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The proteome-level study of the stress-susceptible (SS) Oryza sativa L. cv.
Leung Pratew123 and its stress-resistant (SR) mutant line, Leung Pratew123-TC171
were conducted to identify a drought response mechanism in SR line. Based on the
proteomics data, two proteins; GT-2 LIKE 1 (GTL1) and Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) which are involved in stomata density reduction and e
transfer in Calvin Cycle, respectively were selected for further study. It was found that
the SR rice had the lower stomatal density than SS rice when grown under drought
stress. This is consistent with the lower level of GTL1 protein found in SR during
drought stress. In addition, SR showed higher relative water content than SS after
drought treatment. Besides, measurement of the leaf gas exchange parameters was
conducted in the old and the young leaves in both SS and SR. After 3 days of drought
stress (12.5% PEG), old leaf of SR had significant higher net photosynthetic rate and
water use efficiency than SS. Likewise, effective quantum yield of PSII photochemistry
(OPSII) and electron transport rate were also higher in SR than SS line. Similarly,
higher GAPDH level under drought stress was found in SR line. Moreover,
transpiration rate in the young leaf was significantly lower in SR line. Overall, SR rice
mediates drought stress through GTL1 which regulates stomatal density leading to less
water loss in the newly developed leaves, while in the old leaves the adaptation in

GAPDH helps protecting photosystem under drought stress.
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CHAPTER I

INTRODUCTION

Rice (Oryza sativa L.) is a staple food for more than one third of the people
around the world. The demand for rice is expected to increasing because the world’s
population growth rate is rising 1.5-fold by 2025 (Sasaki, 2002). Rice is a semi-aquatic
plant which required a lot of water during plantation. Therefore, water limiting during
the growing period can causes physiological changes and lead to yield loss (Farooq et
al., 2009).

Nowadays, drought stress occurs more often and it is the most significant
constraint environmental that limits growth, development, and rice productivity
(Bhushan et al., 2011). Plant responses to water loss involves in several strategies such
as stomatal closure, osmotic adjustment or reduction of the photosynthetic activity
(Farooq et al., 2009). To deal with stress, several genes are induced rapidly
(Yamaguchi-Shinozaki and Shinozaki, 2006). These gene products function in stress
resistance and also regulate signal transduction and other gene expression which can
alter plant protein profiles. However, mRNAs of expressed genes are not always
translate to a functional proteins (Urano et al., 2010). Therefore, to clarify plant
responses to environmental stimuli, a proteome-level investigation can be a better
option for revealing cellular adaptations (Kosova et al., 2015).

Proteomics is a molecular tool for protein profile analysis on plant stress
responses. With the complete genome sequencing project, proteomics can be defined

as the systematic analysis of proteome. This technology allows us to study a changes



of proteome in various tissues and physiological states of cells triggered by
environmental stimuli (Park, 2004). Identification of drought-responsive proteins and
genes by proteomics technique has been reported in many crops, including rice (Ali and
Komatsu, 2006; Chamnanmanoontham et al., 2015; Ji et al., 2012), cotton (Deeba et
al., 2012), grapevine (Lovisolo et al., 2010), soybean (Deshmukh et al., 2014; Oh and
Komatsu, 2015), wheat (Alvarez et al., 2014; Ford et al., 2011), and watermelon
(Akashi et al., 2011). The study of proteome changes can be performed by using two-
dimensional polyacrylamide gel electrophoresis (2D-PAGE) or one-dimensional
polyacrylamide gel electrophoresis (SDS-PAGE) coupled with protein identification by
mass spectrometry (MS) (Salekdeh et al., 2002 and Ali and Komatsu, 2006). Phloem
and xylem sap from rice were investigated using a SDS-PAGE connects to a nano LC-
MS device (1D-LC). Eighty different proteins were identified. However, 2D-PAGE
connects to a nano LC-MS device (2D-LC) provided 53 different proteins
identification. It shows that 1D-LC can detect proteins with a very low level of
expression that are undetectable by gel staining (Aki et al., 2008). Gammulla et al.
(2010) used 1D-LC to investigate the proteomic responses of rice cell suspension
cultures to sudden temperature changes. Forty novel stress—response proteins that
involve in the classical and the alternative pathways of sucrose metabolism respond to
extremes of temperature.

Therefore, the better understanding of drought-responsive genes/proteins will
contribute to drought-resistant rice line development in future. The aims of this study
were to compare drought-induced protein profile in two rice lines, O. sativa L. cv.
Leung Pratew123 (LPT123) and its drought resistant mutate line, LPT123-TC171

which have contrasting drought-tolerant ability and gel-based liquid chromatography—



tandem mass spectrometry (GeLC-MS/MS) were performed. After that identification
of drought-responsive genes in rice were elucidated and the selected genes were further
study according to gene function. These findings may contribute to better understanding

of drought-responsive mechanisms in drought-tolerant rice.

The objectives of this study are:
1. To investigate leaf protein profiles of Leung Pratew 123 (Oryza sativa L. cv.
Leung Pratew123) and its drought resistant mutated line responding to the

drought stress.

2. To determine the appropriate data analysis methods for the whole rice proteins

after drought stress.

3. To identify and characterize the drought responsive gene(s) selected from the

gene/protein expression patterns.



CHAPTER II

LITERATURE REVIEW

1. Rice (Oryza sativa L.)

Rice (Oryza sativa L. spp. indica) is an important cereal crop and it is a staple
food for more than half of the people around the world especially in Asia (Kumar et al.,
2014; Salekdeh et al., 2002). Rice has a small genome size compared with other cereal
crops and its genome is completely sequenced (Goff et al., 2002). It is widely used as

a monocot model for plant molecular biology.

1.1.  LPT123 rice and its drought tolerant mutant line, LPT123-TC171

‘Leung Pratew123’ (LPT123; SS) rice is a Thai indica rice originated from
Phetchaburi province. LPT123 is a photo-sensitive variety so it can flower only in short-
day. It has average height of 150 centimeters, long and wide leaf and long inflorescence.
LPT123 has long, yellow seeds (Bureau of Rice Research and Development
(http://www.brrd.in.th/rvdb/)).

Vajrabhaya and Vajrabhaya (1991) developed salt-tolerance line from LPT123.
Leung Pratew123-TC171 (LPT123-TC171; SR) contains a somaclonal variation of
LPT123 which was selected under high salt stress condition (2% NaCl). It showed the
best survival rate (94.3%) under 0.5% NaCl treatment, when grown in natural
condition. SR rice have been studied in their physiological and molecular changes due
to salt and drought stresses compared to SS (Pongprayoon et al., 2013; Sripinyowanich
et al., 2013; Thikart et al., 2005; Udomchalothorn et al., 2009; Udomchalothorn et al.,

2014; Vajrabhaya and Vajrabhaya, 1991b)



A comparison of exome sequencing in SS and SR indicated that the selection of
salt-tolerant rice in vitro causes a telomere shorten in SR rice. This study revealed that
there are point mutations spread all over the genome. This lead to the different
phenotype of SS and SR under salt and drought condition due to changes in salt-and/or
drought-responsive genes (Udomchalothorn et al., 2014). Thikart et al. (2005) showed
that SR rice are more tolerate to drought stress than SS. A higher shoot fresh weight,
shoot dry weight, root fresh weight, root dry weight and plant height under drought
stress were found in SR. An application of chitosan to SS and SR during drought stress
showed that chitosan enhanced shoot growth and maintain photosynthetic pigments in
SS but had no effect in SR (Pongprayoon et al., 2013). Moreover, SS reduced fresh and
dry weight after 9 days of salt stress but this phenomenon was not found in SR
(Udomchalothorn et al., 2009).

Furthermore the physiological changes under drought and salt stress were
observed and some of the molecular mechanisms have been reported in these rice lines.
OsNUC1 transcript expressed differently between SS and SR. The resistant line showed
the higher expression under salt stress condition. The overexpression of OsNUCL1 in
rice exhibited the higher shoot fresh weight after salt stress for 3 days. A study in
transgenic Arabidopsis showed that the overexpression line had smaller reduction of
root length under salt stress than wild type. Therefore, the function of OsNUC1 was
proposed to regulate root (Sripinyowanich et al., 2013). Moreover, salinity stress
induced leaf sucrose and reduced the ratio of carbon assimilated to starch in both SS
and SR. However, SR had more significant changed than SS. The transcript of
F6P2K/F26BPase which regulates cellular level of fructose-2,6-bisphosphate (F26BP)

could be detected in SR but not in SS under normal condition. Salinity stress for 72



hours induced F6P2K/F26BPase was higher in SR than SS. The susceptible line
enhanced both F6P2K and F26BPase while the resistance only induced the F26BPase
activity, resulting in significant reduction of the F6P2K/F26BPase activity ratio after 9
days of salt treatment. Therefore, this suggested that the regulation of sucrose level and
a partition of carbon to sucrose may contribute to salt-tolerance in rice

(Udomchalothorn et al., 2009).

1.2.  Effect of drought stress on rice production in Thailand

Most of rice farm is located in Asia and Asian people is the major group
consuming rice in daily life. Rice is a semi-aquatic plant which mainly cultivated under
flooding system. The rice can be categorized according to cultivated methods, which
are the rainfed lowland rice (in Africa and Madagascar), upland rice (in high land or
mountains), and the deep water or flood-prone rice (in Bangladesh and in the Mekong,
Chao Phraya). However, the irrigated rice is commonly found in Asia. Rice is very
sensitive to water limiting than other cereals (e.g. wheat and maize) which can be grown
with less water (Gnanamanickam, 2009; Kumar et al., 2014). Therefore, rice cultivation
in Asia depend on water supply.

A study of rice yields in Notheastern region of Thailand showed a yield loss
because of the drought stress. Actual rice yield was 700 to 1000 kg per hectare in many
villages. However, the attainable yield should be more than 1200 kg per hectare if there
is no drought stress. It means that approximately 40% yield reduction is due to drought
stress (Polthanee et al., 2014).

Two reports (Jongdee, 2003; Prapertchop et al., 2005) showed that more than

50 % rice yield loss was caused by the drought stress. Thai rice farm in Northeastern



experienced the drought stress at planting stage, tillering stage and at any growing stage

accounting for 19%, 40% and 23%, respectively (Gypmantasiri et al., 2003).

2. Drought stress

Drought is a major stress occurring throughout the world. Since water is
essential for plant growth, the water limitation will threaten agriculture industry
(Somerville and Briscoe, 2001). Drought alters physiological and biochemical
functions of plants which affect in both cellular and molecular levels. The responses
involve in stomatal closure, growth reduction, changes in photosynthetic rate,
accumulation of osmolytes and proteins, specifically the proteins involving in stress
tolerance. Several drought traits have been used as indicators to evaluate a drought
resistance such as root/ leaf traits, capability of osmotic adjustment, water potential
value, ABA content and stability of the cell membrane (Fang and Xiong, 2015;

Shinozaki and Yamaguchi-Shinozaki, 2007).

1.1. Drought resistance mechanism

Drought resistance is a plant ability to grow normally under disfavor condition.
The mechanisms of drought resistance have been divided in 3 alternative strategies,
drought avoidance, drought tolerance, and drought escape.

Drought avoidance is a mechanism which plant maintains basic physiological
processes to avoid the negative result from mild or moderate drought stress. Drought

avoidance is a process that plant reduces water loss (e.g. stomatal closure), maximizes



water uptake (e.g. increase root depth) and accelerates or decelerates the conversion
from vegetative stage to reproductive stage (Fang and Xiong, 2015).

Drought tolerance refers to plant ability to withstand dehydration by
maintaining their physiology activities and reducing the damage from the stress via
gene regulation and metabolic pathways. The tolerance ability commonly involves with
osmotic adjustment to maintain turgor pressure and adjusting the level of reactive
oxygen species (ROS) by reducing the accumulation (Fang and Xiong, 2015).

Drought escape is usually referred to plant adjustment by completing their life
cycle before subjected to drought period, for example; earlier flowering time, rapid
growth and reproducing before the onset of drought (Araus et al., 2002; Fang and
Xiong, 2015; Kooyers, 2015).

However, some researchers also consider drought recovery as one of drought
resistance mechanisms. Drought recovery is an ability to resume growth and gain yield

after severe drought stress (Luo, 2010).

2.2. Morphological, physiological, biochemical and molecular changes

due to drought stress

Mechanism of plant for dealing with the drought stress are an adaptation in

morphological, physiological, biochemical and molecular levels.

2.2.1. Morphological and anatomical changes due to drought stress
Morphological changes due to drought stress has been reported in many
researches. Diminish of cell elongation and enlargement are a consequence of turgor

pressure loss during drought stress (Jaleel et al., 2009). In addition, water stress limits



expansion of leaf area and leaf number (Ghanbari et al., 2013). Shoot and root dry
weight are also reduced by drought stress in many studies (Ji et al., 2012; Pongprayoon
et al., 2013; Wang et al., 2009). Stomatal density is the anatomical adaptation due to
drought stress. Reducing stomatal density enhance drought tolerant ability in
Arabidopsis (Yoo et al., 2010), Medicago Truncatula (Xie et al., 2012) and rice (Liu et

al., 2011).

2.2.2. Physiological changes due to drought stress

Drought stress affects plant physiology in many aspect such as reduction of
photosynthesis rate (Allahverdiyev, 2016; Hu et al.,, 2010; Souza et al., 2004),
decreased in chlorophyll content (Nikolaeva et al., 2010) and accumulation of proline
(De Ronde et al., 2004) .

Photosynthesis adaptation is one of physiological responses due to drought
stress. Photosynthesis is a fundamental process which contributes to plant growth and
development. Water deficit causes stomatal closure which lead to decrease of stomatal
conductance (gs). The stomata closure is the most effective way to minimize water loss
and affects the CO- diffusion resulting in reduction of Ci. Thus, the photosynthetic rate
reduction during drought stress is commonly found (Ashraf and Harris, 2013; Cornic,
2000). Photosynthesis rate, stomatal conductance and transpiration rate are reduced
after drought in wheat flag leaf (Allahverdiyev, 2016), Cz perennial grass species (Hu
et al., 2010) and cowpea (Souza et al., 2004). Ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) is the main enzyme that can alter the photosynthesis
rate. The shrinkage of chloroplast is an effect of drought stress which lead to

conformation changes in Rubisco (Jia et al., 2008). Severe drought stress (30% PEG)
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significantly decreases the Rubisco activity in rice and also results in stomatal
conductance and net photosynthesis reduction (Zhou et al., 2007). In addition, the
proteomic study of two rice cultivars with different drought tolerance ability show
reduction of Rubisco after drought stress in flag leaves (Ji et al., 2012). Chlorophyll
content is also an important parameter that directly affect photosynthesis process. The
reduction of chlorophyll content was found in wheat after 7 days of drought stress
(Nikolaeva et al., 2010). In the leaves of 11-day-old barley, the pigment contents were
also reduced by water deficit (Pshibytko et al., 2004).

Osmotic adjustment is one of the plant adaptation mechanism to survive the
stress. An accumulation of osmolytes (proline, ABA, LEA protein, glycine betaine and
sugar) has been found in many plant species during drought stress (Farooq et al., 2012).
This lowers the osmotic potential of cell, so the plant can uptake water normally and
maintain cell turgor pressure. The accumulation of proline was found particularly in
young leaf of lemon under drought stress (Pérez-Pérez et al., 2009). Similar result was
also found in transgenic soybean. The level of proline was significant higher in drought-

tolerant transgenic soybean than wild type (De Ronde et al., 2004).

2.2.3. Biochemical changes due to drought stress
Oxidative burst is one of the early event for plant protection, a biochemical
response. Reactive oxygen species (ROS) in a proper amount have been reported as a
signalling molecule which triggers other molecule downstream. The balancing of ROS
homeostasis is important for reducing their toxicity and providing a signalling to
downstram event. Cell is damaged when the activity of ROS is over the effectiveness

of antioxidant response. The antioxidants include glutathione reductase (GR)
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superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (Apx), peroxide
(POD), and monodehydroascorbate reductase (MDAR) (Anjum et al., 2011;

Pongprayoon et al., 2013; Ray et al., 2012).

2.2.4. Molecular changes due to drought stress

During the stress response, plant can protect themselves in a level of molecular
defense. Molecular responses can be classified into 3 categories, transcriptional
regulation, post-transcriptional RNA and osmoprotectant metabolism (Yang et al.,
2010)

Transcription factors (TFs) act as molecular switches for gene expression
responding to environmental factors. One of the well-known transcription factors is
MYB families. MYB transcription factor is a big family that currently, over 100 MYB
TFs have been found in Arabidopsis, rice (Oryza sativa), and other plant species
(Baldoni et al., 2015; Gao et al., 2014). Several of them were reported as stress-induced
proteins/genes such as MYB2 (Abe et al., 2003; Yang et al., 2012), MYB10 (Villalobos
et al., 2004), MYB15 (Ding et al., 2009), and AtMYB20 (Gao et al., 2014). OsMYB2
expression was induced by salinity, low temperature and osmotic stress (20% PEG).
Moreover, overexpression of MYB2 in rice and Arabidopsis enhanced drought tolerance
(Abe et al., 2003; Yang et al., 2012). In addition, an overexpression of MYB10 from
Craterostigma plantagineum increased the drought and salt tolerance ability and led to
ABA hypersensitivity (Villalobos et al., 2004). AtMYB15 overexpression line improved
the survival and reduced water loss less than wild type under water deficiency
conditions and MYB15 promoter is active in guard cells of stomata (Ding et al., 2009).

Loss of function mutant plant (myb20) resisted to desiccation stress, whereas the
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overexpression of AtMYB20 resulted in the higher sensitivity to stress (Gao et al., 2014).
The other transcription factors families have been characterized including APETALA2
(AP2), bZIP, NAC, WRKY, SBP (Squamosa-promoter binding protein) and zinc-finger
which play a crucial role in stress response (He et al., 2016; Yang et al., 2010).

Some TFs will be activated after protein phosphorylation by protein kinase.
Mitogen-activated protein kinases (MAPKS) have been studied in plant response to
environmental stimuli. MAPK cascades function in many signal transduction pathways,
responding to dehydration, cold, and high salt conditions (Yang et al., 2010). For
example, the overexpression of a Nicotiana tobacum MAPKKK protein kinase (NPK1)
triggered an oxidative stress-response signalling cascade and led to freezing, heat and
salt stress tolerance (Kovtun et al., 2000). The transgenic maize with constitutively
expressed NPK1 also showed a drought tolerance ability with higher photosynthetic
rate (Shou et al., 2004). The other protein kinases are calcium-dependent protein
kinases (CDPKs) and CBL (calcineurin B-like) interacting protein Kkinase
(CIPK/sucrose non-fermenting protein (SNF1)-related kinase 2 (SnRK3) and SNF1-
related kinase 2 (SnRK2) (Yang et al., 2010). CDPKs induce Ca?* fluxes after sensing
the environmental changes. Salt and cold stresses induced OsCDPK?7 transcript in rice
roots and shoots. The constitutive OSCDPK?7 overexpression exhibited drought, salt and
cold tolerance of rice seedlings (Saijo et al., 2000). (Xiang et al., 2007) characterized
stress-responsive CIPK genes in rice. Several OsCIPKs were induced by drought (e.g.
OsCIPKO1, 02, 05, 12, and 15), salt (e.g. OsCIPKO7, 08, 11, and 15), cold (e.g.
OsCIPKO1, 03, and 09) and ABA treatment (e.g. OsCIPKO01, 02, 09, 11, and 15). The

overexpression of OsCIPK12 and OsCIPK15 improved drought and salt tolerance,
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respectively. Farnesylation is another post-translational protein modification that has a
potential role in protein farnesylation during drought stress (Yang et al., 2010).

Under drought stress, an accumulation of osmotic compounds was found. This
led to decreasing the osmotic potential and water loss (Chaves et al., 2003). Several
genes that encode enzymes involving in osmoprotectant biosynthetic pathway have
been studied such as proline, ABA, LEA protein, glycine betaine and sugar (Yang et
al., 2010). Proline is a compatible solutes that is highly accumulated in stressed plant
under drought and salinity stress (Delauney and Verma, 1993). OsP5CS gene involved
with proline biosynthesis was up-regulated after dehydration. The constitutively
expressed of P5CS in rice (Zhu et al., 1998) and the overexpression of P5CR in soybean
(De Ronde et al., 2004) increased proline content after treated with drought stress and
led to the higher relative water content and growth. ABA accumulation is one of the
fastest responses of plants to drought stress which activates ABA-inducible gene
expression (Himmelbach et al., 2002; Shinozaki and Yamaguchi-Shinozaki, 2007) and
lead to stomatal closure, which prevents water loss (Schroeder et al., 2001). The
overexpression of AtMYB2 enhanced drought tolerance because of an ABA-
hypersensitive phenotype. This phenomenal was also found in the overexpression of
AtMYC2 (Abe et al., 2003). The rice mutant (dss1) had higher drought tolerant ability
because an accumulation of ABA was found (Tamiru et al., 2015). The overexpression
of ABI1 revealed ABA-insensitive phenotype and made the Arabidopsis more sensitive

to drought stress (Himmelbach et al., 2002).
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3. Proteomics

Protein is a final product from translated genome of plant which has
transcription of mMRNA as an intermediate step. To understand their functions, a study
of the proteins is one of the approaches. A studying of global protein expression and
their functional mechanisms is known as proteomics. Proteomics includes a study of
whole proteins in several aspects include a study of protein interaction, protein function,
proteins structure and proteins sequences (Wilkins et al., 1996). Therefore, proteomics
allow us to understand the change of protein due to environmental stress (Twyman,

2004).

3.1. Proteomics in contrasting drought-tolerant background

Many studies have been conducted by using wheat (Bowne et al., 2012; Faghani
et al., 2015; Ford et al., 2011), rice (Ali and Komatsu, 2006; Maksup et al., 2014;
Salekdeh et al., 2002) and tobacco (Gharechahi et al., 2015) that have contrasting stress
tolerant ability because it can elucidate drought-responsive mechanism and improve
drought-tolerant plant (Basu et al., 2016). Nipponbare; a drought sensitive rice, and
Zhonghua 8; drought tolerant rice, were used in a study of drought-responsive proteins
in rice leaf sheath. It was found that the accumulation level of actin depolymerizing
factor, light harvesting complex chain Il, PSIl oxygen evolving complex protein and
oxygen evolving enhancer protein 2 in ‘Zhanghua 8’ rice were higher than
‘Nipponbare’ rice (Ali and Komatsu, 2006). An analysis of mass spectrometry in two
contrasting genotypes, IR62266-42-6-2 (lowland indica rice) and CT9993-5-10-1-M
(upland japonica rice) during drought stress and recovery period were conducted. The

proteomics revealed that an S-like RNase homologue, an actin depolymerizing factor
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and RuBisCO activase were up-regulated under drought stress while an isoflavone
reductase-like protein was down-regulated (Salekdeh et al., 2002). A studied of
drought- responsive proteins in Khao Dawk Mali105 (KDML105) rice, and two check
cultivars, drought tolerant cultivar (NSG19) and drought sensitive cultivar (IR20),
showed the different expression groups of proteins. A protein involving with stomatal
closure, coronatine-insensitive 1 protein was found in NSG19. This correlates with
rapid stomatal closing and highest stability of photosystem Il in NSG19 phenotype. In
IR20, an increasing of WD-40 repeat protein was found while H-protein promoter
binding factor-2a extremely increased in KDML105 (Maksup et al., 2014). A
transgenic plant was also used to study the protein changes when treated with PEG. The
TERF1-overexpresed transgenic sugarcane which has drought-tolerant ability and the
wild-type plant were used to study a tolerance mechanism at molecular level. The
proteomics was performed by using two-dimensional gel electrophoresis technique,
then coupled with tandem mass spectrometry (MS/MS) analyses. The comparison of
the wild-type and the transgenic sugarcane under PEG stress showed a majority of
proteins involving with metabolism, energy, protein synthesis, and disease/defense.
Under the stress, pentatricopeptide repeat (PPR) containing protein and peptidyl prolyl
cis-trans isomerase (PPlase) were decreased, but the RuBisCO large subunit, PEP
carboxylase, ferredoxin, glyceraldehyde 3-phosphate dehydrogenase, elongation factor
Tu, several small heat shock proteins, and peroxidases were increased (Rahman et al.,

2014).



CHAPTER Il

MATERIALS AND METHODS

I. Materials
1. Plant materials

Two rice lines were used in this study. The first one is rice (Oryza sativa L.)
cultivar ‘Leung Pratew123” (LPT123; SS) which is obtained from Department of Rice,
Ministry of Agriculture and Cooperative, Thailand. The other is rice (Oryza sativa L.)
line ‘Leung Pratew123-TC171’which was generated from somaclonal variation of
LPT123 (Vajrabhaya and Vajrabhaya, 1991b). The LPT123-TC171 rice or SR line is a
salt- and drought-resistant rice line (Pongprayoon et al., 2013; Sripinyowanich et al.,
2013; Udomchalothorn et al., 2009; Vajrabhaya and Vajrabhaya, 1991b). Seeds of
LPT123-TC171 were provided by the Center of Excellence in Environment and Plant
Physiology, Department of Botany, Faculty of Science, Chulalongkorn University.

Two Arabidopsis lines used in this study are Arabidopsis thaliana ecotype
Columbia-0 (Col-0) and Arabidopsis thaliana mutant (gtl1-4) (SALK_005972). The
seeds of both wild type and gtl1-4 were kindly provided from Associate Professor
Michael V Mickelbart, Department of Horticulture and Landscape Architecture, Purdue

University, West Lafayette, Indiana, USA



2.

Equipment
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2.1. General uses (planting, collecting sample and RNA/protein extraction)

Balances (Mettler Toledo AG285, Mettler Toledo, Switzerland)

-80 °C deep freezer (Thermo-Scientific, USA)

-20 °C freezer (SANYO biomedical freezer, Japan)
Autoclave (Taichung, Taiwan)

Refrigerated centrifuge (Universal 32R, Hettich, Germany)
Microwave oven (Toshiba, Thailand)

Mortar and pestle

Spatula

Forceps

Liquid nitrogen container

Spectrophotometer (Agilent Technology, USA) and cuvettes
Micropipette (Gilson, France) and micropipette tips

Vortex mixer (Labnet, USA)

Water bath (LabTech, USA)

Dry bath incubator (MD-01N model, Major Science, Taiwan)
Cylinder

Plastic tray

Aluminum foil

Microcentrifuge tube

Ice box

Shaker (Biosan, USA)

Scalpel
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Parafilm (Whatman®, GE healthcare, USA)

2.2. For proteomics study

ESI ion Trap MS (HCT ultra PTM Discovery System, Bruker
Daltonik, Germany)

Ultimate 3000 LC system (Dionex, USA)

Vertical gel electrophoresis unit (Bio-Rad, USA)

Vial and insert tube

96 well microplate

Multi-channel micropipette 200 pl

2.3. For study-gene expression at transcriptional level

2.3.1.

Horizontal gel electrophoresis system (MiniRun GE-100,
Hangzhou BIOER Technology, China)

Gel documentation system (Gel DOC™2000, Bio-Rad, USA)
Microcentrifuge (Sorvall® Biofuge Pico, Germany)

PCR tube (Axygen Inc., USA)

NanoDrop™ 2000 Spectrophotometers (Thermo Fisher

Scientific, USA)

Specific equipment for semi quantitative reverse transcription

polymerase chain reaction (semi qRT-PCR)

PCR thermal cycler (PTC-100TM, Peltier Thermal Cycler, MJ

Research, USA)



2.4.

2.5.
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2.3.2. Specific equipment for quantitative reverse polymerase chain
reaction (QRT-PCR)
- CFX96™ Real-Time PCR Detection System (Bio-Rad, USA)

- 8 tube strip and flat cap (Bio-Rad, USA)

For study stomatal density
- Superglue

- Glass slide

2.4.1. Stomatal density in rice
- 20X objective lens (UPlanApp, Olympus, Japan) couple with

Multipurpose Microscope (Olympus BX-51)

2.4.2. Stomatal density in Arabidopsis

- Nikon-OptiPhot 2 microscope (Nikon)

For photosynthesis measurement
- L1-6400 Portable photosynthesis system (LI-COR, Lincoln, NE,
USA) with the LI-6400-40 leaf chamber fluorometer (LI-COR)
- Pocket PEA chlorophyll fluorimeter (Hansatech Instrument,

King’s Lynn, United Kingdom)



3. Chemicals and reagents

3.1.

3.2.

3.3.

3.4.

For rice planting

3.1.1. Insolution

Modified WP nutrient solution (appendix A)

- 10% Polyethylene glycol (PEG) 6000

3.1.1. Insoil

- Clay soil

For Arabidopsis planting: in soil

- Fafard 2X Mix soilless media

For sample collection

- Liquid nitrogen (Linde, Thailand)

For protein identification

3.4.1. Protein extraction and precipitation
- 0.1% sodium dodecyl sulfate (SDS)
- 0.15% deoxycholic acid (DOC)

- 72% trichloroacetic acid (TCA)

3.4.2. Protein concentration measurement by Lowry method
- Bovine serum albumin (BSA) (2ug/ul)

- Reagent A (alkaline copper reagent; appendix A)
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3.4.3.

3.4.3.
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Reagent B (diluted Folin-Ciocalteu’s phenol reagent; appendix

A)

Protein separation by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE)

0.5M Tris HCI pH 6.8

1.5 M Tris HCI pH 8.8

10% sodium dodecyl sulfate (SDS)

10% ammonium persulfate (APS)

40% (wi/v) acrylamide/bis-acrylamide solution (29:1)
Distilled water

Tetramethylethylenediamine (TEMED)

Protein ladder 10-250 kDa (New England Biolabs, USA)
Protein loading dye (appendix A)

Tris-glycine electrophoresis buffer (appendix A)
Staining solution (appendix A)

Destaining solution (appendix A)

Protein in-gel digestion and peptide analysis (LC-MS/MS)

0.1% trifluoroacetic acid (TFA)
10 mM ammonium bicarbonate

10 mM dithiothreitol (DTT)

10 ng/mL trypsin (Promega, USA)

100 mM iodoacetamide (IAM)



100% acetronitrile (ACN)
Bovine serum albumin (BSA)

Steriled milli Q water

3.5. For analysis of transcription expression

3.5.1. For study of transcription expression in rice

Purelink® Plant RNA Reagent (Ambion, Life Technologies,

USA)

DNase I, RNase-free (Thermo Fisher Scientific, USA)
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iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-

Rad, USA)

5 M sodium chloride (NaCl)

Chloroform (Merck, Germany)

Isopropanol (Merck, Germany)

Absolute ethanol (Merck, Germany)
Phenol:chloroform:isoamyl alcohol (25:24:1) (v/v)
10 M lithium chloride (LiCly)

5x TBE buffer (appendix A)

DEPC-treated RNA loading dye (appendix A)
Ethidium bromide (Gibco BRL, USA)
Agarose (USB Corporation, Ohio, USA)
Forward primer

Reverse primer

Ultrapure water



3.5.2.
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3.5.1.1. Quantitative polymerase chain reaction (QPCR)

- SsoFast™ EvaGreen® Supermix (Bio-Rad, USA)

3.5.1.2. Semi quantitative reverse transcription polymerase chain

reaction (semi gRT-PCR)

Taq DNA Polymerase, recombinant (5 U/pL) (Thermo Fisher

Scientific, USA)

For study of transcription expression in Arabidopsis

- RNeasy® Plant Mini Kit (Qiagen, USA)

- TURBO DNA-free™ kit (Life technologies, USA)

- High capacity cDNA Reverse Transcription kit (Life
Technologies, USA)

- GoTag ® Hot Start Polymerase (500 u) (Promega, USA)

- 10mM dNTP Mix (Life Technologies, USA)

- 5x TBA buffer (appendix A)
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Il. Methods
1. Proteomics study
1.1. Investigation of protein profiles after drought stress by using
proteomic approach
1.1.1.  Rice grown condition for protein identification
The experiment was performed with a completely randomized design (CRD)
with three biological replicates. Three rice seedlings were pools for each biological
replication. Rice germination and growing condition were used with the similar
procedure as previous study (Chamnanmanoontham et al., 2015). Rice seeds were
soaked in distilled water for 24 hours and then transferred to germinate on sterile sand
fully soaked with distilled water. After 2 weeks of germination, modified WP solution
No.2 (Vajrabhaya and Vajrabhaya, 1991b) was added. The seedlings were grown in the
greenhouse under natural light. During growing period, the nutrient solution was
refreshed every 7 days. After 4 weeks, seedlings of each line/cultivar were separated
into 2 groups, one group continued to grow in the WP solution, while the other was
transferred to the WP solution supplemented with 10 % (w/v) polyethylene glycol 6000
(PEG6000) for drought stress treatment (Pongprayoon et al., 2013). SS and SR leaves
were collected at 0, 2, 6 and 24 hours after treatment. The leaf sample at each time
point were frozen immediately in liquid nitrogen and stored at -80°C for further

analysis.
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1.1.2.  Protein extraction and separation by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

Total proteins for proteomics analysis were extracted from SS and SR leaves.
Three hundred milligrams of leaf tissues were ground in liquid nitrogen to fine powder
then, 900 pl of 0.1% SDS was added immediately to the ground tissues and incubated
at 37 °C for 3 hours. The mixture was centrifuged at 13,000 rpm for 15 minutes at 4 °C
to collect the total proteins in the supernatant.

The total protein extract was purified according to deoxycholate -
trichloroacetic acid precipitation method (Peterson, 1983) with some modifications.
The supernatant (50 pl) was mixed with 950 pl of 0.15% deoxycholic acid (DOC) and
then incubated at room temperature for 10 minutes. Then, 100 pl of 72% trichloroacetic
acid (TCA) was added and subsequently incubated once at 4 °C overnight. The mixture
was centrifuged at 13,000 rpm for 15 minutes at 4 °C. The protein pellet was collected
and dried at room temperature approximately 5-10 minutes. The dried protein pellet
was re-suspended in 50 pl of 0.15% DOC.

The protein concentration was determined according to Lowry’s method
(Lowry et al., 1951). The bovine serum albumin (BSA) was used as a protein standard.
The purified proteins (5 pl) were mixed with 200 pl of reagent A (alkaline copper
reagent; appendix A) and kept at room temperature for 30 minutes. Then 50 ul of
reagent B (diluted Folin-Ciocalteu’s phenol reagent; appendix A) was added and
followed by incubation for 30 minutes at room temperature. The absorbance was
recorded at 750 nm using spectrophotometer and the protein concentration was

calculated as indicated below.



26

Protein concentration (pug/ul)
= (average OD750 of sample/m) X dilution factor/testing volume

m is slope of standard curve.

Fifteen micrograms of extracted proteins was dissolved in 10 ul of 0.5% SDS
and 20 pl of protein loading dye was added. Then, the well-mixed mixture was boiled
for 5 minutes before loaded into SDS-PAGE. The total protein was separated on 12.5%
SDS-PAGE (Laemmli, 1970). The gel was stained with Coomassie Brilliant Blue R-
250 ((Meyer and Lamberts, 1965); see in Appendix A) until the protein bands appeared.
After that the staining solution was removed and then the destaining solution was added
to remove background color. The destaining solution was changed around 3-4 times
and the gel was de-stained overnight until the background was clear. The protein gels

were stored in 0.1% acetic acid for further study.

1.1.3.  In-gel digestion

The protein gel from each sample was segmented into 6 ranges according to
protein molecular weight (see in Appendix C; Fig C.2). Each of which was cut into
small cube about 1 mm3. The protein cubes were subjected to in-gel digestion as
previously described method (Jaresitthikunchai et al., 2009). The gel plugs were located
into 96-well microplate and washed twice with sterile mili Q water (200 ul). Next, the
gel was dehydrated with 200 ul of 100% ACN for 5 minutes and then dried for another
5 minutes. Carbamidomethyl reaction was conducted by incubating the dried gel plugs
with 50 pl of 10 mM dithiothreitol/10 mM ammonium bicarbonate for an hour before

incubating the gel plugs with 50 pl of 100 mM iodoacetamide/10 mM ammonium
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bicarbonate in the dark for an hour. After that the gel pieces were dehydrated three
times. All of these processes, the former solution in the plate was always taken away
before new solution was added. Proteins were digested with 40 pl of trypsin solution
(10 ng trypsin in 50% acetronitrile/I0 mM ammonium bicarbonate) at room
temperature for 20 minutes, subsequently immersed in 30 pl of 30% acetronitrile and
incubated overnight. The digested peptide solution was carefully transferred to a new
plate (avoiding any of gel pieces) and the residues in the gel pieces were extracted twice
by adding 30 pl of 50% acetronitrile/0.1% trifluoroacetic acid and agitating for 10
minutes. All of the procedures were carried out at room temperature. The extracted

peptide solution was dried at 40 °C overnight and stored at -80 °C for further analysis.

1.1.4.  Protein quantification and identification

The digested protein will be injected to Ultimate 3000 LC system (Dionex)
coupled with ESI-lon Trap MS (HCT ultra PTM Discovery System, Bruker Daltonik)
with electrospray at a flow rate of 20 pL/min to p-precolumn (Monolithic Trap Column,
200 pm i.d. x 5 cm). The raw data from LC-MS/MS analysis were converted into
mzXML format with CompassXport 1.3.10 program (Bruker Daltonik GmbH).
Proteins were quantified with DeCyder MS Differential Analysis software
(DeCyderMS, GE Healthcare) (Johansson et al., 2006; Thorsell et al., 2007) and
identified with MASCOT software (Matrix Science, London, UK) (Perkins et al., 1999)
by searching against non-redundant database of National Center for Biotechnology
Information (NCBInr) 20170221 with the following parameters, taxonomy: Oryza
sativa (rice), enzyme: trypsin, allow up to: 1 missed cleavage, fixed modifications:

carbamidomethyl (C), variable modifications: oxidation (M), peptide tolerance: + 1.2
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Da, MS/MS tolerance: £ 0.6 Da, peptide charge: 1+, 2+ and 3+ (monoisotopic) and

instrument: ESI-TRAP.

1.1.5. Gene ontology
Protein loci and functions in biological process were assigned by using blastp
and gene ontology (GO) browsers in rice genome annotation project

(http://rice.plantbiology.msu.edu) (Kawahara et al., 2013), respectively. For the

proteins assigned to the same locus, a protein having the highest Mascot score was
selected. In the case of equal Mascot score, ANOVA p-value derived from analysis
with DeCyder MS Differential Analysis software would be considered. The protein

with the lowest p-value was chosen.

1.1.6. Identification of drought responsive patterns
The identified proteins were searched against the Rice Genome Annotation
Project database (http://rice.plantbiology.msu.edu) (Kawahara et al., 2013) using
BLASTP to annotate proteins and assign functions based on gene ontology described
as above. The identified proteins in each set of treatments that matched the above
criteria were visualized and analyzed with the MultiExperiment Viewer (MeV)
program to identify the osmotic-stress responsive proteins with t-test (P<0.05) (Saeed

et al., 2003). The hierarchical clustering was conducted using the Pearson correlation.


http://rice.plantbiology.msu.edu/
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1.2. Comparison of SS and SR proteomics data
After the significantly differential expression profiles due to drought stress of
SS and SR lines obtained, the overlapping significantly different expressed proteins

between SS and SR lines were determined and presented in VVenn diagram.

2. Identification and characterization of the drought responsive genes from

the gene/protein expression patterns.
2.1. Selection and expression analysis of the drought responsive genes in
‘LPT123’ and ‘LPT123-TC171’ rice lines
2.1.1. Co-expression analysis
The co-expression network analysis of proteins that were significantly affected
by osmotic stress in the SR line was generated using a ‘guide gene approach’ by

RiceFREND with hierarchy of 2 and mutual rank (MR) of 5 (Sato et al., 2013).

2.1.2. Planting and stress condition for gene expression analysis
Rice seeds were soaked in distilled water for 24 hours in dark and then
transferred to germinate in sterilized water under natural light for 7 days. Leaves of 7-
day-old rice seedlings of both lines were cut and air-dried for 2 hours to create drought
stress condition. The transcription level of control and stressed-plants were conducted

using three biological replicates.

2.1.3. Total RNA extraction and cDNA synthesis
Plant total RNA was extracted by using PureLink® Plant RNA Reagent
(Invitrogen, USA) as described in manufacture’s protocol with some modifications.

Briefly, the plant sample approximately 0.1 mg was ground in liquid nitrogen to fine
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powder. The powder was homogenized with the 500 ul of chilled (4°C) Plant RNA
reagent and the tube was incubated in horizontal at room temperature for 5 minutes.
The mixture was centrifuged at 12,000 rpm for 5 minutes and the supernatant was
transferred into clean RNase-free tube. Then, 100 pl of 5M NaCl was added and
followed by 300 pl of chloroform. The aqueous phase was harvested by centrifugation
at 12,000 rpm for 10 minutes at 4 °C and transferred into new tube. RNA was
precipitated by incubation with equal volume of isopropanol at room temperature for
10 minutes. After that the RNA pellet was harvested by centrifugation at 12,000 rpm
for 10 minutes at 4°C. The pellet was washed with ice-cold 80% ethanol and air dried
at room temperature. The RNA pellet was re-suspended in 20 pl of DEPC-treated water.
The total RNA concentration and quality were measured by NanoDrop™ 2000
Spectrophotometers

Then, the total RNA was treated with RNase free DNasel, (Thermo Fisher
Scientific, USA) to cleave contaminated genomic DNA according to manufacturer’ s
protocol and purified with phenol-chloroform extraction. The reaction was incubated
at 37°C for 30 minutes and followed by 65°C for 10 minutes in PCR thermo cycler. The
RNA was purified by adding 150 pl of phenol:chloroform:isoamyl alcohol (25:24:1,
v/v) to the mixture and then centrifuged at 12,000 rpm for 5 minutes at 4°C to collect
supernatant. To precipitate RNA, 0.1 volume of 3M sodium acetate and 0.6 volume of
isopropanol were added into supernatant. The mixture was kept at -20°C for 30 minutes.
After that the mixture was centrifuged at 12,000 rpm for 10 minutes at 4°C to collect
the DNA-free RNA pellet. The pellet was washed with chilled 80% ethanol and air
dried at room temperature. The pellet was dissolved in 10 pl of DEPC-treated water.

The 0.8% agarose gel electrophoresis in 0.5x TBE buffer (see in Appendix A) was
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performed to clarify that genomic DNA was removed. The DNA-free RNA
concentration and quality were measured using NanoDrop™ 2000 Spectrophotometers.

One microgram of purified RNA was reverse-transcribed to first strand cDNA
using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad, USA) according
to the supplier’s protocol. The RNA template (1 pg) was mixed with 4 pl of iScript
supermix and the nuclease-free water (supplied in the box) was added to the total
volume of 20 pl. The reaction was incubated at 25 °C for 5 minutes for priming,
followed by reverse transcription at 46°C for 5 minutes and inactivation at 95°C for 1

minute.

2.1.4. Determination of trihelix transcription factor (GTL1)
expression by quantitative RT-PCR (QRT-PCR)

The gRT-PCR was performed with three biological replicates and three
technical replicates for each sample. The gRT-PCR was done in 10 pul reaction using
SsoFast™ EvaGreen® Supermix (Bio-Rad, USA) with CFX96™ Real-Time PCR
Detection System (Bio-Rad, USA). The reaction contained 2 ul of cDNA , 5 ul of 2x
SsoFast™ EvaGreen® Supermix, 0.5 pl of 5 uM forward primer, 0.5 pl of 5 uM reverse
primer and 3 pl of sterile water. The thermal cycle was performed at 95 °C for 30 second
for enzyme activation, then 40 cycles of denaturation at 95 °C for 5 second,
annealing/extension at 57 °C for 5 second and finally, melting curve analysis at 70-95
°C for 5 seconds. The OsGTL1 primers were designed from CDS of LOC_0s03g02240
which was retrieved from Rice Genome Annotation Project (Kawahara et al., 2013).
The primers for detection of OSEF-/a were the same primers as previously indicated

(Saeng-ngam et al., 2012). Moreover, the expression of OsDREB2A was used as a
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control for drought inducible gene and the primer were designed according to the cDNA
sequence obtained from NCBI GenBank (AK067313.1). The lists of primer are shown
in Appendix B. For gRT-PCR analysis, the expression of OsGTL1 and OsDREB2A
were normalized by a housekeeping gene,OsEF-1Ia, in each sample and the level of

expression was determined according to Pfaffl method (Pfaffl, 2001), as shown below.

R = Relative expression ratio of target gene

- [(Etarget) ACP target (control—sample)] / [(Eref) ACP ref (control—sample)]
Ewrger = 10751P¢ of the target gene
Eet = 1075Peof the reference gene
ACPrarget(control-sample) = CPohour— CP any time point of the target gene
ACPref(control—sample) = CPO hour — CP any time point of the reference gene

The CP is defined as the point at which the fluorescence signal rises appreciably
above the background fluorescence.

The relative expression level of transcription level was tested by analysis of
variance (ANOVA) at p < 0.05 with SPSS Statistics 20.0 software (IBM SPSS Modeler)
and the means were compared by Duncan’s multiple range test (DMRT). The

significant difference was accepted at p < 0.05. The data were shown as mean = S.E.

2.1.5. Determination of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) by semi-quantitative RT-PCR
The CDS of LOC_0s04g38600 retrieved from Rice Genome Annotation
Project was used to design the forward and reverse primers (see in Appendix B) to
detect GAPDH gene expression. A semi-quantitative RT-PCR was conducted in 50 pl

of samples using Tag DNA Polymerase (Thermo Fisher Scientific, USA). The 50 pl
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reaction contained 5 pl of 25 mM MgCly, 1 pl of 10mM dNTP, 2.5 pl of 2 uM forward
primer, 2.5 pl of 2 uM reverse primer, 1 pl of cDNA template, 0.25 pl of Taq
Polymerase, 5 ul of 10x Taq Buffer with KCI and 32.75 pl of water. The thermal cycler
was started at 95°C for 3 minutes, then 35 cycles of 95°C for 30 second, 57°C for 30
second and 72°C for 30 second, followed by a final extension at 72 °C for 5 minutes.
OsEF-/a was used as the internal control and amplified with the same primer set as
indicated above. The OsDREB2A primers were used according to (Dubouzet et al.,
2003) to serve as drought-responsive gene expression control. In order to check
transcription level, the PCR product was run on 0.8% agarose gel electrophoresis

(Appendix A).

2.2 Phenotyping of SS and SR lines under drought stress condition
2.2.1 Determination of relative water content (RWC) and stomatal
density (SD) in ‘LPT123’ and ‘LPT123-TC171’ rice lines
2.2.1.1 Plant growing condition
SS and SR rice seedlings were germinated as mentioned above. After two
weeks, each seedling was transferred to grow in clay soil in three-inch diameter plastic
pot, which placed in greenhouse under natural light. Plants were grown at 100 % field
capacity (FC) for another two weeks before leaf water content and stomatal density
(SD) were collected at the first time point. Two treatments of soil water content, 100
% FC (control) and 55-60 % FC (drought treatment), were performed with two rice
lines, SS and SR. In order to reach 55-60 % FC, water withholding was performed and
FC target was reached in five days after water withholding. Field capacity was

maintained by calibrating the water level 3 times a day throughout the experiment.
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2.2.1.2 Experimental design and data collection

The experiment to compare the phenotypes, RWC and SD, of SS and SR in
normal and drought stress conditions was performed in completely randomized design
(CRD) with six biological replicates. Plant tissues were harvested for data collection
after 0, 10 and 20 days of treatment. Fresh weight and dry weight of rice shoot from
each plant were recorded. RWC was collected from the first fully expanded leaves.
After cutting the leaf, it was immediately weighed to get fresh weight. Then, the leaf
was placed in 1.5 ml microcentrifuge tube filled with sterilized water for 24 hours. The
excess water was removed from the leaf surface before weighting to get turgid weight.
Finally, the leaf tissues were dried at 60°C for three days to get dry weight. RWC was
calculated as [(fresh weight — dry weight) / (turgid weight — dry weight)] x 100.

Abaxial stomatal density (SD: number of stomata per area) was also determined
in the middle part of first fully expanded leaves that were used to collect the RWC. The
abaxial epidermis of rice leaves were attached briefly to a slide by using super glue and
then the leaves were pulled-out. Hence, the abaxial epidermis imprint remained on the
slide. The stomatal imprinted images were captured with high resolution under 20X
objective lens (UPlanApp, Olympus, Japan) coupled with Multipurpose Microscope
(Olympus BX-51). The SD was obtained from a leaf area of 0.586 mm?. Three positions

from each imprinted image were used for stomata counting.
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2.2.2 Determination of leaf gas exchange parameters in SS and SR
lines
2.2.2.1 Plant growing condition
The rice seeds were germinated in growth chamber with distilled water for 3
days and then, transferred to half strength of Yoshida solution (Yoshida et al., 1976).
Seven days after that all rice plants were grown in Yoshida solution under natural light
condition in a netted-house at the Tropical Vegetable Research Development Center at
Kasetsart University, Kamphangsaen Campus, Nakhon Pathom, Thailand. At 30-day-
old, rice plants were separated into two groups; control and drought stress. The control
plants were maintained in Yoshida solution and the drought-treated plants were cultured
in Yoshida solution supplemented with PEG6000. Drought stress condition was applied
in two steps. First, rice plants were grown in the nutrient solution containing 12.5 %
PEG6000 for a week and then the solution was changed to contain 22.5 % PEG6000

for another week. Each level of the stress was applied to the plants for 7 days.

2.2.2.2 Experimental design and data collection

The experiment was designed in CRD with six biological replicates of SS and
SR lines. At the beginning of the experiment, the youngest fully expanded leaf of 30
day-old plant was tagged and it was used for the measurement every 3 days until the
end of the experiment. This leaf was called “old leaf” as it was used for the
measurement repeatedly. During the experimental period (9 days), a new leaf emerged
and became the new youngest fully expanded leaf at the later time point. The new
youngest fully expended leaf occurred in any time point was used for the measurement,

so it was called “young leaf”.
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Before sunrise, the maximum quantum efficiency of PSIlI (Fv/Fm) and
performance index (Pi) were recorded using the Pocket PEA portable chlorophyll
fluorimeter (Hansatech Instrument, King’s Lynn, United Kingdom). After sunrise, the
leaf gas exchange parameters were recorded using LI-6400 Portable Photosynthesis
System (LI-COR, Licor Inc., Lincoln, NE, USA) with the LI-6400-40 Leaf Chamber
Fluorometer (LI-COR, Licor Inc.). Net photosynthetic rate (A) was determined under
specific conditions, as follows: saturating light at 1500 umol PPFD m2 s (with 10 %
blue light), air CO2 concentration (Ca) of 400 pmol mol™, chamber block temperature
of 28°C, and relative humidity 70-75 %, resulting in an air vapor pressure deficit of

1.0-1.5 kPa.

2.3 Phenotyping of wild type and gtl1-4 under drought stress condition
2.3.1 Planting and stress condition

Arabidopsis thaliana (wild type and gtl1-4 mutant) was used in all experiments
conducted in Arabidopsis. The seed of both wild type and gtl1-4 were embedded in
distilled water and kept in dark condition at 4°C for 5-7 days. Then, the seeds were
germinated in 115 ml tubes containing soilless media (Fafard 2X Mix soilless media)
in a mist house for 10 days. After that all seedlings were transferred to a growth room
under short-day conditions (eight hour / day of light period). At the 6-leaf stage which
is around four-week-old after germination, plants were separated into two treatments;
well-watered (WW) and water-stressed (WS). Well-watered plant was watered as
needed and water-stressed plant was stopped watering. All experiments were conducted

in CRD with least three biological replicates.
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2.3.2 Determination of gene expression by semi quantitative
RT-PCR

Five-week-old Arabidopsis was used to study the transcription level with three
biological replicates. The leaf tissue was ground in liquid nitrogen until the fine powder
was obtained. The RNA was extracted by RNeasy® Plant Mini Kit (Qiagen, USA)
according to kit’s protocol and followed by elimination of genomic DNA with TURBO
DNA-freeTM kit (Life technologies, USA). The DNasel-treated RNA concentration
was measured by NanoDrop™ 2000 Spectrophotometers. After that 500 ng of DNA-
free RNA was reverse-transcribed to first strand cDNA using High capacity cDNA
Reverse Transcription kit (Life Technologies, USA) according to manufacturer’s
protocol.

The GTL1, SDD1, ACT2 primer were retrieved from previous study (Yoo et al.,
2010) and DREB2A primers were used according to (Liu et al., 1998) (Appendix B).
The ACT2 was used as an internal control. A semi-quantitative RT-PCR experiment
was conducted in 20 pl of samples. The semi-quantitative RT-PCR was performed by
GoTaq ® Hot Start Polymerase (Promega, USA) according to kit’s protocol. The
reaction contained 0.2 ul of GoTag ® Hot Start Polymerase, 4 pl of 5X Green GoTagq®
Flexi Buffer, 1.6 pl of 25 mM MgClz, 0.4 pl of 10 mM dNTP, 2 pl of 2 uM forward
primer, 2 pl of 2 uM reverse primer, 2 pl of cDNA template and 7.8 ul of water. The
thermal cycle was started at 95°C for 2 minutes, then 30 cycles of 95°C for 30 seconds,
61°C (for GTL1 and DREB2A) or 63°C (for ACT2) or 53°C (for SDD1) for 45 seconds
and 72°C for 45 seconds, followed by a final extension at 72°C for 5 minutes. In order
to check transcription level, the PCR product was run on 0.8% agarose gel

electrophoresis.
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2.3.3 Determination of media water content and relative
water content during water deficit
Media water content (MWC) and leaf relative water content were used to
monitor the stress level of each treatments. During the experiment, every tube was
watered until it saturated. The media saturated weight was recorded at the beginning of
the experiment and then, the tubes were weighted throughout the experiment to get
fresh weight of media. At the end, the media were dried at 80°C to get a media dry
weight. The relative MWC was calculated as [(fresh weight — dry weight) / (saturated
weight — dry weight)]. The RWC at each time point was calculated as mentioned in
2.2.1.2. However, to get turgid weight, Arabidopsis leaf was kept in 5 ml vial containing

distilled water.

2.3.4 Determination of survival rate in wild type and gtl1-4
Wild type and gtl1-4 were treated with water withholding for 16 days. Ten
biological replicates in each time point were performed. The first time point of RWC
and survival rate evaluation was 8 days after withholding water. The plants that

can/cannot survive were counted and their RWC was determined.

2.3.5 Determination of stomatal density (SD), stomatal index
(S1) and leaf development during water deficit
To study stomatal density, stomatal index and leaf development under water
deficit, wild type and gtl1-4 were used. Photograph was taken every day to monitor the

leaf development in all plants. The pictures were also used to identify timeline of leaf
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development. The MWC was collected as described previously to ensure that targeted
leaf was developed before or after the stress.

The stomatal density of abaxial and adaxial epidermis was determined as
mentioned above. The whole leaf of Arabidopsis was attached briefly to a slide with
super glue. The imprint of abaxial and adaxial epidermis was photographed under
Nikon-OptiPhot 2 microscope. Each treatment had at least 13 biological replicates and
each replicate was photographed in three different positions. Stomatal index (SI) was
calculated from the ratio of stomata to total epidermal cells (including stomata, stomatal
precursor cells, and pavement cells). The SD and SI were obtained from a leaf area of
0.1141 mm?. Stomatal precursor cells were identified as cells at the meristemoid or

guard mother cell stage.



CHAPTER IV
RESULTS

1. Proteomics study

1.1. Investigation of protein profiles after drought stress by using

proteomic approach
1.1.1 Protein profiles of SS and SR lines

The stress-susceptible rice (SS) and the stress-resistant rice (SR) were grown in
WP solution until four-week-old and then each of them were separated into 2 groups;
control (WP) and stress-treated (L0%PEG). The samples were collect at 0, 2, 6, and 24
hours after stress. Total proteins were extracted and separated by one-dimensional
polyacrylamide gel electrophoresis (SDS-PAGE). The tryptic peptides from each gel
plug were subjected to LC-MS/MS.

The proteomics analysis was done two times in year 2013 and 2017. The
proteomics data was firstly analyzed in 2013. From the GeLC-MS/MS, approximately
1,400 proteins were obtained and there were 352 proteins remained after cut out the
false positive. The 352 proteins were statistically analyzed and the gene locus number
and their function were identified base on the Rice Genome Annotation Project
database (http://rice.plantbiology.msu.edu) (Kawahara et al., 2013). After statistical
analysis by MeV, there were 54 and 43 significant different expression in SS and SR,
respectively. The significant protein were classified into 10 functional groups in SS and

11 functional groups in SR (Fig. D1 see in Appendix D).

In 2017, the GeLC-MS/MS reveals 4,310 proteins detected in SS and SR. After

that the false positive data were cleaned out before actual data analysis were processed.
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Then, 1,246 proteins were performed Blastp in the NCBI database (Coordinators 2016)
by using their peptide sequences. Only 357 proteins (Table D1. see in Appendix D)
were showed highest similarity with rice proteins. Then, 357 proteins were identified
a locus ID from MSU and Rice Annotation Project Database (RAP-DB) (Kawahara et
al., 2013; Sakai et al., 2013). Most of the proteins (69%) found in both MSU and RAP-
DB. Around 22% of the proteins found in MSU and only five percentage found in RAP-

DB. Finally, 357 proteins were used for further analysis.

1.1.2 Significant different protein profiles between drought-treated
LPT123 (SS) and LPT123-TC171 (SR)

Since SS and SR have the same genetic background, gene/protein expression
should behave similarly in the control condition. Therefore, a comparison of proteins
found in drought-treated SS and SR were performed. From the analysis, 67 proteins
significantly expressed differently in SS and SR (P < 0.05) (Fig. 1). Their functional
groups were categorized into eight groups which are unknown (28%), metabolic
process (22%), transcription (16%), defense (12%), retrotransposon (11%),
development (5%), signalling (3%), and post-transcription (3%) (Fig. 2A). The number
of up-/down-regulated proteins was different in each of the categories. The proteins
which were up-/down-regulated in SS when compared to SR are shown in Figure 2B.

Disregarding the unknown function, the largest group of up-regulated protein
was involved in transcription (nine proteins e.g. Myb-like DNA-binding domain
containing protein, PWWP domain containing protein and Osfbx334 - F-box domain
containing protein). The second largest group was metabolic process (seven proteins

e.g hydrolase, guanylate kinase and Ulpl protease family). The other were proteins
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involving in defense (four proteins e.g stripe rust resistance protein Yr10, NB-ARC
domain containing protein, and peroxiredoxin), retrotransposon (four proteins),
development (two proteins; FG-GAP repeat-containing protein and SCAR-like protein
2), post-transcription (two proteins; RNA recognition motif containing protein and PPR
repeat domain containing protein), and signaling (one protein; leucine-rich repeat
family protein) (Fig. 2B and Table D2 in Appendix D).

The metabolic process related proteins were the largest group of down-regulated
proteins. These included glycosyl hydrolases, aspartic proteinase nepenthesin precursor
and ribulose bisphosphate carboxylase large chain precursor. Down-regulated proteins
categorized into the defense mechanism were AMP-binding domain containing protein,
BTBAZ2 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Ankyrin repeat
region, CAF1 family ribonuclease containing protein and NBS-LRR disease resistance
protein. The other proteins down-regulated in SS belonged to retrotransposon (three
proteins), transcription (two protein e.g. DDT domain-containing protein),
development (one protein; SWP), and signaling (one protein; receptor-like protein

kinase 5 precursor) (Fig. 2B and Table D2 in Appendix D).
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Figure 1. Expression profile of the significantly different proteins found in the
comparison of the proteins expressed in SS and SR under drought stress.
MultiExperiment Viewer (MeV) software was used to create the heat map. The heat
map shows significant up- or down- regulated leaf proteins under 10% PEG 6000 for
0, 2, 6 and 24 hr. Each column represents treated-time and each row represents an
individual protein. Light green to dark red bars indicate low to high protein abundance.
Sixty seven proteins were found to be significantly different (P< 0.05). The identified
proteins are listed in Table D2 in Appendix D.

When we compared the protein profiles of SS and SR in normal grown
condition, a number of significant proteins was found (Table D2 see in Appendix D).
This revealed that we could not assume the similar protein expression profile of SS and
SR in normal grown condition. In order to identify the drought-responsive proteins in
SS and SR, the comparison among the significant protein profiles changed by drought
stress in each line was performed. Then, the list of significant different expressed
proteins was compared between lines.

After analysis with the MeV program, 68 and 55 proteins from the SS and SR
lines, respectively, were significantly changed in stressed plants relative to their levels
in untreated control plants (P < 0.05) (Fig. 3 and 4). The list of all significant proteins
is shown in Table D2 (Appendix D). Surprisingly, only six drought responsive proteins
were found in both rice lines (Fig. 5). Three proteins including helicase domain-
containing protein, cytochrome P450, and stripe rust resistance protein Yrl0 were
significantly up-regulated in SS and SR according to drought stress. The other three
proteins, BTBA2-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Ankyrin
repeat region, DDT domain-containing protein and NBS-LRR disease resistance

protein are expressed contrarily. All of them were up-regulated in the SR line, but

down-regulated in the SS line.
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Figure 2. Functional classification of proteins from a comparison between SS and
SR line under drought stress (A) and the number of down-and up-regulated proteins
in each functional group (B). The negative sign and grey bar indicates down-
regulated proteins and the black bar indicates up-regulated proteins. Number of
proteins are presented at the end of bar. The functional groups were categorized
according to Gene Ontology annotations from the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu).
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Figure 3. Expression profile of the significantly different expressed proteins found in
the comparison of the proteins expressed in plants grown under normal and drought
stress condition in SS. MultiExperiment Viewer (MeV) software was used to create the
heat map. The heat map shows significant up- or down- regulated leaf proteins under
10% PEG 6000 for 0, 2, 6 and 24 hr. Each column represents treated-time and each row
represents an individual protein. The light green to dark red bars indicate low to high
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protein abundance. The significant different expressed proteins are listed in Table D2
in Appendix D. The significant difference was cut at P< 0.05.

The significant different expressed proteins were categorized by their functions
from the Gene Ontology annotations (Rice Genome Annotation Project). The
significant different expressed proteins in SS were categorized into ten functional
groups which are unknown (24%), metabolic process (16%), retrotransposon (13%),
defense (13%), transcription (12%), signalling (10%), cellular process (6%), transposon
(3%), post-translation (1%) and transport (1%) (Fig. 6A). The categories of cell wall
and post-translation were the two groups found only in SS line.

Disregarding the unknown group, the biggest group of up-regulated protein under
drought stress were involved in retrotransposon (six proteins) and followed by
metabolic process (five proteins e.g. UDP-glucoronosyl and UDP-glucosyl transferase,
guanylate kinase and cytochrome P450) and transcription (four proteins e.g. Osfbx320-
and Osfbx334- F-box domain containing protein). Defense had four proteins in this
group. For example, stripe rust resistance protein Yrl0, MLO domain containing
protein and peroxiredoxin were categorized into the defense mechanism. The other
proteins were involved in signaling (two proteins), cellular process (two proteins), post-
translation (one protein), transport (one protein) and transposon (one protein) (Fig. 7A

and Table D2 in Appendix D).
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Figure 4. Expression profile of the significantly different expressed proteins found
in the comparison of the proteins expressed in plants grown under normal and
drought stress condition in SR. MultiExperiment Viewer (MeV) software was used
to create the heat map. The heat map shows significant up- or down- regulated leaf
proteins under 10% PEG 6000 for 0, 2, 6 and 24 hr. Each column represents treated-
time and each row represents an individual protein. The light green to dark red bars
indicate low to high protein abundance. The significant different expressed proteins
are listed in Table D2 in Appendix D. The significant difference was cut at P< 0.05.
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SS SR

Figure 5. Venn diagram of drought-responsive proteins in SS and SR. There were
62 (group a) and 49 (group b) identified proteins present only in the SS or SR lines,
respectively. Six (group c) identified proteins were detected in both lines.

For the down-regulated proteins in SS, the largest group of proteins was
involved in the metabolic process such as aspartic proteinase nepenthesin precursor,
lipase and carbonic anhydrase family protein. The others were proteins involved in
defense (five proteins e.g. AMP-binding domain containing protein, NBS-LRR disease
resistance protein and BTBAZ2 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain
with Ankyrin repeat region), signalling (five proteins e.g. protein kinase family protein,
receptor-like protein kinase 5 precursor and Osscpl3 - putative serine carboxypeptidase
homologue), transcription (four proteins e.g. zinc knuckle family protein and DDT
domain-containing protein), retrotransposon (three proteins), cellular process (two

proteins) and transposon (one protein) (Fig. 7A and Table D2 in Appendix D).
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Figure 6. Functional classification of drought-responsive proteins detected in SS
and SR rice leaves. The functions were categorized according to Gene Ontology
annotations from the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu).

The proteins in rice resistant line (SR) were categorized into ten groups. The
number of proteins associated with unknown (24%), retrotransposon (18%), metabolic
process (15%), transcription (15%), defense (11%), signalling (7%), cellular process
(4%), post-transcription (4%), transport (2%), and transposon (2%) were discovered
(Fig. 6B). Disregarding the unknown protein group, retrotransposon function was the
main group of proteins affected by osmotic stress in SR plants. The percentage of the
genes in categories of transport, transcription and retrotransposon was higher in SR
line, suggesting the importance of changes in these functions for drought tolerance (Fig.
6). In addition, the post-transcription group was the category found only in SR plants.

Among proteins that were up-regulated in SR, those involving in transcription
(seven proteins e.g. trihelix transcription factor GTL1, Osspl11 - SBP-box gene family

member and WRKY106) and retrotransposon (nine proteins) were two main groups.


http://rice.plantbiology.msu.edu/
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Seven proteins were found in metabolic process e.g. Sulfotransferase domain
containing protein, Cytochrome P450 and Ubiquitin carboxyl-terminal hydrolase
domain containing protein. The other proteins were related to defense (six proteins),
signalling (four proteins), post-transcription (two proteins), cellular process (one
protein), transport (one protein) and transposon (one protein) (Fig. 7B and Table D2 in
Appendix D).

Down-regulated proteins in SR were only found in eight proteins from 55
significant proteins. The proteins belonging to unknown protein were the largest group
(four proteins) and the others functions were only one protein in each function; cellular
process, metabolic process, transcription and retrotransposon (Fig. 7B and Table D2 in

Appendix D).
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Figure 7. Number of down-and up-regulated protein in each category found in SS
(A) and SR (B). The negative sign and grey bar indicates down-regulated proteins
and the black bar indicates up-regulated proteins. Number of proteins are presented
at the end of bar.
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1.2 Comparison of SS and SR proteomics data

Due to the different assumption of the expression in normal condition, two
different approaches for protein profile comparison were performed. The assumption
of the similarity of SS and SR lines’ expression in normal condition revealed 67
proteins different between the two lines (Group 1).

The comparison based on the assumption of different protein profiles in
SS and SR lines in normal condition revealed 111 different proteins. Comparison for
drought responsive proteins in SS, 68 proteins were found significantly difference
and this group was called as Group 2. In SR, there were 55 proteins significantly
changed because of drought stress and was called as Group 3. And 6 proteins were
found in both SS and SR lines as described above.

The Venn’s diagram was done to show the overlapping data of all three
groups. Only four proteins were found commonly in all analyzes. Interestingly,
group 1 and 2 shared 25 proteins together. The majority of this group was metabolic
process. Group one and three shared only eight proteins. Interestingly, group three
shared fewer proteins with the other groups (Fig. 8). Based the Venn’s diagram, 78
proteins could not be detected by the comparison of the drought treated profiles only
and 30 proteins could not be detected if we the significant drought responsive protein
in each line before the comparison between lines. Taken together, combining both
comparison methods may contribute to the overall significant proteins that should

be considered as the contributors for drought tolerance.



54

Group 2 Group 3
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Figure 8. Venn diagram of significant different expressed proteins in all comparison
methods. There were 37 (group a), 41 (group b) and 30 (group c) identified proteins
present in each calculation, respectively. The comparison of control and drought
treatment in SS and SR found two common proteins (group d). There were eight
proteins (group e) found commonly between group one and group three only and 25
proteins (group f) found commonly in group one and group two only. Four (group
g) identified proteins were detected in all.
2. Identification and characterization of the drought responsive gene(s)
2.1. Selection and expression analysis of the drought responsive genes in
‘LPT123’ and ‘LPT123-TC171’ rice lines
2.1.1.  Co-expression analysis
Based on the comparison of drought responsive genes in SR lines, 55 proteins
were detected. These loci were analyzed with co-expression network analysis using the
RiceFrend (Sato et al., 2013). Seven proteins node presented in the co-expression
network are shown in Fig. 9. The seven proteins with the co-expression network were
transcription factor GTL1 (A), cytochrome P450 (B), GAPDH (C), LOC_0s08g17020
(expressed protein, D), tubulin/ftsz domain containing protein (E), cytochrome P450

(LOC_0s10g05020) (F), and stripe rust resistance protein Yrl0 (G). Node F and G

were also expressed in SS line, while node A-E were the proteins significantly changed
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in SR line only. All of these proteins have been reported that they are involved in stress
response and have interesting function. The list of genes that are presented in each main
node were presented in Table D3-D9 see in the Appendix D.

Overall, two identified networks are very interesting network. GTL1 and
GAPDH are two proteins that have high complexity network and KEGG function.
GTLL1 is an only network that show a connection with transcription factor. It has been
proposed to regulate stomata development which is a first stage for preventing water
loss. GAPDH showed the connection to metabolic pathways, especially the genes in
photosynthesis. This suggests the importance of the GAPDH function in response to
osmotic stress.

OsGTL1 (LOC_0s03g02240) is a transcription factor (indicated as red box) and
interact with two other transcription factors (LOC_0s10g37240 and
LOC_0s02g43300) which are their orthologs, surprisingly. Yoo et al. (2010) reported
that AtGTL1 is involved in stomatal development regulation which enhances drought
tolerance ability in Arabidopsis. However, there have been no reports for rice and
OsGTLL1 is closely related to AtGTL1 (Weng et al., 2012). The OsGTL1 level in SR
was significantly reduced after treated with 10% PEG. In contrast, OSGTL1 in SS
trended to increase compared to control group (Fig. 10A). A comparison of protein
expression pattern with the microarray database (GSE6901) found that a lower
expression of OsGTL1 under drought stress. However, OsGTL1 did not change their
expression because of salt stress while increased the expression in cold stress (Fig. D2.B
see in Appendix D). This result was consistent with the proteomic data that SR has

lower expression after osmotic stress (Fig. 10A).
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH; LOC_0s04g38600) is
well known to play an important role in the photosynthetic processes and associated
with drought tolerance in many plant species such as wheat(Cheng et al., 2015),
Thellungiella halophila (Chang et al., 2015) and potato (Kappachery et al., 2014). In
addition, among the 55 proteins tested for co-expression network, GAPDH is the only
gene showing the connection to metabolic pathways, especially the genes in
photosynthesis. Protein expression level of GAPDH was significantly higher after 2
hours of stress in SR while SS showed a similar trend of GAPDH expression compared
to the control (Fig. 10B). Base on microarray database, GAPDH had extremely high
expression under control condition but it reduces in the stress treatment (Jain et al.,
2007) (Fig. D2.D see in Appendix D). However, the proteomic data of SR showed an
opposite direction. GAPDH of SR line was up-regulated under osmotic stress (Fig.
10B).

Since OsGTL1 and GAPDH have a potential for being a candidate to crops

improvement against drought stress, these two genes were selected for further analysis.
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Figure 9. Co-expression networks of the significant changed proteins from SR line.
A-G indicate the genes are significantly expressed in SR lines. Squares represent
the transcription factors. Blue circles indicate nodes in the network, while the green,
red and pink circles in the ellipses represent the metabolic pathways in which the

node genes (ellipses) are involved.
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Figure 10. Protein expression patterns of OsGTL1 and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) after 10% PEG6000 treatment for 0, 2, 6, and 24 hours.
Expression level of four-week-old SS (open square) and SR (open circle) leaves in
normal (solid line) and drought stress (dash line), based on proteomic analysis.

2.1.2. Determination of trihelix transcription factor, GTL1 by gRT-

PCR

The effect of drought on an expression of GTL1 was monitored with gRT-PCR
in the first step. Rice seedling (one-week-old) were used in this experiment. According
to microarray database (GSE6893) in Rice eFP Browser, LOC_0s03g02240 is
expressed very low in mature and young leaves (Fig D2.A see in Appendix D). The
seedling shoots were cut and dried on the bench lab for 2 hours to create a dehydration
stress condition. It was found that relative expression of OsGTL1 transcript in SR leaves
was significantly decreased after dehydration while the relative expression of OsGTL1
in SS leaf tissues was increased (Fig. 11A). DREB2A was used as osmotic stress-
inducible reference gene. In the dehydration stress, the relative expression of DREB2A
induced in both SS and SR. The data were normalized by EF1-alpha expression. This
data suggested that drought stress induced OsGTL1 gene expression differently in SS

and SR led to the difference in drought tolerant ability.
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Figure 11. Relative expression of OsGTL1 and DREB2A transcripts. SS (white bar)
and SR (grey bar) leaves of seven-day-old seedlings were used to perform gRT-PCR
in normal (solid color) and dehydrated (dry) conditions (upward diagonal fill). The
different letters above the bars represent the significant difference of the mean at
p<0.05, analyzed with DMRT. Error bars present SE of each experiment.
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2.1.3. Determination of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) by semi gRT-PCR

The semi-quantitative RT-PCR was performed to validate the expression of
GAPDH genes. EF1-a were also used as an internal control, while DREB2A served as
a stress-responsive gene control. In the control plants, there were no expression of
GAPDH in SS but low intensity of expression in SR. The GAPDH expression was up-
regulated in both SS and SR leaves treated with air-dry for 2 hours, however; the
increase of gene expression was greater in the SR leaves (Fig. 12). This was consistent
with the increase in GAPDH protein abundance during our proteome-level analysis
(Fig. 10B). These observations indicate that these genes are regulated at the
transcriptional level in response to dehydration.

A gene which encode Ferredoxin-NADP reductase (FNR) was also investigated
as it functions in photosystem | which regulates plant NADP(H) levels. Both GAPDH
and FNR play an important role in the photosynthetic process which protects from
photosystem damage by balancing the NADP(H) level. However, the FNR expression
was similar in all treatments except in the drought condition of SR which slightly

decreased (Fig. 12).
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Figure 12. Semi-quantitative expression of GAPDH, FNR, DREB2A and EF1-a in
SS and SR leaf. Seven-day-old rice were used. Control plants are indicated as C and
cut and air-dried are indicated as D. The DREB2A was used as a stress indicator
and EFlalpha was used as a housekeeping gene.

2.2. Function analysis for drought resistant ability
2.2.1. Determination of relative water content (RWC) and stomatal
density (SD) in SS and SR rice lines

The phenotype the phenotype analysis of SS and SR was conducted to clarify
drought tolerance ability of these two rice lines. In this study, all the rice plants were
cultivated in soil pots. Fresh weight (FW), dry weight (DW), stomatal density (SD)
and leaf relative water content (RWC) of SS and SR were monitored. Rice plants at
four-week-old were used. In drought treatment, the experimental plants were not
watered. Water withholding was stopped when the soil reached 55-60 % field capacity
(FC) (approximately 5 days), and this FC was maintained to the end of experiment (20
days) by addition of water daily. The limited water led to significant growth reduction
in both rice lines, compared to the plant grown in well-watered conditions (Fig. 13A
and B). After 10 and 20 days of stress, shoot and root fresh weight of SS and SR were

significantly reduced by the drought stress. However, SR showed significant higher
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shoot FW (Fig. 13A) and DW (Fig. 13C) than SS after 20 days of drought stress. Shoot
(Fig. 13C) and root (Fig. 13D) dry weight also showed the similar responses to fresh
weight due to drought treatment. Therefore, this data confirmed that these two rice lines
displayed contrasting growth responses to drought stress.

Leaf relative water content and stomatal density of SS and SR rice were
investigated following a previous study of Yoo et al. (2010). The researchers showed
that GTLL1 is a positive regulator of SD which also affects RWC under drought stress.
The youngest fully expanded leaf was used to collect RWC and SD at each timing.
After 10 days of drought stress, only RWC of drought-treated SS leaf was significantly
lower compared to other treatments while drought treated SR still had similar RWC
with the normal condition (Fig. 13E). RWC of SS and SR leaves were significantly
reduced after 20 days of drought stress. However, the maintenance of RWC was higher
in SR than SS lines (Fig. 13E).

For the stomatal density study, the youngest fully expanded leaves of drought
treated SR showed a significant lower SD, when compared to SS and untreated-SR
leaves (Fig. 13F). After 20 days of drought stress, SD of SS became lower but was not
significantly different from normal conditions, while SD of SR was shown to be
significantly lower than normal grown plants (Fig. 13F). In addition, the stomata
imprint of all treatments were obvious that drought treated SS had lower SD than other
treatments (Fig. 14). These data showed that OsGTL1 might play a crucial role in

regulating stomatal density during drought stress.
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Figure 13. Growth and physiological responses to drought stress of SS and SR. An
average fresh weight of shoots (A) and roots (B), dry weight of shoots (C) and roots
(D), leaf relative water content (E) and stomatal density (F). Four-week old SS
(white color) and SR (grey color) were planted in soil. Control plants were well-
watered (plain color) and drought-treated plants were maintained at 55-60 % field
capacity (FC) (upward diagonal fill). Data were collected on day 0, 10 and 20 after
treatment. The different letters above the bars represent the significant difference of
the mean at p<0.05, analyzed with DMRT. Error bars present SE.
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Control Drought

Figure 14. Images of abaxial surface imprint of SS (A and B) and SR (C and D)
grown in normal (A and C) and drought (B and D) conditions. Plants were grown
as described in Figure 11. The imprint was obtained from the middle part of the
youngest fully expanded leaves after 20 days of the treatments. Stomata are shown
at the red arrow tips. Vein and trichome images were also captured in the imprint
as shown.

2.2.2. Determination of leaf gas exchange parameters in SS and SR

rice lines
The photosynthesis process is one factor that can be altered by drought stress.
Therefore, the photosynthesis parameters were measured. As mentioned in material and
method section, the leaf gas exchange parameters were measured in two type of leaf;
old leaf and young leaf. The old leaf was the youngest fully expanded leaf at day 0 and
was measured repeatedly throughout the experiment, while, the young leaf was the

newly youngest fully expended leaf at any time point of the measurement.
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2.2.1.1. Effect of drought stress in the old leaf

In the old leaf, net photosynthesis rate (A) in SS and SR was significantly
reduced after drought stress. A was extremely reduced after 3 day of drought stress from
31.76 to 7.09 umol CO2 m2 stin SS line and from 29.39 to 13.90 umolCO, m2 s?tin
SR line. SS and SR lines had similar net photosynthesis rates in each timing except for
3 days of the stress which SR line had higher net photosynthesis rate than SS line. The
stress-treated rice almost died after 9 days of drought stress, so net photosynthesis rate
was very low in both rice lines (1.99 umolCO, m?s?tin SS and 1.96 umolCO, m? st
in SR) (Fig. 15A).

Another parameter is stomatal conductance or gs which can refer to open/close
stomata. Water enters the plant via stomata thus gs and transpiration (E) values are
frequently related. In this study, gs and E also showed similar patterns (Fig. 15B and
C). At the beginning of the experiment gs of all leaves were similar, but after 3 days of
drought treatment, gs and E of both lines were significantly decreased (Fig. 15B and C).
However, after 6 days of the treatment, gs and E were increased back to the similar level
of the normal grown plants, and then after 9 days, the significant lower of gs and E were

detected. The reverse of gs and E were consistent with the tendency of A (Fig. 15A).
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Figure 15. Photosynthesis parameters were measured in the old leaf. A net
photosynthetic rate (A) (A), stomatal conductance (gs) (B), transpiration rate (E) (C),
intercellular CO- concentration (Ci) (D) and water use efficiency (WUE) (E)) of 4-
week-old SS and SR. SS and SR are presented in white and grey color, respectively.
Plain color represents control condition which grown in half strength Yoshida.
Upward diagonal fill represents the drought stress condition as PEG600 was added
to the solution. The different letters above the bars represent the significant
difference of the mean at p<0.05, analyzed with DMRT. Error bars present SE.
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At day 0 and 3, intercellular CO> concentration (Ci) did not change in the
drought stress treatment of SS and SR. It was maintained at around 310- 340 umolCO-
m2 s in all conditions whereas Ci significantly increased after 6 and 9 days after the
drought stress. This increased from 322.51 umolCO, m? s to 342.93 umolCO, m?2 s”
1in SS and from 329.71 pmolCO, m2 s to 347.14 umolCO, m? s in SR at day 6. At
the last day of stress, Ci in the stress-treated plant grow bigger than day 6, at 354.19
umolCO2 m? st in SS and 357.05 pmolCO, m?2 st in SR (Fig. 15D).

Under normal condition, all the plants could maintain water use efficiency
(WUE) to the level of approximately 3 umolCO, mmol™ H20 in both rice lines. After
3 days of the treatment, only PEG-treated SS had significantly lower WUE (2.16
umolCOz mmol? H,0). However, PEG-treated SR seemed to have the reduction of
WUE, but it was not significantly different to the control. WUE of SR continued to
decline after 6 and 9 days of stress. On day 9, all the PEG-treated rice had very low
WUE, which was about 1.1 pmolCO, mmol™ H20 in both lines (Fig. 15E).

This data suggested that the ability to retain net photosynthesis rate and WUE
during the drought in the old leaf of SR is due to other factors. The lower SD was not a

physiological character that helped maintain A and WUE in the fully developed leaf.
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Figure 16. The measurement of electron transport rate (ETR) (A), effective
quantum yield of photosystem II photochemistry (OPSII) (B), ETR/A ratio (C), and
AJ/Ci ratio (D) in the old leaves. SS and SR are presented in white and grey color,
respectively. Solid color represents normal grown treatment in half strength Yoshida
solution. Upward diagonal fill represents drought stress condition treated by
addition of PEG6000 to the solution. The different letters above the bars represent
the significant difference of the mean at p<0.05, analyzed with DMRT. Error bars
present SE of the experiment.

Electron transport rate (ETR) and ®PSII are the two values representing
electron transfer in the photosynthetic process. The ETR and ®PSII results were
correlated. The old leaf showed no significant difference in ETR and ®PSII at the
beginning of the experiment. After PEG-treatment, both parameters of SS and SR
leaves significantly decreased (Fig. 16 and B). In the normal condition, ETR value is
approximately 150-200 pmol m s, ETR gradually reduced to around 60 pumol m2s-

1in SS and SR after drought treatment. Interestingly, PEG-treated SS had significantly
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lower ETR after 3 day of stress and then 3 days later, it was slightly increased. ®PSII
showed the similar response. The ETR and ®PSII were reduced at day 9 after osmotic
stress in both lines (Fig. 16A and B).

A/Ci was another parameter that had a similar response to ETR and OPSIL
Osmotic stress significantly reduced A/Ci in both SS and SR after 3, 6 and 9 days of
stress. After 3 days of stress, PEG-treated SR had significantly higher A/Ci ratio than
SS. The values were 0.48 and 0.21 in SR and SS, respectively (Fig. 16D).

No significant changes in the ETR/A ratio were found in any treatments at day
0, 3 and 6. However, significant increase in ETR/A ratio was found only in the PEG-
treated group after 9 days of stress. This raised up to approximately 5 times untreated
group (Fig. 16C).

Fv/Fm was measured in order to investigate the efficiency of photosystem Il
under osmotic stress in the old leaves of both lines. At the beginning of the experiment,
Fv/Fm was about 0.8 in both lines, and it was maintained until 3 days of osmotic stress.
After 6 days of stress, the significant decrease of Fv/Fm was found in SS leaves, but
SR leaves showed the ability to maintain Fv/Fm. However, after 9 days of the treatment,
Fv/Fm of both lines was declined, but due to the large variation, no significant
difference was found (Fig. 17A).

Pi or the performance photosynthetic index is the associated value with Fv/Fm.
The Pi response was similar to Fv/Fm. There was no significant difference in Pi value
at the beginning of the experiment and after 3 days of the stress. This values were
maintained at 6-8. SS after treated with 12.5% PEG for 6 days showed significantly
lower Pi value, while SR still had a slightly higher values. On day 9, SS and SR under

stress condition had significantly lower Pi compared to the normal condition (Fig. 17B).
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Figure 17. The measurement of maximum quantum efficiency of PSII (Fv/Fm) (A)
and photosynthesis performance index (Pi) (B) in the old leaf. SS and SR are
presented in white and grey color, respectively. Solid color represents control
condition which grown in half strength Yoshida’s solution. Upward diagonal fill
represents drought stress condition as PEG6000 was added to the solution. The
different letters above the bars represent the significant difference of the mean at
p<0.05, analyzed with DMRT. Error bars present SE.

2.2.2.2. Effect of drought stress in the young leaf

The measurement of the photosynthetic rate in the young leaves started after 3
days of the experiment, when the new fully expanded leaves were completely
developed. Both SS and SR plants had the significant lower net photosynthesis rate (A)
after 3 days of osmotic stress. Interestingly, A of the young SR leaves was lower than
A of young SS leaves. However, A of both lines was similar after the extended period
of osmotic stress (Fig. 18A).

For the stomatal conductance of the new leaves, it was also declined in both
lines after 3 days of drought stress, and the stronger reduction of gs was found in SR
line after 3 and 6 days of the treatment. However, gs of the both treated plants’ young

leaves were similar after 9 days of the treatment (Fig 18B).
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The transpiration of the young leaf also had a similar trend as gs. After 3 days
of drought stress, the transpiration value significantly reduced in SR. This might be due
to lower SD in SR, leading to less water loss. However, treated SS and SR were not
significant difference from the untreated plant after 6 days of stress. At 9 days after
stress, the E was reduced under osmotic stress in both line (Fig. 18C).

Although the reduction of A and gs was found in the young leaves of both lines
after 3 days of osmotic stress, they could maintain the internal concentration of CO-
(Ci). After 6 days of stress, the Ci of the stress treated plants was higher than the normal
grown ones. The decline of Ci was found after 9 days of stress. However, they were
not significantly different from the normal grown plants of both lines (Fig. 18D).

Similarly, water use efficiency of all treatments were not significantly different
at day 3. However, WUE dropped after 6 days of osmotic stress in both SS and SR.
After 9 days of stress, the WUE increased back to similarly level of untreated plants
(Fig. 18E)

These data suggested that the regulation of stomatal development via OsGTL1

caused the better preservation of water in the young leaves of SR line.
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Figure 18. The measurement of net photosynthetic rate (A) (A), stomatal
conductance (gs) (B), transpiration rate (E) (C), intercellular CO2 concentration (Ci)
(D) and water use efficiency (WUE) (E)) in the new leaf. SS and SR are presented
in white and grey color, respectively. Plain color represents control condition which
grown in half strength Yoshida. Upward diagonal fill represents drought stress
condition as PEG600 was added to the solution. The different letters above the bars
represent the significant difference of the mean at p<0.05, analyzed with DMRT.
Error bars present SE.
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ETR, ®PSII and A/Ci results had a similar trend in all timings (Fig. 19A, B and
D). All three values in the PEG-treated plant were reduced by around 50% from the
untreated plants. After 3 days of osmotic stress, PEG-treated SR seemed to be lower in
all three values than PEG-treated SS.

The ratio of ETR/A was significant difference in all timings. The ETR/A ratio
of PEG-treated SR was higher than other treatments around 60% after 3 days of the
stress. However, the similarly ETR/A ratio in all treatments were showed in day 6 and

it extremely increased in treated plant at day 9 (Fig. 19C)
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Figure 19. The measurement of electron transport rate (ETR) (A), effective
quantum yield of photosystem II photochemistry (DPSII) (B), ETR/A ratio (C), and
AJ/Ci ratio (D) in the new leaf. SS and SR are presented in white and grey color,
respectively. Plain color represents control condition grown in half strength
Yoshida. Upward diagonal fill represents drought stress condition as PEG600 was
added to the solution. The different letters above the bars represent the significant
difference of the mean at p<0.05, analyzed with DMRT. Error bars present SE.
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Fv/Fm value had no significant difference in the young leaf from all timings.
The PEG-treated and untreated plant showed Fv/Fm value around 0.8 in all treatments
(Fig. 20A).

At day 3 of experiment, the photosynthesis performance index or Pi was no
significant difference. PEG-treated SS had the highest Pi than other treatments after 6
days of osmotic stress, while PEG-treated SR had lowest Pi after 9 days of stress (Fig.
20B).

A B

1.00 1 ns ns ns 10 1

ns

0.80 - 8 1
E 0.60 - - 6
T 0.40 | 4 -

0.20 ~ 2

0.00 0

3 6 9 3 6 9
Day(s) after treatment Day(s) after treatment
OSS BSS+PEG BSR EBSR + PEG OSS BSS+PEG ESR ®BSR+PEG

Figure 20. The measurement of maximal quantum efficiency of PSII (Fv/Fm) (A)
and photosynthesis performance index (Pi) (B) in the new leaf. SS and SR are
presented in white and grey color, respectively. Plain color represents control
condition which grown in half strength Yoshida. Upward diagonal fill represents
drought stress condition as PEG600 was added to the solution. The different letters
above the bars represent the significant difference of the mean at p<0.05, analyzed
with DMRT. Error bars present SE.
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2.2.3. Investigation of drought stress effect in wild type and gtl1-4
2.2.3.1. Determination of gene expression by semi-
guantitative RT-PCR

An investigation of Arabidopsis mutant, gtl1-4 was selected according to a
study of Yoo et al. (2010). It showed that GTL1 negative regulates SDD1 (Stomatal
Density and Distributionl) expression which lead to lower SD, higher water use
efficiency and higher survival rate. However, most of the data were conducted under
normal condition in wild type and gtl1-4. Therefore, a few of the parameters need
further investigation.

Firstly, GTL1 expression in response to water stress was investigated by using
semi-quantitative RT-PCR. In wild type, the expression of this transcription factor was
gradually reduced under dehydration (shoot removal from roots and air dried on a bench
lab). In contrast, SDD1 transiently increased after air-drying for 30 minutes. DREB2A
which is a drought-responsive gene was gradually increased overtime and ACT2

(housekeeping gene) was constitutively expressed (Fig 21).
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Figure 21. Transcription level of GTL1, SDD1, DREB2A and ACT2 under
dehydration in 5-week- old wild type (Col-0). The dehydration started after the shoot
was cut and frozen immediately in liquid nitrogen (O min). Other timings, the shoot
was air-dried for 30 and 60 minutes before freezing in liquid nitrogen.

2.2.3.2. Determination of media water content and relative
water content during water deficit

The next experiment was an observation of RWC overtime to confirm if gtl1-4
had the ability of survival through the drought stress because of higher RWC. In the
preliminary experiment, it was found that the fully expanded leaves wilted faster than
expanding leaves during the water withholding period (Fig 22A). This suggested that
the expanding leaves had the higher ability to maintain RWC than the fully expanded
leaves under the drought stress. Hence, the RWC of both expanding leaves and fully
expanded leaves were observed.

In this experiment, media water content (MWC) gradually reduced in drought
treatment (Fig 22B). The analysis of RWC differences between expanding and fully
expanded leaves was determined. The differences of RWC between well-watered and
withholding water group could be detected on day 9 after treatment in both types of

leaves and the RWC of stressed plants continually reduced until day 15 (Fig. 22C and
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D). There was no significant difference in RWC between types of leaves. Interestingly,
both types of leaves had the same decreasing slope of RWC. This suggested that they
had a similar rate of water loss. In addition, the higher RWC was detected in gtl1-4
expanding leaves (33%) and fully expanded leaves (24%) after fifteen days of
withholding water when compared to wild-type plant (around 15% in both types) (Fig.

22C and D).
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Figure 22. Photograph of wild type and gtl1-4 under drought stress for 15 days
(A). Media water content (B), relative water content of expanding (C) and fully
expanded (D) leaves in well-watered (WW) (solid line) and water stress (WS)
(dash line) were observed. Wild type (Col-0) is presented as squares and gtl1-4
presented as circles. The asterisk above the lines represent the significant
difference of the mean at p<0.05, analyzed with DMRT. Error bars present SE in
the experiment.
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2.2.3.3. Determination of survival rate in wild type
and gtl1-4

When the stress-treated plants were re-watered, only the mutant line fully
recovered, but the wild type could not survive. It was hypothesized that the recovery
of gtl1-4 was because the RWC was maintained better in the mutant than wild type
during the stress period (Fig. 22C and D). Therefore, the next experiment was the
observation of survival plants and RWC of death/survival plants overtime.

The Arabidopsis was watered normally until starting the experiment. It was
found that gtl1-4 had higher RWC than wild type (Col-0) throughout the experiment
(Fig. 23A). The survival rate was also higher in gtl1-4 than wild type (Fig. 23A). There
is 100 % recovery of gtl1-4 and wild type on day 8 through day 12. After withholding
water for 13 days, gtl1-4 still had 100% recovery but wild type showed 80% recovery.
The recovery rate continued to reduce after that (Fig. 23A). The calculation of RWC
from the plants that can/cannot recover were also determined. Interestingly, both
genotypes could not recover after re-watering when RWC was lowers than 15% (Fig.

23B). This means that the survival rate depended on their relative water content.
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Figure 23. Percentage of relative water content during withholding water (primary

y axil) and percentage of survival overtime after re-watering (secondary y axil) (A)
and percentage of relative water content separately calculated of survival and die
wild type (Col-0) and gtl1-4 (B). The analysis was performed by DMRT with the

significant difference of the mean at p<0.05. Error bars present SE.



82

2.2.3.4. Determination of stomatal density, stomatal index
and leaf development during water deficit

Two leaves that developed before and during drought stress were used to collect
the stomatal density to test if the knocked out of GTL1 affected SD. The photograph
was taken twice a day from 4-leaf-stage until finish the experiment and used to indicate
position of leaf number 8 and 12. Leaf number 8 which fully developed before the
experiment and leaf number 12 which emerged during drought stress were determined
(Fig. 24).

SD on the abaxial leaf was not significantly different in any treatments (Fig.
25A\). Leaf 8 and 12 had significant difference in SD on the adaxial leaves. In addition,
the stress-treated mutant did not show the lower SD compared to the normal one (Fig.
25B).

Stomatal index (SI), the number of stomata per total epidermal cells, was also
investigated. Significant difference of Sl in the abaxial leaf was found in both leaf
numbers, while the significant difference in Sl in adaxial was found only in leaf 8 (Fig.

25C and D). From this results, the mutant did not showed phenotype as hypothesized.
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Figure 24. Photograph of leaf development in wild type (Col-0) and gtl1-4. The
photographs were used to determined the number of leaves and number of fully
expanded leaves. Leaf no. 8 and 12 were used for the stomatal density experiment.
The media water content showed water status during the leaf was developed.
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Figure 25. Stomatal density (SD) (A and B) and stomatal index (SI) (C and D)
adaptation on abaxial leaf (A and C) and adaxial leaf (B and D) under drought stress.
Leaf no. 8 and 12 of wild type (Col-0: white color) and gtl1-4 (grey color) from the
figure 18 were determined. Well-watered (WW) is presented in plain color and
water stress (WS) is presented in upward diagonal fill. The different letters above
the bars represent the significant difference of the mean at p<0.05, analyzed with
DMRT. Error bars present SE.

To determine the leaf number, a photograph was taken. From the picture, it
shows a few differences in leaf development. So total leaves number and total fully
expanded leaves were investigated. The experiment started after 26 days of the
germination and stress-treated groups were withholding water for 10 days. After
germination for 26 days, wild type and gtl1-4 had similar total leaf numbers (around 8
leaves) and it increased continuously overtime. The difference in the stress-treated
plants and untreated plants were found at day 35. The significant difference in total leaf

number was found on day 37, 39, 41 and 43 after germination. The wild type and gtl1-
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4 under drought stress had lower total leaf number compared to normal condition but
there was no difference between genotypes (Fig. 26A).

Wild type and gtl1-4 under normal and stress conditions had a similar total fully
expanded leaf number at the beginning of experiment. After 10 days of withholding
water (36 days after germination), the differences of leaf development was found
between the treatments. Wild type under withholding water had significantly lowest
total fully expanded leaves number from day 34 afterward. While, gtl1-4 under drought
stress had a significantly different number of total fully expanded leaves compared to
the normal condition only on day 37 and 39. After that, the fully expanded leaf number
increased in gtl1-4 and it seemed to catch up with the untreated-plant at day 46.

However, wild type still had the lower number of fully expanded leaves (Fig. 26B).
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Figure 26. Leaf development of wild type and gtl1-4. Total leaf number (A) and
total fully expanded leaves (B) were counted from the photograph. In control (WW)
(solid line) and water stress (WS) (dash line) were observed. Wild type (Col-0) is
presented as squares and gtl1-4 is presented as circles. The asterisk above the lines
represent the difference of the mean at p<0.05, analyzed with DMRT. Error bars
present SE.



CHAPTER V
DISCUSSION

1. Proteomics study
1.1. Investigation of protein profiles after drought stress by using
proteomic approach

1.1.1 Protein profiles of SS and SR lines

Since the first analysis was done in year 2013 and the NCBI database rapidly
expanded. Therefore, the proteomics data was re-analyzed in year 2017 with the most
recent NCBI database which is expected to deliver some new and interesting finding
for the study. There were difference in total proteins number obtained from GeLC-
MS/MS. It was clear that the raw data from the re-analysis revealed a bigger protein
list. It was raised up around 3 time in 2017. For SS, approximately 20% of significantly
different expressed proteins were both found in the 2013 and 2017 analysis. Similarly,
30% of common significantly different expressed proteins in SR were found in both
analyses. The low amount of the same proteins found in both analyses might be due to
the fact that some proteins were not included in the 2013 database. Moreover, the Blastp
was added into the process to validate the existence of the rice protein in 2017 database,
so some of the proteins found in 2013 were eliminated from the list.

The functional groups from the analysis in 2013 and 2017 were showed
similarly (Table D11. see in Appendix D). Some of the functional groups were present
in both analysis, while some of them were found in either the 2013 or 2017 analysis.
The proteins which were classified into proteinase inhibitor and replication were found

only in the 2013 analysis. Two functional groups, cellular process and post-translation
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were revealed only in the 2017 analysis. In SR, the post-transcription was discovered

in both analyses; however, the percentage was different.

1.1.2 Significant different protein profiles between drought-treated
LPT123 (SS) and LPT123-TC171 (SR)

Two strategies of the comparison between drought responsive protein profiles
of SS and SR were designed. The first one was the direct comparison of drought
expressed proteins in SS and SR and identified the significantly differential expressed
proteins between SS and SR. The second one was the comparison between the proteins
expressed in normal and drought stressed conditions of each line to identified the
significantly responsive proteins due to drought stress in each line, followed by another
comparison to determine the differentially expressed proteins between SS and SR.

For the first method of comparison, the total of 67 drought responsive proteins
from SS and SR were detected, while the second method revealed a total of 117
proteins. Although the second method could reveal more drought responsive proteins
than the first strategy, 30 proteins were missing (Figure 8). This group represented the
proteins that were not significantly changed their expression under drought stress in
both lines, but the level of their expression was significantly different between SS an
SR lines. These proteins should be considered to be possible proteins responsible for
drought tolerance in SR line.

If we combine two methodologies of the comparison together, we will obtain
the total of 147 proteins that have the potential to be responsible for drought tolerance.

In addition, exome study of Udomchalothorn et al. (2014) showed that there are

35,431 SNPs found in SR genome compared its background, SS. The point mutations
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spread throughout their genome. Approximately 10,000 genes are affected by the
mutation. Among the genes, 212 genes are abiotic stress-associated genes and the
researcher found that 23 genes in SR seemed to be lacking in function. The resistant
rice still has normal growth while they had a huge difference in exome compared with
SS. In addition, the phenotype of SS and SR are similar. This evidence suggested that
SS and SR are different in their genome and the genes did not express similarly in
normal growth. Therefore, it is needed to include control condition in the analysis of
each rice line. Moreover, to get all the important protein, two comparing methods
should be performed.

From all analysis methods, DDT domain-containing protein, stripe rust
resistance protein Yr10, NBS-LRR disease resistance protein and BTBA2-Bric-a-Brac,
tramtrack, broad complex BTB domain with ankyrin repeat region were found
commonly in all analysis method (group g) (Fig. 8).

DNA binding homeobox and different transcription factors (DDT) domain has
been characterized as a domain in bromodomain PHD finger transcription factors
(BPTFs) (Doerks et al., 2001). It was shown to have the DNA-binding function. A study
of maize PHD finger family showed that DDT domain was found only in ZmPHD27.
However, the function of ZmPHD27 was not stated in the research (Wang et al., 2015).
In addition, the function of DDT domain-containing protein encoded from
LOC_0s04935864 has not been reported.

The largest group of R protein contained a nucleotide binding site (NBS) and
leucine-rich repeats (LRRs) (Dangl and Jones, 2001). Stripe rust resistance protein, is
encoded from Yrl0. It has evolutionary-conserved and unique CC-NBS-LRR

sequence (Liu et al., 2014). This protein was up-regulated in stress condition of all rice
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lines when compared with control condition. However, SS had higher up-regulation
than SR. This gene is conserved among plant species, including wheat, maize, sorghum
and rice. Another NBS-LRR disease resistance protein, LOC_0s07929820, was also
found to be up-regulated in SR line, but down regulated in SS line when compared
between control and drought condition. A study of Prasch and Sonnewald (2013)
showed that a signaling network was affected by multiple stress treatments (heat,
drought, and virus treated Arabidopsis). Different combination of stress showed
significant different expression patterns of TIR-NBS-LRR genes. The stresses alter the
disease defense in Arabidopsis which lead to the deactivation of other defense response.

BTB (Broad-complex, Tramtrack, and Bric a brac) proteins have been identified
in poxviruses, Arabidopsis, rice and other eukaryotes which have diverse functions e.g.
transcriptional regulation, chromatin remodeling to protein degradation and
cytoskeletal regulation (Chaharbakhshi and Jemc, 2016). BTB domain is known to be
present in conjunction with the MATH domain. The MATH-BTB proteins have a main
function in ABA signaling (Kushwaha et al., 2016). The expression of BTAB2 was
higher in SR than SS under drought stress condition. This may result in rapidly response

to the stress in SR. However, there is no report about function of BTAB2.

1.1.3. Two drought-responsive genes commonly found in group two
and three
From Figure 7, six proteins were significantly affected by osmotic stress in SS
and SR (group d and g). Two drought-responsive genes were found only in group two

and three but not in group one that was a comparison of drought-treated plants. These
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two proteins are a helicase domain-containing protein and cytochrome P450. Both
proteins are up-regulated in SS and SR rice responding to osmotic stress.

A biggest group of RNA helicase genes is DEAD-box genes such as STRS1,
STRS2, TaRH1, SIDEAD31, and OsBAT1 (Barak et al., 2014; Chen et al., 2014; Kant
etal., 2007; Tutejaetal., 2015; Zhang et al., 2014; Zhu et al., 2015). STRS1 and STRS2
was reduced by salt, drought, and heat stress in Arabidopsis, and in turn induced the
expression of several stress responsive genes (Barak et al., 2014; Kant et al., 2007). In
wheat, low temperature, dehydration and salt stress induced accumulation of TaRH1
(Triticum aestivum RNA helicase) (Zhang et al., 2014). In tomato, SIDEAD31 was
induced by heat, cold, and dehydration and SIDEAD31-overexpressed resulted in
enhanced salt and drought resistance (Zhu et al., 2015). A transgenic rice which
OsBAT1 constitutively expressed can germinate normally and tolerate to high
concentration of salt (Tuteja et al., 2015). OsSUV3, encoding DNA/RNA helicase and
belonging to the Ski2 family of DExH/D-box helicases was shown to function in salt
tolerance in rice by maintaining photosynthesis and antioxidant machinery (Tuteja et
al., 2014). Therefore, the helicase domain-containing protein detected in this study may
play a role in drought stress response in rice.

Cytochrome P450s (CYPs) is one of the largest protein coding gene family and
play an important role in plant hormone biosynthesis, catabolism and primary and
secondary metabolites synthesis. However, the majority of CYPs was still unknown
(Nelson and Werck-Reichhart, 2011; Tamiru et al., 2015). A cytochrome P450,
CYP707A family member was identified as ABA 8’-hydroxylase, which degraded
ABA under dehydration stress condition. The knock-out mutant of CYP707A3 gene led

to drought tolerant phenotype (Umezawa et al., 2006). However, the ectopic expression
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of PtCYP714A3 from Populus trichocarpa improved salt tolerance in transgenic rice
(Wang et al., 2016). Moreover, the expression of LOC_0s08g01480, encoding CYP-
like protein, in Arabidopsis caused the tolerance to heavy metal, salt and dehydration
stress (Rai et al., 2015). The up-regulated cytochrome P450 (LOC_0Os10g05020)
suggests the involvement of this protein in osmotic stress response. The dssl rice
mutant had higher drought tolerant ability compared with wild-type rice. The DSS1,
belong to P450 families regulate growth and enhance drought tolerant by balancing
gibberellin and ABA (Tamiru et al., 2015). The percent induction of
LOC_0s10g05020 in SR was higher than SS. This suggested that cytochrome P450s is

one of the proteins that regulate rice development under stress.

1.1.4 Significant different protein profiles found in group three
Expression of fifty seven proteins were significantly different when compared
between control and drought stress in SR and the proteins were categorized into 10

functional groups. Some of the protein functions were described here.

Transposable elements
The genes encoding the proteins that accumulated only in the drought-tolerant
line in response to osmotic stress may be useful as drought-tolerance genes. Protection
from environmental stresses may be mediated by epigenetic events, such as the
induction of the expression of adjacent genes by transposable elements. More than one
fifth of 51 proteins detected only in the SR line were consisted of a combination of
retrotransposons and transposons. Transposable elements (TEs) are classified as Class

| (copy-and-paste mechanism via an RNA intermediate or retroelement) or Class Il
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(cut-and-paste mechanism via a DNA intermediate) transposons, and are major
components of eukaryotic genomes (Anca et al., 2014; Chadha and Sharma, 2014).
Additionally, the LTR retrotransposons, which may mediate somaclonal variation, are
the major plant TEs (Grandbastien, 2015; Wessler, 1996). For example, copper and heat
shock stresses induce TE activities, leading to instability in the Magnaporthe oryzae
genome (Chadha and Sharma, 2014). The Hordeum vulgare DEMETER gene
(HvVDME) contains an LTR retrotransposon element. Its expression is induced in
drought-tolerant barley exposed to drought conditions, resulting in differential DNA
methylation in drought-sensitive (e.g., ‘Caresse”) and drought-tolerant (e.g., ‘Demetra’)
cultivars (Kapazoglou et al., 2013). The activation of TESs is one of the mechanisms that
enables self-protection and self-repair. It also stimulates the expression of other genes

responsible for stress responses (Grandbastien, 2015).

Plant metabolism

Several proteins involved in metabolic processes increased or decreased
abundance under osmotic stress (Table D1). When plant cells experience abiotic stress,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is one of the most prominent
protein targets for oxidative modification (Hildebrandt et al., 2015). In a proteomic
analysis of overexpression of TRRF1 in sugarcane displayed an up-regulation of
GAPDH after treated with PEG (Rahman et al., 2014). A similar result was found in a
protein identification of two contrasting drought-tolerant wheat. The GAPDH level
increased when treated with PEG6000 (Cheng et al., 2015). Another protein that
involved in plant metabolism is enolase. Enolase is an enzyme in glycolytic pathway

which categorized into metabolic process. The significant reduction was found in SR
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line only. In a previous study, enolase protein abundance was significantly higher in
drought-tolerant Chinese spring wheat than the drought-sensitive cultivar after treated
with PEG6000 for 48 hours (Cheng et al., 2015). This pointed out that drought tolerance
in different species might use different metabolic pathways for drought adaptation.
Both GAPDH and enolase changes suggested the adaptation in carbohydrate
metabolism to drought stress in SR line. The regulation of photosynthetic efficiency
under drought stress leads to the maintenance of grain yield in rice (Ambavaram et al.,
2014). Sugar accumulation is also the mechanisms for tolerance to abiotic stresses,
including drought (Pandey and Shukla, 2015), salt (Udomchalothorn et al., 2009) and

chilling stresses (Morsy et al., 2007).

Plant signaling

Protein phosphatase 2 C (PP2C) is a big group of protein which interact with a
wide range of targets such as receptor-like kinase (RLKSs) and mitogen-activated protein
kinase (MAPK). PP2C was found in only SR responding to drought. PP2C involves in
signal transduction network activated by drought, salinity, and especially abscisic acid
(ABA) (Himmelbach et al., 2002). ABA is an important hormone regulates many genes
in stress-signaling pathway. ABI1 is one of PP2Cs interacting with ATHBG as a negative
regulator of ABA signaling pathway and the overexpression of this gene decreased
ABA sensitivity and led to water loss more than the detached leaves of wild type
(Himmelbach et al., 2002). Consistently, ZmPP2 C overexpression decreased drought
tolerance ability. The transgenic plant had more rapid water loss than wild type (Liu et

al., 2009).
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Defense mechanism

Stripe rust resistance protein Yr10, NBS-LRR disease resistance protein and
BTBA2 were categorized into plant defense. As mentioned above, SR might respond
to the stress quicker than SS by the regulation of BTBA2 protein and SS had a lesser
chance to survive during the stress due to the activation of disease resistance proteins.

Osmotic stress caused the changes in proteins with signaling and defense
functions differently between SS and SR lines. These suggested that these two lines had
different signaling pathways and used different defense responses in order to cope with

osmotic stress.

Transcription

TFs trigger other stress-responsive genes and have been reported to involve with
drought stress. TFs that were found in this study are WRKY106, ZOS11-11 - C2H2
zinc finger protein, trihelix transcription factor GTL1, OsSPL11 and OsSPL17 - SBP-
box gene family member. WRKY genes play an important role in developmental process
of plant under normal condition. The overexpression of OsSWRKY45 and OsWRKY72 in
Arabidopsis (Song et al., 2010) and the constitutive expression of GmWRKY54 from
Glycine max (Zhou et al., 2008) enhanced drought and salt tolerance ability. However,
the function of WRKY106 found in this study has not been reported. A C2H2 zinc
finger protein from soybean (GmZFP3) was reported as a negative regulator of drought
stress. In addition, the expression of GmZFP3 increased after treated with PEG and
ABA (Zhang et al., 2016). Another transcription factor, trihelix transcription factor

GTL1, have been reported as a positive regulator of stomatal density which led to better
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drought tolerant ability. The loss-mutant plant (gtl1-4) showed lower stomatal density
and higher survival rate than wild type (Yoo et al., 2010). Expression of WRKY 106

and GTL1 was significantly different in SR but not in SS.

Posttranscriptional

Posttranscriptional regulation of gene expression is controlled by gene activities
in mitochondria. In this experiment, pentatricopeptide repeat (PPR) protein was up-
regulated after drought stress. Mitochondrial pentatricopeptide repeat (PPR) proteins
are associated with many plant biological processes, including RNA sequence changes,
translation, and seed and embryo development. Salt, ABA, and oxidative stresses
inhibit plant growth in an A. thaliana mutant (ppr40), and results in the accumulation
of reactive oxygen species. Because PPR proteins are very important to plant
organelles, defects in these proteins lead to retarded growth, diverse defects in embryo
morphology, and irregular photosynthesis (Cushing et al., 2005; Manna, 2015;

Meierhoff et al., 2003; Pusnik et al., 2007).

Transport

One protein with transport functions is SEC 14 cytosolic factor family protein.
A comparison of transcriptomes among several sorghum genotypes revealed that
SEC14 cytosolic factor protein is more abundant in the nitrogen stress-tolerant sorghum
genotypes than in the susceptible sorghum lines. Additionally, the production of this

protein can lead to greater membrane stability and stress tolerance (Gelli et al., 2014).
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1.2. Validation the proteomic data: comparison between our data and
microarray database

Rice eFP Browser is a web tool which has representations of expression patterns

of genes base on microarray databases. GSE6901 is a collection of gene profiles under

three types of stress; drought, salt and cold. From the significantly different expressed

proteins in Group 3 (Fig. 8), 41 proteins were found an expression in micro array

database. Eighteen proteins were found with similar expression pattern with the

database (Table D10 see in Appendix D).

The comparison between expression of protein from proteomics data and
transcription level from Rice eFP browser showed that only half of the proteins had
similar pattern of expression induced by drought stress. In general, it was assumed that
there are strong correlation between mRNA abundance and generated protein
expression. However, some studies show that the correlation between transcripts and
protein expression is unpredictable due to different half-lives and post-transcription
(Haider and Pal, 2013). In addition, mRNAs level can be translated, degraded, or
temporarily stored during the stress condition which affect the protein expression level

(Urano et al., 2010).

2. Identification and characterization of the drought responsive genes from

the gene/protein expression patterns.
2.1. Selection and expression analysis of the drought responsive genes in
‘LPT123’ and ‘LPT123-TC171’ rice lines

2.1.1. Co-expression network
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RiceFREND (Sato et al., 2013) was used for creating a co-expression network
to see which protein has a potential of further studies. The co-expression network was
created from transcriptome profiling of various tissues and rice organs at different
developmental stages throughout their life cycle. A co-expression network represents a
relationship between similar expressions profiling of genes across microarray database.
The linkage of each node gene suggested that they have a potential interaction between
them. Therefore, the co-expression network helps to illustrate a candidate gene from
massive data.

A study in cotton (You et al., 2016), arbuscular mycorrhizal (Garcia et al.,
2017), Arabidopsis (Li and Hu, 2015) and rice (Huang et al., 2016) used co-expression
network as a tool for selecting candidate gene(s) or illustrating mechanisms of the
interesting gene. In this study, the co-expression network revealed four proteins that

involved with drought stress as previously mentioned.

2.1.2. Function of trihelix transcription factor GTL1

Trihelix DNA binding proteins involve with plant development programs. The
transcription factors GT-1, GT-2, GT-3 and Nt SIP1-like proteins are a subfamily of
the trihelix proteins. All the subfamilies have a conserved N-terminal trihelix | domain
and C-terminal alpha-helical regions. However, the GT-2 subfamily is the only one that
has a trihelix 1l domain at C-terminal and a-helical in the center (Gao et al., 2009). GT-
2 LIKE 1 (GTL1) has conserved N-and C-terminal trihelix DNA binding domains
(Breuer et al., 2009). A phylogenetic study of GTL1 family showed that the highly
identical sequences was found between PtaGTL1 through 7 and AtGTL1 while 4 rice

orthologs display phylogenetically different from other AtGTL and PtaGTL proteins
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((Weng et al., 2012). However, a central region between N-and C- terminal trihelix
domain are conserved in both Arabidopsis and rice (Kuhn et al., 1993). A Cam-binding
site and PEST sequence are found in both PtaGTL1 and AtGTL1 but not found in rice
(Weng et al., 2012).

Some of the GTL1 functions were studied in Arabiodopsis, wheat and Populus
trichocarpa. Arabidopsis thaliana GTL1 loss-of-function mutations (gtl1-4) had a
higher integrated WUE, leading to higher survival rate after water deficit in the mutant.
The AtGTL1 repressed the expression of SDD1 (Stomtal Density and Distribution 1)
which regulates stomatal density (Yoo et al., 2010). The sdd1 Arabidopsis mutant
increased 2 to 4 fold of stomatal density and formed an arrested stomata (von Groll et
al., 2002). In contrast, the 25% of stomatal density lower in gtl1-4 compared to wild
type was found. The expression of SDD1 up-regulated in gtl1-4. The lower SD
compensated water lost and improved drought tolerance in gtl1-4 (Yoo et al., 2010). A
complementation test by using PtaGTL1 transcript regulated by AtGTL1 promoter
revealed a drought responsive mechanism in Poplar. The transgenic plant and wild type
showed a similar stomatal density number and survival rate. Contrastingly, the gtl1-4
had lower SD and higher survival rate when compared to wild type and the transgenic
plant. The similar results also found in the study of overexpression of TaGT2L1D in
Arabidopsis. The TaGT2L1D-overexpressed had similar stomatal density number as
wild type but significant higher than gtl1-3. Both wild type and the transgenic plant
significant reduced the survival rate compared to gtl1-3. The expression of TaGT2L1D
was also found in floral organ development and overall plant growth (Zheng et al.,
2016). GTL1 was proposed to be a regulator of trichome cell growth due to the gtl1-3

plant exhibited larger trichome compared to wild type (Breuer et al., 2009). The
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overexpression of TaGT2L1D restored the trichome phenotype of gtl1-3 (Zheng et al.,
2016). In addition, AtGTL1pro:PtaGTL1 showed a similar size of trichome branch to
wild type (Weng et al., 2012). In contrast, the gtl1-4 mutant showed a large trichome
branch (Breuer et al., 2009). It suggested that TaGT2L1D, AtGTL1 and PtaGTL1 role
have a similar function in drought tolerance (Zheng et al., 2016).

The transcription factors, trihelix transcription factor GTL1 was shown a
significant change in protein levels in SR line, but not in SS line, suggesting the role in
the regulation of osmotic stress tolerance. Further validation is required for the further
study. The trihelix transcription factor GTL1 was reported to be involved in regulation
of stomatal development resulting in enhance drought tolerance ability in Arabidopsis.
However, there have been no reports on the study of GTL1 function in rice yet.
Interestingly, LOC_0s03g02240 is closely related to AtGTL1 (Weng et al., 2012).

Actually, the fully expanded leaves used in the study of stomatal density were
also collected for detection of GTL1 (LOC_0s03g02240) transcripts. However,
quantitative PCR could not detect GTL1 expression in 4-week-old SS and SR leaves
under control and drought condition. This result is consistent with Rice eFP Browser

data (http://bar.utoronto.ca/efprice/cgi-bin/efpWeb.cqgi) (Patel et al., 2012; Toufighi et

al., 2005) which Trihelix transcription factor GTL1 has almost no express in mature
leaf (Fig. 11). These data suggested that OsGTL1 detected in this proteomic experiment
was a gene product that had been synthesized in very young tissues (developing stage).
Moreover, the study in Arabidopsis with STOMAGEN expression suggested that
stomata finish the development before reaching the mature state (Sugano et al., 2010).
Therefore, it is possible that OsGTL1 transcripts may not be detectable in the mature

leaves.
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Plant seedlings are usually used in many studies (Ali and Komatsu, 2006;
Minh-Thu et al., 2013; Yang et al., 2012) because it is very fragile and sensitive to
abiotic stresses. Microarray study (GSE6901) in Rice eFP Browser showed OsGTL1
expression in 7-day-old seedling which was air-dried for 3 hr. and the transcript level
decreased compare to the control (Jain et al., 2007). Therefore, the similar experiment
were performed to investigate the OsGTL1 expression at transcriptional level in SS and
SR. It was found that OsGTL1 transcript level from SR shoot was significantly
decreased after dehydration for 2 hr., while the expression of OsGTL1 in SS was
increased (Fig. 11). These data suggested the different drought-stress induced OsGTL1

gene expression in SS and SR, leading to the difference in drought tolerant ability.

2.1.3. Function of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

GAPDH exists in most organisms as a ubiquitous enzyme. There are three type
of GAPDH, including GAPA/B encode by gapA and gapB, cytoplasmic GAPDH
(GAPC) and plastids GAPDH (GAPCp) (Zaffagnini et al., 2013). GAPDH is a key
enzyme for converting glycerate-3-phosphate (3-PGA) to glyceraldehyde-3-phosphate
(G3P). 3-PGA is an electron acceptor that receives electrons from NADPH and protects
photosystem Il from ROS activity (Takahashi and Murata, 2006). Under oxidative
stress, antioxidant cofactor NADPH are needed. NADPH is a reduced form of NADP
which can be catalyzed by several enzymes including GAPDH (Ralser et al., 2007). A
proteomics study of Thellungiella halophila chloroplasts under different saline
conditions revealed several salt-responsive proteins, including glyceraldehyde-3-

phosphate dehydrogenase beta subunit (GAPB) (Araus et al., 2002). Overexpression of
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GAPB in transgenic Arabidopsis increased chlorophyll concentration, dry weight, water
content, and survival rate.

In prior research, GAPDH was widely used as a housekeeping gene in protein
and gene expression profile, especially of plant, animal and human studies (Chandna et
al., 2012; Nicholls et al., 2012). However, our study showed that GAPDH could not be
used as a housekeeping gene, because the difference levels and responses of GAPDH
expression was found in SS and SR lines according to proteome and transcription level
study (Fig 10 and 12).

GAPDH (LOC_ 0s04g38600) increased in both SS and SR lines after osmotic
stress for 2 hours. It suggested that photosystem Il might be protected from the stress
by the reducing an occurrence of ROS by GAPDH activity. Two wheat cultivars with
contrast drought tolerant ability showed similar result with our study. An increasing of
GAPDH after 48 h of PEG600 treatment in both wheat genotypes (different in levels of
drought tolerance) were found (Cheng et al., 2015). In Populus tremula, an up-
regulation of GAPDH was found due to water deficit treatment (Pelah et al., 1997). In
rice, three OsGAPC respond to 20% PEG 6000, 200 mM NacCl, 50 uM abscisic acid
and 50 uM methyl viologen treatments. The overexpression of OsGAPC3 increased
salt-tolerant ability through the regulation of the hydrogen peroxide during the salt
stress (Zhang et al., 2011). Moreover, GAPDH have been proposed to be involved in
root development (Mufioz-Bertomeu et al., 2010). However, the up-regulation of LOC _
0Os04g38600 until 24 hours after stress was found only in SR line, but not in SS line
(Fig 10B). It suggested the SR line has a better protection of photosystem Il during
osmotic stress. NADPH can be produced by the light reactions of photosynthesis to be

utilized in the Calvin cycle. The expression of GAPDH genes up-regulated in both SS
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and SR plants after dehydration for 2 hour however the induction of GAPDH was
slightly larger in SR (Fig. 12). The photosystem | and Il are a major site where ROS is
generated. ROS can damage the photosystem which leads to be a stress susceptible.
The limitation of CO2 assimilation due to the stomatal closure can lead to over reduction
of electron transport chain and cause the ROS generation (Asada, 2006; Miller et al.,
2010). The up-regulation of GAPDH is needed for catalyzing the NADPH and
preventing ROS induction.

Ferredoxin-NADP reductase (FNR) is another enzyme that important for
balancing electron transport and redox homeostasis in chloroplasts. The activity of FNR
is to catalyze the terminal stage of photosynthetic electron transport chain in
photosystem | (PSI). FNR oxidizes ferredoxin which generates a reducing power
(NADPH) to be used in CO- fixation in Calvin cycle (Gharechahi et al., 2015). Both
GAPDH and FNR are involved in regulating plant NADP(H) levels (Hald et al. 2008).
Therefore, the transcription level of FNR was investigated in both rice line to elucidate
the importance of NADP(H) homeostasis in drought-tolerant plant. Only the stress-
treated SR showed slightly decreased FNR expression but there was no change in SS.
The reduction of FNR abundance because of drought stress has been reported
transgenic tobacco (Gharechahi et al., 2015) , P. cathayana (Xiao et al., 2009), wheat
(Budak et al., 2013), and rice (Nouri et al., 2015). In contrast, the induction of FNR
level due to moderately high temperature (30 °C) was found in potato (Hancock et al.,
2014). Salt (Zorb et al., 2009) and osmotic stress (Tai et al., 2011) induced FNR level
in maize. However, a similar level of FNR in untreated and drought-treated wheat

cultivars was found (Nikolaeva et al., 2010). These findings imply that different species
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use different mechanisms to balance electron flow in photosynthetic processes under

osmotic stress conditions.

Stomatal closure during the drought stress limits the carbon dioxide diffusion
via stomata. The limiting carbon dioxide causes lower Calvin cycle activities, resulting
in an induction of NADPH level in the stroma. As earlier mention, high level of
NADPH can induce the ROS accumulation (Takahashi and Murata, 2005; Zavafer et
al., 2015). To prevent photosystem damage from ROS, it needs to balance the
NADP(H) level. The increasing of GAPDH activity will accelerate the NADP level. In
addition, reduced FNR levels under drought conditions also contribute to NADPH
homeostasis, delaying a NADPH production. Therefore, the NADPH/NADP ratios will
be decreased which lead to protection of PSII. Consistent with our result, SR line show
a greater reduction after the stress whereas FNR slightly down-regulated after
dehydration (Fig. 12). In conclusion, SR rice showed that GAPDH were up-regulated
while FNR reduced under the stress (Fig. 12), which imply that during the stress, plants

try to use NADP(H) homeostasis mechanism to prevent photosystem damage by stress.

Interestingly, the co-expression network of GAPDH (LOC_0Os04g38600) also
showed a link to other genes which their function involving in photosynthetic process

(Fig. 9 and Table.D5 see in Appendix D).

2.2. Function analysis for drought resistant ability
2.2.1. Determination of relative water content and stomatal density
in SS and SR rice lines
Leaf RWC of SS was reduced after the drought stress (Fig. 13E) with the

correlation of stomatal density. SR also had lower SD (Fig. 13F) under drought stress
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compared to SS. Several researches showed that drought tolerance was increased by
regulating stomata development, stomata closure or leaf expansion (Jung et al., 2008;
Liu et al., 2011; Minh-Thu et al., 2013; Ouyang et al., 2010; Xie et al., 2012; Yoo et
al., 2010). Stomata density reduction during drought might be the best way to impose
the lower level of energy compared to normal condition because growth and
development process need high level of energy to complete the process (Minh-Thu et
al., 2013). The study of Arabidopsis mutants including positive SD regulators, GTL1
and STOMAGEN showed the positively regulation of stomatal development. The
mutation in these two genes resulted in SD reduction (Sugano etal.,2010; Yoo et al.,
2010). In addition, decreased transpiration by phyB enhanced drought-tolerant in rice.
The phyB mutant increased levels of ERECTA (ER) and EXPANSIN transcription,
resulting in lower SD and a larger epidermal cells in the developed leaves (Liu et al.,
2011). On the other hand, a knock-out mutant of OsSIK1 caused 12.4-22.1% higher
stomata density, compared to the control plants. In contrast, OsSIK1-overexpression
reduced stomata density around 8.4-17.8%. In rice, OsSIK1 is a homolog of ER family
proteins from Arabidopsis which control stomata pattern in Arabidopsis thaliana.
Consequently, OsSIK1 activated the anti-oxidative system and negatively regulated
stomata development in rice leaf, leading to drought and salt tolerance (Ouyang et al.,
2010). Not only in rice showed less SD in drought tolerance plant but also in Medicago
Truncatula. An overexpression of MtCAS31 significantly increased drought tolerance
and caused SD reduction (Xie et al., 2012). The epidermal patterning factor (EPF)
family of secreted signaling peptides regulate the frequency of stomatal development
in dicot and basal land plant species. The overexpression of HYEPF1 constrained the

stomatal development pathway and reduced leaf gas exchange. The transgenic barley
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plants also significantly reduced stomatal density with no grain yield penalty (Hughes
et al., 2017). Recently, double mutant plants (epflepf2) with induction of SD have been
shown to have significantly lower water use efficiency. Conversely, the overexpression
of EPF2 resulted in lower stomatal density and led to minimize stomatal conductance
and increased water use efficiency in transgenic plant (Franks et al., 2015). Therefore,
the SR reduced SD after water stress might be a best mechanism to reduce water loss

and keep growing normally.

2.2.2. Determination of leaf gas exchange parameters in ‘LPT123’
and ‘LPT123-TC171’ rice lines

According to GTL1 and GAPDH function, which can affect the photosynthesis,

the photosynthetic parameters were measured. Photosynthesis on the abaxial leaf is
independent of CO. concentration and largely relies on stomatal function (Driscoll et
al., 2006). Increased stomatal density in constitutive expression of STOMAGEN plants
rise about 30% of photosynthetic rate compared to the wild-type plants. The transgenic
plants also increased the stomatal conductance under ambient CO. conditions and did
not show alterations in the maximum carboxylation rate (Tanaka et al., 2013). The
HVEPF1-overexpressed plant exhibit significantly enhanced water use efficiency. The
quantum yield of photosystem II (®PSII) was measured. Under water withheld, the
transgenic barley significantly maintained ®PSII at higher level than that of wild-type
plant approximately 4 days longer. In addition, the RWC of HVEPFL1 plants were
significantly higher than that of the control under stress condition (Hughes et al., 2017).
In this study, the old leaf which was fully expanded at day 0 showed significant

higher in net photosynthetic rate and water use efficiency in SR than SS after 3 days of
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the stress. However, the significant difference of transpiration rate between genotypes
was not found. There are also no significant difference in stomatal conductance and
intercellular CO, concentration value. Since the WUE is the ratio of net photosynthesis
and transpiration rate, it is suggested that the SR under drought stress enhanced net
photosynthetic rate due to ®PSII and ETR. It was not because of the lower SD in SR.
The ®PSII and ETR significantly up-regulated in SR after drought stress for 3 days.
The ®PSII and ERT present the efficiency of PSII and flow rate of electron in
photosystem I. This data suggests that the light reaction might be a main factor caused
higher net photosynthesis rate and water use efficiency in first fully expanded leaf under
drought stress condition. Therefore, the old leaf of SR responds to the stress by
regulating the light reaction to maintain A and WUE. In addition, the high level of
GAPDH is required for protection of the photosystem from ROS accumulation.

The young new leaf might use different mechanism to protect itself from the
stress. Stomatal conductance and transpiration rate were significantly lower in SR after
drought stress for 3 days. The other parameters including the Fv/Fm, ETR and ®PSII
did not show the difference between genotypes. The maximum quantum efficiency of
photosystem Il photochemistry ((Fv/Fm) can also be used to indicate the efficiency of
PSII. Since SR showed no significant difference in Fv/Fm, ETR and ®PSII, it means
SR had no or lower damage on photosynthesis. In transgenic sugarcane (overexpression
of P5SC), Fv/Fm was maintained under water deficit treatment because of the high level
of proline production which helps to protect the photosynthetic apparatus (Molinari et
al., 2007). Stomata is one of important factor that can control leaf gas and water

exchange which can alter stomatal conductance and net photosynthetic rate (Wu et al.,
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2014). This suggests that the new leaf might adjust themselves through the stomatal

development via the GTL1 function to reduce the water loss.

2.2.3. Investigation of drought stress effect in wild type and gtl1-4

Although the gtl1-4 had lower SD when compared to wild type under normal
condition (Yoo et al., 2010), the lower SD under control and drought stress was not
found in this study. The investigation of stomatal density in Arabidopsis was no
significant in abaxial leaf in all treatments. It is possible that environment influences on
stomatal traits (Hetherington and Woodward, 2003). There are huge diversity of
stomatal responses to the environmental changes. Carbon dioxide, humidity and light
intensity have been reported to effect on stomatal development (Casson and Gray, 2008;
Pillitteri and Torii, 2012). Arabidopsis from different altitude showed an increased SD
and SI when grown at elevated CO, (Caldera et al., 2017). Stomatal index (SI) can
represent relationship of cell enlargement and frequency of stomata. SI was sharply
increased in maize that grown at high CO. concentration because it enhanced the
epidermal cell size (Driscoll et al., 2006). In contrast, reduction of SD (14.3%) was
found in many plant species at high CO> concentrations (Woodward and Kelly, 1995).
Increased humidity resulted in a reduction of the stomatal index of Scilla nutans leaves
(Salisbury, 1928). The similar result also found in T. ciliate which had significant lower
SD when grew in high humidity (Carins Murphy et al., 2014). In addition, a study of
(Hetherington and Woodward, 2003) showed a strong correlation between stomatal
density and size. The study illustrated that high stomatal density tended to have small
size of stomata. Therefore, the environmental is a factor that regulates stomatal density.

Since our study had no significant difference of SD, it might be the effect of the severe
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weather during the experiment was conducted. In addition, it is possible that there will
be different on the size of epidermal cells due to the higher Sl found in gtl1-4 mutant.
In a study of phyB rice mutant, lower stomatal density was found when
compared to wild-type rice. The phyB mutant increased the expression of ER and
EXPANSIN which involved in cell expansion. This caused a large epidermal cell in
fully expanded leaf of mutant (Liu etal., 2011). The Arabidopsis mutant (ER) increased
SD and had smaller epidermal cells. While, the SI had no significant changes. Hence,
it was hypothesized that ER regulates stomatal density via epidermal cell expansion
(Masle et al., 2005). The EXPANSIN family genes also involved in cell expansion
through the regulation of cell wall loosening (Choi et al., 2006; Lee et al., 2001). This
suggested that the leaf expansion in gtl1-4 might be one factor regulate stomatal density
and total number of fully expanded leaf. The least water loss found in gtl1-4 under

drought stress also affected the cell expansion.



CHAPTER VI
CONCLUSIONS

1. Investigation of leaf protein profiles of Leung Pratew 123 (O. sativa L. cv.
Leung Pratew123) and its drought resistant mutated line responding to the

drought stress

According to GeLC-MS/MS analysis, leaf protein profiles were compared
between control and drought stress treatment. For SS, there were 68 protein changes
responding to 10% PEG while 55 proteins were found in SR induced by drought stress.
The significant different protein expression from SS and SR were classified into ten
functional groups. Disregarding the proteins with unknown functions, retrotransposons
were the main group of proteins affected by osmotic stress in SR plants, while proteins
related to metabolic processes were the most commonly affected proteins in SS plants.
The categories of post-translation were the group found only in SS line, while post-
trancription group was the category found only in SR plants. These differences suggest

that SS and SR respond differently to osmotic stress.

2. Determination the appropriate data analysis methods for the whole rice

proteins after drought stress.

The appropriate proteomics analysis to obtain the candidate proteins/genes

responsible for drought tolerance in rice can be proposed by this research.
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2.1. Replication of resources

At least three replications of the materials should be prepared in order to be

valid for statistical analysis for the comparison.
2.2. Elimination of false positive prediction of LC-MS-MS data analysis
After the prediction of LC-MS-MS data, the potentially false positive data
should be removed. The potentially false positive data are:
- The proteins identified by less than 5 amino acid residues
- The proteins present less than 2 replicates
- The same loci predicted by more than LC-MS-MS data, select only one with
the highest significance of prediction.
- Check the existence by using blastp algorithm against NCBI database
(Coordinators, 2016). If it does not exist, eliminate it from the list.
2.3. Statistical analysis for the significant responsive proteins and visualization
The identified proteins should be visualized and statistically analyzed with a t-
test (p<0.05) using the MultiExperiment Viewer (MeV) program. The gene ontology
(GO) can be obtained from rice genome annotation project (Kawahara et al., 2013).
2.4. Comparison of protein profiles to obtain the drought responsive proteins
Three sets of protein profiles, which are the significant drought responsive
proteins from susceptible line, the significant drought responsive proteins from tolerant
line and the significantly different proteins from susceptible and tolerant lines, should
be obtained, and then create Venn’s diagram to see the interception of three dataset.

The union of all three datasets is the proteins of interest.
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2.5. Identify the best candidate proteins/genes for further study and function

validation

We use the co-expression network analysis based on the datasets available
publicly to determine best candidate proteins/genes. The proteins with the highest

network will be selected for further study.

3. ldentification and characterization of drought responsive genes selected

from the gene/protein expression patterns

The proteomics analysis revealed several candidate proteins with important
roles in drought responses. A transcription factor, GT-2-LIKE1 (GTL1) protein showed
the significantly differential expression only in the drought resistant line. Under
drought stress condition, GTL1 protein of SR was decreased, but the GTL1 transcripts
could not be detected in leaves of 4-week-old plants in both rice lines. However, the
dehydrated leaves of 7-day old SR seedlings showed the transcriptional expression
reduction of the gene, while this gene transcripts were increased in ‘SS’ dehydrated
leaves of 7-day-old seedlings, suggesting that GTL1 was the dehydration responsive
gene, which was transcriptionally expressed in young tissues of rice. This was also
consistent with the pattern of GTL1 protein found with proteomic detection. The
reduction of stomatal density was also found only in the SR line, but not in SS. These
support the role of GTLL1 regulation of stomatal density and lead to drought tolerant

phenotype.

In addition, a major hub gene; LOC_0s04938600 (encoding a glyceraldehyde-

3-phosphate dehydrogenase) was identified. GAPDH expression was up-regulated in
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both SS and SR leaves treated with drought condition for 2 h. However, the increase
was greater in the SR leaves. This was consistent with the increase in GAPDH protein
abundance. The drought-resistant line, SR rice showed the higher fresh/dry weight, and
relative leaf water content than ‘SS’ rice, under drought stress. An investigation of
photosynthesis parameters using Li-6400XT in first fully expended leaf (old leaf) and
youngest fully expended leaf (young leaf) in both SS and SR was conducted. In old
leaf, net photosynthetic rate (A), water use efficiency (WUE), ®PSII and electron
transport rate (ERT) were higher in SR than SS after 3 days of drought stress (12.5%
PEG). In young leaf, transpiration rate (E) is significant lower in SR. Overall, SR rice
mediates drought stress by maintaining photosynthetic process. In addition, the studies
in gtl1l Arabidopsis mutants under drought stress condition, it was found that gtl1-4
(knock-out mutant) has higher survival rate than wild type because of the higher

maintenance of relative water content.
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Figure 27. Summary of drought adaptation mechanism in old leaf (develop before
drought stress period) and young leaf (develop during drought stress) of drought-
resistant rice line (SR).

In summary, GTL1 is another crucial gene which regulates stomatal density
leading to less transpiration in young leaf, while GAPDH plays a role in protecting
photosystem by NADP(H) homeostasis in old leaf contributes to drought tolerance in
rice (Fig. 27). Therefore, GTL1 and GAPDH are a potential candidate gene to improve

drought stress tolerance crops in the future.
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WP nutrient solution for the experiment that grow rice in the solution

(Vajrabhaya and Vajrabhaya, 1991a)
The chemical listed below are for preparing 1 liter solution:

Chemicals Content (mg)
Macroelements:

Potassium nitrate (KNOs3) 580
Calcium sulfate (CaSOs) 500
Magnesium sulfate (MgSO4.7H20) 450
Triple superphosphate 250
Ammonium sulfate ((NH4)2SO4) 100
Microelements:

Di-sodium ethylene diamine tetraacetate (Na:EDTA)? 160
Ferrous sulfate (FeSO4.7H20) 120
Manganese sulfate (MnSOa4.H20) 15
Boric acid (HsBO3) 5
Zinc sulfate (ZnSO4.7H20) 1.5
Potassium iodide (KI) 1.0
Sodium molybdate (NazMo00O4.2H20) 0.1
Copper sulfate (CuSO4.5H20) 0.05
Cobalt chloride (CoCl2.6H20) 0.05




129

2. Protein quantification and separation
2.1.Protein concentration measurement (Lowry’s method)

- Reagent A (alkaline copper reagent)

CTC 5ml
(0.2% CuS04.7H20 + 0.4% Tartaric acid)
20% Na2COs3 5mil

0.8 N NaOH 10 ml
5% SDS 20 ml

- Reagent B (diluted Folin-Ciocalteu’s phenol reagent)

Folin-Ciocalteu phenol 1ml
Distilled water 5ml
2.2. Preparation of SDS-PAGE
- Separating gel (12.5 %)?
Reagents Content (pl)
Distilled water 4,200 pl
40% (w/v) acrylamide/bis-acrylamide solution (29:1) 3,125 pl
1.5 M Tris. HCI pH 8.8 2,500 pl
10% SDS 125 pl
10% APS 50 ul
TEMEDP 6 pl
- Stacking gel (4%)?
Reagents Content (pl)
Distilled water 1,900 pl
40% (w/v) acrylamide/bis-acrylamide solution (29:1) 300 pl
0.5M Tris. HCI pH 6.8 742 ul
10% SDS 30 pul
10% APS 23 ul
TEMEDP 3.5 ul

8The components were mixed in the order shown.
b Polymerize will begin as soon as TEMED has been added.



2.3. SDS-PAGE running and staining

- Protein loading dye

50 mM Tris.HCI pH 6.8

10% glycerol

2% SDS

1% B-mercaptoethanol

0.02% bromophenol blue

adjust volume with distilled water

- Tris-glycine electrophoresis buffer (1 liter)

Tris 1.514 ¢
Glycine 7290
0.1% SDS 05¢

adjust volume to 1 L with distilled
water

- Gel staining (Coomassie Brilliant Blue)

Staining solution

Coomassie Brilliant Blue 59
R250

Acetic acid 100 ml
Methanol 500 ml
Distilled water 400 ml
Destaining solution Acetic acid 100 ml
Methanol 200 ml

Distilled water
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3. Transcription expression analysis in rice
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3.1. Agarose gel electrophoresis

- 6X RNA loading dye 30% (v/v) glycerol in water
0.25% (wi/v) bromophenol blue
0.25% (wi/v) xylene cyanol FF

- 5x TBE buffer Tris base 54 ¢
Boric acid 2759
0.5MEDTA pH 8.0 20 ml

adjust volume to 1,000 ml with distilled water

4. Transcription expression analysis in Arabidopsis

- 5X TAE buffer Tris base 48.4 g
Glacial acetic acid 109¢g
EDTA 2.92 ¢

adjust volume to 1,000 ml with distilled water
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APPENDIX B
PRIMERS

List of gene primers for transcription analysis

Primer name

Primer sequences

(for gRT-PCR)

LOC_0s03g02240(forward) | CTCTCTGGGAGGACATCTC
LOC_0s03902240(reverse) | TAGTAGGGGCATGTCTTGGA
LOC_0s04938600 (forward) | GGTGTCCAAGAAGACCC
LOC_0s04938600 (reverse) | ATGACCTTCACCATGTCGTC
OsEF-/q (forward) ATGGTTGTGGAGACCTTC
OsEF-1o (reverse) TCACCTTGGCACCGGTTG
OsDREB2A (forward) GGGAGCAATGGCTTGAAACG
(for gRT-PCR)

OsDREB2A (reverse) CCTATTGACCCGCAGCATGA

OsDREB2A (forward)
(for semi gRT-PCR)

ATCGCGGCCGCATGGAGCGGGGGGAGGGG
AG

OsDREB2A (reverse)
(for semi gRT-PCR)

GGGGATCCTACTCTAATAGGAGAAAAGGCT

AtGTL1 (forward) ATGGAGCAAGGAGGAGGTG

AtGTL1 (reverse) AAAGGTGGTTCCGTATGG

SDD1 (forward) GAAAGCGATAAAGGATGG

SDD1 (reverse) GGTTACAGAGATTGGACTTC

ACT2 (forward) AGAGATTCAGATGCCCAGAAGTCTTGTTCC
ACT2 (reverse) TCCTGGACCTGCCTCATC

DREB2A (forward) TCGAGCTGAAACGGAGGTAT

DREB2A (reverse) GACCTAAATGGCGACGATGT
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APPENDIX C
STANDARD CURVES AND PROTEIN LADDER

Identification of drought-responsive proteins in LPT123 and LPT123-TC171 rice
during drought stress

Protein concentration measurement

0.5 - y = 0.0426x

0.4 - R2 = 0.9757
0.3

A750

0.2
0.1

0

BSA concentration (mg/ml)

Figure C.1 Standard curve of standard protein (BSA)

Protein separation (SDS-polyacrylamide gel electrophoresis)

— kDa _
“17 250 L More than 150 kDa
— 150 —

—100 [ More than 80-150 kDa

— — 30

| — 60 —  More than 50-80 kDa
—50
— 40 —  More than 30-50 kDa
—30 7

-—— 25 —  More than 20-30 kDa

w—— | — 20

— 10-20 kDa

p— | — 15

| — — 10

Figure C.2 Protein ladder 10-250 kDa (New England Biolabs, USA)
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Expression analysis of a drought-responsive gene during drought stress, EF1
alpha, OsGTL1 and DREB2A

EF1 alpha

Standard Curve

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Log Starting Quantity

O Standard

X Unknown

—— SYBR E=102.4% R"2=0.935 Slope=-3.266 y-int=20.782

OsGTL1
Standard Curve

' 7T o T T T
35 __\E_;(,-,hh ...... AT, e e -
T ""--._\_H_ 1
M3 '\%,.,_%_x ................ ................ _
¥ : T : : :
33 __ ............... ........ ﬁ%‘“‘%_ﬁ_ ................ ................ _
o ] . -, . .
U:}z_: ................ “@.hh ......... R AR
E . . '-\.\_\_ . .
E . . e, . .
31_ ................ AT, D H“S. "'\-\.'\_E ................ -
L3 5 5 O T 5
_: ................ ................ ..... @”‘"xﬁ%(‘;-
1 . . . e
25_'_.;...:...:...;...i...I....I...:...:...1;............I...I...i...:...l...;...l.?‘.t?.._
-1.5 -1.0 -0.5 0.0

Log Starting Quantity

(O Standard
. Unknown
—— SYEBR E= 5B 1% R*Z=0.382 Slops=-3 383 y-int=25.083
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DREB2A

Standard Curve

2757
27.0

26.5

Cq

26.0 1

255 1

25.0 L+ttt T EPEPENENE SPEPRF SPEPFIFFE KPR SPPENE. SN
-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 0.7 -06
Log Starting Quantity

Q  Standard
X Unknown
—— SYBR  E=103.9% R”2=0.952 Slope=-3.232 y-int=23.221

Figure C.3 Standard curve of (A) EF-/q, a reference gene, (B) OsGTL1, and
DREB2A



136

APPENDIX D
DROUGHT-RESPONSIVE PROTEINS IN LPT123 AND LPT123-TC171 RICE
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Table D3. List of gene co-expressed with LOC_0s03g02240 (Node A)

Locus ID RAP ID Description

LOC 0s01g18670.1  0Os01g0290700 Similar to CjMDR1.

LOC_0s01g32364.1  0Os01g0508000 Similar to Beta-glucosidase.

LOC 0s01g65780.1  0Os01g0880200 Glycosyl transferase, family 8 protein.

LOC_0s02g43300.1  Os02g0648300 Homeodomain-like containing protein.

LOC 0s03g03400.1  0Os03g0125400 Conserved hypothetical protein 147
family protein.

LOC_0s03g60350.1  0Os03g0817900 Protein of unknown function DUF231,
plant domain containing protein.

LOC_0s04g51880.1  Os04g0608100 Galactokinase family protein.

LOC_0s05¢g30700.1  Os05¢g0369900 Conserved hypothetical protein.

LOC 0s06g45020.1  Os06¢g0660800 Protein kinase domain containing protein.

LOC_0s08g41670.1  0Os08g0528500 Protein of unknown function UPF0016
family protein.

LOC_0s10g37240.2  0s10g0516500 Conserved hypothetical protein.

LOC 0s11g32260.1  0s11g0525600 Similar to Alpha-mannosidase.

LOC_0s12g38920.1  0Os12g0578400 Glycoside hydrolase family 79, N-

terminal protein.

Table D4. List of gene co-expressed with LOC_0s129g04100 (Node B)

Locus ID RAP ID Description

LOC_0s04g46650.1  0s0490552200 Beta-expansin 5.

LOC_0s11g04290.1  0Os11g0138300 Cytochrome P450 family protein.

LOC_0s01g73630.1  Os01g0967200 Similar to Rac GTPase activating protein
1.

LOC 0s06¢51210.1  Os06¢g0727900 Protein of unknown function DUF23
family protein.

LOC_0s12g15530.1  0s12g0257800 Similar to Laccase (EC 1.10.3.2)

(Fragment).
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Table D5. List of gene co-expressed with LOC_0s04938660 (Node C)

Locus ID RAP ID Description

LOC_0s03g56670.1  Os03g0778100 Similar to Photosystem-1 F subunit.

LOC_0Os08g01380.1  Os08g0104600 Ferredoxin |, chloroplast precursor (Anti-
disease protein 1).

LOC 0s01g31690.1  0Os01g0501800 Similar to Photosystem Il oxygen-
evolving complex protein 1 (Fragment).

LOC_0s01g56680.1  Os01g0773700 Similar to Photosystem Il reaction center
W protein (PSII 6.1 kDa protein)
(Fragment).

LOC_0s05¢g33280.1  0Os05g0401100 Protein of unknown function DUF477
family protein.

LOC_0Os06¢01210.1  Os06g0101600 Plastocyanin, chloroplast precursor.

LOC_0s07g05480.1  Os07g0148900 Photosystem | protein-like protein.

LOC 0s08g10020.1  0Os08g0200300 Similar to Photosystem Il 10 kDa
polypeptide (Fragment).

LOC 0s08g44680.1  0Os08g0560900 Similar to Photosystem | reaction center
subunit 11, chloroplast precursor
(Photosystem I 20 kDa subunit) (PSI-D).

LOC 0s12g08770.1  0s12¢g0189400 Similar to Photosystem | reaction centre
subunit N, chloroplast precursor (PSI- N).

LOC_0s12¢g23200.1  0Os12g0420400 Similar to Photosystem | reaction center

subunit X1, chloroplast precursor (PSI- L)
(PSI subunit V).

Table D6. List of gene co-expressed with LOC_0s08g17020 (Node D)

Locus ID RAP ID Description

LOC_0s01g05940.1  0Os01g0152600 Serine/threonine protein kinase domain
containing protein.

LOC_0s02g37220.1  0s02g0583300 En/Spm-like transposon proteins family
protein.

LOC 0s02¢42110.1  0s02¢0632100 Similar to Wall-associated kinase-like
protein.

LOC_0s05¢03920.1  0Os05¢g0130100 Protein kinase domain containing protein.

0s06g0527400 Non-protein coding transcript,

unclassifiable transcript.

LOC_0s07g36240.1  Os07g0546500 Conserved hypothetical protein.

LOC 0s08g08500.1  0Os08g0183900 NAD-dependent epimerase/dehydratase
family protein.

LOC_0s09g14590.1  0Os09g0314900 Proteasome maturation factor UMP1
family protein.

LOC_0s12g35330.1  0Os12g0538600 Glutaredoxin-like, plant Il family protein.
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Table D7. List of gene co-expressed with LOC_0s05g06450 (Node E)

Locus ID RAP ID Description

LOC_0s05¢g06260.1  Os05g0154500 Spc97/Spc98 family protein.

LOC_0Os05907680.2  Os05g0168800 Prefoldin domain containing protein.

LOC 0s05¢37160.1  0Os05¢g0443800 Similar to Plastid division protein ftsZ1
precursor.

LOC_0s09g21780.2  Os09g0386600 Conserved hypothetical protein.

LOC_0s12g13660.1  0Os12g0239000 Conserved hypothetical protein.

LOC_0s12g39160.1  0s12g0581300 Protein of unknown function DUF620

family protein.

Table D8. List of gene co-expressed with LOC_0s10g05020 (Node F)

Locus ID RAP ID Description

LOC_0s07g06850.1  Os07g0162600 Esterase/lipase/thioesterase domain
containing protein.

LOC_0s09g34214.1  0s09g0517900 UDP-glucuronosyl/UDP-
glucosyltransferase family protein.

LOC 0Os11g44580.1  0Os11g0668000 Disease resistance protein family protein.

LOC_0s11g44590.1

LOC_0s12909640.1  0s12g0198200 Protein phosphatase 2C family protein.

Table D9. List of gene co-expressed with LOC_0s11934920 (Node G)

Locus ID RAP ID Description

LOC_0s10g03570.1  0s1090124300 Similar to RGH1A.

LOC_0Os11g45790.1  0Os11g0684700 Disease resistance protein family protein.

LOC_0s06910790.1  0Os06¢0210400 Legume lectin, beta domain containing
protein.

LOC 0s06g41980.1  0Os06¢g0625300 Peptidoglycan-binding LysM domain
containing protein.

LOC_0s07g17220.1  Os07g0273600 Hypothetical protein.

LOC_0s08g10430.1  0Os08g0205100 Disease resistance protein family protein.

LOC_0s10g22510.1  Os10g0370400 Disease resistance protein family protein.

LOC 0s11g45130.1  0Os11g0676500 Similar to NBS-LRR type resistance

protein (Fragment).
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microarray database. Microarray data was retrieved from the Rice eFP Browser
(GSE6893). The expression was showed in term of up-/down-regulated from the

control condition and this is a comparison between drought and control

treatment.

Locus

Protein expression level

Expression from Rice eFP

LOC_Os12g20140
LOC_0s07g26590
LOC_0s08g10110
LOC_0s10g24870
LOC_0s08g30590
LOC_0s01g08140
LOC_Os01g68610
LOC_0s02g21630
LOC_0s02g30900
LOC_0s03g24730
LOC_0s03g28960
LOC_0s03g48490
LOC_0s03g56400
LOC_Os04g38600
LOC_Os06¢17930
LOC_Os06g45310
LOC_0s08g17020
LOC_0s08g40330
LOC_0s09g31438
LOC_0s12g04100
LOC_Os04g15510
LOC_Os11g29110
LOC_Os11g34920
LOC_Os11g27440
LOC_0s03g61690

Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated

Up-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Up-regulated
Unchanged
Down-regulated
Up-regulated
Up-regulated
Down-regulated
Down-regulated
Unchanged
Down-regulated
Up-regulated
Down-regulated
Up-regulated
Down-regulated
Unchanged
Down-regulated
Up-regulated
Up-regulated
Down-regulated
Down-regulated
Up-regulated
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Table D10. (cont.). Comparison of expression pattern between proteomics data

and microarray database. Microarray data was retrieved from the Rice eFP

Browser (GSE6893). The expression was showed in term of up-/down-regulated
from the control condition and this is a comparison between drought and control

treatment.

Locus

Protein expression level

Expression from Rice eFP

LOC_Os11g34270
LOC_0s02g50370
LOC_0s10g05020
LOC_0s12g23030
LOC_Os01g43060
LOC_0s01g55520
LOC_Os04g40510
LOC_0s07g29820
LOC_Os04g41490
LOC_0s03g02240
LOC_Os05¢06450
LOC_0s03g17340
LOC_Os10g08550
LOC_0s06g13570
LOC_Os11g32910
LOC_0s09g37510

Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Up-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated

Up-regulated
Down-regulated
Down-regulated
Up-regulated
Down-regulated
Unchanged
Down-regulated
Up-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Unchanged
Down-regulated
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Table D11. Functional group of significant protein in SS and SR from the
analysis in year 2013 and 2017

Function group SS SR

2013 2017 2013 2017
Unknown 22% 24% 30% 24%
Metabolic process 22% 16% 12% 15%
Signalling 19% 10% 12% 7%
Transcription 13% 12% 7% 15%
Transport 9% 1% 2% 2%
Retrotransposon 7% 13% 19% 18%
Defense 4% 13% 9% 11%
Transposon 2% 3% 5% 2%
Proteinase inhibitor 2% - - -
Cellular process - 6% - 4%
Replication - - 2% -
Post-transcription - - 2% 4%

Post-translation - 1% - -




A ss B SR
2% 2%
4% 2% 50, 2%
7% 2%

. % 30%
19% /
7%

13%

Unknown = Metabolic process = Signalling Unknown = Metabolic process = Signalling Transcription
Transcription = Transport Retrotransposon = Transport Retrotransposon ~ Defense Transposon
Defense Transposon Proteinase inhibitor Posttranscription -~ Replication

Figure D1. Functional classification of drought-responsive proteins found
in LPT123 (SS) and LPT123-TC171 (SR) rice leaves. The analysis was
done in year 2013. The functions were categorized according to Gene
Ontology (GO) from Rice Genome  Annotation  Project
(http://rice.plantbiology.msu.edu).

178



179

OsGTL1

o o o o
(=] (=} =] o
[<3] © < o

o
=}
o
—

M (0z=6%4 '00T=191) leubis uoissaidxa SOD9

w [(e] < o
1eubis uoissaidxa ViNY

s pass
¥S paas

£5 pIas
ZS pass
TS paas
9d 20u2s2.04u]

Gd 30UaIs3I0|U]

+d 30UBISBI0|U]

£d 22uadsBI0|UI

Zd 22ua2su0pu|
@duadsalopul Bunoi
Wvs

Jea Bunoj

GAPDH

16000
14000
12000
10000
8000
6000
4000
2000

(0z=6%g "00T=191) |eubis uolssaidxa SOID

(@)

SS pass
S paas

€5 p3as
25 pass
1S paas
94 33uadsaloyul

Gd 33usdsaloyul

d 33UsdsaIoYU|

£d @2udsaloyul

Zd 3auadsalopu|
3susdsalopul bunos
nys

Jeat bunox

4ea aunyew

T T T
o [so] (e} < o~ o
(=]

C eubis uoissaidxa ViNY

Figure D2. Gene expression profile of OsGTL1 and GAPDH. Expression in

different rice parts (A and C) and expression change due to stresses (B and D)

retrieved from the Rice eFP Browser base on two microarray database GSE6893

and GSE6901.
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