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In this research, a phasor particle swarm optimization with 

comprehensive learning strategy (CLPPSO) is proposed for the optimal 

design of dome-like truss structures under the limited frequency-

constraints. The proposed scheme is a new variant of PSO techniques 

with the direct combination of both the phasor theory in mathematics 

and comprehensive learning strategy to the particle swarm optimization. 

In order to model particle control parameters, a phase angle 

incorporating the periodic sine and cosine functions is essentially 

applied through which only the previous best positions of all particles 

are used to update the exemplar particle’s velocity during the 

optimization process. This empowers the algorithm to keep the swarm's 

variability from eschewing premature convergence. To demonstrate the 

effectiveness and robustness of the proposed CLPPSO algorithm, three 

benchmarks of 120- bar, 600-bar and 1410-bar of dome truss 

structures are successfully tested, and the results are compared with 

those reported using different metaheuristic in the literature regarding 

their optimum solutions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 

In the engineering industry, structural optimization can administrate the design 

solutions for specific structural components or materials to be creative. For achieving 

the best performance and safety for a structure, the crucial part of design process is to 

maximize the stiffness or minimize the stresses, and weight or compliance under 

constraints of crisp condition, for instance, displacement constraints, stress 

constraints, buckling constraints and natural frequency constraints. Starting from 

1960’s, the mathematical programming techniques that impose limitations to only a 

few of many design variables are introduced in structural optimization. Afterward, the 

optimality criteria methods of deterministic techniques that usually provided an 

approximate optimum design with a few structural analyses without depending on the 

problem size are presented in the late 1960’s (Tushaj, Lak, & Research, 2017). 

However, deterministic methods are difficult to be applied to the non-smooth and 

non-convex optimization problems and have time consuming effects.  

 

 
Figure  1. The collapse of Tacoma Narrow Bridge. 

 

To address this problem, other optimization techniques called meta-heuristics 

approaches, which generate a combination of random populations with less 

computational effort than other optimization algorithms, iterative methods, or simple 

heuristics by searching over a large set of feasible solutions in a pseudo-random way 

following their inspiring principle without requiring gradient information, have 

transpired (Blum & Roli, 2003). During the last two decades, many meta-heuristic 

methods have been developed in structural optimization field owing to a consequence 

of growing computational power. Meta-heuristic techniques, being mostly inspired by 

https://en.wikipedia.org/wiki/Feasible_solution
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concepts found in nature, are used for combinatorial optimization. Meta-heuristic 

algorithms are mainly based on a wide variety of evolution, swarm intelligence and 

colony, social sciences and human activities, and physical sciences (Degertekin, 

Yalcin Bayar, & Lamberti, 2021). Even though many meta-heuristic algorithms have 

been introduced in the field of structural optimization, just a few of them have been 

published on the structural optimization under multiple frequency constraints. In 

addition, there has no algorithm that is well suited to solve all optimization problems 

in the structural optimization research area due to the relationship between how well 

an algorithm performs and the optimization problem on which it is run (Wolpert & 

Macready, 1997). Thus, there has a potential that a novel developed algorithm can 

perform in the structural optimization problem better than the current ones (Millan-

Paramo & Abdalla Filho, 2020). 

Since the structural optimization under natural frequency constraints is highly 

implicit nonlinear and/or non-convex, the efficient and robust optimization techniques 

are developed to provide the best performance and safety of a structure with 

reasonable computing efforts. The natural frequencies and mode shapes are the 

inherent properties of a structure to find its dynamic response of the unloaded 

structure. In real structures, there have a large number of natural frequencies 

depending on the mass and stiffness of the structure. For each natural frequency, a 

vibration shape which is named mode shape (e.g., horizontal, vertical, torsional, 

bending etc.) is obtained. The higher the frequencies are, the more complex the mode 

shapes become. It is important that the frequencies of the structure have to be isolated 

from to the natural frequencies to avoid undesirable vibrations and resonance under 

external excitations (Bellagamba & Yang, 1981; Grandhi, 1993). Therefore, the 

natural frequencies are taken into account as one of the constraints in the structural 

optimization for the sake of generating not only the complexity in the optimal design 

of structures but also the difficulty in the transposing of vibration modes, which may 

face the convergence problems to the optimizer through structural size and shape 

modifications.  

 
Figure  2. Example mode shapes of the first three frequencies. 

 

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://store.office.com/addinstemplate/en-US/9006b831-5431-4bb0-9c20-36a45d1fd7a1/WA200000113/none/draw-io-Diagrams.docx?web=1
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Based on the abovementioned background, this study proposes a new variant 

of PSO techniques so-called a phasor particle swarm optimization with 

comprehensive learning strategy (CLPPSO) for the sizing optimization of dome 

structures under the limited frequency constraints. The proposed scheme is a new 

variant of PSO techniques with the direct combination of both the phasor theory in 

mathematics and comprehensive learning strategy to the particle swarm optimization. 

In order to model particle control parameters, a phase angle incorporating the periodic 

sine and cosine functions is essentially applied through which only the previous best 

positions of all particles are used to update the exemplar particle’s velocity during the 

optimization process. The aim of this work is to minimize the total weight of dome-

like truss structures under limited frequency constraints with the proposed technique. 

 

1.2 Research Objective  

The objectives of this research are:  

(1) To propose the comprehensive learning phasor particle swarm optimization 

(CLPPSO) algorithm in the field of structural optimization. 

(2) To implement the natural frequency and intrinsic structural responses in the 

sizing optimization process. 

(3) To evaluate, analyze and compare the results of the proposed scheme with 

those obtained from other developed optimization methods. 

 

1.3 Scope 

(1) The analyses of three prominent dome-like truss structures will be performed 

by the eigenvalue method. 

(2) All benchmarks will be optimized to demonstrate the robustness and 

efficiency of the proposed CLPPSO. 

(3) The MATLAB program is applied to optimize and analyze with an iterative 

manner to minimize the total weight of the structure subjected to the natural 

frequency constraints.  

(4) The violations of these constraints are considered as penalty functions and will 

have accounted them for the total weight. 

 

1.4 Methodology 

In this study, a phasor particle swarm optimization with comprehensive 

learning strategy (CLPPSO) is proposed. The generic idea is based on the direct 

integration with the phasor theory in mathematics and comprehensive learning 

strategy to the particle swarm optimization to empower the algorithm to keep the 

swarm's variability from eschewing premature convergence. The particle control 

parameters of PSO are endorsed by the periodic functions of phase angle (θ) and the 

comprehensive learning strategy helps to be dispirited from the premature 
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convergence of the PSO. The algorithm is tested on several well-known benchmark 

truss problems for sizing optimization under stress, buckling and displacement 

constraints. The obtained results were compared to those of some well-known meta-

heuristics which successfully solved benchmarks highlighted efficiency and accuracy 

of the discrete optimization problems.  

To investigate the efficiency and viability of the proposed CLPPSO method, 

three prominent benchmarks of three-dimensional dome-like trusses will be explored 

for sizing optimization with the natural frequency constraints. The goal is to find the 

optimum cross-sections of the members by minimizing the weight of the structure 

under limited natural frequency constraints. The first example is mid-scale dome-like 

truss of 120-bar which has 49 nodes and 7 design groups. The large-scale dome-like 

truss of 600-bar which is composed of 216 nodes and 25 design groups, is presented 

as the second benchmark. The third one is also the 1410-bar large-scale dome-like 

truss, and it has 390 nodes and 47 design groups. The nonstructural additional masses 

are attached to the free nodes of the design examples. The eigenvalue method is 

conducted to analyze the natural frequencies and distinctive mode shapes of an 

undamped free vibration dome-like truss system. In addition, the direct stiffness 

method is applied to analyze the mass and stiffness of all benchmark structures. The 

coding procedure is implemented with MATLAB program. The optimization 

procedure terminates when the minimum cross-sections are obtained without violating 

its given constraints at the maximum no. of iterations. The penalty function method 

will be applied to the weight minimization process if the allowable natural frequency 

constraints are violated. The results obtained from the proposed method will be 

compared with those of other meta-heuristic optimization algorithms recently 

presented in literature. 
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CHAPTER 2 

LITERATURE REVIEW 

In order to obtain the optimal design, the size, shape, and topology of a 

structure can be optimized individually or by combination of each other. In sizing 

optimization, the goal is to find the optimal weight corresponding to the minimum 

cross-sectional areas under the limited design constraints. In shape optimization, the 

aim is to find the most suitable shape of the structure corresponding to its geometric 

layout under the limited design constraints whereas the target of topology 

optimization is to find the optimal structure corresponding to internal member 

configuration of the structure. Most of the limited design constraints are stress, 

displacement, buckling and natural frequency. 

 

2.1 Overview on structural optimization with natural frequency constraints  

The optimization problem minimizes the total weight (W) of the structure, 

which is considered as the objective function. The member cross-sectional areas, 

namely Ad for each d-th member, are considered as design variables. In practical 

design, the discrete values of the rolled steel sections are considered as cross-sectional 

variables and the algorithm is permitted to choose only one of a discrete set of 

available values. Due to the increase in the computational time of discrete value 

variables, the cross-sectional design variables are usually assumed to be continuous. 

Generally, there has many typical constraints such as mass, stress, displacements, 

natural frequencies, velocities, and accelerations which can be subdivided as equality 

and inequality constraints. To manipulate the dynamic characteristics of the structure, 

its inherent structural responses and the required natural frequency are appraised as 

the constraints in this study.  

The optimization problem can be mathematically described as follows:  

    (1) 

where nd as the total number of (pin-jointed) truss members, ρd as the material 

density, Ld as the length of a generic d-th member,  and  as the response natural 

frequencies (i.e., the j-th and k-th modes, respectively),  and *

k  as the natural 

frequency limits, Amin and Amax as the lower and upper limits on the available sectional 

areas, respectively. 
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2.2 Constraints Handling 

As constraints handling process, the penalty function f is applied to the 

problem in Eq. (1) for updating the objective function (total design weight) W:  

                                                           (2) 

where  

The penalty factor C is associated with the violation of natural frequency 

constraints,  and  stand for the parameters that indicate the natural frequency 

conditions are satisfied or violated. The parameters ε1 and ε2 impinge on the 

exploration and the exploitation of the search owing to the effect of settling on how 

much a violated solution is penalized (Joines & Houck, 1994). The more the 

optimization process proceeds, the more the intensification level of penalizing 

infeasible solutions increase. This strategy permits more diversification in the search 

space during the early stages of optimization and more intensification in the final 

stages to balance the exploration and exploitation of the search process (A Kaveh & 

Zolghadr, 2018). In this study, the parameter ε1 is set to 1 and ε2 is subjected to 

monotonic increase from 1.5 (subsequently increase to 3), respectively.  

 

2.3 Large-span steel domes 

Large-span steel domes are used as the resourceful and profitable structures to 

span a large space utilizing minimum surfaces with the economical consumption of 

building materials. In these days, they can mostly be seen over the structures which are 

required to have very large open spaces as well as iconic aesthetic standards such as 

airports, jurisdictive buildings, and sports arenas (Chen & Lui, 2005).  

 

 

Figure  3. Science world at TELUS world of science in Vancouver. 
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The major advantages of large-span steel domes are as follows: 

(1) They are relatively lightweight in comparison with reinforced concrete 

buildings.  

(2) The site spaces will be increased from 5% to 8% as they can be prefabricated 

in the supplier and then assembled on-site construction.  

(3) They can reduce the construction period about over 40% than that of the 

reinforced concrete structures as the prefabricated components offer high 

precision, and the construction hoisting speed is fast. 

(4) Due to the prefabrication process, they can also reduce the labor cost as the 

smaller number of workers are required for on-site construction. 

 

 

Figure  4. World largest free-spanning dome of National Sport Stadium in Singapore. 
 

 

Figure  5. Aerial view-of Jewel Changi Airport in Singapore. 

 

2.4 Direct stiffness method 

The direct stiffness method is performed to construct the element stiffness of 

the dome truss depending upon their material properties, section properties, and 

member configurations assuming that the truss is loaded at the joints as the 

concentrated loads and the member of the truss is subjected to only axial forces which 
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remain constant along the length of the member. In addition, the joints are also 

assumed as frictionless pins (or internal hinges). The element local stiffness matrix 

can be expressed as:   

 
1 1

'
1 1

d
e

d

EA
k

L

− 
=  

− 
 

 

 
Figure  6. Typical Two-node Truss element in Global and Local coordinates. 

 

A unit displacement is applied in the global coordinate in order to determine the 

corresponding displacement in local coordinate. The relationship between the 

displacements of local and global coordinates is derived as follows: 
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 9 

 
 

(ii) 

 

Figure  7. 1 unit displacement applying in global coordinate to determine 

corresponding displacement in local coordinate system, (i) at node 1, (ii) at node 2. 

 

Then, the global stiffness matrix for a truss element can be stated as follows: 

 
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2.5 Eigenvalue analysis  

Instinctively, any structure that has the mass and elasticity can vibrate to some 

degree. Therefore, the structural design usually entails to consider the oscillatory 

motions with increasing amplitudes. Although there have linear and nonlinear 

oscillatory motions, the nonlinear behavior is mostly found in the structures. There are 

generally three types of engineering vibrations, namely free vibration, forced 

vibration, and damped vibration. When a system vibrates harmonically with 

amplitudes at specific frequencies so-called natural frequencies via imposing properly 

with the initial displacement and then releasing it, the free vibration ensues. It 
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produces the oscillatory motion and constructs distinctive mode shapes depending on 

the distribution of mass and stiffness of the system without exerting any external 

force. For instance, when a swing is pulled on the back and then released it, this swing 

moves back and forth itself owing to the initial pulling effect. This is free vibration.  

The force vibration betides when a system enlivens under the excitation of 

time-dependent external forces that can possibly be periodic (harmonic or a non-

harmonic) and steady-state, transient, or random. If the periodic harmonic external 

force is exerted to the system, the vibration of system is said to be forced, for 

example, the vibration of a building during an earthquake. To avoid the resonance and 

large oscillations effect, the frequencies from the excitation of external forces have to 

evade a concurrence with one of the natural frequencies (Chopra, 2007). The damped 

vibration transpires when friction and other resistances gradually deplete the energy 

of a vibrating system by the ways of the gradual change in frequency or intensity or 

ceasing and resting the system in its equilibrium position. It can be seen when 

the shock absorber inhibits the suspension of the vehicles (Den Hartog, 1985; Inman, 

2001). 

There has the specific natural frequency for every structure producing the 

distinctive mode shapes. At higher frequencies, modes become more complex. For all 

engineering structures, the natural frequency is one of the key parameters that has to 

be considered. The natural frequencies and modes of vibration of an undamped free 

vibration system can be determined from the satisfaction of the subsequent matrix 

eigenvalue problem equation: 

2 , where n n n n

K
K M w

M
  = =                                    (3) 

where K and M are the stiffness and mass matrices of the system; ωn is the n-th 

natural frequency of vibration, and ϕn is the n-th natural mode of vibration of the 

structure, respectively. The stiffness and mass matrices of each member of the 

structure can be calculated as follow and transformed into global coordinate system to 

assemble those matrices of the entire dome truss structure. It should be noted that the 

mass matrices are constructed as consistent mass model for the structural mass (Rao, 

2011).  
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https://en.wikipedia.org/wiki/Vehicle_suspension


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

2.6 Structural optimization techniques 

 Since the structural optimization problems are non-smooth and non-convex 

problems and they also have some criteria, such as falling into the local minima’s trap 

and requiring excessive number of iterations to assurance the optimal solution, the 

efficient and robust algorithms are compulsory to fulfill the actual design 

requirements. Depending on the factors such as the computational efficiency, 

robustness, accuracy of solutions, simplicity and possibility of the algorithm, the 

choice of the suitable algorithm for structural optimization problems is done. These 

algorithms are generally grouped as deterministic and non-deterministic (stochastic) 

methods (Tushaj et al., 2017).  

 

2.6.1 Deterministic methods 

2.6.1.1 Mathematical programming techniques 

In order to get the optimum solution, these techniques compute the gradient 

computations of the objective function and constraints starting the search from a 

preselected initial position. However, in some cases, the gradient functions will not 

exist if the continuous constraint functions are not applied. And also, if the constraint 

functions are mathematically complex, the computation of their gradients will be 

difficult to calculate. In addition, the performance of the algorithms mainly depends 

on the quality of the initial position selection. If initial design point is chosen remote 

from the optimum solution and the design problem also has various local optima, it is 

expected that these algorithms will stop finding at one of the local optima as the 

optimum solution. Occasionally if the initial design point is not a good estimate, the 

problem will face difficulties in convergency, and thus no solution can be obtained. 

(Saka, Hasançebi, Geem, & Computation, 2016). For solving the minimization 

problems, they move in the negative direction of the gradient of the objective function 

so that the next position is ascertained. This process will stop when the values of 

design variables do not change significantly in two chronological iterations (Saka & 

Geem, 2013). Mathematical programming techniques can be divided as three main 

groups: sequential linear programs, penalty function methods, and gradient-based 

methods.  

Sequential linear programs use linearization concept to solve the optimization 

problem. Even though sequential linear-programming-based design algorithms have a 

benefit in the availability of reliable linear programming packages for users, they also 

have some drawbacks such as requiring numerous optimization cycles to get the 

optimum solution, and the choice of move limits depending on problem. In addition, 

they have difficulties in the convergency for the optimization problem with large 

numbers of design variables making large linearization errors of these problems. And 

also, the linearized problem may not have a feasible solution if the starting point is 

infeasible. In order to solve them, the move limits should be eased as well as the 
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application of the method should be carried out to resume (Haftka, 1985; Kirsch, 

1993).  

Penalty function methods uses sequential unconstrained minimization 

techniques to convert the constrained problem into unconstrained one to solve the 

problem as the unconstrained methods are more general and efficient than the 

constrained ones. They use a penalty function as a violation constraint when the 

solution disrupts the limited constraint functions. The penalty function methods are 

numerically reliable for structural optimization problems of moderate complexity. 

Even though they are generally suitable for various structural optimization problems, 

they also have the same drawback of requiring large number of structural analyses as 

sequential linear programs. Therefore, numerical difficulties may ascend when the ill-

conditioned problems are minimized. There have exterior penalty function method 

and interior penalty function method. The exterior penalty function method directly 

accompanies each by each for the corresponding constraint violation and thus the 

treatment of the inequality terms differs from that of the equality terms. In exterior 

penalty function method, all intermediate solutions occupy in the feasible region to 

find the solution starting from an infeasible design point so that it will eradicate the 

need for finding the initial feasible design point. Nevertheless, the algorithm cannot 

find a feasible solution until it reaches the optimum one and as a result all 

intermediate solutions become infeasible and finally, they do not provide a usable 

design. Interior penalty function method is applied if and only if inequality constraint 

is present in the problem. Differ from the exterior penalty function method, this 

method requires starting a feasible initial design point to find the solution such that all 

intermediate solutions become feasible and thus they can provide usable designs. In 

addition, the constraints become crucial only when the solution process approaches 

near the end so that this makes a chance to select the near optimal solution of a less 

critical design in preference to optimal design (Saka & Geem, 2013). 

The gradient-based methods directly handle the mathematical programming 

problem step by step as the constrained one without transforming it into another form. 

At each step, the solution approaches from current design variables to the next ones 

along a suitable direction that is determined by the gradient vectors of the objective 

and constraint functions (Saka & Geem, 2013). 

 

2.6.1.2 Optimality criteria 

Optimality criteria methods have more computational effort than mathematical 

programming techniques even though the mathematical programming ones are more 

general to implement. They transform the original problem in the form of a 

Lagrangian function to provide a near optimum design within some structural 

analyses without depending on the number of design variables with an iterative 

manner. This approach also requires the continuous design variable assumption and 

preselection of an appropriate initial design point to start its iterations so that the 
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performance of these algorithms depend on the quality of the preselected initial design 

point (Saka et al., 2016). They have two different approaches called physical and 

mathematical tools. In the physical tools, they generally derive a criterion residing on 

stress constraints (fully stressed design), displacement constraints (fully displacement 

design), and an integrate version of both stresses and displacements constraints (fully 

utility design) whereas the mathematical tools use Kuhn-Tucker conditions to derive 

(Rozvany, 2012). Nevertheless, these methods may not converge to the optimum 

solution in certain cases (Saka & Geem, 2013).  

It can be concluded that the structural optimization algorithms based on 

deterministic concept have many difficulties to meet the requirements of designing 

real-size structures under design code provisions.  

 

2.6.2 Non-deterministic (Stochastic) methods 

 The stochastic search techniques make use of randomness in exploring the 

search for the optimal or near-optimal solutions and usually they reach the different 

final solutions when the algorithm is executed. Meta-heuristics are nontraditional 

stochastic search methods that are efficient in finding the solution of combinatorial 

optimization problems without requiring gradient information and an explicit 

relationship between the objective function and the constraints. These techniques 

inspire from the natural phenomena such as survival of the fittest, immune system, 

social culture, and swarm intelligence for the purpose of guiding and modifying the 

search process of optimal solution during the iterations (Holland, 1992; Lu, Chen, & 

Zheng, 2012; Yang, 2010). In addition, meta-heuristic techniques are approximate 

based so that there has no guarantee that the resulted optimum solution is the global 

one.  

The performance of a meta-heuristic algorithm depends on the assessment 

between diversification and intensification strategies. Diversification discovers the 

search space more thoroughly and finds promising regions with good solutions 

whereas intensification takes advantages of local information in the promising areas 

hoping to discover better ones within a reasonable computational time (Talbi, 2009). 

When the intensification strategy controls the algorithm, it may lead to premature 

convergence often to a local optimum. However, when the diversification strategy 

pedals the algorithm, it will decelerate the convergency process even if the likelihood 

of finding the global or near-optimum solution of the optimization problem is 

amplified (Saka et al., 2016). In general, there have many taxonomies of meta-

heuristic techniques according to their inspiration such as evolutionary-based 

algorithms, swarm-intelligence-based algorithms and physical related-based 

algorithms. Owing to their efficiency and robustness, meta-heuristic techniques have 

been developed for the practical engineering design optimization problems with both 

continuous and discrete design variables (Yang & Koziel, 2011). 
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2.7 Application of meta-heuristic algorithms in structural optimization  

Most of these meta-heuristic algorithms that were successfully tested to the 

optimum design of truss structures under frequency constraints, are briefly reviewed. 

The enhanced version of forensic-based investigation (EFBI) algorithm is modified 

with by Kaveh et al. (Ali Kaveh, Hamedani, & Kamalinejad, 2021) for optimal design 

of frequency-constrained dome-like trusses. The chaotic water strider algorithm is 

developed by Kaveh et al. (A. Kaveh, Amirsoleimani, Dadras Eslamlou, & Rahmani, 

2021) to optimize large-scale dome-shaped trusses with limited frequency constraints. 

The fruit fly optimization algorithm (FOA) using a memory-based search strategy by 

adding both the vision search radius for each fruit fly and an improved deb rule to 

handle the constraints is modified by Liu et al. (Liu, Zhu, Chen, & Cao, 2019) to 

optimize truss structures with frequency constraints and demonstrated that the new 

algorithm finds significantly lighter designs than other variants. The chaos-based 

firefly algorithms utilizing two chaotic maps of Logistic and Gaussian maps to tune 

the attractiveness and light absorption coefficients of FA (CGFA) is proposed by 

Kaveh and Javadi  (A. Kaveh & Javadi, 2019) for optimization of cyclically large-size 

braced steel domes with multiple frequency constraints. The modified simulated 

annealing (MSAA) algorithm is utilized by Millan-Paramo and Abdalla Filho (Millan-

Paramo & Abdalla Filho, 2020) for size and shape optimization of truss structures 

with natural frequency constraints The cyclical parthenogenesis algorithm (CPA) is 

proposed by Kaveh and Zolghadr (A Kaveh & Zolghadr, 2018) for optimum design of 

large-scale cyclically symmetric dome trusses with frequency constraints using the 

block diagonalization technique. A hybrid charged system search (CSS) algorithm 

with a migration-based local search (MBLS) mechanism is utilized by Jalili and 

Talatahari for the optimum design of trusses with frequency constraints.  

The vibrating particles System (VPS) inspired by the damped oscillation of a 

single degree of freedom systems, is investigated by Kaveh and Ilchi Ghazaan (Ali 

Kaveh & Ilchi Ghazaan, 2017) to deal with large-scale dome trusses. The enhanced 

colliding-bodies optimization (ECBO) algorithm incorporating with multi-stage 

cascading techniques are used by Kaveh and Ilchi Ghazaan (A. Kaveh & Ilchi 

Ghazaan, 2016) for the optimization of large-scale dome trusses with frequency 

constraints. The hypotrochoid spiral optimization (HSPO) algorithm is presented by 

Kaveh and Mahjoubi (A. Kaveh & Mahjoubi, 2019).The improved differential 

evolution (DE) algorithm based on roulette wheel selection is presented by Ho-Huu et 

al. (Vinh Ho-Huu, Truong, Le, & Vo-Duy, 2018) to optimize the shape and size 

optimization of truss structures with frequency constraints. The firefly algorithm (FA) 

and an adaptive hybrid evolutionary firefly algorithm (AHEFA) are proposed by Lieu 

et al. (Lieu, Do, & Lee, 2018) for shape and size optimization of truss structures with 

frequency constraints.  

The orthogonal multi-gravitational search (OMGSA) algorithm for truss 

optimization on shape and sizing with frequency constraints is introduced by 
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Khatibinia and Naseralavi (Khatibinia & Sadegh Naseralavi, 2014). The harmony 

search and ray optimizer for enhancing the PSO algorithm (HRPSO) is utilized by 

Kaveh and Javadi (A. Kaveh & Javadi, 2014) for shape and size optimization of 

trusses with multiple frequency constraints. The democratic particle swarm 

optimization (DPSO) is introduced by Kaveh and Zolghadr (A. Kaveh & Zolghadr, 

2014) to optimize truss layout and size with frequency constraints. The colliding 

bodies optimization for truss optimization with multiple frequency constraints is 

investigated by Kaveh and Mahdavi (A. Kaveh & Mahdavi Dahoei, 2015). The 

sequential harmony search (SHS) is applied by Gholizadeh and Barzegar (Gholizadeh 

& Barzegar, 2012) for shape optimization of structures for frequency constraints by 

sequential harmony search algorithm. The particle swarm optimization (PSO) for 

truss optimization with dynamic constraints is proposed Gomes (Gomes, 2011). The 

teaching-learning based optimization modified with sub-population (MS-TLBO) for 

design of truss structures with natural frequency constraints is presented by Tejani et 

al (Tejani, Savsani, & Patel, 2016). The improved version of symbiotic organisms 

search (ISOS) is applied by Tejani et al. (Tejani, Savsani, Patel, & Mirjalili, 2018) for 

truss optimization with natural frequency constraints. The Niche Hybrid Genetic 

Algorithm (NHGA) combined with a simplex search method is presented by Lingyun 

et al. (Lingyun, Mei, Guangming, & Guang, 2005) to reduce premature of GA. 

 

2.8 Particle swarm Optimization 

Particle swarm optimization is one of the stochastic population-based meta-

heuristic techniques that is inspired from swarm intelligence. Particle swarm 

optimization and its variants have been employed in structural optimization research 

community for the sake of their simplicity of implementation and their aptitude of 

swift convergence to a good solution in terms of number of function evaluations as 

well as robustness (Kennedy & Eberhart, 1995). In addition, they can efficiently 

handle the nonlinear and nonconvex design spaces with discontinuities. Being a 

population-based algorithm, any particle in the swarm randomly instigates in the 

design space and communicates with the best trajectories of itself and its neighbors by 

adjusting their own positions and velocities derived from the best positions of all 

particles dynamically. All particles tend to flow not only towards the best position of 

itself in the earlier iterations (pbest) but also towards the historical one that the 

neighbor particles so far (gbest) during the iteration until the swarm approaches to an 

optimum solution of the objective function (Camp, Meyer, & Palazolo, 2004). This 

leads to good collaborative search capability of the algorithm (Liang, Qin, Suganthan, 

& Baskar, 2004).  

In standard PSO approach, it randomly initializes with a population of npop 

particles called swarm in the d-th dimensional search space and appraises the position 

of each particle in the search space. To control its movement through the search 

space, each particle  1,...,i npop  in the swarm uses the information of the current 
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position ,1 ,2 ,[ , , , ]d

d

n

i i i i nX X X X = , the current velocity ,1 ,2 ,[ , , , ]d

d

n

i i i i nV V V =V , 

the distance between the best-known position of the particles 

,1 ,2 ,[ , , , ]d

d

n

i i i i npbest pbest pbest =pbest  and its current position, and the distance 

between the global best position of the swarm 1 2[ , , , ]d

d

n

ngbest gbest gbest =gbest  

and its current position. The velocity Vi is chosen in the range of [-Vmax, Vmax] to avoid 

the particles from moving beyond the search space. For each iteration, the current 

velocity is updated as: 

1

, , 1 , , , 2 , ,1 ( ) 2 ( )t t t t t t t

i d i d i d i d i d i d d i dc rand c rand+ = + − + −V V pbest X gbest X  (1) 

where c1 and c2 are acceleration control coefficients, and 𝑟𝑎𝑛𝑑1𝑖
𝑑  and 𝑟𝑎𝑛𝑑2𝑖

𝑑 are 

random coefficients of two uniform random sequences in the range of (0, 1). To 

balance among the local and global search, the inertia weight factor (ω) is used for 

adjusting the impact of the previous velocities on the computation of the new velocity 

(Shi & Eberhart, 1998). During the optimization process, a linearly decreasing inertial 

weight strategy was developed to promote a global search (exploration) in early 

iterations and slowly reduce the impact of previous velocities focusing a local search 

(exploitation) around their pbesti and gbest (Camp, 2007). The inertial weight is 

calculated as:  

max max min

max

( ) xt t

t
   = − −  (2) 

where wmin and wmax are the initial and final value which were set as 0.9 and 0.4, 

respectively (Shi & Eberhart, 1998), t is the current iteration, and tmax is the total 

number of iteration. With the updated velocity, the particles’ position is updated as 

follows: 

1 1

, , ,

t t t

i d i d i d

+ += +X X V  (3) 

In PSO, all the particles attempt to improve the performance of the algorithm 

by updating their velocities and positions according to their pbesti and gbest for the 

new iteration.  

1

, , ,1

1

,

,    if    ( ) ( )
  for  {1, , }

,          otherwise

t t t

i d i d i dt

i dt

i d

f f
d n

+

+

+

 
= 


pbest
pbest pbest X

X
 (4) 

        

1 1

, ,1
,   if   ( ) ( )

  for  {1, , }
,      otherwise

t t t

i d i d dt

dt

d

f f
d n

+ +

+
 

= 


gbest
pbest pbest gbest

gbest
 (5) 

However, PSO inherits the premature convergence which is the main 

vulnerability of the optimization technique. The reason is that all particles in the 

swarm trace only the current global best position as the social learning method, 
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regardless of the current global best position is quite away from the global optimum 

one. It brings the particles to be trapped in a local optimal point with a dexterous 

manner and finally this leads PSO to converge quickly. 

 

 
Figure  8. Particle swarm with their associated positions and velocities. 
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CHAPTER 3 

Comprehensive Learning Phasor Particle Swarm Optimization 

Algorithm (CLPPSO) 

3.1 Algorithm overview 

The proposed CLPPSO method is developed by Ghasemi et al. (Ghasemi et 

al., 2019). It implements the direct combination of a phasor theory of mathematics 

and the comprehensive learning strategy to enhance the standard particle swarm 

optimization (PSO) techniques. The periodic functions of phase angle (θ) uphold the 

particle control parameters of PSO and simply make them to self-adaptive, balanced, 

and nonparametric ones (Ghasemi et al., 2019) whereas the comprehensive learning 

strategy discourages the premature convergence of the algorithm through preserving 

the diversity of the swarm (Liang et al., 2004).  

As the proposed method is a new variant of standard PSO, it also resets with 

randomly generating an initial population. In the determination of the initial 

population, it is critical to deal with diversification that can lead to face the premature 

convergence for the algorithm. In addition, the initial population has the ability to 

progressive enhancement on searching the new positions and their velocities of the 

group of populations through the iterations. The newly generated best positions are 

chosen to act for the whole swarm or a part of it for next iteration without using 

gradient information during the search (Abdel-Basset, Abdel-Fatah, & Sangaiah, 

2018; Loughlin & Ranjithan, 1997).  

Moreover, the population size is preferred between 20 and 60 in most of the 

PSO implementations. And also, there has a contrary bond between number of 

populations and the number of required iterations of the algorithm. The more increase 

in the number of populations, the lesser the number of iterations is required to be 

converged near the solution. Even though the surge in the number of populations can 

improve the results, it also has the time-consuming effect since the algorithm requires 

to perform the number of structural analyses depending to the number of populations 

and the number of iterations. Therefore, it is important to compromise between the 

quality of results and the computational time as in any population-based meta-

heuristic methods (Talbi, 2009). Thus, in this study, the number of populations are set 

to 30 which gives the optimal results with the proper convergence rate for all 

benchmarks. 

 

3.2 Periodic Functions of phase angle 

All control parameters of CLPPSO are incorporated with the periodic sine and 

cosine functions of one-dimensional phase angle (θ) lying within a range of 0–2π 

(6.2832 radians). The variation of these periodic functions (in an interval of [−1, 1]) 

and their absolute values (in [0, 1]) are presented in Fig. 9. In essence, the change in 
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the function 
2sin

cos
t
it

i



 generates adaptive search characteristics of CLPPSO with the 

phase angles of the particles and endorses a balance between global and local search 

of CLPPSO (Ghasemi et al., 2019). 

 
Figure  9. Changes in function based on their phase angles. 

 

3.3 Comprehensive learning strategy 

During the velocity updating process, the comprehensive learning strategy 

carries out a selection of ( ) (1) (2) ( ), ,...,
di d i i i nf f f f =    to identify the particles’ pbests 

which the i-th particle should follow in the same d-th dimension. Contrary to the 

original PSO method, the current velocity of the i-th particle is updated as follows: 

2sin

2sin
1

, , ( ), ,

cos
cos ( )

t
i

t
i

i

t

it t t t t

i d i d i f d d i d
npop




+

 
 = + −
 
 
 

V V pbest X    (4) 

where
2sin

cos /
t
it

i npop


  is the inertia weight factor, 
2sin

cos
t
it

i



 is the acceleration 

control periodic function, ( )i df is the particles’ pbests which the i-th particle should 

follow and ( ),i

t

f d dpbest is the personal best position of the selected particle. The 

particles’ position is also updated using the updated velocity as follow: 

1 1

, , ,

t t t

i d i d i d

+ += +X X V  (5) 
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Figure  10. Identification of exemplar for i-th particle. 

 

The selection of ( )i df is based on the randomly generated decision variable 

(within a range of 0 and 1) and the decision probability Pc to make sure that the 

particles release from blocking in a local optimum point (Liang, Qin, Suganthan, & 

Baskar, 2006). The i-th particle learns from its own pbest when the decision variable 

is larger than the decision probability; or else, it will learn from another particle’s 

pbest. In case of learning from another particle’s pbest, the comprehensive learning 

strategy employs two particles which are randomly chosen from the swarm and 

compares the corresponding objective functions of their pbests. For the i-th particle, 

these learning techniques are explored with the iterative manner for all d-th 

dimensions and then it adopts the one’s pbest which has the larger objective function 

value as the new learning exemplar. Afterward, the new learning exemplar’s pbest 

updates its searching route in the search domain. These steps will be recurrent for all 

particles in the swarm. In addition, on the occasion that all exemplars of the i-th 

particle are at its current pbest as the special case, the new learning exemplar’s pbest 

( ) )if d(pbest  can appoint one dimension from its search domain to do random learning 
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from another particle’s pbest at the corresponding dimension. The identification of 

exemplar is summarized in Fig. 10.  

 

 
Figure  11. Decision probability for various no. of particles. 

 

The Pc for the i-th particle is calculated as Eq. (6) and Fig. 11 presents Pc for 

various no. of particles.  

10( 1)
exp 1

1
0.05 0.45x

(exp(10) 1)
i

i

npop
Pc

  −
−  

−  = +
−

 
(6) 

With the condition that the i-th particle desists to improve on its objective function for 

more than a specified number of iterations, thus so called a refreshing gap m, it is 

permitted to learn from the exemplars and proceed the selection of ( )i df  for the new 

learning exemplars to stay away from some excessive local optimal searches 

regarding with all dimensions in that i-th particle over the good exemplars to facilitate 

the computation of the accurate optimal design solutions.  

The pbesti of each particle and the gbest of the swarm in CLPPSO will also be 

updated as Eq. (7) and (8) for the next iteration.  

1

, , ,1

1

,

,    if    ( ) ( )
  for  {1, , }

,          otherwise

t t t

i d i d i dt

i dt

i d

f f
d n

+

+

+

 
= 

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pbest pbest X

X
 (7) 
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,      otherwise
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And the phase angle (θ) and the maximum velocity of each particle are recalculated 

with Eq. (9) and (10) for the next iterations. The algorithmic procedures are presented 

in Fig. 12. 

1 cos sin 2t t t t

i i i i    + = + +  (9) 

2
1 1

(max) , (max) (min)cos ( )t t

i d i d d+ += −V X X  (10) 
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Figure  12. CLPPSO procedures. 
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CHAPTER 4 

Design Examples 

 
To investigate the effectiveness and robustness of the proposed CLPPSO 

method, the optimal sizing design of three prominent benchmarks of dome-like 

trusses will be performed. The first example is mid-scale dome-like truss of 120-bar 

while both the second and third ones are large-scale dome-like trusses of 600-bar and 

1410-bar. The optimal sizing designs of all examples were successfully performed by 

the proposed CLPPSO method with the population of 30 particles and the total of 20 

independent runs for 120-bar and 10 independent runs for 600-bar and 1410-bar 

dome-like trusses. The optimal results of the best and average runs of each example 

are mentioned to compare those of state-of-art meta-heuristic algorithms.  

 

4.1 120-bar dome truss  

The first benchmark example is the 120-member dome-like truss structure and 

its geometry in Fig. 13 was presented for the cost minimization of all member sizes 

under the limited natural frequency conditions. In this example, the additional mass of 

m1 was assigned at node 1, m2 at nodes 2 to 13, and m3 at nodes 14 to 37. All design 

member areas were sorted into 7 design groups and the material properties and design 

parameters employed are listed in Table 1 whereas the node connectivity is presented 

in Table 2. The maximum number of iterations was set as 600 for this example so that 

the total number of structural analyses was 18000. The computational time for this 

problem is about 180 seconds (0.05 hours) for a run. 

 

Table  1. Material properties and design parameters for 120-bar dome truss. 

Parameters of 120-bar dome truss Value 

Modulus of elasticity E (N/m2) 2.1 × 1011 

Material density ρ (kg/m3) 7971.81 

Additional mass (kg) m1 = 3000; m2 = 500; m3 = 100 

Allowable range of cross-section (cm2) 1 ≤ A ≤ 129.3 

Constraints on the first two frequencies (Hz) ω1 ≥ 9; ω2 ≥ 11 

 

Table 3 describes the resulting member sizes of all 7 design groups and the 

total weight of W = 8737.51 kg in comparison with the optimal solutions from various 

meta-heuristic methods of vibrating particles system (VPS) (8888.74 kg) (Ali Kaveh 

& Ilchi Ghazaan, 2017), democratic particle swarm optimization (DPSO) 

(8890.48 kg) (A. Kaveh & Zolghadr, 2014), colliding-bodies optimization (CBO) 

(8889.13 kg) (A. Kaveh & Mahdavi Dahoei, 2015), harmony search-based 
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mechanism into the particle swarm optimization with an Aging Leader and 

Challengers (HALC-PSO) (8889.96 kg) (A. Kaveh & Ilchi Ghazaan, 2015), improved 

symbiotic organisms search (ISOS) (8710.06 kg) (Tejani et al., 2018), modified sub- 

population teaching-learning-based optimization (MS-TLBO) (8708.73 kg) (Tejani et 

al., 2016), improved differential evolution (IDE) (8707.29 kg) (V. Ho-Huu, Vo-Duy, 

Luu-Van, Le-Anh, & Nguyen-Thoi, 2016), and  adaptive hybrid evolutionary firefly 

(AHEFA) (8707.26 kg) (Lieu et al., 2018), respectively. More explicitly, the optimal 

weight computed by the proposed CLPPSO method has reduced than those of VPS by 

1.701%, DPSO by 1.721%, CBO by 1.706%, and HALC-PSO by 1.715%. In 

addition, the performance of the proposed method agrees superbly with the referred 

meta-heuristic methods. with the comparable numerical efforts. For all the repeating 

CLPPSO solves, the convergency of the optimal solutions of both the best and mean 

values, see Fig. 14, occurred during the early number of iterations.  

 

Table  2. Node connectivity of the 120-bar dome truss. 
Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node 

1 2 1 2 1 2 1 2 1 2 

1 

 

1 2 

3 

 

2 14 

4 

8 27 

5 

26 27 

7 

38 15 

1 3 3 16 27 9 27 28 15 39 

1 4 4 18 9 29 28 29 39 17 

1 5 5 20 29 10 29 30 17 40 

1 6 6 22 10 31 30 31 40 19 

1 7 7 24 31 11 31 32 19 41 

1 8 8 26 11 33 32 33 41 21 

1 9 9 28 33 12 33 34 21 42 

1 10 10 30 12 35 34 35 42 23 

1 11 11 32 35 13 35 36 23 43 

1 12 12 34 13 37 36 37 43 25 

1 13 13 36 37 2 37 14 25 44 

2 

2 3 

4 

2 15 

5 

14 15 

6 

14 38 44 27 

3 4 15 3 15 16 16 39 27 45 

4 5 3 17 16 17 18 40 45 29 

5 6 17 4 17 18 20 41 29 46 

6 7 4 19 18 19 22 42 46 31 

7 8 19 5 19 20 24 43 31 47 

8 9 5 21 20 21 26 44 47 33 

9 10 21 6 21 22 28 45 33 48 

10 11 6 23 22 23 30 46 48 35 

11 12 23 7 23 24 32 47 35 49 

12 13 7 25 24 25 34 48 49 37 

13 2 25 8 25 26 36 49 37 38 
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(i) 

 
(ii) 

Figure  13. 120-bar dome truss geometry: (i) top view, (ii) side view 
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Figure  14. Solution convergence by CLPPSO method. 

 

 

Table  3. Optimal design solutions of 120-bar dome truss by variations analysis 

methods. 

Design 

Variables 

(Areas) 

cm2 

(Ali 

Kaveh 

& Ilchi 

Ghazaa

n, 2017) 

(A. 

Kaveh 

& 

Zolghad

r, 2014) 

(A. 

Kaveh 

& 

Mahdav

i 

Dahoei, 

2015) 

(A. 

Kaveh 

& Ilchi 

Ghazaa

n, 2015) 

(Tejani et 

al., 2018) 

(Tejani et 

al., 2016) 

(V. Ho-

Huu et 

al., 2016) 

(Lieu et 

al., 2018) 
Present 

VPS DPSO CBO 
HALC-

PSO 
ISOS 

MS-

TLBO 
IDE AHEFA CLPPSO 

A1 19.6836 19.607 19.6917 19.8905 19.6662 19.4886 19.4670 19.5094 19.2545 

A2 40.9581 41.290 41.1421 40.4045 39.8539 40.3949 40.5004 40.3867 40.5582 

A3 11.3325 11.136 11.1550 11.2057 10.6127 10.6921 10.6136 10.6033 10.8475 

A4 21.5387 21.025 21.3207 21.3768 21.2901 21.3139 21.1073 21.1168 20.9778 

A5 9.8867 10.060 9.8330 9.8669 9.7911 9.8943 9.8417 9.8221 9.9723 

A6 12.7116 12.758 12.8520 12.7200 11.7899 11.7810 11.7735 11.7735 12.0691 

A7 14.9330 15.414 15.1602 15.2236 14.7437 14.5979 14.8269 14.8405 14.7991 

Best Weight 

(kg) 
8888.74 8890.48 

8889.13

03 
8889.96 8710.062 8708.729 

8707.289

8 

8707.255

9 
8737.5055 

Number of 

analyses 
30000 6000 6000 17000 4000 4000 4060 3560 18000 

Mean 

Weight(kg) 
8896.04 8895.99 

8891.25

4 
8900.39 

8728.595

1 

8734.745

0 

8707.814

7 

8707.558

0 
8738.2341 

Standard 

Deviation 
6.65 4.26 1.7926 6.38 14.2296 27.0503 0.5057 0.2535 0.4875 

f1 (Hz) 9.000 9.0001 9.000 9.000 9.001 9.0002 9.000 9.000 9.000 

f2 (Hz) 11.000 11.0007 11.0000 11.0000 10.998 11.0000 11.0000 11.0000 11.0000 
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4.2 600-bar dome truss 

The second benchmark example is the 600-member dome-like truss structure 

and its geometry in Fig. 15 was presented for the cost minimization of all member 

sizes under the limited natural frequency conditions. In this example, the additional 

mass of 100 kg was assigned to all free nodes except the constraint ones. All design 

member areas were sorted into 25 design groups and the material properties and 

design parameters employed are listed in Table 4 whereas the nodes coordinates, and 

node connectivity are presented in Table 5 and 6, respectively. The 600-bar dome 

truss comprises with 24 substructures and each of these shares the angle of cyclic 

symmetry of 15˚. The maximum number of iterations was set as 1000 for this 

example so that the total number of structural analyses was 30000. The computational 

time for this problem is about 21,600 seconds (6 hours) for a run. 

Table 7 describes the resulting member sizes of all 25 design groups and the 

total weight of W = 6083.554 kg in comparison with the optimal solutions from 

various meta-heuristic methods of vibrating particles system (VPS) (6120.01 kg) (Ali 

Kaveh & Ilchi Ghazaan, 2017), democratic particle swarm optimization (DPSO) 

(6344.55 kg) (A. Kaveh & Zolghadr, 2014), big bang-big crunch (BB-BC) 

(6394.64 kg) (A Kaveh & Zolghadr, 2018), harmony search algorithm (HS) (6357.59 

kg) (A Kaveh & Zolghadr, 2018), cyclical parthenogenesis algorithm (CPA) (6336.85 

kg) (A Kaveh & Zolghadr, 2018), chaotic water strider algorithm (Chaotic WSA) 

(6064.04 kg) (A. Kaveh et al., 2021), enhanced forensic-based investigation (EFBI) 

(6076.35 kg) (Ali Kaveh et al., 2021), and chaotic firefly algorithms with gaussian 

map (CGFA) (6058.49 kg) (A. Kaveh & Javadi, 2019). More explicitly, the optimal 

weight computed by the proposed CLPPSO method has reduced than those of VPS by 

0.596%, DPSO by 4.114%, BB-BC by 4.865%, HS by 4.31%, and CPA by 3.997%. 

In addition, the performance of the proposed method agrees superbly with the referred 

meta-heuristic methods. with the comparable numerical efforts. For all the repeating 

CLPPSO solves, the convergency of the optimal solutions of both the best and mean 

values, see Fig. 16, occurred during the mid-number of iterations.  

 

Table  4. Material properties and design parameters for 600-bar dome truss. 

Parameters Value 

Modulus of elasticity E (N/m2) 2 × 1011 

Material density ρ (kg/m3) 7850 

Additional mass (kg) 100 

Allowable range of cross-section (cm2) 1 ≤ A ≤ 100 

Constraints on the first two frequencies (Hz) ω1 ≥ 5; ω2 ≥ 7 
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Table  5. Coordinates of the nodes of the 600-bar dome truss. 

 

Node number Coordinates 
Node 

number 
Coordinates Node number Coordinates 

1 (1, 0, 7) 4 (5, 0, 6.75) 7 (11, 0, 3.5) 

2 (1, 0, 7.5) 5 (7, 0, 6) 8 (13, 0, 1.5) 

3 (3, 0, 7.25) 6 (9, 0, 5) 9 (14, 0, 0) 

 

Table  6. Node connectivity of the typical substructure of 600-bar dome truss. 

 
Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node 

1 2 1 2 1 2 1 2 

1 1 2 8 3 11 15 5 14 22 8 9 

2 1 3 9 3 12 16 6 7 23 8 16 

3 1 10 10 4 5 17 6 14 24 8 17 

4 1 11 11 4 12 18 6 15 25 9 17 

5 2 3 12 4 13 19 7 8    

6 2 11 13 5 6 20 7 15    

7 3 4 14 5 13 21 7 16    

 

 
(i) 
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(ii) 

 
(iii) 

 

Figure  15. 600-bar dome truss geometry(i) 3D view, (ii) Plan view, (iii) Substructure. 
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Table  7. Optimal design solutions of 600-bar dome truss by variations analysis 

methods. 

 

Design 

Variables 

(Areas) 

cm2 

(Ali 

Kaveh 

& Ilchi 

Ghazaa

n, 2017) 

(A. 

Kaveh & 

Zolghadr, 

2014) 

(A. 

Kaveh 

et al., 

2021) 

(Ali 

Kaveh et 

al., 2021) 

(A. 

Kaveh & 

Javadi, 

2019) 

(A Kaveh & Zolghadr, 2018) Present 

VPS DPSO 
Chaotic 

WSA 
EFBI CGFA BB-BC HS CPA CLPPSO 

A1 1.3155 1.365 1.4829 1.0999 1.3190 1.502 1.439 1.155 1.27 

A2 1.2299 1.391 1.2619 1.4922 1.3826 1.495 1.425 1.304 1.2054 

A3 5.5506 5.686 4.9784 6.0744 4.9379 7.077 4.942 4.178 4.3937 

A4 1.3867 1.511 1.4155 1.6234 1.3222 93.172 1.677 1.335 1.9413 

A5 17.4275 17.711 17.5189 17.4918 17.1285 18.93 18.331 18.375 15.9245 

A6 40.143 36.266 36.8573 37.2118 37.4657 32.699 36.074 39.914 40.6525 

A7 12.8848 13.263 13.0251 12.7873 12.7071 14.601 13.407 13.609 12.8582 

A8 15.5413 16.919 15.0761 14.8239 15.4252 15.492 17.066 16.47 15.6351 

A9 12.2428 13.333 11.6297 12.1764 11.3642 13.533 13.122 14.108 11.9356 

A10 9.3776 9.534 9.5607 9.0163 9.3343 10.424 10.061 10.038 9.3706 

A11 8.6684 9.884 8.2689 8.5044 8.3872 10.171 9.827 9.514 8.5435 

A12 9.1659 9.547 8.8515 8.9951 9.1101 11.374 9.388 9.329 9.7151 

A13 7.1664 7.866 7.0387 7.0357 7.1472 8.184 7.083 6.938 6.9767 

A14 5.217 5.529 5.2711 5.0993 5.1701 5.857 5.697 5.545 5.4602 

A15 6.5346 7.007 6.5632 6.1918 6.6239 7.669 7.139 6.763 6.5435 

A16 5.4741 5.462 5.1025 4.9514 5.2427 5.985 5.082 5.209 5.6899 

A17 3.6545 3.853 3.4304 3.9186 3.5213 3.807 3.295 3.842 3.4203 

A18 7.6034 7.432 7.7083 7.6312 7.6096 10.361 7.663 8.112 7.644 

A19 4.2251 4.261 4.3958 4.4271 4.2877 4.824 4.1 4.252 4.1368 

A20 1.9717 2.253 2.0435 2.3280 2.1684 2.506 1.882 2.227 1.9880 

A21 4.5107 4.337 4.4764 4.8534 4.6704 5.363 4.725 4.582 4.4873 

A22 3.5251 4.028 3.6590 3.9632 3.5380 5.353 3.86 3.336 3.6142 

A23 1.9255 1.954 1.9727 1.8527 1.8252 1.695 2.28 1.725 1.9907 

A24 4.7628 4.709 4.8843 4.7818 4.8110 5.762 4.912 4.675 4.8404 

A25 1.6854 1.410 1.6167 1.4354 1.6589 1.651 1.502 1.673 1.6092 

Best Weight 

(kg) 
6120.01 6344.55 6064.04 6076.35 6058.49 6394.64 6357.59 6336.85 6083.554 

Number of 

analyses 
30000 9000 30000 12000 10000 - - 40000 30000 

Mean 

Weight(kg) 
6158.11 6674.71 6081.23 6098.52 6076.67 6704.11 6631.48 6376.01 

6093.428

1 

Standard 

Deviation 
28.49 473.21 8.29 11.95 22.42 551.65 304.09 90.39 12.0012 

f1 (Hz) 5.000 5.000 5.000 5.0001 5.000 5.001 5.000 5.000 5.0000 
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Design 

Variables 

(Areas) 

cm2 

(Ali 

Kaveh 

& Ilchi 

Ghazaa

n, 2017) 

(A. 

Kaveh & 

Zolghadr, 

2014) 

(A. 

Kaveh 

et al., 

2021) 

(Ali 

Kaveh et 

al., 2021) 

(A. 

Kaveh & 

Javadi, 

2019) 

(A Kaveh & Zolghadr, 2018) Present 

VPS DPSO 
Chaotic 

WSA 
EFBI CGFA BB-BC HS CPA CLPPSO 

f2 (Hz) 7.000 7.000 7.000 7.0000 7.000 7.000 7.000 7.000 7.0000 

 

 

4.3 1410-bar dome truss 

The third benchmark example is the 1410-member dome-like truss structure 

and its geometry in Fig. 17 was presented for the cost minimization of all member 

sizes under the limited natural frequency conditions. In this example, the additional 

mass of 100 kg was assigned to all free nodes except the constraint ones. All design 

member areas were sorted into 47 design groups and the material properties and 

design parameters employed are listed in Table 8 whereas the nodes coordinates, and 

node connectivity are presented in Table 9 and 10, respectively. The 600-bar dome 

truss comprises with 30 substructures and each of these shares the angle of cyclic 

symmetry of 12˚. The maximum number of iterations was set as 1000 for this 

example so that the total number of structural analyses was 30000. The computational 

time for this problem is about 108,000 seconds (30 hours) for a run. 

Table 11 describes the resulting member sizes of all 47 design groups and the total 

weight of W = 10534.85 kg in comparison with the optimal solutions from 

(10453.84 kg) (A. Kaveh & Zolghadr, 2014), enhanced colliding bodies optimization 

(ECBO) (10504.2 kg) (A. Kaveh & Ilchi Ghazaan, 2016), parameter free jaya 

algorithm (PFJA) (10326.296 kg) (Degertekin et al., 2021), big bang-big crunch (BB-

BC) (10772.11 kg) (A Kaveh & Zolghadr, 2018), harmony search algorithm (HS) 

(10922.7 kg) (A Kaveh & Zolghadr, 2018), cyclical parthenogenesis algorithm (CPA) 

(10435.47 kg)(A Kaveh & Zolghadr, 2018), and chaotic water strider algorithm 

(Chaotic WSA) (10318.99 kg)(A. Kaveh et al., 2021). More explicitly, the optimal 

weight computed by the proposed CLPPSO method has reduced than those of BB-BC 

by 2.203%, and HS by 3.551%. In addition, the performance of the proposed method 

agrees superbly with the referred meta-heuristic methods. with the comparable 

numerical efforts. For all the repeating CLPPSO solves, the convergency of the 

optimal solutions of both the best and mean values, see Fig. 18, occurred during the 

mid-number of iterations. 
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Figure  16. Solution convergence of 600-bar dome truss by CLPPSO method. 

 

Table  8. Material properties and design parameters for 1410-bar dome truss. 

 

Parameters Value 

Modulus of elasticity E (N/m2) 2 × 1011 

Material density ρ (kg/m3) 7850 

Additional mass (kg) 100 

Allowable range of cross-section (cm2) 1 ≤ A ≤ 100 

Constraints on the first two frequencies (Hz) ω1 ≥ 7; ω2 ≥ 9 

 

Table  9. Coordinates of the nodes of the 1410-bar dome truss. 

 

Node number Coordinates Node number Coordinates 

1 (1, 0, 4) 8 (1.989, 0.209, 3) 

2 (3, 0, 3.75) 9 (3.978, 0.418, 2.75) 

3 (5, 0, 3.25) 10 (5.967, 0.627, 2.25) 

4 (7, 0, 2.75) 11 (7.956, 0.836, 1.75) 

5 (9, 0, 2) 12 (9.945, 1.0453, 1) 

6 (11, 0, 1.25) 13 (11.934, 1.2543, -0.5) 

7 (13, 0, 0)   
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Table  10. Node connectivity of the typical substructure of 600-bar dome truss. 

 
Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node Elem. 

group 

Node 

1 2 1 2 1 2 1 2 

1 1 2 13 4 10 25 8 9 37 11 12 

2 1 8 14 4 11 26 8 14 38 11 17 

3 1 14 15 4 17 27 8 15 39 11 18 

4 2 3 16 5 6 28 8 21 40 11 24 

5 2 8 17 5 11 29 9 10 41 12 13 

6 2 9 18 5 12 30 9 15 42 12 18 

7 2 15 19 5 18 31 9 16 43 12 19 

8 3 4 20 6 7 32 9 22 44 12 25 

9 3 9 21 6 12 33 10 11 45 13 19 

10 3 10 22 6 13 34 10 16 46 13 20 

11 3 16 23 6 19 35 10 17 47 13 26 

12 4 5 24 7 13 36 10 23    

 

 
 

(i) 
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(ii) 

 

 
(iii) 

 

Figure  17. 1410-bar dome truss geometry, (i) 3D view, (ii) Plan view, (iii) 

Substructure. 
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Table  11. Optimal design solutions of 1410-bar dome truss by variations analysis 

methods. 

 

Design 

Variables 

(Areas) 

cm2 

(Ali 

Kaveh & 

Ilchi 

Ghazaan, 

2017) 

(A. 

Kaveh & 

Zolghadr

, 2014) 

(A. 

Kaveh & 

Ilchi 

Ghazaan, 

2016) 

(Degerte

kin et al., 

2021) 

(A. 

Kaveh et 

al., 

2021) 

(A Kaveh & Zolghadr, 2018) Present 

VPS DPSO ECBO PFJA 
Chaotic 

WSA 
BB-BC HS CPA CLPPSO 

A1 5.633 7.209 7.9969 6.1902 6.3476 3.746 2.826 7.416 5.35 

A2 4.7628 5.006 6.1723 4.4036 5.188 3.857 3.109 4.768 3.4 

A3 37.7385 38.446 35.5011 31.2253 24.4074 40.493 26.874 38.993 26.5938 

A4 7.4927 9.438 10.251 8.4715 8.5241 8.869 8.358 8.966 8.0668 

A5 3.1824 4.313 5.3727 4.8590 5.5439 4.431 4.932 4.511 3.6831 

A6 1.0193 1.494 1.3488 1.5759 1.202 2.708 3.496 1.544 2.3176 

A7 8.9475 8.455 11.4427 12.9451 14.6949 35.164 46.153 8.371 21.3495 

A8 10.4272 9.488 9.7157 9.3263 9.3726 9.475 9.635 9.276 10.3539 

A9 4.1398 3.48 1.3005 3.2716 1.462 3.879 3.016 3.583 6.3859 

A10 3.1408 3.495 2.5046 3.2878 2.5768 5.345 2.409 3.476 4.5076 

A11 15.4194 16.037 10.7849 12.6719 10.722 17.692 8.074 15.531 13.8374 

A12 8.9931 9.796 10.1954 10.0979 8.7231 11.417 10.214 10.285 10.876 

A13 3.1988 2.413 2.23 2.5803 1.9054 3.097 1.794 2.497 3.0903 

A14 7.1565 5.681 5.1186 5.3769 3.8895 6.122 4.723 5.397 5.599 

A15 17.8564 15.806 14.0053 16.0581 12.8913 12.937 20.052 16.503 14.2288 

A16 9.2685 8.078 8.9713 8.6789 8.05 7.888 8.151 8.193 9.8232 

A17 3.3221 3.931 4.0756 3.3199 2.9941 4.82 4.052 3.829 2.9863 

A18 6.1486 6.099 5.9211 6.4966 7.2349 6.491 5.387 6.151 7.6236 

A19 8.4422 10.771 10.6915 10.8804 15.3852 9.399 8.506 10.465 8.6671 

A20 12.8578 13.775 10.622 14.0056 13.8992 12.493 12.763 13.925 12.1283 

A21 5.8031 4.231 4.5064 5.0843 5.6867 5.002 4.809 4.415 5.1126 

A22 7.5484 6.995 8.4086 6.9952 7.8515 7.055 8.002 6.863 6.4542 

A23 1.4805 1.837 5.8405 1.0270 1.0011 1.436 1.545 1.769 1.2039 

A24 4.5332 4.397 5.0342 4.3788 4.327 4.831 4.559 4.339 4.2053 

A25 2.0347 2.115 3.8932 2.1951 3.5281 1.807 2.387 2.115 2.2692 

A26 5.8589 4.923 6.1647 4.2562 4.5177 3.003 1.887 4.951 3.1514 

A27 2.4401 4.047 6.899 4.6605 6.8448 3.752 6.594 4.147 3.9958 

A28 6.925 5.906 11.6387 8.8694 12.9102 10.49 18.697 6.044 7.6868 

A29 3.3875 3.392 3.8343 3.2333 3.8706 3.658 4.142 3.222 3.3384 
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Design 

Variables 

(Areas) 

cm2 

(Ali 

Kaveh & 

Ilchi 

Ghazaan, 

2017) 

(A. 

Kaveh & 

Zolghadr

, 2014) 

(A. 

Kaveh & 

Ilchi 

Ghazaan, 

2016) 

(Degerte

kin et al., 

2021) 

(A. 

Kaveh et 

al., 

2021) 

(A Kaveh & Zolghadr, 2018) Present 

VPS DPSO ECBO PFJA 
Chaotic 

WSA 
BB-BC HS CPA CLPPSO 

A30 1.5024 1.902 1.4772 1.7611 1.0192 2.534 3.67 1.97 3.4703 

A31 4.0498 4.381 1.3075 3.2831 1.2962 4.368 3.039 4.29 4.498 

A32 11.0886 8.442 4.4876 7.1936 2.5497 16.022 19.853 8.02 8.4914 

A33 5.4639 5.011 6.0196 4.9840 5.6478 5.056 5.415 4.857 6.07 

A34 2.8459 3.577 2.6729 3.6672 2.775 3.629 2.184 3.689 4.7849 

A35 2.3136 2.805 1.6342 2.4062 2.1062 3.812 2.55 2.831 4.1645 

A36 3.437 2.024 1.841 2.1576 2.5833 1.089 1.003 1.985 1.0546 

A37 8.0225 6.709 6.8841 7.1043 7.3146 6.624 8.139 6.373 7.2711 

A38 5.8009 5.054 4.1393 5.2070 3.7673 5.233 5.991 4.865 4.9319 

A39 4.4004 3.259 3.3264 3.6853 2.9003 3.306 3.964 3.412 4.3437 

A40 1.0005 1.063 1 1.0007 1 1.122 1.048 1.027 1.0317 

A41 7.7222 5.934 6.9376 6.6302 7.0355 6.62 6.642 6.218 6.1891 

A42 5.2574 7.057 4.4568 6.6773 6.9735 4.623 7.091 7.342 7.2491 

A43 4.5055 5.745 4.6758 5.2167 5.5549 4.99 5.56 5.458 4.8191 

A44 1.0005 1.185 1.0084 1.0016 1.0001 1.049 1.273 1.14 1 

A45 7.9383 7.274 7.5103 8.1289 8.5706 7.869 6.769 7.401 7.0979 

A46 4.7805 4.798 5.2449 4.5151 5.6116 3.942 4.557 4.578 4.3028 

A47 1.0054 1.515 1.055 1.0010 1.0127 1.008 1.247 1.561 1.0716 

Best 

Weight 

(kg) 

10491.83 10453.84 10504.20 
10326.29

6 
10318.99 10772.11 10922.7 10435.47 10534.85 

Number of 

analyses 
- 50000 7920 16900 30000 - - 80000 30000 

Mean 

Weight(kg) 
10936.34 11100.57 10590.67 

10399.82

8 
10521.67 11534.63 11956.03 10658.48 

10619.48

75 

Standard 

Deviation 
158.39 334.2 52.51 75.441 122.146 219.31 501.16 129.9 109.3302 

f1 (Hz) - 7.001 7.002 7.0009 7.0000 7.003 7.001 7.000 7.0000 

f2 (Hz) - 9.003 9.001 9.0001 9.0021 9.000 9.002 9.000 9.0000 
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Figure  18. Solution convergence of 1410-bar dome truss by CLPPSO method. 
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CHAPTER 5 

CONCLUSION 

5.1 Conclusions 

This research presents a new variant of particle swarm optimization called the 

phasor particle swarm optimization with comprehensive learning strategy (CLPPSO) 

for the optimal design of dome-like truss structures under the limited frequency-

constraints. The approach mathematically adopts the direct combination of both the 

phasor theory in mathematics and comprehensive learning strategy to the particle 

swarm optimization that keeps the swarm's variability from eschewing premature 

convergence. The phase angle incorporating the periodic sine and cosine functions is 

essentially applied to model particle control parameters, through which the 

comprehensive strategy focuses only on the choice of the previous best positions of 

all particles for updating the exemplar particle’s velocity during the optimization 

process. The applications of the proposed method have been efficaciously shown 

through the optimal sizing design of the three various dome truss structures of 120-

bars, 600-bars, and 1410-bars, respectively.  

For all benchmarks, the number of populations of 30 gives the optimal results 

with the proper convergence rate making a balance between the optimal results and 

the computational time. The accuracy and robustness of the proposed techniques are 

remarkably evinced for all benchmark examples by competitive manners with those 

reported using different metaheuristic in the literature regarding their optimum 

solutions. In addition, the proposed method can also be maintained the likelihood of 

the premature convergence of the standard PSO exclusively in large-size dome-truss 

structures.  

 

5.2 Future Research 

Ongoing extension of this research are summarized as follows: 

• The development of the CLPPSO method should be integrated on shape and 

topology optimization.  

• In addition, it can be collaborated the CLPPSO method with some numerical 

techniques to upgrade the computational time for eigenvalue problems.
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