

Hybrid GNS3 and Mininet-WiFi Emulator for Survivable SDN

Backbone Network Supporting Wireless IoT Traffic

Miss May Pyone Han

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Electrical Engineering

Department of Electrical Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2021

Copyright of Chulalongkorn University

อีมูเลเตอร์ผสมระหวา่งจีเอ็นเอสสามกบัมินิเน็ต-ไวไฟส าหรับโครงข่ายแกนหลกัเอสดีเอน็เพื่อ
รองรับทราฟฟิกไอโอทีไร้สาย

น.ส.เม โยน ฮนั

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต

สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2564

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title Hybrid GNS3 and Mininet-WiFi Emulator for Survivable

SDN Backbone Network Supporting Wireless IoT Traffic

By Miss May Pyone Han

Field of Study Electrical Engineering

Thesis Advisor Associate Professor LUNCHAKORN WUTTISITTIKULKIJ,

Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in

Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

Chairman

 (Associate Professor CHAODIT ASWAKUL, Ph.D.)

Thesis Advisor

 (Associate Professor LUNCHAKORN WUTTISITTIKULKIJ,

Ph.D.)

External Examiner

 (Associate Professor Rardchawadee Silapunt, Ph.D.)

 iii

ABST RACT (THAI) เม โยน ฮนั : อีมูเลเตอร์ผสมระหว่างจีเอน็เอสสามกบัมินิเน็ต-ไวไฟส าหรับโครงข่ายแกนหลกัเอสดีเอน็เพื่อรองรับทราฟฟิก

ไอโอทีไร้สาย. (Hybrid GNS3 and Mininet-WiFi Emulator for Survivable SDN

Backbone Network Supporting Wireless IoT Traffic) อ.ท่ีปรึกษาหลกั : ลญัฉกร วุฒิสิทธิกุลกิจ

วิทยานิพนธ์น้ีออกแบบและสร้างชุดจ าลองการทดสอบส าหรับการเลือกเส้นทางท่ีค านึงถึงค่าเวลาประวิงและความทนทานต่อ
ความเสียหายส าหรับแทรฟฟิกของเซนเซอร์แบบไร้สายโดยใช้โครงข่ายท่ีก าหนดด้วยซอฟต์แวร์ (เอสดีเอ็น) ณ โครงข่ายแกนหลกั ใน
งานวิจัยน้ี ได้เสนอชุดจ าลองการทดสอบโครงข่ายลูกผสมระหว่างจีเอ็นเอส 3 และมินิเน็ต-ไวไฟเพื่อสร้างโครงข่ายแกนหลกัจ าลองท่ี
ก าหนดดว้ยซอฟต์แวร์ในจีเอ็นเอส 3 และจ าลองไอพีรุ่น 6 บนโครงข่ายส่วนบุคคลก าลงัต ่า (6LoWPAN) ในมินิเน็ต-ไวไฟ มีการ
ใช้เคร่ืองจักรเสมือนจ านวน 3 ชุดเพื่อการติดตั้ งชุดจ าลองการทดสอบโครงข่ายท่ีก าหนดด้วยซอฟต์แวร์แบบลูกผสม ในส่วนของ
แพลตฟอร์มมินิเน็ต-ไวไฟท่ีใชส้ร้างโครงข่ายเซนเซอร์ 6LoWPAN จ าลองไดต้ิดตั้งบนเคร่ืองจกัรเสมือน 2 ชุด และเคร่ืองจกัรเสมือน
อีกชุดเป็น จีเอน็เอส-วีเอม็

ในโครงข่ายแกนหลกัท่ีใช้เอสดีเอ็นตามท่ีเสนอนั้น มีเส้นทางส าหรับส่งแทรฟฟิกจากโครงข่ายเซนเซอร์ทั้งสองแห่งไปยงั
โครงข่ายเซิร์ฟเวอร์รวมทั้งหมด 3 เส้นทาง สวิตช์เสมือนแบบเปิด (โอวีเอส) ท่ีรองรับโพรโทคอลโอเพินโฟลวถู์กใชใ้นการสร้างโครงข่าย
แกนหลกัเอสดีเอ็น กรอบการท างานเอสดีเอ็นริวท่ีใช้ไพธอนถูกน ามาใช้เป็นตวัควบคุมเอสดีเอ็นเชิงตรรกะซ่ึงควบคุมโหนดโอวีเอสจ านวน

8 โหนดท่ีตั้งอยู่บนเส้นทางทั้ งสามเส้นทางโดยการเช่ือมต่อแบบนอกแถบ ในวิทยานิพนธ์ฉบับน้ี อลักอริทึมการเลือกเส้นทางอาศัย
พารามิเตอร์ค่าเวลาประวิง ค่าอตัราส่วนการสูญเสียแพ็กเกต และจ านวนฮอป ในการตดัสนใจเลือกเส้นทางท่ีเหมาะสุดส าหรับแทรฟฟิกจาก
เซนเซอร์ หรือแทรฟฟิกจากระนาบขอ้มูล อลักอริทึมการเลือกเส้นทางถูกพฒันาขึ้นและใช้งานในตวัควบคุมริวแบบรวมศูนย ์โหนดขอบท่ี
เช่ือมต่อกบัโครงข่ายเซนเซอร์ทั้งสองโครงข่ายมีภารกิจหลกั 2 งาน (1) วดัค่าเวลาประวิง อตัราส่วนการสูญเสียแพก็เกต และจ านวนฮอป

(2) ส่งผลลพัธ์ท่ีไดจ้ากการวดัไปยงัตวัควบคุมริวแบบรวมศูนย ์ข่าวสารท่ีส่งโดยโหนดขอบมีความส าคญัส าหรับตวัควบคุมเอสดีเอน็ในการ
เลือกเส้นทางท่ีเหมาะสุดและติดตั้งเกณฑโ์อเพนโฟลวท่ี์จ าเป็นต่อโหนดโอวีเอสเพื่อสร้างระนาบขอ้มูล

ในวิทยานิพนธ์ฉบบัน้ี รายงานผลลพัธ์จากการวดัของอลักอริทึมการเลือกเส้นทางท่ีค านึงถึงค่าเวลาประวิง โดยมีการพิจารณา
ให้อลักอริทึมการเลือกเส้นทางมีความทนทานต่อความเสียหาย ด้วยการใช้ผลการวดัของเวลาการเลือกเส้นทางใหม่ในสภาวะท่ีเส้นทางท่ี
เหมาะสุดลม้เหลว ความสามารถในการโปรแกรมไดข้องเอสดีเอน็ท่ีแยกระนาบขอ้มูลออกจากระนาบควบคุมเป็นขอ้ประโยชน์ส าคญัของเรา
เพราะพฤติกรรมการเลือกเส้นทางสามารปรับไดง้่าย โดยเฉพาะอยา่งยิ่งโครงข่ายเซนเซอร์ไอโอทีของงานวิจยัน้ี

สาขาวิชา วิศวกรรมไฟฟ้า ลายมือช่ือนิสิต ..

ปีการศึกษา 2564 ลายมือช่ือ อ.ท่ีปรึกษาหลกั

 iv

ABST RACT (ENGLISH) # # 6272070121 : MAJOR ELECTRICAL ENGINEERING

KEYWORD: Software-Defined Networking, Internet of Things, GNS3, Mininet-WiFi,

Delay Awareness Routing, Fault-Tolerant

 May Pyone Han : Hybrid GNS3 and Mininet-WiFi Emulator for Survivable SDN

Backbone Network Supporting Wireless IoT Traffic . Advisor: Assoc. Prof.

LUNCHAKORN WUTTISITTIKULKIJ, Ph.D.

This thesis has designed and implemented an emulated testbed for fault-tolerant

delay awareness routing for wireless sensor traffic by using software-defined networking

(SDN) at the backbone network. In this work, the hybrid form of GNS3 and Mininet-WiFi

emulation network testbed is proposed to build an emulated SDN-based backbone network

in GNS3 and an emulated IPv6 over Low Power Personal Area Network (6LoWPAN) in

Mininet-WiFi. Three virtual machines are used to set up the hybrid emulated SDN-based

network testbed. The Mininet-WiFi platform which is used to build the emulated

6LoWPAN sensor network is installed in two virtual machines separately and the third

virtual machine is GNS-VM.

In the proposed SDN-based backbone network, there are three available paths to

carry the sensor traffic from two sensor networks to the server network, and Open Virtual

Switch (OVS) supporting the OpenFlow protocol is used to establish an SDN-based

backbone network. The python-based RYU SDN framework is used as the logically

centralized SDN controller which controls eight OVS nodes located in three paths in an

out-of-band connection. In this thesis, the routing algorithm is based on delay, packet loss

ratio, and the number of hops parameters to decide the optimal path for the sensor traffic or

the data plane traffic. The routing algorithm is developed and executed in the centralized

RYU controller. There are two main tasks for the provider edge node connected to the two

sensor networks (i) to measure the delay, packet loss ratio, and the number of hops (ii) to

send the measurement result to the centralized RYU controller. The information which is

sent by the provider edge node is important for the SDN controller to decide the optimal

path and then install the necessary OpenFlow rules to the OVS node to establish the data

plane.

In this thesis, the measurement result of delay aware routing algorithm is

reported. Another consideration is that the implemented routing algorithm is fault-tolerant

with the measurement result of rerouting time when the selected optimal path is failed. The

programmability of SDN due to the separation of control and data planes is the key benefit

for us as the routing behavior is easily customizable, especially for IoT sensor networks in

this work.

Field of Study: Electrical Engineering Student's Signature

Academic Year: 2021 Advisor's Signature

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Assoc. Prof. Dr. Lunchakorn

Wuttisittikulkij, for giving me the opportunity to study at Chulalongkorn University with his

valuable advice and guidance. I am so grateful to Asian Scholarship Program for financial

support to finish my master’s degree in an interesting engineering field. I do appreciate the

committee members for their judgments and points in my thesis examination.

I would like to express my gratitude to all seniors and friends in my research group for

their kindness and help during my study time. Furthermore, I sincerely appreciate my senior Mr.

Soe Ye Htet for his advice and help in my thesis. Last but not least, I feel so lucky and grateful

to my supportive parents and siblings who love me unconditionally and encourage me

throughout my long journey of student life.

May Pyone Han

TABLE OF CONTENTS

 Page

.. iii

ABSTRACT (THAI) ... iii

... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

Chapter 1 .. 1

Introduction .. 1

1.1 Research Motivation .. 1

1.2 Problem Statement ... 2

1.3 Objective .. 2

1.4 Scope of Thesis .. 3

Chapter 2 .. 4

Background and Literature Review ... 4

2.1 Software-Defined Networking ... 4

2.2 OpenFlow .. 5

2.3 QoS Management in SDN ... 8

2.4 Internet of Things (IoT) ... 9

2.5 Architecture of IoT .. 10

2.6 Wireless Sensor Network .. 11

2.7 6LoWPAN ... 12

2.8 Improvement of IoT Network with SDN ... 13

2.9 Literature Review for SDN-based QoS Management 13

 vii

2.10 Literature Review for SDN-based QoS Management in an IoT Environment 14

2.11 Literature Review for Delay Measurement of Network Traffic 17

Chapter 3 .. 19

Proposed Network Topology and Methodology .. 19

3.1 Implementation of Emulated SDN-based Backbone Network with Emulated

6LoWPAN IoT Sensor Networks .. 19

3.2 Implementation of Delay Awareness Routing for IoT Traffic in SDN-based

Fault-Tolerant Backbone Network .. 22

Chapter 4 .. 26

Implementation of Testbed Environment .. 26

4.1 Implementation of SDN-based Backbone Network .. 26

4.2 Implementation of 6LoWPAN IoT Sensor Networks 28

4.3 Installation of OpenFlow Rules in OVS Nodes ... 30

4.4 Routing Algorithm ... 35

Chapter 5 .. 41

Testing and Measurement Result of Proposed Topology .. 41

5.1 Routing Path Selection .. 41

5.2 Reroute Time ... 43

5.3 End-to-End Delay Measurement ... 45

Chapter 6 .. 49

Conclusions .. 49

REFERENCES .. 51

VITA .. 96

LIST OF TABLES

 Page

Table 2.1: Contents of flow entry in OpenFlow version 1.3. .. 6

Table 2.2: Action fields of OpenFlow version 1.3... 7

Table 2.3: Three main types of OpenFlow protocol messages (Controller-to-Switch,

Asynchronous, and Symmetric). .. 7

Table 4.1: Network addresses of SDN-based backbone network. 27

Table 4.2: Network addresses of edge network. .. 27

Table 4.3: IPv4 or IPv6 address of each node in the SDN-based backbone network

and edge network. .. 27

Table 4.4: IPv6 addresses of each node in 6LoWPAN sensor networks 1 and 2. 29

Table 4.5: Hardware specifications of host machine. .. 39

Table 4.6: Software specifications of virtual machines. .. 39

Table 4.7: Software specifications of SDN-based backbone network. 39

Table 5.1: Reroute time for lower path failure. ... 45

Table 5.2: Reroute time for both lower path and middle path failures. 45

Table 5.3: End-to-end average delay of each sensor from sensor network 1 to the

server when there is no traffic in the SDN-based backbone network. 46

Table 5.4: End-to-end average delay of each sensor from sensor network 2 to server

when there is no traffic in the SDN-based backbone network. 46

Table 5.5: End-to-end average delay of each sensor from sensor network 1 to the

server in case of no path failure, one path failure, and two path failures in the SDN-

based backbone network. ... 47

Table 5.6: End-to-end average delay of each sensor from sensor network 1 to the

server in case of no path failure, one path failure, and two path failures in the SDN-

based backbone network. ... 47

LIST OF FIGURES

 Page

Figure 2.1: Principle of SDN. .. 6

Figure 2.2: Architecture of OpenFlow switch (OpenFlow Version 1.3). 9

Figure 2.3: Architecture of IoT. ... 11

Figure 2.4: 6LoWPAN protocol stack. .. 12

Figure 3.1: Proposed network topology of emulated SDN-based backbone network

with 6LoWPAN IoT sensor networks and server network. ... 20

Figure 3.2: Virtual network connection between emulated 6LoWPAN IoT sensor

network and provider edge network node of SDN-based backbone network. 22

Figure 3.3: The traffic flow of UDP packet between provider edge network node and

RYU controller... 24

Figure 4.1: OpenFlow rules in OVS nodes of the SDN-based backbone network at (a)

OVS 2 (b) OVS 3 (c) OVS 4 (d) OVS 6 (e) OVS 7 (f) OVS 8. 34

Figure 4.2: Flowchart diagram for routing algorithm .. 35

Figure 5.1: Comparison of routing paths chosen by the RYU controller when there is

no path failure in the SDN-based backbone network. ... 41

Figure 5.2: Comparison of routing paths chosen by the RYU controller when there is

a single path failure in the SDN-based backbone network. ... 42

Figure 5.3: UDP packet captured in server to measure rerouting time with Wireshark

tool. .. 43

Figure 5.4: Average reroute time with 95-percent confidence interval for 6LoWPAN

IoT traffic. .. 44

Chapter 1

Introduction

1.1 Research Motivation

The Internet of Things (IoT) plays an important role in every sector of today’s world

society to promote the quality of life in many specific areas such as education, healthcare,

agriculture, and transportation. IoT technology saves time, money, and energy due to

enhancing a more flexible and scalable manner for human-to-human, human-to-machine, or

machine-to-machine communication. Therefore, with the increased amount of data and

devices in various network domains, IoT data management is becoming more and more

difficult and remains a challenging topic for researchers and providers. Some of the

challenges such as flexibility, scalability, heterogeneity, and energy saving are important to be

considered for emerging IoT networks. Data is exchanged through different vendors and

networks for diverse IoT domains, facing different issues such as latency, congestion, packet

loss, and security problems. Therefore, it is essential to meet the required characteristics of a

specific area that demands the Quality-of-Services (QoS), including delay, packet loss, or

both.

Software-Defined Network (SDN), on the other hand, is very popular in networking for

its programmability and flexibility for controlling and managing the network elements.

Dynamically configuring and easily extending the network components are key to supporting

a scalable manner for a huge variety of devices in the heterogeneous network. SDN allows

building such a flexible environment by taking the responsibilities for network configuration

through a programming language. SDN controller is capable of maintaining the data from the

user or infrastructure level, also called data plane, through Southbound API (Southbound

Application Programming Interface) for further data processing such as routing, load

balancing, and monitoring. The optimization of the SDN controller for routing path through

its global view of the network offers a special way of data transmission for a flexible and

scalable traffic environment. Therefore, SDN has been extensively deployed in different

domains to improve network performance.

The SDN paradigm has been proposed in IoT networks to change from traditional

networks to more adaptable networks, solving the challenge of traditional IoT architecture. In

the IoT domain, data management through the SDN core network makes it possible to choose

the path with the lowest delay, minimum loss, maximum bandwidth, or higher security.

 2

Furthermore, different types of IoT traffic can be prioritized and queued to be chosen for

specific applications. Therefore, a heterogeneous IoT network environment can be enhanced

by proposing SDN technology for flexibility, QoS improvement, data monitoring, and

maintenance.

1.2 Problem Statement

In the delay-sensitive IoT domain, data management becomes a challenge to deal with a

huge amount of data and devices. The heterogeneous network with several data paths is

another challenge for data transmission. For reaching the desired destination or meeting the

requirements of the specific area in different IoT networks, it is important to be chosen and

designed for efficient routing. In the case of delay-sensitive and low-bandwidth applications,

the delay parameter needs to be considered as the first priority to select the best path based on

the value of delay. To handle various IoT applications through the heterogeneous network, it

is still a challenge to propose an automatic delay awareness routing for easy deployment and

management of IoT data.

1.3 Objective

There are two main objectives in this work which are (i) to propose the emulated testbed

of SDN-based backbone network with 6LoWPAN IoT sensor network by integrating GNS3

and Mininet-WiFi emulators and (ii) to propose the fault-tolerant delay awareness routing for

emulated SDN-based backbone network to handle IoT traffic. Delay awareness routing is

proposed for an emulated SDN-based backbone network to handle emulated 6LoWPAN IoT

network traffic because of the scalability of network implementation and cost-effectiveness.

For example, the number of network nodes can be adjusted without purchasing the real

hardware, therefore, fault-tolerant delay awareness routing is implemented in the emulated

SDN-based backbone network. Similarly, the sensor nodes in emulated 6LoWPAN IoT

sensor network can be connected as desired. The demand for performance of the data traffic

can be different depending on the application usage scenario, for example, bandwidth and

delay should be considered as the first priority for the video-streaming application scenario.

In this work, it is assumed that the sensors that send UDP messages with low bandwidth to

the destination node. Therefore, it is proposed that the delay-sensitive IoT traffic is handled

by using the SDN features. The measurement parameters that are required for the SDN

controller to decide the best path will be proposed in this work. Besides, the rerouting time

that is needed when the node failure or path failure has occurred in the SDN-based backbone

network will be reported in this thesis.

 3

1.4 Scope of Thesis

The scope of this research is as follows:

1. Propose the hybrid emulated SDN-based backbone network testbed in GNS3 and

emulated 6LoWPAN-based sensor network testbed in Mininet-WiFi.

2. Propose the SDN-based fault-tolerant delay awareness routing for delay-sensitive IoT

traffic through the SDN-based backbone network.

 4

Chapter 2

Background and Literature Review

2.1 Software-Defined Networking

SDN network architecture such as agile, centrally managed, and directly programmable

brings the cost-effective and manageable network to a wide range of applications. Unlike the

traditional network, SDN decouples the control plane and data plane, and the network

management is enhanced by the programmable feature. In SDN, the control plane is logically

centralized to handle the whole network from a global view. The network forwarding devices

such as switches, and routers are placed in the data plane and responsible for forwarding data

according to the instructions installed by the SDN controller. The SDN controller is the brain

of the network which is logically centralized in the control plane and gives direct traffic flow

instructions to the forwarding plane.

The three layers of the SDN are Infrastructure Layer, Control Layer, and Application

Layer. The lowest layer is the infrastructure layer (so-called the data plane) where switches

and routers are installed. Control Layer (also called the control plane) is where the controller

is maintained to implement the flexible network flow rules into the switches based on the

required parameters and adaptable information from the network devices. The top layer is the

application layer which interacts with the network administrators to write the SDN

applications for network configuration and maintenance.

The Southbound Interface (SBI) is used to deliver the instructions from the SDN

controller to the network forwarding devices such as routers, switches which are located at the

data plane layer. OpenFlow protocol can be regarded as the standard protocol for southbound

interface and other protocols such as BGP (Border Gateway Protocol), and RESTCONF can

also be used. Through this, the SDN controller is enabled to assign the flow rules to the dumb

switches. On the other hand, the network administrator can develop the program to define the

routing policy such as load-balancing algorithm by using high-level programming languages

such as python, go, java, etc. The developed program by the network administrator will be

communicated with the SDN controller through the application programming interface with

the help of the northbound interface. The principle of SDN is shown in Figure 2.1.

 5

2.2 OpenFlow

OpenFlow is the first open flow standard protocol proposed by Stanford University [30]

and is now updated by the Open Networking Foundation (ONF). The default version is 1.0

and the latest version is 1.5. OpenFlow Protocol supports the southbound interface between

the controller and the individual switch to directly access the forwarding plane of the network

devices. Updating the flow entries such as installing, deleting, and modifying the flow entries

in the OpenFlow-enabled network devices is easily done by exchanging respective OpenFlow

protocol messages between the control plane and data plane. An OpenFlow Channel such as a

secure SSL (Secure Sockets Layer) channel is used in every OpenFlow-enabled network

element to connect with the external controller. Besides, one or more Flow Tables, a Group

Table, and a Meter Table are implemented in the switches intending for packet lookups,

packet forwarding and QoS features shaping.

The controller-switch communication depends on three main types of OpenFlow protocol

exchanged messages that are Controller-to-Switch, Asynchronous, and Symmetric. The

controller starts managing or querying the state of the switch through Controller-to-Switch

messages. On the other hand, the SDN switch sends its state changes or notifications to the

controller by using Asynchronous messages. The performance of the OpenFlow connection

can be checked by using Symmetric messages in both controller and switch. The three types

of OpenFlow protocol messages are summarized in Table 2.1. Every flow table of the switch

handles a set of flow entries to guide the arriving packet to its specific destination and these

flow entries are modified by the controller in two ways: reactively or proactively. Flow

entries deal with the match-action criteria for incoming packets where the corresponding

action is executed if the header of the flow entries is matched. Otherwise, these packets need

to be sent to the controller for deciding and creating the required new flow rules or more

actions.

In the OpenFlow network, control messages are sent either in an in-band mode or in an

out-of-band mode. In an in-band mode, control messages are exchanged on the same channel

used by the data plane traffic as a single network interface is shared for both control and data

traffic. In an out-of-band mode, on the other hand, control messages are transferred on a

separate channel. The OpenFlow version 1.3 has flow tables including Match Field, Priority,

Counters, Instructions, Timeout, and Cookie as the main components for each flow entry.

OpenFlow version 1.3 is used in this thesis and summarized in Table 2.1.

 6

Figure 2.1: Principle of SDN.

Table 2.1: Contents of flow entry in OpenFlow version 1.3.

Match Field Priority Counters Instructions Timeout Cookie

The contents of each flow entry are as below:

Match Field – It includes the value of the ingress port number (layer 1) and the header values

for the upper three layers that define the source and destination addresses of MAC (Media

Access Control), IP (Internet Protocol), and the TCP/UDP (Transmission Control

Protocol/User Datagram Protocol) port numbers. These defined values filter the entering

packets to match an exact flow in the switch.

Priority – Every entry in the flow table is assigned with a priority, as a result, an incoming

packet header performs matching from the highest priority number to the lowest one in a

sequenced order.

Counters – It counts the number of received packets, bytes, and duration for updating the

statistical information about the matched packets of a particular flow.

Instructions – It handles the action field instructing the SDN switches to be applied to a

specific flow for each matched packet. There are many available options in the action filed for

respective matched flow instructions. Some of these options from OpenFlow version 1.3 are

listed in Table 2.2.

 7

Table 2.2: Action fields of OpenFlow version 1.3.

Actions

Function

OUTPUT Forward the packets to the defined port

DROP Drop the corresponding packets

ALL Forward the packets to all other ports

CONTROLLER Forward the packets to the controller

FLOOD Forward the packets to all other ports except to the

input/ingress port

LOCAL Forward the packets to the local port

INPORT Forward the packets to the input/ingress port

The OpenFlow version 1.3 is used in this thesis because it allows for more flow tables

providing a flexible OpenFlow pipeline mechanism compared to the previous version.

According to the pipeline mechanism, an incoming packet always interacts with a Flow Table

starting from the lowest number (Table 0) to the highest one sequentially. The flow entry

supports actions for an incoming packet and is executed from the highest priority to the

lowest. In this case, if the flow entry in a Flow Table is not matched with the incoming

packet, the so-called Table-Miss event happens in which the device sends its packet to the

controller for the necessary actions. Furthermore, multiple flow tables define the different

actions of the system such as QoS or routing in each flow table separately. Some of the

OpenFlow messages are shown in Table 2.3 and the architecture of the OpenFlow switch is

shown in Figure 2.2.

Table 2.3: Three main types of OpenFlow protocol messages (Controller-to-

Switch, Asynchronous, and Symmetric).

CONTROLLER-TO-

SWITCH

ACTIONS

Packet-Out Inform the switch to forward the packet on a directed

path

Modify-State Add/delete/modify the flow entries in the Flow Table

Read-State Collect statistics and configuration information from

the switch

Features Request/Reply Request for the switch features

Configuration Request/Reply Request for the switch configuration

 8

ASYNCHRONOUS ACTIONS

Packet-In Send the matched packets to the controller to be

processed

Flow-Removed Inform the controller about the removed flow entry

because the time expired

Port Status Inform the controller about the port configuration or

state changes

Flow-Monitor Inform the controller about the changes in the Flow

Table

SYMMETRIC ACTIONS

Hello Exchange information between switch and controller

Echo Request/Reply Used by the switch or controller to check the

OpenFlow connection

Error Used by the switch or controller to notify the problems

2.3 QoS Management in SDN

Quality-of-Service (QoS) acts as an important role to deliver services with specific

network requirements such as delay, bandwidth, and packet loss. These QoS parameters (such

as bandwidth, delay, and packet loss) are mentioned in Service Level Agreement (SLA)

according to the user’s demands. Along with the increase of network applications in different

sectors, quality of service is a challenge for network service providers to guarantee network

performance. In that case, Network Traffic Management is an essential key to satisfying the

quality of service as well as reducing latency, and packet loss. Traditional network

architecture is not flexible enough to handle the dynamic nature of heterogeneous devices in

different network environments which demand urgent and adaptable requirements in terms of

QoS. On the other hand, in SDN, flexible and programmable network features ensure QoS

services for unpredictable network changes from time to time.

 SDN controls the network centrally and logically which gives special advantages for

monitoring the network traffic and collecting the statistical information to implement and

analyze the required QoS level. The available QoS support mechanism in the OpenFlow

protocol is meters and queues. OpenFlow 1.3 and later versions support a meter table in

which meter entries are defined and consist of three fields: Meter ID, Meter Band, and

Counters. The meter table supports rate-limiting of received packets by monitoring and

controlling the ingress traffic rate for each flow entry. Meter band can be assigned in the table

for further packet processing and then counter collects the statistical information of these

 9

processed packets. Another QoS function is Queue configuration which processes the packets

for output at a specified maximum or minimum limiting rate. Since the only two functions for

QoS, queues, and meters, are provided in OpenFlow, new methods have been proposed for

better QoS assurance for a wide range of modern applications. Therefore, SDN-based QoS

frameworks are implemented in different network sectors and become solutions for future

user demands.

Figure 2.2: Architecture of OpenFlow switch (OpenFlow Version 1.3).

2.4 Internet of Things (IoT)

Nowadays, the Internet of Things (IoT) plays an essential role in different sectors such as

smart cities, smart agriculture, smart transportation, smart healthcare, smart grids, and

industrial automation, leading to the smart globe. The Internet enables billions of smart

devices to communicate with each other for collecting and sharing information. Moreover, a

wide variety of sensor objects make these devices smart and intelligent in every sector. As a

result, IoT devices track real-time data and transfer these data over a network without human

interactions. The tremendous number of IoT devices have been interconnected around the

world for several advantages such as being cost-effective, time-saving, better monitoring, and

automation.

An increasing number of IoT applications brings many new services and challenges such

as security, scalability, flexibility, and quality of service for customer experiences. For

 10

example, real-time transportation such as autonomous driving demands delay-sensitive and

minimum packet loss data communication. Some IoT devices are bandwidth-hungry

applications, 3D (three dimensions) videos, virtual reality, and augmented reality, which

require higher bandwidth among others. In the healthcare sector, different QoS levels must be

defined depending on the applications. For example, recording the health conditions of a

patient needs to be given the lowest priority in terms of bandwidth and delay, on the other

hand, telesurgery ranks the highest priority for critical and lossless communication. In the

same way, in smart cities, smart homes, and every other sector, identifying and ensuring

different QoS levels for diverse applications is the major consideration to meet the user

experiences.

2.5 Architecture of IoT

There are different types of IoT architectures, including three-layer, five-layer, cloud-

based, or fog-based IoT architecture. The most basic IoT architecture shown in Figure 2.3

consists of Perception Layer, Network Layer, Service Layer, and Application Layer. Cloud

Computing and Fog Computing are introduced to IoT to enhance the performance and

scalability of IoT, offering unlimited storage and real-time experience.

The Perception Layer is the physical layer of the IoT network which is also called the

sensing layer. Many physical or virtual devices, as well as wired or wireless objects, are

located to gather various data from the environment. These devices are sensors, actuators,

RFID (Radio Frequency Identification) tags, or edge devices that connect with their specific

domain. Most IoT devices are small, cheap, and low-power elements that are usually

connected to a battery source for power.

The second layer is Network Layer, also called the access and transmission layer, where

data transmission is mainly performed through the network. The network layer is where data

is transferred from the sensing layer to the upper layer and vice versa. Data from various

devices is collected and processed for further transmission based on specific communication

technology. There are different types of communication networks used by IoT devices

depending on their design and capabilities. This includes 5G (fifth-generation mobile

network), LTE (Long Term Evolution), Ethernet, Wi-Fi (Wireless Fidelity), Zig-Bee,

Bluetooth Low Energy (BLE), and 6LoWPAN. Each technology has its characteristics for

power consumption, coverage area, data transmission rate, and cost.

The Service Layer, also called the processing layer, provides a system for storing,

processing, and analyzing data. Data storage and information processing systems can be

 11

either distributed or centralized. This is also the layer where middle-ware services are

provided.

The Application Layer is the top layer of the IoT network which allows users to utilize and

manage data depending on the business goal. The IoT applications are designed to deliver

specific services through a user interface that can be easily accessed by users.

Figure 2.3: Architecture of IoT.

2.6 Wireless Sensor Network

Wireless Sensor Network (WSN) comprises many sensor nodes which monitor the

environmental conditions and connect through different communication technologies. The

WSN must be satisfied with some important characteristics such as low power, low cost,

reliability, and easy maintenance. The nodes of WSN are also resource-constrained for speed,

storage, or bandwidth limitations, however, recent WSN architecture supports further

improvement for heterogeneous devices and limitations. A wide range of WSN applications

has been proposed in several areas, including healthcare, industry, agriculture, and the

environment. In WSN, two main communication technologies based on short-range and long-

range can be categorized. Some short-range communication technologies include Bluetooth,

Zig-Bee, BLE, and RFID. On the other hand, Long-Range (LoRa), Narrow Band IoT (NB-

IoT), and Sigfox are long-range communication technologies. Depending on the requirements

 12

of applications and characteristics of sensor nodes, each of them will be chosen for different

purposes.

2.7 6LoWPAN

6LoWPAN stands for IPv6 over Low Power Personal Area Network introduced as an

open standard by the International Engineering Task Force (IETF) based on IEEE 802.15.4. It

supports a wide range of applications, including wireless sensor networks. 6LoWPAN covers

many sensor nodes and allows internet connectivity in a large area. The transmission of IPv6

over IEEE 802.15.4 is enabled by an adaptation layer that is added between the data link layer

and network layer as shown in Figure 2.4. The data of WSN is sent as packets in the form of

IPv6 providing end-to-end IPv6 communication over IEEE 802.15.4. Some of its useful

characteristics are low power, low data rate, and low cost. IPv6 gives special benefits such as

small packet size and easy management as well as mobility, scalability, reliability, and

availability. Interoperability is another main advantage of 6LoWPAN.

The adaptation layer is where the fragmentation or reassembly process is performed to fit

the link layer and network layer. The minimum MTU (Maximum Transmission Unit) of IPv6

frame size is 1280 bytes whereas the maximum physical layer of IEEE 802.15.4 frame size is

128 bytes. Therefore, the adaptation layer handles the frame size adjustment to fit IPv6 with

IEEE 802.15.4. Furthermore, the 6LoWPAN standard defines four types of frame headers:

IPv6 compressed or not compressed IPv6 header, mesh header, broadcast header, and

fragmentation header. Since 6LoWPAN gives many benefits to sensor networks with low

power, low data rate, and small devices, it has been widely applied in various sectors such as

industrial monitoring, home automation, smart grid, and different automation areas.

Figure 2.4: 6LoWPAN protocol stack.

 13

2.8 Improvement of IoT Network with SDN

It has been challenging to manage and control the IoT network of a huge number of

heterogeneous devices and data. To fulfill the characteristics and reduce the complexity of

IoT networks, introducing the scalable and flexible network manner gives many opportunities

for IoT devices to extend the network easily and quickly. As mentioned earlier, SDN

architecture of programmable and adaptable network management conveys solutions to

mitigate the complexity of IoT networks. Additionally, SDN improves the performance of

IoT services in terms of QoS, Security, Routing, Load Balancing, and so on. Therefore,

integrating the SDN into IoT sectors leads to a more sustainable IoT ecosystem by providing

dynamic resource management and optimization capabilities. In the core network, optimized

routing and device configuration for efficient data transmission is designed by SDN based on

predefined rules and policies. Furthermore, device-to-device communication, as well as radio

resource management, are also done by SDN. However, it is a new challenge to integrate the

SDN network into an IoT environment to meet the desired specifics of IoT applications

connected in different networks and sectors.

2.9 Literature Review for SDN-based QoS Management

The SDN-based QoS management has been proposed in many ways, dealing with

topology discovery, traffic classification, traffic monitoring, and real-time data collection and

path selection. The author in [1] has proposed Quality-of-Experience (QoE) management for

intent-based SDN, measuring delay and packet loss of audio and video traffic in the Mininet

environment. They defined the QoE limit to compare with the current measured value, and

then frequently monitor the data quality based on the measured data. The ONOS Controller

monitors and assesses the data through OpenFlow protocol messages by changing the

network configurations automatically. Packet_Out and Packet_In OpenFlow messages are

used to get a connection between switches or switches and controllers.

 The multipath routing with the QoS management in SDN for Tactile internet traffic is

presented in [2], targeting to reduce delay for such delay-sensitive traffic. The SDN

environment is created in Mininet along with RYU Controller for testing different traffic

sources. In QoS management, the author has distinguished three different types of traffic:

tactile, video, and best-effort data, then provides the priority by using a queueing mechanism.

In the routing section, real-time data is updated by the network monitoring module and used

to calculate the path cost to optimize the best path with low bandwidth as well as low hops.

 14

The author in [3] has proposed OpenHealthQ where different types of healthcare data are

handled based on OpenFlow Queues, prioritizing the data on their throughput and delay

requirement. The experiment is performed in Mininet-WiFi emulation to enable wireless

sensor devices of SDN-based fog layer architecture. The RYU Controller is used as a

centralized controller that connects to OpenFlow switches of the fog layer. The Iperf tool is

used to send Differentiated Service Code Point (DSCP) traffic required for marking the traffic

classification. The author has guaranteed the bandwidth for heterogeneous healthcare devices

by implementing the dynamic feature of QoS services.

Another QoS improvement in [4] deals with minimizing the overall latency of all network

links in the SDN network. The SDN Controller checks active sessions to calculate the delay

of each link and compare it with a defined threshold value. Then, the author has applied the

batch routing function for optimizing many video sessions arriving from time to time. Mininet

emulator along with OpenDayLight Controller is chosen in their experiment and data traffic is

produced by the Iperf tool.

The author in [5] has developed QoS-aware flow management in SDN, considering the

bandwidth and delay parameters. They proposed a QoS-based routing algorithm based on the

OpenDayLight controller. Network traffic is generated by the Iperf tool in the Mininet

emulation test. Three independent modules are introduced in their system: Topology

Discovery, Traffic Monitoring, and Path Selection. The structure of an entire network is

defined in the topology discovery module, whereas in the traffic monitoring module, the

packet capture technology is used to track the packets and calculate the dynamic bandwidth

based on the collected statistics. In the path selection module, for every 5ms interval, port

statistics are updated to compare with the threshold bandwidth, deciding for routing whether

it is needed to alternate or not. Then they compare the resulting delay of the proposed method

with the Dijkstra algorithm to show that their system has less delay. Therefore, there have

been many studies on the SDN-based QoS framework, some of which are mentioned in this

paper.

2.10 Literature Review for SDN-based QoS Management in an IoT

Environment

In [6], the author has proposed edge-based 6LoWPAN-SDN architecture to reduce

latency, packet loss, and heterogeneity. 6LE-SDNP (6LoWPAN-SDN Protocol) is developed

to enable efficient communication between various devices. Besides, a hybrid-edge switch is

designed to reduce complexity and heterogeneity, connecting SDN and 6LoWPAN devices.

 15

In addition, to use the global SDN controllers, the author designed the SDN-based edge

controller for each cluster of IoT networks. Instead of using the 6LoWPAN border router, the

SDN controller performs an alternative way to operate as a more efficient border router for

the 6LoWPAN IoT network. The performance of the proposed solution reduces latency and

overhead as well as round trip time and packet loss when compared to the traditional

6LoWPAN network.

In [7], QoS constraints of the industrial network are solved by selecting SDN technology

to prioritize and manage traffic flows in terms of delay and packet loss. The Mixed Flow

Installation (MFI) method and the Proactive Flow Installation Rerouting (PFIR) method are

introduced to achieve the optimal path for low-delay and low-loss traffic types. The proposed

approach is considered for both wireless and wired networks in terms of guaranteeing QoS in

data transmission. The simulation and real testbed show the result of the end-to-end delay of

the framework compared to normal flow installation and achieve the target for the delay-

sensitive industrial network.

In [8], the SDN paradigm is applied to the 6LoWPAN IoT network for testing and

comparing the performance of 6LoWPAN devices in Mininet-IoT. The ONOS (Open

Network Operating System) controller is introduced as a centralized gateway to collect data

and route the path between 6LoWPAN network clusters through an edge router. In the

research, the Wireshark Analyzer tool is used to measure network performance and the Iperf

tool is utilized to generate data traffic to be able to measure throughput and packet loss. The

two scenarios of different hosts and clusters are tested to compare jitter, packet loss, delay,

throughput, and CPU (Central Processing Unit) usage.

In [9], the traditional IoT network is compared with Software-Defined IoT (SDIoT)

architecture in terms of QoS performance. This comparative analysis focuses on jitter,

latency, and throughput to highlight the efficiency of SDN contribution to data

communication. The deployed SDN architecture also supports data interoperability and

scalability among sharing various network devices and applications. The traditional IoT

environment is designed in GNS3, on the other hand, the proposed SDIoT architecture is

emulated in Mininet for analyzing the results according to QoS metrics. A Ping tool is used to

measure the latency of data connection from the source to the destination. The results show

the advantage of reducing network overheads in data communication which then increases the

throughput of the network. However, the author also highlights a single point failure in the

case of using a centralized control plane to handle the number of growing switches, nodes,

and traffic.

 16

In [10], SD-6LN is developed to incorporate the features of SDN in the existing

6LoWPAN network to resolve some challenges of the IoT network such as availability,

reliability, and scalability. The SDN controller acts as the 6LoWPAN gateway node to check

the quality of the network link, optimize the alternate path for link failure and update the flow

entries or network topology. Mininet-WiFi simulator is utilized for experiment and

comparison of two different paradigms of the traditional and proposed network. The Iperf tool

generates the data stream for evaluating the performance factors, including average round trip

time, packet loss, and jitter.

In [11], a traffic-aware QoS routing scheme is considered in the SDIoT network, dealing

with delay-sensitive flows as well as loss-sensitive flows. The nature of SDN gives flexibility

to the overall network to be able to maximize the network performance. The proposed scheme

is emulated in Mininet by using the POX SDN controller. Two topologies (AttMpls topology

and Goodnet topology) are tested and compared with existing schemes. A QoS routing

algorithm based on Integer Linear Programming is introduced to optimize the best QoS path.

The simulation gives a more feasible routing path to mitigate the path delay and number of

QoS violated flows for delay-sensitive or loss-sensitive traffic. In the case of heterogeneous

devices and traffic, it is also mentioned that jitter and low-level packet classification will be

considered for plans of work.

In [12], end-to-end IoT traffic is managed by SDN to identify the real-time routing path,

keeping low path latency for IoT data. Path resolving, delay tracking, and delay management

are the three main functions of the proposed method. Path resolving and delay tracking

functions are responsible for monitoring the path and operating in parallel. These two

functions give information to delay management functions for further analyzing and

controlling the network. Mininet emulation is used to build the topology with the

OpenDayLight controller for conducting the test of QoS performance and the ping method is

used to measure the path delay. It is highlighted that the solution reduces latency by 63.1

percent, compared with the routing based on the shortest-path algorithm.

In [13], network traffic monitoring by SDN is implemented for maximizing the overall

performance of expanding networks. The single, liner, and tree topology are tested and

controlled by the RYU controller in the Mininet emulator. The measurement parameters are

throughput, jitter, bandwidth, and RTT (Round Trip Time) for QoS performance. A Ping tool

is used to measure the delay whereas the Iperf tool generates UDP packets to measure the

jitter and bandwidth utilization for three scenarios.

 17

2.11 Literature Review for Delay Measurement of Network Traffic

In SDN, there are many methods to measure the delay of link or network path (end-to-end

delay). Since the architecture of SDN separates the control plane from the data plane, delay

measurement can be handled by the controller (control plane) or switch (data plane). Network

measurement is performed in terms of the active method or passive method. The active

measurement method means applying additional packets to monitor the network, on the other

hand, passive measurement methods do not require probe packets since the delay is measured

by observation. Both measurement schemes have drawbacks as well as advantages in the case

of introducing overhead, reliability, accuracy, or complexity while monitoring network traffic

or collecting statistics information.

In OpenNetMon [14] and SLAM [15], network latency is calculated by the SDN

controller by injecting probe packets into the network. The first switch accepts this packet and

sends it along the path to reach the destination. The last switch sends this packet back to the

controller to estimate the delay of the path by calculating the difference between the total

traveling time of the packet and switch-to-controller latency. This method gives real-time

results since the controller continuously monitors all flows on delay, packet loss, or

throughput. In LINK-MON [16], the OpenNetMon method is modified to monitor delay per

link, reducing network overhead. This method supports monitoring in real-time for link delay

and covers all links by applying Dijkstra’s Algorithm. Overall network overhead is reduced

when compared to OpenNetMon [14] where path delay is measured.

In TTL-Based Looping [17], end-to-end path delay is measured by the controller while

the looping technique is applied to count the IP TTL. Therefore, a loop of packets with a

specific Time-to-Live (TTL) is applied to the path. The OpenFlow switch decrements TTL

while it transfers the packet in the loop, sending it back to the controller when TTL is zero.

Then, the controller decides the latency according to TTL and iteration number. In Queue

Length Method [17], the delay measurement is also estimated by using queue lengths at

switches. This is another method that calculates delay in the control plane. Processing,

propagation, and transmission delay are considered constant values to be able to detect

queueing delay required for calculating the path delay.

In sFlow [18] and NetFlow [19], the special switches are used as agents to send the

information of flow to the NetFlow collector periodically. Then, this information is analyzed

by the collector to estimate the delay. Since the additional agents are implemented on

hardware switches, the configuration of complexity and lack of scalability is put in the

network architecture. On the other hand, in FlowTrace [21], the network path is traced in real-

 18

time by probing packets from the data plane. FlowTrace [21] installs measurement rules in

switches for further computing delay based on the table query algorithm. Besides, the method

can be tested in real applications without changing physical switches due to using the

OpenFlow protocol.

There are also many traditional methods for network measurement which are widely

utilized in the networking environment. A Ping tool is the most traditional way of measuring

RTT between the source node and destination node. ICMP (Internet Control Message

Protocol) packets are identified as probe packets between sender and receiver to obtain the

value of RTT. It can obtain the latency in various window sizes of packets.

Another traditional method is based on the timestamp between TCP second and third

packet when the callee establishes a TCP connection. In more detail, the RTT gets from the

timestamp between SYN-ACK packet and ACK packet of TCP three-way handshake. The

other way is using TCP timestamp which adds an extra payload in the TCP header, however,

it provides precise latency. Instead of using TCP timestamp, two-way UDP gives another

chance to the traditional way of delay measuring. It detects the Round-Trip Delay (RTD) or

One-Way Delay (OWD) by embedding the UDP timestamp in hosts, giving an accurate

latency like the TCP timestamp.

There is also a modified way of the traditional method of latency measuring. The method

in [22] measures both path latency and flow-setup latency and compares the real testbed with

Mininet emulation. Latency is optimized by introducing some additional steps to the Ping tool

to have an accurate delay measurement in the data plane. The study shows path latency or

flow-setup latency of the physical testbed is larger than Mininet emulation, highlighting that

Mininet has less reactivity than the real testbed regarding throughput, jitter, and packet loss.

 19

Chapter 3

Proposed Network Topology and Methodology

3.1 Implementation of Emulated SDN-based Backbone Network with

Emulated 6LoWPAN IoT Sensor Networks

GNS3 [28] is an open-source as well as enterprise-level network emulation software.

GNS3 offers stable and realistic test case experiences with a testbed for professional network

engineers. In addition, GNS3 can support multi-vendor network devices such as Huawei,

Juniper, Cisco, and others. Moreover, GNS3 can also connect with real devices or other

virtual machines which is a useful feature to create an emulated backbone network. Therefore,

extensibility is the main advantage of GNS3. Other useful features are scalable, clustering,

and para-virtualization. On the other hand, GNS3 has a drawback for wireless networking

emulation, lacking wireless support, although it supports a physical wireless card.

Mininet-WiFi [29] is specially designed for wireless SDN, extending the Mininet which

only supports wired network emulation of SDN. Therefore, unlike GNS3, Mininet-WiFi only

allows access to the SDN emulation. The HWSIM driver is supported in Mininet-WiFi to

offer wireless experiences in an SDN environment. Mininet-WiFi is a user-friendly emulator

since python-based programming and configuring are allowed through its API. The test cases

are implemented rapidly and easily through the command lines, rather than configuring each

SDN/OpenFlow element. Mobility and propagation models are additional useful features of

Mininet-WiFi. There are also downsides of Mininet-WiFi such as constraints to a large

network, no clustering support, and no multi-vendor support.

In this thesis, the hybrid form of the GNS3 emulator and Mininet-WiFi emulator is used.

GNS3 cannot support wireless emulation, therefore, the emulated wireless IoT sensor network

is implemented in Mininet-WiFi emulator and the emulated SDN-based backbone network is

built in GNS3 emulator. In this thesis, two network emulators (GNS3 and Mininet-WiFi) are

used to propose the SDN-based delay aware routing for delay-sensitive IoT traffic in the

emulated SDN-based backbone network with the emulated 6LoWPAN-based IoT sensor

network. The proposed emulated topology is illustrated in Figure 3.1.

 20

Figure 3.1: Proposed network topology of emulated SDN-based backbone

network with 6LoWPAN IoT sensor networks and server network.

The RYU Controller acts as a centralized SDN controller in the control plane of the

backbone network and the red lines in Figure 3.1 represent the control plane. The control

plane represents the network connection between the RYU controller and OVS nodes. The

data plane is drawn with the blue lines in Figure 3.1. The control plane and data plane are

communicated through the Southbound API, OpenFlow protocol, supporting OpenFlow

messages between controller and switches. The out-of-band connection mode is applied in the

proposed topology as the different network interfaces are used for control and data planes.

Three virtual machines (VMs) will be installed to implement the proposed topology. The

Mininet-WiFi package will be installed in two virtual machines and the remaining VM will be

used for the GNS3 emulator. In the proposed topology, there are three main data networks: (i)

IoT sensor network 1, (ii) IoT sensor network 2, and (iii) server network. The IoT sensor

network is the network where emulated IoT sensors are located. The server network is the

network where the emulated server is located. The server to receive the IoT traffic will be

located in the server network. The IoT traffic from the IoT sensor networks 1 and 2 will be

forwarded to the server network through the emulated SDN-based backbone network. A total

of eight OVS nodes are used to create the emulated SDN-based backbone network. OVS 1

and OVS 5 represent the provider edge network nodes and the other OVS nodes are provider

 21

network nodes or the internal network nodes. The provider edge network node is the network

device that is connected with the edge network such as IoT wireless sensor networks and the

server network. The provider network node or the internal network node is the network device

that is only connected to the OVS node, which means that the provider network node is not

connected with the edge network.

There are three available paths in the data plane which will carry the data traffic from the

IoT sensor network to the server network. The three paths are labeled as the upper path,

middle path, and lower path in this work. The number of hops is the highest in the upper path

and lowest in the lower path. There are 6loWPAN-based IoT sensor networks 1 and 2

emulated in Mininet-WiFi 1 and Mininet-WiFi 2 which will send the IoT traffic to the server

network through the data plane of the emulated SDN-based backbone network.

The virtual switch provided by the type2 VMware hypervisor, which is the VMware

workstation in this work, will help to establish the connection between each virtual machine.

Therefore, the two emulators will be connected through the virtual switch. Two sensor

networks, server networks, and the SDN-based backbone network will be configured as

different networks. Each OVS has a unique Data Path Identifier (DPID) and the RYU

Controller will use the unique DPIDs of each OVS node to configure the necessary OpenFlow

rules. The function of each network node is explained as follows. The job of the sensor node

is to generate the IoT traffic with the standard of IEEE 802.15.4. The AP sensor node is used

to convert the IEEE 802.15.4 to IEEE 802.3 to be enabled to forward the IoT traffic to

provider OVS nodes. The function of the RYU controller is to receive the required network

information from the OVS nodes for routing and to instruct the OVS nodes on how to forward

the traffic. The job of the network node inside the server network is to receive the IoT traffic.

The OVS 1 (provider edge network node) is responsible for measuring three network

parameters including delay, packet loss ratio, and the number of hops. The OVS 1 then will

send the values of measured parameters to the RYU controller. Therefore, the RYU controller

can use the measured network parameter values in calculating the best path for the data

traffic. TCP port 6633 is used to communicate the RYU controller with OVS.

Mininet-WiFi is where sensor network topology is easily created through the command

line to configure nodes and links. The HWSIM module is supported to assign the 6LoWPAN

sensor network with an access point (AP) sensor node, and wireless sensor nodes. AP sensor

acts as a gateway and connects to every sensor node. AP sensor also connects with the wan0-

eth0 virtual interface by using NAT (Network Address Translation) to route its network to the

provider edge switch of the SDN backbone network. Therefore, the AP sensor node

communicates with the provider edge network node through the wan0-eth0 virtual interface.

 22

The sensor node sends its data to the server through the AP sensor node. The server receives

and maintains the data sent from the sensor nodes of 6LoWPAN sensor networks 1 and 2

through the SDN-based backbone network. Figure 3.2 shows the topology of the emulated

6LoWPAN sensor network in Mininet-WiFi 1 and Mininet-WiFi 2.

Figure 3.2: Virtual network connection between emulated 6LoWPAN IoT sensor

network and provider edge network node of SDN-based backbone network.

3.2 Implementation of Delay Awareness Routing for IoT Traffic in

SDN-based Fault-Tolerant Backbone Network

In the case of implementing the fault-tolerant delay awareness routing in this work, there

are three main parameters required for the RYU controller to select the path. They are (i)

delay of the path, (ii) packet loss ratio, and (iii) the number of hops. The three parameters are

given different priorities: the delay of the path is defined as the first priority, the packet loss

ratio is specified as the second priority, and the number of hops is assigned as the last priority.

In this work, it is assumed that the sensor nodes of the 6LoWPAN sensor networks will send

UDP text messages to the server networks as sensor data traffic which will not require high

bandwidth usage. Another consideration is that the sensor data needs to be nearly sent from

the 6LoWPAN sensor network to the server in real-time. Therefore, the delay of the path

between two provider edge network nodes (OVS 1 and OVS 5) is considered as the first

priority. The packet loss ratio and the number of hops are considered as the second priority

 23

and third priority respectively. In this work, bandwidth will not be taken into account in

selecting the best path by the RYU controller because the UDP text messages will only be

carried along the path.

 For measuring the three parameters, the provider edge network node (OVS 1) is

responsible for all three paths (upper path, middle path, and lower path) because OVS 1

receives the data traffic from sensor network 1 and sensor network 2. ICMPv6 packets will be

used to measure the path delay between two provider edge network nodes (OVS 1 and OVS

5). The packet size of the ICMPv6 packet will be adjusted with the packet size of the

generated IoT traffic from the sensor node to provide the correct delay information for the

RYU controller in route selection. From this measuring, the values of the packet loss ratio

regarding three predefined paths can also be recognized.

The number of hops can be measured by using the Time-To-Live (TTL) information of

the ICMPv6 packet. In the upper path, there are three OVS nodes to relay the data traffic from

OVS 1 to OVS 5. Before the data traffic is relayed, TTL will be reduced at each OVS 2, OVS

3, and OVS 4. In this way, the number of hop information can be collected.

Then, the provider edge network node (OVS 1) encapsulates the measured values of three

parameters into the UDP packet and sends the UDP packet to the RYU controller. On the

other hand, the RYU controller recognizes each OVS switch by requesting the DPID through

SBI by using OpenFlow echo request and OpenFlow echo reply packets. The RYU controller

then receives the UDP packet with encapsulated parameter values from OVS 1. The RYU

controller then decapsulates the UDP packet to get the parameter values used in decision-

making for routing.

The RYU controller will use a UDP packet for two purposes. The first purpose is to

obtain the measurement values of the three parameters required in selecting the best path for

data traffic. The second purpose is to detect the path failure in the data plane.

 24

Figure 3.3: The traffic flow of UDP packet between provider edge network node

and RYU controller.

In the routing scenario, the RYU controller firstly compares the delay value and decides

to select the path with a minimum delay. The RYU controller then installs the flow rules into

the provider edge network nodes (OVS 1 and OVS 5) to carry the traffic on the path with the

lowest delay. The selected path is maintained for a specific amount of time to allow the traffic

flow. The RYU controller checks the delay values again after the allowed period to keep the

path at a minimum delay value. If the delay values of the three paths are the same, the RYU

controller will consider the packet loss ratio as a second priority and choose the path with the

least packet loss ratio value. Otherwise, if the comparing results are still the same, the number

of hops is the last parameter to be checked by the RYU controller to choose the best path for

data traffic.

In the fault-tolerant, the failure cases of the control plane as well as the data plane will be

considered. In the control plane, the detection of network node (OVS) failure is considered in

this work. The liveness of the OVS node will be detected by the RYU controller by using

ICMP packets. In this case, the node failure is detected by sending and receiving the ICMP

request and reply packets between the RYU controller and each OVS node to check whether

the node is still connected or not. The traditional way of checking for the liveness of the

OpenFlow session will be applied in the control plane.

 25

In the data plane, the failure of the path between the provider edge nodes (OVS 1 and

OVS 5) is considered in this work. In this case, the traditional method such as Link Layer

Discovery Protocol (LLDP) for link failure or path failure detection can be used. However, it

will not be applied in this thesis. The path failure will be checked based on the measurement

values of three parameters (path delay, packet loss ratio, and the number of hops) between

provider edge switches (OVS 1 and OVS 5). OVS 1 receives the measurement values of Path

1, Path 2, and Path 3 if there is no failure in the data plane. If OVS 1 does not receive any

measurement values from Path 1, the situation can be considered as a failure in Path 1. As a

result, OVS 1 will simply put the null value in the measurement variable for Path 1 and send

the value to the RYU controller. Therefore, the RYU controller will recognize that the path is

failed by receiving the message with the null value from the OVS 1. As a consequence, the

RYU controller will remove Path 1 in the decision-making of routing for the best path. In this

way, the failure of Path 2 and Path 3 can also be detected.

In the traditional method of LLDP detection, the LLDP packet is required to be generated

by the RYU controller and sent to the OVS. Then, the OVS will forward this received packet

to other OVS for failure detection. Therefore, there is some consumed bandwidth for the

generated LLDP packet. In this work, path detection is done by checking the measurement

values that are encapsulated in the UDP packet at the RYU controller. By using this method,

additional bandwidth consumption for path failure detection will be saved.

Furthermore, in the data plane, when the selected path is failed, the RYU controller will

not consider this path as the best path again. In this case, the main job of the RYU controller

is to decide the best one among the remaining paths for routing path selection. For example, if

Path 1 is failed, Path 2 or Path 3 will be chosen by the RYU controller to reroute the IoT

traffic based on three main parameters, including delay of the path, packet loss ratio, and the

number of hops.

The three main parameters, which are the delay of the path, packet loss ratio, and the

number of hops, will be measured by OVS 1 and sent to the RYU controller every 20

seconds. Therefore, the RYU controller can check the failure of the path every 20 seconds and

reroute if there is a failure in the data plane.

 26

Chapter 4

Implementation of Testbed Environment

4.1 Implementation of SDN-based Backbone Network

In each OVS node of the SDN-based backbone network, the bridge 0 (br0) is configured

with the IP address (192.168.1.5) of the RYU controller along with the TCP port number

(6633). The RYU controller is configured with an out-of-band connection mode in each OVS

node to separate the network interface of the control plane from the data plane. The br0 is set

in the secure mode. The network interface which is used for the control plane is not required

to be controlled by the RYU controller and is removed from each OVS bridge to protect

against unwanted looping. The control plane network is 192.168.1.0/24. The eth0 of each

OVS is connected to the RYU controller. The IPv4 addresses of OVS nodes are 192.168.1.1

for OVS 1, 192.168.1.2 for OVS 2, 192.168.1.3 for OVS 3, 192.168.1.7 for OVS 4,

192.168.1.4 for OVS 5, 192.168.1.8 for OVS 6, 192.168.1.9 for OVS 7, and 192.168.1.6 for

OVS 8. Among three paths between OVS 1 and OVS 5 (provider edge nodes), OVS 1, OVS

3, and OVS 4 are internal nodes in the upper path, OVS 6 and OVS 7 are provider nodes in

the middle path, and OVS 8 is a provider node in the lower path which are connected through

eth1 and eth2.

The OVS 1 and OVS 5 are configured with the 2004::/64 network at eth1 to build the

upper path in the data plane. For the middle path, the eth5 of OVS 1 and OVS 5 are assigned

with the 2005::/64 network. For the lower path, the eth2 of OVS 1 and OVS 5 are configured

with the 2006::/64 network. In each internal OVS node, there are OpenFlow rules to transfer

the traffic from the 6LoWPAN IoT sensor networks 1 and 2 between provider edge nodes.

Since the data plane of the SDN-based backbone network is built in the IPv6 network, each

internal OVS node needs to carry the IPv6 data traffic between the provider edge nodes.

Therefore, the OpenFlow rules that forward the IPv6 data traffic must be installed in each

internal node. In the upper path, the forwarding OpenFlow rules are installed in OVS 2, OVS

3, and OVS 4. The OVS 6, OVS 7 in the middle path, and OVS 8 in the lower path are

installed with the Openflow rules. The OpenFlow rules to route the sensor traffic (UDP or

ICMPv6) are installed in OVS 1 and OVS 5 by the RYU controller after choosing the best

path.

The OVS 1 is connected to Mininet-WiFi 1 through eth3 and to Mininet-WiFi 2 through

eth6. The IPv6 address for eth3 is 2001::20 to reach the 2001::/64 network of Mininet-WiFi 1

 27

and the IPv6 address for eth6 is 2002::20 to reach the 2002::/ 64 network of Mininet-WiFi 2.

The gateway addresses of 2001::100 and 2002::100 are specified in OVS 1 to connect to the

6LoWPAN IoT sensor networks 1 and 2. The eth3 of OVS5 is configured with the IPv6

address of 2007::10 to reach the 2007::/64 network of the server.

Table 4.1: Network addresses of SDN-based backbone network.

Control Plane Network Data Plane Network

Upper Path Middle Path Lower Path

192.168.1.0/24 2004::/64 2005::/64 2006::/64

Table 4.2: Network addresses of edge network.

Edge Networks Sensor Networks Server

Network
Mininet-WiFi

1

Mininet-WiFi

2

Sensor Network

1

Sensor Network

2

2001::/64 2002::/64 2003::/64 2009::/64 2007::/64

Table 4.3: IPv4 or IPv6 address of each node in the SDN-based backbone

network and edge network.

No. Network Nodes Interface Control

Plane

Network

(IPv4)

Data

Plane

Network

(IPv6)

Edge

Network

(IPv6)

Server

Network

(IPv6)

1. RYU controller eth0 192.168.1.5

/24

2. OVS 1

(provider edge

node connected

to Mininet-WiFi

1 and Mininet-

WiFi 2)

eth0 192.168.1.1

/24

eth1 2004::20

/64

eth2 2005::20

/64

eth5 2006::20

/64

eth3 2001::20

/64

eth6 2002::20

/64

3. OVS 2

(provider node

in the upper

eth0 192.168.1.2

/24

 28

path)

4. OVS 3

(provider node

in the upper

path)

eth0 192.168.1.3

/24

5. OVS 4

(provider node

in the upper

path)

eth0 192.168.1.7

/24

6. OVS 5

(provider edge

node connected

to server

network)

eth0 192.168.1.4

/24

eth1 2005::20

/64

eth2 2006::20

/64

eth5 2006::20

/64

eth3 2007::20

/64

7. OVS 6

(provider node

in the middle

path)

eth0 192.168.1.8

/24

8. OVS 7

(provider node

in the middle

path)

eth0 192.168.1.9

/24

9. OVS 8

(provider node

in the lower

path)

eth0 192.168.1.6

/24

10. Mininet-WiFi 1 ens32 2001::100

/64

11. Mininet-WiFi 2 ens36 2002::100

/64

12. Server eth0 2007::10

/64

4.2 Implementation of 6LoWPAN IoT Sensor Networks

In Mininet-WiFi 1, the 6LoWPAN IoT sensor network 1 is built with 10 sensor nodes and

one AP node by using the HWSIM module. The interfaces (sensor1-pan0 to sensor10-pan0)

of 10 sensor nodes are configured with the IPv6 addresses from 2003::1/64 to 2003::10/64.

The AP node is assigned with the IPv6 address of 2003::60/64 at the ap1-pan0 interface.

Through the AP node, 10 sensors are connected to the 2003::/64 network. The Mininet-WiFi

1 is configured with 2001::100 to reach the 2001::/64 network of OVS 1. The AP node is

 29

assigned with the gateway address of 2001::20 to route the traffic between sensor network 1

and the SDN-based backbone network.

In Mininet-WiFi 2, the 6LoWPAN IoT sensor network 2 is created with 10 sensor nodes

and one AP node. The IPv6 addresses of 10 sensor nodes are from 2009::1/64 to 2009::10/64

configured at sensor1-pan0 to sensor10-pan0. The ap1-pan0 of the AP node is assigned with

the 2009::60/64 IPv6 address. The ens36 interface of Mininet-WiFi 2 is configured with

2002::100 to connect to the 2002::/64 network of OVS 1. The gateway address of the AP

node is 2002::20 to route the traffic between sensor network 2 and the SDN-based backbone

network. Sensor networks 1 and 2 measure the end-to-end delay (from the sensor to the

server) by using ICMPv6 packets. The end-to-end delay is measured in each sensor based on

the optimal path of the backbone network which is chosen by the RYU controller. The UDP

sensor messages from sensor networks 1 and 2 are sent to the server through the optimal path

of the SDN-based backbone network.

Table 4.4: IPv6 addresses of each node in 6LoWPAN sensor networks 1 and 2.

Sensor Networks Network Nodes Interface IPv6 address

 Sensor Network 1

Sensor 1 sensor1-pan0 2003::1/64

Sensor 2 sensor2-pan0 2003::2/64

Sensor 3 sensor3-pan0 2003::3/64

Sensor 4 sensor4-pan0 2003::4/64

Sensor 5 sensor5-pan0 2003::5/64

Sensor 6 sensor6-pan0 2003::6/64

Sensor 7 sensor7-pan0 2003::7/64

Sensor 8 sensor8-pan0 2003::8/64

Sensor 9 sensor9-pan0 2003::9/64

Sensor 10 sensor10-pan0 2003::10/64

AP 1 ap1-pan0 2003::60/64

 Sensor Network 2

Sensor 1 sensor1-pan0 2009::1/64

Sensor 2 sensor2-pan0 2009::2/64

Sensor 3 sensor3-pan0 2009::3/64

Sensor 4 sensor4-pan0 2009::4/64

Sensor 5 sensor5-pan0 2009::5/64

Sensor 6 sensor6-pan0 2009::6/64

Sensor 7 sensor7-pan0 2009::7/64

Sensor 8 sensor8-pan0 2009::8/64

Sensor 9 sensor9-pan0 2009::9/64

Sensor 10 sensor10-pan0 2009::10/64

AP 1 ap1-pan0 2009::60/64

 30

4.3 Installation of OpenFlow Rules in OVS Nodes

To forward the ICMPv6 traffic as well as UDP traffic between OVS 1 and OVS 5, there

are the OpenFlow rules defined in the OVS nodes. In the upper path, OVS 2, OVS 3, and

OVS 4 are installed with the match-action flow rules. For UDP sensor messages, the flow rule

“in_port=2, priority=5, eth_type=0x86dd, ipv6_dst=2007::20, udp_dst=12345, actions=3” in

OVS 2 , OVS 3, OVS 4 matches the incoming packet at input port 2 for ethernet type, IPv6

destination address, and UDP destination port. Since UDP sensor messages are sent over the

IPv6, the ethernet type for IPv6 address, 0x86dd, is checked. Then the IPv6 destination

address of the server (2007::20) and the UDP destination port of the server (12345) are

matched to transfer the incoming UDP messages on the output port 3. For the ICMPv6

packet, IPv6 neighbor solicitation and IPv6 neighbor advertisement are specified to query the

source link-layer address and target link-layer address. For IPv6 neighbor solicitation, the two

flow rules “in_port=2, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=135,

actions=3” and “in_port=3, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=135,

actions=2” are installed in OVS 2, OVS 3, and OVS 4. In the flow rules, the ethernet type for

IPv6 is 0x86dd, the protocol number of the header for ICMPv6 is 58, and the IPv6 neighbor

solicitation for ICMPv6 is 135.

For IPv6 neighbor advertisement in OVS 2, OVS 3, and OVS 4, the two flow rules

“in_port=2, priority=10, eth_type=0x86dd, ip_proto=58, icmp_type=136, actions=3” ” (port 2

is eth0 or eth1 and actions 3 is also which port) and “in_port=3, priority=10,

eth_type=0x86dd, ip_proto=58, icmp_type=136, actions=2” are set to match the IPv6

neighbor advertisement of 136 for ICMPv6 packets. After the link-layer addresses for source

and destination are identified, the ICMPv6 packets are allowed to transfer on output port with

two flow rules “in_port=2, priority=5, eth_type=0x86dd, ip_proto=58, actions=3” and “

in_port=3, priority=5, eth_type=0x86dd, ip_proto=58, actions=2” in each OVS node.

Similarly, OVS 6 and OVS 7 in the middle path and OVS 8 in the lower path need to be

installed with the same flow rules as OVS 2, OVS 3, and OVS 4 to transfer UDP and ICMPv6

traffic between the provider edge nodes (OVS 1 and OVS 5).

For decrementing the TTL value for each hop along the path, OVS 2, OVS 3, and OVS 4

requires to be installed with two flow rules “in_port=2, ipv6_src=2004::20,

ipv6_dst=2004::10, priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3,

ipv6_src=2004::10, ipv6_dst=2004::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2”.

For the upper path, the IPv6 address 2004::/64 is assigned to match the source IPv6 address

and target IPv6 address. If the IPv6 addresses are checked for the ICMPv6 packet which is

 31

specified with the ethernet type 0x86dd, the value of TTL is decreased by 1 at OVS 2, OVS 3,

and OVS 4. Likewise, the OVS 6, and OVS 7 of the middle path use the same flow rules with

2005::/64 network addresses “ in_port=2, ipv6_src=2005::20, ipv6_dst=2005::10,

priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3, ipv6_src=2005::10,

ipv6_dst=2005::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2” to decrement the

number of hops in each OVS node. In the lower path, the OVS 8 is assigned with the

2006::/64 network, therefore the flow rules “in_port=2, ipv6_src=2006::20,

ipv6_dst=2006::10, priority=210, eth_type=0x86dd, actions=dec_ttl,3” and “in_port=3,

ipv6_src=2006::10, ipv6_dst=2006::20, priority=210, eth_type=0x86dd, actions=dec_ttl,2”

are installed.

(a) OVS 2

 32

(b) OVS 3

(c) OVS 4

 33

(d) OVS 6

(e) OVS 7

 34

(f) OVS 8

Figure 4.1: OpenFlow rules in OVS nodes of the SDN-based backbone network

at (a) OVS 2 (b) OVS 3 (c) OVS 4 (d) OVS 6 (e) OVS 7 (f) OVS 8.

 35

4.4 Routing Algorithm

Figure 4.2: Flowchart diagram for routing algorithm

Routing Algorithm for Path Failure Detection and Rerouting

 Rc = sdn controller

 W = list of working paths in the SDN-based backbone network

 Vmin = minimum value of parameters

 τp = path detection interval

 τv = parameter measurement interval

Input:

 vu = encapsulated UDP message from the upper path measurement

 vm = encapsulated UDP message from the middle path measurement

 vl = encapsulated UDP message from the lower path measurement

Measurement Parameters:

 du = delay of the upper path

 dm = delay of the middle path

 dl = delay of the lower path

 ru = packet loss ratio of the upper path

 rm = packet loss ratio of the middle path

 rl = packet loss ratio of the lower path

 36

 hu = number of hops of the upper path

 hm = number of hops of the middle path

 hl = number of hops of the lower path

 Step 1. Begin

 Initialization: τv = 5s , τp = 20s

 Step 2. while True

 Rc decapsulates vu , vm , vl received from OVS 1 in every τv

 Step 3. if vu = ‘0’ and vm = ‘0’ and vl = ‘0’

 set W = [0,0,0]

 else if vu = ‘0’ and vm = ‘0’ and vl != ‘0’

 set W = [0,0,1]

 else if vu = ‘0’ and vm != ‘0’ and vl = ‘0’

 set W = [0,1,0]

 else if vu != ‘0’ and vm = ‘0’ and vl = ‘0’

 set W = [1,0,0]

 else if vu = ‘0’ and vm != ‘0’ and vl != ‘0’

 set W = [0,1,1]

 else if vu != ‘0’ and vm = ‘0’ and vl != ‘0’

 set W = [1,0,1]

 else if vu != ‘0’ and vm != ‘0’ and vl = ‘0’

 set W = [1,1,0]

 else if vu != ‘0’ and vm != ‘0’ and vl != ‘0’

 set W = [1,1,1]

 Step 4. if W = [0,0,0]

 All paths are unavailable.

 else if W = [1,1,1]

 vu is decapsulated to du , ru , hu

 vm is decapsulated to dm , rm , hm

 vl is decapsulated to dl , rl , hl

 if du != dm != dl

 Vmin = min(du , du , dm)

 else if ru != rm != rl

 Vmin = min(ru , rm , rl)

 else if hu != hm != hl

 37

 Vmin = min(hu , hm , hl)

 else if W = [0,1,1]

 vm is decapsulated to dm , rm , hm

 vl is decapsulated to dl , rl , hl

 if dm != dl

 Vmin = min(du , dm)

 else if rm != rl

 Vmin = min(rm , rl)

 else if hm != hl

 Vmin = min(hm , hl)

 else if W = [1,0,1]

 vu is decapsulated to du , ru , hu

 vl is decapsulated to dl , rl , hl

 if du != dl

 Vmin = min(du , dl)

 else if ru != rl

 Vmin = min(ru , rl)

 else if hu != hl

 Vmin = min(hu , hl)

 else if W = [1,1,0]

 vu is decapsulated to du , ru , hu

 vm is decapsulated to dm , rm , hm

 if du != dm

 Vmin = min(du , dm)

 else if ru != rm

 Vmin = min(ru , rm)

 else if hu != hm

 Vmin = min(hu , hm)

 else if W = [0,0,1]

 vl is decapsulated to dl , rl , hl

 Vmin = dl

 else if W = [0,1,0]

 vm is decapsulated to dm , rm , hm

 Vmin = dm

 else if W = [1,0,0]

 38

 vu is decapsulated to du , ru , hu

 Vmin = du

Step 6. if Vmin is equal to du or ru or hu

 Upper Path is chosen by Rc

 Install OpenFlow rules into provider edge nodes.

 if Vmin is equal to dm or rm or hm

 Middle Path is chosen by Rc

 Install OpenFlow rules into provider edge nodes.

 if Vmin is equal to dl or rl or hl

 Lower Path is chosen Rc

 Install OpenFlow rules into provider edge nodes.

 sleep for τp

 goto Step 2

Step 7. End

Node Failure Detection Algorithm

 Rn = sdn controller

 N = number of OVS nodes in SDN-based backbone network

 Oa = list of active OVS nodes connected to Rc

 τd = node detection interval

 mrequest = ICMP request packets sent to OVS node

 mreply = ICMP reply packets received from OVS node

Step 1: Begin

 Initialize: Oa = [] , τd = 5s

Step 2. while True

 For n = 1,…, N Do

 Rc sends mrequest to nth OVS node

 if Rc receives mreply from nth OVS node then

 append nth OVS node to Oa

 sleep for τd

 goto Step 2

 Step 3. End

 39

4.5 Hardware and Software Specifications of Testbed Environment

Table 4.5: Hardware specifications of host machine.

Host

Machine

Processor RAM System Type OS

ASUS

VivoBook

X512DA

AMD Ryzen 5 3500U

with Radeon Vega

Mobile Gfx 2.10 GH

16 GB 64-bit operating

system, x64 based

processor

Windows

10

Table 4.6: Software specifications of virtual machines.

1. VMware Workstation 15

pro

Version 15.5.0

Hypervisor Type 2

2. GNS3 VM GNS3 server version 2.2.23

VM version 0.11.1

RAM 4 GB

Number of processors 2

3. Mininet-WiFi VM 1 RAM 2 GB

Number of processors 2

OS Ubuntu 20.04.3

LTS (Focal Fossa)

4. Mininet-WiFi VM 2 RAM 2 GB

Number of processors 2

OS Ubuntu 20.04.3

LTS (Focal Fossa)

Table 4.7: Software specifications of SDN-based backbone network.

1. OpenFlow virtual

switch

Open vSwitch Type Docker Container

Server GNS3 VM

OS Alpine Linux v3.3

2. RYU controller Ubuntu Docker

Guest

Type Docker container

Server GNS3 VM

OS Ubuntu 16.04.2 LTS

(Xenial Xerus)

3. Server Ubuntu Docker

Guest

Type Docker container

Server GNS3 VM

OS Ubuntu 16.04.2 LTS

(Xenial Xerus)

 40

In the SDN-based backbone network, the RYU controller is installed on Ubuntu docker

guest which uses containerization technology. In containerization technology, the applications

are deployed in the container which runs on Linux and shares the kernel of the host machine.

The container runs a discrete process, making it lightweight. Some of the advantages of

Docker is

1. Flexible: The complex applications can be containerized.

2. Lightweight: The container shares the host kernel.

3. Interchangeable: Update and upgrade can easily be deployed.

4. Portable: The docker can run locally or deploy to the cloud.

5. Scalable: The docker supports automatically distributed replicas of containers.

 41

Chapter 5

Testing and Measurement Result of Proposed Topology

5.1 Routing Path Selection

For routing measurement, the two scenarios are considered. The first scenario is the

situation with no failure in the SDN-based backbone network. The second scenario is when

there is a single path failure in the SDN-based backbone network. The UDP sensor messages

are sent from the 6LoWPAN IoT networks 1 and 2 to the server. There are 10 sensors in each

6LoWPAN IoT network, therefore, the UDP messages of 20 sensors are sent to the server

through the SDN-based backbone network. For routing the best path in the SDN-based

backbone network, the RYU controller checks the measured parameter values of the three

paths including the upper path, middle path, and lower path, which are received from OVS1.

The RYU controller decides the optimal path every 20 seconds for sensor traffic. The testing

is measured 20 times to compare the number of selected routing paths in the SDN-based

backbone network. In Figure 5.1, the graph for the number of selected routing paths when

there is no path failure in the SDN-based backbone network is illustrated. As shown in Figure

5.1, the lower path is mostly chosen as the optimal path during the measurement period.

According to the proposed delay-awareness routing algorithm, the lower path has the highest

chance to be selected as the optimal path in the topology summarized in Figure 3.1.

Figure 5.1: Comparison of routing paths chosen by the RYU controller when

there is no path failure in the SDN-based backbone network.

 42

In Figure 5.2, three different scenarios are tested for the situation of a single path failure.

The number of tests is 20 times, and the results of optimal path selection are compared. The

upper path is failed in the first scenario, the middle path is failed in the second scenario, and

the lower path is failed in the last scenario. Therefore, there are only two available paths in

each scenario to compare the optimal routing path selection by the RYU controller. When the

upper path is failed, the remaining paths are the middle path and the lower path. The lower

path is chosen more than the middle path. The reason is that there is one more hop in the

middle path than the lower path. Therefore, the required time for the packet to reach the

destination through the lower path is less than that of passing through the middle path. In the

case of the middle path failure, a similar case also happens since the upper path has three hops

to reach the server. When the lower path is failed, the middle is mostly chosen as the optimal

path since there are fewer hops in the middle path than in the upper path which takes less time

to carry packets to the server. The overall testing results that the lower path has the lowest

delay, and the upper path has the highest delay in the proposed topology. Therefore, the

result in Figure 5.2 shows that the path failure detection from the RYU controller is

successful and the delay-awareness routing algorithm works properly in the SDN-based

backbone network.

Figure 5.2: Comparison of routing paths chosen by the RYU controller when

there is a single path failure in the SDN-based backbone network.

 43

5.2 Reroute Time

The rerouting time is measured when the initial selected optimal path is failed in the

backbone network. Figure 5.3 shows the UDP packet captured with the Wireshark tool at the

server side to measure the required rerouting time. In this scenario, the time that the server

receives the last UDP packet from the sensor node with IPv6 address 2001::100 through the

initially selected path is 15:13:17.979. When the selected path is down, there is no incoming

packet to the server during the time between 15:13:18.382 and 15:13:32.664. After the RYU

controller selects another available path as the optimal path, then the server receives back the

UDP packet at 15:13:36.539. The rerouting time is calculated from the absolute time

difference between the last packet received from the optimal path and the first packet received

from the rerouted path.

Rerouting Time = | (the time that the server receives the last UDP packet from the initial

optimal path) - (the time that the server receives the first UDP packet back

from the rerouted optimal path after the failure of the initial optimal path) |

Figure 5.3: UDP packet captured in server to measure rerouting time with

Wireshark tool.

 44

The graph of the average rerouting time resulting from 10 times of testing is shown in

Figure 5.4. When the lower path is failed, the required average time is around 20 seconds

which means that the RYU controller reroutes the other path within the desired measurement

of time. When both the lower path and middle path are failed, the RYU controller reroutes to

the upper path within an average maximum time of 25 seconds. The proposed reroute

scenario maintains the failure path in an acceptable amount of time which is around 20 to 25

seconds.

Figure 5.4: Average reroute time with 95-percent confidence interval for

6LoWPAN IoT traffic.

The reroute time of the RYU controller in the case of lower path failure is shown in Table

5.1. The average rerouting time that is resulted from 10 times of testing is about over 18

seconds. Besides, the required reroute time for the case of both the lower path and the middle

path failures is about 24 seconds which is shown in Table 5.2. The RYU controller takes more

time in the case of two path failure than a single path failure, however, the average rerouting

time is the range of the proposed topology of the backbone network.

22.1

27.2

 45

Table 5.1: Reroute time for lower path failure.

Test

No.

Down Time

(seconds)

Up Time

(seconds)

Reroute Time

(seconds)

1. 03:58:18.003 03:58:40.282 22.279

2. 04:34:24.958 04:34:41.473 16.515

3. 04:41:53.236 04:42:04.092 10.856

4. 04:44:48.509 04:45:08.764 20.255

5. 04:52:46.738 04:53:06.210 19.472

6. 04:55:47.023 04:56:09.366 22.343

7. 04:59:38.725 04:59:49.809 11.084

8. 05:02:09.385 05:02:37.427 28.042

9. 05:07:08.386 05:07:30.753 22.367

10. 05:09:16.036 05:09:37.063 21.027

Average Reroute Time (seconds) 18.424 s

Table 5.2: Reroute time for both lower path and middle path failures.

Test

No.

Down Time

(seconds)

Up Time

(seconds)

Reroute Time

(seconds)

1. 05:17:52.006 05:18:15.206 23.2

2. 05:30:20.114 05:30:44.041 23.927

3. 05:33:34.333 05:33:59.313 24.980

4. 05:35:36.224 05:35:59.498 23.274

5. 05:37:48.330 05:38:10.943 22.613

6. 05:49:45.858 05:50:05.144 19.286

7. 05:54:22.814 05:54:50.576 27.762

8. 06:02:38.792 06:03:01.015 22.223

9. 06:04:55.531 06:05:18.675 23.144

10. 06:07:17.203 06:07:51.277 34.074

Average Reroute Time (seconds) 23.448 s

5.3 End-to-End Delay Measurement

The results of the end-to-end average delay of each sensor from Mininet-WiFi 1 and

Mininet-WiFi 2 to the server are shown in Table 5.3 and Table 5.4. The end-to-end delay

through the optimal path is measured when there is no traffic in the SDN-based backbone

network. The ICMP packet is used to measure the average end-to-end delay from the sensor

to the server through the optimal routing path chosen by the RYU controller in the SDN-

based backbone network.

 46

Table 5.3: End-to-end average delay of each sensor from sensor network 1 to the

server when there is no traffic in the SDN-based backbone network.

Table 5.4: End-to-end average delay of each sensor from sensor network 2 to

server when there is no traffic in the SDN-based backbone network.

Table 5.5 and Table 5.6 show the measurement results of the end-to-end average delay of

sensors from sensor networks 1 and 2 to the server for three cases when there is sensor traffic

from both sensor networks 1 and 2 in the SDN-based backbone network. When there is no

path failure, the RYU controller chooses the optimal path with a minimum delay which is

mostly the lower path in the SDN-based backbone network. Therefore, in the case of no path

failure, the end-to-end delay measurement has the minimum value most of the time in contrast

to the case of lower path failure or both lower path and middle path failures. In the case of a

lower path failure, the end-to-end delay value is increased since the RYU controller chooses

mostly the middle path rather than the upper path. When there are failures in both the lower

path and middle path in the SDN-based backbone network, the RYU controller chooses only

Sensors (Sensor

Network 1)

End-to-end average delay

(milliseconds)

Sensor 1 3.285

Sensor 2 2.350

Sensor 3 2.969

Sensor 4 3.775

Sensor 5 2.331

Sensor 6 2.764

Sensor 7 2.860

Sensor 8 2.849

Sensor 9 3.551

Sensor 10 2.655

Sensors (Sensor

Network 2)

End-to-end average Delay

(milliseconds)

Sensor 1 2.776

Sensor 2 2.886

Sensor 3 3.174

Sensor 4 3.078

Sensor 5 2.895

Sensor 6 2.767

Sensor 7 2.796

Sensor 8 3.806

Sensor 9 2.804

Sensor 10 2.367

 47

the upper path for routing the sensor traffic, which causes the end-to-end delay value highest

most of the time when compared to the lower path and middle path. Therefore, it can be

concluded that the proposed routing algorithm has been working to route the IoT sensor

traffic on the optimal path.

Table 5.5: End-to-end average delay of each sensor from sensor network 1 to the

server in case of no path failure, one path failure, and two path failures in the

SDN-based backbone network.

Sensors

(Sensor

Network 1)

End-to-end average delay

(milliseconds)

No Path

Failure

Lower Path

Failure

Lower Path and

Middle Path

Failures

Sensor 1 2.541 3.247 4.094

Sensor 2 2.588 3.373 3.846

Sensor 3 2.502 4.676 3.436

Sensor 4 2.981 3.385 4.319

Sensor 5 2.911 3.469 3.728

Sensor 6 2.691 3.435 4.168

Sensor 7 2.957 3.216 4.221

Sensor 8 2.910 4.011 5.151

Sensor 9 2.921 3.620 5.435

Sensor 10 2.734 3.653 4.734

Average (ms) 2.773 3.608 4.313

Table 5.6: End-to-end average delay of each sensor from sensor network 1 to the

server in case of no path failure, one path failure, and two path failures in the

SDN-based backbone network.

Sensors

(Sensor

Network 2)

End-to-end average delay

(milliseconds)

No Path

Failure

Lower Path

Failure

Lower Path and

Middle Path

Failures

Sensor 1 2.896 3.466 5.379

 48

Sensor 2 2.928 3.591 5.911

Sensor 3 2.509 3.475 5.896

Sensor 4 3.482 4.061 6.865

Sensor 5 2.797 3.460 5.702

Sensor 6 3.635 4.122 6.617

Sensor 7 2.777 4.269 4.761

Sensor 8 3.097 3.547 5.457

Sensor 9 3.046 4.059 6.305

Sensor 10 2.970 3.894 6.022

Average (ms) 3.013 3.794 5.891

 49

Chapter 6

Conclusions

In this thesis, the hybrid form of implementation for edge network in Mininet-WiFi and

core network in GNS3 has been successfully proposed. Firstly, in the SDN-based core

network, the proposed network topology is built with eight OVS nodes that support the

OpenFlow protocol, three different paths, and one centralized RYU controller. The network

parameters of three paths are measured between provider edge OVS nodes. In OVS 1 which

is connected to sensor networks, the measurement values are decapsulated into the packets

and sent to the RYU controller. The RYU controller successfully installs the flow rules into

the provider edge nodes to route the best path by following the implemented routing

algorithm. Node failure detection, path failure detection, and rerouting for path failure are

also tested.

Secondly, in edge networks, the 6LoWPAN IoT sensor network is created and connected

through an AP node in Mininet-WiFi VM. Another important step is to connect different VM

to establish the hybrid form of the testbed and to route the traffic from sensors of the edge

network to the provider edge node of the core network. The GNS3 VM and Mininet-WiFi

VM are connected through a virtual switch, therefore, the traffic from sensors is sent to the

core network.

Thirdly, the end-to-end delay is directly measured from the sensors to the server. In this

case, the RYU controller installs the OpenFlow rules with specific MAC addresses of core

networks, and edge networks to route the traffic of sensors to the server and vice versa. The

end-to-end delay is successfully and dynamically measured on the optimal path chosen by the

RYU controller in the SDN-based core network.. In IPv6 addresses, the additional neighbor

solicitation and neighbor advertisement for ICMPv6 are required to be matched to take action

to decrement the number of hops in each OVS node. In the next step, the sensor messages are

created in the form of UDP packets and sent to the server through a UDP port.

Fourthly, two different sensor networks are created in two Mininet-WiFi VMs to connect

with the SDN-based backbone network. Two sensor networks send messages simultaneously

to the server on the optimal path, likewise, the end-to-end delay is measured on the same path.

In the last step, OVS node failure detection is tested. The ICMP packet is used by the RYU

controller to check whether the OVS node is active or not. In overall testing, the selected

routing path as well as rerouting time of the RYU controller, and end-to-end delay

measurement are tested and recorded for the proposed network.

 50

In this thesis, one main advantage is the contribution of a hybrid form of GNS3 and

Mininet-WiFi emulated testbed. From this contribution, the testbed can collaborate with other

vendors as well as real or virtual machines to explore more research in the future. This testbed

is worked on a small-scale network with centralized monitoring and controlling. Failure of the

SDN controller scenario is not considered in this work because there is a single RYU

controller in the proposed testbed to control and manage the backbone network. From the

point of view of redundancy, a single controller scenario is not suitable because the feature of

controllability will be lost when an SDN controller is failed. Moreover, the delay between

SDN-enabled network nodes such as OVS and the SDN controller needs to be considered in

the large-scale backbone network. Therefore, the distributed multi-SDN controller scenario

should be utilized to improve the redundancy. Furthermore, a slave SDN controller should be

implemented as the edge computing node at the provider-edge network to reduce bandwidth

consumption at the control plane in the future.

REFE REN CES

REFERENCES

[1] M. Medvetskyi, M. Beshley, and M. Klymash, “A Quality of Experience Management

Method for Intent-Based Software-Defined Networks,” 16th International Conference on

the Experience of Designing and Application of CAD Systems (CADSM), pp. 59–62, 2021.

[2] D. Lumbantoruan, Z. Fan, A. Mihailovic, and A.Hamid Aghvami, “Provision of Tactile

Internet Traffic in IP Access Networks Using SDN-Enabled Multipath Routing,” 27th

International Conference on Telecommunications (ICT), 2020.

[3] P. Bardalai, N. Medhi, B. Bargayary, and D. K. Saikia, “OpenHealthQ: OpenFlow based

QoS Management of Healthcare Data in a Software-Defined Fog Environment,” IEEE

International Conference on Communications (ICC), pp. 1-6, 2021.

[4] M. Saadatpour, T. Shabanian, and M. Behdadfar, “QoS Improvement in SDN Using

Centralized Routing Based on Feedback,” International Conference on Information

Networking (ICOIN), pp. 132-136, 2021.

[5] N. Albur, S. Handigol, S. Naik, M. M. Mulla, and D.G. Narayan, “QoS-aware Flow

Management in Software-Defined Network,” 12th International Conference on

Computational Intelligence and Communication Networks (CICN), pp.215-220, 2020.

[6] R. K. Das, N. Ahmed, F. H. Pohrmen, A. K. Maji, and G. Saha, “6LE-SDN: An Edge-

Based Software- Defined Network for Internet of Things,” IEEE Internet of Things Journal,

vol. 7, pp. 7725-7733, 2020.

[7] N. N. Josbert, W. Ping, M. Wei, M. S. A. Muthanna, and A. Rafiq, “A Frame for

Managing Dynamic Routing in Industrial Networks Driven by Software-Defined Networking

Technology,” IEEE Access Journal, vol. 9, pp. 74343-74359, 2021.

[8] D. Y. Setiawan, S. N. Hertiana, and R. M. Negara, “6LoWPAN Performance Analysis of

IoT Software-Defined-Network-Based Using Mininet-IoT,” IEEE International Conference

on Internet of Things and Intelligence System (IoTaIS), pp. 60-65, 2021.

[9] P. E. Numan, K. M. Yusof, J. B. Din, M. N. B. Marsono, U. S. Dauda, S. Nathaniel, and

F. K. O, “Quality of Service Evaluation of Software-Defined Internet of Things Network,”

ELEKTRIKA- Journal of Electrical Engineering, pp. 65–75,2021.

[10] R. K. Das, A. K. Maji, and G. Saha, “SD-6LN: Improved Existing IoT Framework by

Incorporating SDN Approach,” International Conference on Innovative Computing and

Communications, pp. 599-606, 2021.

 53

[11] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware QoS Routing in Software-Defined

IoT,” IEEE Transactions on Emerging Topics in Computing, vol. 9, pp. 390-401, 2021.

[12] J. M. Llopis, J. Pieczerak, and T. Janaszka, “Minimizing Latency of Critical Traffic

through SDN,” IEEE International Conference on Networking, Architecture and Storage

(NAS), pp. 1-6, 2016.

[13] O. M. A. Alssaheli, Z. Z. Abidin, N. A. Zakaria, and Z. A. Abas, “Implementation of

Network Traffic Monitoring using Software-Defined Networking Ryu Controller,” WSEAS

Transactions on Systems and Control Journal, vol. 16, pp. 270-277, 2021.

[14] N. L. M. vanAdrichem, C. Doerr, and F.A. Kuipers, “OpenNetMon: Network Monitoring

in OpenFlow Software-Defined Networks,” IEEE Network Operations and Management

Symposium (NOMS), pp. 1-8, 2014.

[15] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V. Madhyastha, “Software-

Defined Latency Monitoring in Data Center Networks,” Springer International Publishing, pp.

360-372, 2015.

[16] A. M. Allakany, and K. Okamura, “Latency Monitoring in Software-Defined Networks,”

12th International Conference on Future Internet Technologies, pp. 1-4, 2017.

[17] D. Sinha, K. Haribabu, and S. Balasubramaniam, “Real-Time Monitoring of Network

Latency in Software Defined Networks,” IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), pp. 1-3, 2015.

[18] P. Phaal, and M. Lavine, “sFlow Version 5,” [Online]. Available from:

http://www.sflow.org. Accessed June 2021

[19] RFC 3954, “Cisco Systems NetFlow Services Export Version 9,” [Online]. Available

from: http://tools.ietf.org. Accessed June 2021

[20] K. Phemius, and M. Bouet, “Monitoring Latency with OpenFlow,” 9th International

Conference on Network and Service Management (CNSM), pp. 122-125, 2013.

[21] S. Wang, J. Zhang, T. Huang, J. LIU, and F. R. YU, “FlowTrace: Measuring Round-Trip

Time and Tracing Path in Software-Defined Networking with Low Communication

Overhead,” Frontiers of Information Technology & Electronic Engineering Journal, vol. 18,

pp. 206-219, 2021.

 54

[22] A. Mosa, and A. Sadi, “Developing an Asynchronous Technique to Evaluate the

Performance of SDN HP Aruba switch and OVS,” Springer International Publishing, pp. 569-

580, 2019.

[23] S. Ghosh, S. A. Busari, T. Dagiuklas, M. Iqbal, R. Mumtaz, J. Gonzalez, S. Stavrou, and

L. Kanaris, “SDN-Sim: Integrating System Level Simulator with Software Defined Network,”

IEEE Communications Standards Magazine, vol. 4, pp. 18-25, 2020.

[24] S. Y. Htet, K. Leevangtou, P. M. Thet, K. Kawila, and C. Aswakul, “Design of Medium-

Range Outdoor Wireless Mesh Network with Open-Flow Enabled Raspberry Pi,” 33rd

International Technical Conference on Circuits/Systems, Computers and Communications

(ITC-CSCC), pp. 192-195,2018.

[25] Y. Li, X. Su, A. Y. Ding, A. Lindgren, X. Liu, C. Prehofer, J. Riekki, R. Rahmani, S.

Tarkoma, and P. Hui, “Enhancing the Internet of Things with Knowledge-Driven Software-

Defined Networking Technology: Future Perspectives,” Sensors Journal, vol. 20, pp. 34-59,

2020.

[26] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, B. Nour, S. Biswas, and Y. Wang, “IoT

Virtualization: A Survey of Software Definition and Function Virtualization Techniques for

Internet of Things,” arXiv 2019, arXiv:1902.10910.

[27] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network Protocols, Schemes, and

Mechanisms for Internet of Things (IoT): Features, Open Challenges, and Trends,” Wireless

Communications and Mobile Computing Journal, vol. 2018, 24 pages, 2018.

[28] GNS3. [Online]. Available from: https://gns3.com. Accessed April 2022.

[29] Mininet-WiFi. [Online]. Available from: https://mininet-wifi.github.io. Accessed April

2022.

[30] Open Network Foundation, “Software-Defined Networking: The new norm for

networks,” ONF White Paper, 2012.

[31] RYU SDN Framework. [Online]. Available from: https://osrg.github.io/ryu-

book/en/Ryubook.pdf. Accessed April 2022.

[32] Open vSwitch. [Online]. Available from: http://openvswitch.org. Accessed April 2022.

 55

Appendices

 56

Appendix A

Network Configuration of SDN-based Backbone Network

#Network Configuration in OVS 1

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.1

netmask 255.255.255.0

#Static config for eth1 to set the IPv6 address for the upper path

auto eth1

iface eth1 inet6 static

address 2004::20

netmask 64

#Static config for eth5 to set the IPv6 address for the middle path

auto eth5

iface eth5 inet6 static

address 2005::20

netmask 64

#Static config for eth2 to set the IPv6 address for the lower path

auto eth2

iface eth2 inet6 static

address 2006::20

netmask 64

#Static config for eth3 to connect to the Mininet-WiFi 1

auto eth3

iface eth3 inet6 static

address 2001::20

netmask 64

gateway 2001::100

#Static config for eth6 to connect to the Mininet-WiFi 2

auto eth6

iface eth6 inet6 static

 57

address 2002::20

netmask 64

gateway 2002::100

#Network Configuration in OVS 2

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.2

netmask 255.255.255.0

#Network Configuration in OVS 3

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.3

netmask 255.255.255.0

#Network Configuration in OVS 4

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.7

netmask 255.255.255.0

#Network Configuration in OVS 5

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.4

netmask 255.255.255.0

 58

#Static config for eth1 to set the IPv6 address for the upper path

auto eth1

iface eth1 inet6 static

address 2004::10

netmask 64

#Static config for eth5 to set the IPv6 address for the middle path

auto eth5

iface eth5 inet6 static

address 2005::10

netmask 64

#Static config for eth2 to set the IPv6 address for the lower path

auto eth2

iface eth2 inet6 static

address 2006::10

netmask 64

#Static config for eth2 to connect to the server

auto eth2

iface eth2 inet6 static

address 2007::10

netmask 64

#Network Configuration in OVS 6

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.8

netmask 255.255.255.0

#Network Configuration in OVS 7

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.9

 59

netmask 255.255.255.0

#Network Configuration in OVS 8

nano /etc/network/interfaces

#Static config for eth0 to connect to the RYU controller

auto eth0

iface eth0 inet static

address 192.168.1.6

netmask 255.255.255.0

#Network Configuration in RYU controller

nano /etc/network/interfaces

Static config for eth0

auto eth0

iface eth0 inet static

address 192.168.1.5

netmask 255.255.255.0

#Network Configuration in Server

nano /etc/network/interfaces

Static config for eth0

auto eth0

iface eth0 inet6 static

address 2007::20

netmask 64

#Network Configuration in Mininet-WiFi 1

#Static config for ens32

address 2001::100

netmask 64

#Network Configuration in Mininet-WiFi 1

#Static config for ens36

address 2002::100

netmask 64

 60

Appendix B

Installation of Necessary Package

#Ubuntu Docker Guest (RYU Controller)

apt-get update

apt-get install python

apt-get install python-pip

apt-get install git

git clone https://github.com/faucetsdn/ryu.git

pip install setuptools = = 33.1.0

pip install pbr = = 2.1.0

pip install pip = = 9.0.0

pip install dnspython = = 1.16.0

pip install oslo.config = = 5.0.0

pip install tinyrpc = = 1.0.1

pip install eventlet = = 0.22.0

pip install ovs = = 2.6.0

pip install ryu

cd ryu

pip install ryu

apt-get update

#OpenvSwitch (Alpine Linux)

apk –no-cache add git

git clone https://github.com/kytos/python-oprnflow.git

apk add --update –no-cache curl py-pip

apk add –update py-pip

apk add py-pip

apk add –no-cache python3

apk add py-setuptools

apk update

#Ubuntu Docker Guest (Server)

apt-get update

apt-get install python

 61

apt-get install python-pip

apt-get update

 62

Appendix C

Establishment of Connection between Data Plane and

Control Plane and Installation of OpenFlow Rules in

Provider OVS Nodes

#Connecting OVS 1 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Connecting OVS 2 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 2

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

 63

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

#Connecting OVS 3 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 3

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

 64

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

#Connecting OVS 4 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 4

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

 65

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2004::20,ipv6_dst=2004::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2004::10,ipv6_dst=2004::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

#Connecting OVS 5 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Connecting OVS 6 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 6

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

 66

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2005::20,ipv6_dst=2005::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2005::10,ipv6_dst=2005::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

#Connecting OVS 7 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 7

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

 67

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2005::20,ipv6_dst=2005::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2005::10,ipv6_dst=2005::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

#Connecting OVS 8 to the RYU controller

ovs-vsctl set-controller br0 tcp: 192.168.1.5:6633

ovs-vsctl set-controller br0 connection-mode=out-of-band

ovs-vsctl set-fail-mode br0 secure

ovs-vsctl del-port br0 eth0

ovs-vsctl set bridge br0 stp-enable=true

#Installing predefined forwarding OpenFlow rules in OVS 8

nano /etc/network/flows.sh

ovs-ofctl del-flows br0

./rules.sh

sleep 10

./dec.sh

nano /etc/network/rules.sh

ovs-ofctl add-flow br0

in_port=2,priority=5,eth_type=0x86dd,ipv6_dst=2007::20,udp_dst=12345,actions=3

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=135,actions=2

ovs-ofctl add-flow br0

in_port=2,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=3

ovs-ofctl add-flow br0

in_port=3,priority=10,eth_type=0x86dd,ip_proto=58,icmp_type=136,actions=2

 68

ovs-ofctl add-flow br0 in_port=2,priority=5,eth_type=0x86dd,ip_proto=58,actions=3

ovs-ofctl add-flow br0 in_port=3,priority=5,eth_type=0x86dd,ip_proto=58,actions=2

nano /etc/network/dec.sh

ovs-ofctl add-flow br0

in_port=2,ipv6_src=2006::20,ipv6_dst=2006::10,priority=210,eth_type=0x86dd,actions=dec_

ttl,3

ovs-ofctl add-flow br0

in_port=3,ipv6_src=2006::10,ipv6_dst=2006::20,priority=210,eth_type=0x86dd,actions=dec_

ttl,2

 69

Appendix D

Development of Python Program for Parameters

Measurement in SDN-based Backbone Network

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is written at OVS 1 to measure three parameters (delay, packet loss, and the

number of hops) of the three paths in the SDN-based backbone network and to send the

measurement result to the RYU controller.

import subprocess

import os

import socket

from subprocess import Popen, PIPE

import re

import time

import shlex

import datetime

while True:

 command_line = "ping6 -c 1 -I 2004::20 2004::10"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 print "\nUpper_Path is available."

 hostname = '2004::10'

 process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss')

 != -1][0].split('%')[0].split(' ')[-1])

 if packetloss < 10.0:

 print("\nPacket_Loss_of_Upper_Path is %s percent" % packetloss)

 loss_u = packetloss

 avg_time = float([x for x in stdout.decode('utf-8').split('\n')

 if x.startswith('round-trip')][0].split('=')[-1].split('/')[1])

 70

 print("Average_RTT_of_Upper_Path is %s s" %avg_time)

 RTT_u = avg_time

 res=stdout

 if process.returncode > 0:

 print('server error')

 else:

 pattern = re.compile('ttl=\d*')

 pattern = re.search(pattern,stdout)

 ttl=re.split(r'=',pattern.group(0))

 hops_u=64-int(ttl[1])

 print("NumberofHops_in_Upper_Path is %s" %hops_u)

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.sendall("\n".join([bytes(loss_u), bytes(RTT_u), bytes(hops_u)]))

 except subprocess.CalledProcessError:

 print "\nUpper_Path is not available."

 value =bytes(0)

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.send(value)

 command_line = "ping6 -c 1 -I 2005::20 2005::10"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 print "\nMiddle_Path is available."

 hostname = '2005::10'

 process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 71

 packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss')

 !=- 1][0].split('%')[0].split(' ')[-1])

 if packetloss < 10.0:

 print("\nPacket_Loss_of_Middle_Path is %s percent" % packetloss)

 loss_m = packetloss

 avg_time = float([x for x in stdout.decode('utf-8').split('\n')

 if x.startswith('round-trip')][0].split('=')[-1].split('/')[1])

 print("Average_RTT_of_Middle_Path is %s s" %avg_time)

 RTT_m = avg_time

 res=stdout

 if process.returncode > 0:

 print('server error')

 else:

 pattern = re.compile('ttl=\d*')

 pattern = re.search(pattern,stdout)

 ttl=re.split(r'=',pattern.group(0))

 hops_m=64-int(ttl[1])

 print("NumberofHops_in_Middle_Path is %s" %hops_m)

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.sendall("\n".join([bytes(loss_m), bytes(RTT_m), bytes(hops_m)]))

 except subprocess.CalledProcessError:

 print "\nMiddle_Path is not available."

 value =bytes(0)

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.send(value)

 command_line = "ping6 -c 1 -I 2006::20 2006::10"

 72

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 print "\nLower_Path is available."

 hostname = '2006::10'

 process = subprocess.Popen(['ping6','-c','5',hostname],stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 packetloss = float([x for x in stdout.decode('utf-8').split('\n') if x.find('packet loss')

 != -1][0].split('%')[0].split(' ')[-1])

 if packetloss < 10.0:

 print("\nPacket_Loss_of_Lower_Path is %s percent" % packetloss)

 loss_l = packetloss

 avg_time = float([x for x in stdout.decode('utf-8').split('\n')

 if x.startswith('round-trip')][0].split('=')[-1].split('/')[1])

 print("Average_RTT_of_Lower_Path is %s s" %avg_time)

 RTT_l = avg_time

 res=stdout

 if process.returncode > 0:

 print('server error')

 else:

 pattern = re.compile('ttl=\d*')

 pattern = re.search(pattern,stdout)

 ttl=re.split(r'=',pattern.group(0))

 hops_l=64-int(ttl[1])

 print("NumberofHops_in_Lower_Path is %s" %hops_l)

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.sendall("\n".join([bytes(loss_l), bytes(RTT_l), bytes(hops_l)]))

 except subprocess.CalledProcessError:

 print "\nLower_Path is not available."

 value =bytes(0)

 73

 HOST = '192.168.1.5'

 PORT = 10000

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect((HOST, PORT))

 s.send(value)

 print("xxx"

 time.sleep(5)

 74

Appendix E

Development of Routing Program in RYU Controller

(Path Failure Detection, Rerouting)

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is written at the RYU controller to reroute the best path in the SDN-based

backbone network.

import time

import datetime

from ryu.base import app_manager

from ryu.controller import ofp_event

from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER,

DEAD_DISPATCHER

from ryu.controller.handler import set_ev_cls

from ryu.ofproto import ofproto_v1_3

from ryu.lib import hub

import core

from core import best

import node_detect

from node_detect import node

MAC ADDRESS for ethernet ports of OVS1

A1="7a:62:12:e0:1b:55" #ethernet_1(port_no.2)

A2="2a:37:11:e8:3e:c7" #ethernet_2(port_no.3)

A3="c2:b9:18:96:99:34" #ethernet_5(port_no.6)

MAC ADDRESS for ethernet ports of OVS5

B1="6a:56:0d:47:0a:13" #ethernet_1(port_no.2)

B2="62:aa:51:f8:c0:d8" #ethernet_2(port_no.3)

B3="6a:56:0d:47:0a:13" #ethernet_5(port_no.6)

MAC ADDRESS for Server

S1="7e:ef:37:56:13:88" #ethernet_0

 75

MAC ADDRESS for Mininet_WiFi

MN ="00:0C:29:6D:B2:12"

MAC ADDRESS for Mininet_WiFi(1)

MN1="00:0C:29:3E:F8:3B"

class SimpleMonitor13(app_manager.RyuApp):

 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

 def __init__(self, *args, **kwargs):

 super(SimpleMonitor13, self).__init__(*args, **kwargs)

 self.switches = {}

 self.datapaths = {}

 self.monitor_thread = hub.spawn(self._monitor)

 def add_flow(self,datapath,match,actions,hard):

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)]

 mod = parser.OFPFlowMod(datapath=datapath, command = ofproto.OFPFC_ADD,

match=match, instructions=inst, hard_timeout=hard)

 datapath.send_msg(mod)

 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)

 def switch_features_handler(self, ev):

 dp = ev.msg.datapath

 datapath = ev.msg.datapath

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 self.logger.info("Switch_ID %s (IP address %s) is connected,1",dp.id,dp.address)

#Define the function to detect when nodes connect to RYU controller or leave from RYU

controller

 76

 @set_ev_cls(ofp_event.EventOFPStateChange,[MAIN_DISPATCHER,

DEAD_DISPATCHER])

 def _state_change_handler(self, ev):

 current_time = time.asctime(time.localtime(time.time()))

 datapath = ev.datapath

 if ev.state == MAIN_DISPATCHER:

 if datapath.id not in self.datapaths:

 self.logger.debug('register datapath: %016x', datapath.id)

 self.logger.info("(Switch ID %s),IP address is connected %s in

%s,1",datapath.id,datapath.address,current_time)

 self.datapaths[datapath.id] = datapath

 self.logger.info("Current Conneced Switches to RYU controller are

%s",self.datapaths.keys())

 elif ev.state == DEAD_DISPATCHER:

 if datapath.id in self.datapaths:

 self.logger.debug('unregister datapath: %016x', datapath.id)

 self.logger.info("(Switch ID %s),IP address is leaved %s in %s,0", datapath.id,

datapath.address,current_time)

 del self.datapaths[datapath.id]

 self.logger.info("Current Conneced Switches to RYU controller are %s",

self.datapaths.keys())

 def _monitor(self):

 x = datetime.datetime.now()

 print("This log is recorded from rerouting of RYU Controller at %s"%x)

 while True:

 node_list = node()

 print("The available node list is %s"%node_list)

 global result, sensor_delay

 result = None

 result, delay = best()

 if result == 0:

 print("Upper Path is chosen.")

 elif result == 1:

 print("Middle Path is chosen.")

 77

 elif result == 2:

 print("Lower Path is chosen.")

print("XX

XXXXXX”)

 for datapath in self.datapaths.values():

 self.send_get_config_request(datapath)

 hub.sleep(5)

 def send_get_config_request(self, datapath):

 ofp = datapath.ofproto

 ofp_parser = datapath.ofproto_parser

 req = ofp_parser.OFPGetConfigRequest(datapath)

 datapath.send_msg(req)

#Define the function to add flow rules with configuration request messag

 @set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)

 def get_config_reply_handler(self,ev):

 datapath = ev.msg.datapath

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 if (datapath.id == 29176192297550) and result == 0:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=B1),parser.OFPActionOutput(2)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=2,eth_type=0x86dd,ipv6_dst='2003::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=7)

 actions = [parser.OFPActionSetField(eth_dst=B1),parser.OFPActionOutput(2)]

 self.add_flow(datapath,match,actions,0)

 78

 match = parser.OFPMatch(in_port=2,eth_type=0x86dd,ipv6_dst='2009::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)]

 self.add_flow(datapath,match,actions,0)

 if (datapath.id == 86675905817152) and result == 0:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=A1),parser.OFPActionOutput(2)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=2)

 actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

 if (datapath.id == 29176192297550) and result == 1:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=B2),parser.OFPActionOutput(6)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=6,eth_type=0x86dd,ipv6_dst='2003::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=7)

 actions = [parser.OFPActionSetField(eth_dst=B2),parser.OFPActionOutput(6)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=6,eth_type=0x86dd,ipv6_dst='2009::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)]

 self.add_flow(datapath,match,actions,0)

 if (datapath.id == 86675905817152) and result == 1:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=A2),parser.OFPActionOutput(6)]

 self.add_flow(datapath,match,actions,0)

 79

 match = parser.OFPMatch(in_port=6)

 actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

 if (datapath.id == 29176192297550) and result == 2:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=B3),parser.OFPActionOutput(3)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=3,eth_type=0x86dd,ipv6_dst='2003::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=7)

 actions = [parser.OFPActionSetField(eth_dst=B3),parser.OFPActionOutput(3)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=3,eth_type=0x86dd,ipv6_dst='2009::/64')

 actions = [parser.OFPActionSetField(eth_dst=MN1),parser.OFPActionOutput(7)]

 self.add_flow(datapath,match,actions,0)

 if (datapath.id == 86675905817152) and result == 2:

 match = parser.OFPMatch(in_port=4)

 actions = [parser.OFPActionSetField(eth_dst=A3),parser.OFPActionOutput(3)]

 self.add_flow(datapath,match,actions,0)

 match = parser.OFPMatch(in_port=3)

 actions = [parser.OFPActionSetField(eth_dst=S1),parser.OFPActionOutput(4)]

 self.add_flow(datapath,match,actions,0)

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is written at the RYU controller to decide the best path as well as to detect

path failure in the SDN-based backbone network.

import struct

 80

from struct import *

import socket, sys

import os

import time

IP="192.168.1.5"

PORT=10000

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.bind((IP,PORT))

def best():

 i=0

 global loss_u, RTT_u, hops_u, loss_m, RTT_m, hops_m, loss_l, RTT_l, hops_l

 global Working_Path

 for i in [0,1,2]:

 packet, address = s.recvfrom(1024)

 value = packet.decode("UTF-8")

 if i == 0:

 upper_value = value

 if upper_value == '0':

 print("\nUpper_Path is not working.")

 Upper_Path = 0

 loss_u = ' '

 RTT_u = ' '

 hops_u = ' '

 Upper_Path = 0

 elif upper_value != '0':

 print("\nUpper_Path is working.")

 loss_u, RTT_u, hops_u = [float(i) for i in upper_value.split('\n')]

 print("Packet Loss: %s"%loss_u)

 print("Delay: %s"%RTT_u)

 print("Hops: %s"%hops_u)

 Upper_Path = 1

 elif i == 1:

 middle_value = value

 if middle_value == '0':

 81

 print("\nMiddle_Path is not working.")

 loss_m = ' '

 RTT_m = ' '

 hops_m = ' '

 Middle_Path = 0

 elif middle_value != '0':

 print("\nMiddle_Path is working.")

 loss_m, RTT_m, hops_m = [float(i) for i in middle_value.split('\n')]

 print("Packet Loss: %s"%loss_m)

 print("Delay: %s"%RTT_m)

 print("Hops: %s"%hops_m)

 Middle_Path = 1

 elif i == 2:

 lower_value = value

 if lower_value == '0':

 print("\nLower_Path is not working.")

 loss_l = ' '

 RTT_l = ' '

 hops_l = ' '

 Lower_Path = 0

 elif lower_value != '0':

 print("\nLower_Path is working.")

 loss_l, RTT_l, hops_l = [float(i) for i in lower_value.split('\n')]

 print("Packet Loss: %s"%loss_l)

 print("Delay: %s"%RTT_l)

 print("Hops: %s"%hops_l)

 Lower_Path = 1

 i=int(i)+1

 Working_Path = [0,0,0]

 if (Upper_Path == 1 and Middle_Path == 1 and Lower_Path == 1):

 Working_Path = [1,1,1]

 elif (Upper_Path == 0 and Middle_Path == 1 and Lower_Path == 1):

 82

 Working_Path = [0,1,1]

 elif (Upper_Path == 1 and Middle_Path == 0 and Lower_Path == 1):

 Working_Path = [1,0,1]

 elif (Upper_Path == 1 and Middle_Path == 1 and Lower_Path == 0):

 Working_Path = [1,1,0]

 elif (Upper_Path == 0 and Middle_Path == 0 and Lower_Path == 1):

 Working_Path = [0,0,1]

 elif (Upper_Path == 1 and Middle_Path == 0 and Lower_Path == 0):

 Working_Path = [1,0,0]

 elif (Upper_Path == 0 and Middle_Path == 1 and Lower_Path == 0):

 Working_Path = [0,1,0]

 elif (Upper_Path == 0 and Middle_Path == 0 and Lower_Path == 0):

 Working_Path = [0,0,0]

print('\nWorking_Path:%s'%Working_Path)

 P = None

 if Working_Path == [1,1,1]:

 if RTT_u != RTT_m != RTT_l:

 P = min(RTT_u, RTT_m, RTT_l)

 elif loss_u != loss_m != loss_l:

 P = min(loss_u, loss_m, loss_l)

 elif hops_u != hops_m != hops_l:

 P = min(hops_u, hops_m, hops_l)

 elif Working_Path == [0,1,1]:

 if RTT_m != RTT_l:

 P = min(RTT_m, RTT_l)

 elif loss_m != loss_l:

 P = min(loss_m, loss_l)

 elif hops_m != hops_l:

 P = min(hops_m, hops_l)

 elif Working_Path == [1,0,1]:

 if RTT_u != RTT_l:

 P = min(RTT_u, RTT_l)

 elif loss_u != loss_l:

 P = min(loss_u, loss_l)

 83

 elif hops_u != hops_l:

 P = min(hops_u, hops_l)

 elif Working_Path == [1,1,0]:

 if RTT_u != RTT_m:

 P = min(RTT_u, RTT_m)

 elif loss_u != loss_m:

 P = min(loss_u, loss_m)

 elif hops_u != hops_m:

 P = min(hops_u, hops_m)

 elif Working_Path == [0,0,1]:

 P = RTT_l

 elif Working_Path == [0,1,0]:

 P = RTT_m

 elif Working_Path == [1,0,0]:

 P = RTT_u #Minimum Value:P

 global v

 v = None

 if (P == RTT_u or P == loss_u or P == hops_u):

 v = 0 #Upper Path is chosen

 elif (P == RTT_m or P == loss_m or P == hops_m):

 v = 1 #Middle Path is chosen

 elif (P == RTT_l or P == loss_l or P == hops_l):

 v = 2 #Lower Path is chosen

 return v,P

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is written at the RYU controller to detect the node failure in the SDN-based

backbone network.

import subprocess

import os

from subprocess import Popen, PIPE

import time

import shlex

 84

import datetime

def node():

 while True:

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.1"

 args = shlex.split(command_line)

 available_nodes=[]

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS1")

 except subprocess.CalledProcessError:

 print "\nOvS1 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.2"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS2")

 except subprocess.CalledProcessError:

 print "\nOvS2 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.3"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS3")

 except subprocess.CalledProcessError:

 print "\nOvS3 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.7"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS4")

 except subprocess.CalledProcessError:

 85

 print "\nOvS4 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.4"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS5")

 except subprocess.CalledProcessError:

 print "\nOvS5 is not available."

 command_line = "ping -c 1 -I 192.168.1.5 192.168.1.8"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS6")

 except subprocess.CalledProcessError:

 print "\nOvS6 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.9"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS7")

 except subprocess.CalledProcessError:

 print "\nOvS7 is not available."

 command_line = "ping -c 2 -I 192.168.1.5 192.168.1.6"

 args = shlex.split(command_line)

 try:

 subprocess.check_call(args,stdout=subprocess.PIPE,stderr=subprocess.PIPE)

 available_nodes.append("OvS8")

 except subprocess.CalledProcessError:

 print "\nOvS8 is not available."

 time.sleep(5)

 return available_nodes

 86

Appendix F

Development of Python Programs in Mininet-WiFi 1 and 2

for Sensor Networks 1 and 2

#This program is written by May Pyone Han from Chulalongkorn University.

#This program creates 6LoWPAN-based IoT sensor network 1 in Mininet-WiFi 1.

import os

from mininet.log import setLogLevel, info

from mininet.node import RemoteController, Controller, UserSwitch

from mn_wifi.cli import CLI

from mn_wifi.net import Mininet_wifi, MinietWithControlWNet

from mn_wifi.sixLoWPAN.node import UserSensor, OVSSensor

def topology():

 "Create a network"

 net = Mininet_wifi(iot_module='fakelb', apsensor=OVSSensor,

 disable_tcp_checksum=False, controller=Controller)

 info("Creating nodes.\n")

 sensor1 = net.addSensor('sensor1', ipv6='2003::1/64', panid='0xbeef')

 sensor2 = net.addSensor('sensor2', ipv6='2003::2/64', panid='0xbeef')

 sensor3 = net.addSensor('sensor3', ipv6='2003::3/64', panid='0xbeef')

 sensor4 = net.addSensor('sensor4', ipv6='2003::4/64', panid='0xbeef')

 sensor5 = net.addSensor('sensor5', ipv6='2003::5/64', panid='0xbeef')

 sensor6 = net.addSensor('sensor6', ipv6='2003::6/64', panid='0xbeef')

 sensor7 = net.addSensor('sensor7', ipv6='2003::7/64', panid='0xbeef')

 sensor8 = net.addSensor('sensor8', ipv6='2003::8/64', panid='0xbeef')

 sensor9 = net.addSensor('sensor9', ipv6='2003::9/64', panid='0xbeef')

 sensor10 = net.addSensor('sensor10', ipv6='2003::10/64', panid='0xbeef')

 ap1 = net.addAPSensor('ap1', panid = '0xbeef', datapath = 'user')

 c1 = net.addController('c1')

 info("Configuring nodes.\n")

 87

 net.configureWiFiNodes()

 info("Starting Network.\n")

 net.build()

 c1.start()

 ap1.start([c1])

 ap1.cmd('sysctl net.ipv6.conf.all.forwarding=1')

 ap1.cmd('sysctl net.ipv6.conf.all.proxy_ndp=1')

 sensor1.cmd('route add -A inet6 default gw 2003::60')

 sensor2.cmd('route add -A inet6 default gw 2003::60')

 sensor3.cmd('route add -A inet6 default gw 2003::60')

 sensor4.cmd('route add -A inet6 default gw 2003::60')

 sensor5.cmd('route add -A inet6 default gw 2003::60')

 sensor6.cmd('route add -A inet6 default gw 2003::60')

 sensor7.cmd('route add -A inet6 default gw 2003::60')

 sensor8.cmd('route add -A inet6 default gw 2003::60')

 sensor9.cmd('route add -A inet6 default gw 2003::60')

 sensor10.cmd('route add -A inet6 default gw 2003::60')

 ap1.cmd('ip -6 addr add 2003::60/64 dev ap1-pan0')

 info("Running CLI\n")

 CLI(net)

 info("Stoppingnetwork\n")

 net.stop()

if __name__=='__main__':

 setLOgLevel('info')

 topology()

#This program is written by May Pyone Han from Chulalongkorn University.

#This program sends the UDP sensor message from one sensor to the server.

#This program is run by each sensor to send the individual UDP messages to the server.

import sys

import socket

import time

 88

import os

def client():

 while True():

 output = “36 *C”

 print(“Temperature:”+output)

 host = "2003::60"

 port =12346

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((host,port))

 s.send(str.encode(output + “1”)) # 2,3,4,…,10 for sensor 2, sensor 3, sensor 4,…,sensor

10

 s.close()

 time.sleep(3)

if __name__ =='__main__':

 client()

#This program is written by May Pyone Han from Chulalongkorn University.

#This program measures the end-to-end delay from each sensor to the server.

#This program is run by each sensor to measure the individual end-to-end delay.

import sys

import socket

import time

import os

def client():

 while True():

 output =os.popen("ping6 -c 4 -I 2003::1 2001::20 | tail -1| awk '{print $4}' | cut -d '/' -f

2").readline()

 print('Delay:'+output)

 host = "2003::60"

 port =12346

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((host,port))

 s.send(str.encode(output +"1")) #2, or 3 is used according to sensor number

 89

 s.close()

 time.sleep(23)

if __name__ =='__main__':

 client()

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is run by the ap node to send UDP sensor messages of all sensors to the server.

import socket

import time

import sys

while True:

 PORT = 12346

 IP = ": :"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.bind(IP, PORT)

 packet,address = s.recvfrom(1024)

 m = packet.decode("UTF-8")

 if (len(m)==7):

 SensorMsg="Temperature Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2]

 if (len(m)==6):

 SensorMsg="Temperature sensor "+m[len(m)-1]+": "+m[0:len(m)-2]

 print(SensorMsg)

 PORT = 12347

 HOST = "2007::20"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((HOST,PORT))

 s.sendall(str.encode(m + "1"))

 90

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is run by the ap node to send the end-to-end delay value to the OVS 1.

import socket

import time

import sys

while True:

 PORT = 123456

 IP = ": :"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.bind(IP, PORT)

 packet,address = s.recvfrom(1024)

 m = packet.decode("UTF-8")

 if (len(m)==8):

 SensorMsg="Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2]

 if (len(m)==7):

 SensorMsg="Sensor "+m[len(m)-1]+": "+m[0:len(m)-1]

 print(SensorMsg)

 PORT = 12345

 HOST = "2001::20"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((HOST,PORT))

 s.sendall(str.encode(m+"1"))

#This program is written by May Pyone Han from Chulalongkorn University.

#This program creates 6LoWPAN-based IoT sensor network 2 in Mininet-WiFi 2.

import os

from mininet.log import setLogLevel, info

from mininet.node import RemoteController, Controller, UserSwitch

from mn_wifi.cli import CLI

from mn_wifi.net import Mininet_wifi, MinietWithControlWNet

from mn_wifi.sixLoWPAN.node import UserSensor, OVSSensor

 91

def topology():

 "Create a network"

 net = Mininet_wifi(iot_module='fakelb', apsensor=OVSSensor,

 disable_tcp_checksum=False, controller=Controller)

 info("Creating nodes.\n")

 sensor1 = net.addSensor('sensor1', ipv6='2009::1/64', panid='0xbeef')

 sensor2 = net.addSensor('sensor2', ipv6='2009::2/64', panid='0xbeef')

 sensor3 = net.addSensor('sensor3', ipv6='2009::3/64', panid='0xbeef')

 sensor4 = net.addSensor('sensor4', ipv6='2009::4/64', panid='0xbeef')

 sensor5 = net.addSensor('sensor5', ipv6='2009::5/64', panid='0xbeef')

 sensor6 = net.addSensor('sensor6', ipv6='2009::6/64', panid='0xbeef')

 sensor7 = net.addSensor('sensor7', ipv6='2009::7/64', panid='0xbeef')

 sensor8 = net.addSensor('sensor8', ipv6='2009::8/64', panid='0xbeef')

 sensor9 = net.addSensor('sensor9', ipv6='2009::9/64', panid='0xbeef')

 sensor10 = net.addSensor('sensor10', ipv6='2009::10/64', panid='0xbeef')

 ap1 = net.addAPSensor('ap1', panid = '0xbeef', datapath = 'user')

 c1 = net.addController('c1')

 info("Configuring nodes.\n")

 net.configureWiFiNodes()

 info("Starting Network.\n")

 net.build()

 c1.start()

 ap1.start([c1])

 ap1.cmd('sysctl net.ipv6.conf.all.forwarding=1')

 ap1.cmd('sysctl net.ipv6.conf.all.proxy_ndp=1')

 sensor1.cmd('route add -A inet6 default gw 2009::60')

 sensor2.cmd('route add -A inet6 default gw 2009::60')

 sensor3.cmd('route add -A inet6 default gw 2009::60')

 sensor4.cmd('route add -A inet6 default gw 2009::60')

 sensor5.cmd('route add -A inet6 default gw 2009::60')

 sensor6.cmd('route add -A inet6 default gw 2009::60')

 sensor7.cmd('route add -A inet6 default gw 2009::60')

 sensor8.cmd('route add -A inet6 default gw 2009::60')

 92

 sensor9.cmd('route add -A inet6 default gw 2009::60')

 sensor10.cmd('route add -A inet6 default gw 2009::60')

 ap1.cmd('ip -6 addr add 2003::60/64 dev ap1-pan0')

 info("Running CLI\n")

 CLI(net)

 info("Stoppingnetwork\n")

 net.stop()

if __name__=='__main__':

 setLOgLevel('info')

 topology()

#This program is written by May Pyone Han from Chulalongkorn University.

#This program sends the UDP sensor message from one sensor to the server.

#This program is run by each sensor to send the individual UDP messages to the server.

import sys

import socket

import time

import os

def client():

 while True():

 output = “36 *C”

 print(“Temperature:”+output)

 host = "2003::60"

 port =12346

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((host,port))

 s.send(str.encode(output + “1”)) # 2,3,4,…,10 for sensor 2, sensor 3, sensor 4,…,sensor

10

 s.close()

 time.sleep(3)

if __name__ =='__main__':

 client()

#This program is written by May Pyone Han from Chulalongkorn University.

 93

#This program measures the end-to-end delay from each sensor to the server.

#This program is run by each sensor to measure the individual end-to-end delay.

import sys

import socket

import time

import os

def client():

 while True():

 output =os.popen("ping6 -c 4 -I 2003::1 2001::20 | tail -1| awk '{print $4}' | cut -d '/' -f

2").readline()

 print('Delay:'+output)

 host = "2003::60"

 port =12346

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((host,port))

 s.send(str.encode(output +"1")) #2, or 3 is used according to sensor number

 s.close()

 time.sleep(23)

if __name__ =='__main__':

 client()

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is run by the ap node to send UDP sensor messages of all sensors to the server.

import socket

import time

import sys

while True:

 PORT = 12346

 IP = ": :"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.bind(IP, PORT)

 94

 packet,address = s.recvfrom(1024)

 m = packet.decode("UTF-8")

 if (len(m)==7):

 SensorMsg="Temperature Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2]

 if (len(m)==6):

 SensorMsg="Temperature sensor "+m[len(m)-1]+": "+m[0:len(m)-2]

 print(SensorMsg)

 PORT = 12347

 HOST = "2007::20"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((HOST,PORT))

 s.sendall(str.encode(m + "1"))

#This program is written by May Pyone Han from Chulalongkorn University.

#This program is run by the ap node to send the end-to-end delay value to the OVS 1.

import socket

import time

import sys

while True:

 PORT = 123456

 IP = ": :"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.bind(IP, PORT)

 packet,address = s.recvfrom(1024)

 m = packet.decode("UTF-8")

 if (len(m)==8):

 SensorMsg="Sensor "+m[len(m)-2]+m[len(m)-1]+": "+m[0:len(m)-2]

 if (len(m)==7):

 SensorMsg="Sensor "+m[len(m)-1]+": "+m[0:len(m)-1]

 print(SensorMsg)

 PORT = 12345

 95

 HOST = "2001::20"

 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

 s.connect((HOST,PORT))

 s.sendall(str.encode(m+"1"))

VITA

VITA

NAME May Pyone Han

DATE OF BIRTH 25 July 1996

PLACE OF BIRTH Myanmar

INSTITUTIONS

ATTENDED

Chulalongkorn University (Thailand)

University of Technology (Yatanarpon Cyber City, Myanmar)

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1
	Introduction
	1.1 Research Motivation
	1.2 Problem Statement
	1.3 Objective
	1.4 Scope of Thesis

	Chapter 2
	Background and Literature Review
	2.1 Software-Defined Networking
	2.2 OpenFlow
	2.3 QoS Management in SDN
	2.4 Internet of Things (IoT)
	2.5 Architecture of IoT
	2.6 Wireless Sensor Network
	2.7 6LoWPAN
	2.8 Improvement of IoT Network with SDN
	2.9 Literature Review for SDN-based QoS Management
	2.10 Literature Review for SDN-based QoS Management in an IoT Environment
	2.11 Literature Review for Delay Measurement of Network Traffic

	Chapter 3
	Proposed Network Topology and Methodology
	3.1 Implementation of Emulated SDN-based Backbone Network with Emulated 6LoWPAN IoT Sensor Networks
	3.2 Implementation of Delay Awareness Routing for IoT Traffic in SDN-based Fault-Tolerant Backbone Network

	Chapter 4
	Implementation of Testbed Environment
	4.1 Implementation of SDN-based Backbone Network
	4.2 Implementation of 6LoWPAN IoT Sensor Networks
	4.3 Installation of OpenFlow Rules in OVS Nodes
	4.4 Routing Algorithm

	Chapter 5
	Testing and Measurement Result of Proposed Topology
	5.1 Routing Path Selection
	5.2 Reroute Time
	5.3 End-to-End Delay Measurement

	Chapter 6
	Conclusions
	REFERENCES
	VITA

