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 May Pyone Han : Hybrid GNS3 and Mininet-WiFi Emulator for Survivable SDN 

Backbone Network Supporting Wireless IoT Traffic . Advisor: Assoc. Prof. 

LUNCHAKORN WUTTISITTIKULKIJ, Ph.D. 

  

This thesis has designed and implemented an emulated testbed for fault-tolerant 

delay awareness routing for wireless sensor traffic by using software-defined networking 

(SDN) at the backbone network. In this work, the hybrid form of GNS3 and Mininet-WiFi 

emulation network testbed is proposed to build an emulated SDN-based backbone network 

in GNS3 and an emulated IPv6 over Low Power Personal Area Network (6LoWPAN) in 

Mininet-WiFi. Three virtual machines are used to set up the hybrid emulated SDN-based 

network testbed. The Mininet-WiFi platform which is used to build the emulated 

6LoWPAN sensor network is installed in two virtual machines separately and the third 

virtual machine is GNS-VM. 

In the proposed SDN-based backbone network, there are three available paths to 

carry the sensor traffic from two sensor networks to the server network, and Open Virtual 

Switch (OVS) supporting the OpenFlow protocol is used to establish an SDN-based 

backbone network. The python-based RYU SDN framework is used as the logically 

centralized SDN controller which controls eight OVS nodes located in three paths in an 

out-of-band connection. In this thesis, the routing algorithm is based on delay, packet loss 

ratio, and the number of hops parameters to decide the optimal path for the sensor traffic or 

the data plane traffic. The routing algorithm is developed and executed in the centralized 

RYU controller. There are two main tasks for the provider edge node connected to the two 

sensor networks (i) to measure the delay, packet loss ratio, and the number of hops (ii) to 

send the measurement result to the centralized RYU controller. The information which is 

sent by the provider edge node is important for the SDN controller to decide the optimal 

path and then install the necessary OpenFlow rules to the OVS node to establish the data 

plane. 

In this thesis, the measurement result of delay aware routing algorithm is 

reported. Another consideration is that the implemented routing algorithm is fault-tolerant 

with the measurement result of rerouting time when the selected optimal path is failed. The 

programmability of SDN due to the separation of control and data planes is the key benefit 

for us as the routing behavior is easily customizable, especially for IoT sensor networks in 

this work. 
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Chapter 1  

Introduction 
 

1.1 Research Motivation 

The Internet of Things (IoT) plays an important role in every sector of today’s world 

society to promote the quality of life in many specific areas such as education, healthcare, 

agriculture, and transportation. IoT technology saves time, money, and energy due to 

enhancing a more flexible and scalable manner for human-to-human, human-to-machine, or 

machine-to-machine communication. Therefore, with the increased amount of data and 

devices in various network domains, IoT data management is becoming more and more 

difficult and remains a challenging topic for researchers and providers. Some of the 

challenges such as flexibility, scalability, heterogeneity, and energy saving are important to be 

considered for emerging IoT networks. Data is exchanged through different vendors and 

networks for diverse IoT domains, facing different issues such as latency, congestion, packet 

loss, and security problems. Therefore, it is essential to meet the required characteristics of a 

specific area that demands the Quality-of-Services (QoS), including delay, packet loss, or 

both.  

Software-Defined Network (SDN), on the other hand, is very popular in networking for 

its programmability and flexibility for controlling and managing the network elements. 

Dynamically configuring and easily extending the network components are key to supporting 

a scalable manner for a huge variety of devices in the heterogeneous network. SDN allows 

building such a flexible environment by taking the responsibilities for network configuration 

through a programming language. SDN controller is capable of maintaining the data from the 

user or infrastructure level, also called data plane, through Southbound API (Southbound 

Application Programming Interface) for further data processing such as routing, load 

balancing, and monitoring. The optimization of the SDN controller for routing path through 

its global view of the network offers a special way of data transmission for a flexible and 

scalable traffic environment. Therefore, SDN has been extensively deployed in different 

domains to improve network performance. 

The SDN paradigm has been proposed in IoT networks to change from traditional 

networks to more adaptable networks, solving the challenge of traditional IoT architecture. In 

the IoT domain, data management through the SDN core network makes it possible to choose 

the path with the lowest delay, minimum loss, maximum bandwidth, or higher security. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

Furthermore, different types of IoT traffic can be prioritized and queued to be chosen for 

specific applications. Therefore, a heterogeneous IoT network environment can be enhanced 

by proposing SDN technology for flexibility, QoS improvement, data monitoring, and 

maintenance. 

1.2 Problem Statement 

In the delay-sensitive IoT domain, data management becomes a challenge to deal with a 

huge amount of data and devices. The heterogeneous network with several data paths is 

another challenge for data transmission. For reaching the desired destination or meeting the 

requirements of the specific area in different IoT networks, it is important to be chosen and 

designed for efficient routing. In the case of delay-sensitive and low-bandwidth applications, 

the delay parameter needs to be considered as the first priority to select the best path based on 

the value of delay. To handle various IoT applications through the heterogeneous network, it 

is still a challenge to propose an automatic delay awareness routing for easy deployment and 

management of IoT data. 

1.3  Objective 

There are two main objectives in this work which are (i) to propose the emulated testbed 

of SDN-based backbone network with 6LoWPAN IoT sensor network by integrating GNS3 

and Mininet-WiFi emulators and (ii) to propose the fault-tolerant delay awareness routing for 

emulated SDN-based backbone network to handle IoT traffic. Delay awareness routing is 

proposed for an emulated SDN-based backbone network to handle emulated 6LoWPAN IoT 

network traffic because of the scalability of network implementation and cost-effectiveness. 

For example, the number of network nodes can be adjusted without purchasing the real 

hardware, therefore, fault-tolerant delay awareness routing is implemented in the emulated 

SDN-based backbone network. Similarly, the sensor nodes in emulated 6LoWPAN IoT 

sensor network can be connected as desired. The demand for performance of the data traffic 

can be different depending on the application usage scenario, for example, bandwidth and 

delay should be considered as the first priority for the video-streaming application scenario. 

In this work, it is assumed that the sensors that send UDP messages with low bandwidth to 

the destination node. Therefore, it is proposed that the delay-sensitive IoT traffic is handled 

by using the SDN features. The measurement parameters that are required for the SDN 

controller to decide the best path will be proposed in this work. Besides, the rerouting time 

that is needed when the node failure or path failure has occurred in the SDN-based backbone 

network will be reported in this thesis. 
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1.4 Scope of Thesis 

The scope of this research is as follows: 

1. Propose the hybrid emulated SDN-based backbone network testbed in GNS3 and 

emulated 6LoWPAN-based sensor network testbed in Mininet-WiFi. 

2. Propose the SDN-based fault-tolerant delay awareness routing for delay-sensitive IoT 

traffic through the SDN-based backbone network. 
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Chapter 2  

Background and Literature Review 
 

2.1 Software-Defined Networking 

SDN network architecture such as agile, centrally managed, and directly programmable 

brings the cost-effective and manageable network to a wide range of applications. Unlike the 

traditional network, SDN decouples the control plane and data plane, and the network 

management is enhanced by the programmable feature. In SDN, the control plane is logically 

centralized to handle the whole network from a global view. The network forwarding devices 

such as switches, and routers are placed in the data plane and responsible for forwarding data 

according to the instructions installed by the SDN controller. The SDN controller is the brain 

of the network which is logically centralized in the control plane and gives direct traffic flow 

instructions to the forwarding plane.  

The three layers of the SDN are Infrastructure Layer, Control Layer, and Application 

Layer. The lowest layer is the infrastructure layer (so-called the data plane) where switches 

and routers are installed. Control Layer (also called the control plane) is where the controller 

is maintained to implement the flexible network flow rules into the switches based on the 

required parameters and adaptable information from the network devices. The top layer is the 

application layer which interacts with the network administrators to write the SDN 

applications for network configuration and maintenance.  

The Southbound Interface (SBI) is used to deliver the instructions from the SDN 

controller to the network forwarding devices such as routers, switches which are located at the 

data plane layer. OpenFlow protocol can be regarded as the standard protocol for southbound 

interface and other protocols such as BGP (Border Gateway Protocol), and RESTCONF can 

also be used. Through this, the SDN controller is enabled to assign the flow rules to the dumb 

switches. On the other hand, the network administrator can develop the program to define the 

routing policy such as load-balancing algorithm by using high-level programming languages 

such as python, go, java, etc. The developed program by the network administrator will be 

communicated with the SDN controller through the application programming interface with 

the help of the northbound interface. The principle of SDN is shown in Figure 2.1. 
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2.2 OpenFlow  

OpenFlow is the first open flow standard protocol proposed by Stanford University [30] 

and is now updated by the Open Networking Foundation (ONF). The default version is 1.0 

and the latest version is 1.5. OpenFlow Protocol supports the southbound interface between 

the controller and the individual switch to directly access the forwarding plane of the network 

devices.  Updating the flow entries such as installing, deleting, and modifying the flow entries 

in the OpenFlow-enabled network devices is easily done by exchanging respective OpenFlow 

protocol messages between the control plane and data plane. An OpenFlow Channel such as a 

secure SSL (Secure Sockets Layer) channel is used in every OpenFlow-enabled network 

element to connect with the external controller. Besides, one or more Flow Tables, a Group 

Table, and a Meter Table are implemented in the switches intending for packet lookups, 

packet forwarding and QoS features shaping.  

The controller-switch communication depends on three main types of OpenFlow protocol 

exchanged messages that are Controller-to-Switch, Asynchronous, and Symmetric. The 

controller starts managing or querying the state of the switch through Controller-to-Switch 

messages. On the other hand, the SDN switch sends its state changes or notifications to the 

controller by using Asynchronous messages. The performance of the OpenFlow connection 

can be checked by using Symmetric messages in both controller and switch.  The three types 

of OpenFlow protocol messages are summarized in Table 2.1. Every flow table of the switch 

handles a set of flow entries to guide the arriving packet to its specific destination and these 

flow entries are modified by the controller in two ways: reactively or proactively. Flow 

entries deal with the match-action criteria for incoming packets where the corresponding 

action is executed if the header of the flow entries is matched. Otherwise, these packets need 

to be sent to the controller for deciding and creating the required new flow rules or more 

actions.  

In the OpenFlow network, control messages are sent either in an in-band mode or in an 

out-of-band mode.  In an in-band mode, control messages are exchanged on the same channel 

used by the data plane traffic as a single network interface is shared for both control and data 

traffic. In an out-of-band mode, on the other hand, control messages are transferred on a 

separate channel. The OpenFlow version 1.3 has flow tables including Match Field, Priority, 

Counters, Instructions, Timeout, and Cookie as the main components for each flow entry. 

OpenFlow version 1.3 is used in this thesis and summarized in Table 2.1. 
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Figure 2.1: Principle of SDN. 

Table 2.1: Contents of flow entry in OpenFlow version 1.3. 

Match Field Priority Counters Instructions Timeout Cookie 

 

The contents of each flow entry are as below: 

Match Field – It includes the value of the ingress port number (layer 1) and the header values 

for the upper three layers that define the source and destination addresses of MAC (Media 

Access Control), IP (Internet Protocol), and the TCP/UDP (Transmission Control 

Protocol/User Datagram Protocol) port numbers. These defined values filter the entering 

packets to match an exact flow in the switch.  

Priority – Every entry in the flow table is assigned with a priority, as a result, an incoming 

packet header performs matching from the highest priority number to the lowest one in a 

sequenced order.  

Counters – It counts the number of received packets, bytes, and duration for updating the 

statistical information about the matched packets of a particular flow.  

Instructions – It handles the action field instructing the SDN switches to be applied to a 

specific flow for each matched packet. There are many available options in the action filed for 

respective matched flow instructions. Some of these options from OpenFlow version 1.3 are 

listed in Table 2.2. 
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Table 2.2: Action fields of OpenFlow version 1.3. 

 

Actions 

 

Function 

OUTPUT  Forward the packets to the defined port 

DROP Drop the corresponding packets 

ALL Forward the packets to all other ports 

CONTROLLER Forward the packets to the controller 

FLOOD Forward the packets to all other ports except to the 

input/ingress port 

LOCAL Forward the packets to the local port  

INPORT Forward the packets to the input/ingress port  

The OpenFlow version 1.3 is used in this thesis because it allows for more flow tables 

providing a flexible OpenFlow pipeline mechanism compared to the previous version. 

According to the pipeline mechanism, an incoming packet always interacts with a Flow Table 

starting from the lowest number (Table 0) to the highest one sequentially. The flow entry 

supports actions for an incoming packet and is executed from the highest priority to the 

lowest. In this case, if the flow entry in a Flow Table is not matched with the incoming 

packet, the so-called Table-Miss event happens in which the device sends its packet to the 

controller for the necessary actions. Furthermore, multiple flow tables define the different 

actions of the system such as QoS or routing in each flow table separately. Some of the 

OpenFlow messages are shown in Table 2.3 and the architecture of the OpenFlow switch is 

shown in Figure 2.2. 

Table 2.3: Three main types of OpenFlow protocol messages (Controller-to-

Switch, Asynchronous, and Symmetric). 

CONTROLLER-TO-

SWITCH 

 

ACTIONS 

Packet-Out Inform the switch to forward the packet on a directed 

path 

Modify-State Add/delete/modify the flow entries in the Flow Table 

Read-State Collect statistics and configuration information from 

the switch 

Features Request/Reply Request for the switch features 

Configuration Request/Reply Request for the switch configuration 
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ASYNCHRONOUS ACTIONS 

Packet-In Send the matched packets to the controller to be 

processed 

Flow-Removed Inform the controller about the removed flow entry 

because the time expired 

Port Status Inform the controller about the port configuration or 

state changes 

Flow-Monitor Inform the controller about the changes in the Flow 

Table 

SYMMETRIC ACTIONS 

Hello Exchange information between switch and controller 

Echo Request/Reply Used by the switch or controller to check the 

OpenFlow connection 

Error Used by the switch or controller to notify the problems 

 

2.3 QoS Management in SDN 

Quality-of-Service (QoS) acts as an important role to deliver services with specific 

network requirements such as delay, bandwidth, and packet loss. These QoS parameters (such 

as bandwidth, delay, and packet loss) are mentioned in Service Level Agreement (SLA) 

according to the user’s demands. Along with the increase of network applications in different 

sectors, quality of service is a challenge for network service providers to guarantee network 

performance. In that case, Network Traffic Management is an essential key to satisfying the 

quality of service as well as reducing latency, and packet loss. Traditional network 

architecture is not flexible enough to handle the dynamic nature of heterogeneous devices in 

different network environments which demand urgent and adaptable requirements in terms of 

QoS. On the other hand, in SDN, flexible and programmable network features ensure QoS 

services for unpredictable network changes from time to time. 

 SDN controls the network centrally and logically which gives special advantages for 

monitoring the network traffic and collecting the statistical information to implement and 

analyze the required QoS level. The available QoS support mechanism in the OpenFlow 

protocol is meters and queues. OpenFlow 1.3 and later versions support a meter table in 

which meter entries are defined and consist of three fields: Meter ID, Meter Band, and 

Counters. The meter table supports rate-limiting of received packets by monitoring and 

controlling the ingress traffic rate for each flow entry. Meter band can be assigned in the table 

for further packet processing and then counter collects the statistical information of these 
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processed packets. Another QoS function is Queue configuration which processes the packets 

for output at a specified maximum or minimum limiting rate. Since the only two functions for 

QoS, queues, and meters, are provided in OpenFlow, new methods have been proposed for 

better QoS assurance for a wide range of modern applications. Therefore, SDN-based QoS 

frameworks are implemented in different network sectors and become solutions for future 

user demands.  

 

Figure 2.2: Architecture of OpenFlow switch (OpenFlow Version 1.3). 

2.4 Internet of Things (IoT) 

Nowadays, the Internet of Things (IoT) plays an essential role in different sectors such as 

smart cities, smart agriculture, smart transportation, smart healthcare, smart grids, and 

industrial automation, leading to the smart globe. The Internet enables billions of smart 

devices to communicate with each other for collecting and sharing information. Moreover, a 

wide variety of sensor objects make these devices smart and intelligent in every sector. As a 

result, IoT devices track real-time data and transfer these data over a network without human 

interactions. The tremendous number of IoT devices have been interconnected around the 

world for several advantages such as being cost-effective, time-saving, better monitoring, and 

automation.  

An increasing number of IoT applications brings many new services and challenges such 

as security, scalability, flexibility, and quality of service for customer experiences. For 
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example, real-time transportation such as autonomous driving demands delay-sensitive and 

minimum packet loss data communication. Some IoT devices are bandwidth-hungry 

applications, 3D (three dimensions) videos, virtual reality, and augmented reality, which 

require higher bandwidth among others. In the healthcare sector, different QoS levels must be 

defined depending on the applications. For example, recording the health conditions of a 

patient needs to be given the lowest priority in terms of bandwidth and delay, on the other 

hand, telesurgery ranks the highest priority for critical and lossless communication. In the 

same way, in smart cities, smart homes, and every other sector, identifying and ensuring 

different QoS levels for diverse applications is the major consideration to meet the user 

experiences.  

2.5 Architecture of IoT 

There are different types of IoT architectures, including three-layer, five-layer, cloud-

based, or fog-based IoT architecture. The most basic IoT architecture shown in Figure 2.3 

consists of Perception Layer, Network Layer, Service Layer, and Application Layer. Cloud 

Computing and Fog Computing are introduced to IoT to enhance the performance and 

scalability of IoT, offering unlimited storage and real-time experience. 

The Perception Layer is the physical layer of the IoT network which is also called the 

sensing layer. Many physical or virtual devices, as well as wired or wireless objects, are 

located to gather various data from the environment. These devices are sensors, actuators, 

RFID (Radio Frequency Identification) tags, or edge devices that connect with their specific 

domain. Most IoT devices are small, cheap, and low-power elements that are usually 

connected to a battery source for power. 

The second layer is Network Layer, also called the access and transmission layer, where 

data transmission is mainly performed through the network. The network layer is where data 

is transferred from the sensing layer to the upper layer and vice versa. Data from various 

devices is collected and processed for further transmission based on specific communication 

technology. There are different types of communication networks used by IoT devices 

depending on their design and capabilities. This includes 5G (fifth-generation mobile 

network), LTE (Long Term Evolution), Ethernet, Wi-Fi (Wireless Fidelity), Zig-Bee, 

Bluetooth Low Energy (BLE), and 6LoWPAN. Each technology has its characteristics for 

power consumption, coverage area, data transmission rate, and cost.  

The Service Layer, also called the processing layer, provides a system for storing, 

processing, and analyzing data. Data storage and information processing systems can be 
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either distributed or centralized. This is also the layer where middle-ware services are 

provided. 

The Application Layer is the top layer of the IoT network which allows users to utilize and 

manage data depending on the business goal. The IoT applications are designed to deliver 

specific services through a user interface that can be easily accessed by users. 

 

Figure 2.3: Architecture of IoT. 

2.6 Wireless Sensor Network 

Wireless Sensor Network (WSN) comprises many sensor nodes which monitor the 

environmental conditions and connect through different communication technologies. The 

WSN must be satisfied with some important characteristics such as low power, low cost, 

reliability, and easy maintenance. The nodes of WSN are also resource-constrained for speed, 

storage, or bandwidth limitations, however, recent WSN architecture supports further 

improvement for heterogeneous devices and limitations. A wide range of WSN applications 

has been proposed in several areas, including healthcare, industry, agriculture, and the 

environment. In WSN, two main communication technologies based on short-range and long-

range can be categorized. Some short-range communication technologies include Bluetooth, 

Zig-Bee, BLE, and RFID. On the other hand, Long-Range (LoRa), Narrow Band IoT (NB-

IoT), and Sigfox are long-range communication technologies. Depending on the requirements 
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of applications and characteristics of sensor nodes, each of them will be chosen for different 

purposes.  

2.7 6LoWPAN  

6LoWPAN stands for IPv6 over Low Power Personal Area Network introduced as an 

open standard by the International Engineering Task Force (IETF) based on IEEE 802.15.4. It 

supports a wide range of applications, including wireless sensor networks. 6LoWPAN covers 

many sensor nodes and allows internet connectivity in a large area. The transmission of IPv6 

over IEEE 802.15.4 is enabled by an adaptation layer that is added between the data link layer 

and network layer as shown in Figure 2.4. The data of WSN is sent as packets in the form of 

IPv6 providing end-to-end IPv6 communication over IEEE 802.15.4. Some of its useful 

characteristics are low power, low data rate, and low cost. IPv6 gives special benefits such as 

small packet size and easy management as well as mobility, scalability, reliability, and 

availability. Interoperability is another main advantage of 6LoWPAN.  

The adaptation layer is where the fragmentation or reassembly process is performed to fit 

the link layer and network layer. The minimum MTU (Maximum Transmission Unit) of IPv6 

frame size is 1280 bytes whereas the maximum physical layer of IEEE 802.15.4 frame size is 

128 bytes. Therefore, the adaptation layer handles the frame size adjustment to fit IPv6 with 

IEEE 802.15.4. Furthermore, the 6LoWPAN standard defines four types of frame headers: 

IPv6 compressed or not compressed IPv6 header, mesh header, broadcast header, and 

fragmentation header. Since 6LoWPAN gives many benefits to sensor networks with low 

power, low data rate, and small devices, it has been widely applied in various sectors such as 

industrial monitoring, home automation, smart grid, and different automation areas.  

 

Figure 2.4: 6LoWPAN protocol stack. 
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2.8 Improvement of IoT Network with SDN 

It has been challenging to manage and control the IoT network of a huge number of 

heterogeneous devices and data. To fulfill the characteristics and reduce the complexity of 

IoT networks, introducing the scalable and flexible network manner gives many opportunities 

for IoT devices to extend the network easily and quickly. As mentioned earlier, SDN 

architecture of programmable and adaptable network management conveys solutions to 

mitigate the complexity of IoT networks. Additionally, SDN improves the performance of 

IoT services in terms of QoS, Security, Routing, Load Balancing, and so on. Therefore, 

integrating the SDN into IoT sectors leads to a more sustainable IoT ecosystem by providing 

dynamic resource management and optimization capabilities. In the core network, optimized 

routing and device configuration for efficient data transmission is designed by SDN based on 

predefined rules and policies. Furthermore, device-to-device communication, as well as radio 

resource management, are also done by SDN. However, it is a new challenge to integrate the 

SDN network into an IoT environment to meet the desired specifics of IoT applications 

connected in different networks and sectors.  

2.9 Literature Review for SDN-based QoS Management  

The SDN-based QoS management has been proposed in many ways, dealing with 

topology discovery, traffic classification, traffic monitoring, and real-time data collection and 

path selection. The author in [1] has proposed Quality-of-Experience (QoE) management for 

intent-based SDN, measuring delay and packet loss of audio and video traffic in the Mininet 

environment. They defined the QoE limit to compare with the current measured value, and 

then frequently monitor the data quality based on the measured data. The ONOS Controller 

monitors and assesses the data through OpenFlow protocol messages by changing the 

network configurations automatically. Packet_Out and Packet_In OpenFlow messages are 

used to get a connection between switches or switches and controllers. 

 The multipath routing with the QoS management in SDN for Tactile internet traffic is 

presented in [2], targeting to reduce delay for such delay-sensitive traffic. The SDN 

environment is created in Mininet along with RYU Controller for testing different traffic 

sources. In QoS management, the author has distinguished three different types of traffic: 

tactile, video, and best-effort data, then provides the priority by using a queueing mechanism. 

In the routing section, real-time data is updated by the network monitoring module and used 

to calculate the path cost to optimize the best path with low bandwidth as well as low hops.  
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The author in [3] has proposed OpenHealthQ where different types of healthcare data are 

handled based on OpenFlow Queues, prioritizing the data on their throughput and delay 

requirement. The experiment is performed in Mininet-WiFi emulation to enable wireless 

sensor devices of SDN-based fog layer architecture. The RYU Controller is used as a 

centralized controller that connects to OpenFlow switches of the fog layer. The Iperf tool is 

used to send Differentiated Service Code Point (DSCP) traffic required for marking the traffic 

classification. The author has guaranteed the bandwidth for heterogeneous healthcare devices 

by implementing the dynamic feature of QoS services.  

Another QoS improvement in [4] deals with minimizing the overall latency of all network 

links in the SDN network. The SDN Controller checks active sessions to calculate the delay 

of each link and compare it with a defined threshold value. Then, the author has applied the 

batch routing function for optimizing many video sessions arriving from time to time. Mininet 

emulator along with OpenDayLight Controller is chosen in their experiment and data traffic is 

produced by the Iperf tool.  

The author in [5] has developed QoS-aware flow management in SDN, considering the 

bandwidth and delay parameters. They proposed a QoS-based routing algorithm based on the 

OpenDayLight controller. Network traffic is generated by the Iperf tool in the Mininet 

emulation test. Three independent modules are introduced in their system: Topology 

Discovery, Traffic Monitoring, and Path Selection. The structure of an entire network is 

defined in the topology discovery module, whereas in the traffic monitoring module, the 

packet capture technology is used to track the packets and calculate the dynamic bandwidth 

based on the collected statistics. In the path selection module, for every 5ms interval, port 

statistics are updated to compare with the threshold bandwidth, deciding for routing whether 

it is needed to alternate or not. Then they compare the resulting delay of the proposed method 

with the Dijkstra algorithm to show that their system has less delay. Therefore, there have 

been many studies on the SDN-based QoS framework, some of which are mentioned in this 

paper. 

2.10 Literature Review for SDN-based QoS Management in an IoT 

Environment 

In [6], the author has proposed edge-based 6LoWPAN-SDN architecture to reduce 

latency, packet loss, and heterogeneity. 6LE-SDNP (6LoWPAN-SDN Protocol) is developed 

to enable efficient communication between various devices. Besides, a hybrid-edge switch is 

designed to reduce complexity and heterogeneity, connecting SDN and 6LoWPAN devices. 
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In addition, to use the global SDN controllers, the author designed the SDN-based edge 

controller for each cluster of IoT networks. Instead of using the 6LoWPAN border router, the 

SDN controller performs an alternative way to operate as a more efficient border router for 

the 6LoWPAN IoT network. The performance of the proposed solution reduces latency and 

overhead as well as round trip time and packet loss when compared to the traditional 

6LoWPAN network.  

In [7], QoS constraints of the industrial network are solved by selecting SDN technology 

to prioritize and manage traffic flows in terms of delay and packet loss. The Mixed Flow 

Installation (MFI) method and the Proactive Flow Installation Rerouting (PFIR) method are 

introduced to achieve the optimal path for low-delay and low-loss traffic types. The proposed 

approach is considered for both wireless and wired networks in terms of guaranteeing QoS in 

data transmission. The simulation and real testbed show the result of the end-to-end delay of 

the framework compared to normal flow installation and achieve the target for the delay-

sensitive industrial network. 

In [8], the SDN paradigm is applied to the 6LoWPAN IoT network for testing and 

comparing the performance of 6LoWPAN devices in Mininet-IoT. The ONOS (Open 

Network Operating System) controller is introduced as a centralized gateway to collect data 

and route the path between 6LoWPAN network clusters through an edge router. In the 

research, the Wireshark Analyzer tool is used to measure network performance and the Iperf 

tool is utilized to generate data traffic to be able to measure throughput and packet loss. The 

two scenarios of different hosts and clusters are tested to compare jitter, packet loss, delay, 

throughput, and CPU (Central Processing Unit) usage.  

In [9], the traditional IoT network is compared with Software-Defined IoT (SDIoT) 

architecture in terms of QoS performance. This comparative analysis focuses on jitter, 

latency, and throughput to highlight the efficiency of SDN contribution to data 

communication. The deployed SDN architecture also supports data interoperability and 

scalability among sharing various network devices and applications. The traditional IoT 

environment is designed in GNS3, on the other hand, the proposed SDIoT architecture is 

emulated in Mininet for analyzing the results according to QoS metrics. A Ping tool is used to 

measure the latency of data connection from the source to the destination. The results show 

the advantage of reducing network overheads in data communication which then increases the 

throughput of the network. However, the author also highlights a single point failure in the 

case of using a centralized control plane to handle the number of growing switches, nodes, 

and traffic.  
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In [10], SD-6LN is developed to incorporate the features of SDN in the existing 

6LoWPAN network to resolve some challenges of the IoT network such as availability, 

reliability, and scalability. The SDN controller acts as the 6LoWPAN gateway node to check 

the quality of the network link, optimize the alternate path for link failure and update the flow 

entries or network topology. Mininet-WiFi simulator is utilized for experiment and 

comparison of two different paradigms of the traditional and proposed network. The Iperf tool 

generates the data stream for evaluating the performance factors, including average round trip 

time, packet loss, and jitter. 

In [11], a traffic-aware QoS routing scheme is considered in the SDIoT network, dealing 

with delay-sensitive flows as well as loss-sensitive flows. The nature of SDN gives flexibility 

to the overall network to be able to maximize the network performance. The proposed scheme 

is emulated in Mininet by using the POX SDN controller. Two topologies (AttMpls topology 

and Goodnet topology) are tested and compared with existing schemes. A QoS routing 

algorithm based on Integer Linear Programming is introduced to optimize the best QoS path. 

The simulation gives a more feasible routing path to mitigate the path delay and number of 

QoS violated flows for delay-sensitive or loss-sensitive traffic. In the case of heterogeneous 

devices and traffic, it is also mentioned that jitter and low-level packet classification will be 

considered for plans of work.  

In [12], end-to-end IoT traffic is managed by SDN to identify the real-time routing path, 

keeping low path latency for IoT data. Path resolving, delay tracking, and delay management 

are the three main functions of the proposed method. Path resolving and delay tracking 

functions are responsible for monitoring the path and operating in parallel. These two 

functions give information to delay management functions for further analyzing and 

controlling the network. Mininet emulation is used to build the topology with the 

OpenDayLight controller for conducting the test of QoS performance and the ping method is 

used to measure the path delay. It is highlighted that the solution reduces latency by 63.1 

percent, compared with the routing based on the shortest-path algorithm.  

In [13], network traffic monitoring by SDN is implemented for maximizing the overall 

performance of expanding networks. The single, liner, and tree topology are tested and 

controlled by the RYU controller in the Mininet emulator. The measurement parameters are 

throughput, jitter, bandwidth, and RTT (Round Trip Time) for QoS performance. A Ping tool 

is used to measure the delay whereas the Iperf tool generates UDP packets to measure the 

jitter and bandwidth utilization for three scenarios. 
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2.11 Literature Review for Delay Measurement of Network Traffic 

In SDN, there are many methods to measure the delay of link or network path (end-to-end 

delay). Since the architecture of SDN separates the control plane from the data plane, delay 

measurement can be handled by the controller (control plane) or switch (data plane). Network 

measurement is performed in terms of the active method or passive method. The active 

measurement method means applying additional packets to monitor the network, on the other 

hand, passive measurement methods do not require probe packets since the delay is measured 

by observation. Both measurement schemes have drawbacks as well as advantages in the case 

of introducing overhead, reliability, accuracy, or complexity while monitoring network traffic 

or collecting statistics information. 

In OpenNetMon [14] and SLAM [15], network latency is calculated by the SDN 

controller by injecting probe packets into the network. The first switch accepts this packet and 

sends it along the path to reach the destination. The last switch sends this packet back to the 

controller to estimate the delay of the path by calculating the difference between the total 

traveling time of the packet and switch-to-controller latency. This method gives real-time 

results since the controller continuously monitors all flows on delay, packet loss, or 

throughput. In LINK-MON [16], the OpenNetMon method is modified to monitor delay per 

link, reducing network overhead. This method supports monitoring in real-time for link delay 

and covers all links by applying Dijkstra’s Algorithm. Overall network overhead is reduced 

when compared to OpenNetMon [14] where path delay is measured.  

In TTL-Based Looping [17], end-to-end path delay is measured by the controller while 

the looping technique is applied to count the IP TTL. Therefore, a loop of packets with a 

specific Time-to-Live (TTL) is applied to the path. The OpenFlow switch decrements TTL 

while it transfers the packet in the loop, sending it back to the controller when TTL is zero. 

Then, the controller decides the latency according to TTL and iteration number. In Queue 

Length Method [17], the delay measurement is also estimated by using queue lengths at 

switches. This is another method that calculates delay in the control plane. Processing, 

propagation, and transmission delay are considered constant values to be able to detect 

queueing delay required for calculating the path delay. 

In sFlow [18] and NetFlow [19], the special switches are used as agents to send the 

information of flow to the NetFlow collector periodically. Then, this information is analyzed 

by the collector to estimate the delay. Since the additional agents are implemented on 

hardware switches, the configuration of complexity and lack of scalability is put in the 

network architecture. On the other hand, in FlowTrace [21], the network path is traced in real-
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time by probing packets from the data plane. FlowTrace [21] installs measurement rules in 

switches for further computing delay based on the table query algorithm. Besides, the method 

can be tested in real applications without changing physical switches due to using the 

OpenFlow protocol. 

There are also many traditional methods for network measurement which are widely 

utilized in the networking environment. A Ping tool is the most traditional way of measuring 

RTT between the source node and destination node. ICMP (Internet Control Message 

Protocol) packets are identified as probe packets between sender and receiver to obtain the 

value of RTT. It can obtain the latency in various window sizes of packets.  

Another traditional method is based on the timestamp between TCP second and third 

packet when the callee establishes a TCP connection. In more detail, the RTT gets from the 

timestamp between SYN-ACK packet and ACK packet of TCP three-way handshake. The 

other way is using TCP timestamp which adds an extra payload in the TCP header, however, 

it provides precise latency. Instead of using TCP timestamp, two-way UDP gives another 

chance to the traditional way of delay measuring. It detects the Round-Trip Delay (RTD) or 

One-Way Delay (OWD) by embedding the UDP timestamp in hosts, giving an accurate 

latency like the TCP timestamp.  

There is also a modified way of the traditional method of latency measuring. The method 

in [22] measures both path latency and flow-setup latency and compares the real testbed with 

Mininet emulation. Latency is optimized by introducing some additional steps to the Ping tool 

to have an accurate delay measurement in the data plane. The study shows path latency or 

flow-setup latency of the physical testbed is larger than Mininet emulation, highlighting that 

Mininet has less reactivity than the real testbed regarding throughput, jitter, and packet loss. 
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Chapter 3  

Proposed Network Topology and Methodology 
 

3.1 Implementation of Emulated SDN-based Backbone Network with 

Emulated 6LoWPAN IoT Sensor Networks 

GNS3 [28] is an open-source as well as enterprise-level network emulation software. 

GNS3 offers stable and realistic test case experiences with a testbed for professional network 

engineers. In addition, GNS3 can support multi-vendor network devices such as Huawei, 

Juniper, Cisco, and others. Moreover, GNS3 can also connect with real devices or other 

virtual machines which is a useful feature to create an emulated backbone network. Therefore, 

extensibility is the main advantage of GNS3. Other useful features are scalable, clustering, 

and para-virtualization. On the other hand, GNS3 has a drawback for wireless networking 

emulation, lacking wireless support, although it supports a physical wireless card.  

Mininet-WiFi [29] is specially designed for wireless SDN, extending the Mininet which 

only supports wired network emulation of SDN. Therefore, unlike GNS3, Mininet-WiFi only 

allows access to the SDN emulation. The HWSIM driver is supported in Mininet-WiFi to 

offer wireless experiences in an SDN environment. Mininet-WiFi is a user-friendly emulator 

since python-based programming and configuring are allowed through its API. The test cases 

are implemented rapidly and easily through the command lines, rather than configuring each 

SDN/OpenFlow element. Mobility and propagation models are additional useful features of 

Mininet-WiFi. There are also downsides of Mininet-WiFi such as constraints to a large 

network, no clustering support, and no multi-vendor support. 

In this thesis, the hybrid form of the GNS3 emulator and Mininet-WiFi emulator is used. 

GNS3 cannot support wireless emulation, therefore, the emulated wireless IoT sensor network 

is implemented in Mininet-WiFi emulator and the emulated SDN-based backbone network is 

built in GNS3 emulator. In this thesis, two network emulators (GNS3 and Mininet-WiFi) are 

used to propose the SDN-based delay aware routing for delay-sensitive IoT traffic in the 

emulated SDN-based backbone network with the emulated 6LoWPAN-based IoT sensor 

network. The proposed emulated topology is illustrated in Figure 3.1. 
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Figure 3.1: Proposed network topology of emulated SDN-based backbone 

network with 6LoWPAN IoT sensor networks and server network. 

The RYU Controller acts as a centralized SDN controller in the control plane of the 

backbone network and the red lines in Figure 3.1 represent the control plane. The control 

plane represents the network connection between the RYU controller and OVS nodes. The 

data plane is drawn with the blue lines in Figure 3.1. The control plane and data plane are 

communicated through the Southbound API, OpenFlow protocol, supporting OpenFlow 

messages between controller and switches. The out-of-band connection mode is applied in the 

proposed topology as the different network interfaces are used for control and data planes.  

Three virtual machines (VMs) will be installed to implement the proposed topology. The 

Mininet-WiFi package will be installed in two virtual machines and the remaining VM will be 

used for the GNS3 emulator. In the proposed topology, there are three main data networks: (i) 

IoT sensor network 1, (ii) IoT sensor network 2, and (iii) server network. The IoT sensor 

network is the network where emulated IoT sensors are located. The server network is the 

network where the emulated server is located. The server to receive the IoT traffic will be 

located in the server network. The IoT traffic from the IoT sensor networks 1 and 2 will be 

forwarded to the server network through the emulated SDN-based backbone network. A total 

of eight OVS nodes are used to create the emulated SDN-based backbone network. OVS 1 

and OVS 5 represent the provider edge network nodes and the other OVS nodes are provider 
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network nodes or the internal network nodes. The provider edge network node is the network 

device that is connected with the edge network such as IoT wireless sensor networks and the 

server network. The provider network node or the internal network node is the network device 

that is only connected to the OVS node, which means that the provider network node is not 

connected with the edge network. 

There are three available paths in the data plane which will carry the data traffic from the 

IoT sensor network to the server network. The three paths are labeled as the upper path, 

middle path, and lower path in this work. The number of hops is the highest in the upper path 

and lowest in the lower path. There are 6loWPAN-based IoT sensor networks  1 and 2 

emulated in Mininet-WiFi 1 and Mininet-WiFi 2 which will send the IoT traffic to the server 

network through the data plane of the emulated SDN-based backbone network. 

The virtual switch provided by the type2 VMware hypervisor, which is the VMware 

workstation in this work, will help to establish the connection between each virtual machine. 

Therefore, the two emulators will be connected through the virtual switch. Two sensor 

networks, server networks, and the SDN-based backbone network will be configured as 

different networks. Each OVS has a unique Data Path Identifier (DPID) and the RYU 

Controller will use the unique DPIDs of each OVS node to configure the necessary OpenFlow 

rules. The function of each network node is explained as follows. The job of the sensor node 

is to generate the IoT traffic with the standard of IEEE 802.15.4. The AP sensor node is used 

to convert the IEEE 802.15.4 to IEEE 802.3 to be enabled to forward the IoT traffic to 

provider OVS nodes. The function of the RYU controller is to receive the required network 

information from the OVS nodes for routing and to instruct the OVS nodes on how to forward 

the traffic. The job of the network node inside the server network is to receive the IoT traffic. 

The OVS 1 (provider edge network node) is responsible for measuring three network 

parameters including delay, packet loss ratio, and the number of hops. The OVS 1 then will 

send the values of measured parameters to the RYU controller. Therefore, the RYU controller 

can use the measured network parameter values in calculating the best path for the data 

traffic. TCP port 6633 is used to communicate the RYU controller with OVS. 

Mininet-WiFi is where sensor network topology is easily created through the command 

line to configure nodes and links. The HWSIM module is supported to assign the 6LoWPAN 

sensor network with an access point (AP) sensor node, and wireless sensor nodes. AP sensor 

acts as a gateway and connects to every sensor node. AP sensor also connects with the wan0-

eth0 virtual interface by using NAT (Network Address Translation) to route its network to the 

provider edge switch of the SDN backbone network. Therefore, the AP sensor node 

communicates with the provider edge network node through the wan0-eth0 virtual interface. 
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The sensor node sends its data to the server through the AP sensor node. The server receives 

and maintains the data sent from the sensor nodes of 6LoWPAN sensor networks 1 and 2 

through the SDN-based backbone network. Figure 3.2 shows the topology of the emulated 

6LoWPAN sensor network in Mininet-WiFi 1 and Mininet-WiFi 2. 

 

Figure 3.2: Virtual network connection between emulated 6LoWPAN IoT sensor 

network and provider edge network node of SDN-based backbone network. 

3.2 Implementation of Delay Awareness Routing for IoT Traffic in 

SDN-based Fault-Tolerant Backbone Network 

In the case of implementing the fault-tolerant delay awareness routing in this work, there 

are three main parameters required for the RYU controller to select the path. They are (i) 

delay of the path, (ii) packet loss ratio, and (iii) the number of hops. The three parameters are 

given different priorities: the delay of the path is defined as the first priority, the packet loss 

ratio is specified as the second priority, and the number of hops is assigned as the last priority. 

In this work, it is assumed that the sensor nodes of the 6LoWPAN sensor networks will send 

UDP text messages to the server networks as sensor data traffic which will not require high 

bandwidth usage. Another consideration is that the sensor data needs to be nearly sent from 

the 6LoWPAN sensor network to the server in real-time. Therefore, the delay of the path 

between two provider edge network nodes (OVS 1 and OVS 5) is considered as the first 

priority. The packet loss ratio and the number of hops are considered as the second priority 
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and third priority respectively. In this work, bandwidth will not be taken into account in 

selecting the best path by the RYU controller because the UDP text messages will only be 

carried along the path. 

 For measuring the three parameters, the provider edge network node (OVS 1) is 

responsible for all three paths (upper path, middle path, and lower path) because OVS 1 

receives the data traffic from sensor network 1 and sensor network 2. ICMPv6 packets will be 

used to measure the path delay between two provider edge network nodes (OVS 1 and OVS 

5). The packet size of the ICMPv6 packet will be adjusted with the packet size of the 

generated IoT traffic from the sensor node to provide the correct delay information for the 

RYU controller in route selection. From this measuring, the values of the packet loss ratio 

regarding three predefined paths can also be recognized.  

The number of hops can be measured by using the Time-To-Live (TTL) information of 

the ICMPv6 packet. In the upper path, there are three OVS nodes to relay the data traffic from 

OVS 1 to OVS 5. Before the data traffic is relayed, TTL will be reduced at each OVS 2, OVS 

3, and OVS 4. In this way, the number of hop information can be collected. 

Then, the provider edge network node (OVS 1) encapsulates the measured values of three 

parameters into the UDP packet and sends the UDP packet to the RYU controller. On the 

other hand, the RYU controller recognizes each OVS switch by requesting the DPID through 

SBI by using OpenFlow echo request and OpenFlow echo reply packets. The RYU controller 

then receives the UDP packet with encapsulated parameter values from OVS 1. The RYU 

controller then decapsulates the UDP packet to get the parameter values used in decision-

making for routing.  

The RYU controller will use a UDP packet for two purposes. The first purpose is to 

obtain the measurement values of the three parameters required in selecting the best path for 

data traffic. The second purpose is to detect the path failure in the data plane. 
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Figure 3.3:  The traffic flow of UDP packet between provider edge network node 

and RYU controller. 

In the routing scenario, the RYU controller firstly compares the delay value and decides 

to select the path with a minimum delay. The RYU controller then installs the flow rules into 

the provider edge network nodes (OVS 1 and OVS 5) to carry the traffic on the path with the 

lowest delay. The selected path is maintained for a specific amount of time to allow the traffic 

flow. The RYU controller checks the delay values again after the allowed period to keep the 

path at a minimum delay value. If the delay values of the three paths are the same, the RYU 

controller will consider the packet loss ratio as a second priority and choose the path with the 

least packet loss ratio value. Otherwise, if the comparing results are still the same, the number 

of hops is the last parameter to be checked by the RYU controller to choose the best path for 

data traffic.   

In the fault-tolerant, the failure cases of the control plane as well as the data plane will be 

considered. In the control plane, the detection of network node (OVS) failure is considered in 

this work. The liveness of the OVS node will be detected by the RYU controller by using 

ICMP packets. In this case, the node failure is detected by sending and receiving the ICMP 

request and reply packets between the RYU controller and each OVS node to check whether 

the node is still connected or not. The traditional way of checking for the liveness of the 

OpenFlow session will be applied in the control plane. 
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In the data plane, the failure of the path between the provider edge nodes (OVS 1 and 

OVS 5) is considered in this work. In this case, the traditional method such as Link Layer 

Discovery Protocol (LLDP) for link failure or path failure detection can be used. However, it 

will not be applied in this thesis. The path failure will be checked based on the measurement 

values of three parameters (path delay, packet loss ratio, and the number of hops) between 

provider edge switches (OVS 1 and OVS 5). OVS 1 receives the measurement values of Path 

1, Path 2, and Path 3 if there is no failure in the data plane. If OVS 1 does not receive any 

measurement values from Path 1, the situation can be considered as a failure in Path 1. As a 

result, OVS 1 will simply put the null value in the measurement variable for Path 1 and send 

the value to the RYU controller. Therefore, the RYU controller will recognize that the path is 

failed by receiving the message with the null value from the OVS 1. As a consequence, the 

RYU controller will remove Path 1 in the decision-making of routing for the best path. In this 

way, the failure of Path 2 and Path 3 can also be detected. 

In the traditional method of LLDP detection, the LLDP packet is required to be generated 

by the RYU controller and sent to the OVS. Then, the OVS will forward this received packet 

to other OVS for failure detection. Therefore, there is some consumed bandwidth for the 

generated LLDP packet. In this work, path detection is done by checking the measurement 

values that are encapsulated in the UDP packet at the RYU controller. By using this method, 

additional bandwidth consumption for path failure detection will be saved. 

Furthermore, in the data plane, when the selected path is failed, the RYU controller will 

not consider this path as the best path again. In this case, the main job of the RYU controller 

is to decide the best one among the remaining paths for routing path selection. For example, if 

Path 1 is failed, Path 2 or Path 3 will be chosen by the RYU controller to reroute the IoT 

traffic based on three main parameters, including delay of the path, packet loss ratio, and the 

number of hops. 

The three main parameters, which are the delay of the path, packet loss ratio, and the 

number of hops, will be measured by OVS 1 and sent to the RYU controller every 20 

seconds. Therefore, the RYU controller can check the failure of the path every 20 seconds and 

reroute if there is a failure in the data plane. 
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Chapter 4  

Implementation of Testbed Environment 
 

4.1 Implementation of SDN-based Backbone Network 

In each OVS node of the SDN-based backbone network, the bridge 0 (br0) is configured 

with the IP address (192.168.1.5) of the RYU controller along with the TCP port number 

(6633). The RYU controller is configured with an out-of-band connection mode in each OVS 

node to separate the network interface of the control plane from the data plane. The br0 is set 

in the secure mode. The network interface which is used for the control plane is not required 

to be controlled by the RYU controller and is removed from each OVS bridge to protect 

against unwanted looping. The control plane network is 192.168.1.0/24. The eth0 of each 

OVS is connected to the RYU controller. The IPv4 addresses of OVS nodes are 192.168.1.1 

for OVS 1, 192.168.1.2 for OVS 2, 192.168.1.3 for OVS 3, 192.168.1.7 for OVS 4, 

192.168.1.4 for OVS 5, 192.168.1.8 for OVS 6, 192.168.1.9 for OVS 7, and 192.168.1.6 for 

OVS 8. Among three paths between OVS 1 and OVS 5 (provider edge nodes), OVS 1, OVS 

3, and OVS 4 are internal nodes in the upper path, OVS 6 and OVS 7 are provider nodes in 

the middle path, and OVS 8 is a provider node in the lower path which are connected through 

eth1 and eth2. 

The OVS 1 and OVS 5 are configured with the 2004::/64 network at eth1 to build the 

upper path in the data plane. For the middle path, the eth5 of OVS 1 and OVS 5 are assigned 

with the 2005::/64 network. For the lower path, the eth2 of OVS 1 and OVS 5 are configured 

with the 2006::/64 network. In each internal OVS node, there are OpenFlow rules to transfer 

the traffic from the 6LoWPAN IoT sensor networks 1 and 2 between provider edge nodes. 

Since the data plane of the SDN-based backbone network is built in the IPv6 network, each 

internal OVS node needs to carry the IPv6 data traffic between the provider edge nodes. 

Therefore, the OpenFlow rules that forward the IPv6 data traffic must be installed in each 

internal node. In the upper path, the forwarding OpenFlow rules are installed in OVS 2, OVS 

3, and OVS 4. The OVS 6, OVS 7  in the middle path, and OVS 8 in the lower path are 

installed with the Openflow rules. The OpenFlow rules to route the sensor traffic (UDP or 

ICMPv6) are installed in OVS 1 and OVS 5 by the RYU controller after choosing the best 

path. 

The OVS 1 is connected to Mininet-WiFi 1 through eth3 and to Mininet-WiFi 2 through 

eth6. The IPv6 address for eth3 is 2001::20 to reach the 2001::/64 network of Mininet-WiFi 1 
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and the IPv6 address for eth6 is 2002::20 to reach the 2002::/ 64 network of Mininet-WiFi 2. 

The gateway addresses of 2001::100 and 2002::100 are specified in OVS 1 to connect to the 

6LoWPAN IoT sensor networks 1 and 2. The eth3 of OVS5 is configured with the IPv6 

address of 2007::10 to reach the 2007::/64 network of the server. 

Table 4.1: Network addresses of SDN-based backbone network. 

Control Plane Network Data Plane Network 

Upper Path Middle Path Lower Path 

192.168.1.0/24 2004::/64 2005::/64 2006::/64 

Table 4.2: Network addresses of edge network. 

Edge Networks Sensor Networks Server 

Network 
Mininet-WiFi 

1 

Mininet-WiFi 

2 

Sensor Network 

1 

Sensor Network 

2 

2001::/64 2002::/64 2003::/64 2009::/64 2007::/64 

Table 4.3: IPv4 or IPv6 address of each node in the SDN-based backbone 

network and edge network. 

No. Network Nodes Interface Control 

Plane 

Network 

(IPv4) 

Data 

Plane 

Network 

(IPv6) 

Edge 

Network 

(IPv6) 

Server 

Network 

(IPv6) 

1. RYU controller eth0 192.168.1.5 

/24 

   

2. OVS 1 

(provider edge 

node connected 

to Mininet-WiFi 

1 and Mininet-

WiFi  2) 

eth0 192.168.1.1 

/24 

   

eth1  2004::20 

/64 

  

eth2  2005::20 

/64 

  

eth5  2006::20 

/64 

  

eth3   2001::20 

/64 

 

eth6   2002::20 

/64 

 

3. OVS 2 

(provider node 

in the upper 

eth0 192.168.1.2 

/24 
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path) 

4. OVS 3 

(provider node 

in the upper 

path) 

eth0 192.168.1.3 

/24 

   

5. OVS 4 

(provider node 

in the upper 

path) 

eth0 192.168.1.7 

/24 

   

6. OVS 5 

(provider edge 

node connected 

to server 

network) 

eth0 192.168.1.4 

/24 

   

eth1  2005::20 

/64 

  

eth2  2006::20 

/64 

  

eth5  2006::20 

/64 

  

eth3    2007::20 

/64 

7. OVS 6 

(provider node 

in the middle 

path) 

eth0 192.168.1.8 

/24 

   

8. OVS 7 

(provider node 

in the middle 

path) 

eth0 192.168.1.9 

/24 

   

9. OVS 8 

(provider node 

in the lower 

path) 

eth0 192.168.1.6 

/24 

   

10. Mininet-WiFi 1 ens32   2001::100 

/64 

 

11. Mininet-WiFi 2 ens36   2002::100 

/64 

 

12. Server eth0    2007::10

/64 

 

4.2 Implementation of 6LoWPAN IoT Sensor Networks 

In Mininet-WiFi 1, the 6LoWPAN IoT sensor network 1 is built with 10 sensor nodes and 

one AP node by using the HWSIM module.  The interfaces (sensor1-pan0 to sensor10-pan0) 

of 10 sensor nodes are configured with the IPv6 addresses from 2003::1/64 to 2003::10/64. 

The AP node is assigned with the IPv6 address of 2003::60/64 at the ap1-pan0 interface. 

Through the AP node, 10 sensors are connected to the 2003::/64 network. The Mininet-WiFi 

1 is configured with 2001::100 to reach the 2001::/64 network of OVS 1. The AP node is 
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assigned with the gateway address of 2001::20 to route the traffic between sensor network 1 

and the SDN-based backbone network.  

In Mininet-WiFi 2, the 6LoWPAN IoT sensor network 2 is created with 10 sensor nodes 

and one AP node. The IPv6 addresses of 10 sensor nodes are from 2009::1/64 to 2009::10/64 

configured at sensor1-pan0 to sensor10-pan0. The ap1-pan0 of the AP node is assigned with 

the 2009::60/64 IPv6 address. The ens36 interface of Mininet-WiFi 2 is configured with 

2002::100 to connect to the 2002::/64 network of OVS 1. The gateway address of the AP 

node is 2002::20 to route the traffic between sensor network 2 and the SDN-based backbone 

network. Sensor networks 1 and 2 measure the end-to-end delay (from the sensor to the 

server) by using ICMPv6 packets. The end-to-end delay is measured in each sensor based on 

the optimal path of the backbone network which is chosen by the RYU controller. The UDP 

sensor messages from sensor networks 1 and 2 are sent to the server through the optimal path 

of the SDN-based backbone network.  

Table 4.4: IPv6 addresses of each node in 6LoWPAN sensor networks 1 and 2. 

Sensor Networks Network Nodes Interface IPv6 address 

 

 

 

 

 

 Sensor Network 1 

Sensor 1 sensor1-pan0 2003::1/64 

Sensor 2 sensor2-pan0 2003::2/64 

Sensor 3 sensor3-pan0 2003::3/64 

Sensor 4 sensor4-pan0 2003::4/64 

Sensor 5 sensor5-pan0 2003::5/64 

Sensor 6 sensor6-pan0 2003::6/64 

Sensor 7 sensor7-pan0 2003::7/64 

Sensor 8 sensor8-pan0 2003::8/64 

Sensor 9 sensor9-pan0 2003::9/64 

Sensor 10 sensor10-pan0 2003::10/64 

AP 1 ap1-pan0 2003::60/64 

 

 

 

 

 

 Sensor Network 2 

Sensor 1 sensor1-pan0 2009::1/64 

Sensor 2 sensor2-pan0 2009::2/64 

Sensor 3 sensor3-pan0 2009::3/64 

Sensor 4 sensor4-pan0 2009::4/64 

Sensor 5 sensor5-pan0 2009::5/64 

Sensor 6 sensor6-pan0 2009::6/64 

Sensor 7 sensor7-pan0 2009::7/64 

Sensor 8 sensor8-pan0 2009::8/64 

Sensor 9 sensor9-pan0 2009::9/64 

Sensor 10 sensor10-pan0 2009::10/64 

AP 1 ap1-pan0 2009::60/64 
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4.3 Installation of OpenFlow Rules in OVS Nodes 

To forward the ICMPv6 traffic as well as UDP traffic between OVS 1 and OVS 5, there 

are the OpenFlow rules defined in the OVS nodes. In the upper path, OVS 2, OVS 3, and 

OVS 4 are installed with the match-action flow rules. For UDP sensor messages, the flow rule 

“in_port=2, priority=5, eth_type=0x86dd, ipv6_dst=2007::20, udp_dst=12345, actions=3” in 

OVS 2 , OVS 3, OVS 4 matches the incoming packet at input port 2 for ethernet type, IPv6 

destination address, and UDP destination port. Since UDP sensor messages are sent over the 

IPv6, the ethernet type for IPv6 address, 0x86dd, is checked. Then the IPv6 destination 

address of the server (2007::20) and the UDP destination port of the server (12345) are 

matched to transfer the incoming UDP messages on the output port 3. For the ICMPv6 

packet, IPv6 neighbor solicitation and IPv6 neighbor advertisement are specified to query the 

source link-layer address and target link-layer address. For IPv6 neighbor solicitation, the two 

flow rules “in_port=2, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=135, 

actions=3” and “in_port=3, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=135, 

actions=2” are installed in OVS 2, OVS 3, and OVS 4. In the flow rules, the ethernet type for 

IPv6 is 0x86dd,  the protocol number of the header for ICMPv6 is 58,  and the IPv6 neighbor 

solicitation for ICMPv6 is 135. 

For IPv6 neighbor advertisement in OVS 2, OVS 3, and OVS 4, the two flow rules 

“in_port=2, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=136, actions=3” ” (port 2 

is eth0 or eth1 and actions 3 is also which port) and “in_port=3, priority=10, 

eth_type=0x86dd, ip_proto=58, icmp_type=136, actions=2” are set to match the IPv6 

neighbor advertisement of 136 for ICMPv6 packets. After the link-layer addresses for source 

and destination are identified, the ICMPv6 packets are allowed to transfer on output port with 

two flow rules “in_port=2, priority=5, eth_type=0x86dd, ip_proto=58, actions=3” and “ 

in_port=3, priority=5, eth_type=0x86dd, ip_proto=58, actions=2” in each OVS node. 

Similarly,  OVS 6 and OVS 7 in the middle path and OVS 8 in the lower path need to be 

installed with the same flow rules as OVS 2, OVS 3, and OVS 4 to transfer UDP and ICMPv6 

traffic between the provider edge nodes (OVS 1 and OVS 5).   

For decrementing the TTL value for each hop along the path, OVS 2, OVS 3, and OVS 4 

requires to be installed with two flow rules “in_port=2, ipv6_src=2004::20, 

ipv6_dst=2004::10, priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3, 

ipv6_src=2004::10, ipv6_dst=2004::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2”. 

For the upper path, the IPv6 address 2004::/64 is assigned to match the source IPv6 address 

and target IPv6 address. If the IPv6 addresses are checked for the ICMPv6 packet which is 
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specified with the ethernet type 0x86dd, the value of TTL is decreased by 1 at OVS 2, OVS 3, 

and OVS 4.  Likewise, the OVS 6, and OVS 7 of the middle path use the same flow rules with 

2005::/64 network addresses “ in_port=2, ipv6_src=2005::20, ipv6_dst=2005::10, 

priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3, ipv6_src=2005::10, 

ipv6_dst=2005::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2” to decrement the 

number of hops in each OVS node. In the lower path, the OVS 8 is assigned with the 

2006::/64 network, therefore the flow rules “in_port=2, ipv6_src=2006::20, 

ipv6_dst=2006::10, priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3, 

ipv6_src=2006::10, ipv6_dst=2006::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2” 

are installed.  

 

(a) OVS 2 
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(b) OVS 3 

 

(c) OVS 4 
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(d) OVS 6 

 

(e) OVS 7 
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(f) OVS 8 

Figure 4.1: OpenFlow rules in OVS nodes of the SDN-based backbone network 

at (a) OVS 2 (b) OVS 3 (c) OVS 4 (d) OVS 6 (e) OVS 7 (f) OVS 8. 
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4.4 Routing Algorithm 

 

Figure 4.2: Flowchart diagram for routing algorithm 
 

Routing Algorithm for Path Failure Detection and Rerouting 

                    Rc = sdn controller 

                    W = list of working paths in the SDN-based backbone network 

                    Vmin  = minimum value of parameters 

                    τp  = path detection interval 

                    τv  = parameter measurement interval 

Input:           

                    vu  = encapsulated UDP message from the upper path measurement 

                    vm  = encapsulated UDP message from the middle path measurement 

                    vl   = encapsulated UDP message from the lower path  measurement 

Measurement Parameters: 

                    du  = delay of the upper path 

                    dm = delay of the middle path 

                    dl  = delay of the lower path  

                    ru   = packet loss ratio of the upper path 

                    rm  = packet loss ratio of the middle path 

                                rl   = packet loss ratio of the lower path 
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                    hu  = number of hops of the upper path 

                    hm  = number of hops of the middle path    

                    hl     = number of hops of the lower path 

 

    Step 1. Begin 

                Initialization:   τv = 5s , τp  =  20s    

    Step 2. while True 

                     Rc  decapsulates vu , vm , vl received from OVS 1 in every τv 

    Step 3.      if  vu = ‘0’ and  vm = ‘0’ and vl  = ‘0’ 

                         set W = [0,0,0] 

                     else if  vu = ‘0’ and vm = ‘0’ and vl != ‘0’ 

                         set W = [0,0,1] 

                     else if  vu = ‘0’ and vm != ‘0’ and vl = ‘0’ 

                         set W = [0,1,0] 

                     else if  vu != ‘0’ and vm = ‘0’ and vl = ‘0’ 

                         set W = [1,0,0] 

                     else if  vu = ‘0’ and vm != ‘0’ and vl != ‘0’ 

                         set W = [0,1,1] 

                     else if  vu != ‘0’ and vm = ‘0’ and vl != ‘0’ 

                         set W = [1,0,1] 

                     else if  vu != ‘0’ and vm != ‘0’ and vl = ‘0’ 

                         set W = [1,1,0] 

                     else if  vu != ‘0’ and vm != ‘0’ and vl != ‘0’ 

                         set W = [1,1,1] 

     Step 4.     if  W = [0,0,0] 

                         All paths are unavailable. 

                     else if  W = [1,1,1] 

                          vu   is decapsulated to  du , ru , hu  

                          vm   is decapsulated to  dm , rm , hm  

                          vl   is decapsulated to  dl , rl , hl 

                                   if  du != dm != dl 

                                     Vmin = min(du , du , dm) 

                          else if  ru != rm != rl     

                              Vmin = min(ru , rm , rl) 

                          else if  hu != hm != hl     
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                              Vmin = min(hu , hm , hl) 

                     else if  W = [0,1,1] 

                         vm   is decapsulated to  dm , rm , hm  

                         vl   is decapsulated to  dl , rl , hl   

                         if  dm != dl 

                                     Vmin = min( du , dm) 

                         else if  rm != rl     

                              Vmin = min(rm , rl) 

                         else if  hm != hl     

                             Vmin = min( hm , hl)  

                     else if  W = [1,0,1] 

                          vu   is decapsulated to  du , ru , hu  

                          vl   is decapsulated to  dl , rl , hl   

                          if  du != dl 

                                       Vmin = min( du , dl) 

                          else if  ru != rl     

                              Vmin = min(ru , rl) 

                          else if  hu != hl     

                              Vmin = min( hu , hl)  

                     else if  W = [1,1,0] 

                          vu   is decapsulated to  du , ru , hu  

                          vm   is decapsulated to  dm , rm , hm   

                          if  du != dm 

                                        Vmin = min( du , dm) 

                          else if  ru != rm     

                              Vmin = min(ru , rm) 

                          else if  hu != hm     

                              Vmin = min( hu , hm)  

                     else if  W = [0,0,1] 

                          vl   is decapsulated to  dl , rl , hl   

                         Vmin =  dl  

                     else if  W = [0,1,0] 

                         vm   is decapsulated to  dm , rm , hm   

                         Vmin =  dm 

                     else if  W = [1,0,0] 
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                         vu  is decapsulated to  du , ru , hu   

                         Vmin =  du  

Step 6.          if  Vmin  is equal to du  or ru  or hu 

                                       Upper Path is chosen by Rc 

                         Install OpenFlow rules into provider edge nodes. 

                     if  Vmin  is equal to dm  or rm  or hm 

                                      Middle Path is chosen by Rc 

                         Install OpenFlow rules into provider edge nodes. 

                     if  Vmin  is equal to dl  or rl  or hl 

                                       Lower Path is chosen Rc 

                         Install OpenFlow rules into provider edge nodes. 

                     sleep for τp 

                                goto Step 2 

Step 7.    End 

 

Node Failure Detection Algorithm 

           Rn  = sdn controller 

           N   = number of OVS nodes in SDN-based backbone network 

           Oa  = list of active OVS nodes connected to Rc 

           τd     = node detection interval 

           mrequest  = ICMP request packets sent to OVS node 

           mreply    = ICMP reply packets received from OVS node 

 

Step 1: Begin 

            Initialize: Oa  = [ ] , τd  = 5s   

Step 2. while True 

                  For n = 1,…, N Do 

                        Rc  sends mrequest  to  nth OVS node   

                        if Rc receives mreply from nth  OVS node then 

                            append  nth OVS node to Oa 

                   sleep for  τd    

                   goto Step 2 

 Step 3. End 
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4.5 Hardware and Software Specifications of Testbed Environment  

Table 4.5: Hardware specifications of host machine. 

Host 

Machine 

Processor RAM System Type OS 

ASUS 

VivoBook 

X512DA 

AMD Ryzen 5 3500U 

with Radeon Vega 

Mobile Gfx 2.10 GH 

16 GB 64-bit operating 

system, x64 based 

processor 

Windows 

10 

 

Table 4.6: Software specifications of virtual machines. 

1. VMware Workstation 15 

pro 

Version 15.5.0 

Hypervisor Type 2 

2.  GNS3 VM GNS3 server version 2.2.23 

VM version 0.11.1 

RAM 4 GB 

Number of processors 2 

3. Mininet-WiFi VM 1 RAM 2 GB 

Number of processors 2 

OS Ubuntu 20.04.3 

LTS (Focal Fossa) 

4. Mininet-WiFi VM 2 RAM 2 GB 

Number of processors 2 

OS Ubuntu 20.04.3 

LTS (Focal Fossa) 

 

Table 4.7: Software specifications of SDN-based backbone network. 

1. OpenFlow virtual 

switch 

Open vSwitch Type Docker Container 

Server GNS3 VM 

OS Alpine Linux v3.3 

2. RYU controller Ubuntu Docker 

Guest 

Type Docker container 

Server GNS3 VM 

OS Ubuntu 16.04.2 LTS 

(Xenial Xerus) 

3. Server Ubuntu Docker 

Guest 

Type Docker container 

Server GNS3 VM 

OS Ubuntu 16.04.2 LTS 

(Xenial Xerus) 
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In the SDN-based backbone network, the RYU controller is installed on Ubuntu docker 

guest which uses containerization technology. In containerization technology, the applications 

are deployed in the container which runs on Linux and shares the kernel of the host machine.    

The container runs a discrete process, making it lightweight. Some of the advantages of 

Docker is 

1. Flexible: The complex applications can be containerized. 

2. Lightweight: The container shares the host kernel. 

3. Interchangeable: Update and upgrade can easily be deployed. 

4. Portable: The docker can run locally or deploy to the cloud. 

5. Scalable: The docker supports automatically distributed replicas of containers. 
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Chapter 5  

Testing and Measurement Result of Proposed Topology 
 

5.1 Routing Path Selection  

For routing measurement, the two scenarios are considered. The first scenario is the 

situation with no failure in the SDN-based backbone network. The second scenario is when 

there is a single path failure in the SDN-based backbone network. The UDP sensor messages 

are sent from the 6LoWPAN IoT networks 1 and 2 to the server. There are 10 sensors in each 

6LoWPAN IoT network, therefore, the UDP messages of 20 sensors are sent to the server 

through the SDN-based backbone network. For routing the best path in the SDN-based 

backbone network, the RYU controller checks the measured parameter values of the three 

paths including the upper path, middle path, and lower path, which are received from OVS1. 

The RYU controller decides the optimal path every 20 seconds for sensor traffic. The testing 

is measured 20 times to compare the number of selected routing paths in the SDN-based 

backbone network. In Figure 5.1, the graph for the number of selected routing paths when 

there is no path failure in the SDN-based backbone network is illustrated. As shown in Figure 

5.1, the lower path is mostly chosen as the optimal path during the measurement period. 

According to the proposed delay-awareness routing algorithm, the lower path has the highest 

chance to be selected as the optimal path in the topology summarized in Figure 3.1. 

 

Figure 5.1: Comparison of routing paths chosen by the RYU controller when 

there is no path failure in the SDN-based backbone network. 
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In Figure 5.2, three different scenarios are tested for the situation of a single path failure. 

The number of tests is 20 times, and the results of optimal path selection are compared.  The 

upper path is failed in the first scenario, the middle path is failed in the second scenario, and 

the lower path is failed in the last scenario. Therefore, there are only two available paths in 

each scenario to compare the optimal routing path selection by the RYU controller. When the 

upper path is failed, the remaining paths are the middle path and the lower path. The lower 

path is chosen more than the middle path. The reason is that there is one more hop in the 

middle path than the lower path. Therefore, the required time for the packet to reach the 

destination through the lower path is less than that of passing through the middle path. In the 

case of the middle path failure, a similar case also happens since the upper path has three hops 

to reach the server. When the lower path is failed, the middle is mostly chosen as the optimal 

path since there are fewer hops in the middle path than in the upper path which takes less time 

to carry packets to the server. The overall testing results that the lower path has the lowest 

delay, and the upper path has the highest delay in the proposed topology.  Therefore, the 

result in Figure 5.2 shows that the path failure detection from the RYU controller is 

successful and the delay-awareness routing algorithm works properly in the SDN-based 

backbone network. 

 

 

Figure 5.2: Comparison of routing paths chosen by the RYU controller when 

there is a single path failure in the SDN-based backbone network. 
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5.2 Reroute Time 

The rerouting time is measured when the initial selected optimal path is failed in the 

backbone network. Figure 5.3 shows the UDP packet captured with the Wireshark tool at the 

server side to measure the required rerouting time. In this scenario, the time that the server 

receives the last UDP packet from the sensor node with IPv6 address 2001::100 through the 

initially selected path is 15:13:17.979. When the selected path is down, there is no incoming 

packet to the server during the time between 15:13:18.382 and 15:13:32.664. After the RYU 

controller selects another available path as the optimal path, then the server receives back the 

UDP packet at 15:13:36.539. The rerouting time is calculated from the absolute time 

difference between the last packet received from the optimal path and the first packet received 

from the rerouted path. 

Rerouting Time = | (the time that the server receives the last UDP packet from the initial 

optimal path) - (the time that the server receives the first UDP packet back 

from the rerouted optimal path after the failure of the initial optimal path) | 

 

Figure 5.3: UDP packet captured in server to measure rerouting time with 

Wireshark tool. 
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The graph of the average rerouting time resulting from 10 times of testing is shown in 

Figure 5.4. When the lower path is failed, the required average time is around 20 seconds 

which means that the RYU controller reroutes the other path within the desired measurement 

of time. When both the lower path and middle path are failed, the RYU controller reroutes to 

the upper path within an average maximum time of 25 seconds. The proposed reroute 

scenario maintains the failure path in an acceptable amount of time which is around 20 to 25 

seconds. 

 

 

Figure 5.4: Average reroute time with 95-percent confidence interval for 

6LoWPAN IoT traffic. 

 
The reroute time of the RYU controller in the case of lower path failure is shown in Table 

5.1. The average rerouting time that is resulted from 10 times of testing is about over 18 

seconds. Besides, the required reroute time for the case of both the lower path and the middle 

path failures is about 24 seconds which is shown in Table 5.2. The RYU controller takes more 

time in the case of two path failure than a single path failure, however, the average rerouting 

time is the range of the proposed topology of the backbone network. 

 

 

 

 

 

 

 

22.1 

27.2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

Table 5.1: Reroute time for lower path failure. 

 
Test 

No. 

Down Time 

(seconds) 

Up Time 

(seconds) 

Reroute Time  

(seconds) 

1. 03:58:18.003 03:58:40.282 22.279 

2. 04:34:24.958 04:34:41.473 16.515 

3. 04:41:53.236 04:42:04.092 10.856 

4. 04:44:48.509 04:45:08.764 20.255 

5. 04:52:46.738 04:53:06.210 19.472 

6. 04:55:47.023 04:56:09.366 22.343 

7. 04:59:38.725 04:59:49.809 11.084 

8. 05:02:09.385 05:02:37.427 28.042 

9. 05:07:08.386 05:07:30.753 22.367 

10. 05:09:16.036 05:09:37.063 21.027 

Average Reroute Time (seconds) 18.424 s 

 

Table 5.2: Reroute time for both lower path and middle path failures. 

Test 

No. 

Down Time 

(seconds) 

Up Time 

(seconds) 

Reroute Time  

(seconds) 

1. 05:17:52.006 05:18:15.206 23.2 

2. 05:30:20.114 05:30:44.041 23.927 

3. 05:33:34.333 05:33:59.313 24.980 

4. 05:35:36.224 05:35:59.498 23.274 

5. 05:37:48.330 05:38:10.943 22.613 

6. 05:49:45.858 05:50:05.144 19.286 

7. 05:54:22.814 05:54:50.576 27.762 

8. 06:02:38.792 06:03:01.015 22.223 

9. 06:04:55.531 06:05:18.675 23.144 

10. 06:07:17.203 06:07:51.277 34.074 

Average Reroute Time (seconds) 23.448 s 

 

5.3 End-to-End Delay Measurement 

The results of the end-to-end average delay of each sensor from Mininet-WiFi 1 and 

Mininet-WiFi 2 to the server are shown in Table 5.3 and Table 5.4. The end-to-end delay 

through the optimal path is measured when there is no traffic in the SDN-based backbone 

network. The ICMP packet is used to measure the average end-to-end delay from the sensor 

to the server through the optimal routing path chosen by the RYU controller in the SDN-

based backbone network.  
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Table 5.3: End-to-end average delay of each sensor from sensor network 1 to the 

server when there is no traffic in the SDN-based backbone network. 

 

 

 

 

 

 
 

Table 5.4: End-to-end average delay of each sensor from sensor network 2 to 

server when there is no traffic in the SDN-based backbone network. 

 

 

 

 

 

 

 

Table 5.5 and Table 5.6 show the measurement results of the end-to-end average delay of 

sensors from sensor networks 1 and 2 to the server for three cases when there is sensor traffic 

from both sensor networks 1 and 2 in the SDN-based backbone network. When there is no 

path failure, the RYU controller chooses the optimal path with a minimum delay which is 

mostly the lower path in the SDN-based backbone network. Therefore, in the case of no path 

failure, the end-to-end delay measurement has the minimum value most of the time in contrast 

to the case of lower path failure or both lower path and middle path failures. In the case of a 

lower path failure, the end-to-end delay value is increased since the RYU controller chooses 

mostly the middle path rather than the upper path. When there are failures in both the lower 

path and middle path in the SDN-based backbone network, the RYU controller chooses only 

Sensors (Sensor 

Network 1) 

End-to-end average delay 

(milliseconds) 

Sensor 1 3.285 

Sensor 2 2.350 

Sensor 3 2.969 

Sensor 4 3.775 

Sensor 5 2.331 

Sensor 6 2.764 

Sensor 7 2.860 

Sensor 8 2.849 

Sensor 9 3.551 

Sensor 10 2.655 

Sensors (Sensor 

Network 2) 

End-to-end average Delay 

(milliseconds) 

Sensor 1 2.776 

Sensor 2 2.886 

Sensor 3 3.174 

Sensor 4 3.078 

Sensor 5 2.895 

Sensor 6 2.767 

Sensor 7 2.796 

Sensor 8 3.806 

Sensor 9 2.804 

Sensor 10 2.367 
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the upper path for routing the sensor traffic, which causes the end-to-end delay value highest 

most of the time when compared to the lower path and middle path. Therefore, it can be 

concluded that the proposed routing algorithm has been working to route the IoT sensor 

traffic on the optimal path. 

Table 5.5: End-to-end average delay of each sensor from sensor network 1 to the 

server in case of no path failure, one path failure, and two path failures in the 

SDN-based backbone network.  

Sensors 

(Sensor 

Network 1) 

 

End-to-end average delay 

(milliseconds) 

No Path 

Failure 

 

Lower Path 

Failure 

 

Lower Path and 

Middle Path 

Failures 

Sensor 1 2.541 3.247 4.094 

Sensor 2 2.588 3.373 3.846 

Sensor 3 2.502 4.676 3.436 

Sensor 4 2.981 3.385 4.319 

Sensor 5 2.911 3.469 3.728 

Sensor 6 2.691 3.435 4.168 

Sensor 7 2.957 3.216 4.221 

Sensor 8 2.910 4.011 5.151 

Sensor 9 2.921 3.620 5.435 

Sensor 10 2.734 3.653 4.734 

Average (ms) 2.773 3.608 4.313 

 

Table 5.6: End-to-end average delay of each sensor from sensor network 1 to the 

server in case of no path failure, one path failure, and two path failures in the 

SDN-based backbone network.  

Sensors 

(Sensor 

Network 2) 

 

End-to-end average delay 

(milliseconds) 

No Path 

Failure 

 

Lower Path 

Failure 

Lower Path and 

Middle Path 

Failures 

Sensor 1 2.896 3.466 5.379 
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Sensor 2 2.928 3.591 5.911 

Sensor 3 2.509 3.475 5.896 

Sensor 4 3.482 4.061 6.865 

Sensor 5 2.797 3.460 5.702 

Sensor 6 3.635 4.122 6.617 

Sensor 7 2.777 4.269 4.761 

Sensor 8 3.097 3.547 5.457 

Sensor 9 3.046 4.059 6.305 

Sensor 10 2.970 3.894 6.022 

Average (ms) 3.013 3.794 5.891 
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Chapter 6  

Conclusions 

In this thesis, the hybrid form of implementation for edge network in Mininet-WiFi and 

core network in GNS3 has been successfully proposed. Firstly, in the SDN-based core 

network, the proposed network topology is built with eight OVS nodes that support the 

OpenFlow protocol, three different paths, and one centralized RYU controller. The network 

parameters of three paths are measured between provider edge OVS nodes. In OVS 1 which 

is connected to sensor networks, the measurement values are decapsulated into the packets 

and sent to the RYU controller. The RYU controller successfully installs the flow rules into 

the provider edge nodes to route the best path by following the implemented routing 

algorithm. Node failure detection, path failure detection, and rerouting for path failure are 

also tested.  

Secondly, in edge networks, the 6LoWPAN IoT sensor network is created and connected 

through an AP node in Mininet-WiFi VM. Another important step is to connect different VM 

to establish the hybrid form of the testbed and to route the traffic from sensors of the edge 

network to the provider edge node of the core network. The GNS3 VM and Mininet-WiFi 

VM are connected through a virtual switch, therefore, the traffic from sensors is sent to the 

core network.  

Thirdly, the end-to-end delay is directly measured from the sensors to the server. In this 

case, the RYU controller installs the OpenFlow rules with specific MAC addresses of core 

networks, and edge networks to route the traffic of sensors to the server and vice versa. The 

end-to-end delay is successfully and dynamically measured on the optimal path chosen by the 

RYU controller in the SDN-based core network.. In IPv6 addresses, the additional neighbor 

solicitation and neighbor advertisement for ICMPv6 are required to be matched to take action 

to decrement the number of hops in each OVS node. In the next step, the sensor messages are 

created in the form of UDP packets and sent to the server through a UDP port. 

Fourthly, two different sensor networks are created in two Mininet-WiFi VMs to connect 

with the SDN-based backbone network. Two sensor networks send messages simultaneously 

to the server on the optimal path, likewise, the end-to-end delay is measured on the same path. 

In the last step, OVS node failure detection is tested. The ICMP packet is used by the RYU 

controller to check whether the OVS node is active or not. In overall testing, the selected 

routing path as well as rerouting time of the RYU controller, and end-to-end delay 

measurement are tested and recorded for the proposed network. 
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In this thesis, one main advantage is the contribution of a hybrid form of GNS3 and 

Mininet-WiFi emulated testbed. From this contribution, the testbed can collaborate with other 

vendors as well as real or virtual machines to explore more research in the future. This testbed 

is worked on a small-scale network with centralized monitoring and controlling. Failure of the 

SDN controller scenario is not considered in this work because there is a single RYU 

controller in the proposed testbed to control and manage the backbone network. From the 

point of view of redundancy, a single controller scenario is not suitable because the feature of 

controllability will be lost when an SDN controller is failed. Moreover, the delay between 

SDN-enabled network nodes such as OVS and the SDN controller needs to be considered in 

the large-scale backbone network. Therefore, the distributed multi-SDN controller scenario 

should be utilized to improve the redundancy. Furthermore, a slave SDN controller should be 

implemented as the edge computing node at the provider-edge network to reduce bandwidth 

consumption at the control plane in the future. 
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Appendix A 

Network Configuration of SDN-based Backbone Network 

#Network Configuration in OVS 1 

nano /etc/network/interfaces 

#Static config for eth0 to connect to the RYU controller 

auto eth0 

iface eth0 inet static 

address 192.168.1.1 

netmask 255.255.255.0 

#Static config for eth1 to set the IPv6 address for the upper path 

auto eth1 

iface eth1 inet6 static 

address 2004::20 

netmask 64 

#Static config for eth5 to set the IPv6 address for the middle path 

auto eth5 

iface eth5 inet6 static 

address 2005::20 

netmask 64 

#Static config for eth2 to set the IPv6 address for the lower path 

auto eth2 

iface eth2 inet6 static 

address 2006::20 

netmask 64 

#Static config for eth3 to connect to the Mininet-WiFi 1 

auto eth3 

iface eth3 inet6 static 

address 2001::20 

netmask 64 

gateway 2001::100 

#Static config for eth6 to connect to the Mininet-WiFi 2 

auto eth6 

iface eth6 inet6 static 
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address 2002::20 

netmask 64 

gateway 2002::100 

 

#Network Configuration in OVS 2 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.2 

netmask 255.255.255.0 

 

#Network Configuration in OVS 3 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.3 

netmask 255.255.255.0 

 

#Network Configuration in OVS 4 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.7 

netmask 255.255.255.0 

 

#Network Configuration in OVS 5 

nano /etc/network/interfaces 

#Static config for eth0 to connect to the RYU controller 

auto eth0 

iface eth0 inet static 

address 192.168.1.4 

netmask 255.255.255.0 
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#Static config for eth1 to set the IPv6 address for the upper path 

auto eth1 

iface eth1 inet6 static 

address 2004::10 

netmask 64 

#Static config for eth5 to set the IPv6 address for the middle path 

auto eth5 

iface eth5 inet6 static 

address 2005::10 

netmask 64 

#Static config for eth2 to set the IPv6 address for the lower path 

auto eth2 

iface eth2 inet6 static 

address 2006::10 

netmask 64 

#Static config for eth2 to connect to the server 

auto eth2 

iface eth2 inet6 static 

address 2007::10 

netmask 64 

 

#Network Configuration in OVS 6 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.8 

netmask 255.255.255.0 

 

#Network Configuration in OVS 7 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.9 
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netmask 255.255.255.0 

 

#Network Configuration in OVS 8 

nano /etc/network/interfaces  

#Static config for eth0 to connect to the RYU controller 

auto eth0  

iface eth0 inet static 

address 192.168.1.6 

netmask 255.255.255.0 

 

#Network Configuration in RYU controller 

nano /etc/network/interfaces  

# Static config for eth0 

auto eth0 

iface eth0 inet static 

address 192.168.1.5 

netmask 255.255.255.0 

 

#Network Configuration in Server 

nano /etc/network/interfaces  

# Static config for eth0 

auto eth0 

iface eth0 inet6 static 

address 2007::20 

netmask 64 

 

#Network Configuration in Mininet-WiFi 1 

#Static config for ens32 

address 2001::100 

netmask 64 

 

#Network Configuration in Mininet-WiFi 1 

#Static config for ens36 

address 2002::100 

netmask 64 
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Appendix B 

Installation of Necessary Package  

#Ubuntu Docker Guest (RYU Controller) 

apt-get update 

apt-get install python 

apt-get install python-pip 

apt-get install git 

git clone https://github.com/faucetsdn/ryu.git 

pip install setuptools = = 33.1.0 

pip install pbr = = 2.1.0 

pip install pip = = 9.0.0 

pip install dnspython = = 1.16.0 

pip install oslo.config = = 5.0.0 

pip install tinyrpc = = 1.0.1 

pip install eventlet = = 0.22.0 

pip install ovs = = 2.6.0 

pip install ryu  

cd ryu 

pip install ryu 

apt-get update 

 

#OpenvSwitch (Alpine Linux) 

apk –no-cache add git 

git clone https://github.com/kytos/python-oprnflow.git 

apk add --update –no-cache curl py-pip 

apk add –update py-pip 

apk add py-pip 

apk add –no-cache python3 

apk add py-setuptools 

apk update 

 

#Ubuntu Docker Guest (Server) 

apt-get update 

apt-get install python 
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apt-get install python-pip 

apt-get update 
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Appendix C 

Establishment of Connection between Data Plane and 

Control Plane and Installation of OpenFlow Rules in 

Provider OVS Nodes 

 

#Connecting OVS 1 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

 

#Connecting OVS 2 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 2 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 
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ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 

nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 

 

#Connecting OVS 3 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 3 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 
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ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 

nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 

 

#Connecting OVS 4 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 4 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 
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nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 

 

#Connecting OVS 5 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

 

#Connecting OVS 6 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 6 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 
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ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 

nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2005::20,ipv6_dst=2005::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2005::10,ipv6_dst=2005::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 

 

#Connecting OVS 7 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 7 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 
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ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 

nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2005::20,ipv6_dst=2005::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2005::10,ipv6_dst=2005::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 

 

#Connecting OVS 8 to the RYU controller 

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633 

ovs-vsctl set-controller br0 connection-mode=out-of-band 

ovs-vsctl set-fail-mode br0 secure 

ovs-vsctl del-port br0 eth0  

ovs-vsctl set bridge br0 stp-enable=true 

#Installing predefined forwarding OpenFlow rules in OVS 8 

nano /etc/network/flows.sh 

ovs-ofctl del-flows br0 

./rules.sh 

sleep 10 

./dec.sh 

nano /etc/network/rules.sh 

ovs-ofctl add-flow br0 

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2 

ovs-ofctl add-flow br0 

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3 

ovs-ofctl add-flow br0 

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2 
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ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3 

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2 

nano /etc/network/dec.sh 

ovs-ofctl add-flow br0 

in_port=2,ipv6_src=2006::20,ipv6_dst=2006::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3 

ovs-ofctl add-flow br0 

in_port=3,ipv6_src=2006::10,ipv6_dst=2006::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2 
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Appendix D 

Development of Python Program for Parameters 

Measurement in SDN-based Backbone Network   

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is written at OVS 1 to measure three parameters (delay, packet loss, and the 

number of hops) of the three paths in the SDN-based backbone network and to send the 

measurement result to the RYU controller. 

 

import subprocess 

import os 

import socket 

from subprocess import Popen, PIPE 

import re  

import time 

import shlex 

import datetime 

 

while True: 

    command_line = "ping6 -c 1 -I 2004::20 2004::10" 

    args = shlex.split(command_line) 

    try: 

        subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

        print "\nUpper_Path is available." 

        hostname = '2004::10' 

        process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE) 

        stdout, stderr = process.communicate() 

        packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss') 

 != -1][0].split('%')[0].split(' ')[-1]) 

        if packetloss < 10.0: 

            print("\nPacket_Loss_of_Upper_Path is %s percent" % packetloss) 

            loss_u = packetloss 

            avg_time = float([x for x in stdout.decode('utf-8').split('\n') 

 if x.startswith('round-trip')][0].split('=')[-1].split('/')[1]) 
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        print("Average_RTT_of_Upper_Path is %s s" %avg_time) 

        RTT_u = avg_time 

        res=stdout 

        if process.returncode > 0: 

            print('server error') 

        else: 

            pattern = re.compile('ttl=\d*') 

            pattern = re.search(pattern,stdout) 

            ttl=re.split(r'=',pattern.group(0)) 

            hops_u=64-int(ttl[1]) 

            print("NumberofHops_in_Upper_Path is %s" %hops_u) 

 

        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.sendall("\n".join([bytes(loss_u), bytes(RTT_u), bytes(hops_u)])) 

 

    except subprocess.CalledProcessError: 

        print "\nUpper_Path is not available." 

        value =bytes(0) 

        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.send(value) 

 

    command_line = "ping6 -c 1 -I 2005::20 2005::10" 

    args = shlex.split(command_line) 

    try: 

        subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

        print "\nMiddle_Path is available." 

        hostname = '2005::10' 

        process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE) 

        stdout, stderr = process.communicate() 
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        packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss')  

                                        !=- 1][0].split('%')[0].split(' ')[-1]) 

        if packetloss < 10.0: 

            print("\nPacket_Loss_of_Middle_Path is %s percent" % packetloss) 

            loss_m = packetloss 

            avg_time = float([x for x in stdout.decode('utf-8').split('\n')  

                                      if x.startswith('round-trip')][0].split('=')[-1].split('/')[1]) 

        print("Average_RTT_of_Middle_Path is %s s" %avg_time) 

        RTT_m = avg_time 

        res=stdout 

        if process.returncode > 0: 

            print('server error') 

        else: 

            pattern = re.compile('ttl=\d*') 

            pattern = re.search(pattern,stdout) 

            ttl=re.split(r'=',pattern.group(0)) 

            hops_m=64-int(ttl[1]) 

            print("NumberofHops_in_Middle_Path is %s" %hops_m) 

 

        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.sendall("\n".join([bytes(loss_m), bytes(RTT_m), bytes(hops_m)])) 

 

    except subprocess.CalledProcessError: 

        print "\nMiddle_Path is not available." 

        value =bytes(0) 

        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.send(value) 

 

    command_line = "ping6 -c 1 -I 2006::20 2006::10" 
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    args = shlex.split(command_line) 

    try: 

        subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

        print "\nLower_Path is available." 

        hostname = '2006::10' 

        process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE) 

        stdout, stderr = process.communicate() 

        packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss')  

                                       != -1][0].split('%')[0].split(' ')[-1]) 

        if packetloss < 10.0: 

            print("\nPacket_Loss_of_Lower_Path is %s percent" % packetloss) 

            loss_l = packetloss 

            avg_time = float([x for x in stdout.decode('utf-8').split('\n')  

                                     if x.startswith('round-trip')][0].split('=')[-1].split('/')[1]) 

        print("Average_RTT_of_Lower_Path is %s s" %avg_time) 

        RTT_l = avg_time 

        res=stdout 

        if process.returncode > 0: 

            print('server error') 

        else: 

            pattern = re.compile('ttl=\d*') 

            pattern = re.search(pattern,stdout) 

            ttl=re.split(r'=',pattern.group(0)) 

            hops_l=64-int(ttl[1]) 

            print("NumberofHops_in_Lower_Path is %s" %hops_l) 

 

        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.sendall("\n".join([bytes(loss_l), bytes(RTT_l), bytes(hops_l)])) 

 

    except subprocess.CalledProcessError: 

        print "\nLower_Path is not available." 

        value =bytes(0) 
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        HOST = '192.168.1.5' 

        PORT = 10000 

        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

        s.connect((HOST, PORT)) 

        s.send(value) 

    print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" 

    time.sleep(5)  
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Appendix E 

Development of Routing Program in RYU Controller 

(Path Failure Detection, Rerouting) 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is written at the RYU controller to reroute the best path in the SDN-based 

backbone network. 

 

import time 

import datetime 

from ryu.base import app_manager 

from ryu.controller import ofp_event 

from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER, 

DEAD_DISPATCHER 

from ryu.controller.handler import set_ev_cls 

from ryu.ofproto import ofproto_v1_3 

from ryu.lib import hub 

import core 

from core import best 

import node_detect 

from node_detect import node 

 

# MAC ADDRESS for ethernet ports of OVS1 

A1="7a:62:12:e0:1b:55" #ethernet_1(port_no.2) 

A2="2a:37:11:e8:3e:c7" #ethernet_2(port_no.3) 

A3="c2:b9:18:96:99:34" #ethernet_5(port_no.6) 

 

# MAC ADDRESS for ethernet ports of OVS5 

B1="6a:56:0d:47:0a:13" #ethernet_1(port_no.2) 

B2="62:aa:51:f8:c0:d8" #ethernet_2(port_no.3) 

B3="6a:56:0d:47:0a:13" #ethernet_5(port_no.6) 

 

# MAC ADDRESS for Server 

S1="7e:ef:37:56:13:88" #ethernet_0 
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# MAC ADDRESS for Mininet_WiFi 

MN ="00:0C:29:6D:B2:12" 

 

# MAC ADDRESS for Mininet_WiFi(1) 

MN1="00:0C:29:3E:F8:3B" 

 

class SimpleMonitor13(app_manager.RyuApp): 

    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 

 

    def __init__(self, *args, **kwargs): 

        super(SimpleMonitor13, self).__init__(*args, **kwargs) 

        self.switches = {} 

        self.datapaths = {} 

        self.monitor_thread = hub.spawn(self._monitor) 

 

    def add_flow(self,datapath,match,actions,hard): 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)] 

        mod = parser.OFPFlowMod(datapath=datapath, command = ofproto.OFPFC_ADD,  

match=match,    instructions=inst, hard_timeout=hard) 

        datapath.send_msg(mod) 

 

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 

    def switch_features_handler(self, ev): 

        dp = ev.msg.datapath 

        datapath = ev.msg.datapath 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

        self.logger.info("Switch_ID %s (IP address %s) is connected,1",dp.id,dp.address) 

 

#Define the function to detect when nodes connect to RYU controller or leave from RYU 

controller 
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    @set_ev_cls(ofp_event.EventOFPStateChange,[MAIN_DISPATCHER, 

DEAD_DISPATCHER]) 

    def _state_change_handler(self, ev): 

        current_time = time.asctime(time.localtime(time.time())) 

        datapath = ev.datapath 

        if ev.state == MAIN_DISPATCHER: 

            if datapath.id not in self.datapaths: 

                self.logger.debug('register datapath: %016x', datapath.id) 

                self.logger.info("(Switch ID %s),IP address is connected %s in 

%s,1",datapath.id,datapath.address,current_time) 

                self.datapaths[datapath.id] = datapath 

                self.logger.info("Current Conneced Switches to RYU controller are 

%s",self.datapaths.keys()) 

        elif ev.state == DEAD_DISPATCHER: 

            if datapath.id in self.datapaths: 

                self.logger.debug('unregister datapath: %016x', datapath.id) 

                self.logger.info("(Switch ID %s),IP address is leaved %s in %s,0", datapath.id, 

datapath.address,current_time) 

                del self.datapaths[datapath.id] 

                self.logger.info("Current Conneced Switches to RYU controller are %s", 

self.datapaths.keys()) 

 

    def _monitor(self): 

        x = datetime.datetime.now() 

        print("This log is recorded from rerouting of RYU Controller at %s"%x)         

        while True: 

            node_list = node() 

            print("The available node list is %s"%node_list) 

            global result, sensor_delay 

            result = None 

            result, delay = best() 

            if result == 0: 

                print("Upper Path is chosen.") 

            elif result == 1: 

                print("Middle Path is chosen.") 
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            elif result == 2: 

                print("Lower Path is chosen.") 

            

print("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXX”) 

    for datapath in self.datapaths.values(): 

                self.send_get_config_request(datapath) 

            hub.sleep(5) 

 

    def send_get_config_request(self, datapath): 

        ofp = datapath.ofproto 

        ofp_parser = datapath.ofproto_parser 

        req = ofp_parser.OFPGetConfigRequest(datapath) 

        datapath.send_msg(req) 

 

#Define the function to add flow rules with configuration request messag 

    @set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER) 

    def get_config_reply_handler(self,ev): 

        datapath = ev.msg.datapath 

        ofproto = datapath.ofproto 

        parser = datapath.ofproto_parser 

 

        if (datapath.id == 29176192297550) and result == 0: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=B1),parser.OFPActionOutput(2)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=2,eth_type=0x86dd,ipv6_dst='2003::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=7) 

            actions = [parser.OFPActionSetField(eth_dst=B1),parser.OFPActionOutput(2)] 

            self.add_flow(datapath,match,actions,0) 
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            match = parser.OFPMatch(in_port=2,eth_type=0x86dd,ipv6_dst='2009::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)] 

            self.add_flow(datapath,match,actions,0) 

 

        if (datapath.id == 86675905817152)  and result == 0: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=A1),parser.OFPActionOutput(2)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=2) 

            actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

        if (datapath.id == 29176192297550) and result == 1: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=B2),parser.OFPActionOutput(6)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=6,eth_type=0x86dd,ipv6_dst='2003::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=7) 

            actions = [parser.OFPActionSetField(eth_dst=B2),parser.OFPActionOutput(6)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=6,eth_type=0x86dd,ipv6_dst='2009::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)] 

            self.add_flow(datapath,match,actions,0) 

 

        if (datapath.id == 86675905817152)  and result == 1: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=A2),parser.OFPActionOutput(6)] 

            self.add_flow(datapath,match,actions,0) 
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            match = parser.OFPMatch(in_port=6) 

            actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

        if (datapath.id == 29176192297550) and result == 2: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=B3),parser.OFPActionOutput(3)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=3,eth_type=0x86dd,ipv6_dst='2003::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=7) 

            actions = [parser.OFPActionSetField(eth_dst=B3),parser.OFPActionOutput(3)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=3,eth_type=0x86dd,ipv6_dst='2009::/64') 

            actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)] 

            self.add_flow(datapath,match,actions,0) 

 

        if (datapath.id == 86675905817152)  and result == 2: 

            match = parser.OFPMatch(in_port=4) 

            actions = [parser.OFPActionSetField(eth_dst=A3),parser.OFPActionOutput(3)] 

            self.add_flow(datapath,match,actions,0) 

 

            match = parser.OFPMatch(in_port=3) 

            actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)] 

            self.add_flow(datapath,match,actions,0) 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is written at the RYU controller to decide the best path as well as to detect 

path failure in the SDN-based backbone network. 

 

import struct 
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from struct import * 

import socket, sys 

import os 

import time 

IP="192.168.1.5" 

PORT=10000 

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

s.bind((IP,PORT)) 

 

def best(): 

    i=0 

    global loss_u, RTT_u, hops_u, loss_m, RTT_m, hops_m, loss_l, RTT_l, hops_l 

    global Working_Path 

    for i in [0,1,2]: 

        packet, address = s.recvfrom(1024) 

        value = packet.decode("UTF-8") 

        if i == 0: 

            upper_value = value 

            if upper_value == '0': 

                print("\nUpper_Path is not working.") 

                Upper_Path = 0 

                loss_u = ' ' 

                RTT_u = ' ' 

                hops_u = ' ' 

                Upper_Path = 0 

            elif upper_value != '0': 

                print("\nUpper_Path is working.") 

                loss_u, RTT_u, hops_u = [float(i) for i in upper_value.split('\n')] 

                print("Packet Loss: %s"%loss_u) 

                print("Delay: %s"%RTT_u) 

                print("Hops: %s"%hops_u) 

                Upper_Path = 1 

        elif i == 1: 

            middle_value = value 

            if middle_value == '0': 
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                print("\nMiddle_Path is not working.") 

                loss_m = ' ' 

                RTT_m = ' ' 

                hops_m = ' ' 

                Middle_Path = 0 

 

            elif middle_value != '0': 

                print("\nMiddle_Path is working.") 

                loss_m, RTT_m, hops_m = [float(i) for i in middle_value.split('\n')] 

                print("Packet Loss: %s"%loss_m) 

                print("Delay: %s"%RTT_m) 

                print("Hops: %s"%hops_m) 

                Middle_Path = 1 

        elif i == 2: 

            lower_value = value 

            if lower_value == '0': 

                print("\nLower_Path is not working.") 

                loss_l = ' ' 

                RTT_l = ' ' 

                hops_l = ' ' 

                Lower_Path = 0 

            elif lower_value != '0': 

                print("\nLower_Path is working.") 

                loss_l, RTT_l, hops_l = [float(i) for i in lower_value.split('\n')] 

                print("Packet Loss: %s"%loss_l) 

                print("Delay: %s"%RTT_l) 

                print("Hops: %s"%hops_l) 

                Lower_Path = 1 

            i=int(i)+1 

 

    Working_Path = [0,0,0] 

 

    if (Upper_Path == 1 and Middle_Path == 1 and Lower_Path == 1): 

        Working_Path = [1,1,1] 

    elif (Upper_Path == 0 and Middle_Path == 1 and Lower_Path == 1): 
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        Working_Path = [0,1,1] 

    elif (Upper_Path == 1 and Middle_Path == 0 and Lower_Path == 1): 

        Working_Path = [1,0,1] 

    elif (Upper_Path == 1 and Middle_Path == 1 and Lower_Path == 0): 

        Working_Path = [1,1,0] 

    elif (Upper_Path == 0 and Middle_Path == 0 and Lower_Path == 1): 

        Working_Path = [0,0,1] 

    elif (Upper_Path == 1 and Middle_Path == 0 and Lower_Path == 0): 

        Working_Path = [1,0,0] 

    elif (Upper_Path == 0 and Middle_Path == 1 and Lower_Path == 0): 

        Working_Path = [0,1,0] 

    elif (Upper_Path == 0 and Middle_Path == 0 and Lower_Path == 0): 

        Working_Path = [0,0,0] 

#    print('\nWorking_Path:%s'%Working_Path) 

 

    P = None 

    if Working_Path == [1,1,1]: 

        if RTT_u != RTT_m != RTT_l: 

            P = min(RTT_u, RTT_m, RTT_l) 

        elif loss_u != loss_m != loss_l: 

            P = min(loss_u, loss_m, loss_l) 

        elif hops_u != hops_m != hops_l: 

            P = min(hops_u, hops_m, hops_l) 

    elif Working_Path == [0,1,1]: 

        if RTT_m != RTT_l: 

            P = min(RTT_m, RTT_l) 

        elif loss_m != loss_l: 

            P = min(loss_m, loss_l) 

        elif hops_m != hops_l: 

            P = min(hops_m, hops_l) 

    elif Working_Path == [1,0,1]: 

        if RTT_u != RTT_l: 

            P = min(RTT_u, RTT_l) 

        elif loss_u != loss_l: 

            P = min(loss_u, loss_l) 
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        elif hops_u != hops_l: 

            P = min(hops_u, hops_l) 

    elif Working_Path == [1,1,0]: 

        if RTT_u != RTT_m: 

            P = min(RTT_u, RTT_m) 

        elif loss_u != loss_m: 

            P = min(loss_u, loss_m) 

        elif hops_u != hops_m: 

            P = min(hops_u, hops_m) 

    elif Working_Path == [0,0,1]: 

        P = RTT_l 

    elif Working_Path == [0,1,0]: 

        P = RTT_m 

    elif Working_Path == [1,0,0]: 

        P = RTT_u #Minimum Value:P 

 

    global v 

    v = None 

    if (P == RTT_u or P == loss_u or P == hops_u): 

        v = 0 #Upper Path is chosen 

    elif (P == RTT_m or P == loss_m or P == hops_m): 

        v = 1 #Middle Path is chosen 

    elif (P == RTT_l or P == loss_l or P == hops_l): 

        v = 2 #Lower Path is chosen 

    return v,P 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is written at the RYU controller to detect the node failure in the SDN-based 

backbone network. 

 

import subprocess 

import os 

from subprocess import Popen, PIPE 

import time 

import shlex 
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import datetime 

def node(): 

    while True: 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.1" 

        args = shlex.split(command_line) 

        available_nodes=[] 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS1") 

        except subprocess.CalledProcessError: 

            print "\nOvS1 is not available." 

 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.2" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS2") 

        except subprocess.CalledProcessError: 

            print "\nOvS2 is not available." 

 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.3" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS3") 

 

        except subprocess.CalledProcessError: 

            print "\nOvS3 is not available." 

 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.7" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS4") 

        except subprocess.CalledProcessError: 
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            print "\nOvS4 is not available." 

 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.4" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

           available_nodes.append("OvS5") 

        except subprocess.CalledProcessError: 

            print "\nOvS5 is not available." 

 

        command_line = "ping -c 1 -I 192.168.1.5 192.168.1.8" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS6") 

        except subprocess.CalledProcessError: 

            print "\nOvS6 is not available." 

 

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.9" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS7") 

        except subprocess.CalledProcessError: 

            print "\nOvS7 is not available." 

        

        command_line = "ping -c 2 -I 192.168.1.5 192.168.1.6" 

        args = shlex.split(command_line) 

        try: 

            subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE) 

            available_nodes.append("OvS8") 

        except subprocess.CalledProcessError: 

            print "\nOvS8 is not available." 

        time.sleep(5) 

        return available_nodes 
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Appendix F 

Development of Python Programs in Mininet-WiFi 1 and 2 

for Sensor Networks 1 and 2 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program creates 6LoWPAN-based IoT sensor network 1 in Mininet-WiFi 1. 

 

import os 

from mininet.log import setLogLevel, info 

from mininet.node import RemoteController, Controller, UserSwitch 

from mn_wifi.cli import CLI 

from mn_wifi.net import Mininet_wifi, MinietWithControlWNet 

from mn_wifi.sixLoWPAN.node import UserSensor, OVSSensor 

 

def topology(): 

    "Create a network" 

    net = Mininet_wifi(iot_module='fakelb', apsensor=OVSSensor, 

                                    disable_tcp_checksum=False, controller=Controller) 

    info("Creating nodes.\n") 

    sensor1 = net.addSensor('sensor1', ipv6='2003::1/64', panid='0xbeef') 

    sensor2 = net.addSensor('sensor2', ipv6='2003::2/64', panid='0xbeef') 

    sensor3 = net.addSensor('sensor3', ipv6='2003::3/64', panid='0xbeef') 

    sensor4 = net.addSensor('sensor4', ipv6='2003::4/64', panid='0xbeef') 

    sensor5 = net.addSensor('sensor5', ipv6='2003::5/64', panid='0xbeef') 

    sensor6 = net.addSensor('sensor6', ipv6='2003::6/64', panid='0xbeef') 

    sensor7 = net.addSensor('sensor7', ipv6='2003::7/64', panid='0xbeef') 

    sensor8 = net.addSensor('sensor8', ipv6='2003::8/64', panid='0xbeef') 

    sensor9 = net.addSensor('sensor9', ipv6='2003::9/64', panid='0xbeef') 

    sensor10 = net.addSensor('sensor10', ipv6='2003::10/64', panid='0xbeef') 

     

    ap1 = net.addAPSensor('ap1', panid = '0xbeef', datapath = 'user') 

    c1 = net.addController('c1') 

    info("Configuring nodes.\n") 
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    net.configureWiFiNodes() 

    info("Starting Network.\n") 

    net.build() 

    c1.start() 

    ap1.start([c1]) 

    ap1.cmd('sysctl net.ipv6.conf.all.forwarding=1') 

    ap1.cmd('sysctl net.ipv6.conf.all.proxy_ndp=1') 

    sensor1.cmd('route add -A inet6 default gw 2003::60') 

    sensor2.cmd('route add -A inet6 default gw 2003::60') 

    sensor3.cmd('route add -A inet6 default gw 2003::60') 

    sensor4.cmd('route add -A inet6 default gw 2003::60') 

    sensor5.cmd('route add -A inet6 default gw 2003::60') 

    sensor6.cmd('route add -A inet6 default gw 2003::60') 

    sensor7.cmd('route add -A inet6 default gw 2003::60') 

    sensor8.cmd('route add -A inet6 default gw 2003::60') 

    sensor9.cmd('route add -A inet6 default gw 2003::60') 

    sensor10.cmd('route add -A inet6 default gw 2003::60') 

     

    ap1.cmd('ip -6 addr add 2003::60/64 dev ap1-pan0') 

    info("Running CLI\n") 

    CLI(net) 

    info("Stoppingnetwork\n") 

    net.stop() 

 

if __name__=='__main__': 

    setLOgLevel('info') 

    topology() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program sends the UDP sensor message from one sensor to the server. 

#This program is run by each sensor to send the individual UDP messages to the server. 

 

import sys 

import socket 

import time 
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import os 

def client(): 

    while True(): 

        output = “36 *C” 

        print(“Temperature:”+output) 

        host = "2003::60" 

        port =12346  

        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

        s.connect((host,port)) 

        s.send(str.encode(output + “1”)) # 2,3,4,…,10 for sensor 2, sensor 3, sensor 4,…,sensor            

10 

        s.close() 

        time.sleep(3) 

if __name__ =='__main__': 

    client() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program measures the end-to-end delay from each sensor to the server. 

#This program is run by each sensor to measure the individual end-to-end delay. 

 

import sys 

import socket 

import time 

import os 

 

def client(): 

    while True(): 

        output =os.popen("ping6 -c 4 -I 2003::1 2001::20 | tail -1| awk '{print $4}' | cut -d '/' -f 

2").readline() 

        print('Delay:'+output) 

        host = "2003::60" 

        port =12346  

        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

        s.connect((host,port)) 

        s.send(str.encode(output +"1")) #2, or 3 is used according to sensor number 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 89 

        s.close() 

        time.sleep(23) 

if __name__ =='__main__': 

    client() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is run by the ap node to send UDP sensor messages of all sensors to the server. 

 

import socket 

import time 

import sys 

 

while True: 

    PORT = 12346 

    IP = ": :" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.bind(IP, PORT) 

     

    packet,address = s.recvfrom(1024) 

    m = packet.decode("UTF-8") 

    if (len(m)==7): 

        SensorMsg="Temperature Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2] 

    if (len(m)==6): 

        SensorMsg="Temperature sensor "+m[len(m)-1]+": "+m[0:len(m)-2] 

    print(SensorMsg) 

 

    PORT = 12347 

    HOST = "2007::20" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.connect((HOST,PORT)) 

    s.sendall(str.encode(m + "1")) 
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#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is run by the ap node to send the end-to-end delay value to the OVS 1. 

 

import socket 

import time 

import sys 

while True: 

    PORT = 123456 

    IP = ": :" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.bind(IP, PORT) 

    packet,address = s.recvfrom(1024) 

    m = packet.decode("UTF-8") 

    if (len(m)==8): 

        SensorMsg="Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2] 

    if (len(m)==7): 

        SensorMsg="Sensor "+m[len(m)-1]+": "+m[0:len(m)-1] 

    print(SensorMsg) 

 

    PORT = 12345 

    HOST = "2001::20" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.connect((HOST,PORT)) 

    s.sendall(str.encode(m+"1")) 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program creates 6LoWPAN-based IoT sensor network 2 in Mininet-WiFi 2. 

 

import os 

from mininet.log import setLogLevel, info 

from mininet.node import RemoteController, Controller, UserSwitch 

from mn_wifi.cli import CLI 

from mn_wifi.net import Mininet_wifi, MinietWithControlWNet 

from mn_wifi.sixLoWPAN.node import UserSensor, OVSSensor 
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def topology(): 

    "Create a network" 

    

    net = Mininet_wifi(iot_module='fakelb', apsensor=OVSSensor, 

                                    disable_tcp_checksum=False, controller=Controller) 

    info("Creating nodes.\n") 

    sensor1 = net.addSensor('sensor1', ipv6='2009::1/64', panid='0xbeef') 

    sensor2 = net.addSensor('sensor2', ipv6='2009::2/64', panid='0xbeef') 

    sensor3 = net.addSensor('sensor3', ipv6='2009::3/64', panid='0xbeef') 

    sensor4 = net.addSensor('sensor4', ipv6='2009::4/64', panid='0xbeef') 

    sensor5 = net.addSensor('sensor5', ipv6='2009::5/64', panid='0xbeef') 

    sensor6 = net.addSensor('sensor6', ipv6='2009::6/64', panid='0xbeef') 

    sensor7 = net.addSensor('sensor7', ipv6='2009::7/64', panid='0xbeef') 

    sensor8 = net.addSensor('sensor8', ipv6='2009::8/64', panid='0xbeef') 

    sensor9 = net.addSensor('sensor9', ipv6='2009::9/64', panid='0xbeef') 

    sensor10 = net.addSensor('sensor10', ipv6='2009::10/64', panid='0xbeef') 

     

    ap1 = net.addAPSensor('ap1', panid = '0xbeef', datapath = 'user') 

    c1 = net.addController('c1') 

    info("Configuring nodes.\n") 

    net.configureWiFiNodes() 

    info("Starting Network.\n") 

    net.build() 

    c1.start() 

    ap1.start([c1]) 

    ap1.cmd('sysctl net.ipv6.conf.all.forwarding=1') 

    ap1.cmd('sysctl net.ipv6.conf.all.proxy_ndp=1') 

    sensor1.cmd('route add -A inet6 default gw 2009::60') 

    sensor2.cmd('route add -A inet6 default gw 2009::60') 

    sensor3.cmd('route add -A inet6 default gw 2009::60') 

    sensor4.cmd('route add -A inet6 default gw 2009::60') 

    sensor5.cmd('route add -A inet6 default gw 2009::60') 

    sensor6.cmd('route add -A inet6 default gw 2009::60') 

    sensor7.cmd('route add -A inet6 default gw 2009::60') 

    sensor8.cmd('route add -A inet6 default gw 2009::60') 
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    sensor9.cmd('route add -A inet6 default gw 2009::60') 

    sensor10.cmd('route add -A inet6 default gw 2009::60') 

    ap1.cmd('ip -6 addr add 2003::60/64 dev ap1-pan0') 

    info("Running CLI\n") 

    CLI(net) 

    info("Stoppingnetwork\n") 

    net.stop() 

if __name__=='__main__': 

    setLOgLevel('info') 

    topology() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program sends the UDP sensor message from one sensor to the server. 

#This program is run by each sensor to send the individual UDP messages to the server. 

 

import sys 

import socket 

import time 

import os 

def client(): 

    while True(): 

        output = “36 *C” 

        print(“Temperature:”+output) 

        host = "2003::60" 

        port =12346  

        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

        s.connect((host,port)) 

        s.send(str.encode(output + “1”)) # 2,3,4,…,10 for sensor 2, sensor 3, sensor 4,…,sensor 

10 

        s.close() 

        time.sleep(3) 

if __name__ =='__main__': 

    client() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 
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#This program measures the end-to-end delay from each sensor to the server. 

#This program is run by each sensor to measure the individual end-to-end delay. 

 

import sys 

import socket 

import time 

import os 

 

def client(): 

    while True(): 

        output =os.popen("ping6 -c 4 -I 2003::1 2001::20 | tail -1| awk '{print $4}' | cut -d '/' -f 

2").readline() 

        print('Delay:'+output) 

        host = "2003::60" 

        port =12346  

        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

        s.connect((host,port)) 

        s.send(str.encode(output +"1")) #2, or 3 is used according to sensor number 

        s.close() 

        time.sleep(23) 

if __name__ =='__main__': 

    client() 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is run by the ap node to send UDP sensor messages of all sensors to the server. 

 

import socket 

import time 

import sys 

 

while True: 

    PORT = 12346 

    IP = ": :" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.bind(IP, PORT) 
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    packet,address = s.recvfrom(1024) 

    m = packet.decode("UTF-8") 

    if (len(m)==7): 

        SensorMsg="Temperature Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2] 

    if (len(m)==6): 

        SensorMsg="Temperature sensor "+m[len(m)-1]+": "+m[0:len(m)-2] 

    print(SensorMsg) 

 

    PORT = 12347 

    HOST = "2007::20" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.connect((HOST,PORT)) 

    s.sendall(str.encode(m + "1")) 

 

#This program is written by May Pyone Han from Chulalongkorn University. 

#This program is run by the ap node to send the end-to-end delay value to the OVS 1. 

 

import socket 

import time 

import sys 

while True: 

    PORT = 123456 

    IP = ": :" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.bind(IP, PORT) 

    packet,address = s.recvfrom(1024) 

    m = packet.decode("UTF-8") 

    if (len(m)==8): 

        SensorMsg="Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2] 

    if (len(m)==7): 

        SensorMsg="Sensor "+m[len(m)-1]+": "+m[0:len(m)-1] 

    print(SensorMsg) 

 

    PORT = 12345 
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    HOST = "2001::20" 

    s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) 

    s.connect((HOST,PORT)) 

    s.sendall(str.encode(m+"1")) 
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