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ปัจจุบันยังคงไม่มีคüามชัดเจนเกี่ยüกับÿถานะขĂงÿÿารภายในใจกลางดาüนิüตรĂนที่มีมüลมาก มี

คüามเป็นไปได้ü่าภายในแกนกลางขĂงดาüนิüตรĂนที่มีมüลมากนั้น คüามĀนาแน่นและคüามดันภายในดาü

มีค่ามĀาýาลจนกระทั่งÿÿารภายในดาüĂยู่ ในÿถานะไม่กักขังเช่นÿถานะคüาร์ก-กลูĂĂนพลาÿมา ไม่นาน

มานี้ ผลการüิเคราะĀ์จากงานüิจัย [1] ที่ทำการพิจารณาคำนüณการรบกüนทางทฤþฎีร่üมกับการใช้ข้Ăมูล

จากการÿังเกต [2, 3] แÿดงใĀ้เĀ็นü่ามีคüามเป็นไปได้ที่ÿÿารซึ่งมีคüาร์กเป็นĂงค์ประกĂบจะĂยู่ในใจกลาง

ขĂงดาüนิüตรĂนที่มีมüลมากกü่า 2.0 M! Ăย่างไรก็ตาม ÿถานะคüาร์ก-กลูĂĂนพลาÿมามีĂยู่ได้ที่ĂุณĀภูมิ

ÿูงมากๆเท่านั้น Āากเทียบกันแล้ü ĂุณĀภูมิขĂงดาüนิüตรĂนจะมีค่าต่ำกü่ามาก และเป็นไปได้ü่าÿถานะใน

ใจกลางขĂงดาüนิüตรĂนที่มีมüลมากนั้นไม่ได้Ăยู่ในÿถานะขĂงคüาร์ก-กลูĂĂนพลาÿมา แต่จะĂยู่ในรูปขĂ

งมัลติคüาร์กชึ่งไม่ถูกกักขัง และมีการเÿียÿมมารตรไครัล ปัญĀาÿำคัญประการĀนึ่งคืĂเราไม่ÿามารถพิจารณา

ÿถานะขĂงมัลติคüาร์กโดยการรบกüนเล็กๆได้ จึงทำใĀ้การบรรยายเชิงปริมาณขĂงÿถานะมัลติคüาร์ผ่าน

การคำนüณทางทฤþฏีÿนามคüĂนตัมเชิงรงค์โดยüิธีปกติพบกับปัญĀามากมาย และไม่ÿามารถใĀ้ค่าที่ เชื่Ă

ถืĂได้ ในüิทยานิพนธ์นี้ เราจะพิจารณาใช้ทฤþฏีÿนามคüĂนตัมเชิงรงค์ตามĀลักการขĂงโăโลกราฟิกเพื่Ă

ทำการคำนüณและบรรยายÿถานะมัลติคüาร์กในเชิงปริมาณ [4, 5] ผ่านแบบจำลĂงขĂงซาไก-ซูกิโมโต จาก

นั้นเราจะพิจารณาใช้ÿมการÿถานะขĂงมัลติคüาร์กในการเชื่ĂมขĂบเขตขĂงÿมการÿถานะที่รู้กันเป็นĂย่างดี

ระĀü่างÿมการÿถานะคüาร์ก-กลูĂĂนĂิÿระที่คüามĀนาแน่นÿูงมากๆ และ ÿถานะนิüเคลียร์จากทฤþฎีÿนาม

ยังผลแบบไครัลที่คüามĀนาแน่นต่ำ ลักþณะÿมการÿถานะขĂงมัลติคüาร์กที่ได้จากการคำนüณจะมีคüามแข็ง

เนื่ĂงจากทนการĂัดได้มาก แต่จะĂ่Ăนลงที่คüามĀนาแน่นÿูงๆ เราพบü่าเมื่ĂคüามดันและคüามĀนาแน่นขĂง

ÿถานะมีค่าÿูงกü่าค่าที่จุดเปลี่ยนเฟÿ ÿÿารมัลติคüาร์กจะมีคüามเÿถียรในเชิงĂุณĀพลýาÿตร์มากกü่าÿÿาร

นิüเคลียร์ จากการคำนüณดาüนิüตรĂนที่มีมüลมากและมีแกนกลางดาüเป็นมัลติคüาร์กจะมีมüลขĂงดาüใน

ช่üง 14.3− 11.8 (14.0− 11.1) กิโลเมตร ÿำĀรับค่า εs = 26 (28) GeV fm−3 ตามลำดับ จากการýึกþาผล

ขĂงÿัดÿ่üนระĀü่างโปรตĂนต่ĂแบริĂĂนในÿมการÿถานะขĂงแบริĂĂนพบü่าเมื่Ăÿัดÿ่üนโปรตĂนมีค่ามากขึ้น

จะทำใĀ้มีการลดลงรัýมีขĂงดาüนิüตรĂนไม่เกิน 1 กิโลเมตร นĂกจากนี้เรายังคำนüนค่าตัüเลขขĂงเลิฟ และค่า

การผิดรูปไทดัลแบบไร้มิติ พบü่าค่าที่ได้Ăยู่ในช่üงที่เป็นไปได้เมื่Ăพิจารณาในเชิงกายภาพภายใต้ข้Ăจำกัดจาก

การÿังเกตการณ์ ท้ายที่ÿุดเราได้คำนüณĀาคüามถี่ขĂงการÿั่นในแนüรัýมีขĂงแกนดาüที่เป็นมัลติคüาร์กตั้งแต่

โĀมดที่ 0 ถึง 5 ตลĂดช่üงมüลที่เป็นไปได้ พบü่าโĀมดพื้นฐานมีคüามถี่ประมาณ 2.5 กิโลเăิรตซ์ เมื่ĂกำĀนด

ใĀ้ค่าÿเกลคüามĀนาแน่นขĂงพลังงาน ตามแบบจำลĂงเชิงโăโลกราฟิกขĂงซาไก-ซูกิโมโต εs = 23.2037 GeV

fm−3 โดยคüามถี่นี้จะมีค่าแปรผันกับ √
εs
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## 6273060623 : MAJOR PHYSICS
KEYWORDS : MASSIVE NEUTRON STAR, HOLOGRAPHIC QCD, MULTIQUARK CORE

SITTHICHAI PINKANJANAROD : A STUDY OF MASSIVE NEUTRON STARS
WITH HOLOGRAPHIC MULTIQUARK CORES . ADVISOR : ASSOC. PROF.
PIYABUT BURIKHAM, Ph.D. 108 pp.

Up to now, the state of matter inside a massive neutron star (NS) is still unclear. In the
core of the massive NS, density and pressure become large until the matter inside could turn into
deconfined matter e.g. quark-gluon plasma (QGP). Recently, results from a model-independent
analysis [1] from a combination of perturbative theoretical calculations with observational data
[2, 3] shows that quark matter could exist in the cores of massive NS with masses above 2.0 M!.
However, the QGP exists at a very high temperature. Compared to the relatively low tempera-
ture of the NS, the exotic quark matter might not be the free QGP but instead, the deconfined
and chiral symmetry broken bound state called “multiquark’’. Due to the non-perturbative na-
ture of the multiquark state, the usual description of the multiquark state as based on QCD
faces many difficulties and becomes unreliable. In this thesis, we use a holographic QCD ap-
proach to describe the multiquark [4, 5] based on the Sakai-Sugimoto (SS) model and implement
the equation of states (EoS) of multiquark matter to interpolate between the two known limits:
the pQCD EoS at high densities, and the nuclear CET EoS at low densities. The multiquark
EoS is relatively stiff at low densities and becomes softer at high densities. Thermodynamically,
we found that the multiquark phase is more preferred over the extended CET nuclear matter
above the transition points. From our study, the massive NS with a holographic multiquark
core could have masses in the range between 1.96 − 2.23 (1.64 − 2.10)M! and radii between
14.3 − 11.8 (14.0 − 11.1) km for εs = 26 (28) GeV fm−3 respectively. Effects of proton-baryon
fractions are also studied for a certain type of baryonic EoS. We found that larger proton frac-
tions could reduce the radius of the NS with the multiquark core by less than a kilometre.
Additionally, we calculate the tidal Love number and dimensionless deformation parameter, k2
and Λ, and they are found to be within the limit of the physically viable range under the present
constraints. Finally, we calculate radial pulsation frequencies of the multiquark core for n = 0−5

modes for the entire mass range. As a result, for Mcore # 2M!, the fundamental-mode frequency
is around 2.5 kHz given that the energy density scale of the holographic SS model εs = 23.2037

GeV fm−3, this frequency is proportional to √
εs.
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CHAPTER I

Introduction

Generally, the stars collapse under extreme gravitation as thermonuclear fuel depletes at the ul-
timate fate. However, the quantum degeneracy pressure of fermions goes against the collapses.
According to Refs. [6, 7], the degeneracy pressure caused by neutrons could withstand gravi-
tational collapses of any stars with masses below 0.7M!. According to the Ref. [8], those less
massive than 1.4 solar masses would remain dwarf stars forever. For the stars with M > 1.4M!,
additional repulsive nuclear force is required to support the gravitational collapses. Those with
M >> 1.4M! will undergo a late state of thermonuclear fusion and eventually explode violently
called supernovae. After the explosions, their remnants could turn into neutron stars or black
holes, depending on the remaining masses.

From various observations, the minimum mass of neutron star is around 1.1M! while the
upper mass limit of a neutron star, sometimes called the Tolman–Oppenheimer–Volkoff limit,
is around 2.1M!, in accordance with [9, 10]. Nevertheless, a recent estimation shows that the
upper limit is at 2.16M!, as reported by [11]. According to the discovery of a pulsar called “PSR
J0740+6620” [12], the upper mass limit of neutron stars is around 2.16M!. It is likely that below
the Chandrasekhar limit or 1.39M!, any compact stars are generically white dwarfs, while those
with a mass between 1.4M! and 2.16M! are presumably neutron stars. However, there is an
observational mass range overlap between low-mass neutron stars and high-mass white dwarfs
in the order of around a few tenths of a solar mass. Beyond 2.16M! gravitational collapse of the
mass of the stellar remnant may overcome the strong force repulsion and neutron degeneracy
pressure and eventually turn the remnants into a black hole. However, the lightest observed
mass of a stellar black hole until now is about 5M!. Those between 2.16M! and 5M! may be
hypothetical intermediate-mass stars, e.g. quark stars and electroweak stars. Nevertheless, none
of them has been confirmed.

Recently, there was a model-independent analysis to study the probability of quark matter
in the NS proposed by the Ref. [1]. This work uses a method called “new sound-of-speed
interpolation” that the sound speed squared c2s, depending on the baryon chemical potential µ,
was used to determine other thermodynamic functions especially the pressure P (µ) and energy
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density ρ(µ) which represent the model-independent equation of state(EoS). Then, the new
sound-of-speed method was used repeatedly to generate around 570,000 individual EoSs ranging
from soft to hard. Additionally, this work imposes the following two astrophysical constraints on
the EoS: (a) the requirement of supporting a 1.97 M! NS [2, 3] and (b) the tidal deformability
Λ for a 1.4 M! star lie within observational range [13, 14]. Roughly 160,000 of these fulfil the
astrophysical constraints. This research discloses that the interpolation between low density the
Chiral Effective Field Theory (CET) [15] and high-density perturbative QCD [16, 17] (pQCD)
could be described simply by two effective power-law equations of states (EoS). The empirical
EoS yields the adiabatic index and sound speed indicating that the NS has a quark core.

Fundamentally, the behaviour of free quarks and gluons at very high energy could be
described by pQCD. Quarks interact with each other via exchanging colour charges. At low
temperatures, quarks exist inside hadrons, e.g. neutrons and protons, known as stable bound
states of quarks since they are all colourless. In other words, this means that there are no ex-
changing colour charges between stable bound states. Instead, the effective interactions between
neutrons and protons could be described by CET where nucleons interact with each other via
exchanging π mesons. Note that the CET resembles the π mesons theory at low energies. How-
ever, at low temperature and high density, the bound states of quarks could become deconfined,
since one quark might drip from one to another, while they are still bounded by gravity inside
the star. The deconfined bound states of quarks at low temperature and high density are later
called the multiquark states. The multiquarks interact with each other through the remaining
Coulomb-like strong interaction mediated by unconfined gluons and effectively via mesons. For
decades, multiquark candidates like tetraquark and pentaquark have been gathered from several
observations; see, for example, Ref. [18] for the most recent report. Typically, an abundance of
multiquarks could be found at the cores of compact stars, where deconfined quarks are squeezed
firmly together.

At low temperatures and moderately high densities, multiquarks interact strongly with
each other. Therefore, the behaviour of the multiquark could not be described by the per-
turbative calculation as being used in pQCD. We need non-pQCD approaches to describe the
multiquarks. However, there are many issues when using the non-pQCD approaches e.g. the
increasing computational difficulty and the sign problem of lattice QCD approach as the baryon
chemical potential increases, or MIT bag as a model for analysing the behaviour of deconfined
quarks and gluons in dense stars has a reliability concern. Therefore, using the non-pQCD
approaches derived from the fundamental QCD is still problematic.

Alternatively, the AdS/CFT correspondence [19, 20, 21] is a supplementary and power-
ful tool that could be used for investigating strongly-coupled gauge theory by considering the
weakly gravity theory. Based on the gauge/gravity duality, the two theories specified in separate
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dimensions are conjectured to be equivalent under a strong-weak duality, which is important
to describe highly coupled QCD. Higher-dimensional configurations consisting of open strings
and D-branes in a given background could be used to represent mesons and baryons (see e.g.
Refs. [22, 23, 24] for earlier works and Ref. [25] for more recent development). According to
Ref. [4], the holographic multiquark (MQ) phase in the deconfined background with broken chi-
ral symmetry based on the Sakai-Sugimoto [26, 27, 28, 29] is more thermodynamically preferred
over the QGP phase at low to moderate temperatures up to the QGP phase transition around
trillion Kelvins. The multiquark phase EoS was calculated and applied to the hypothetical mul-
tiquark star and NS with the multiquark core in Ref. [5]. According to preliminary calculations,
NS with a multiquark core mass of 3M! could exist.

With the possibility of quark matter cores in massive NS above 2M! from the empirical
analysis, it’s worth looking at how the holographic multiquark EoS fits into the observational
limits. Aside from the mass M and radius R of the star, the compactness of the star, as described
by a ratio of M/R, is also important to determine the exact EoS of the matter inside the NS as
well as other probable extreme compact objects like quark stars. Tidal deformability of the star
parametrized by Love number k2 [30, 31, 32, 33] and the dimensionless parameter Λ described
in Chapter 6 are also useful probe the NS’s interior. Typically, the tidal deformability and other
parameters such as the moment of inertia of the star and sound speed in quark and nuclear
matter inside the star, are also estimated holographically in Refs. [34, 35, 36, 37].

In this research, we re-examine the holographic model developed in Ref. [5] and show how
well it can interpolate between the low and high-density EoS by matching the EoS of multiquark
matter with the low and high-density EoS. We further demonstrate that the masses of NSs with
multiquark cores are consistent with the existing observations, permitting NS M # 2M! [2, 3].
We demonstrate that the mass of any NS with a multiquark core could be as high as 2.2−2.3M!

depending on the colour states of multiquarks, which is still too light to be a candidate for the
object recently discovered by LIGO/Virgo [38], that requires mass about 2.50− 2.67M!. Then,
using Chiral Effective Field Theory (CET) EoS [15] and FYSS [39, 40, 41] for the nuclear crust,
we determine the Love number k2 and Λ of the NS with the multiquark core. In addition, the
multiquark star (MQS) deformation parameters will be calculated in comparison.

This dissertation is organized as the following. A review of standard nuclear matter the-
ory at finite densities from ultra-low densities to intermediate densities will be in Chapter 2. The
EoS of multiquark nuclear matter is presented in Chapter 3, which discusses the holographic
model investigated in Ref. [5]. The EoS from CET and piecewise polytrope utilised in interpo-
lation, as well as the EoS of the multiquark core in the high-density region, are summarised in
Chapter 4. This chapter also covers the thermodynamics of a phase transition between baryonic
matter and multiquark matter. A revision of Tolman–Oppenheimer–Volkoff equations required
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for stellar modelling, mass-radius diagram, mass-central density relation as well as thermody-
namic properties of NS with multiquark core are explored in Chapter 5. The tidal deformation
of the NS with multiquark core and MQS are calculated in Chapter 6. Then, the adiabatic index
and sound speed of the multiquark core are explored, as well as the radial pulsations of the stars
are discussed in Chapter 7. Finally, Chapter 8 concludes this dissertation.



CHAPTER II

Nuclear Matter at Finite
Densities

In this chapter, we consider a review of nuclear matter in equilibrium at zero temperature
and finite densities from very low densities up to the order of a nuclear saturation density ρs,
following Refs. [42, 43, 44, 45]. At very low densities, matter in its ground state is mainly
composed of 56Fe nuclei, arranged into a lattice to minimize their Coulomb interaction energy.
As density increases, the electron chemical potential (Fermi energy including its rest mass),
µe also increases. The nuclear matter in this range could be described by EoS from Ref. [42].
Beyond ρ ∼ 104 g cm−3, electrons become free. Additionally, above ∼ 107 g cm−3, electrons
become fully relativistic. For electron chemical potential µe # 1 MeV or density ρ # 8 × 106

g cm−3, 56Fe nuclei are no longer in their lowest energy state; however, the energy can be
lowered by having nuclei capture energetic electrons then losing energy via neutrino emission,
and become more neutron-rich. Beyond this point, the lowest energy state of nuclear matter is
a lattice of 62Ni nuclei. With increasing density, the lattice in equilibrium becomes progressively
richer in neutrons. The characteristic of nuclear matter in this range could be described by
the standard nuclear calculations, according to Ref. [43]. At density ρ # 4.3 × 1011 g cm−3,
neutrons start dripping out of the nuclei and the continuum neutrons states become dominated.
We used the description of nuclear matter in this range from Ref. [44]. Above ρ ∼ 2 × 1014 g
cm−3, boundary of each nuclei are no longer exist. Nuclear matter becomes a uniform mixture
of primary neutrons, protons, and electrons. With densities increasing further, we consider the
behaviour of nuclear matter described by the chiral effective field theory or CET [45].

2.1 Nuclear Matter at Ultra-Low Densities

A revision in this section follows Ref. [43]. From densities between 104 and 4.3 × 1011 g cm−3,
free neutrons as well as free electrons begin to appear and soon become relativistic. The nuclei
are balanced against beta decay by the occupied electron Fermi sea. EoS of nuclear matter in
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this density range could be determined from the configuration of the nuclei in beta-equilibrium.
The major contributions to the energy in this regime are nuclear energy, free electron energy,
and negative lattice energy. Detailed calculations were given by Ref. [46].

While lattice only contributes to a small part (∼ Z2/3e2) of total pressure, it has a
significant role to determine the equilibrium of the nucleus at higher densities. The equilibrium
is determined by a competition between the nuclear surface energy, which favours nuclei with a
large number of nucleons, A, and the Coulomb energy that favours small-A nuclei. The Coulomb
energy is the sum of the positive nuclear Coulomb self-energy and the negative lattice Coulomb
energy.

Above 4.3× 1011 g cm−3, the EoS of nuclear matter in the free-neutron regime had been
proposed by Ref. [44] in 1971. The main difficulty in this range is to determine the masses
of nuclei. Nuclei in this regime are very neutron-rich and immersed in a sea of free neutrons
exerting pressure on the surface of nuclei. In this regime, the lattice Coulomb energy becomes
extremely important to determine nuclear size since the lattice Coulomb energy is almost in the
same order of magnitude and of opposite sign to the nuclear Coulomb self-energy. As the density
increases, there will be more and more nuclei filling up the space. Eventually, at the density
2.4×1014 g cm−3, the nuclei begin to touch each other. Then there would be a first-order phase
transition where density suddenly changes to about 3× 1014 g cm−3.

The standard techniques for nuclear-matter theory can be applied to determine EoS in
the regime with some confidence up to about 5 × 1014 g cm−3. Beyond this density, EoS is
very uncertain since there is little information and knowledge of interactions between exotic
hadrons e.g. various hyperons. As density is sufficiently high, the conventional techniques in
nuclear-matter theory require modification.

2.1.1 EoS for Nuclear Matter at Ultra-Low Densities

Consider nuclei present at any density below the neutron drip. Assume that the nuclear matter
is composed of nuclei with nucleon number A and relative charge Z with a number of nuclei per
unit volume nN . The total energy per unit volume for the system of nuclei at densities below
the neutron drip is given by

εtot(A,Z, nN ) = nN (Wn +WL) + εe(ne) (2.1)

where Wn(A,Z) is the total energy of an isolated nucleus with contribution of nucleons rest mass
but without electron energy. The total electron energy per unit volume is denoted by εe(ne),
where the mean electron’s number density is

ne = ZnN . (2.2)
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The lattice energy per nucleon WL for a body-centred cubic (bcc) lattice described by Ref. [47]
is lowered for a specified density of nuclei with charge Z, written as

WL = −1.819620Z2e2/a (2.3)

where a is the lattice constant written as a function of nN is given by

a3 = 2/nN . (2.4)

Beyond 104 g cm−3, electrons could be considered to be free so that

εe =
1

π2

∫ ke

0
dkk2(k2 +m2

e)
1/2

=
m4

e

8π2

[
(2t2 + 1)t(t2 + 1)1/2 − log(t+ (t2 + 1)1/2)

]
(2.5)

where ke is the electron Fermi wavenumber and t = ke/me. Note that all equations from here
on will be written in Planck units. For ultra-relativistic electrons, t ( 1. Therefore,

εe =
3

4
nemet. (2.6)

The values of A and Z for nuclei in equilibrium at any density below neutron drip are those
minimizing εtot at fixed baryon’s number density nB . The number density of nuclei and electrons
are given in terms of nB by

nN = nB/A, ne = nBZ/A. (2.7)

Here we have the rest masses of electrons subtracted out of the nuclear energies, but not
the atomic-electron binding energy. The reason for not to exclude the atomic-electron binding
energy is that the electron density distribution in the solid is uniform to the first approximation.
Consequently, the interaction energy is included in the lattice energy WL. However, due to
electron-screening effects, there are slight deviations of electron distribution from being uniform,
that produce an energy per nucleus [48]

Wscreening = −0.2535Z7/3µee
4 (2.8)

where the electron Fermi energy including the rest mass is given by

µe =
∂εe
∂ne

. (2.9)

Comparing to the electron Fermi energy excluding the rest masses, of an insulated atom, is
given, in the Thomas-Fermi approximation, by

Watom = −0.766Z7/3mee
4. (2.10)

We could make an error with the same order of magnitude by not subtracting the electronic
contribution out of the binding energy as the Wscreening is neglected in εtot
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BE/A ρmax µe
∆ρ
ρ

Nucleus (MeV) Z/A (g cm−3) (MeV) (%)
56Fe 8.7905 0.4643 8.1× 106 0.95 2.9
62Ni 8.7947 0.4516 2.7× 108 2.6 3.1
64Ni 8.7777 0.4375 1.2× 109 4.2 7.9
84Se 8.6797 0.4048 8.2× 109 7.7 3.5
82Ge 8.5964 0.3902 2.2× 1010 10.6 3.8
80Zn 8.4675 0.3750 4.8× 1010 13.6 4.1
78Ni 8.2873 0.3590 1.6× 1011 20.0 4.6
76Fe 8.9967 0.3421 1.8× 1011 20.2 2.2

124Mo 8.8577 0.3387 1.9× 1011 20.5 3.1
122Zr 8.6705 0.3279 2.7× 1011 22.9 3.3
120Sr 8.4522 0.3166 3.7× 1011 25.2 3.5
118Kr 8.7202 0.3051 4.3× 1011 26.2 · · ·

Table 2.1: Nuclear data for equilibrium nuclei below neutron drip: obtained from Ref. [43]

As the pressure, P increases continuously with increasing depth until the density ρ reaches
the neutron drip, there would be a first-order transition where the density undergoes sudden
change resulting in abrupt density discontinuity. Note the pressure before the neutron drip is due
to the electron kinetic energy to the first approximation. Therefore, the electron number density
is required to be continuous across each transition. However, the number density of baryons
is given by neA/Z. Therefore, across the transition from nucleus (A,Z) to nucleus (A′, Z ′), a
change in baryon number density is given by

n′
B − nB ≈ ne

(
A′

Z ′ −
A

Z

)
. (2.11)

The fractional change in the density, ρ = εtot is approximately given by

∆ρ

ρ
≈ ∆nB

nB
≈ Z/A

Z ′/A′ − 1. (2.12)

From the Table 2.1, there is a sudden change in density associated with each transition e.g. in
the first transition from 56Fe to 62Ni, density increases by 2.9 %. Due to these discontinuities,
it is essential to make a plot of P versus 1/nB to determine which transition takes place. It is
noted from Ref. [46] that the quantity to be minimized at the fixed P is the baryon chemical
potential

µB =
εtot + P

nB
, (2.13)

where the pressure could be determined from

P = n2
B
∂(εtot/nB)

∂nB

∣∣∣∣
Z,A

. (2.14)
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Using Eq. (2.1) and Eq. (2.7), the pressure becomes

P = Pe +
1

3
WLnN (2.15)

where first term is the electronic pressure, given by

Pe = ne
∂εe
∂ne

− εe, (2.16)

whereas the second term is the negative pressure of the lattice. Then,

µB = (WN +
4

3
WL + Zµe)/A (2.17)

Note that µB is continuous across a transition. To minimize µB , it is required that P , A, and
Z solves Eq. (2.16) for the electronic number density nN = ne/Z. By using Eq. (2.17), ne and
µB could be evaluated with the tabulated value of WN (A,Z) given by

WN = mn(A− Z) +meZ − bA (2.18)

where b ≡ BE/A is binding energy BE per nucleon.

Table 2.1 provides information about the binding energies, with maximum density ρmax,
and electron chemical potential at which they occur. The fractional mass density ∆ρ

ρ increases
notably across the transition to the next nuclide while the ratio Z/A decreases with the increasing
density.

Given that A and Z minimize

εtot
nB

=
WN +WL

A
+
εe(nBZ/A)

nB
≥ 0, (2.19)

at fixed nB , This implies that, for ∆A * A and ∆Z * Z

∆

(
WN +WL

A

)
+

(
∆Z

A
− Z

A2
∆A

)
µe. (2.20)

The lattice energy WL is directly proportional to Z2/A1/3, at fixed nB . Therefore,

∆WL = WL

(
2∆Z

Z
− ∆A

3A

)
. (2.21)

Combining Eq. (2.17) and Eq. (2.21) together, we obtain

∆WN ≥ µB∆A−
(
µe +

2WL

Z

)
∆Z. (2.22)

With ∆Z = 0, the change in the lattice Coulomb energy due to ∆A is

∆AWN ≥ µB∆A, (2.23)

while for ∆A = 0,
∆ZWN ≥ −

(
µe +

2WL

Z

)
∆Z. (2.24)
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The condition is for beta-equilibrium of the nuclei analogous to the usual beta-stability criterion
for isolated nuclei:

∆ZWL ≥ −me∆Z. (2.25)

The amount of baryons in the system increases by A as the density rises before free neutrons
emerge. This could be accomplished by introducing a nucleus (A,Z) and Z electrons into the
system, which demands such energy.

(
∂εtot
∂nN

)

ne=ZnN

= µBA, (2.26)

or equivalently by adding A neutrons in continuum states, which raises the energy per particle
by (mn + εn,0)A where εn,0 is the lowest energy for a neutron in continuum state in the lattice.
The condition before neutron starts dripping can be expressed as

µB < mn + εn,0. (2.27)

Neutron drip starts when the chemical potential µB reaches mn + εn,0. After that, the free
neutrons start becoming populated. Because of the interaction of a free neutron with the nuclei,
the lowest energy per neutron in the lattice εn,0 deviates somewhat from zero. It can be estimated
by considering the average potential of a slow neutron passing through a nucleus like 118Kr to
be attractive within the order of a few tens of MeV. Because neutron drip occupy only about
ρ/(3× 1014 g cm−3) ∼ 10−3 of space, the average neutron potential is ∼ −10−2 MeV ≈ εn,0. It
was found in Ref. [43] that neutron drip starts at ρ # 4.3× 1011 g cm−3, at the point where the
electron chemical potential is 26.2 MeV. The corresponding equilibrium nucleus is 118Kr, which
is still the most favourable nucleus even at slightly higher densities.

The EoS below 104 g cm−3 could be considered from the Ref. [42] while the EoS between
104 g cm−3 and 4.3×1011 g cm−3 is calculated here. The description for EoS between 4.3×1011

g cm−3 and 5× 1014 g cm−3 can be obtained from the Refs. [44, 49] and would be considered in
the next section.

2.2 Nuclear Matter at Low Densities

In this section, we consider the conventional nuclear theory that is still valid for densities ranging
between 4.3× 1011 g cm−3, where neutrons start leaking out, to roughly 5× 1014 g cm−3. This
section’s content is taken entirely from Ref. [43]. The energy of nuclei in the free neutron
regime has three distinct characteristics: (i) similarity between bulky nuclear matter inside
nuclei and free neutron gas outside nuclei; (ii) the emergence of free neutron gas, which diminishes
the nuclear surface energy; and (iii) the growing importance of the Coulomb interaction between
nuclei as the spacing among nuclei approaches the nuclear radius.
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2.2.1 Equilibrium Conditions for Nuclear Matter at Low Densities

The nuclear matter in the free neutron regime comprises a lattice of nuclei drowned in neutrons
and electron gas, with densities ranging from 4.3 × 1011 g cm−3 to roughly 2.5 × 1014 g cm−3.
Free protons, on the other hand, are absent here, until just before they break down. Lattice
nuclei, free neutrons, and free electrons are all present in the system. The conditions for a system
of nuclear matter in equilibrium at zero temperature are discussed in this section.

Given that a volume V contains number of neutrons outside the nuclei Nn and the number
of nuclei NN . The total volume outside the nuclei is V − NNVN . Therefore, neutron number
density is given by

nn =
Nn

V −NNVN
. (2.28)

The electrons completely pass through the lattice of nuclei and have a uniform density ne because
the electron screening length is quite long. The charge neutralization of electrons and protons
requires that

ne =
ZNN

V
≡ ZnN , (2.29)

where nN is nuclei density. The total energy density of the system, including all rest masses, is
given by

εtot(A,Z, nN , VN , nn) = nN (WN +WL) + (1− VNnN )εN (nn) + εe(ne) (2.30)

where WN (A,Z, VN , nn) is the nuclear matter-energy, WL(Z, nN ) = −1.819620Z2e2/(2/nN )1/3

is the lattice energy, εN is the energy density of nuclei, and εe is that of electrons gas.

Similar to the previous section, we could determine the equilibrium conditions by mini-
mizing εtot concerning its arguments A, Z, nN , VN , and nn at a given average baryon density
nB as follows

nB = AnN + (1− VNNN )nn. (2.31)

Given that nuclei contain a fixed amount of nNZ protons and nN (A − Z) neutrons in a unit
volume, as well as a fixed amount of overall fraction nNVN of the volume filled by nuclei. The
nucleons number A could be optimized by minimizing εtot with respect to A itself at fixed nNA,
nNZ, nNVN , and nn. The energy per nucleon in nuclei is minimized when

∂

∂A

(
WN +WL

A

) ∣∣∣∣
x,nNA,nNVN ,nn

= 0, (2.32)

where it is convenient to consider a proton fraction in nuclei

x =
Z

A
(2.33)

instead of the proton number Z.
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Secondly, the nuclei must be in beta equilibrium. Since beta decay turns a neutron into
a proton (and electron) and raises the total energy, electron capture converts the proton (and
electron) back to the neutron then lowers the total energy of the system. In other word, εtot is
minimized with respect to variation in Z at fixed A,nN , VN and nn. Minimizing εtot with charge
neutrality condition in Eq. (2.29) gives the condition that

µe = − ∂

∂Z
(WN +WL)

∣∣∣∣
A,nN ,VN ,nn

= − ∂

∂x

(
WN +WL

A

) ∣∣∣∣
A,nN ,VN ,nn

, (2.34)

where the electron chemical potential (including the rest mass) is

µe =
∂εe
∂ne

. (2.35)

Adding a neutron into a nucleus requires minimum energy or the chemical potential for
the neutrons in the nuclei given by

µ(N)
n =

∂

∂A
(WN +WL)

∣∣∣∣
Z,nN ,VN ,nn

−mn. (2.36)

Correspondingly, the chemical potential for appending a proton into the nuclei (measured
with respect to the neutron rest mass mp) is

µ(N)
p =

∂

∂Z
(WN +WL)

∣∣∣∣
A−Z,nN ,VN ,nn

−mp. (2.37)

The beta equilibrium condition for chemical potentials of the proton and neutron is provided by

µe − (mn −mp) = µ(N)
n − µ(N)

p . (2.38)

There would be no neutron gas outside the nuclei unless µ(N)
n were negative. Neutrons

start trickling out of nuclei as µ(N)
n grows with baryon number density. The neutron chemical

potential in gas µ(G)
n must be the same as that in nuclei µ(N)

n for the neutron gas to be in equi-
librium. Minimizing εtot with regard to A while fixing Z, nN, VN , and nB yields the equilibrium
condition. Since nB is fixed,

∂nn

∂A
= − nN

1− VNnN
(2.39)

then

∂εtot
∂A

∣∣∣∣
Z,nN ,VN ,nB

= 0

nN

[
∂

∂A
(Wn +WL)|Z,nN ,VN ,nB − ∂εn

∂nn

]
= 0

∂

∂A
(Wn +WL)|Z,nN ,VN ,nB =

∂εn
∂nn

. (2.40)

Combining Eq. (2.36) and Eq. (2.40) with the assumption that WL is is unaffected by nn, we
obtain

µ(G)
n ≡

(
∂εn
∂nn

−mn

)
+

nN

1− VNnN

∂WN

∂nn

∣∣∣∣
A,Z,VN ,nN

= µ(N)
n . (2.41)
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The neutron chemical potential in gas is defined by Eq. (2.41). The first term is the chemical
potential of neutrons in bulk, and the second term is the change in nuclear surface energy once a
neutron is delivered to the gas. The energy density of nuclei occupied by the neutron gas outside
the nuclei is described as nNWN/(1− VNnN ).

Finally, by minimising εtot concerning VN at fixed A,Z, nN and nn(1 − VNnN ), the
equilibrium condition between the pressure of the free neutron gas and that of the nuclei may
be obtained. As a result, we realize

P (G) = P (N) (2.42)

where the pressure acting on a nucleus is

P (N) = − ∂

∂VN
(WN +WL)|A,Z,nn,nN (2.43)

and the pressure acting on neutron gas outside the nucleus is

P (G) = nnµ
(G)
n − (εn − nnmn). (2.44)

We can verify the relation between the total pressure given by

P = n2
B

∂

∂nB

(
εtot
nB

)
(2.45)

and that given by
P = P (G) + Pc. (2.46)

The pressure contributed by charged particles is

Pc = Pe + PL, (2.47)

where the electron pressure is given by

Pe = n2
e
∂

∂ne

(
εe
ne

)
, (2.48)

and the (negative) lattice pressure is

PL = n2
N

(
∂WL

∂nN

) ∣∣∣∣
A,Z,VN ,nn

. (2.49)

In sum, the equilibrium condition are given by Eqs. (2.32), (2.34), (2.41), and (2.42). To apply
these criteria, we must clearly define WN ,WL, εn and εe in the following sections.

2.2.2 Nuclear Matter Energy at Low Densities

Consider a system made up of compressed nuclear matter droplets. A nucleus’ total energy
WN could be expressed as the sum of volume energy, surface energy, and Coulomb energy. The
energy WN could then be calculated using the semi-empirical mass formula:

WN (A,Z, VN , nn) = [(1− x)mn + xmp + b(k, x)]A+WCoul(A,Z, VN , nn) +WSurf(A,Z, VN , nn)

(2.50)
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where b(k, x) represents the binding energy per nucleon of bulk nuclear matter at a limited
number density.

n =
k3

1.5π2
(2.51)

and k is the wavenumber and x ≡ Z/A is the proton fraction of the nucleus.

Similarly, we apply the same function b(k, x) with x = 0 to characterize the neutron
outside the nucleus. neutron gas.

εn(nn)

nn
= b(kn, 0) +mn, (2.52)

with
nn =

k3n
1.5π2

(2.53)

where the free neutron Fermi wave number equals 21/3kn and εn(nn) is an energy density for
neutrons at the number density nn. Additionally, the uniformly mixing neutron-proton fluid at
higher densities beyond the point that nuclei start dissolving could be characterised by b(k, x).

In the low densities regime, the standard techniques associated with the nuclear-mater
theory are still valid to describe the behaviours of nuclei. We consider the effective interaction
between nucleons described by the Reid soft-core potential [50], which is one of the best-fitting
two-body potentials to the scattering data below 300 MeV. It should be noted that the other
fittings are also good, but differences between them are not significant [51].

Before evaluating the binding energy at finite density b(k, x), the correlation function of
two interacting nucleons must be determined. For systematic nuclear matter (x = 1/2) around
the given range of densities, the binding energy from the pair approximation [50] is 11 MeV per
nucleon, while the empirical value is about ∼ 16 MeV. The 5 MeV difference could be obtained
from various corrections e.g. correlations among the three interacting nucleons [52], that among
four interacting nucleons [53], and three-nucleon forces arising from exchanging mesons between
nuclei [54].

The binding energy of symmetric nuclear matter can be expressed in the following form:

b(k, 1/2) = −w0 +
1

2
K

(
1− k

k0

)2

(2.54)

where b0 ≈ 16 MeV, while n0 = k30/1.5π
2 is the saturation number density ≈ 0.16 nucleons per

fm3, or k0 ≈ 1.4 fm−1. The pair approximation yields a compressibility parameter K of sim135

MeV.

For a near-symmetric (x ≈ 1/2) nuclear matter, the binding energy per nucleon could be
approximated as

b(k, x) ≈ b(k, 1/2) + S(k)(1− 2x)2, (2.55)
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where the symmetric-energy coefficient could be approximately written as the following form
[55]

S(k) ≈ 31

(
k

k0

)2

MeV. (2.56)

The reason that the symmetric energy scales as k2 because the variation of kinetic energy near
x = 1/2 behaves as (k2/6mn)(1− 2x)2 ≈ 14(k/k0)2(1− 2x)2 MeV.

The most detailed calculation could be obtained from Ref. [56], where the binding energy
per nucleon was approximated by a monotonically rising function.

b(k, 0) ≈ 19.74k2 − k3
(
40.4− 1.088k3

1 + 2.545k

)
MeV, (2.57)

where k is in a unit of fm−1 for k $ 1.5 fm−1. The first term refers to the free neutron gas’s
kinetic energy, which becomes dominating at low densities.

It was found [56] that ,for k $ 1.5 fm−1, the proton chemical potential µ(0)
p is well

approximated by
µ(0)
p = −k3

218 + 277k

1 + 8.57k2
MeV (2.58)

and k is also in fm−1 at the number density of neutron gas n = k3/1.5π2.

For small x, b(k, x) approximately takes the following form

b(k, x) = b(k, 0) + x(µ(0)
p − µ(0)

n ), (2.59)

where the chemical potential of pure neutron matter µ(0)
n is given by

µ(0)
n =

∂εn(nn)

∂n
= b(k, 0) +

1

3
k
∂b(k, 0)

∂k
. (2.60)

Another correction term in the powers of x from the proton kinetic energy is

3[(2x)1/3k]2

10m"
p

x = 19.74k2x5/3mn

m"
p

MeV. (2.61)

Note that m"
p is the effective mass of a proton for pure neutron state of matter where the

empirical value of m"
p/mn ≈ 0.65.

Without complete functions of b(k, x) for the value of x between the pure neutron gas
(x = 0) and nearly symmetric nuclear matter (x = 1/2), we need to interpolate b(k, x) smoothly
within our knowledge. To construct the interpolation, we need the following information:

1. For (x = 1/2) around the saturation density, b(k, x) has the form of Eq. (2.54):

b(k, 1/2) = −w0 +
1

2
K

(
1− k

k0

)2

. (2.62)

2. For small x, from Eq. (2.57) to Eq. (2.61), the binding energy per nucleon has a form:

b(k, x) = b(k, 0) + x(µ(0)
p − µ(0)

n ) +
3(21/3k)2

10mn
x5/3. (2.63)
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3. For low k, there is only a contribution from kinetic energy of the free particle, so the
binding energy per nucleon is

bkin(k, x) =
3(21/3k)2

10mn

(
x5/3 + (1− x)5/3

)
. (2.64)

4. For small deviation α ≡ 1 − 2x from x = 1/2, there is a correction for b(k, x) interpreted
as the symmetric energy per nucleon given by

bsym = b(k, x)− b(k, 1/2) ≈ sk2

k20
α2. (2.65)

First, we need to interpolate b(k, x) between b(k ≈ k0, 1/2) in Eq. (2.62) and b(k → 0, 1/2) in
Eq. (2.64), written as

b(k, 1/2) =
3k2

10mn

(
1− k

k0

)3

−w0

(
k

k0

)3 [
1 +

(
1− k

k0

)(
9− 6

k

k0

)]
+
1

2
K

(
1− k

k0

)2( k

k0

)3

.

(2.66)
Next, the interpolation between x = 0 and x = 1/2 can be obtained by subtract the kinetic
energy term from Eqs. (2.63), (2.66), and the symmetric energy term from Eq. (2.65) then, as
a polynomial in even powers of α up to order α6, create a fitting to the interaction energy. The
appropriate interpolation for b(k, x) could be written as

b(k, x) =

[
b(k, 1/2)− 3k2

10mn

]
(1− 3α4 + 2α6) +

[
s

(
k

k0

)2

− k2

6mn

]
α2(1− α2)2

+

[
b(k, 0)− 3 · 22/3

10

k2

mn

]
(3α4 − 2α6) +

(
µ(0)
p − µ(0)

n + 22/3
k2

2mn

)
1

4
(α4 − α6)

+ bkin(k, x). (2.67)

In the limit of x → 1/2, Eq. (2.67) agree with Eq. (2.65) and Eq. (2.66), while that of x → 0

agree with Eq. (2.63). As k → 0, Eq. (2.67) becomes

bkin(k → 0, x) +

[
2

(
k

k0

)2

− k2

6mn

]
α2(1− α2)2. (2.68)

The second term fails to disappear in this limit since the term k2 is not correct as k → 0.
Fortunately, in worst case, this only causes ∼ 15% error in b(k, x) in this limit.

The complete interpolation of b(k, x) in Figure 2.1 is plotted by using the parameters
b0, k0,K, s of nearly symmetric nuclear matter given by

w0 = 16.5 MeV, k0 = 1.43 fm−1, K = 143 MeV, s = 33.0 MeV. (2.69)

2.2.3 Nuclear Surface Energy

In this section, we attempt to formulate the nuclear surface energy within the framework of
Thomas-Fermi theory, according to Ref. [57] concerning the fluctuation of the bulky energy over
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Figure 2.1: The complete interpolation of binding energy per nucleon b(k, x) at finite density n

as a function of the mean Fermi wave number k and proton fraction x: image from Ref. [44]

the surface. We postulate that the width of the surface is narrow enough in comparison to the
average radius and consider the first layer of the surface at normal to the z-axis dividing the 2
regions. Additionally, we presume that the nucleons’ density at radius r: n(r) → ni as z → −∞

and n(r) → no as z → +∞, given that ni and no is the number density inside and outside the
nuclei. The energy of the system can be approximately expressed by

∫
d3rb(n(r))n(r) (2.70)

where the argument of b(k, x) could be reduced and represented by b(n) for simplicity. Consider
a narrow surface at z = a with steps of reduction in number density from ni to no. Given that
the system has the identical nucleons’ number as the original, we could determine the value of
a from ∫ a

z=−∞
d3r[n(r)− ni] +

∫ z=+∞

a
d3r[n(r)− no] = 0. (2.71)

Consequently, the surface part of Eq. (2.70) or Eσ could be obtained by subtracting from
Eq. (2.70) the energy ∫

z<a
d3rbini +

∫

z>a
d3rbono, (2.72)

where bi ≡ b(ni) and bo ≡ b(no). The energy per unit area associated with the narrow surface
of the nucleus is given by

Eσ =

∫ a

−∞
dz[b(n(z))n(z)− bini] +

∫ +∞

a
dz[b(n(z))n(z)− bono]. (2.73)

One could determine n(z) and x(z) directly, using b(n(z)) as given from the previous section.
Assume that b(n(z))n(z) evolves linearly with n(z) over the surface then

b(n(z))n(z) = bono +
n(z)− no

ni − no
(bini − bono), (2.74)
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then Eq. (2.73) disappears identically.

Additionally, we assume n(z) and b(n(z)) could be written in the form of the Fermi-
function surface profile f(z/lb) and g(z/lb)

n(z) = no + (no − ni)f(z/lb), (2.75)

b(z) = bo + (bo − bi)g(z/lb). (2.76)

where f(z/lb) and g(z/lb) are dimensionless function complying that

f(−∞) = g(−∞) = 1, f(+∞) = g(+∞) = 0. (2.77)

The length lb is proportional to the surface thickness ts. From, Eq. (2.73), we find that

Eσ = lb(bo − bi)

[
(ni − no)

∫
dζf(ζ)(1− g(ζ)) + no

∫
dζ(f(ζ)− g(ζ))

]
. (2.78)

Given that f = g, Eσ could be written as a linear function of the number density, then

Eσ = cσlb(bo − bi)(ni − no), (2.79)

cσ =

∫
dζf(ζ)(1− g(ζ)). (2.80)

For example, given that a Fermi-function surface profile takes the following form

f(z/lb) =
1

ez/lb + 1
(2.81)

then cσ = 1 and lb ∼ 1/4 to 1/6 of the surface thickness; but for f(z/lb) falls from 1 to 0, and
linearly between 0 and lb then lb = ts and cσ = 1/6.

The correction to the density approximation in Eq. (2.73) also contributes to surface
energy. According to the differential Thomas-Fermi theory [57], the symmetric nuclear matter-
energy for ordinary nuclei is

∫
b(n)nd3r +

B

nNM

∫
(∇n)2d3r, (2.82)

where B ≈ 24 MeV fm2, and nNM is the saturation number density. The second term in
Eq. (2.82) might be generalised to the asymmetric nuclear matter as

1

nNM

∫
d3r(Bnn(∇nn)

2 +Bpp(∇np)
2 + 2Bnp(∇nn) · (∇np)), (2.83)

where nn and np denote the neutron and proton number densities respectively. Since the com-
ponents of nuclear force are long-range and unaffected by many-body correlations, Bnn and Bnp

almost the same. However, the coefficient Bnp ∼ 2Bnn. Therefore, Eq. (2.83) becomes

1

nNM

∫
[B(∇n)2 −B′(∇nn −∇np)

2] (2.84)
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given that B′ ∼ 1/3B. Although, it is unlikely that the term B′ in Eq. (2.84) favours spatial
fluctuations of the difference in number density nn−np, the fluctuations could become significant.
Assume that the gradient of nn and np are uniform everywhere i.e.

nx =
nixi

ni − no
(n− no), (2.85)

then Eq. (2.83) becomes
B1

nNM

∫
(∇n)2d3r, (2.86)

where B ∼ B1. Given that the system is described by the plane surface density Eq. (2.75), the
energy in Eq. (2.86) becomes

v
B1

nMN

(ni − no)2

lb
, (2.87)

where
v =

∫ ∞

−∞
dζ

(
∂f

∂ζ

)2

. (2.88)

For the Fermi-function surface in Eq. (2.81), v = 1/6. According to the Thomas-Fermi theory,
the length lb is picked for minimising the total surface energy in Eq. (2.79) and Eq. (2.87), then

lb =

(
B1v

cσnNM

ni − no

bo − bi

)1/2

(2.89)

while the energy per unit area for over all surface is given by

Esurf,TF = 2

(
vcσB1

nNM

)1/2

(bo − bi)
1/2(no − ni)

3/2 (2.90)

where the subscript TF stands for Thomas-Fermi theory. The relation between the number of
nucleons A and the surface energy could be determined from a product between Esurf, TF and
4πr2N given that rN represents the mean radius of the nuclei. Since

A = niVN =
k3

1.5π2

4πr2N
3

(2.91)

then
rN =

(
9π

8

)1/3 A1/3

k
. (2.92)

The total surface energy could be written as

bsurf, TF =
σ(bo − bi)1/2

w1/2
0

(ni − no)3/2

n3/2
NM

(
k0
k

)2

A2/3 (2.93)

where
σ = 4

(
3

π

)1/3

k0(vcσB1w0)
1/2 (2.94)

is a coefficient in the order of 20 MeV.

To evaluate the thickness of the surface, first, assume there is no free neutron outside
so that the nucleus is made up of free particles in a square well-potential. Inside the well, the
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surface thickness scales with the Fermi wavelength. As it is overflowing, the neutrons start
dripping out. The inverse of the nucleus’s momentum kc at the top of the well could be used to
evaluate the thickness of the surface.

k3c
1.5π2

= ni − no. (2.95)

Note that kc turns into the Fermi momentum in the well when no = 0. In general, the thickness
of the nuclear surface lb must have a value smaller than ∼ πk−1

c . The surface thickness is
inversely proportional to kc up to the first approximation written as

lb =
ηπ

kc
(2.96)

where η ≈ 1.

Substituting Eq. (2.96) into Eq. (2.79), we obtain the approximation to the surface energy
per unit area given by

Esurf =

(
2

3
π

)1/3

ηcσ(bo − bi)(ni − no)
2/3. (2.97)

Multiplying Eq. (2.97) by the area of nucleus, the total surface energy becomes

bsurf =
σ(bo − bi)

w0

(
1− no

ni

)2/3

A2/3 ≡ wsurfA
2/3, (2.98)

where
σ = 2(3π2)1/3cσηw0. (2.99)

Note that the adjustable parameter σ could be evaluated by fitting the nuclear masses and
radii of the model to that of the experiment. Interestingly, for ordinary nuclei, where no = 0,
Eq. (2.98) reduces to

bsurf = −bi
σ

w0
A2/3. (2.100)

2.2.4 Coulomb Energy

The nuclear Coulomb energy could be expressed in terms of a uniformly charged sphere of a
radius rN and a total charge Ze by

wc,0Z
2A−1/3 =

3

5

Z2e2

rN
. (2.101)

Assume we include the effect of the surface thickness lb, the nuclear Coulomb energy is lessened
by ∼ l2b/r

2
N . Specifically, consider the case that the Fermi-function charge distribution takes the

following form:
np(r) =

Z

4/3πr3N

1

e(r−r′N )/d + 1
(2.102)
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where the surface thickness lb ≈ 2d ln 9 and nuclear radius after including effect of the surface
thickness r′N = rN (1− π2d2/3r2N +O(d4/r4N )).The thickness correction for the Coulomb energy
was found to be

bthick(k, x) = −π
2

2

d2Z2e2

r3NA
= −4

9

πZe2d2k3x

A
. (2.103)

Another correction to Eq. (2.101) is the photon exchange energy [58],

bexch ≈ − 3

4π

Ze2(2x)1/3k

A
. (2.104)

The photon exchange energy per nucleon bexch(k, x) has a minor contribution to the total cor-
rection in the bulk energy W , then it could be neglected. However, it is still important since it
depends on the geometry of the surface. Therefore, it must be included in the calculations.

The other electrostatic energy associated with the interaction between a positively charged
lattice and a uniformly distributed electron background. The simplest method to calculate the
lattice Coulomb energy is a procedure that splits the lattice into unit cells, each having one
nucleus at the centre, and each cell is electrically neutral, called the Wigner-Seitz method. The
minor correction term of the lattice Coulomb energy from the interaction among the cells could
be neglected in a first approximation. For simplicity one can replace the cell with a sphere of an
identical size. Accordingly, the condition for the identical spheres is

4

3
πr3cnN = 1. (2.105)

Assume that Z electrons are uniformly distributed over the sphere, the overall electrostatic
energy of the cell, or equivalently of the nuclei is given by the sum of Eqs. (2.101), (2.103),
(2.104), and the lattice energy below

WL = − 9

10

Z2e2

rc

(
1− 5

9

< r2 >

r2c

)
, (2.106)

where < r2 > is the average squared radius of the charge distribution inside the nucleus. When
treating nuclei as point particles, WL = − 9

10Z
2e2/rc provides an excellent estimation to the

body centered cubic (bcc) and face centered cubic (fcc) lattices. The exact value of WL for bcc,
fcc, and sc (simple cubic point) lattices are given by

WL = −Z2e2

rc
×






0.89593 (bcc)
0.89588 (fcc)
0.88006 (sc).

(2.107)

For a uniformly distributed proton in the nucleus, the mean squared radius is

< r2 >=
3

5
r2N . (2.108)

The total Coulomb energy per nucleus, excluding exchange term bexch and the surface thickness
term bthick reduces to

wc
Z2

A1/3
=

3

5

Z2e2

rN

(
1− 3

2

rN
rc

+
1

2

r3N
r3c

)
=

3

5

Z2e2

rN

(
1− rN

rc

)2(
1 +

rN
2rc

)
. (2.109)
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The first correction term to the lattice energy is the electron screening energy which has been
calculated exactly by [59], for a bcc lattice;

Wscreening = 0.12k2FTr
2
cWL < 0, (2.110)

where WL is the lattice energy per point lattice and k−1
FT is the electron screening length, related

by

kFT =

(
4e2

π

)1/2

ke. (2.111)

Notice that ke is the electron Fermi wave number. Hence

Wscreening = 0.004Z2/3WL. (2.112)

Apparently, this correction is small and may be neglected.

2.2.5 Evaluation of Equilibrium Conditions at Low Densities

According to various types of energy mentioned in many previous sections within this chapter,
the total energy associated with a single nucleus, determined by A,Z, and mean wave number
k, is given by

WN (A,Z, k, kn) = [(1− x)mn + xmp]A+[b+ bthick + bexch]A+bsurfA
2/3+wc,0Z

2A−1/3 (2.113)

where kn = (1.5π3nn)1/3. Note that for fixed x, a whole WN explicitly depends on A. The volume
energy per nucleon b is given by Eq. (2.67), the surface energy by Eq. (2.98), the Coulomb energy
contributions by Eq. (2.101) and Eq. (2.103), and lastly the exchange energy by Eq. (2.104). We
can include WL, the lattice energy simply by replacing wc,0 by wc. The value for d in bthick is
chosen to be 0.74/kc, so it would be in agreement with the value of surface thickness determined
from electron scattering experiment. The Eq. (2.113) is considered to be semi-empirical mass
formula for nuclear energies consisting of 5 parameters: w0, k0,K, and s in the volume energy,
and σ in the surface energy.

The parameters could be evaluated by fitting the Eq. (2.113) to ordinary nuclei where
the surface energy is given by Eq. (2.100), and the equilibrium value of k is determined by

∂WN (A,Z, k)

∂k
= 0, (2.114)

where in this condition, we consider ordinary nuclei under zero pressure. The values in the
Eq. (2.69) together with σ = 21.0 MeV provides a good fitting to nuclear mass and radii over
wide range of A− and Z−values (A ≥ 40).

Using Eqs. (2.113), (2.106), and(2.108), the generalized equilibrium conditions from
Eq. (2.32) becomes

bsurfA
2/3 = 2(wc,0x

2A5/3 +WL) = 2wcZ
2A−1/3. (2.115)
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Note that at fixed x, nn, nNA, and nNVN , the neutron density nn, the wave number k, and
rN/rc remain fixed, while rc scales as A1/3. The Eq. (2.115) could be interpreted as “given the
correct Z and A for the system in equilibrium, the surface energy per nucleus is exactly twice of
the total Coulomb energy in Eq. (2.109)”. Solving the Eq. (2.115) for the correct A as a function
of x and rN/rc, we get

A =
wsurf
2wcx2

=
wsurf

x2
(

4
5

(
3
π

)1/3
e2k
)(

1− 3
2
rN
rc

+ 1
2

(
rN
rc

)3) . (2.116)

The Eq. (2.116) relates A to k, kn, x and the electron Fermi wave number ke, since

u ≡
(
rN
rc

)3

= VNnN =
A

n

ne

Z
=

1

2x

(
ke
k

)3

. (2.117)

Here and afterwards, by dropping the subscript N out, n refers to the number density of the
inside nuclei. Then, using the β−equilibrium condition in Eq. (2.34), the relation for ke in terms
of A, k, kn and x could be expressed by

µe = ke = (mn −mp)−
(
∂b′

∂x
+ 2wcxA

2/3 +
∂wsurf
∂x

A−1/3

)
, (2.118)

where the effective volume energy per nucleon is

b′ = b+ bexch + bthick. (2.119)

Additionally, using the Eq. (2.34), we can express the Eq. (2.118) as

ke = (mn −mp)−
∂b′

∂x
− 1

x

∂

∂x
(xwsurf)A

−1/3. (2.120)

The last term on the right is explicitly A−dependent. Therefore, we can combine Eqs. (2.120),
(2.117), and (2.116) into a simple cubic equation for A2/3 in terms of x, k and kn written as

(2− 3α+ α2)A+ 3v(1− α2)A2/3 + 3v2αA1/3 − v3 − ξ = 0 (2.121)

where

α =
(mn −mp)− ∂b′/∂x

k(2x)1/3
(2.122)

v =
∂(xbsurf)/∂x

k21/3x4/3
(2.123)

ξ =
5

2

(π
3

)1/3 wsurf
x2e2k

. (2.124)

The Eq. (2.121) could be solved directly by using the standard formula for cubic equations.

Next, to determine k and kn as function of x, we need to reconsider the neutron chemical
potential from Eq. (2.41) and pressure from Eq. (2.42) for both inside and outside nuclei. For
densities below neutron drip, it is known that kn = 0 and the only essential condition is P (N) = 0.
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Beyond the neutron drip where µ(N)
n passes through zero, both Eqs. (2.41) and (2.42) could have

a common solution. Therefore, in the free neutron gas

µ(G)
N =

∂

∂nn
(nnb(kn, 0)) +

nu

1− u

(
∂bthick
∂nn

+A−1/3 ∂wsurf
∂nn

)
(2.125)

and
P (G) = nn

(
µ(G)
N − b(kn, 0)

)
. (2.126)

The neutron chemical potential in nuclei could be calculated by replacing (∂/∂A)Z with (∂/∂A)x+

(dA/dx)(∂/∂x)A = (∂/∂A)x − (x/A)(∂/∂x)A and applying on the Eq. (2.34). We obtain

µ(N)
n =

∂

∂A
(WN +WL)

∣∣∣∣
x,nn,VN ,nN

−mn + xµe. (2.127)

After that, we use Eqs. (2.113), (2.109) and (2.101) for WN +WL. By substituting (∂/∂A)VN

with (∂/∂A)n + (n/A)(∂/∂n)A, we can calculate the bulk and surface contributions to µ(N)
n .

This results in

µ(N)
n =

∂

∂n
(nb′) +

(
5

3
wsurf + n

∂wsurf
∂n

)
A−1/3 + x(µe −mn +mp). (2.128)

The pressure on a nucleus given by the Eq. (2.43) could be rewritten as

P (N) = n2 ∂

∂n

(
WN +WL

A

) ∣∣∣∣
Z,A,nn,nN

. (2.129)

From the Coulomb contribution to the Eq. (2.129) written as − 1
3rN (∂/∂rN )(wcZ2A−1/3), the

pressure could be expressed as

P (N) = n2 ∂

∂n
b′ + n2

(
∂

∂n
wsurf

)
A−1/3 +

1

3
nwc,0x

2A2/3(1− u). (2.130)

Note that the values of k and kn could be completely determined by the equilibrium conditions
µ(N)
n = µ(G)

n and P (N) = P (G).

Eventually, the EoS of nuclear matter in the free neutron regime could be determined
from the Eq. (2.128) and (2.130) together. It is indeed a good assumption since the processes
involving the free neutron and free-electron gases could change both A and Z. Then the deformed
lattice structure would be suppressed at zero temperature. On the other hand, the lattice plays
a significant role in determining thermal fluctuations. It is likely that the thermal fluctuation
occurs in a neutron star at non-zero temperature, makes Z vary and deforms the lattice.

According to Ref. [49], the calculation of EoS of the free neutron nuclear matter based
on [44] is accurate and agrees with results of density distributions from electron scattering;
however, its calculation is time-consuming when applying the configuration up to 5,000 nucleons
for each unit cell to determine EoS of the free neutron nuclear matter. Instead, the density
matrix expansion method was used in Ref. [49] to estimate the EoS from 1.68× 1012 g cm−3 up
to around 5× 1014 g cm−3 with very small differences, when compared to the original method.
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Apart from free neutron and free electron gas at low densities, we could consider a possi-
bility of free proton gas by considering the proton chemical potential from the data. However,
according to the data from the Ref. [43], there is no proton drip since the proton chemical
potentials inside nuclei are always less than that in the neutron gas.

2.3 Nuclear Matter at Intermediate Densities

In this section, we consider the extension of microscopic calculations for the EoS described
by CET from 87.05 MeV fm−3 to higher densities the number density is around the nuclear
saturation number density. Most of the descriptions of nuclear matter in this density range
follows Ref. [45].

In the past, many EoSs of nuclear matter in the density range beyond ρ ≥ 1.55 × 1014

g cm−3 (87.05 MeV fm−3), commonly used in astrophysical modeling, could be obtained phe-
nomenologically based on two-nucleon interaction. However, the two-nucleon interaction itself
can not reproduce properties of nuclear matter around this density range due to strongly repul-
sive force at small relative distance.

Recently, there is the effective theory resulting from the 1st principle from quantum
chromodynamics or QCD called the chiral-effective field theory (CET) that could be able to
describe the nuclear matter in this range. Assuming that light quarks are approximately massless
and therefore chirally symmetric, the CET could provide the framework for the nuclear matter
at low energy that nucleons interact via exchanging pions. The outcome of approximation
comes with great accuracy since the nucleons weakly interact from low to intermediate density.
However, the higher-order correction terms from many nucleons e.g. 3N interaction contribution
to the nuclear matter EoS become more and more important and necessary to compare the
predicted values with the observed values e.g. nuclear symmetry energy as density increases to
around the nuclear saturation number density.

According to Ref. [60], there is a theoretical uncertainty associated the neutron matter
EoS described mainly by 2N interaction with 3N-interaction as higher order correction terms.
Correspondingly, the dominant sources of the uncertainty lie within the ci couplings where
i = 1, 3, which could be determined from exchanging two-pion via three-nucleons interactions
among neutrons without concerning interaction among the many-particle system. From πN, NN
and the leading 3N interactions, c1 = −(0.7 − 1.4) GeV−1 and c3 = −(2.2 − 4.8) GeV−1 [60]
generating the error band in energy per nucleon in Figure 2.2.

Generally, nuclear interactions depend on the energy scale ΛE . Therefore, the Hamilto-
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Figure 2.2: Energy per nucleon as a function of number density n, that the energy per nucleon
based on two- and three-nucleon interactions with (without) a renormalization-group evolution
to enhance the many-body convergence could be represented in blue strip (dashed red) where
uncertainties in the low-energy coupling parameters c1 and c3 in 3N interactions the bounded
area of the band, [60]: image from Ref. [45]

nian for nuclear interactions could be expressed as

H(ΛE) = T + VNN(ΛE) + V3N(ΛE) + . . . (2.131)

where T, VNN and V3N are the kinetic energy, the potential energy with contribution from NN
interactions, and that from 3N interactions, respectively. According to Ref. [45], with the renor-
malization group evolution of the NN interaction, we obtain a range of the energy scale as
low-momentum cutoffs ΛE = 1.8− 2.8 fm−1. This result is common to other long-range interac-
tions from different potentials for pion physics. Consequently, the leading chiral 3N interactions
are long-range and dominate the contribution to the 3N interactions. Therefore, we determine
c1 and c3 by considering only the leading chiral term in 3N interactions with the low-momentum
cutoffs.
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Figure 2.3: Pressure P of nuclear matter versus number density n, where the pressure could
be represented by the the blue strip determined by two- and three-nucleon interactions with
an evolution of renormalization group; the band shaded in red represents the pressure with the
unevolved renormalization group from Gandolfi [61]: image from Ref. [45]

2.3.1 Asymmetric Nuclear Matter and Beta Equilibrium

According to Ref. [45], the total energy per nucleon ε, defined as a combination of the interaction
energy and the kinetic energy, could be written in terms of 1− 2x as:

ε(n̄, x)

T0
=

3

5

[
x5/3 + (1− x)5/3

]
(2n̄)2/3 − [(2α− 4αL)x(1− x) + αL] n̄

+ [(2η − 4ηL)x(1− x) + ηL] n̄
γ , (2.132)

where x = Z/A = np/n and n̄ = n/n0 stand for a proton fraction and a relative number density
concerning the saturation density, respectively. At the saturation density, the Fermi energy for
the symmetric nuclear matter is T0 = (3π2n0/2)2/3/(2m) = 36.84MeV. Note that the energy
density defined in the Eq. (2.134) does not contain any contribution from rest masses.

Using thermodynamics relations, the corresponding pressure P = n2∂ε/∂n is given by

P (n̄, x)

n0 T0
=

2

5

[
x5/3 + (1− x)5/3

]
(2n̄)5/3 − [(2α− 4αL)x(1− x) + αL] n̄

2

+γ [(2η − 4ηL)x(1− x) + ηL] n̄
γ+1 . (2.133)

Note that we could evaluate the parameters α,αL, η and ηL when the symmetric nuclear matter
becomes saturated:

ε(n̄ = 1, x = 1/2) = −B = −16MeV and P (n̄ = 1, x = 1/2) = 0 (2.134)
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where γ = 4/3, α = 5.87, η = 3.81, and a sensible incompressibility parameter

K = 9
∂2ε(n̄, x)

∂n̄2

∣∣∣∣
n̄=1,x=1/2

= 236MeV . (2.135)

For the parametrizations on energy per nucleon in the Eq. (2.134) and pressure in the Eq. (2.133),
we can evaluate the symmetry energy Sv and its derivative L as

Sv =
1

8

∂2ε(n̄, x)

∂x2

∣∣∣∣
n̄=1,x=1/2

and L =
3

8

∂3ε(n̄, x)

∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

. (2.136)

We can adjust K by adjusting γ in the Eqs. (2.133) and (2.134). The symmetric energy and
the derivative lightly count on γ and K since the leading term in the density derivative L. The

γ K [MeV] Sv [MeV] L [MeV]
1.2 210 29.7− 32.8 32.4− 53.4

4/3 236 29.7− 33.2 32.5− 57.0

1.45 260 30.1− 33.5 33.6− 56.7

Table 2.2: Possible range for the symmetry energy Sv and the density derivative L predicted
from different given γ values: table from Ref. [45]

parameter αL and ηL could be evaluated by sampling given that ε and P fall inside the blue strips
of the Figure 2.2 and Figure 2.3 for the number densities from 0.45n0 to 1.1n0. Consequently,
the possible range for αL and ηL represented in the Figure 2.4 are αL = 1.18 − 1.59 and
ηL = 0.64− 1.11.

Figure 2.4: Possible range for αL and ηL at the saturation density where the energy per nucleon
and the pressure in the Eqs. (2.134) and (2.133) hold true: image from Ref. [45]

In β−equilibrium, we have a condition:

µ′
n +mn = µ′

p +mp + µ′
e, (2.137)
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where µ′
p, µ

′
n and µ′

e are chemical potentials excluding rest mass contribution for proton, neutron
and electron, respectively. We could determine the proton fraction x in beta equilibrium by
minimizing a combination of the total energy per nucleon ε, the contribution of energy from
electrons and the rest mass of the nucleons, with respect to the number density or in other
words

∂ε(n̄, x)

∂x
+ µ′

e(n̄, x)− (mn −mp)c
2 = 0 . (2.138)

For ultrarelativistic degenerate electron gas, µ′
e(n̄, x) = (3π2xn0n̄). The allowed ranges for αL

n = n0 x µ′
n [MeV] µ′

p [MeV]
min 0.040 54.2 −58.0

max 0.053 51.9 −71.5

n = n0/2 x µ′
n [MeV] µ′

p [MeV]
min 0.030 34.6 −46.1

max 0.033 34.3 −48.7

Table 2.3: Proton fraction x and chemical potentials µ′
n and µ′

p excluding contribution from rest
mass in beta equilibrium for the saturation density n0 and for n0/2: table adapted from Ref. [45]

and ηL provide possible ranges for proton fraction, the rest-mass-subtracted chemical potentials
of the neutron and proton in beta equilibrium at the saturation number density n0 and for n0/2

given in the Table 2.3, where the difference in neutron and the proton masses (1.3 MeV) is small
and neglectable comparing with µ′

e ∼ 100 MeV. Obviously, c1 and c3 uncertainties result in
possible ranges of αL and ηL, and consequently imply the ranges of SV and L.

2.3.2 Phase Transition from Nuclei to CET Nuclear Matter

In this section, we determine the criteria for the transition between dense neutrons described
by CET and nuclei. Not only the neutron chemical potential but also the pressure must be
continuous, while the mass density might have a discontinuous change. From the 1st law of
thermodynamics, we have

µ =
ρ+ P

nB
(2.139)

where nB refers to the total number density of baryons and ρ is density of the system. Actually,
the chemical potential of baryon must be equal to that of the neutron at the transition. We can
verify this claim by considering

µnB =
∑

i

µini (2.140)
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where the sum over the index i stands for the sum over all types of the particles present here.
Consider that particle type i with charge Qi, and baryon number Bi, thus

µi = Biµn −Qiµe. (2.141)

The condition above assures stability of particle i against β−decay. Substituting the Eq. (2.141)
into the Eq. (2.140), we have

µnB = µn

∑

i

Bini − µe

∑

i

Qini (2.142)

from charge neutrality
∑

i Qini = 0, while
∑

i Bini = nb; therefore, µ = µn. Accordingly, if we
plot P vs µ, the more preferred state is the one with lower µn. Unfortunately, according to P

and µ calculated in the Refs. [43] and [45], there is no obvious point that two curves cross.

The crucial part of the phase transition is that as the density of the CET nuclear phase
decreases, instability against proton clustering increases. The presence of the instability could
be observed by considering the variation of the total energy density concerning infinitesimal in
densities; δnn(r), δnp(r), and δne(r). Due to relatively large spatial variation compared with
the effective range of interaction, we consider only leading terms of the interacting energy up
to 2nd order in δn by Thomas-Fermi expressions as a sum of Eq. (2.70) for the local bulk
energy, Eq. (2.83) for the curvature terms, the electron energy and Coulomb energies. Thus
from Ref. [44], concerning the Fourier transformation of variation in the number densities, the
total Coulomb energy is

ECoul =
1

2

∫
d3q

(2π)3
4πe2

q2
|δnp(q)− δne(q)|2, (2.143)

and the curvature energy is given by

Ecurv =
1

nNM

∫
d3q

(2π)3
q2[Bnn|δnn|2 +Bpp|δnp|2 +Bnp(δn

∗
pδnn + δnpδn

∗
n)]. (2.144)

The electron curvature energy could be neglected because of its small value. The local energy
could be written up to second order as

Eloc = E0 +

∫
d3r[(µn +mn)δnn(r) + (µp +mp)δnp(r) + µeδne(r)] (2.145)

+

∫
d3r

[
∂µn

∂nn
(δnn(r))

2 +
∂µp

∂np
(δnp(r))

2 + 2
∂µp

∂nn
δnp(r)δnn(r) +

∂µe

∂ne
(δne(r))

2

]
,

where E0 is the energy of the CET nuclear matter and (∂2nW/∂n2
n) = ∂µ/∂nn, and so forth.

The derivatives with respect to nn act at the fixed np and vice versa, unless indicated explicitly.
With β−equilibrium condition and charge neutrality:

∫
d3r(np(r)− ne(r)) = 0, (2.146)

the first-order term becomes (µn + mn)δ
∫
d3r(np(r) + ne(r)). Additionally, if the variations

preserve the total baryon number
∫
d3(nn(r) + np(r)), the first-order term disappears.
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The instability could exist if the energy is lower than E0, given that the density is inho-
mogeneous. Thus, minimizing the local energy with respect to δnn(r) and δne(r), we obtain the
following conditions

(
∂µn

∂nn
+

2Bnnq2

nNM

)
δnn(q) +

(
∂µp

∂nn
+

2Bnpq2

nNM

)
δnp(q) = 0 (2.147)

and
∂µe

∂ne
δne(q) =

4πe2

q2
(δnp(q)− δne(q)). (2.148)

After solving for δnn and δne in terms of δnp, the variation of the total energy is assumed to
take the form

E − E0 =
1

2

∫
d3q

(2π)3
v(q)|δnp(q)|2 (2.149)

where
v(q) = v0 + βq2 +

4πe2

q2 + k2FT
. (2.150)

Note that kFT is given by Eq. (2.111) with ke = (3π2nx)1/3, on the other hand,

v0 =
∂µp

∂np
− (∂µp/∂nn)2

(∂µn/∂nn)
≡
(
∂µp

∂np

) ∣∣∣∣
µn,ne

, (2.151)

β =
2

nNM
(Bpp + 2Bpnζ +Bnnζ

2), (2.152)

ζ = − ∂µp/∂nn

∂µn/∂nn
. (2.153)

For ζ ≈ 2, the system of CET nuclear matter becomes unstable as the fluctuation in density of
proton is about twice that of the neutron with the same sign. Note that,

v(q) →
(
∂µp

∂np

) ∣∣∣∣
µn,µe

, (2.154)

as q → 0. The second order derivative of v(q) at q = 0 becomes 2(β − 4πe2/k4FT) and is always
negative in the CET neutron, because

4πe2

k4FT
=

π

12

(
1

e2µenx

)
( β ∼ 102MeV · fm2

nNM
. (2.155)

Consequently, v(q) is minimum at q = Q, which is given by

Q2 =

(
4πe2

β

)1/2

− k2FT. (2.156)

It was found in the table 8 of Ref. [43] that the corrections from Coulomb energy and curvature
energy contribute to suppress the instability until vmin(> v0) becomes negative. The critical
density could be determined by the following condition:

v(Q) ≡ vmin = v0 + 2(4πe2β)1/2 − βk2FT, (2.157)
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From the given data, v0 becomes negative for density ρ ! 3.2× 1014 g/cm3 since the correction
terms of Coulomb energy and that of curvature energy that tend to suppress the instability,
vanishes. The critical density, where v(q) = 0, denoted by ρi, could be determined from

v0 + 2(4πe2β)1/2 − βk2FT = 0. (2.158)

The value of v0 is necessary set by the derivative
(
∂µn

∂nn

)

free
=

π2

21/3mnk
, (2.159)

for a free neutron gas. At k = 1.35 fm−1, (∂µn/∂nn)|free = 240 MeV·fm3.

Due to inhomogeneity in the density distribution, the coefficient β could be described
quantitatively by

β = 2(Qpp + 2Qnpζ +Qnnζ
2), (2.160)

where Qij ≡ Bij/n0. Consequently, we could numerically predict that the baryon number
density, where the instability occurs, is around n̄ = 0.55 − 0.625 without Coulomb and density
gradient contribution (Q = 0) and n̄ = 0.475 − 0.55 when including Coulomb and density
gradient contribution (Q = 75 MeV·fm5), according to Ref. [45]. Correspondingly, around
ρ < ρs/2, the CET neutron becomes unstable. Note that from Ref. [45], ρs ≡ ρ(n0) = 150.3 MeV
fm−3(2.67× 1014g cm−3) is the density defined at nuclear saturation number density n0 ≡ 0.16

fm−3 where nucleons begin to touch each other. Hence, there will be a 1st-order phase transition
from CET neutron to the more stable nuclei, as density decreases below ρs/2.

2.4 General Extension for CET EoS

According to Ref. [45], as the densities of nuclear matter exceed the regime that could be de-
scribed by the leading chiral terms of 3N interactions or ρ > ρ1 = 1.1ρs = 165.3 MeV·fm−3(2.94×

1014 g cm−3), the EoS defined in Section 2.3 is no longer reliable. Therefore, we need to broaden
the EoS beyond this density. In this section, we follow the suggestions from Ref. [45] that the
extension beyond the transition density ρ1 could be expressed in a series of general polytropic
extension that the pressure P is written as a connected piecewise polytrope P (ρ) = κρΓ where
the adiabatic index Γ ≡ ρ

P
∂P
∂ρ . The extension of EoS could be divided into 3 different regions,

see Figure 2.5. The density region 1: ρ1 ≤ ρ ≤ ρ12; region 2: ρ12 ≤ ρ ≤ ρ23; region 3: ρ ≥ ρ23,
respectively. The range polytropic exponents are set as 1.0 ! Γ1 ! 4.5 for the first region;
0.0 ! Γ2 ! 8.0 for the second region; and 0.5 ! Γ3 ! 8.0 for the third region, respectively. For
density limits between polytropes, ρ12, and ρ23, it is sensible to set 1.5ρs ! ρ12 < ρ12 < ρmax

with a step size of 0.5ρs. Lastly, the values of Γi and ρij are constrained by results from nuclear
physics and observations.
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Figure 2.5: Pressure P of the nuclear matter as a function of mass density ρ: A part on the left
in red is from BPS EoS of nuclear matter [43] for density ρ < ρ0/2. The middle part is the blue
band with ci uncertainties for the CET nuclear matter for ρs/2 ≥ ρ ≥ ρ1 ≡ 1.1ρs. On the right,
the general extension are represented into 3 different regions: image adapted from Ref. [45]

2.4.1 Constraints on The EoSs of Extended CET Nuclear Matter

The connected piecewise polytropic extension, defined in the given range in the previous section,
would be employed to generate lots of EoSs at higher density. Then we implement the extended
polytropic EoSs into the Tolman-Oppenheimer-Volkov equations and keep only those that satisfy
the following 2 constraints:

• The speed of sound inside the nuclear matter must be less than the speed of light for all
densities: vs(ρ) =

√
dP/dρ < 1 (in natural units).

• The neutron star mass M from the extended EoSs equals the heaviest mass M̂ observed
from neutron stars.

Note that there are 2 choices for the heaviest known neutron star: M̂ = 1.97M! [2] and M̂ =

2.40M! [62]. The latter are from black widow pulsar B1957+ 20 containing large uncertainties.
The Figure 2.6 represents the individual EoS that satisfy both constraints for the 2 cases. The
higher pressure generated by the EoSs, the stronger EoS is excluded because of the causality
and the mass measurement results. Additionally, the EOSs with large polytropic exponents are
strongly constrained by causality, therefore the maximal densities are limited while the softer
EoSs, the larger central densities. For M = 1.97M!, the maximal central density is ≈ 8.3ρs

while for M = 2.40M!, the maximal density reaches only ≈ 5.8ρs.
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Figure 2.6: Pressure P of the nuclear matter as a function of mass density ρ: The blue band at
low density is for CET nuclear matter with ci uncertainties. The gray area shows all possible
polytropic extensions, while that in aqua shows all EoSs that satisfy the causality condition
and support a neutron of mass M̂ = 1.97M! (left panel) and M̂ = 2.40M! (right panel).
Additionally, lines represent EoSs are labeled with colours to indicate the central density: yellow
for ρc ! 2.5ρs, orange for 2.5ρs ! ρc ! 5ρs and red for ρc " 5ρs: image from Ref. [45]

Figure 2.7: Three possible representative EoSs for Extended CET nuclear matter displayed in
a plot between pressure P and energy density ε with the uncertainty bands. The corresponding
mass-radius relation for the three Extended CET nuclear matter EoSs: image from Ref. [45]

As mentioned earlier, the uncertainty bands in the P vs ρ plots indicate that there are
many possible individual EoSs. Therefore, these possibilities could be represented by three
representative EoSs: stiff (red), intermediate (orange) and soft (green) extended CET EoS, as



35

shown in the Figure 2.7. We will define the general extension for CET EoSs in Chapter 4
numerically in great detail.



CHAPTER III

Holographic QCD and
Holographic Multiquark

In this chapter, we consider a brief review of the fundamental properties of QCD, including
asymptotic freedom, chiral symmetry breaking, confinement-deconfinement transition. Then,
we review a gauge-gravity duality and consider how the duality emerges from the study of
superstrings theories and branes. Next, there would be a review of holographic QCD followed by
the Sakai-Sugimoto model, a specific holographic QCD model, as the most similar holographic
model compared to the real QCD. After that, we focus on the holographic descriptions for
baryons and mesons. Lastly, in this chapter, we consider the holographic multiquark and the
thermodynamics of the multiquark state.

3.1 A Brief Review of QCD

According to the quark model of hadrons, there are 6 flavours (types) of quarks in the model
namely: up, down, charm, strange, top, and bottom. Nevertheless, their interactions are in-
dependent of their flavour. Instead, they are dependent on another quantum number called
“colour”. These are not actual colours. However, they have some analogies with a combination
of 3 colours of light, so that a combination of red, green and blue quarks results in a colourless
state. Generally, the interactions between quarks could be described by Quantum Chromo-
dynamics or QCD. It is a quantum non-abelian gauge field theory based on the quark model
where quarks interact with each other by exchanging colour charges via gluons. Additionally,
the interaction range between quarks is very short. Peculiarly, their interacting strength could
be described by a QCD coupling parameter, αs, which decreases as the energy scale increases. It
is known as asymptotic freedom in QCD. This implies that at low energy the coupling strength
becomes very large. Then quarks are confined within hadrons with the colourless bound state
condition for the stable hadrons. This is also known as colour confinement.

At a very high energy scale, results from perturbative calculations in QCD becomes
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accurate and precise, especially when the energy scale reaches beyond around 200 GeV since the
QCD coupling becomes weak, αs ≤ 0.1[63]. Therefore, in this range of energy, QCD becomes
perturbative, which is called “perturbative QCD” or in short “pQCD”. Only leading terms or tree
levels in the perturbative expansion are enough to determine various properties of interactions
among quarks. To be specific, based on observational data, the temperature for the quark
deconfinement is around 150 MeV or 1.7 × 1012 K [64]. This is also known as “ Hagedorn
temperature’’. Above the Hagedorn temperature, quarks and gluons become free from the bound
state and turn into quark-gluon plasma (QGP).

There are many important symmetries associated with the QCD Lagrangian both con-
tinuous symmetries e.g. Lorentz symmetry, and discrete symmetries e.g. SU(3)colour gauge
symmetry describing the interaction between quarks by exchanging colour charge via the glu-
ons. In the language of the field theory, symmetries associated with Lagrangian determine
conserved quantities or conservation laws. Any spontaneous symmetry breaking leads to the
existence of massive Goldstone bosons. Therefore, for the exact SU(3)colour symmetry gluons
are all massless. Another important discrete symmetry is an approximate SU(3)R × SU(3)L

chiral flavour symmetry of light quarks (u, d, s). Since the masses of the light quarks are small,
light quarks are all approximated to be massless called chiral quarks. However, at a low energy
regime, especially when the energy scale falls below 0.1 GeV, QCD becomes strongly coupled
and therefore breaks the chiral flavour symmetry. The broken SU(3)R × SU(3)L chiral flavour
symmetry of light quarks (u, d, s) leads to the mass generation of nucleons from the elemen-
tary light quarks. According to mass parameters in QCD, masses of free light quarks are very
small (2.2, 4.7, 93 MeV for u, d, s, respectively) compared to nucleons mass (mp ≈ 938 MeV).
Combining 2 up and 1 down valence quarks only give 9.1 MeV which is less than 1% of mp.
The broken chiral symmetry accounts for approximately 99% of nucleons masses. Additionally,
pseudo-Goldstone bosons are associated with chiral symmetry breaking. The explicit symmetry
breaking occurring at a low energy scale generates pseudo-Goldstone bosons e.g. π mesons as
effective interacting particles between nucleons.

At low energy, QCD becomes non-perturbative. Fortunately, the chiral effective field
theory (CET), as the effective theory for QCD, is still perturbative. Normally, the characteris-
tics of pseudo-Goldstone bosons might be determined by expanding CET around the perfectly
symmetric theory in terms of explicitly broken symmetry parameters. Other theoretical tools for
the strongly coupled gauge theory are lattice QCD approaches. They are well-established with
nonperturbative QCD but their numerical processes require very high computing performance.
For the review of CET and Lattice QCD, see Refs. [65] and [66], respectively.



38

3.2 Gauge/String Duality

During the development of 2nd evolution of the superstring theories, the discovery of the AdS/
CFT correspondence [20] resulted in a significant tool for strongly coupled gauge theories. Re-
markably, two theories specified in different dimensions are conjectured to be equivalent to each
other with a strong-weak duality is one of the most fascinating characteristics of the gauge/string
duality. As a result, this duality is commonly referred to as a ”holographic duality,” and the
description from string theory that is similar to that in QCD is referred to as ”holographic
QCD.” Hadrons in holographic QCD are defined by higher-dimensional structures using open
strings and D-branes wrapped around a non-trivial cycle in the particular background. Using
this duality, we could study the properties of hadrons at low energy.

Before delving into the fundamental concept of duality, we must first introduce an object
in perturbative superstring theories, namely strings and non-perturbative objects known as D-
branes. String theory uses a 10-dimensional string instead of a point particle to represent the
fundamental state of matter. A Dp-brane is a (p+1) dimensional object that connects the ends
of open strings. The open strings attached to the flat Dp-brane contain massless modes that
characterise U(1) gauge particles living on it. As a result, a U(1) gauge theory becomes fully
aware of in (p+1) dimensions. The gauge group is also upgraded to U(Nc) when Nc Dp-branes
are introduced in the same place.

At low energy, the coupling strengths of string theories become weak in the system con-
sisting of open strings connected to the D-branes decouples from gravity. The effective theory
of the system becomes U(Nc) supersymmetric theory. However, since D-branes typically couple
with gravity, spacetime is indeed curved. It is shown that the D-branes could be accurately
characterised as the equivalent curved background using a specific parameter. As a result, we
have two descriptions of the D-branes. In flat spacetime, one of these comes from gauge the-
ory, while in curved spacetime, the other from string theory. It is anticipated that these two
definitions are equivalent because they both describe the same D-brane system.

The most studied gauge/string duality is the AdS/CFT duality [20]. It is a duality
between two theories: type IIB superstring theory in Anti-de Sitter(AdS) background and 4-
dimensional or 4-Dim supersymmetric Yang-Mills theory, both attempting to describe the same
D3-branes system. Rigorously, AdS/CFT duality could be described as follows: “the weakly
coupled type IIB superstring theory on the AdS5 × S5 background at near horizon limit is
identical to the strongly coupled SU(Nc) supersymmetric Yang-Mills theory in 4-Dim at low
energy limit.”.
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3.3 Holographic QCD

In this part, we take a quick look into holographic QCD, which incorporates the notion of
gauge/gravity duality. Most of the review of holographic QCD here follows [67]. The following
descriptions will show how a low energy effective theory of hadrons could be obtained, and
especially how mesons and baryons could be realized from string theory.

Applying AdS/CFT duality to QCD can be done in D3/D7 branes system. There are
Nc D3 colour branes, representing interactions between quarks while Nf D7 flavour branes,
representing the existence of flavours in QCD, are added into the system as probe branes in
which its backreaction can be neglected. Correspondingly, mesons and baryons are replaced by
open strings connected on Nc D3-branes and open strings connected from Nc D3-branes to Nf

D7-branes [22].

Figure 3.1: Mesons and Baryons in AdS/QCD

The AdS/QCD is modified further by adding black D3 branes as a cut off to the sys-
tem (hard-wall model) to mimic confinement/deconfinement phase transition. However, chiral
symmetry breaking, one of the key aspects of QCD, is still not well captured by this system.

3.3.1 Witten-Sakai-Sugimoto Model

In 1998, E. Witten proposed using Nc D4-branes extended along x0∼4 directions (world vol-
ume directions), with an S1 compactification with an anti-periodic boundary condition in the
x4 direction as a holographic description of pure Yang-Mills[21]. Therefore, the shape of Nc

D4-branes becomes like a hollow cylinder where the tube extends along x5∼9 axial directions
(transverse directions).

The supersymmetry is completely broken by the anti-periodic boundary condition, and
U(Nc) Yang-Mills theory is realised as the effective theory of the open strings attached to the
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D4-branes at low energy. To make quarks appear in the system, Sakai and Sugimoto [26] insert

Figure 3.2: Replacement of D4-brane with the matching curved background: image modified
from Ref. [68]

Nf D8-D8 pairs stretched in x0∼3 and x5∼9 directions. In the compactified direction x4, the D8-
branes and D8-branes are inserted at antipodal points or opposite points in the circle S1. (See
on the LHS of Figure 3.2. A modification of the antipodal positions of the D8- and D8-branes
could be found later in Refs. [4, 29])

When the D4- and D8 (or D8)-branes are connected through open strings, the Nf massless
modes of the U(Nc) group turn into Nf massless quarks in U(Nc) QCD with at a low energy
limit. Accordingly, the corresponding chiral symmetry in QCD is realised in the D8-D8 system
with a U(Nf )L × U(Nf )R group. By replacing the D4-branes with the corresponding curved
background, the D8-D8 become connected. This is a basic setup for holographic QCD in Sakai-
Sugimoto(SS) model.

In the system, there are two key parameters. . The first is the radius of the S1, indicated
as M−1

KK, and the second is the ’t Hooft coupling λ = g2YMNc. Note that we cannot interpret
particles in Kaluza-Klein (KK) modes with masses of order MKK as real particles in QCD. As
a result, MKK, must be regarded as a cutoff for the model. The theory may be considered as
QCD below the cutoff.

Accordingly, the topology of the spacetime becomes R1,3 × R2 × S4, where R1,3 and R2

factors are parametrized by x0∼3 and (r, x4), correspondingly, while S4 represent the 4-sphere
in the x5∼9 directions. Since the D8-branes are considered as a probe, the backreaction to the
spacetime could be ignored. This is known as probe approximation and valid when Nc >> Nf .
Hence, U(Nf )L × U(Nf )R turns into U(Nf ). This leads to a broken chiral symmetry in QCD.
Attachment of open strings is required when the D4-brane is wrapped around the 4-sphere S4

due to the RR current in the background.

Hadrons are beautifully realized in the Sakai-Sugimoto model. As seen in Figure 3.3,
mesons and baryons in the model could be represented by open strings connected to the in-
tersection between D4- and D8-branes or D4/D8 branes and D4-branes wrapped on S4, corre-
spondingly.When connected to the D4/D8-branes, each open string holds two flavour indices;
therefore, the system of open strings and D4/48-branes could consistently represent mesons.
Despite not stating the details here, it has been investigated that the D4-brane wrapped on the
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Figure 3.3: Hadrons in the model: image modified from Ref. [67]

S4 has to have Nc open strings attached to it because of the RR flux in the background [21,
69]. Due to the RR current in the background [21, 69], there must be Nc open strings attached
to the wrapped D4-brane on S4. Hence, the higher dimensional object could be interpreted as
quarks in large Nc QCD.

3.3.2 Mesons

The effective theory of open strings attached to the D4/D8-branes may be used to represent
mesons. We could determine the 5-Dim U(Nf ) gauge theory by starting with the effective
D8-brane action and then integrating it over the S4 direction:

S5-Dim # SYM + SCS, (3.1)

where

SYM = κ

∫
d4xdzTr(1

2
h(z)F 2

µν + k(z)F 2
µν),

SCS =
Nc

24π2

∫

5-Dim
ω5(A), (3.2)

and h(z) = (1 + z2)−1/3 and k(z) = 1 + z2 where µ, ν = 0, . . . , 3 refer to the four dimensional
coordinates, and z is an extra-dimension in the worldvolume. The factor κ in SYM scales as
λNc, while ω5(A) in SCS represents the Chern-Simon 5-form field. According to the holographic
setup, the 5-Dim gauge could be expressed as

Aµ(x
µ, z) =

∑

n≥1

B(n)
µ (xµ)ψn(z),

Az(x
µ, z) =

∑

n≥0

ϕ(n)(xµ)φn(z), (3.3)

where we use complete sets {ψn}n≥1 and {φn}n≥0 as functions of z to expand the 5-Dim gauge
field with B(n)

µ and ϕ(n) representing 4-Dim vector and scalar fields, respectively. Note that by
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absorbing ϕ(n), the vector field B(n)
µ becomes massive, but mass of ϕ(0) remains zero. Corre-

spondingly, the isovector particles such as B(1)
µ , B(2)

µ , B(3)
µ could be interpreted as the ρ-meson,

a1-meson, ρ′-meson, respectively, while the scalar particle ϕ(0) could also be interpreted as
the pion. Additionally, parity, spin, and charge conjugation also agree with the clarification.
Additionally,since the pions are the Goldstone bosons with the spontaneous chiral symmetry
breaking, then ϕ(0) could be interpreted as the pion field. Those pions should be massless given
that they are composed of massless quarks.

Applying the expansions in Eq. (3.3) to the 5-Dim action in Eq. (3.2) then integrating
over z, we could attain an effective action of the traditional mesons in 4-Dim as:

S5-Dim # S4-Dim(π, ρ, a1, ρ
′, a′1). (3.4)

Meson’s masses and the couplings associated with interactions among the meson multiplets can
be determined from the effective action in Eq. (3.4). The eigenequation for the mesons B(n)

µ

could be achieved when choosing the complete set {ψn}n≥1 as a set of eigenfunctions that satisfy

−h(z)−1∂z(k(z)∂zψn(z)) = λnψn(z), (3.5)

where the eigenvalue for Eq. (3.5) is λn. Consequently, their mass are expressed as
√
λnMKK.

Accordingly, it can be shown that the eigenvalues λn(n = 1, 2, 3, . . . ).

Choosing 0 < λ1 < λ2 < . . . , the coupling constants could be determined from Eq. (3.4).
For instance, the coupling gρππ for ρ− π − π interaction is

gρππ =
1

π

∫
dzk(z)−1ψ1(z). (3.6)

Masses and couplings are evaluated numerically and some of the results have been reported in
Table 3.1 and Table 3.2 below.

mass SS model experiment
ρ [776 MeV] 776 MeV
a1 1189 MeV 1230 MeV
ρ′ 1607 MeV 1465 MeV

Table 3.1: Masses in the SS model: table from Ref. [67]
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coupling SS model experiment
fπ [92.4 MeV] 92.4 MeV
L1 0.58× 10−3 (0.1 ∼ 0.7)× 10−3

L2 1.2× 10−3 (1.1 ∼ 1.7)× 10−3

L3 −3.5× 10−3 −(2.4 ∼ 4.6)× 10−3

L9 8.7× 10−3 (6.2 ∼ 7.6)× 10−3

L10 −8.7× 10−3 −(4.8 ∼ 6.3)× 10−3

gρππ 4.8 6.0
gρ 0.16 GeV2 0.12 GeV2

ga1ρπ 4.6 GeV 2.8 ∼ 4.2 GeV

Table 3.2: Couplings in the SS model: table from Ref. [67]

Additionally, the 5-Dim action of meson obtained in Eq. (3.4) could reproduce a lot of
former phenomenological models of hadrons. For more information see Ref. [67].

3.3.3 Baryons

As mentioned earlier, baryons can be represented by the wrapped D4-branes on S4. In fact, a
soliton in the gauge theory could be realised on the D4/D8-brane system [71]. In the Sakai-
Sugimoto (SS) model, 5-Dim gauge theory, baryons can be described as a soliton with the
instanton number is given by

1

8π2

∫

R4

Tr(F ∧ F ) = NB , (3.7)

where R4 is the 4-Dim space parameterized by {(x1∼3, z)} and NB could be interpreted as the
baryon number. Equivalently, the existence of solitons as the Skyrme model’s description of
baryons or Skyrmions [72, 73] emerges from a specific configurations in the 5-Dim non abelian
gauge theory. Various characteristics of baryons can be analysed using the techniques in the
Skyrme model [74]. Eventually, the baryon’s spectrum could be acquired as in Figure 3.4.

The numerical result of the baryon spectrum (LHS of Figure 3.4) resembles that of the
parameters from the experimental data (RHS of Figure 3.4). For instance, the lightest and
second lightest baryons are the states with JP = 1

2

+ and JP = 3
2

+, respectively, the second
lightest baryon with JP = 1

2

+ (JP = 3
2

+) and the lightest one with JP = 1
2

− (JP = 3
2

−) are
almost degenerate, etc. It should be emphasized that the latter feature the latter property had
been a puzzle in hadron physics since it denies the naive analysis based on the quark model.
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Figure 3.4: Baryons spectrum in the SS model: image from Ref. [67]

3.4 Holographic QCD for Deconfined Matter

We have already mentioned the holographic configuration that could represent mesons and
baryons in the former sections. However, apart from mesons and baryons, the deconfined states
of quarks could be described by the holographic model at temperatures above the deconfinement
as well. In this section, we provide descriptions for a deconfined matter based on the holographic
SS model from Ref. [4].

According to Ref. [4], the D4/D8/D8-brane configurations that the positions of D8 and
D8 branes are generalized so that they are not necessary to be antipodal but separated by L0.
Accordingly, there are 3 stable configurations in the deconfined phases (see in Figure 3.5) based
on the force balance condition:

(a) the parallel configuration of both D8- and D8-branes representing the quark-gluon plasma
χS-QGP,

(b) the connected D8/D8 without sources in the bulk interpreted as the vacuum state,

(c) the connected D8-D8 branes with the D4-brane as the baryon vertex embedded in the
middle of the D8 and D8 describing the multiquark state.

3.4.1 Holographic Multiquark Configuration

As indicated in Ref. [4], the D4 baryon vertex that represented baryon could be generalized
further by many possible rearrangements of how strings join the vertex. It was found that
holographic multiquark is a stable holographic configuration for deconfined QCD matter by
considering the balancing force condition. The holographic multiquark could be described by
the holographic structure that consists of the total number of strings Nc attached to the D4/
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Figure 3.5: Deconfined matter the SS model: image from Ref. [4]

D8/D8 brane system with a number of strings kr extending in the radial direction of the AdS
space from the vertex down to the horizon, called “radial strings”, as well as, the remaining
number string kh = Nc– kr connecting among the D4/D8/D8 branes system and the vertex
called “hanging strings”.

According to holographic duality in the SS model, dynamics of strongly coupled multi-
quark in 5 dimensional SU(Nc) gauge theory could be described by the weakly coupled holo-
graphic configuration of the multiquark in the type IIA supergravity (superstring theory) defined
in 10 dimensions. Therefore, to describe the deconfined matter at finite temperature using the
SS model, let’s first consider the metric of the 10-Dim spacetime written as

ds2 =

(
u

RD4

)3/2 (
f(u)dt2 + δijdx

idxj + dx4
2)+

(
RD4
u

)3/2(
u2dΩ2

4 +
du2

f(u)

)
. (3.8)

Given that the dilaton field, the 4-form field strength, and the radius of curvature of the spacetime
configuration are

eφ = gs

(
u

RD4

)3/4

, F(4) =
2πN

V4
ε4, R3

D4 ≡ πgsNl3s ,

respectively, while
f(u) ≡ 1− u3

T /u
3, uT = 16π2R3

D4T
2/9.

The configuration is compactified with a periodicity 2πR transversely to the D8/D8 branes in
x4 direction. The volume of the unit 4-sphere Ω4 is represented by V4 while ε4 is a volume of
the 4-form. Additionally, ls is the string length, F(4) is the 4-form field strength, and gs is the
string coupling.

Holographically, the dynamics of the configuration could be described by the Dirac-Born-
Infeld or DBI action of D8/D8 written as

SD8 = −µ8

∫
d9Xe−φTr

√
−det(gMN + 2πα′FMN ) (3.9)
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where FMN is the component of field strength of the U(Nf ) flavour group on the brane system
given by

F = dA+ iA ∧A. (3.10)

The gauge field A with U(Nf ) symmetry could be decomposed into SU(Nf ) represented by A

and U(1) part denoted by Â:
A = A+

1√
2Nf

Â. (3.11)

Note that only the diagonal part of U(Nf ) remain the same. Finally, the metric gMN is induced
on the D8-branes world volume.

The total action of the holographic multiquark phase is given by

S = SD8 + SD4 + S̃F1, (3.12)

where SD8, SD4 is the DBI action of the connected D8-branes, that of the D4-brane wrapped
on S4, respectively and the action of kr radial strings stretching from the baryon vertex to the
horizon is denoted by S̃F1.

To describe the U(1) gauge field defined on the D8/D8-brane, let’s consider the action of
the connected D8-branes

SD8 = N

∫ ∞

uc

du u4
√

f(u)(x′
4(u))

2 + u−3(1− (â′0(u))
2), (3.13)

where N = (µ8τNfΩ4V3R5)/gs, and U(1) diagonal field is rescaled to â = 2πα′Â/(R
√

2Nf ).
Location of the vertex in the radial direction denoted by uc is estimated from the balance
condition of the D4/ D8-strings configuration (see Appendix A of Ref. [4]), where u0 is the
position that x′

4(u0) = 0 (see on (c) of the Figure 3.5). The action of source term consisting of
the D4-branes and strings, SD4 + S̃F1, are given by

Ssource = Nn

[
1

3
uc

√
f(uc) + ns(uc − uT )

]
, (3.14)

where n is a number density of multiquark, ns = kr/Nc is the ratio of number of radial strings
divided by the total number of strings joining the vertex. Holographically, the ratio ns represents
the relative colour charges per a multiquark state.

3.4.2 Thermodynamics of Holographic Multiquark

Consider the UB(1) symmetry corresponding to the diagonal part of the global flavour symmetry,
U(Nf ), provided by the Nf flavour branes. Holographically, the baryon chemical potential µ is
the conjugate of the UB(1) charge. Therefore, we could identify µ in the gauge theory side with
the zeroth component A0 of the gauge field at the boundary [75]. Hence,

µ = â0(∞). (3.15)
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According to the holographic duality, we could identified the grand canonical potential density
with the classical solution of the D8-branes action [76]:

Ω(µ) =
1

N
SD8[T, x

′
4(u), â0(u)]classic. (3.16)

To change the dependency on the variable â0(u) in SD8 to the multiquark number density
of UB(1) gauge field, n(u) in S̃D8, the free energy could be expressed as a combination of the
grand potential in Legendre-transformation form and the additional source term in Eq. (3.14).
We could determine the baryon chemical potential by evaluating the partial derivative of the
free energy density with respect to the number density:

µ =
∂

∂n

1

N

(
S̃D8[T, x

′
4(u), n(u)]classic + Ssource(n, uc)

)
(3.17)

where the Legendre-transformed action S̃D8 is

S̃D8[T, x
′
4(u), n(u)] = SD8[T, x

′
4(u), â0(u)] +N

∫ ∞

uc

n(u)â′0(u)du (3.18)

=

∫ ∞

uc

duu4
√
f(u)(x′

4(u))
2 + u−3

√
1 +

n2(u)

u5
. (3.19)

By using the holographic dictionary, baryon number density could be written as

n(u) = − 1

N

δSD8
δâ′0(u)

=
uâ′0(u)√

f(u)(x′
4(u))

2 + u−3(1− (â′0(u))
2)

= const. (3.20)

The other constant of the configuration is

(x′
4(u))

2 =
1

u3f(u)

[f(u)(u8 + u3d2)

F 2(uc, d, T, ns)
− 1
]−1

= const, (3.21)

where F (uc, d, T, ns), given by

F 2(uc, n, T, ns) = u3
cf(uc)

(
u5
c + n2 − n2η2c

9f(uc)

)
, (3.22)

where
ηc ≡ 1 +

1

2

(
uT

uc

)3

+ 3ns

√
f(uc). (3.23)

We could determine the form of F (uc, n, T, ns) by considering the force condition at the uc. For
more details see the Appendix of Ref. [4].

Using the description of x4 in Eq. (3.21), and fixing the constraint for the separation L0

between D8- and D8-branes to L0 = 2
∫∞
uc

x′
4(u)du = 1, we get

µ =

∫ ∞

uc

â′0(u) +
1

N

∂Ssource
∂n

∣∣∣∣
T,L0,uc

, (3.24)

where the later term represents the contribution from the sources, µsource. For more information
on the calculations see Refs. [4, 29]
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We could determine the thermodynamic properties of the multiquark from the relations
mentioned earlier. According to Ref. [4], we have already investigated that the multiquark state
is more preferred over another deconfined nuclear matter in the conjectured phase diagram at
any moderate temperature from that above the deconfinement to the chiral symmetry restoration
temperature and at the finite quark chemical potential.

3.4.3 Equation of State of Holographic Multiquark

To determine the EoS, we need the chemical potential as well as the grand canonical potential
density of the holographic multiquark written as

µ =

∫ ∞

uc

du

[
1− F 2(uc, n, T, ns)

f(u)(u8 + u3n2)

]− 1
2 n√

u5 + n2

+
1

3
uc

√
f(uc) + ns(uc − uT ). (3.25)

Ω =

∫ ∞

uc

du

[
1− F 2(uc, n, T, ns)

f(u)(u8 + u3n2)

]− 1
2 u5

√
u5 + n2

, (3.26)

With grand potential density Ω in Eq. (3.26) and chemical potential µ in Eq. (3.25) of the
holographic multiquark, the EoS could be determined from following thermodynamic relations:

dGΩ = −PdV − SdT −Ndµ. (3.27)

Note that we could reduce number of variables in the thermodynamics relation above by consid-
ering their volume-density form so that S, N and GΩ are replaced by s, n and Ω, respectively;
where

P = −GΩ/V ≡ −Ω(T, µ). (3.28)

Suppose that the multiquarks are uniformly distributed, the number density of multiquark could
be obtained from

n =
∂P

∂µ
(T, µ). (3.29)

By rearranging the relation with the chain rule,

∂P

∂n

∣∣∣∣∣
T

=
∂µ

∂n

∣∣∣∣∣
T

n, (3.30)

then we could determine the pressure P from the given the number density n and chemical
potential µ as

P (n, T, ns) = µ(n, T, ns) n−
∫ n

0
µ(n′, T, ns)d(n

′). (3.31)

Note that the pressure vanishes when n = 0 or no QCD matter presents.
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EoS for Low Density Holographic Multiquark

At very low number density n, ηc converges to η0 + O(n) as

η0 ≡ 1 +
1

2

(
uT

u0

)3

+ 3ns

√
f(u0), (3.32)

as uc turns into u0. From Eq. (3.25), the baryon chemical potential at low n limit can then be
approximated to be

µ # µsource + α0n− β0(ns)n
3, (3.33)

where

µsource ≡ 1

3
uc

√
f(uc) + ns(uc − uT ),

α0 ≡
∫ ∞

u0

u−5/2

1− f0u8
0

fu8

,

β0(ns) ≡
∫ ∞

u0

u−5/2

2
√
1− f0u8

0
fu8

×
[

f0u3
0

fu8 − f0u8
0

(
1− η20

9f0
− u5

0

u5

)
+

1

u5

]
. (3.34)

Replacing the chemical potential in Eq. (3.31) with Eq. (3.33), we could express the pressure at
very small n as

P (n) # α0

2
n2 − 3β0(ns)

4
n4. (3.35)

EoS for High Density Holographic Multiquark

At very large n and relatively low T , the baryon chemical potential could be expressed as

µ # µsource +
n2/5

5

Γ
(
1
5

)
Γ
(

3
10

)

Γ
(
1
2

) +
u3
cfc
10

(
1− η2c

9fc

)
n−4/5Γ

(
− 2

5

)
Γ
(
19
10

)

Γ
(
3
2

) (3.36)

where the value of integration u5
c/n

2 is approximately zero as n becomes very large. Similarly,
the pressure could be determined from Eq. (3.31) and Eq. (3.36) as

P # 2

35

(
Γ
(
1
5

)
Γ
(

3
10

)

Γ
(
1
2

)
)
n7/5. (3.37)

Note that the energy density ρ in both cases can be found through the relation dρ = µdn.



CHAPTER IV

Equation of State (EoS) for
Massive Neutron Stars with

Holographic Multiquark Cores

In this chapter, we consider the overall picture of EoS for massive neutron stars with the mul-
tiquark core. For densities below 104 g cm−3, the EoS for nuclear matter in this range could
be obtained from Ref. [42]. For densities between 104 and 4.3× 1011 g cm−3, the point of neu-
tron drip, the EoS of the nuclear matter could be determined from calculations based on the
effect of Coulomb lattice and nuclear mass extrapolation data from [43]. From densities between
4.3×1011 and 1.34×1014 g cm−3, the EoS could be determined from the calculations in Ref. [44,
49] based on standard nuclear physics or equivalently effective field theory based on two-nucleon
interaction which include the effects of hyperons. For the density ranging from ρs/2 = 75.2

MeV fm−3(1.34 × 1014g cm−3) up to ρ1 = 1.1ρs = 165.3 MeV fm−3(2.94 × 1014 g cm−3), the
EoS could be evaluated from the CET calculations based on chiral two-nucleon (2N) and three-
nucleon (3N) interaction based on Ref. [77] where only the long-range two-pion-exchange parts
of the 3N interactions contribute. For the densities beyond ρ1, the further extensions of EoS
for the nuclear matter could be determined, following Ref. [45]. However, at high densities,
the existence of multiquark states is expected in the core of massive neutron stars. After that,
we present the important results from Ref. [78] that the state of matter in the core of massive
NS could be multiquark. The EoS for multiquark could be described alternatively by using
a specific holographic QCD model called the “Sakai-Sugimoto” (SS) model, following Ref. [5].
Finally, we consider the phase transition between nuclear matter and multiquark matter with
beta equilibrium.
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4.1 Nuclear Matter EoS from Ultra-Low to Intermediate

Density Regime

For simplicity, the EoS for nuclear matter from the ultra-low density to the intermediate density
regime would be joined and fitted numerically into connected piecewise polytropes. It could be
described as follows:

4.1.1 Nuclear Matter EoS at Ultra-Low Densities

EoS of the ultra-low-density crust could be obtained from Table 7 of Ref. [45] as a combination
of EoSs from Refs. [43, 44, 49], it can be numerically fitted from polytropic EoSs below:

P (ρ) = κaρ
Γa + αa, for 0 ≤ ρ ≤ ρa, (blue)

P (ρ) = κbρ
Γb , for ρa ≤ ρ ≤ ρb, (green)

P (ρ) = κcρ
Γc , for ρb ≤ ρ ≤ ρc, (orange)

P (ρ) = κdρ
Γd , for ρc ≤ ρ ≤ ρd, (red)

(4.1)

where (κa,Γa,αa) = (280.00, 2.0000, −6.0000×10−21) and (κb,Γb) = (2.15247×10−3, 1.22213),
(κc,Γc) = (9.08176× 10−4, 0.622687), (κd,Γd) = (3.70286× 10−4, 1.61786), while (ρa, ρb, ρc, ρd)

= (2.66284 × 10−7, 0.237033, 2.46333, 75.1364) given that the density and the pressure are
in MeV fm−3 unit. The numerically fitted EoS for ultra-low densities could be shown in the
Figure 4.1. The colours inside the round brackets behind the Eq. (4.1) are used to indicate each
EoSs in different sub-regime for this density range.

4.1.2 Nuclear Matter EoS at Low Densities

At densities between 75.1364 MeV/fm3 < ρc2 < 165.3 MeV/fm3, the EoS could be determined
from the Eqs. (2.134) and (2.133) and their values have been expressed in the Table 5 of Ref. [45].
Similarly, the pressure and energy density could also be numerically fitted and written as

P (n̄)/T0 =
2

3
n0a1n̄

5/3 + n0b1n̄
2 + γn0c1n̄

γ+1, (4.2)

where n̄ = n/n0 and

ρ(n̄)c2/T0 = a0n̄
5/3 + b0n̄

2 + c0n̄
γ+1, (4.3)

for T0 = 36.84 MeV and dimensionless parameters a0 = 176.209, b0 = −250.992, c0 = 100.253.
Due to ci uncertainties in the low-energy coupling terms in the leading chiral 3N interactions,



52

Figure 4.1: Numerical fitting EoS for ultra-low densities nuclear matter, corresponding to Table 7
of Ref. [45] where the pressure P is plotted against the mass density ρ

the EoS spans into a narrow band. Correspondingly, the upper limit and the lower limit of the
EoS band could be represented by the dashed blue lines in Figure 4.2 and Figure 4.4) where
(a1, b1, c1) = (1.55468, −2.50096, 1.44835) and (1.33832, −2.0337, 1.07001), respectively.

4.1.3 Nuclear Matter EoS at Intermediate Densities

For intermediate density, the general extensions of EoS for CET nuclear matter from Section 2.3
could be expressed empirically as shown in the Figure 4.4. Stiff, intermediate and soft piecewise
polytropes at higher densities from Ref. [45], individually with different corresponding powers
Γ1,Γ2 and Γ3, can be displayed in the Figure 4.2 and written as follows:

P (ρ) = κ1ρ
Γ1 , for ρ1 ≤ ρ ≤ ρ12,

P (ρ) = κ2ρ
Γ2 , for ρ12 ≤ ρ ≤ ρ23,

P (ρ) = κ3ρ
Γ3 , for ρ23 ≤ ρ ≤ ρmax.

(4.4)

The general extensions of nuclear matter EoS could be expressed in terms of density ρ ≡ mn as
follows:

1. the stiff EoS (dashed-red line in Figure 4.2) has the exponents (Γ1,Γ2,Γ3) = (4.5, 5.5, 3.0)
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where (ρ12, ρ23, ρmax) = (1.5ρs, 2.0ρs, 3.3ρs) and (κ1,κ2,κ3) = (11.6687, 51.7666, 2.56345),

2. the intermediate EoS (dashed-orange line in Figure 4.2) has the exponents (Γ1,Γ2,Γ3) =

(4.0, 3.0, 2.5) where (ρ12, ρ23, ρmax) = (3.0ρs, 4.5ρs, 5.4ρs) and (κ1,κ2,κ3) = (2.89711,
1.30607, 1.07402), and

3. the soft EoS (dashed-green line in Figure 4.2) has the exponents (Γ1,Γ2,Γ3) = (1.5, 6.0, 3.0)

where (ρ12, ρ23, ρmax) = (2.5ρs, 4.0ρs, 7.0ρs) and (κ1,κ2,κ3) = (0.0321845, 2.63607, 0.572502),

where the density and pressure are also in GeV fm−3 unit, given that the saturation density is
ρs = 0.150273 GeVfm−3.

Figure 4.2: EoS for massive neutron stars consisting of EoS for Extended CET Nuclear and CET
matter where the pressure P is plotted against the mass density ρ

4.2 EoS of Multiquark Matter at High Densities

Now let’s consider multiquark matter using the holographic model. According to our former
work on the thermodynamics of holographic multiquark [5], we obtained EoS of the multiquark
state as shown in Figure 4.3. The log P v.s. log n graph could be used to evaluate the EoS
of the multiquark where n is a number density of multiquark relating to density ρ(n). The
EoS of the multiquark matter could be described holographically and then approximated in two
different limits. At high density, pressure is insensitive to relative colour charge per multiquark
ns; however, at low density, the pressure slightly decreases as ns increases.
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Figure 4.3: Pressure P of the multiquark matter vs. multiquark number density n: image
adapted from Ref. [5]

4.2.1 EoS of Low Density Multiquark (mql) at High Densities

As reported by Ref. [5], the EoS of mql matter in dimensionless unit can be summarized as
follows: at small number density of multiquark n,

P (n) = an2 + bn4, (4.5)

µ(n) = µ0 + an+
4

3
bn3, (4.6)

ρ(n) = µ0n+ an2 +
b

3
n4, (4.7)

where µ0 = µ(nmq = 0) is the initial value of the multiquark chemical potential defined as its
number density approaches zero. For ns = 0, a = 1, b = 0, µ0 = 0.17495 while for ns = 0.3, a =

0.375, b = 180.0, µ0 = 0.32767. Note that to estimate µ(n) and ρ(n), we use the thermodynamics
relation,

µ(n) =

∫ η

0

1

η

∂P (n)

∂η
dη + µ0, (4.8)

ρ(n) =

∫ η

0
µ(η)dη + ρ0, (4.9)

for the given pressure P (n).

4.2.2 EoS of High Density Multiquark (mqh) at High Densities

At large n, the EoS for mqh matter takes the following form

P (n) = kn7/5, (4.10)
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µ(n) = µc +
7

2
kn2/5, (4.11)

ρ(n) = µcn+
5

2
n7/5, (4.12)

where the transition between high and low density multiquark could be indicated by the critical
number density nc together with their chemical potential µ(nc) = µc at the critical density. For
ns = 0 : nc = 0.215443, µc = 0.564374, while for ns = 0.3 : nc = 0.086666, µc = 0.490069, where
for both cases k = 10−0.4.

Figure 4.4: EoS for massive neutron stars consisting of EoS for mqh, mql, Stiff Extended CET
nuclear matter, CET nuclear matter and standard nuclear matter as density decreases from high
(multiquark cores) to low (nuclear matter crusts)

4.3 Phase Transitions between Deconfined Multiquark Mat-

ter and Confined Nuclear Matter

In this section, we consider phase transitions between the extended nuclear matter and the
multiquark matter. For thermodynamic consistency, we consider the transitions through the
relation between pressure and multiquark chemical potential per quark or P −µq diagram of the
extended-CET-nuclear matter and that of the multiquark matter as shown in the Figure 4.5.
Note that the empirical extension of EoSs leaves incomplete description on the field theory side,
therefore we exclude ourselves from the explanation on the phase transition using complete
knowledge of CET.

According to Ref. [4, 5], at extremely high pressure and density, baryons get compressed
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against one another tightly at a low temperature (T << 1012 K, below the confinement temper-
ature), that quarks within hadron start dripping freely among the baryons. Strong interaction
between quarks, described by exchanging colour charges between gluons, is still nonperturbative.
Correspondingly, the baryonic matter may turn into multiquark nuclear matter, with the many
quarks forming bound states through the remaining strong interaction in the deconfined vacuum.
To consider the phase transition, we compare the free energy by assuming that the onset value
of quark chemical potential for baryonic matter is the same as that of the multiquark phase,
following Ref. [79];

Figure 4.5: Comparison on the pressure P vs. the quark chemical potential µq between Extended
CET nuclear matter and that of multiquark matter

µmq,0 =
µb,0

3
Nq = µq,0Nq, (4.13)

where the number of quarks per multiquark is Nq, and the initial value of the quark chemical
potential is µq,0. Following the Ref. [79], we set µq,0 = 308.55 MeV, concerning the nuclear EoS.
Note that fixing µmq,0 in the SS model also results in setting the energy density scale εs, allowing
Nq to be determined later. Due to a jump in density at the transition between the multiquark
and nuclear matter phase, it is assumed to be first order.

As illustrated in Figure 4.5, the P −µq diagram could be used to determine the transition
point. Given that both states have the same pressure, the thermodynamically preferred phase
will have lower quark chemical potentials. For ns = 0, 0.3, there are possible three options for
phase transitions between multiquark and the extended CET nuclear matter depending on the
energy density scale εs = 23.2037, 26, 28 GeV fm−3. Thermodynamically, we found that the
colourless multiquark represented by ns = 0 is always less preferred than the nuclear matter.
We choose εs within the minimal range of values that result in the NS masses restricted by recent
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observations. Additionally, εs are set to achieve nice interpolations from the nuclear matter EoS
from CET at low densities to free quark EoS from pQCD at high densities. This will be discussed
in the next section.

The P − µq diagram for multiquark starts crossing the stiff CET EoS for nuclear matter
when setting between εs ≥ 26 GeV fm−3. Beyond µq = 374.0 MeV, the multiquark state is more
preferred over the stiff nuclear matter with εs = 26 GeV fm−3, ns = 0.3. For εs = 26− 28 GeV
fm−3, the number of quark N per multiquark could reach # 25− 30 (around 8− 10 baryons) in
the the core of massive NS.

As shown in Figure 4.5, the colourless multiquark phase (ns = 0) is always less preferred
thermodynamically than all of the extended nuclear EoS. However, the extended CET EoSs
are just empirical. Therefore, we exclude the possibility of the colourless multiquark from our
consideration. Interestingly, the ns = 0.3 multiquark EoS is similar to the stiff nuclear matter
EoS. This demonstrates that the stiff CET nuclear EoS at high densities is a good extension
(the multiquark and stiff EoS overlap almost completely for εs # 25 GeV fm−3). Given that
thermodynamically, the multiquark state is less preferred than moderate and soft nuclear EoS,
we shall restrict our analyses at most for the NS with multiquark core and the extremely strong
nuclear crust from now on.

For any ancient NS, the temperature inside becomes very low compared to the confinement
temperature as the NS has been cooled down by the direct Urca processes and eventually reaches
thermal equilibrium with a beta stability condition. Correspondingly, the baryon chemical po-
tential and neutrino emission would be suppressed as the beta stability and charge neutrality
keep going on. Consider the beta equilibrium

n → p+ e+ ν̄e,

p+ e → n+ νe, (4.14)

which results in

µn = µp + µe. (4.15)

The electrons and protons are restricted inside the star due to strong gravitational attraction,
which can be described as degenerate Fermi gases. As the number of protons and electrons
grows, the Fermi energies also increase and vice versa. Eventually, the number of n, p and e

become constants when

EF,n = EF,p + EF,e, (4.16)

where the Fermi energy of fermion i = n, p, e is denoted by EF,i # µi. Since low to moderate
temperatures, EF,i # n2/3

i /mi, then the contribution from Eq. (4.16) dominates. Therefore, the
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numbers of protons and electrons, np = ne, are much less than that of the neutrons. As nuclear
matter turns into the multiquark state with the beta equilibrium condition, it requires that

EF,mq = EF,mq′ + EF,e, (4.17)

where EF,mq, EF,mq′ represent the Fermi energy of the multiquark before and after beta decay, re-
spectively. As written in Eq. (4.16), the charge neutrality requires nmq′ = ne. Since multiquarks
are around 8-10 times more massive than baryons, meanwhile the number density is reduced by
the same factor, i.e., mmq = fmb, nmq = nb/f , for f # 8− 10, then EF,mq = f−5/3EF,b, which
is about 2-3% of EF,b. To satisfy Eq. (4.17), the Fermi energy of the electron must be reduced
even further at beta equilibrium. As a result, the number of electrons and electrically charged
multiquarks becomes much lower after stiff nuclear matter turn into multiquark. Nevertheless,
when considering the beta equilibrium, the existence of the multiquark is relatively common due
to the electron suppression.

4.4 Matching between the EoS for the Holographic Multi-

quark and that for the Extended Nuclear Matter

The crucial results in Figure 1 and Figure 2 of the Ref. [1] imply that the interpolation between
two different EoSs, the free quark EoS at high density described by pQCD and nuclear matter
EoS at low density provided by CET could be achieved by connected EoS roughly with two
different power laws. According to our previous work on the multiquark states based on the
holographic SS model [5], it was found that the multiquark phase dominates at high density
and low temperature. As illustrated in Figure 4.4, a reasonable interpolating EoS of ns = 0.3

multiquark matter can be obtained by tuning εs = 23.2037 GeV fm−3. This results in a transition
density ρc = 0.8028 GeV fm−3 as suggested by a joint between the average empirical EoS
represented by the green dashed line connecting the extension of pQCD EoS and that of CET
nuclear matter EoS together. Although the interpolation caused by the EoS looks nicely, it is
not thermodynamically preferable over the extended CET nuclear states. Setting εs = 26 GeV
fm−3, not only the multiquark state is thermodynamically preferable to the stiff nuclear matter
but also provides a decent interpolation between high and low density, as seen in Figure 4.4.
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Modeling Neutron Stars

This chapter demonstrates how to model the structure of massive NS by implementing the
hybrid EoS of the NS with holographic multiquark (MQ) core defined in Chapter 4 into Tolman–
Oppenheimer–Volkoff (TOV) equation. The NS was assumed to be spherically symmetric, static
and in gravitational balance. Solving TOV equation, we could study the structure inside NS
by determining how pressure P (r) changes with radius r, how the pressure’s gradient relates
to density ρ(r) and how much mass was accumulated from the centre m(r). Then, we present
the results from Ref. [78] that consider MR diagram of massive NSs with holographic MQ cores
associated with ns = 0.3, εs = 26(28) GeV fm−3 compared to pure MQ stars with ns = 0.3, εs =

23.2037(26) GeV fm−3. Lastly, we consider how the proton-baryon ratio and temperature affect
the MR diagram.

5.1 Tolman–Oppenheimer–Volkoff (TOV) Equation

This section consider how could we model any static, spherically symmetric star containing a
perfect fluid. Generally, metric components for the star are given by:

ds2 = gµνdx
µdxν = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2sin2θdφ2 (5.1)

where the metric above is written in geometrical unit that G = c = 1. In a comoving frame,
components of stress-energy tensor of the fluid are

T t
t = ρ(r) and T r

r = T θ
θ = Tφ

φ = −P (r) (5.2)

where ρ(r) and P (r) are density and pressure of the fluid meanwhile the four velocity of the
perfect fluid could be normalized by uµuµ = 1. Consider Einstein’s field equation,

8πTµν = Gµν . (5.3)

The Gtt component of Einstein’s field equation is

8πρ(r)eν(r) =
eν(r)

r2

(
1− d

dr

(
re−λ(r)

))
. (5.4)
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Integrating (5.4) from 0 to r, we have

e−λ(r) = 1− 2m(r)

r
(5.5)

given that m(r) is an accumulated mass from its center to the radius r, where it satisfies m(0) = 0

corresponding to λ(0) = 0 and
dm(r)

dr
= 4πr2ρ(r). (5.6)

Also, the Grr component of Einstein’s field equation could be expressed as

8πP (r)eλ(r) =
1− eλ(r) + rν′(r)

r2
(5.7)

which can be simplified further by using (5.5)

dν(r)

dr
=

1

r

(
1− 2m(r)

r

)−1(2m(r)

r
+ 8πr2P (r)

)
,

dν(r)

dr
= 2

m(r) + 4πr3P (r)

r(r − 2m(r))
. (5.8)

We could obtain TOV equation from the conservation in radial direction ∇µTµ
r = 0, written as

0 = −dP (r)

dr
− 1

2
(P (r) + ρ(r))

dν(r)

dr
,

dP (r)

dr
= −

(
4πr3P (r) +m(r)

r(r − 2)

)
(P (r) + ρ(r)) (5.9)

where we have used Eq. (5.8) to rearrange the TOV equation into an expression in Eq. (5.9).
After replacing λ(r) by using Eq. (5.5), the TOV equation becomes m(r) dependent. Therefore,
to solve Eq. (5.9), we need to consider the initial value m(0) = 0, instead of λ(0) = 0.

The total mass M and the stellar radius R are defined where the density and pressure
vanish. Note that the initial value ν(0) ≡ ν0 has not been specified by Eq. (5.8) since it is written
in term of ν′(r). Therefore the initial value ν0 could not be arbitrarily set to 0. However, it
must be chosen in such a way that the associated boundary requirements at the surface r = R

are satisfied. Therefore,

eν(R) = 1− 2M

R
. (5.10)

Originally, Tolman (1934, [6]) and Oppenheimer-Volkoff (1939, [7]) used the EoS of degenerate
Fermi gas for a state of matter inside NS. It turns out that their upper limit of NS is ∼ 0.7 M!

which is not realistic for NS. Therefore, this limit is not correct.

5.2 MR Diagram of NS with Holographic Multiquark Core

In this section, we apply the multiquark EoS given in Eqs. (4.7) and (4.9) for high density
region. The further from the centre, the less pressure and density of the multiquark matter.
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Below the multiquark-CET nuclear transition point, the stiff CET nuclear matter must be taken
into account. After that, we use the recently developed piecewise-polytrope EoS (4.4) from the
numerical fitting. Next, for lower densities, we use EoS from (4.2), (4.3), and (4.1) for nuclear
matter by the corresponding order of density. From Figure 4.4, there are 3 possibilities for the
overall EoSs:

(i) ns = 0.3, εs = 26 (28) GeV fm−3 multiquark then turning into stiff-nuclear matter at
ρms(2)c

2 = 0.4678 (0.4389) GeV fm−3 and ρmns(2)c
2 = 0.2891 (0.2734) GeV fm−3;

(ii) pure ns = 0.3 at εs = 23.2037 GeV fm−3 multiquark state for a whole star;

(iii) purens = 0.3 at εs = 26 GeV fm−3 multiquark state for a whole star.

The results of the three scenarios on mass-radius relations are shown in Figure 5.1. The
The final two cases are the hypothesized multiquark star without any nuclear matter shell. Their
existence is feasible given that the temperature at the core is high enough so that the temperature
at the surface is also greater than the phase transition temperature between nuclear matter and
the multiquark. Solving the TOV equation numerically, any NS consisting of multiquark core
and nuclear matter crust described by stiff CET EoS has the mass range around 1.7 − 2.2M0

and radii of 14.5 − 11.1 km for εs = 26 − 28 GeV fm−3, represented by the plains red-black
curve in the MR diagram in Figure 5.1.In contrast, the possible observational masses of NSs
provided by one-sigma uncertainties [3, 12, 80, 81] are also depicted in Figure 5.1. In Figure 5.2,
the core of massive NS containing ns = 0.3 multiquark has radius and mass of 8.3 (8.4) km
and 1.49 (1.60)M! provided that εs = 26 (28) GeV fm−3, respectively. The mass and radius
of the core in the pure multiquark star case correspond to the entire star where both high- and
low-density layers of the multiquark matter could be determined by Eqs. (4.9) and (4.7).

The central temperature must be high enough for the state matter at the centre of NS or
the whole star to be in the multiquark state. As the state of matter turns into quark-gluon plasma
at the saturation density around n0, the deconfinement temperature could be roughly estimated
from the Hagedorn temperature which is around 150 MeV or 1.7 × 1012 K discovered in the
Heavy-Ion collisions at BNL RHIC [82] and CERN ALICE [83]. Interestingly, many theoretical
models along with the SS model predict that, at higher densities, the QCD deconfinement
from nuclear matter to multiquark states with the broken chiral symmetry could occur at lower
temperatures [4, 29]. Additionally, at high density and low temperature, the existence of
colour-superconductive diquarks in the model [84] and other multiquark [85] might be possible.
The conjecture phase diagram of Ref. [4] demonstrates that for intermediate temperature (T <
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1012 K) and a considerable amount of µ, the deconfined vacuum in the holographic multiquark
model is thermodynamically preferred over nuclear vacuum at the low-temperature beyond the
deconfinement. Furthermore, the multiquark phase is thermodynamically favoured over the stiff
nuclear matter when the quark chemical potential is large enough, according to Section 4.3.

The chemical potential may be used to determine the temperature profile inside the
NS (see e.g. Ref. [86]).

T (r)

T0
=

µ(r)

µ0
, (5.11)

where µ0 = (ρ0+P0)/n0, T0 are the chemical potential and temperature at the saturation density
correspondingly. Additionally, the chemical potential is also useful to determine the confine-
ment/deconfinement temperature associated with the transition between the nuclear matter and
multiquark.From Ref. [45], the Fermi energy for CET nuclear EoS is 36.84 MeV. This implies
that the nuclear EoS is unresponsive to temperature for the scale far lower than 1 MeV (roughly
5% rise in pressure for T = 1 MeV from the zero temperature scenario, estimated from Figure 25
of Ref. [87]). At low temperature, The CET may thus be employed to estimate the chemical
potential at the transition with a smaller than 1% error for T < 0.1 MeV. The transition param-
eters for the NS at Mmax with ns = 0.3, εs = 26 GeV fm−3 multiquark along with stiff nuclear
matter shell are Tdec = 0.6741 T0 and µdec = 374.0 MeV , correspondingly, using (5.11). While
the transition between the multiquark and FYSS nuclear matter (for more info. see Section
5.2.1) could exist around µdec = 341 − 342 MeV and Tdec # 0.56 T0, as seen in Table 5.1.The
surface temperature of the massive NS with multiquark core and the CET (FYSS) nuclear crust
could be around Tsurf = 0.5643 (0.546-0.549) T0. Additionally, the core temperature of the NS
with the CET (FYSS) nuclear matter crust that its surface temperature is around 109 K, would
be roughly 1.77 (1.82− 1.83)× 109 K.

EoS for high- and low-density multiquark could be described roughly by two power laws.
In Ref. [5], the multiquark matter is referred to as the multiquark core and crust; however, in
our study, we refer to them as ”mqh, mql,” to prevent confusion. As demonstrated in Figure 5.5,
each state of matter has distinct sound speed cs and adiabatic indicesγ. Surprisingly, for the
multiquark at high (low) density, γ ≈ 1 (2.5), respectively, whereas at high density and most of
the low density, the squared sound speed c2s > 1/3 violates the conformal bound. Additionally,
the squared sound speed of the ns = 0.3 multiquark state at high density c2s # 0.426 is slightly
over the conformal limit described by the state of free quarks with zero mass. At low densities,
the adiabatic index γ of multiquark (mql) has γ ≈ 2.5; where its character resembles the hadronic
nuclear matter, that is colour-charged and deconfined. However, at high densities, the adiabatic
index of multiquark (mqh) is very close to 1 (the conformal bound of free quarks). In comparison,
at high densities, the colourless multiquark (ns = 0) has c2s % 0.55 and γ # 1.5.

Table 5.1 summarise the maximum mass, stellar radius, central density, and transition
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density corresponding to each variant of NSs with multiquark cores.

Matter content Mmax RMmax ρ0c2 ρcc2 ρmq&bc2

inside the star (M!) (km) (GeV/fm3) (GeV/fm3) (GeV/fm3)

(ρmsc2)
0.4678

mq&stiff (ρmnsc2)
εs = 26 2.226 11.76 1.216 0.8996 0.2891

µdec(GeV)
0.3740

(ρms2c2)
0.4389

mq&stiff (ρmns2c2)
εs = 28 2.098 11.07 1.403 0.9688 0.2734

µdec(GeV)
0.3605

(ρms3c2)
mq&FYSS, 0.1246
iY = 1% (ρmns3c2)

εs = 23.2037 2.235 11.31 1.246 0.8028 0.1111
µdec(GeV)

0.3408
(ρms4c2)

mq&FYSS, 0.1380
iY = 10% (ρmns4c2)

εs = 23.2037 2.234 11.12 1.246 0.8028 0.1434
µdec(GeV)

0.3424
pure mq

εs = 26 2.111 10.66 1.396 0.8996 -

pure mq

εs = 23.2067 2.235 11.29 1.246 0.8028 -

Table 5.1: Important parameters, at maximum masses, of massive NSs with ns = 0.3 and εs =
26, 28 GeV fm−3 multiquark core and stiff nuclear matter crust; that of massive NSs with with
ns = 0.3 and εs = 23.2037 GeV fm−3 multiquark cores and FYSS nuclear matter crust; as well
as that of pure ns = 0.3 multiquark stars: with εs = 26 GeV fm−3 and with εs = 23.2037 GeV
fm−3, respectively
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5.2.1 Nuclear Matter at Finite Temperature and the Effect of the Pro-
ton Fraction Ratio

This section explores the impacts of temperature and proton fraction on the MR diagram. We
made assumptions that the heat transfer by releasing neutrino is eventually over, and the change
in entropy becomes insignificant (for general analysis of protoneutron stars with the change in
entropy see e.g. Refs. [88, 89]). We consider the nuclear matter crust at a finite temperature
described by FYSS EoS from Refs. [39, 40, 41], where the state of matter may consist of alpha
particles, nuclei of deuterium and that of tritium. This EoS is suitable for describing the nuclear
matter of the collapsing core during the supernova. It could be derived from the relativistic
mean field theory with a typical set of parameters under statistical equilibrium and is available
within the range T = 0.1 − 398 MeV. On the other hand, the multiquark EoS is temperature
insensitive. Additionally, it is independent of proton to baryon fraction ratio Yq ≡ np/nb since
the distinction between light quarks of different flavours in the multiquark state is ignorable.
The P − µq for ns = 0.3 multiquark with εs = 23.2037 GeV fm−3 at various temperature:
T = 0.10, 0.120226 MeV and different proton to baryon ratio: Yq = 0.01, 0.10 of are plotted
in Figure 5.3.Thermodynamically, based on our analysis of the P − µq diagram, the ns = 0.3

multiquark at εs = 26, 28 GeV fm−3 are always favoured over the baryonic matter described by
the FYSS EoS.

In Figure 5.4, the effects of temperature and the proton to baryon ratio are illustrated
in the MR diagrams of NS with the multiquark core. Note that we only present the epsilons =

23.2037 GeV fm−3 with the baryonic matter described by the FYSS EoS as the other possible
scenarios at the temperature range contain only pure multiquark star. The greater proton to
baryon proportion, the smaller radius of NS with the multiquark core.
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Figure 5.1: MR diagram and mass-central density of NS and pure multiquark stars: The different
states of nuclear matter inside the star could be labeled by distinct colours. Any point on each
curve represents a star with its structure consisting of the following layers ranging from high
to low density: multiquark matter, stiff extended CET and the ordinary CET nuclear matter,
while the pure multiquark stars consist only of the multiquark. Additionally, the constraints on
NSs from observations are also displayed.
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Figure 5.2: MR diagram of multiquark cores and that of pure multiquark stars corresponding
to the MR diagram in Figure 5.1
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Figure 5.3: A comparison of P − µq plots between the multiquark and baryonic nuclear matter
at intermediate temperatures and finite proton to baryon fractions
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d ln ρ and c2s associated with the multiquark core containing

high and low multquark described by Eqs. (4.9) and (4.7) for each scenario



CHAPTER VI

Tidal Love Number and Tidal
Deformability

This chapter investigates the possibility of the massive NS beyond 2M! probably consisting
of multiquark core and considers how the EoS for the holographic multiquark matches with
the constraints from observations. Correspondingly, we focus on one of the most important
parameters to constrain EoS of any compact stars called tidal deformability λ(tid). First, we
review background knowledge on tidal deformability λ(tid) based on the Newtonian theory and
focus on the relativistic theory for tidal deformation. Accordingly, λ(tid) could be parameterized
by Love number k2 [30, 31, 32, 33] and the dimensionless tidal deformability parameter Λ.
Then, as reported in Ref. [90], we show the calculations of the Love number k2 and Λ of the
NS with the multiquark core along with the nuclear crust described by Chiral Effective Field
Theory (CET) EoS [15] and FYSS EoS [39, 40, 41] then represent them with the following
parameters: the stellar mass M and compactness C ≡ M/R. Additionally, the tidal deformation
of the multiquark star (MQS) is provided as a reference.

6.1 Newtonian Theory of Tidal Deformation

An influence of a tidal force on a stellar deformation, an orbital motion and a gravitational-
wave signal could be estimated from the tidal Love number of the counterpart [91]. It is a
proportional constant between the externally tidal field on the object and the corresponding
multipole moment of mass distribution inside the star in the theory of gravity by Newton (see
e.g. Ref. [92]). According to Ref. [93], the tidal field could be determined in term of quadrupolar
oscillation by the tidal moment

εij =
∂2Φext
∂xi∂xj

, (6.1)

where i, j running from 1 to 3. In this section, we follow Ref. [94] to describe the Newtonian
theory of tidal deformation. Consider a non-rotating spherical object A, located in an external-
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gravitational field generated by a point-like source B, at a distance away from the centre of mass
of A. According to the 2nd law of motion, a resultant force on a point mass mP is given by

mP7aP = −gAmA · ûP + 7FAB ,

= −gAmA · ûP + 7∇Φ(7rP ), (6.2)

where 7rP is the position from the centre of mass to the point P , the gravitational potential
induced by B is Φ(7rP ) and the unit vector ûP ≡ 7rP /rP . By expanding the gradient of Φ(7x)

around the centre of mass up to the 1st order,

∂Φ(7x)

∂xi
≈ ∂Φ(7x)

∂xi

∣∣∣∣
,x=0

+
∂2Φ(7x)

∂xi∂xj

∣∣∣∣
,x=0

7xj =
∂Φ(7x)

∂xi

∣∣∣∣
,x=0

− εij7xj . (6.3)

The tidal moment εij relates to the tidal force F (tid) and the external-tidal-gravitational potential
Φ(tid) by

F (tid)
i = mxjεij = −m

∂Φ(tid)

∂xi
, (6.4)

which implies that

Φ(tid) =
1

2
xixjεij . (6.5)

The quadrupole moment could be written as

Qij =

∫
d3xδρ(7x)

(
xixj −

1

3
r2δij

)
. (6.6)

In a weak tidal field limit, up to the first order in εij , the induced quadrupole field Qij could be
written in terms of the tidal field as

QN
ij = −λN(tid)ε

N
ij , (6.7)

where the constant λN(tid) relates to the 8 = 2 Newtonian tidal Love number kN2 by

kN2 =
3

2
GλN(tid)R

−5. (6.8)

The overall potential outside the body in the weak field limit could be expressed as a sum of the
potential generated by the tidally deformed body and externally tidal potentials on the body

Φtotal
N = −M

r
− 3

r5
Qijxixj +

1

2
εijxixj . (6.9)

Combining Eqs. (6.7),(6.8) and (6.9), we finally have the total gravitational potential in the
Newtonian limit written as

Φtotal
N = −M

r
+

[
2kN2
G

(
R

r

)5

+
1

2

]
εijxixj . (6.10)
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6.2 Relativistic Theory of Tidal Deformation

Consider a spherically symmetric and static dense star of mass M located in an externally static-
quadrupolar-tidal field εij . Correspondingly, the star would be deformed resulting in a change in
the quadrupole moment Qij . In the stellar asymptotically rest frame, the gravitational potential
could relativistically be expressed as

Φtotal
GR = − (1 + gtt)

2
. (6.11)

while gtt at the far away distance r from the source is given by [95]

− (1 + gtt)

2
= − M

r
− 3Qij

2r3

(
ninj − 1

3
δij
)
+O

(
1

r3

)
+

1

2
εijx

ixj +O(r3) (6.12)

whereas ni ≡ xi/r. We only consider the case that the gravitational field is strong. Consider
an individual body in a stationary gravitational field εij with the response quadrupole moment
Qij . Similar to that of Newtonian version, the quadrupole moment Qij relates to the relativistic
tidal deformability εij by

Qij = −λ(tid)εij , (6.13)

where the 8 = 2 relativistic tidal Love number k2 relates to the parameter λ(tid) by

k2 =
3

2
λ(tid)R

−5. (6.14)

Note that the relativistic k2 is written in dimensionless unit. We can naturally decompose the
multipole moments Qij and tidal field εij into the following series using the spherical harmonic
basis:

εij =
2∑

m=−2

εmY2m
ij , (6.15)

Qij =
2∑

m=−2

QmY2m
ij (6.16)

where the tensorial spherical harmonic Y2m
ij are symmetric and traceless. Note we have used the

fact that the 8 = 2 spherical harmonics Y2m(θ,φ) could be decomposed in terms of Y2m
ij as

Y2m(θ,φ) = Y2m
ij ninj , (6.17)

where n ≡ (sin θ cosφ, sin θ sinφ, cos θ). According to Eq. (6.13), the tidal deformation λ(tid) of
a specific mode m (8 = 2) could be represented as

λ(tid) = − εm
Qm

, (6.18)

while the dimensionless tidal deformation [96] could be written as

Λ ≡
λ(tid)
M5

≡ 2

3
k2

(
R

M

)5

. (6.19)

Again, throughout this analysis, we express k2 and Λ in the geometric units where G = c = 1.
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6.2.1 Estimations of the Relativistic Tidal Love Number

In the fairly strong field, e.g. a brief moment just before the binary merging, we assume the
perturbation is negligible, compared with the leading term of the metric g(0)αβ ,

ds20 = g(0)αβdx
αdxβ = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdφ2). (6.20)

Correspondingly, the stress-energy tensor could be written as

Tαβ = (ρ+ P )uαuβ + Pg(0)αβ . (6.21)

Under the influence of the externally tidal gravitational field, the metric is deformed by

gαβ = g(0)αβ + hαβ , (6.22)

where the linearized metric perturbation is denoted by hαβ . The 8 = 2, static, even-parity
perturbations would only be considered in the Regge-Wheeler gauge [97, 98]. Subsequently, the
first order metric perturbation on hαβ might be represented diagonally as in Ref. [98, 99]

hαβ = −diag[eν(r)H0(r), eλ(r)H2(r), r2K(r), r2K(r)sin2θ]Y2m(θ,φ). (6.23)

Due to the metric perturbation, the stress-energy tensor is also perturbed by

δT 0
0 = −δρ = −(dP/dρ)δP, (6.24)

δT i
i = δP,

where i = 1, 2, 3. Note that we attempt to write the perturbations in terms of δP . The linearized
Einstein equation implementing the the metric and stress-energy perturbation from Eq. (6.25)
and Eq. (6.23), respectively, could be written as

δGα
β = 8πδTα

β . (6.25)

Solving the linearized Einstein’s field equation in θ − θ component and φ − φ component of
the Einstein equation, we found that δGθ

θ − δGφ
φ = 0. As a result, we have H2 = H0 ≡ H.

Solving the r − θ component, we obtain δGr
θ = 0 which relates K ′ to H. Subsequently, using

δGθ
θ + δGφ

φ = 16πδP to eliminate δP , the difference between the r − r and the t− t part of the
Einstein equation results in the differential equation for H0 ≡ H (for l = 2) written as:

H ′′(r) +H ′(r)

[
2

r
+ eλ(r)

(
2m(r)

r2
+ 4πr(P (r)− ρ(r))

)]

+ H(r)

[
−6eλ(r)

r2
+ 4πeλ(r)

(
5ρ(r) + 9P (r) +

ρ(r) + P (r)

dP (r)/dρ(r)

)
− (ν′(r))2

]
= 0, (6.26)

where ′ ≡ d/dr. The boundary conditions for Eq. (6.26) obtained by solving the Eq. (6.26) as
r → 0 yields

H(r) = a0r
2, (6.27)
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where a0 is a arbitrary constant (later, for simplicity, we could be set a0 = 1). To separate the
unique solution from the collection of solutions specified by a0, we need the continuity conditions
of H(r) and it’s derivative across r = R. Before that, we need to know the solution of the exterior
differential equation of H(r). Outside the star, the Eq. (6.26) reduces to

H ′′(r) +H ′(r)

[
2

r
+ eλ(r)

(
2m(r)

r2

)]
+H(r)

[
−6eλ(r)

r2
− (ν′(r))2

]
= 0, (6.28)

H ′′(r) +

(
2

r
− λ′(r)

)
H ′(r)−

(
6eλ(r)

r2
+ (λ′(r))

2
)
H(r) = 0. (6.29)

By changing variable x = r/M − 1, d
dr = 1

M
d
dx and e−λ(x) = x−1

x+1 , we can transform the
differential equation of H(r) into the associated Legendre differential equation of H(r) with
l = m = 2:

1

M2
H ′′(x) +

(
2

M(x+ 1)
+

1

M

(
2

x2 − 1

))
1

M
H ′(x) (6.30)

−
(

6

M2(x+ 1)2

(
x+ 1

x− 1

)
+

1

M2

(
2

x− 1

)2
)
H(x) = 0,

(x2 − 1)H ′′(x) + 2xH ′(x)−
(
6 +

4

x2 − 1

)
H(x) = 0. (6.31)

The standard solution to the associated Legendre differential equation of H(x) could be written
as

H(x) = c1Q
2
2(x) + c2P

2
2 (x), (6.32)

where P 2
2 (x) and Q2

2(x) are associated Legendre functions of the first kind and of the second
kind for l = m = 2, respectively. Correspondingly, the asymptotic forms of (6.32) for large x

could be expressed into a form of

Q2
2(x) =

1

2(x2 − 1)

(
10x− 6x3 + 3(x2 − 1)2 ln

(
x+ 1

x− 1

))
, (6.33)

P 2
2 (x) = 3(x2 − 1). (6.34)

The exterior solution could be obtained by replacing the expressions for Q2
2(x) and P 2

2 (x) from
Eq(6.34). This yields

H(r) = c1
( r

M

)2(
1− 2

M

r

)[
−M(M − r)(2M2 + 6Mr − 3r2)

r2(2M − r)2
+

3

2
ln
(

r

r − 2M

)]
(6.35)

+ 3c2
( r

M

)2(
1− 2

M

r

)
.

The large-r asymptotic behaviour of the solution (6.35) is given by

H(r) =
8

5

(
M

r

)3

c1 + O

((
M

r

)4
)

+ 3
( r

M

)2
+ O

(( r

M

))
. (6.36)

After comparing the asymptotic behaviour of the exterior solution (6.36) with the expansion
(6.12) and using Eq. (6.13), we could determine c1 and c2 by

c1 =
15

8

1

M3
λ(tid)ε, c2 =

1

3
M2λ(tid)ε. (6.37)



75

Finally, we are ready to solve for λ(tid) in terms of H and its derivative at the stellar surface
r = R using Eqs. (6.37) and (6.35), then use the relation (6.14) to obtain the expression:

k2 =
8C5

5
(1− 2C)2 [2 + 2C(y − 1)− y]× {2C [6− 3y + 3C(5y − 8)]

+ 4C3
[
13− 11y + C(3y − 2) + 2C2(1 + y)

]

+ 3(1− 2C)2 [2− y + 2C(y − 1)] ln(1− 2C)}−1,

where C ≡ M/R is the compactness of the star, and y ≡ RH ′(R)/H(R) is a parameter deter-
mined from a numerical integration of of Eq. (6.26) in the interval 0 < r ≤ R.

The externally tidal-gravitational field from the stellar counterpart in the binary system
would deform each other. As a result, a parameter for the combined tidal deformation of the
binary system with masses M1,M2 could be specified by

Λ̃ ≡ 16

13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 +M2)5
. (6.38)
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Figure 6.1: The Love number k2 vs the stellar mass of NS with MQ core (and MQS)

6.3 Tidal Love Number and Tidal Deformability of the

Massive NS with Holographic MQ core and MQS

We plotted the Love number k2 for NS with the multiquark core and that of MQS against the
stellar mass in Figure 6.1. Additionally, the dimensionless tidal parameter Λ was also plotted



76

EoS M(M!) R(km) k2 Λ

1.8 14.1 0.106 302

1.9 14.2 0.100 255
mq+CET, εs = 26

2.0 13.8 0.0752 113

2.2 12.2 0.0285 14.0

1.8 12.8 0.0619 108

mq+CET, εs = 28 1.9 12.3 0.0453 50.0

2.0 11.8 0.0328 22.7

1.5 12.0 0.100 313
mq+FYSS, Y = 0.10

εs = 23.2037 1.9 11.9 0.0577 51.8

1.5 11.9 0.0956 290
mq+FYSS, Y = 0.14

εs = 23.2037 1.9 11.8 0.0550 48.3

Table 6.1: Dimensionless tidal deformation Λ and tidal love number k2 of NS with multiquark
core and CET/FYSS baryonic crust
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EoS M1(M!) M2(M!) Λ1 Λ2 Λ̃

1.7 1.7 418 418 418

mq+CET, εs = 26 2.0 1.4 113 1130 391

1.87 0.93 247 7980 1280

1.7 1.7 260 260 260

mq+CET, εs = 28 2.0 1.4 22.7 1120 313

1.87 0.93 62.3 8080 1080

1.7 1.7 128 128 128

mq+FYSS, Y = 0.10, 2.0 1.4 32.2 498 158
εs = 23.2037

1.87 0.93 59.5 5670 776

1.7 1.7 118 118 118

mq+FYSS, Y = 0.14, 2.0 1.4 30.2 459 146
εs = 23.2037

1.87 0.93 55.4 5310 727

Table 6.2: Dimensionless tidal deformation Λ1, Λ2 and combined dimensionless tidal deformation
Λ̃ of binary systems of NS with multiquark core and nuclear CET/FYSS crust
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Figure 6.2: Dimensionless tidal deformation Λ vs mass of NS with MQ core (and MQS)

in Figure 6.2. We examine the NS with the εs = 26, 28 (23.2037) GeV fm−3 multiquark core
connecting to nuclear CET (FYSS) crust and the εs = 23.2037, 26, 28 GeV fm−3 MQS. Observa-
tional constraints from the events, generating gravitational-wave signals, observed by GW170817,
GW190425, and constraints discovered from LIGO/Virgo were expressed in Figure 6.2 as well.
The lower and upper bound for masses in the binary systems are provided at a 90% confidence
interval as 1.17M! and 1.60M!. Correspondingly, in Figure 6.2, this interval could be trans-
lated to (1.25M!, 1.52M!) at 68.27% confidence interval or 1 σ. Likewise, for GW190425, the
90% confidence interval (1.46M!, 1.87M!) turns into (1.54M!, 1.79M!) at 68.27% confidence
interval or 1 σ. The upper bounds on Λ for individual gravitational event [13, 80] are shown in
Figure 6.2 where Λ < 600 for GW190425 and Λ < 800 for GW170817. The values of k2,Λ NS
with the multiquark core with CET/FYSS baryonic crust for specific masses that are essential to
compare with the result of the gravitational wave signals [13, 80, 100] are expressed in Table A.1.
Table 6.2 investigates the combined tidal parameter Λ̃ of binary systems given that their masses
are potentially within the mass range defined by LIGO/Virgo [13, 80]. For the binary system
with masses (1.5 − 1.7, 1.6 − 1.9)M! (GW190425) and (0.9 − 1.4, 1.4 − 2.3)M! (GW170817),
the unfasten constraints are Λ̃ < 600, 700− 800, respectively. We chose the mass range of each
companion in the binary to be more than 1.7Modot in order for it to have a multiquark core.
Each binary counterpart is assumed to have its mass greater than 1.7M! so that its core could
have the multiquark matter.
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Figure 6.3: Dimensionless tidal deformation Λ versus compactness C = M/R of MQS/NS with
MQ core

Using the fundamental relationships between the(rotational) Love number, the moment
of inertia, and the quadrupole moment, Yagi and Yunes could classify compact stars containing
nuclear and quark matter into distinct universal classes [101]. It would be interesting to consider
what class the MQS/NS with multiquark core belongs to. In Figure 6.3, we present the relation
between the compactness C ≡ M/R and the dimensionless tidal parameter Λ rather than the
rotational deformability parameter.

Similarly, the tidal deformability could be divided into two distinctive classes: one for
NS with pure baryonic matter and the other for pure MQS, as illustrated in Figure 6.3. At any
given stellar compactness C, the NSs with the pure baryonic matter have a greater Λ than that
of pure MQSs, while the hybrid stars interpolate between the two classes. As the compactness
decreases, the dimensionless tidal parameter Λ for the NS with MQ core transits from the pure
MQS curve to the CET curve, as seen by the inverted triangle and diamond plot in Figure 6.3.
The curve representing the NS with multiquark core along with high-Y (≡ np/nb = 0.10, 0.14)

baryonic matter crust described by FYSS EoS tends to move toward that with baryonic matter
crust described by CET EoS. As expected, all MQSs with any εs coincide on the same curve
since the compactness C is independent of εs.



CHAPTER VII

Radial Pulsation of Holographic
Multiquark Core/Star

In this chapter, we consider the infinitesimally radial pulsations of the multiquark cores of the
massive NS (or MQS) as well as their stability under the framework of general relativity. Then, as
reported by Ref. [90], we determine the radial pulsating frequencies from 0th −5th modes as well
as consider instability associated with the 0th mode of the radial pulsations of the εs = 23.2037

GeV fm−3 holographic multiquark stars (MQS).

7.1 Linearized Adiabatic Radial Pulsation Equations

The first general relativistic approach to describe radial pulsations of spherical symmetric stars
was established by Chandrasekhar [102]. Following the Refs. [103, 104], the radial pulsations
could be rewritten into the form consisting of the two crucial quantities: the Lagrangian pressure
perturbation denoted by ∆P and the relative radial displacement, ξ = ∆r/r, where ∆r refers
to the radial displacement of the particle inside the star, as expressed below

ξ′(r) = −1

r

(
3ξ(r) +

∆P (r)

Γ(r)P (r)

)
− P ′(r)

ξ(r)

(P (r) + ρ(r))
, (7.1)

(∆P (r))′ = ξ(r)
[
ω2reλ0(r)−ν0(r)(P0(r) + ρ0(r))− 4P ′

0(r)
]

+ ξ(r)

[
(P ′

0(r))
2 r

(P0(r) + ρ0(r))
− 8πreλ0(r)(P0(r) + ρ0(r))P0(r)

]

+ ∆P (r)

[
P ′
0(r)

1

(P0(r) + ρ0(r))
− 4πreλ0(r)(P0(r) + ρ0(r))

]
, (7.2)

where Γ(r) is an adiabatic index at a distance r away from the centre defined in the next
section while each mode of the radial pulsations has the eigenfrequency ω associated with the
time-dependence perturbation ∝ e±iωt.
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7.2 Adiabatic Indices and Sound Speed

Generally, the EoS of the NS could be written as a series of polytrope specified by pressure as a
function of the power-law of the density of the system. The power of the polytropes is nothing
but an adiabatic index associated with the nuclear of matter. As the adiabatic index becomes
large, the EoS becomes stiff and vice versa. The greater the adiabatic index is, the higher
pressure the EoS could withstand and the more massive the star could become. Furthermore,
it regulates the pulsation frequencies and the stellar dynamical equilibrium under disturbance
through the compressibility of the matter inside the star (see Eq. (7.1)).

In particular, the adiabatic index might be expressed in terms of the number density n

as

Γ ≡ n

P

(
dP

dn

)
. (7.3)

The adiabatic index written in Eq. (7.3) represents the property that the pulsating frequency
alters with the number density n. Nevertheless, the relativistic adiabatic index in conventional
form should be written as γ =

ρ

P
(
dP

dρ
) when concerning the stiffness of the EoS. The pairs

of values (Γ, γ, c2s) defined at the maximum mass of the massive NS with multiquark core are
provided in Table 7.1. The softer multiquark EoS at high density, the smaller conventional
adiabatic γ. Given that γ > 5/3, the“mql” EoS at low density becomes stiff; whereas for γ # 1.1

inside the core, the “mqh” EoS becomes soft.

7.3 Determination of Radial Pulsating Frequencies of the

Holographic Multiquark Star

The fact that the radial pulsation equations, governed by Eqs. (7.1) and (7.2), do not require any
derivatives of Γ(r), is a critical aspect in determining the pulsing frequencies. The computation
of the 2nd order perturbation Eq. (7.2) using ν(r) from the 0th order stellar profile is subtle. As
stated in Eq. (5.10), we must select nu(r = 0) that, at the surface,

eν(R) = 1− 2M

R
. (7.4)

Due to the invariance under a translation of ν → ν + ν0 the associated with the zeroth-order
Einstein’s field equation for any arbitrary constant ν0, the gauge fixing of ν is necessary for
the computations in the 1st and 2nd order perturbations, according to Eq. (7.4). Crucially, the
solution of the Schwarzschild metric matches the boundary conditions at the stellar surface.
Using a replacement for λ(r)

e−λ(r) = 1− 2m(r)

r
, (7.5)
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(Γ, γ, c2s)

εs

(GeVfm−3)
mqh mql (small to large r)

23.2037
& FYSS, (1.4, 1.1, 0.43) (3.6− 2.3, 2.6− 2.2, 0.97− 0.05)

Y = 0.10

23.2037
& FYSS, (1.4, 1.1, 0.43) (3.6− 2.3, 2.6− 2.2, 0.97− 0.06)

Y = 0.14

26 & CET (1.4, 1.1, 0.43) (3.6− 3.1, 2.6− 2.8, 0.97− 0.33)

28 & CET (1.4, 1.1, 0.43) (3.6− 3.0, 2.6− 2.7, 0.97− 0.26)

Table 7.1: Values of (Γ, γ, c2s) for high density multiquark “mqh” in the inner core and low
density “mql” in the outer core with CET/FYSS nuclear crust at the maximum mass of the
massive NS with MQ core

we could ensure the matching of the solution of the Schwarzschild metric at the boundary in
any order of perturbation.

The boundary conditions, at the core and the surface, are essential in determining the
solutions of the pair of Eqs. (7.1) and (7.2). Naturally, the evanescence of the coefficient in
1/r-term in Eq. (7.1) is a required condition, so that there would be no divergence problem as
r → 0. Therefore, mathematically

∆P (0) = −3(ξ(0)Γ(0)P (0)). (7.6)

At the centre, ξ(0) = 1, the relative radial displacement must be normalised to unity. Addition-
ally, P (r = R) = 0 defines a radius of the stellar surface R. Correspondingly,

∆P (R) = 0. (7.7)

From the two radial pulsation equations associated with the given EoS, we could determine
the stellar profile by shooting the eigenvalue ω2 and substituting it into the pulsation equations.
The correct value of the eigenfrequency must satisfy the boundary conditions in Eqs. (7.6)
and (7.7). The collection of the verified eigenvalues must be aligned into an increasing order:
ω2
0 < ω2

1 < · · · < ω2
n < · · · alongside with a set of eigenfunctions rearranged by increasing indices

ξ0, ξ1, · · · , ξn, · · · ,. Within the star, the eigenfunction of the typical stationary wave ξn contains
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n nodes. We could instantaneously determine the eigenfunctions associated with the pressure
perturbation ∆Pn(r).

Considering the infinitesimal radial adiabatic perturbations, the static compact stellar
model becomes stable given that ω2

n > 0 for all n. The configuration is on the borderline
of stability-instability at the lowest eigenfrequency ω0 = 0 [105]. In particular, the stellar
configuration is unstable for the pulsations in lower mode, while it becomes stable for a set of
higher mode. Note that we only investigate the zeroth-mode instability in this research.

7.3.1 Eigenfrequencies and Instabilities

After we determine the eigenfrequencies numerically by applying the shooting process upon
Eqs. (7.1), (7.2) and the TOV equations, we achieve the plot of the eigenfrequencies against the
mass of the MQS shown in Figure 7.1, while that of the eigenfrequencies vs the compactness
of the multiquark expressed in Figure 7.2. In the SI unit, the radial pulsating frequencies of
the multiquark core oscillations are proportional to √

εs in the SS model. For the MQS with
εs = 23.2037 GeV fm−3 and its mass about 2M!, the zeroth-mode frequency is roughly 2.5 kHz.
As the central density keeps increasing and goes beyond the critical value associated with the
maximum mass, instability arises for the zeroth mode. As expected, the system runs into the
unstable branch of the MR diagram. Oscillations in the higher mode for the εs = 23.2037 GeV
fm−3 MQS with masses beyond 2.15M! reveal peculiar wavy patterns of frequencies based on
the interaction between the perturbative waves in the ”mqh” and ”mql” layers.
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Figure 7.1: The eigenfrequencies fn = ωn/2π for n = 0, 1, 2, 3, 4, 5 vs mass of εs = 23.2037 GeV
fm−3 MQS/multiquark core: the solid (dashed) line represents the stable (unstable) frequencies
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Figure 7.2: The eigenfrequencies fn = ωn/2π for n = 0, 1, 2, 3, 4, 5 vs compactness C = M/R of
εs = 23.2037 GeV fm−3 MQS/multiquark core: the solid (dashed) line represents the stable
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CHAPTER VIII

Conclusion

Throughout this dissertation, we have implemented the EoS of the multiquark state for the
inner core of NS from the low up to intermediate temperature (T < 1012K) based on the
holographic SS model. We found that the interpolation fits nicely between the two known
limits: the high-density pQCD or free quark limit and the low-density CET nuclear matter
limit, using the EoS of the multiquark when setting εs = 23.2037 − 28 GeV fm−3, as being
guided by the average-empirical-trend line between the two opposing limits of the known EoS.
Once εs is chosen, the EoS of the multiquark matter is fixed. For ns = 0.3, the energy density
scale εs relates to a multiquark state containing Nq # 24 − 30 (roughly 8 − 10 baryons) per
multiquark (see Figure 4.5). Additionally, during the study of the phase transitions between the
general extended nuclear matter and the deconfined multiquark, it was discovered that beyond
the transition point, the ns = 0.3 multiquark state with εs > 25 GeV fm−3 is favoured over the
stiff nuclear matter.

At high density, the multiquark EoS has approximately the same gradient as that of
pQCD, as illustrated in Figure 4.4 in Chapter 4. Although being a bound state, the characteris-
tics of multiquark matter and that of free quarks might be almost identical. Likewise, the similar
gradient between the baryonic nuclear EoS and that of low-density multiquark EoS indicates
that they might share some characteristics together. Furthermore, as described in Chapter 4,
the presence of the multiquark state at high and low density as anticipated by the SS model,
(see Ref. [5]) offers an accurate interpolation between the baryonic nuclear matter described by
CET and the free quark matter described by pQCD.

The MR diagram in Chapter 5, the radii and mass range for the possible massive NS
with multiquark core, parameterized by ns = 0.3 and several scenarios of εs = 26 (28) GeV
fm−3 connecting to CET nuclear matter crust, are 14.3 − 11.8 (14.0 − 11.1) km and 1.96 −

2.23 (1.64−2.10)M!, respectively. The more massive NS, the smaller its size. At a temperature
(around a few trillion K), the population of multiquarks should become less, and the deconfined
phase would consist mainly of weakly coupled quarks and gluons; however, the multiquark state,
described by the SS model, is found to be more thermodynamically preferred over the QGP
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phase [4] for low to intermediate temperatures at high densities. Additionally, the proportion
of the multiquark in the deconfined matter becomes less at high temperatures. As a result,
the weakly interacting quark and gluon dominate the deconfined state. On the other hand,
at intermediate temperatures and high densities, the multiquark described by the SS model is
more thermodynamically preferred over the quark-gluon plasma [4]. It might be possible that
the weakly coupled quarks and gluons could form inside the core of a recently born quark star
or NS, succeeded by layers of multiquark. Consequently, the mass of the NS would be greater
than 2M! given that the temperature at its core could reach over a few trillion Kelvin.

On the contrary, for billion-year-old NSs, their surface temperatures are very low com-
paring to the deconfinement temperature scale around trillion Kelvin.On the contrary, the sur-
face temperatures of billion-year-old NSs are very low compared to the deconfinement tem-
perature scale around trillion Kelvin. Therefore, we predict that the multiquark alone could
form inside the cores. Subsequently, the multiquark turns into the confined-stiff-baryonic mat-
ter along, as the density decrease with the increasing distance from the centre. There might
be a mixture of the multiquark state and the baryonic nuclear matter at the transition. We
have studied all possibilities of the massive NS with the multiquark core parametrised by
ns = 0.3, εs = 26 − 28 GeV fm−3 connecting to the CET nuclear matter crust and that
parametrised by ns = 0.3, εs = 23.2037 GeV fm−3 following by the FYSS nuclear matter crust.
We found that the multiquark core only exists when M > 2.0M! with the stellar radius around
11.1 − 14.3 km and 11.1 − 12.1 km for the CET and FYSS nuclear matter crust, respectively.
A variation of temperature and the proton to baryon ratio results in different MR relations
of NS as shown in Figure 5.3 and Figure 5.4. The effect of the temperature variation is mild;
however, the outcome of the variation in the proton to baryon ratio is apparent. The greater the
proton to baryon ratio is, the smaller the stellar radius of the NS becomes. According to several
observation on massive NSs with masses beyond 2M! [2, 12, 62, 106, 107, 108, 109, 110, 111,
112, 113], there are many possible massive NSs and from the perspective based on our model of
massive NSs, it is possible that they contain the multiquark cores.

We have computed the tidal deformation of the MQS and massive NS with multiquark
core (or hybrid star) based on the holographic SS model in Chapter 6. The stellar mass and
radius [78], together with the deformation parameter k2,Λ [90] determined from our massive NSs
model, consisting of the multiquark cores inside followed by the nuclear matter crust described by
CET and FYSS EoS, are compatible with observational constraints from the LIGO/Virgo. When
plotted against the compactness C, the deformability of MQ-matter stars could be distinguished
from that of baryonic-matter stars. The deformability vs compactness (Λ − C) curves of the
massive NSs with MQ cores or the hybrid stars provide interpolations between the pure MQSs
and the pure baryonic NSs curves.
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In addition, in Chapter 7, we determined the n = 0 − 5 modes eigenfrequencies of the
radial pulsations of the multiquark core parametrised by εs = 23.2037 GeV fm−3, ns = 0.3

throughout the whole mass range. As a result, we discovered the fundamental mode frequency
to be about 2.5 kHz at the maximal masses of roughly 2M". The fundamental frequency shows
a unique characteristic that gradually rises as the mass increases until reaching the maximum
mass and then suddenly descends to a small value, as shown in Figure 7.1. The appearance of
wavy shapes of the higher modes around the maximum mass might be due to the opposition
between radial waves in the low (“mql”) and high (“mqh”) density layers inside the MQ core.

Significantly, all of the curves for higher mode eigenfrequencies in the tidal deformability
Λ vs compactness C (and vs mass M) graphs have sharp bendings at the transition between the
multiquark and nuclear matter crust. Practically, this characteristic may indicate the existence
of a multiquark core inside the massive NS. The collection of the pulsating frequencies of the
multiquark core could be matched and analysed with that from observations and then compared
to other models. Hopefully, this procedure might uncover some properties of the exotic nuclear
matter inside the compact stars.

Generally, the colour superfluid conductor (CSC) phase could exist at a very high density.
Arguably, it is uncertain which one of multiquark or CSC exists or whether all of them could
coexist in the core of massive NSs given the proper circumstances (for more information on the
holographic model of CSC with the tidal deformability see e.g. Refs. [114, 115]). So maybe
in the less dense and colder core of massive NS, the CSC might be more thermodynamically
favoured over the multiquark, while the multiquark could be more preferred over the CSC in
the denser and intermediately hotter layers inside the core where the confined nuclear is more
preferred in the crust. However, the parameters from the CSC EoS and that from the multiquark
EoS satisfy the observational constraints from the 2M" NS while the results are quite similar.
Further investigations on the observational parameters of a massive NS and future models with
the mixed phases would be interesting.



APPENDIX



89

APPENDIX A

Conversion Table between
Dimensionless and Physical

Quantities

quantity dimensionless variable physical variable

pressure P εsP

density ρ
εs
c2
ρ

chemical potential µ εsµ fm3

number density n n fm−3

mass M
c4√
G3εs

M

radius r
c2√
Gεs

r

angular frequency ω

√
Gεs
c

ω

Table A.1: Conversion from the dimensionless to physical quantities with εs in GeV fm−3 unit
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APPENDIX B

Derivation of Infinitesimal Radial
Pulsation Equations

In this appendix, we expressed the derivation of radial pulsation equations by using a harmonic-
time-dependent perturbation, as originally formulated by Ref. [102], in great detail. Later, the
radial pulsations could be rewritten in terms of ξ = ∆r/r or the variation of relative displacement
given that the radial displacement of matter particles inside the star is denoted by ∆r, and ∆P

refers to the Lagrangian pressure perturbation, following Refs. [103, 104].

B.1 Infinitesimal Radial Pulsation

Recall that the metric tensor for any static and spherically symmetric stars, as expressed in
Eq. (5.1), could be described by :

ds2 = gµνdx
µdxν = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2sin2θdφ2.

Solving the Einstein’s field equation
Gα

β = 8πTα
β (B.1)

up to the 0th order of perturbation by substituting the metric in Eq. (5.1) for the t − t, r − r

components and the relation ∇iT i
j = 0 with i, j = 1, 2, 3 result in the following relations:

(reλ0(r))′ = 1− 8πr2ρ0(r) (B.2)
e−λ0(r)

r
ν′0(r) =

1

r2
(1− eλ0(r)) + 8πP0(r) (B.3)

P ′(r) = −1

2
(P0(r) + ρ0(r))ν

′(r). (B.4)

Considering the difference term Gr
r −Gt

t, we have

e−λ0(r)

r
(λ0(r) + ν0(r))

′ = 8π(P0(r) + ρ0(r)). (B.5)
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Recall the TOV equations for unperturbed static and spherically symmetric stars of the form

dP0(r)

dr
= −

(
1− 2M(r)

r

)−1

(P0(r) + ρ0(r))

(
M(r)

r2
+ 4πrP0(r)

)
, (B.6)

M ′(r) = 4πr2ρ0(r). (B.7)

B.1.1 Equations Governing Infinitesimal Radial Pulsation

Assuming that the pulsation is small, we had better used the 1st order perturbation and neglect
all of the higher order terms. Then, the 4-velocity of the perfect fluid within the star could be
written as

ut = e−ν0(r)/2, ur = e−ν0(r)/2v(r),

ut = −eν0(r)/2, ur = eλ0(r)−ν0(r)/2v(r), (B.8)

where the pulsating velocity is
v(r) ≡ dr

dt
. (B.9)

Correspondingly, the stress-energy tensor components of the fluid defined in the Eq. (5.2) could
be written as

T t
t = ρ(r), and T r

r = T θ
θ = Tφ

φ = −P (r), (B.10)

T t
r = −(P0(r) + ρ0(r))u

tur = −eλ0(r)−ν0(r)(P0(r) + ρ0(r))v(r), (B.11)

T r
t = −(P0(r) + ρ0(r))u

rut = (P0(r) + ρ0(r))v(r).

Then, we could define the infinitesimal radial pulsation of various quantities by the Eulerian
perturbation, in which the observer locates at a specific point, as follows:

λ(r) → λ0(r) + δλ(r), ν(r) → ν0(r) + δν(r), (B.12)

P (r) → P0(r) + δP (r), ρ(r) → ρ0(r) + δρ(r).

Accordingly, performing the radial perturbation (B.12) on (B.10), (B.3) and (B.2), we have

∂r(re
λ0(r)δλ(r)) = 8πr2δρ(r) (B.13)

e−λ0(r)

r
(∂rδν(r)− ν′0(r)δλ(r)) =

e−λ0(r)

r2
∆λ(r) + 8πδP (r) (B.14)

while applying the radial perturbation on Eq. (B.11) and the conservation of stress-energy tensor
∇iT i

j = 0 result in

e−λ0(r)

r
∂tδλ(r, t) = −8π(P0(r) + ρ0(r))v(r, t), (B.15)
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and

eλ0(r)−ν0(r)(P0(r) + ρ0(r))∂tv(r, t) + ∂rδP (r, t) (B.16)

+
1

2
(P0(r) + ρ0(r))∂rδν(r, t) +

1

2
ν′0(r)(δP (r, t) + δρ(r, t)) = 0.

It would be convenient to rewrite all equations governing the radial pulsation by intro-
ducing the “Lagrangian displacement” δr where the fluid velocity could be defined by

v ≡ ∂δr

∂t
. (B.17)

Eq. (B.15) could be integrated with respect to t. This gives

e−λ0(r)

r
δλ(r) = −8π(P0(r) + ρ0(r))δr(r). (B.18)

Then, the Eq. (B.5) becomes

δλ(r) = −δr(r)(λ0(r) + ν0(r))
′. (B.19)

Eqs. (B.13) and (B.18) could then be written as

δρ(r) = − 1

r2
[
r2(P0(r) + ρ0(r))δr(r)

]′
, (B.20)

or on the other hand,

δρ(r) = −δr(r)ρ′0(r)− δr(r)P ′
0(r)− (P0(r) + ρ0(r))

1

r2
(r2δr(r))′. (B.21)

Replacing P ′
0(r) with Eq. (B.4), we have

δρ(r) = −δr(r)ρ′0(r)− (P0(r) + ρ0(r))
eν0(r)/2

r2
(r2e−ν0(r)/2δr(r))′. (B.22)

Next, with δλ(r) getting replaced by that of Eq. (B.14), consider the replacement result
together with the Eq. (B.18), we obtain

e−λ0(r)

r
(δν(r))′ = 8π

[
δP (r)− (P0(r) + ρ0(r))

(
ν′0(r) +

1

r

)
δr(r)

]
, (B.23)

or in the perspective of Eq. (B.5),

(P0(r) + ρ0(r))(δν(r))
′ =

[
δP (r)− (P0(r) + ρ0(r))

(
(ν0(r))

′ +
1

r

)
δr(r)

]
(λ′0(r) + ν′0(r)).

(B.24)

Now, we shall assume that, under the radial pulsation, any time-dependent-perturbation
quantities !(r, t) could be written as

!(r, t) = !(r)e±iωt (B.25)
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where ω is the radial pulsating frequency and !(r) represents the amplitudes (δλ(r), δν(r), δP (r)

and δρ(r)) of the time-dependent perturbation. Consequently, we have

ω2eλ0(r)−ν0(r)(P0(r) + ρ0(r))δr(r) = δP ′(r) + δP (r)(
1

2
λ′0(r) + ν′0(r)) +

1

2
ν′0(r)δρ(r)

− 1

2
(P0(r) + ρ0(r))

(
ν′0(r) +

1

r

)
(λ′0(r) + ν′0(r)) δr(r),

(B.26)

where (P0(r) + ρ0(r))∂δν(r)/∂r has been substituted with Eq. (B.24). Furthermore, δρ could
be expressed in terms of δr and the unperturbed variables by Eqs. (B.21) and (B.22).

B.1.2 Conservation of the Baryon Number

To express δP in terms of δr consistently with the field equations, we need an additional as-
sumption supplement to the field equations. As there is a flow of fluid with the displacement
δr caused by the variation in pressure δP , there must be a conservation of the baryon number
described as follows.

For the given baryon number per unit volume n(r, t), its conservation could relativistically
be expressed as

∇µ(n(r, t)u
µ) = 0, (B.27)

1√
−g

∂µ(
√
−gn(r, t)uµ) = 0, (B.28)

∂µ(n(r, t)u
µ) + n(r, t)uµ 1√

−g
∂µ

√
−g = 0. (B.29)

With in the framework of the linearized, the non-zero terms given by Eqs. (B.8) and (B.29)
becomes

∂t(n(r, t)e
−ν0(r)/2) + ∂r(n(r, t)v(r, t)e

−ν0(r)/2)

+
n(r, t)e−ν0(r)

e(λ0(r)+ν0(r))/2r2 sin θ∂t
(
e(λ0(r)+ν0(r))/2r2 sin θ

)

+
n(r, t)e−ν0(r)

e(λ0(r)+ν0(r))/2r2 sin θ∂r
(
e(λ0(r)+ν0(r))/2r2 sin θ

)
= 0 (B.30)

or alternatively,

e−ν0(r)/2∂tδn(r, t) +
1

r2
∂r
(
n0(r)v(r, t)e

−ν0(r)/2
)
+

1

2
n0(r)e

−ν0(r)/2∂tδλ(r, t)

+
1

2
n0(r)e

−ν0(r)/2v(r, t)∂r(λ0(r) + ν0(r)) = 0. (B.31)

Consider the time-evolution number density n(r, t) written as

n(r, t) = n0(r) + δn(r, t), (B.32)
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then the Eq. (B.31) could be integrated into the following form

δn(r) +
eν0(r)/2

r2

(
n0(r)r

2δr(r)e−ν0(r)/2
)′

+
1

2
n0(r) [δλ(r) + (λ′0(r) + ν′0(r))δr(r)] = 0. (B.33)

The last term on the Eq. (B.33) becomes zero due to Eq. (B.19), Thus, the remaining part could
be written as

δn(r) = −eν0(r)/2

r2

(
n0(r)r

2δr(r)e−ν0(r)/2
)′

, (B.34)

δn(r) = −δr(r)n′
0(r)− n0(r)

eν0(r)/2

r2

(
r2δr(r)e−ν0(r)/2

)′
(B.35)

or instead,

n(r) ≡ n(ρ, P ), (B.36)

n′(r) =
∂n(ρ, P )

∂ρ
ρ′(r) +

∂n(ρ, P )

∂P
P ′(r). (B.37)

Rearranging P ′(r) as the subject, we have

P ′
0(r) =

1

∂n(ρ, P )/∂P

[
n′
0(r)−

∂n0(r)

∂ρ
ρ′0(r)

]
. (B.38)

With EoS written as
n ≡ n(ρ, P ). (B.39)

From (B.22)and (B.37), we obtain the variation in P (r) as

δP (r) =
1

∂n(ρ, P )/∂P

[
n′
0(r)δr(r)− n0(r)

eν0(r)/2

r2

(
r2e−ν0(r)/2δr(r)

)′

−∂n0(r)

∂ρ

(
−ρ′0(r)δr(r)− (P0(r) + ρ0(r))

eν0(r)/2

r2

(
r2e−ν0(r)/2δr(r)

)′)]
.

Note that the first and the second terms in the squared bracket could be reduced further

δP (r) =− δr(r)

P ′
0(r)︷ ︸︸ ︷[

1

∂n(ρ, P )∂P

(
n′
0(r)−

∂n0(r)

∂ρ
ρ′0(r)

)]

−
[

1

∂n(ρ, P )/∂P

(
n0(r)− (P0(r) + ρ0(r))

∂n0(r)

∂ρ

)]

︸ ︷︷ ︸
Γ(r)P0(r)

eν0(r)/2

r2

(
r2e−ν0(r)/2δr(r)

)′
,

(B.40)

then the variation in pressure could be rewritten as

δP (r) = −δr(r)P ′
0(r)− Γ(r)P0(r)

eν0(r)/2

r2

(
r2e−ν0(r)/2δr(r)

)′
(B.41)

where the adiabatic index for radial pulsation is defined by

Γ(r) ≡ 1

P (r)∂n(ρ, P )/∂P

(
n0(r)− (P0(r) + ρ0(r))

∂n0(r)

∂ρ

)
. (B.42)
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B.1.3 The Pulsating Equation in Lagrangian Perturbation

To simplify the perturbation further, we translate the Eulerian perturbations to the Lagrangian
perturbations where the observer is now comoving with the fluid. Correspondingly, we have

δP (r) + δr(r)P ′
0(r)︸ ︷︷ ︸

∆P (r)

= −Γ(r)P0(r)
eν0(r)/2

r2



r3e−ν0(r)/2 (δr(r)/r)︸ ︷︷ ︸
ξ(r)





′

, (B.43)

∆P (r) = −Γ(r)P0(r)
eν0(r)/2

r2

(
3r2e−ν0(r)/2ξ(r) + r3e−ν0(r)/2ξ(r)

(
−1

2
ν′0(r)

)

+r3e−ν0(r)/2ξ′(r)
)
, (B.44)

∆P (r) = −Γ(r)P0(r)

(
3ξ(r)− r

ξ(r)

2
ν′0(r) + rξ′(r)

)
. (B.45)

Note that we have used ∆!(r) = δ!(r) + δr(r)!′
0(r), and introduced the relative displacement

ξ ≡ ∆r/r = δr/r. Using the relation from TOV equation (5.9): 1
2ν

′
0(r) = − P ′

0(r)
(P (r)+ρ(r)) , then the

1st fundamental equation for radial pulsations, expressed in terms of ξ(r) as already represented
in Eq. (7.1), is given by

ξ′(r) = −1

r

(
3ξ(r) +

∆P (r)

Γ(r)P (r)

)
− P ′(r)

ξ(r)

(P (r) + ρ(r))
.

From (B.22), (B.26) and (B.42), we obtain

ω2eλ0(r)−ν0(r)(P0(r) + ρ0(r))δr(r)

= (δr(r)P ′
0(r))

′ −
(
1

2
λ′0(r) + ν′0(r)

)
δr(r)P ′

0(r)

− 1

2
(P0(r) + ρ0(r))

(
ν′0(r) +

1

r

)
(λ′0(r) + ν′0(r)) δr(r)

− 1

2
ν′0(r)

{
[(P0(r) + ρ0(r))δr(r)]

′ +
2

r
(P0(r) + ρ0(r))δr(r)

}

− e−(λ0(r)+2ν0(r))/2

[
e−(λ0(r)+3ν0(r))/2Γ(r)P0(r)

r2

(
r2e−ν0(r)/2δr(r)

)′]′
. (B.46)

Substituting P ′
0(r) with its value given by the Eq. (B.4), the first two terms on the RHS of the

Eq. (B.46) could be combined into

1

2
(P0(r) + ρ0(r))

(
ν′′0 (r)−

1

2
λ′0(r)ν

′
0(r)−

1

r
λ′0(r)−

3

r
ν′0(r)

)
δr(r). (B.47)

On the other hand, the Gr
r components of the Einstein’s field equation under equilibrium con-

dition is

16πP0(r)e
λ0(r) = ν′′0 (r)−

1

2
λ′0(r)ν

′
0(r) +

1

2
(ν′0(r))

2 +
1

r
(ν′0(r)− λ′0(r)). (B.48)

With Eq. (B.48), the expression in Eq. (B.47) becomes

4

r
P ′
0(r)δr(r) + 8πeλ0(r)P0(r)(P0(r) + ρ0(r))δr(r)−

1

(P0(r) + ρ0(r))
(P ′

0(r))
2δr(r), (B.49)
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where we have used Eq. (B.4) again. With a reduction of the four terms, the Eq. (B.46) becomes

ω2eλ0(r)−ν0(r)(P0(r) + ρ0(r))δr(r)

=
4

r
P ′
0(r)δr(r) + 8πeλ0(r)P0(r)(P0(r) + ρ0(r))δr(r)−

1

(P0(r) + ρ0(r))
(P ′

0(r))
2δr(r)

− e−(λ0(r)+2ν0(r))/2

[
e−(λ0(r)+3ν0(r))/2Γ(r)P0(r)

r2

(
r2e−ν0(r)/2δr(r)

)′]′
. (B.50)

Similarly, we rearrange the Eq. (B.50) by using the relative displacement ξ ≡ ∆r/r = δr/r

ω2eλ0(r)−ν0(r)(P0(r) + ρ0(r))r

ξ(r)︷ ︸︸ ︷
δr(r)/r

= 4P ′
0(r)

ξ(r)︷ ︸︸ ︷
δr(r)/r+8πeλ0(r)rP0(r)(P0(r) + ρ0(r))

ξ(r)︷ ︸︸ ︷
δr(r)/r

− r

(P0(r) + ρ0(r))
(P ′

0(r))
2

ξ(r)︷ ︸︸ ︷
δr(r)/r

− e−(λ0(r)+2ν0(r))/2



e−(λ0(r)+3ν0(r))/2Γ(r)P0(r)

r2



r3e−ν0(r)/2

ξ(r)︷ ︸︸ ︷
δr(r)/r





′



′

.

(B.51)

Then, we could simplify the RHS of the Eq. (B.51) further by multiplying the whole equation
with 1/P0(r) which can be expressed as follows:

ξ(r)

[
ω2reλ0(r)−ν0(r) (P0(r) + ρ0(r))

P0(r)
− 4

P0(r)
P ′
0(r)− 8πreλ0(r)(P0(r) + ρ0(r))

+
r

P0(r)(P0(r) + ρ0(r))
(P ′

0(r))
2

]

= −e−(λ0(r)+2ν0(r))/2

P0(r)

[
e−(λ0(r)+3ν0(r))/2Γ(r)P0(r)

r2

{
3r2e−ν0(r))/2ξ(r) + r3e−ν0(r))/2ξ′(r)

+r3e−ν0(r))/2 ξ(r)

(P0(r) + ρ0(r))
P ′
0(r)

}]′

= −e−(λ0(r)+2ν0(r))/2

P0(r)

[
e−(λ0(r)+2ν0(r))/2Γ(r)P0(r)

{
3ξ(r) + rξ′(r) + r

ξ(r)

(P0(r) + ρ0(r))
P ′
0(r)

}]′

= −e−(λ0(r)+2ν0(r))/2

P0(r)

[
e−(λ0(r)+2ν0(r))/2Γ(r)P0(r)

{
3ξ(r) +

(
−3ξ(r)− η(r)

Γ(r)

−r
ξ(r)

(P0(r) + ρ0(r))
P ′
0(r)

)
+ r

ξ(r)

(P0(r) + ρ0(r))
P ′
0(r)

}]′

=
e−(λ0(r)+2ν0(r))/2

P0(r)

[
e−(λ0(r)+2ν0(r))/2P0(r)η(r)

]′

=
1

P0(r)

[(
1

2
λ′0(r) + ν′0(r)

)
P0(r)η(r) + P ′

0(r)η(r) + P0(r)η
′(r)

]

=

(
1

2
(λ0(r) + ν0(r))

′ +
1

2
ν′0(r)

)
η(r) +

η(r)

P0(r)
P ′
0(r) + η′(r)

=

(
1

2

[
8π(P0(r) + ρ0(r))re

λ0(r)
]
− 1

(P0(r) + ρ0(r))
P ′
0(r)

)
η(r) +

η(r)

P0(r)
P ′
0(r) + η′(r)

= η(r)

[
4π(P0(r) + ρ0(r))re

λ0(r) +

(
1

P0(r)
− 1

(P0(r) + ρ0(r))

)
P ′
0(r)

]
+ η′(r).
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Consequently, we obtain

ξ(r)

[
ω2reλ0(r)−ν0(r) (P0(r) + ρ0(r))

P0(r)
− 4

P0(r)
P ′
0(r)− 8πreλ0(r)(P0(r) + ρ0(r))

+
r

P0(r)(P0(r) + ρ0(r))
(P ′

0(r))
2

]

= η(r)

[
4π(P0(r) + ρ0(r))re

λ0(r) +
ρ0(r)

P0(r)(P0(r) + ρ0(r))
P ′
0(r)

]
+ η′(r). (B.52)

Note that we have used Eqs. (B.4), (B.5) and

η(r) =
∆P (r)

P0(r)
(B.53)

η′(r) =

(
∆P (r)

P0(r)

)′

=
1

P0(r)
(∆P (r))′ − ∆P (r)

P 2
0 (r)

P ′
0(r)

=
1

P0(r)
(∆P (r))′ − 1

P0(r)
η(r)P ′

0(r), (B.54)

then we could rearrange Eq. (B.52) by making η′(r) as a subject

η′(r) = ξ(r)

[
ω2reλ0(r)−ν0(r) (P0(r) + ρ0(r))

P0(r)
− 4

P0(r)
P ′
0(r)

]

+ ξ(r)

[
r

P0(r)(P0(r) + ρ0(r))
(P ′

0(r))
2 − 8πreλ0(r)(P0(r) + ρ0(r))

]

− η(r)

[
4π(P0(r) + ρ0(r))re

λ0(r) +
ρ0(r)

P0(r)(P0(r) + ρ0(r))
P ′
0(r)

]
(B.55)

or alternatively,

1

P0(r)
(∆P (r))′ = ξ(r)

[
ω2reλ0(r)−ν0(r) (P0(r) + ρ0(r))

P0(r)
− 4

P0(r)
P ′
0(r)

]

+ ξ(r)

[
r

P0(r)(P0(r) + ρ0(r))
(P ′

0(r))
2 − 8πreλ0(r)(P0(r) + ρ0(r))

]

+
∆P (r)

P0(r)

[
−4π(P0(r) + ρ0(r))re

λ0(r) +

(
1

P0(r)
− ρ0(r)

P0(r)(P0(r) + ρ0(r))

)
P ′
0(r)

]
.

(B.56)

Therefore, the 2ndfundamental equation for radial pulsations, as expressed in terms of ∆P (r) as
described in Eq. (7.2), is

(∆P (r))′ = ξ(r)
[
ω2reλ0(r)−ν0(r)(P0(r) + ρ0(r))− 4P ′

0(r)
]

+ ξ(r)

[
(P ′

0(r))
2 r

(P0(r) + ρ0(r))
− 8πreλ0(r)(P0(r) + ρ0(r))P0(r)

]

+∆P (r)

[
P ′
0(r)

1

(P0(r) + ρ0(r))
− 4πreλ0(r)(P0(r) + ρ0(r))

]
.
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