 0).

With the assumption g0 = f(1)−1, we have f(x)g0(x) = f(x)/f(1). Since f(1) ̸= 0, we

obtain that 1 is a root of f(x)/f(1)− 1. i.e., f(x)g0(x) ≡ 1 (mod x− 1). Next, let i ≥ 0.

19

Assume that fgi ≡ 1 (mod xp
i − 1). Then, there exists h ∈ Fq[x] such that

fpgpi − 1 = (fgi − 1)p = ((xp
i − 1)h)p = (xp

i+1 − 1)hp.

This implies that fpgpi ≡ 1 (mod xp
i+1 − 1). Since, by assumption, gi+1 ≡ fp−1gpi

(mod xp
i+1 − 1), we get fgi+1 ≡ 1 (mod xp

i+1 − 1).

Conversely, assume that fgi ≡ 1 (mod xp
i − 1) for all i ≥ 0. For i = 0, we

immediately obtain that f(1) ̸= 0 and it follows that g0(x) can be formed a constant

1/f(1) ∈ Fq. Set g0 = 1/f(1). For i ≥ 1, by assumption, we have fgi ≡ 1 (mod xp
i − 1),

i.e. there exists h ∈ Fq[x] such that 1− fgi = (xp
i − 1)h. This implies that

(xp
i+1 − 1)hp = ((xp

i − 1)h)p = (1− fgi)
p = 1− fpgpi = 1− f(fp−1gpi).

Since fgi+1 ≡ 1 (mod xp
i+1 − 1), we can choose gi+1 = fp−1gpi . By the induction on i,

the proof is complete.

The computational algorithm for Theorem 3.1 is shown in the following pseudo code.

Algorithm 5 Iterative algorithm for Theorem 3.1
Input: r ∈ N0 and f ∈ Fq[x] with f(1) ̸= 0.
Output: g ∈ Fq[x] satisfying fg ≡ 1 (mod xpr − 1).
1: Set initial g0 ← (f(1))−1

2: for i = 1, 2, 3, . . . , r do
gi ← f p−1gpi−1 rem (xpi − 1)

3: return gr

The implementation of the algorithm is illustrated in the examples below.

Example 3.2. Given f(x) = x2 + x + 2 and h(x) = x27 − 1 under Fq[x] = F9[x].

To seek a polynomial g which makes fg ≡ 1 (mod h). Applying Theorem 3.1 yields

g0 = 1/f(1) = 1, and the sequence {gi}i≥1 can be calculated as follows.

20

• For g1 ≡ fp−1gp0 = (x2+x+2)2 ≡ 2x2+2x (mod x3−1), there exists g1 = 2x2+2x.

• For g2 ≡ fp−1gp1 = (x2 + x+ 2)2(2x2 + 2x)3 ≡ x8 + x7 + x5 + 2x4 + 2x3 + 2x+ 1

(mod x9 − 1), there exists g2 = x8 + x7 + x5 + 2x4 + 2x3 + 2x+ 1.

• For g3 ≡ fp−1gp2 = (x2+x+2)2(x8+x7+x5+2x4+2x3+2x+1)3 ≡ 2x26+2x25+

2x23+x22+x21+x19+2x18+2x17+2x15+x14+x13+x11+2x10+2x9+2x7+x6+

x5+x3+2x2+2x (mod x27−1), there exists g3 = 2x26+2x25+2x23+x22+x21+

x19+2x18+2x17+2x15+x14+x13+x11+2x10+2x9+2x7+x6+x5+x3+2x2+2x.

It should be noted that this process provides the sequence {gi}i≥1 which are the inversion

of f under modulo x3
i − 1, respectively. For instance, given r = 100 or other words

h(x) = x3
100 − 1, we can continue this process until we have g100. Thus, g = g100 is a

polynomial modular inversion modulo x3
100 − 1, as required.

We change our focus to another interesting case of modulo, i.e., mod (xpi

+ 1).

Note that xp
i

+ 1 is congruent to xp
i − 1 in the case of p = 2. Theorem 3.3 gives an

iterative method for polynomials modular inversion modulo xp
i

+ 1 over a finite field. In

addition, Theorem 3.4 presents an iterative method for polynomials modular inversion

modulo x2p
i − 1 over a finite field by applying Theorems 3.1 and 3.3.

Theorem 3.3. Let f(x) be a polynomial over Fq. If f(−1) ̸= 0 and there exists a sequence

{hi(x)}i≥0 of polynomials in Fq[x] with h0 = f(−1)−1 satisfying the iterative congruent

relation

hi+1 ≡ fp−1hpi (mod xp
i+1

+ 1) (i ≥ 0), (3.2)

if and only if hi is an inverse of f satisfying fhi ≡ 1 (mod xp
i

+ 1) for all i ≥ 0.

Proof. Assume that f(−1) ̸= 0. Let {hi(x)}i≥0 be a sequence of polynomials over Fq

with h0 = f(−1)−1 satisfying the iterative congruent relation

hi+1 ≡ fp−1hpi (mod xp
i+1

+ 1) (i ≥ 0).

21

With the assumption h0 = f(−1)−1, we have f(x)h0(x) = f(x)/f(−1). Since f(−1) ̸= 0,

we obtain that −1 is a root of f(x)/f(−1) − 1. i.e., f(x)h0(x) ≡ 1 (mod x + 1). Next,

let i ≥ 0. Assume that fhi ≡ 1 (mod xp
i

+ 1). Then, there exists k ∈ Fq[x] such that

fphpi + 1 = (fhi + 1)p = ((xp
i

+ 1)k)p = (xp
i+1

+ 1)kp.

This implies that fphpi ≡ 1 (mod xp
i+1

+ 1). Since, by assumption, hi+1 ≡ fp−1hpi

(mod xp
i+1

+ 1), we get fhi+1 ≡ 1 (mod xp
i+1

+ 1).

Conversely, assume that fhi ≡ 1 (mod xp
i

+ 1) for all i ≥ 0. For i = 0, we

immediately obtain that f(−1) ̸= 0 and it follows that h0(x) can be formed a constant

1/f(−1) ∈ Fq. Set h0 = 1/f(−1). For i ≥ 1, by assumption, we have fhi ≡ 1 (mod xp
i

+

1), i.e. there exists k ∈ Fq[x] such that 1− fhi = (xp
i

+ 1)k. This implies that

(xp
i+1

+ 1)kp = ((xp
i

+ 1)kp = (1 + fhi)
p = 1 + fphpi = 1 + f(fp−1hpi).

Since fhi+1 ≡ 1 (mod xp
i+1

+ 1), we can choose hi+1 = fp−1hpi . By the induction on i,

the proof is complete.

Theorem 3.4. Given a prime number p greater than 2. Let i ≥ 1 and assume that gi

and hi be polynomials modular inversion modulo xp
i − 1 and modulo xp

i

+1, respectively.

If

ji ≡ −1

2
hi(x

pi − 1) +
1

2
gi(x

pi

+ 1) (mod x2p
i − 1),

then ji is a polynomial modular inversion modulo x2p
i − 1, i.e.,

fji ≡ 1 (mod x2p
i − 1).

Proof. Suppose that

fji ≡ f

�
−1

2
hi(x

pi − 1) +
1

2
gi(x

pi

+ 1)

�
(mod x2p

i − 1).

22

Since fhi ≡ 1 (mod xp
i

+ 1) and fgi ≡ 1 (mod xp
i − 1), we obtain that

fhi(x
pi − 1) ≡ (xp

i − 1) (mod x2p
i − 1)

fgi(x
pi

+ 1) ≡ (xp
i

+ 1) (mod x2p
i − 1).

This implies that fji ≡ −1
2(x

pi − 1) + 1
2(x

pi

+ 1) = 1 (mod x2p
i − 1), as required.

Let F be a finite field with characteristic 2. Consider the case of polynomial

modular inversion modulo x2
rd − 1. Let

n = 2rd ∈ N for some r, d ∈ N.

We can use Half-GCD algorithm (for the best now) for computing the inverse of f modulo

xd − 1 and continue with the problem of polynomial modular inversion modulo x2
rd − 1

which describe in the next theorem.

Theorem 3.5. Let Fq be a finite field with characteristic 2. Let f, g0 ∈ Fq[x] satisfying

fg0 ≡ 1 (mod xd − 1), where d is a natural number. If

gi+1 ≡ fg2i (mod x2
i+1d − 1), for all i ∈ {0, 1, 2, . . . , r − 1}.

Then gi is a polynomial modular inversion modulo x2
id − 1, i.e.,

fgi ≡ 1 (mod x2
id − 1), for all i ∈ {0, 1, 2, . . . , r}.

Proof. Let Fq be a finite field with characteristic 2 and let {gi(x)}i≥0 be a sequence of

polynomials over Fq satisfying the iterative congruent relation

gi+1 ≡ fg2i (mod x2
i+1d − 1), (i ≥ 0).

23

In the case of i = 0 has claimed by the assumption, fg0 ≡ 1 (mod xd − 1). Next, let

i > 0. Assume that fgi ≡ 1 mod x2
id − 1. Then, there exists k ∈ Fq[x] such that

f2g2i − 1 = ((x2
id − 1)k)2

= (x2
i+1d − 1)k2

This implies that f2g2i ≡ 1 (mod x2
i+1d − 1). By assumption, gi+1 ≡ fg2i (mod x2

i+1d −

1), we have fgi+1 ≡ f2g2i (mod x2
i+1d − 1). Hence, fgi+1 ≡ 1 (mod x2

i+1d − 1) as

required.

The computational algorithm for the polynomial modular inversion modulo xn− 1 where

n is a natural number, which used Theorem 3.5 is shown in the following pseudo code.

Algorithm 6 Iterative algorithm for modular inversion of f modulo xn − 1

Input: n ∈ N with the form of n = 2rd for some r, d ∈ N, and f ∈ Fq[x] with
f(1) ̸= 0.

Output: g ∈ Fq[x] satisfying fg ≡ 1 (mod xn − 1).
1: Compute inverse of f modulo xd − 1 by using Half-GCD algorithm.
2: Set initial g0 be an inverse of f modulo xd − 1

3: for i = 1, 2, 3 . . . , r do
gi ← fg2i−1 rem (x2id − 1)

4: return gr

3.2 On Cost Analysis

Referring to the cost analysis of Cao and Cao [3], the definition of multiplication

time and its properties are required to analyze the multiplication time of Algorithm 5 and

Algorithm 6.

Definition 3.6. Let Fq be a finite field of characteristic p. A function M : N → R+ is

called a multiplication time for Fq if polynomials in Fq[x] of degree less than n can be

multiplied by using at most M(n) operations in Fq.

24

Throughout this section, the function M is defined by the above definition, Fq is a

finite field of characteristic p and we determine the multiplicative time M(n) using Fast

Fourier Transform (FFT) as O(n logn), where n is the degree of polynomial. [11] To find

the multiplication time of the above algorithms, the following sufficient properties are

needed.

M(mn) ≥ mM(n), M(m+ n) ≥ M(n) +M(m), and M(n) ≥ n,

for all n,m ∈ N.

Lemma 3.7. Let Fq be a finite field of characteristic p. Let {gi}i≥0 be a sequence of

polynomials over Fq[x] with g0 = 1 and f be a polynomial over Fq[x] with f(1) = 1. If

fgi ≡ 1 (mod xp
i−1) for all i ≥ 0, then the sequence {gi} satisfies the iterative congruent

relation

gi+1 ≡ gi (mod xp
i − 1) for all i ≥ 0. (3.3)

Proof. Assume that fgi ≡ 1 (mod xp
i −1) for all i ≥ 0, then, fgi+1 ≡ 1 (mod xp

i+1 −1).

We can reduce to fgi+1 ≡ 1 (mod xp
i − 1). Since gcd(f, xpi − 1) = 1, then we have

gi+1 ≡ gi (mod xp
i − 1) for all i ≥ 0.

Theorem 3.8. Algorithm 5 correctly computes the inverse of f modulo xp
r − 1 which

uses O (M(pr)) = O(n logn) multiplicative operations in Fq with characteristic p.

Proof. In step 2 of Algorithm 5. For the ith step,

gi ≡ fp−1gpi−1 (mod xp
i − 1). (3.4)

The cost for one iteration of the ith step is

• ⌈log2 p⌉M(pi) for the computation of gpi−1

• ⌈log2(p− 1)⌉M(pi) for the computation of fp−1

25

• M(pi) for the product fp−1gpi−1 modulo (xpi − 1)

Thus, we have (⌈log2 p⌉ + ⌈log2(p− 1)⌉ + 1)M(pi) operations in step 2 of Algorithm 5.

So the total running time for this algorithm is

r�

i=1

(⌈log2 p⌉+ ⌈log2(p− 1)⌉+ 1)M(pi)

<

r�

i=1

(log2 p+ log2(p− 1) + 3)M(pi)

=

r�

i=1

�
log2(8p2 − 8p)

�
M(pi)

≤
�

r�

i=1

pi−r

�
�
log2(8p2 − 8p)M(pr)

�

<

��
p

p− 1

�
log2(8p2 − 8p)

�
M(pr)

Since p is constant, then
�

p

p− 1

�
log2(8p2 − 8p) is a constant too. So,

��
p

p− 1

�
log2(8p2 − 8p)

�
M(pr) ∈ O(M(pr))

= O(M(n))

= O(n logn)

which for the practical purpose is the same as O(n logn), where n = pr is the degree of

polynomials as required.

Theorem 3.9. The computational complexity for computing the inverse of f modulo

xp
r

+ 1 is O(n logn) where n = pr is a degree of the polynomial.

Proof. In the same way of Theorem 3.8, we can complete the proof.

Consider in Theorem 3.5 with characteristic 2, we obtain the complexity of this

lemma using the relation of gi as follow.

26

Lemma 3.10. Let Fq be a finite field of characteristic 2. Let {gi}i≥0 be a sequence of

polynomials over Fq[x], f be a polynomial over Fq[x] with f(1) = 1 satisfying fg0 ≡ 1

(mod xd − 1), where d is a natural number. If fgi ≡ 1 (mod x2
id − 1) for all i ≥ 0, then

the sequence {gi} satisfies the iterative congruent relation

gi+1 ≡ gi (mod x2
id − 1) for all i ≥ 0. (3.5)

Proof. Assume that fgi ≡ 1 (mod x2
id − 1) for all i ≥ 0. Then fgi+1 ≡ 1 (mod x2

i+1d −

1). So fgi+1 ≡ 1 (mod x2
id − 1). Since gcd(f, x2id − 1) = 1, then we have gi+1 ≡ gi

(mod x2
id − 1) for all i ≥ 0.

Theorem 3.11. Theorem 3.5 yields the complexity to compute an inverse of f modulo

x2
rd − 1 for some r, d ∈ N, which uses at most O(d log2 d) + O(n logn) multiplicative

operation in Fq where n = 2rd for some r, d ∈ N.

Proof. We first compute the complexity of computing inverse of f modulo xd − 1 using

Half-GCD algorithm, which is O(d log2 d). For the ith step of step 3 of Algorithm 6,

gi ≡ fg2i−1 (mod x2
id − 1). (3.6)

The cost for one iteration of the ith step is

• M(2id) for the computation of g2i−1

• M(2id) for the product of fg2i−1 modulo (x2id − 1)

Thus, we have M(2id) +M(2id) = 2M(2id) operations in step 3 of Algorithm 6. So the

total running time for this algorithm is

O(d log2 d) +
r�

i=1

�
2M(2id)

�
≤ O(d log2 d) +

�
r�

i=1

2i−r

�
�
2M(2id)

�

< O(d log2 d) + 4M(2rd)

∈ O(d log2 d) +O (M(2rd))

27

which the same order as O(d log2 d) +O (n logn), where n = 2rd for some r, d ∈ N. We

can classify the computational complexity of the above algorithm,

O(d log2 d) +O (n logn)

depending on the cases of d as follows.

• If d is constant, then the term of O(d log2 d) is constant too and it will be absorbed

to the order of O (n logn). So the computational complexity of this algorithm is

O(n logn).

• If d is linear, the order of d is the same as n, then the term of O (n logn) will

be absorbed to the first term, O(d log2 d) = O(n log2 n). So the computational

complexity of this algorithm is O(n log2 n).

• If d is the form of n1−ϵ for some ϵ > 0, then we can write the term of O(d log2 d)

as O(n1−ϵ log2(n1−ϵ)) = O(n1−ϵ(1 − ϵ)2 log2(n)). Since (1 − ϵ)2 is a constant

term, so O(n1−ϵ log2(n)) = O(
logn
nϵ

(n logn)) which has the growth rate slower

than O(n logn)) as n → ∞. Hence the term of O(d log2 d) will be absorbed to the

O(n logn). So the computational complexity of this algorithm is O(n logn).

3.3 Experiments and results

This table shows the example of running times for computing the polynomial mod-

ular inversion modulo xn − 1 where n = 2rd for some r, d ∈ N, comparing with the

Half-GCD algorithm.

28

As the above table, we use the Sagemath program for computing the results, set F2

be the field and then we compute by using f = x7 + x3 + 1 ∈ F2[x] as a fixed input.

We can deduce that at the large degree n of the polynomials, Algorithm 6 can

enhance the less times for computing the polynomial modular inversion modulo xn − 1

where n = 2rd for some r, d ∈ N, which has the more efficient algorithm than the original

Half-GCD algorithm.

CHAPTER IV

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this work, studies a modular inversion problem for a polynomial in the ring of

polynomial under particular modulo. Rigorously, let Fq be a field with characteristic p,

given f ∈ Fq[x], this thesis presents the iterative algorithm, as shown in Theorem 3.1, 3.3,

3.4 and 3.5 to find its modular inverse g ∈ Fq[x], where fg ≡ 1 (mod hi) for i = 1, 2, 3, 4,

where h1 = xp
r − 1, h2 = xp

r

+ 1, h3 = x2p
r − 1 and for characteristic 2, h4 = xn − 1

where n = 2rd for some r, d ∈ N. In addition, the cost analysis in term of computational

complexity of the algorithm for these modulus is in the same order as that of Cao and

Cao, O(n logn). This indicates that the algorithm is computationally cheaper than the

Half-GCD algorithm.

4.2 Future work

We know that every natural number n ≥ 0 can be written as v+1 or 2rd where v is

an even number and d, r ∈ N. So we can find the polynomial modular inversion modulo

xn − 1 by classifying and repeating between these cases: polynomial modular inversion

modulo xv+1 − 1 and x2
rd − 1 with the assumptions of existing of polynomial modular

inversion modulo xv − 1 and xd − 1 respectively.

However, we focus on only the case of n ∈ N with the form of n = 2rd for some

r, d ∈ N. We used the Half-GCD algorithm for computing the first step (inverse of

f modulo xd − 1) and continue with the problem of the polynomial modular inversion

modulo x2
rd − 1. So, the case of finding algorithm for the polynomial modular inversion

modulo xv+1 − 1 with the assumption of existing of the polynomial modular inversion

modulo xv − 1 instead of recalling the Half-GCD algorithm, we will left as a future work.

30

Moreover, we provide some possible future works related to this thesis. Similar to

this work, the idea can be extended to obtain an algorithm for computing the modular

inverse of a polynomial in a ring of polynomials over a finite field Fq with a characteristic

p under modulo xℓ − 1 and xℓ + 1, where ℓ ∈ N.

REFERENCES

[1] K. Kobayashi, N. Takagi, and K. Takagi, “An algorithm for inversion in gf (2^ m)

suitable for implementation using a polynomial multiply instruction on gf (2),” in

18th IEEE Symposium on Computer Arithmetic (ARITH’07), pp. 105–112, IEEE,

2007.

[2] R. T. Moenck, “Fast computation of gcds,” in Proceedings of the fifth annual ACM

symposium on Theory of computing, pp. 142–151, 1973.

[3] Z. Cao and H. Cao, “On fast division algorithm for polynomials using Newton it-

eration,” in International Conference on Information Computing and Applications,

pp. 175–180, Springer, 2012.

[4] L. W. Ehrlich, “A modified newton method for polynomials,” Communications of

the ACM, vol. 10, no. 2, pp. 107–108, 1967.

[5] V. Shoup, A computational introduction to number theory and algebra. Cambridge

university press, 2009.

[6] Z.-X. Wan, Lectures on finite fields and Galois rings. World Scientific Publishing

Company, 2003.

[7] D. S. Dummit and R. M. Foote, Abstract algebra, vol. 1999. Prentice Hall Englewood

Cliffs, NJ, 1991.

[8] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cam-

bridge university press, 1994.

[9] T. E. Stenhammar, “Factorization of binary polynomials,” Master’s thesis, Tampere

University of Technology, 2018.

[10] S. Lang, Algebra, vol. 211. Springer Science & Business Media, 2012.

32

[11] H. J. Nussbaumer, “The fast fourier transform,” in Fast Fourier Transform and

Convolution Algorithms, pp. 80–111, Springer, 1981.

33

BIOGRAPHY

Name Mr. Samakorn Sripatthanakul

Date of Birth 23 January 1997

Place of Birth Prachinburi, Thailand

Educations B.Sc. (Mathematics) (Second Class Honours), Chula-

longkorn University, 2015–2018

M.Sc. (Applied Mathematics and Computational Science),

Chulalongkorn University, 2019–Present

Scholarships Development and Promotion of Science and Technology

Talents Project (DPST), Institute of the Promotion of

Teaching Science and Technology (IPST)

Publications

• Samakorn Sripatthanakul and Wutichai Chongchitmate, Iterative algorithm for poly-

nomial modular inversion modulo xpr −1 over finite field of order p, Proceeding of Annual

Meeting in Mathematics (AMM) 2022, pp.21. 2022.

