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Abstract

In the age of big data, unsupervised machine learning plays crucial
roles in detecting statistical patterns hidden in gigantic dataset. Tak-
ing root in statistical physics of random walks and heat diffusion on
networks, Diffusion Maps are one of the most efficient modern clas-
sical unsupervised algorithms for clustering high-dimensional dataset.
Not only it can automatically discover hidden statistical structure in
a high-dimensional dataset, but it can also projects the data into a
lower dimensional embedding where the majority of the data structure
reside. Such projections are termed nonlinear dimensionality reduc-
tion or manifold learning in machine leaning literature. In the first
part of this thesis, we begin by reviewing the physics of classical ran-
dom walks on a graph which motivates the construction of Diffusion
Maps. We will discuss how Diffusion Maps can perform clustering as
well as nonlinear dimensionality reduction based on the properties of
Markov transition matrix defined on a dataset-associated graph. We
then showcase the usefulness of Diffusion Maps to learn low dimensional
embedding in some real data samples. In the second part of this thesis,
we bring diffusion maps into the realm of quantum algorithms. Moti-
vated by advances in modern near-term quantum devices, we explore a
construction of Quantum Diffusion Maps. By exploiting coherent state
encoding scheme into Quantum RAM, we outline how to achieve both
quantum computational speedup as well as quantum storage capacity
reduction for quantum computations of Diffusion Maps on a quantum
device. Lastly, it’s known that quantum walks can spread faster than
its classical counterparts; we construct quantum walk protocols that
perhaps can provide an alternative way to perform unsupervised data
clustering, given that one can create quantum walks on quantum de-
vices or quantum simulators.
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Chapter 1

Introduction

Modern machine learning techniques are extraordinarily efficient at
learning and representing high dimensional statistics of labeled dataset,

provided a large number of input-label pairs
{
(x(m), y(m))

}
are given.

Among the class of supervised learning, a biologically inspired feed-
forward neural network architecture, called Deep Learning, has reigned
and empowered modern AI tasks, ranging from visual recognitions to
automatic speech recognitions. Given abundant input-label data pairs,
Deep Learning can learn and represent a complex conditional probabil-
ity distribution pθ(y|x) fairly efficiently, where x ∈ R

n is an input data,
y is an associated data label, and θ are the parameters that parametrize
the deep neural network. For instance, a well-trained deep network will
convert a vector x encoding pixel colors and pixel intensities of a pic-
ture of a dog into a label “dog” with high probability, even though the
network itself has never seen such instance of the dog picture during
training.

Although Deep Learning is a powerhouse of modern machine learn-
ing applications, it requires a large amount of labeled data to build
a useful representation. In fact, exhaustively labeling every data cor-
rectly is a major obstacle in constructing a useful deep neural network.
In addition, many realistic tasks, such as identifying gene expressions
patterns in response to new drugs, do not have predefined or well-
defined labels. This lack of domain knowledge (lack of labels) urges
for automatic detection or classification of patterns in an unsupervised
way, which is the task of an unsupervised learning algorithm. In un-

supervised learning, a large number of high-dimensional data
{
x(m)

}
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will be automatically classified into different classes according to the
proximity to other data points. For example, a set of weights sam-
pled from 100 patients might show a bimodal distribution, one with a
low average weight and the other with a high average weight; a useful
unsupervised learning algorithm will be able to separate the dataset
into two groups automatically and correctly. The aforementioned ex-
ample might seem uninspiring; however, automatic pattern detection
and classification plays a crucial role in many realistic tasks whose data
lives in high dimension, such as in classifying gene expression patterns
in response to drug therapy, which is a typical “big data” problem in
bioinformatics.

Prototypical unsupervised learning include Principal Component Anal-
ysis (PCA), Kernel Principal Component Analysis (Kernel-PCA), k-
mean clustering, T-distributed Stochastic Neighbour Embedding (t-
SNE), and Support Vector Machine (SVM). These algorithms mini-
mize cost functions, whose minimization procedure yields the “decision
boundaries” that suppose to automatically label different “data clus-
ters.” It is known that these classes of algorithms, although easy to im-
plement on classical computers, suffer from the curse-of-dimensionality,
in which the higher the dimensions the data lives in, the slower and the
less accurate it is for the algorithm to find the decision boundaries.
In this regards, Diffusion maps [9] were proposed as a modern unsu-
pervised learning algorithm that not only performs clustering without
suffering from the curse of dimensionality, but also performs a non-
linear dimensionality reduction, automatically discovering the lower-
dimensional manifold in which the data is embedded, see the fig. 1.1.
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Figure 1.1: Comparisons of non-linear dimensionality reduction methods and their
visualizations. Similar color code represents data in proximity (in the same or nearby
clusters). Diffusion maps reveal underlying proximity structure better than PCA and
tSNE for the high-dimensional gene expression patterns classification during cell-type
differentiation processes (B). (Figure adapted from [7])

Classical diffusion maps are simple, implementable, and inspired
from non-equilibrium statistical mechanics of random walkers. The
main idea is that random walkers on a graph will spend most of their
time on a well-connected component, before transitioning to other well-
connected components in the graph. If we assign a graph structure to
the dataset of interests where each vertex corresponds to each data
point and the weighted edge between any two vertices encodes the dis-
tance (in the Euclidean space the data lives in) between the two data
points, then random walkers, on such graph associated to the dataset,
will spend most of their time in a well-connected component and per-
haps build up a unique stationary distribution around a strongly con-
nected component, automatically exploring a “cluster” of data points
living in the same strongly connected component. The degree of con-
nectedness can be tuned in the weighted edges between any pair of data
points, which typically take the form of a Gaussian Kernel function:

Wij = exp

(
−
∥∥x(i) − x(j)

∥∥2

σ

)
(1.1)

where ‖.‖ denotes the Euclidean L2 norm and σ here assigns the de-
gree of proximity between the two data points. This problem of finding
stationary distributions can be solved by block-diagonalizing the associ-
ated transition matrix, which is a row stochastic matrix whose columns
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sum to one. More explicitly, we would block-diagonalize the transition
probability (transition matrix) of a walker to move from vertex j to
vertex i, defined in one time-step as

Pij =
Wij∑
iWij

, (1.2)

where the denominator ensures a proper normalization (i.e. the tran-
sition out of j or remains in j in one time step has probability 1).
Such row stochastic matrix has all eigenvalues lie in [0, 1], and only the
eigenvectors associated with the degenerate eigenvalue 1 encapsulates
the stationary distributions; all other eigenvectors with eigenvalue less
than 1 will decay exponentially away with time, a feature shared by
eigenfunction expansions of heat equations, either in Euclidean space
or in curved space. As a result, numerically solving for the degenerate
subspace with eigenvalue 1 not only provide the identification of data
clusters, but also extract the lower-dimensional linear manifold where
most of the data lives in without suffering from the curse of dimension-
ality!

In the past few years, quantum counterparts of classical unsuper-
vised learning have been proposed. Notable algorithms are quantum
PCA [1] and quantum Support Vector Machine [P. Rebentrost, et. al.,
2014], which promise a quantum computational speedup over the clas-
sical counterparts, provided a fault-tolerant quantum computing can be
achieved. In this subtheme, we will explore the quantum counterparts
of the classical diffusion maps, which, to the best of our knowledge, has
not been investigated. It is well known that quantum walks can provide
a quadratic speed up on the spread of walkers; namely, for a symmet-
ric random walk, the width of the classical distribution spread as

√
t

whereas the width of quantum walk distribution spreads as t, where t
is the number of steps taken by the walkers. [17]. It is thus plausible to
hypothesize that random walk based-clustering algorithm can achieve
quantum computational speedup by implementing quantum walkers on
a graph associated with classical high-dimensional dataset on quantum
devices.

Another relevant direction concerns quantum computational speedup
that can be achieved by adopting the Quantum Phase Estimation (QPE)
algorithm and its variants [3], to find the degenerate subspace with
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eigenvalue 1 of the transition matrix. In addition, our preliminary re-
sults show that we can efficiently construct the aforementioned Gaus-
sian kernel exploiting the coherent state-based qRAM encoding of clas-
sical data. Combining both QPE and our coherent state representation
of the kernel will enable us to both perform quantum data compression
and to achieve quantum computational speedup in Quantum Diffusion
Maps, which hopefully is implementable on near-term devices.

The outline of this thesis is as follows. We begin in the next section
by reviewing statistical physics of classical random walkers, with the
emphasis on the convergence to the stationary distribution which will
be the crux of diffusion maps. In chapter 2, we review diffusion maps
algorithms, with the inspiration from random walks on graphs. We dis-
cuss how to to embed a dataset into a graph structure, and how random
walks on a data-associated graph that defines Markov transition matrix
enables data clustering and dimensionality reduction. In the end, this
non-linear dimensionality reduction algorithm requires only the compu-
tation of the eigenspaces corresponding to a few largest eigenvalues of
the Markov transition matrix. The implementation of diffusion maps
on some data samples are provided in section 2.6. We then explore
quantum algorithms for classical diffusion maps in chapter 3 and 4.
We first explore how to compress classical data into the quantum ran-
dom access memory (qRAM) via coherent state representation. After
reviewing quantum phase estimation (QPE) which provides quantum
computational speedup for finding eigenspaces, we discuss how to quan-
tum mechanically perform dimensionality reduction by diffusion map
using both QPE and coherent state representation of the data. This
leads to the proposal of Quantum Diffusion Map. Lastly, in Chapter 4,
we propose quantum random walk algorithm as an alternative means
for data clustering on a quantum device, and showcase successful im-
plementations via simulations on a toy dataset.

1.1 Basic Ideas of Random Walk

Classical random walk is a stochastic process that describes a time evo-
lution of random events. Its framework enables the understanding of
irregular motions of pollen grains suspended in liquids, to the under-
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standing of noise in semiconductor devices, to mathematical modeling
of stock market price fluctuations, to name a few. A prototypical ex-
ample of random walk is the random walk on a one-dimensional lattice.
Consider an integer number line Z with a random walker starting at
the origin. The random walker has the same transition probability to
hop to the left or to the right by one step per unit time. In this setting,
the probability of the walker to be on the lattice site n at time t is

p(n, t) =
1

2t

(
t

t+n
2

)
. (1.3)

At long times, the binomial distribution converges to the normal dis-
tribution:

p(n, t) ≈ 2√
2πt

exp

{
−n

2

2t

}
. (1.4)

This is a realization of the Central Limit Theorem. It’s clear that the
normal distribution is centered at n = 0, which implies the expectation
value is 〈n〉 = 0. On the other hand, the standard deviation grows with
the square-root of time,

σ(t) =

√∫
n

n2p(n, t)dn =
√
t. (1.5)

In the long-time limit on a finite one-dimensional lattice, for a peri-

odic boundary condition, say, we have lim
t→∞ p(n, t) =

1

N
where N is

a number of lattice points. This is an instance of Ergodic hypothesis,
stating that at thermal equilibrium all states are equally likely. In other
words, the distribution of a random walker defined above converges to
a (stationary) uniform distribution.

The above description of random walk is an example of a well-known
stochastic process called a Markov chain. A Markov chain describes
a transition probability of events in which the transition probability
depends on the states only at the latest time. We denote the probability
to transition from lattice j to i in a one-time step as Pij, termed a
transition probability. In the previous example of random walk, the
finite one-dimensional lattice, we can write the transition probability

6



as

Pij =

{
1/2 if j = i+ 1, or j = i− 1,

0 otherwise.
(1.6)

Let p(n = 0, t = 0) = 1 be the probability of the random walker
starting on the origin at the initial time, then p(n 
= 0, t = 0) = 0. The
probability on n = 1 in the subsequent time can be written as

p(n = 1, t = 1) =
∑
n

P1,np(n, t = 0) = 1/2. (1.7)

We can write the equation above more compactly in the matrix form.
Denote the transition matrix P = (Pij), and the probability distribu-
tion at time t in the vector form p(t) = (p(·, t))T . Then, the probability
distribution at time 1 is

p(1) = Pp(0). (1.8)

By the Markovian assumption, the probability distribution at time t is

p(t) = P tp(0). (1.9)

We can extend random walk to hypercubic lattice or graph naturally
by mapping each index of the transition matrix to the corresponding
lattice or the corresponding vertex in a graph. The important property
of the transition matrix is that the summation over all columns is unity
by the conservation of probability, i.e.,∑

i

Pij = 1. (1.10)

In the matrix form, this means that v = 1 is a trivial eigenvector of P
with eigenvalue 1

P1 = 1. (1.11)

The trivial eigenvector is the uniform distribution over all vertices,
which can be reached as a possible stationary distribution.

Anoter important property of the eigenvalues of the transition ma-
trix is that they live in [0, 1]. This can be seen as follows. Let v

(k)
i be the

largest component of an ith-eigenvector corresponding to the eigenvalue
λi. Then,

λiv
(k)
i =

∑
j

Pkjv
(j)
i (1.12)
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or, equivalently, by triangle inequality,

|λi| ≤
∑
j

Pkj

∣∣∣v(j)i

∣∣∣∣∣∣v(k)i

∣∣∣ ≤
∑
j

Pkj = 1. (1.13)

Since λi is positive, so 0 ≤ λi ≤ 1.

1.2 Identifying Clusters in a Graph: Random Walk

Approach

Consider the following scenario, where we define random walk on a
graph consisting of k disconnected components. In this case, the tran-
sition matrix can be block diagonalized, such that the subspace corre-
sponding to the transitions within the same connected component is
disjointed from the subspace corresponding to the transitions in other
connected component (except for the shared zero vector):

P =

⎛
⎜⎜⎜⎝
P 1

P 2
. . .

P k

⎞
⎟⎟⎟⎠ . (1.14)

The characteristic equation of this matrix is

det(P 1 − λI1) det(P 2 − λI2) · · · det(P k − λIk) = 0. (1.15)

One trivial solution is when λ is the trivial eigenvalue 1 of each block
matrix P i. In this case, we have k-degenerate subspace with eigenvalue
1. Note that the matrix P can be written as the direct sum as

P =
k⊕

i=1

P i, (1.16)

so the eigenvalue equation becomes(
k⊕

i=1

P i

)
vj = λjvj. (1.17)
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Observe that the direct sum between trivial eigenvector of a submatrix
P i and null vectors of other subspaces, i.e.,

vi = 0⊕ · · · ⊕ 1i ⊕ · · · ⊕ 0 =

⎛
⎜⎜⎜⎜⎜⎝

0
...
1i
...
0

⎞
⎟⎟⎟⎟⎟⎠, (1.18)

is also an eigenvector of P with eigenvalue 1 where 1i is one vector
corresponding to a block matrix P i. Therefore, the number of trivial
eigenvectors is the number of the connected components in the graph.
Therefore, if we initialize the distribution in one connected component,
the long-time stationary distribution is the uniform distribution over
such connected component; this is a realization of Ergodic hypothesis
in a disconnected subspace of a graph. In general the initial distribu-
tion could span over all connected components. In such scenario the
stationary distribution is the uniform distribution over all vertices.
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Chapter 2

Diffusion Map

Diffusion map exploits random walks on a graph to find lower-dimensional
data embedding. Each dataset is assigned a weighted graph, which de-
fines data-associated transition matrix. Data that is nearby each other
in the feature space shall live in the same well-connected component of
a graph. By initializing random walkers on such graph, the nearby data
points in the feature space will also have a nearby distance in the diffu-
sion space. We now define diffusion maps for nonlinear dimensionality
reduction.

2.1 Basic Definition of Graph

A graph G is a set of vertices and edges which connect any two vertices,
which in general can also connect the same vertex. From this definition
we can start analyzing the property of a graph. The total weighted
edges connected to each vertices can be represented by the degree matrix
whereas the adjacency matrix accounts for the weighted between any
two vertices.

The degree matrix is the diagonal matrix in which each diagonal
element represents the total weighted edges at the associated vertex.
For the adjacency matrix A, we define its Aij element as the weight
of the edge connecting vertex j to vertex i. Hence, the degree of each
vertex is the summation of the weighted edges connected to that vertex.
The graph in which every vertex is connected to every other vertices is
called a complete graph.

10



2.2 Random Walk on Graph

We now construct a graph associated to a given dataset, then define a

random walk on it. Let X =
{
x(i)

}N

i=1
be a dataset where x(i) ∈ R

n.

Also, N = |X| is the size of the dataset. Associate a vertex i of a
graph to x(i), then associate a weighted edge by the Gaussian kernel
connecting the two vertices as

Wij = exp

(
−
∥∥x(i) − x(j)

∥∥2

σ

)
, (2.1)

where σ is a global parameter to be chosen. The weight between the
data points that are faraway in the original feature space (large eu-
clidean distance) compared to σ will be exponentially suppressed. If σ
is too large, we will have a complete graph but that’s due to a poor
choice of σ. We’ll discuss how to choose σ later.

From this construction of data-associated graph, we have the ad-
jacency matrix to be W = (Wij). Now we can define the transition
probability from vertex j to i of a random walker on this graph. Ac-
counting for normalization, the transition probability of the random
walker to move from vertex j to vertex i is

Pij =
Wij∑
iWij

. (2.2)

Denote the transition matrix of this graph as P = (Pij), which can be
rewritten in terms of the adjacency matrix W and the degree matrix
D as

P = D−1W , (2.3)

where D = diag{d1, · · · , dN} and di =
∑
j

Wij.

2.3 Diffusion Map

The diffusion map φ projects each data x(i) ∈ R
n of the original feature

space into a lower-dimensional embedding Rk called the diffusion space,
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Random Walk Transition Matrix P

Find Eigenvalues and Eigenvectors {λm,vm} of P

Diffusion Maps

Input Data

Wij = exp

(
−
∥∥x(i) − x(j)

∥∥2
σ

)
Pij =

Wij∑
iWij

φ
(i)
t = φt(x

(i)) Eq. (2.4)

Figure 2.1: Classical algorithm for diffusion maps computation

where typically k 
 n. The time-dependent coordinate in the diffusion
space of data i, once time has passed for t steps, is defined as

φ
(i)
t = φt(x

(i)) =

⎛
⎜⎝λ

t
1v

(i)
1
...

λtkv
(i)
k

⎞
⎟⎠ , (2.4)

where v
(i)
j is the ith-component of the eigenvector vj of the transition

matrix P with eigenvalue λj, where 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.
Here the lower-dimensional embedding depends on the number of the
first k eigenvectors (first k largest eigenvalue), which, in the long time
limit, only the eigenvector with eigenvalue close to 1 survive. So the
number of non-zero components will in general be such that k 
 n

at long times, roughly corresponding to the number of clusters in the
dataset. However, sometimes it is useful also to keep t short to discover
the geometric structure of the lower dimensional manifold on which the
data lies, as we will see in the implementation section. Note that the
first coordinate of the diffusion map is always 1 as 1 is the trivial
eigenvector with λ1 = 1. Hence, the first coordinate of (2.4) is less
informative since it’s identically 1 for every data point x(i).

Now we explain diffusion distance in the diffusion space. The notion
of proximity between data points on a graph can be defined based on
how fast random walks starting at each data points can visit each other.
Intuitively, two points that are connected by multiple paths on a graph
should be near in the diffusion space; whereas two points that do not

12



have many paths connecting them should lie far from each other in the
diffusion space. This notion of diffusion distance can be made more
precise by the definition

Dis2t

(
x(i),x(j)

)
=

∑
y∈X

(
pt

(
y,x(i)

)
− pt

(
y,x(j)

))2

/φ1(y), (2.5)

where pt

(
y,x(i)

)
is the probability distribution of a random walker

starting at x(i) to be found at an intermediate vertex y at time t, and
the normalization φ1(y) is the trivial component of the diffusion map
of y constructed from the trivial eigenvector of the transition matrix,
i.e.

φ1(y) =
dy∑
z dz

. (2.6)

From (2.5), the two data points that are well-connected on a graph
will have a large overlap between their diffusive-spreading distributions
even when t is small, encapsulating that the two points are nearby in
the diffusion space. On the other hand, the two data points that are
rarely connected on a graph will have a relatively small overlap, if at
all, between their diffusive-spreading distributions. These observations
illustrate the notion of proximity in the diffusion space of (2.5). In fact,
as shown in [9], the diffusion distance between any two data points is
a proper distance; it is the Euclidean distance between the diffusion
maps in the lower-dimensional embedding (diffusion space):

Dis2t

(
x(i),x(j)

)
= ‖φ(i)

t − φ
(j)
t ‖2. (2.7)

2.4 Properties of the Eigenspace of the Transition

Matrix

This section study the properties of the eigenvectors of the transition
matrix. Because the transition matrix is not neccesarily symmetric, its
eigenvectors are not neccesarily orthogonal. However, we can construct
a symmetric representation via the following similarity transformation
from a symmetric D−1 and a symmetric weight W :

P = D−1W = D−1/2D−1/2WD−1/2D1/2 = D−1/2SD1/2, (2.8)
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where
S ≡ D−1/2WD−1/2 (2.9)

is symmetric. Thus we can choose the eigenvectors of S to be a complete
real orthonormal basis.

Now, we show that the eigenvalues of S are also the eigenvalues of
P and the eigenvectors are related by the degree matrix. Consider the
eigenvalue equation of S, i.e.,

Sui = λiui. (2.10)

Since S = D1/2PD−1/2, it follows that

PD−1/2ui = λiD
−1/2ui. (2.11)

Hence, the eigenvector of P are related to the eigenvector of S by

vi = D−1/2ui, (2.12)

with the same eigenvalue λi. Because D
−1/2 is real, and ui is also real,

the eigenvector vi of P is also real. In addition, because {ui} is an
orthonormal set, i.e., uT

i uj = δij, it follows that the eigenvectors of the
transition matrix P satisfy

vT
i Dvj = δij. (2.13)

In the implementation section, we will first compute the eigenvectors
of S since numerical methods for finding the eigenvectors of symmetric
matrix are fast. Then we can transform the eigenvectors according to
(2.12) to obtain the corresponding eigenvectors of the transition matrix
P .

2.5 Random Walk and Heat Diffusion

Here we discuss how random walk on discrete states, such as on a graph,
is related to standard heat diffusion in a continuous space. Consider
the following one-dimensional lattice, where each lattice point is sepa-
rated by a distance d. Suppose the transition probability to hop to the
neighbors is P < 1/2. The probability of a random walker at the time
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t+1 to be at the position x can be written as the sum of the transition
probabilities into the position x from the current time step t as,

p(x, t+ 1) = Px,xp(x, t) + Px,x+dp(x+ d, t) + Px,x−dp(x− d, t). (2.14)

For d
 1, we Taylor’s expand

p(x, t+1) = Px,xp(x, t)+Px,x+d

(
p(x, t) + d∂xp(x, t) +

d2

2!
∂2xp(x, t) + · · ·

)

+ Px,x−d

(
p(x, t)− d∂xp(x, t) +

d2

2!
∂2xp(x, t) + · · ·

)
. (2.15)

Substituting Px,x+d = Px,x−d = P and Px,x = 1 − 2P (conservation of
probability) gives

p(x, t+ 1) ≈ (1− 2P )p(x, t) + 2Pp(x, t) + 2P
d2

2!
∂2xp(x, t)

= p(x, t) + α∂2xp(x, t), (2.16)

where α = Pd2. If we promote the transition matrix P to a continuous
space representation, then we have

p(x, t+ 1) = P p(x, t) = p(x, t) + α∂2xp(x, t). (2.17)

We can thus write

−(I − P )p(x, t) = α∂2xp(x, t). (2.18)

Therefore, −(I−P ) is generally called a Laplacian, which can be gener-
alized to a hypercubic lattice, where the second derivative becomes ∇2.
In addition, the Laplacian operator can be generalized to the Laplace-
Beltrami operator which can be defined on a curved space or manifold
where a metric is well-defined [9,11]. In the context of discrete states
such as random walk on graphs, −(I − P ) is called the normalized
graph Laplacian matrix, where both I and P are both well-defined on
a graph.
In the continuous-time limit, we may write (2.17) and (2.18) as

∂tp(x, t) = α∂2xp(x, t). (2.19)
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For discrete states, the above can thus be written in terms of the nor-
malized graph Laplacian matrix as

∂tp(t) = −(I − P )p(t). (2.20)

The last two equalities show the relationship between heat diffusion on
a continuous space and random walks on a graph. More generally, the
transition probability P on a graph does not need to be local, unlike
the standard nearest neighbor hopping random walk in space defined
at the beginning of this section.

2.6 Implementation of Diffusion Map

This section shows numerical results of Algorithm 1, implementing
manifold learning and non-linear dimensionality reduction via diffusion
maps in some illustrative dataset.

Algorithm 1 Diffusion Map

calculate Euclidean distance between every data points
calculate the global σ associated with the dataset according to (2.21)
calculate the weight matrix W according to (2.1)
calculate the degree matrix D
calculate the symmetric matrix S from (2.9)
find the eigenvalues {λi} and eigenvectors {ui} of S

- we may pick the first k largest eigenvalues.
calculate the eigenvectors of P : vi = D−1/2ui

calculate Diffusion Map for each data point according to (2.4).
- For manifold learning, take time-step t to be relatively small
- For data clustering, take time-step t� 1.

Diffusion Map for Manifold Learning
Consider the simplest toy dataset consisting of finitely many points on a
one-dimensional line as in fig. 2.2 (left), we found that the components
of the diffusion map are the eigenfunctions of the laplacian operator
(∂2x in this case). Here we take diffusion time t = 1. As shown in
fig. 2.3, the second component is the only component with a one-to-
one mapping between the dataset and their coordinates in the diffusion
space. Thus, when assigning color codes to denote the magnitude of
the second component of in the diffusion space, we can see that nearby
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points in the original feature space (fig. 2.2 (left)) are mapped into
nearby points in the diffusion space (fig. 2.2 (right)).

Figure 2.2: (Left) A finite one-dimensional lattice as a toy dataset to test the manifold
learning algorithm. (Right) The dataset colored by the second component of the
diffusion map, showing that nearby points in the original space is mapped to nearby
points in the diffusion space (second component).

Figure 2.3: First four components of the diffusion map (2.4) with diffusion time t = 1
(vertical axis) versus the location along the one dimensional line of each data point
(horizontal axis). The color codes are 1st (Blue), 2nd (Orange), 3rd (Green), and 4th
(Red) components. Only the second component has a one-to-one mapping between
the dataset and their coordinates in the diffusion space.

Next, we analyze a two-dimensional non-linear dataset. Again we take
the diffusion time t = 1. Comparing with the standard linear dimen-
sionality reduction method of Principal Component Analysis (PCA),
we can see in fig. 2.4 that diffusion map can automatically discover the
notion of the proximity between the data lying on a one-dimensional
manifold embedded in a two-dimensional space correctly whereas PCA
fails to do so! The second component of the diffusion map again shows
a one-to-one corerspondence between the dataset and the value in the
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diffusion space, and PCA again fails to do so. From numerical explo-
rations, it appears that, for a one-dimensional manifold embedded in
a two dimensional space, the second component of the diffusion map
seems to be the best component to quantify the notion of distance on
the lower-dimensional embedding. These numerical experiments ver-
ify that diffusion map can perform manifold learning and non-linear
dimensionality reduction, at least in R

2.

Figure 2.4: A non-linear one-dimensional data manifold embedded in a two dimen-
sional space. The dataset is colored by (left) the second component of the diffusion
map, and (right) the first component of PCA. Clearly, diffusion map discovers the no-
tion of “proximity along the lower-dimensional non-linear data manifold” while PCA
fails to do so!

Figure 2.5: (Left) First four components of the diffusion map with diffusion time
t = 1 (vertical) of each data point index (horizontal) corresponding to the color
blue, orange, green, red, respectively, for dataset in fig. 2.4. Again only the second
component shows a one-to-one mapping between the data points and the coordinate
in the diffusion space. (Right) The first two principal components of PCA (vertical)
for each data point index (horizontal)

Next, we consider slightly more complex manifolds. These are low-
dimensional embeddings in 3 dimensional space. Namely, the datasets

18



consisting of point clouds that look like a toroidal herix and a Swiss roll,
see fig. 2.6. After we project the data into the first two components
of the diffusion map with the diffusion time t = 1, the result in fig.
2.7 show that the notion of proximity in the original feature space is
preserved. In addition, the first two diffusion components also sketch
the flattened version of the original non-linear manifold correctly.

Figure 2.6: (Left) A toroidal helix, and (Right) a Swiss roll. Color code label different
data points. Nearby colors label nearby points on the lower-dimensional embedding.

Figure 2.7: Data points projected onto the first two components of the diffusion map
with the diffusion time t = 1 of (Left) a toroidal helix, and (Right) a Swiss roll. One
can see that the notion of proximity in the original space is preserved (color variation)
and that the shape reflect the flattened out version of the original non-linear data
manifolds. Interestingly, for the diffusion map of the swiss roll, the map appears to
discover that the two-dimensional roll can be generated from a one-dimensional line,
with extra layers in the z direction.

Diffusion Map for Data Clustering
For manifold learning, we took the diffusion time t = 1. For data clus-
tering; however, we shall take the diffusion time t to be sufficiently large
such that the distributions initialized at the data points in the same
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well-connected component of a graph almost reach the same station-
ary distribution, corresponding to the uniform distribution over all the
vertices in the same connected component (cluster) of the graph. On
the other hand, distributions initialized on data points belonging to a
different cluster will converge toward a different stationary distribution.

We first need to set the scale of proximity in the original feature
space σ of the weight matrix (2.1). If σ is too large, the data-induced
graph will be a complete graph, and every data point will belong to
the same cluster. If σ is too small, every point can constitute its own
cluster. Ref [8] proposes a method to pick the scale σ by taking the
average of the minimum Euclidean norm between each data point and
its neighbors, i.e.,

σ =
1

N

∑
i∈X

min
j∼i

∥∥∥x(i) − x(j)
∥∥∥2

. (2.21)

In this way, the mean distance will set the global scale for the notion of
“neighbors” in a dataset. Two data points that do not live in the same
Euclidean ball of radius

√
σ are considered far apart as their weights

will be exponentially suppressed. To test the algorithm, we perform
clustering of two doughnut-shape data clouds with different point den-
sity where each doughnut lives on a different plane in the z direction.
Fig. 2.8 shows the data clouds projected onto a two dimensional plane.
Using (2.21), we find that the transition matrix can be written as a
block diagonal form, and its eigenvectors satisfy (1.18).

Figure 2.8: Non-overlapping doughnut-shape data clouds projected onto two dimen-
sions (each doughnut lives on a different z value). Note that the right cluster is more
dense than the left.
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Figure 2.9: (Left) Data points labeled by the second component of the diffusion map
by picking a small σ, but not according to (2.21). However, by setting the scale of
σ according to (2.21), the second component can identify the correct clusters within
diffusion time t = 1! (Right). This is because the density of points on the right
cluster is higher than the left, and the two clusters are in fact quite separated in
the z directions. By picking the global parameter σ according to (2.21), the second
component of the diffusion map with t = 1 can separate the two clusters by their
associated density of points.

Now we apply diffusion map for clustering a high-dimensional real-
world dataset from [18]. The dataset consists of 178 data samples
of wines grown in the same region in Italy, but derived from three
different cultivars. Each data sample consists of 13 quantities (features)
extracted from chemical analysis of wines. Using only the first two
components of the diffusion map, the result shown in fig. 2.10 (Right)
reveals the distinction between the 3 classes of wines almost perfectly.
In addition, the two dimensional diffusion map embedding also reflects
proximity between different classes of cultivars. Namely, one cultivar
(green) are closely related to the other two (blue, and red), whereas the
other two are very distinct types. This unsupervised learning algorithm
leads to the discovery of knowledge hidden in 13-dimensional chemical
components space concerning the relationship between cultivars, which
can help suggest scientists to further investigate the causes of such
relationship.

21



Figure 2.10: Diffusion map automatically discovers the relationship between three
cultivars of wines grown in the same region of Italy. The dataset from [18] consists of
178 data samples, each consists of 13 quantities (features) extracted from the chemical
analysis of wines. (Left) Projection of the dataset onto 2 (of 13)-dimensional feature
space. Different colors encode different cultivars of wines. (Right) Projection of the
dataset onto the second and the third component of the diffusion map shows almost
perfect identification of the three cultivars. In addition, diffusion map also reveals the
relationship between the three cultivars of wines. Namely, the green type is closely
related to the other two.
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Chapter 3

Quantum Algorithm for Diffusion
Map

Recent advances in quantum information science provide promising
prospects for useful near-term quantum computation devices. As such,
many quantum algorithms of classical Machine Learning have been pro-
posed to offer quantum computational speedup over its classical coun-
terparts. For example, routines in Machine Learning algorithms that
involve finding eigenvalues and eigenvectors can benefit from quantum
computational speedup from the Quantum Phase Estimation (QPE)
algorithm, which is specifically designed to find the eigenvalues and
eigenvectors of a unitary operator. Classically, the number of opera-
tions required to find eigenvalues and eigenvectors of a matrix of size
N ×N is O(N3); however, QPE requires O(N 2) operations [3].

In this chapter, by combining useful quantum computational tricks,
we will propose a quantum algorithm for classical diffusion map. Specif-
ically, by harnessing quantum computational speed up of QPE in find-
ing eigensubspaces, using qRAM data compression during classical data
encoding, and employing coherent state tricks to efficiently compute the
weight matrix, we propose a Quantum Diffusion Map for nonlinear di-
mensionality reduction, which, to the best of our knowledge, has not
been studied.

23



3.1 Encoding Data into Quantum Random Access

Memory

For classical data X =
{
x(i)

}N

i=1
, ref. [4] proposed a method to com-

press the classical dataset into qRAM via the identification x(i) →∣∣∣x(i)
〉
. A natural way to encode classical data into qRAM is using bit

strings representation. For d features, this encoding scheme requires
n = log2(d) qubits to represent one data point by the identification

∣∣∣x(i)
〉
=

1

‖x(i)‖
2n−1∑
p=0

x(i)p |p〉 , (3.1)

where p is a base-2 number and |p〉 =
n−1⊗
m=0

|pm〉, where |pm〉 ∈ {( 10 ), ( 01 )}

as an mth qubit representation.
However, a more efficient way to encode the data is to define the

basis on qRAM using the coherent state as

∣∣∣x(i)
〉
=

2n−1⊗
p=0

∣∣∣x(i)p 〉
, (3.2)

where
∣∣∣x(i)p 〉

is the canonical coherent state representing the pth feature

of data x(i), i.e.,

∣∣∣x(i)p 〉
= exp

⎛
⎜⎝−

(
x
(i)
p

)2

2

⎞
⎟⎠ ∞∑

n=0

(
x
(i)
p

)n

√
n!

|n〉 , (3.3)

where |n〉 is an nth eigenstate of a harmonic oscillator.
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3.2 Constructing Transition Matrix from Coher-

ent States

Consider an inner product of two canonical coherent states of two data
points

〈
x(i)p

∣∣∣x(j)p

〉
= exp

⎛
⎜⎝−

(
x
(i)
p

)2

2

⎞
⎟⎠ exp

⎛
⎜⎝−

(
x
(j)
p

)2

2

⎞
⎟⎠ ∞∑

m,n=0

(
x
(i)
p

)m

√
m!

(
x
(j)
p

)n

√
n!

〈m|n〉

= exp

⎛
⎜⎝−

(
x
(i)
p

)2

+
(
x
(j)
p

)2

2

⎞
⎟⎠ ∞∑

n=0

(
x
(i)
p x

(j)
p

)n

n!

= exp

⎛
⎜⎝−

(
x
(i)
p

)2

+
(
x
(j)
p

)2

2

⎞
⎟⎠ exp

(
x(i)p x

(j)
p

)
= exp

⎛
⎜⎝−

(
x
(i)
p − x

(j)
p

)2

2

⎞
⎟⎠.

(3.4)

Hence, the inner product of the two data points in qRAM is the Gaus-
sian kernel〈

x(i)
∣∣∣x(j)

〉
=

2n−1∏
p=0

〈
x(i)p

∣∣∣x(j)p

〉

= exp

(
−
∥∥x(i) − x(j)

∥∥2

2

)
= K

(
x(i),x(j)

)
. (3.5)

Here, we take σ = 1 for simplicity (though σ can be incorporated by a
scaling factor during state encoding). Next, we exploit quantum par-
allelism in the auxiliary Hilbert space to label the state of the position
Hilbert space,

|ψ〉 = 1√
N

N−1∑
i=0

|i〉 ⊗
∣∣∣x(i)

〉
∈ H = Haux ⊗Hposition. (3.6)

In this case, the density matrix is

ρ̂ =
1

N

N−1∑
i,j=0

|i〉〈j| ⊗
∣∣∣x(i)

〉〈
x(j)

∣∣∣ . (3.7)
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Taking a partial trace of the position space yields

Trposition(ρ̂) =
1

N

N−1∑
i,j=0

〈
x(i)

∣∣∣x(j)
〉
|i〉〈j| = 1

N

N−1∑
i,j=0

K
(
x(i),x(j)

)
|i〉〈j| = K̂

N
,

(3.8)
and

Tr
(
K̂

)
=

N−1∑
i=0

K
(
x(i),x(i)

)
= N. (3.9)

Now, we have the kernel operator, which allows us to construct the

degree matrix D̂ =
N−1∑
i=0

Di |i〉〈i| where Di =
∑
j

Kij. Finally, from the

coherent state representation of classical data, the transition matrix

can be constructed as P̂ = D̂
−1
K̂ =

N−1∑
i,j=0

Pij |i〉〈j|, identical to (2.2).

However, since P̂ is not neccesarily Hermitian, we can not find its
eigenvalues and eigenvectors of P̂ directly from Quantum Phase Esti-
mation (QPE). However, this problem can be alleviated via the follow-
ing similarity transformation:

P̂ = D̂
−1
K̂ = D̂

−1/2
D̂

−1/2
K̂D̂

−1/2
D̂

1/2
= D̂

−1/2
ŜD̂

1/2
, (3.10)

where Ŝ ≡ D̂
−1/2

K̂D̂
−1/2

. Since K̂ is Hermitian, Ŝ is also Hermitian.
To achieve quantum computational speedup, we will adopt QPE to first
find eigenvalues and eigenvectors of Ŝ. Then, the eigenvalues and the
eigenvectors of Ŝ and P̂ are related as follows. Consider the eigenvalue
equation for P̂ :

P̂ |vj〉 = λj |vj〉 . (3.11)

Since P̂ can be rewritten as D̂
−1/2

ŜD̂
1/2

, we have

ŜD̂
1/2 |vj〉 = λjD̂

1/2 |vj〉 . (3.12)

Therefore, we can find the eigenvectors of P̂ with eigenvalue λj from
the eigenvectors of Ŝ via the mapping

|vj〉 = D̂
−1/2 |uj〉 , (3.13)

where |uj〉 is an eigenvector of Ŝ with eigenvalue λj.
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3.3 Quantum Algorithms to Find Eigenvalues and

Eigenvectors

We now have a Hermitian operator Ŝ, which we can then employ the
QPE to find the eigenvalues, see Appendix B. The result of QPE
applying to an input state |ψ0〉 =

∑
j

cj |uj〉 is

|0〉 |ψ0〉 =
∑
j

cj |0〉 |uj〉 QPE−−→ |ψ1〉 =
∑
j

cj

∣∣∣λ̃j〉 |uj〉 , (3.14)

where
∣∣∣λ̃j〉 is the estimated binary representation of the eigenvalue of

Ŝ. Now, we have the superposition of the eigenvectors of Ŝ with their
estimated eigenvalues. The eigenvectors of the transition matrix P̂ can
then be computed from (3.13). Now we can extract the eigenvalues
and the eigenvectors from the measurement operator, see the details
in Appendix B. Finally, the diffusion map of (2.4) can be readily con-
structed from the eigenvalues and the eigenvectors. We summarize the
quantum algorithm for Quantum Diffusion Map in the diagram of fig.
3.1 below.
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Figure 3.1: Comparison between classical and quantum diffusion map.

28



Chapter 4

Quantum Walk for Data Clustering

In the previous chapters, manifold learning is achieved via finding eigen-
values and eigenvectors of a dataset-associated transition matrix. This
chapter will explore the possibility to perform random walk on graph
(obeying rules from dataset-associated transition matrix) for manifold
learning, clustering in particular. The motivation here is to avoid the
computation of eigenvalues and eigenvectors, which even with a quan-
tum computational speedup of quantum diffusion map, requires at least
O(N 2) operations.

We will explore the usage of quantum walk for cluster identifications.
Motivated by the fact that the width of the distribution of a quantum
walk on a one-dimensional lattice grows as t instead of

√
t as in a

classical random walk [17], we investigate how we might implement
quantum walk on a graph for data clustering here. We focus on a class
of discrete-time coined quantum walk on a graph. A quantum state in
a coined quantum walk model has two components: the spatial Hilbert
space which keeps track of the state of the walker, and the coin Hilbert
space which stores the information about transition matrix to other
vertices in the next time evolution. In other words, the coin is more
like a dice with the number of faces equal to the number of vertices in
a graph of interest.

For a graph with N vertices, let |i〉 denote the spatial state i of a
quantum walker in an N -dimensional position Hilbert space HP and
|c〉 denote the coin state which lives in an N -dimensional coin Hilbert
space HC . A state of a coined-quantum walker on the ith vertex on a
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graph is a tensor product state:

|ψ〉 = |i〉 ⊗ |c〉 ≡ |i, c〉 . (4.1)

To develop time-evolution of a quantum walker on any vertex i, a com-
mon approach is to attach the weighted graph (2.2) by the correct
normalization of the coined state

|ψi〉 = |i〉 ⊗
∑
c∼i

√
Pci |c〉 ≡ |i〉 ⊗ |φi〉 , (4.2)

where the transition probability is obtained from (2.2). The coin state
attached to the vertex |i〉 tells which vertices the vertex i can transit
to in the next time-step, with the associated transition probabilities.

To perform one-step unitary time-evolution, one can apply two op-
erators in succession: the coin operator Ĉ and the shift operator Ŝ.
The coin operator is defined as

Ĉ =
∑
i∈X

|i〉〈i| ⊗
(
2 |φi〉〈φi| − Î

)
, (4.3)

where the operator on the coin Hilbert space is the Grover’s diffusion
operator, used ubiquitously in search algorithms,

Ĝ = 2
∑
i∈X

|φi〉〈φi| − Î. (4.4)

The shift operator swaps the vertices between the coin Hilbert space
and the position Hilbert space

Ŝ =
∑
i,j∈X

|j, i〉〈i, j| . (4.5)

Finally, the one-step unitary time-evolution operator is

Û = ŜĈ, (4.6)

which is a huge matrix of sizeN2×N 2. The quantum state of a quantum
walker at time t is then

|ψ(t)〉 = Û
t |ψ(0)〉 . (4.7)
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As a result, the probability of a quantum walker to be on a vertex i at
time t is

pt(i) =
∑
j∈X

| 〈i, j|ψ(t)〉 |2, (4.8)

which can be shown to satisfy the conservation of probability condition∑
i∈X

pt(i) = 1. (4.9)

4.1 Limiting Distribution of a Quantum Walk

One stark difference between classical random walk and quantum walk
is that the stationary state may not exist in quantum walk. Namely,
lim
t→∞ |ψ(t)〉 might not exist because

||ψ(t+ 1)〉 − |ψ(t)〉|2 =
∣∣∣Û t

(Û − Î) |ψ(0)〉
∣∣∣2

= 〈ψ(0)| (Û † − Î)Û
t†
Û

t
(Û − Î) |ψ(0)〉

= 2− 2Re
{〈

ψ(0)
∣∣∣Û ∣∣∣ψ(0)〉}, (4.10)

which is in general non-zero for most graph structures. Alternatively,
one should instead consider the time-average probability at each vertex
i

p̄T (i) =
1

T

T−1∑
t=0

pt(i), (4.11)

satisfying ∑
i∈X

p̄T (i) = 1. (4.12)

It turns out that such time-average on any vertex i converges to the
limiting distribution as T goes to infinity [17]. Namely,

π(i) = lim
T→∞

p̄T (i). (4.13)

Fig. 4.1 shows a generic probability on a vertex i as time evolves from
numerically simulating a 100-step quantum walk on a toy graph struc-
ture. Quantum interference leads to fluctuations in the time-evolved
probability; however, the time-average tends to converge to a stationary
value.
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Figure 4.1: Generic behavior of the probability of a quantum walker starting at a
vertex i to remain in the state i in the subsequent time steps. The figure shows large
fluctuations due to quantum interference in the time-evolved probability; however,
the time average tends to converge to a stationary value, verifying (4.13).

4.2 Data Clustering with Coined Quantum Walk

For the transition matrix that is (almost) a block diagonal matrix, we
can write

P =

⎛
⎜⎜⎜⎝
P 1 O(e−1/σ)

P 2
. . .

O(e−1/σ) P k

⎞
⎟⎟⎟⎠ . (4.14)

In the synthetic dataset shown in Fig. 4.2 consisting of 4 clusters in

Figure 4.2: A toy dataset consisting of 4 clusters (k = 4) on which we will run a
coined Quantum walk algorithm for clustering.

two-dimensional space (k = 4), we initialize the state of a quantum
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walker at
|ψ(0)〉 = |i〉 ⊗ |φi〉 , (4.15)

where |i〉 represents the vertex of a graph associated with the initial
data point, and |φ〉i is the superposition of the coin states |φ〉i =∑
c∼i

√
Pci |c〉 with the transition probability Pci computed from (2.2).

We then evolve the state according to (4.7); namely, |ψ(t)〉 = (ŜĈ)t |ψ(0)〉.
When we compute the time-average probability of every vertices, only
vertices that are in the same cluster with |i〉 will converge to a non-zero
stationary distribution, see Fig. 4.3.

Figure 4.3: The time-average probability of a quantum walker starting at vertex 0
on a weighted graph defined by the synthetic dataset of Fig. 4.2 (Left) at t = 1 and
(Right) at t = 10. Only vertices that lie in the same cluster as the initial vertex gain
a non-zero time-average probabilty!

After we identify all the vertices that lie the same cluster (those with
non-zero time-average probability) as the initial vertex, we can reini-
tialize the coined quantum walk state on other vertices that have not
been identified with a cluster. By repeating this procedure until every
vertices is identified with a cluster, the clustering scheme from coined
quantum walk is complete. Note that reinitialization is required to be
done only k times, where k is the number of clusters in a dataset. Fig.
4.4 shows a successful data clustering from the coined quantum walk
scheme described above. There, only 4 reinitializations are required (4
clusters).
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Figure 4.4: Successful data clustering of the dataset in Fig. 4.2 using a coined quan-
tum walk scheme with 4 reinitializations. Different colors identify different clusters.
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Chapter 5

Conclusion

In this thesis, we first review classical diffusion map, an unsupervised
learning algorithm for non-linear dimensionality reduction and manifold
learning. The connection to statistical physics of random walk and heat
diffusion on graph is discussed. We also explain the intuition why ran-
dom walk can lead to the identification of low-dimensional embedding
of data structure as well as to automatically discovering data clusters.
The method does not suffer from the curse of dimensionality as opposed
to many unsupervised learning algorithms. Precise construction of dif-
fusion map via projection onto eigensubspaces with large eigenvalues of
the transition matrix on dataset-associated graph is discussed. We im-
plement classical diffusion map on some example dataset, revealing the
power to discover lower-dimensional data embeddings and to perform
high-dimensional data clustering.

The second part of this thesis explain our efforts to construct quan-
tum algorithm for manifold learning. We begin by harnessing the power
of quantum computational speedup to bring classical diffusion map
into quantum realms. Using the combination of coherent state clas-
sical data encoding scheme, construction of kernel operator from co-
herent states, and quantum computational speed up for finding eigen-
values/eigenvectors from Quantum Phase Estimation subroutine, we
propose Quantum Diffusion Map, which hopefully will become useful
as a quantum-enhanced non-linear dimensionality reduction and mani-
fold learning algorithm. We then explore an algorithm based on coined
quantum walk that may help accelerate data clustering. Numerical
simulations of quantum walk on a toy dataset highlights the success of
our proposal for automatic identifications of data clusters.
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Appendix A

Coherent States

In the setting of a quantum simple harmonic oscillator, the state min-
imizing the uncertainty of a wave packet is the ground state |0〉, which
saisfies â |0〉 = 0 where â is the annihilation (lowering) operator. If |α〉
is an eigenstate of the annihilation operator such that

â |α〉 = α |α〉 , (A.1)

such state |α〉 also saturates the (Heisenberg) uncertainty bound and
is called a coherent state. We now write a coherent state as a linear
combination of harmonic oscillator eigenstates {|n〉} where â†â |n〉 =
n |n〉 as

|α〉 =
∞∑
n=0

〈n|α〉 |n〉 . (A.2)

Since

|n〉 =
(
â†)n
√
n!

|0〉 , (A.3)

we have

|α〉 =
∞∑
n=0

〈
0

∣∣∣∣(â)
n

√
n!

∣∣∣∣α
〉
|n〉 =

∞∑
n=0

αn

√
n!

〈0|α〉 |n〉 . (A.4)

Imposing the normalization condition 〈α|α〉 = 1, then

1 =
∞∑
n=0

|α|2n
n!

|〈0|α〉|2 = e|α|
2| 〈0|α〉 |2 → 〈0|α〉 = e−|α|2/2. (A.5)
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So, the coherent state in the basis of eigenstates of quantum simple
harmonic osciallator is [16]

|α〉 = e−|α|2/2
∞∑
n=0

αn

√
n!

|n〉 . (A.6)

In this thesis, we use coherent states to efficiently compress the classical
data into qRAM according to Eqns. (3.2) - (3.3). It also facilitates the
construction of a Gaussian kernel, see Section 3.2.
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Appendix B

Quantum Phase Estimation (QPE)

QPE is designed to estimate the eigenvalues, with a quantum compu-
tational speedup, of a unitary operator Û :

Û |uj〉 = e2πiθj |uj〉 , (B.1)

where θj ∈ [0, 1]; or more precisely, to obtain an n-bit approximation

of θj ≈ θ̃j =
n∑

m=1

θj,m2
−m, where θj,m ∈ {0, 1}. We may estimate the

eigenvalue of a Hermitian matrix Ŝ via the unitary time evolution Û =

e2πiŜ as follows. We first combine O(t2ε−1) copies of Ŝ to construct

Û = eiŜt with the accuracy of O(ε) [2]. The result of QPE applying to

an input state |ψ0〉 =
∑
j

cj |uj〉 is

|0〉 |ψ0〉 =
∑
j

cj |0〉 |uj〉 QPE−−→ |ψ1〉 =
∑
j

cj

∣∣∣λ̃j〉 |uj〉 , (B.2)

where
∣∣∣λ̃j〉 is the estimated binary representation of the eigenvalue of

Ŝ. Now, we have the superposition of the eigenvectors of Ŝ with their
estimated eigenvalues. The eigenvectors of the transition matrix P̂ can
then be computed from (3.13).

We now explain the well-known QPE algorithm, which consists of
three steps: create superposition, apply controlled-unitary operator,
and apply the Quantum Fourier Transform. The algorithm’s input
consists of two registers: the first register has n qubits to store the
estimated eigenvalue of the second register which is the exact eigen-
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Figure B.1: The quantum circuit of QPE, taken from [19].

vector. First, we initialize the state at |0〉 |uj〉 where the second reg-
ister is one of the exact eigenvectors of Û . Recalling that applying

the Hadamard gate ÛH =
1

2

(
1 1
1 −1

)
to the computational basis |0〉

yields ÛH |0〉 = (|0〉 + |1〉)/
√
2. Hence, applying the Hadamard gates

to the first register of the initial state creates the superposition state
1

2n/2
(|0〉+ |1〉)⊗n |uj〉.

Next, we estimate the eigenvalue of the exact eigenstate in the sec-
ond register by using the controlled-unitary operator. Recall that the
controlled-unitary operator applies the unitary operator to the second
register only when the first register (controlled-qubit) is in the compu-
tational basis |1〉. From (B.1), we have

Û
2k |uj〉 = Û

2k−1
Û |uj〉 = Û

2k−1
e2πiθj |uj〉 = · · · = e2πi2

kθj |uj〉 . (B.3)

We will apply the controlled-unitary operator Û
2k

to the (n−k)th qubit
in the first register. The result is the state

1

2n/2

n⊗
m=1

(|0〉+ e2πi2
n−mθj |1〉) |uj〉 = 1

2n/2

2n−1∑
k=0

e2πikθj |k〉 |uj〉 , (B.4)

where k is a base-2 number.
The last step of QPE algorithm is to apply the inverse Quantum
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Fourier Transform (QFT†) to the first register:

QFT† 1

2n/2

2n−1∑
k=0

e2πikθj |k〉 = 1

2n

2n−1∑
x=0

2n−1∑
k=0

e2πikθje−2πikx/2n |x〉 (B.5)

=
1

2n

2n−1∑
x=0

2n−1∑
k=0

e−2πik(x−2nθj)/2
n |x〉 . (B.6)

Note that only x = 2nθj will have a non-zero amplitude; i.e., inverse
QFT collapse the state of the first register to |2nθj〉. Therefore, the final
output state of QPE is |2nθj〉 |uj〉. Since θj ≈ θ̃j = {θj,1θj,2 · · · θj,n} =
n∑

m=1

θj,m2
−m in the binary representation, x in the binary representation

is thus θ̃. If we initialize the second register as a superposition of the
eigenvectors {|uj〉}, |ψ0〉, the result of QPE is (B.2). Next step, we
will measure the first register of the algorithm. We will have the binary
representation of an eigenvalue λj with the probability to get this eigen-
value |cj|2, the second register will be an eigenvector |uj〉 corresponding
to the eigenvalue λj which is coming from the first register.

B.1 An Alternative Method for Finding Eigenval-

ues and Eigenvectors

Ref. [1] proposed applying QPE algorithm to the density matrix ρ̂

in (3.7), which results in the eigenvalues and the eigenvectors of e−iρ̂t.
To see this, consider the eigenvalue equation of a Hermitian opera-
tor Â with Â |uj〉 = λj |uj〉. The spectral decomposition of Â reads

Â =
∑
j

λj |uj〉〈uj|. If we use the state Â as the initial state with an

eigenvalues register, i.e., Â0 =
∑
j

λj |0〉〈0| ⊗ |uj〉〈uj|, after QPE, we

will obtain
∑
j

λj

∣∣∣λ̃j〉〈λ̃j∣∣∣⊗ |uj〉〈uj| as a result.
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