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Metformin is a biguanide anti-diabetic drug with various pharmacological 
activities including anti-carcinogenic action.  This study was to determine the effects of 
metformin on function and expression of MRP2 in human breast cancer MCF-7 
cells.  The activity of MRP2 was assessed by measuring intracellular accumulation of 
CDCF fluorochrome.  The results showed that metformin had no direct effect on CDCF 
accumulation after 30-min treatment.  Prolong treatment of MCF-7 cells with 
metformin (1-5 mM) for 24-48 hr resulted in significant reduction of MRP2 mRNA levels, 
as measured by RT-PCR assay.  Metformin down-regulated expression of MRP2 mRNA 
in concentration-dependent manners.  Moreover, the cells treated with metformin (5 
mM) had lower levels of phosphorylated ERK (p-ERK) and p38 (p-p38) than those of 
the control groups.  These results suggested that metformin could inhibit basal 
activities of ERK and p38 in the MAPK pathway.  The presence of an AMPK inhibitor 
compound C (10 µM) could prevent down-regulation of MRP2 mRNA as well as 
reduction of basal MAPK activities caused by metformin.  These findings suggested that 
metformin might decrease MRP2 mRNA expression in the MCF-7 cells via inhibition of 
MAPK signaling pathway.  The metformin-mediated alteration of MAPK signaling might 
relate to activation of AMPK pathway.  Further determination of MRP2 protein level in 
the metformin-treated cells should be pursued. 
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CHAPTER I 
INTRODUCTION 

Cancer is a disease involving abnormal uncontrollable cell division which can 
become malignant with very poor prognosis.  The main types of cancer treatment 
include surgery, radiation therapy, hormone therapy, immunotherapy, targeted therapy 
and chemotherapy. Chemotherapy is a treatment of choice for cancer, nonetheless 
the efficacy of chemotherapeutic drugs can be confined by multidrug resistance 
phenomenon. The multidrug resistance toward chemotherapy occurs through various 
mechanisms including up/down-regulation of proteins in apoptosis cell death pathway 
(Baguley, 2010), suppression of phosphatase and tensin homolog function (PTEN) 
associated with PI3K function (Baguley, 2010) and increasing drug efflux transporters 
(Tsuruo et al., 2003).  The drug efflux transporters in particular those in ATP binding 
cassette (ABC) family such as P-glycoprotein (P-gp), multidrug resistance associated 
protein 1 (MRP1), multidrug resistance associated protein 2 (MRP2) reduce intracellular 
accumulation of chemotherapy agents by pumping the drugs out of the cells (Leonard 
et al., 2003).  Hence, therapeutic efficacy of these chemotherapeutic drugs apparently 
reduces, leading to the need of higher doses given to patients.  Consequently, drug 
toxicity increases.  The ABC transporters in particular MRP2 is intrinsically expressed in 
several types of cancer cells including breast cancer MCF-7 cells (Chaisit et al., 2016).  
The expression of MRP2 is also reported in HepG2 liver cancer cells (Cantz et al., 2000), 
kidney cancer cells derived from patient specimens (Schaub et al., 1999).  Expression 
of P-gp and MPR2, has been responsible for intrinsic cellular resistance toward 
treatment with cytotoxic agents (Kovalchuk et al., 2008; Choi et al., 2007).  In addition, 
changing in expression levels of MRP2 has been reported in the cells exposed with a 
number of compounds such camptothecin, cisplatin (Ke et al., 2013), tamoxifen (Choi 
et al., 2007).  For example, the MCF-7 cells treated with tamoxifen for 9 months 
developed drug resistance via up-regulation of functional MRP2 level (Choi et al., 2007).  
Changing in MRP2 expression could be associated with number of signaling pathways 
such as MAPK and LXR-SREBP signaling pathways (Kobayashi et al., 2013; Xiao et al., 
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2012).  It was demonstrated that activation of LXR-SREBP signaling pathway enhanced 
mRNA and protein levels of MRP2 in HepG2 cells (Kobayashi et al., 2013).  In addition, 
several transcription factors in survival adaptation of cancer cells such as AP-1, FOXO, 
NF-kB are also reported to involve with regulation of MRP2 at transcription process 
(Wagner and Nebreda, 2009).  

Metformin (N, N dimethylbiguanide hydrochloride) is a biguanide anti-diabetic 
drug with various pharmacological activities including anti-carcinogenic effect.  
Metformin has been reported to inhibit proliferation of various cancer cells such as 
prostate cancer, colon cancer, ovarian cancer and breast cancer (Ben Sahra et al., 
2010).  In addition, metformin could inhibit P-gp (MDR1) expression at gene and protein 
levels in breast cancer cells (Kim et al., 2010).  These down-regulation effects was 
corrected with activation of AMPK signaling pathway and inhibition of NF-KB function 
(Kim et al., 2010).  Currently, there are no reports about the effect of metformin on 
MRP2 function and expression.  Although both P-gp and MRP2 belong to the ABC 
transporters family, they are encoded by different genes.  Hence, mechanisms 
regulating expression of P-gp and MRP2 can be different.  It was demonstrated that 
changing of P-gp and MRP2 protein levels in the liver of Wistar rats given 2- 
acetylaminofluorene (AAF) 20 mg / kg daily for 3 days was incomparable (Tang et al., 
2000).  In addition, AAF (10-40 µM) up-regulated expression of P-gp mRNA in HepG2 
cells after treatment for 8 hr (Kuo et al., 2002).  This up-regulation might be mediated 
through activation of phosphoinositide 3-kinase (PI3K) pathway and NF-kB function (Kuo 
et al., 2002).  Furthermore, AAF increased the extents of MRP2 mRNA in HepG2 cells 
and in hepatoma cell lines (Hepa 1-6) via an activation of the NF-E2-related factor 2 
(Nrf2) pathway (Vollrath et al., 2006). 

This study aimed to study the effects of metformin on MRP2 function and 
expression in human breast cancer MCF-7 cells. Its direct inhibitory action as well as 
its potential to affect MRP2 expression after prolong treatment were evaluated.  
Moreover, the possible mechanism of metformin on altering MRP2 expression at 
transcription level was also investigated.  
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Hypothesis 

 Metformin could directly interfere with MRP2 function as well as affect the 
expression of MRP2 mRNA in MCF-7 cells after prolong treatment.  It was  possible 
that metformin-mediated alteration of MRP2 mRNA involved with  AMP-activated 
protein kinase (AMPK) activation, leading to suppression of  mitogen-activated kinase 
(MAPK) signaling pathway. 
 
Objective 

The objectives of this study were as follows. 
1. To study the direct effect of metformin on of MRP2 function in breast cancer cells     

    (MCF-7 cells). 

2. To study the effects of metformin on the expression of MRP2 mRNA after prolong       

    treatment. 

3. To investigate an involvement of AMPK and MAPK signaling pathways in  

    metformin-mediated alteration of MRP2 expression at transcription level. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

4 

Conceptual framework    
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CHAPTER II 
LITERATURE REVIEW 

1. Breast cancer  

Breast cancer is the leading cause of cancer death in female.  There are several 
types of cancer treatment including surgery, radiation therapy, hormone therapy, 
targeted therapy and chemotherapy.  Effectiveness of each treatment has been linked 
to types and stages of cancer.  Certain cancers such as adrenal cancer and renal cancer 
may have intrinsic resistance toward the use of chemotherapeutic agents such as 
doxorubicin, mitoxantrone, paclitaxel, docetaxel, cyclophosphamide and capecitabine 
(Dean et al., 2005; Hassan et al., 2010).  Some cancers may develop chemotherapeutic 
resistance later (Dean et al., 2005; Baguley, 2010).  The cancer resistance to 
chemotherapeutic drugs is most likely non-specific to one drug group.  Usually, the 
resistance phenomenon cause cancer insensitive toward chemicals in various 
unrelated structure known as multidrug resistance (MDR). 

Development of MDR can be caused by several mechanisms including alteration 
of protein expression in apoptotic cell death pathway (Sharma et al., 2006; Olson and 
Hallahan, 2004), suppression of phosphatase and tensin homolog function (PTEN) 
associated with PI3K function (Baguley, 2010), and increasing expression of the ATP 
binding cassette (ABC) transporters.  The ABC transporters reportedly having crucial 
role in MDR include P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), 
multidrug resistance associated protein (MRPs) subfamily such as MRP1, MRP2 (Baguley, 
2010; Fletcher et al., 2010).  These transporters reduce intracellular accumulation of 
chemotherapy agents by actively pumping the drugs out of the cells with the use of 
(Baguley, 2010; Choi, 2005).  Hence, therapeutic efficacy of these chemotherapeutic 
drugs apparently decreases, leading to the need of higher doses given to patients.  
Consequently, untolerated drug toxicity increases. Breast cancer cells intrinsically 
express certain ABC transporters such as MRP1, MRP2 and MRP3 (Faneyte et al., 2004).  
In addition, these cancer cells may increase the expression of the drug efflux pumps 
under certain conditions.  It was reported that the expression of P-gp increased in 
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breast cancer treated with taxol such as paclitaxel and docetaxel (Hassan et al., 2010).  
Long-term treatment of doxorubicin caused up-regulation of function and expression 
of P-gp in human breast cancer MCF-7 cells (Chaisit et al., 2016).  Moreover, 
overexpression of BCRP was reported in several of mitoxantrone-resistant cell lines 
such as colon carcinoma (S1 and HT29), gastric carcinoma (EPG85-257), fibrosarcoma 
(EPF86-079) and human breast carcinoma (MCF-7) (Doyle and Ross, 2003; Robey et al., 
2001).   

Hence, it is likely that interference on either function or expression of the ABC 
drug efflux transporters may overcome MDR, and increase chemotherapeutic efficacy 
in cancer treatment.  
2. Function and expression of MRP2 in cancer 

The ATP-binding cassette (ABC) transporters (e.g., P-gp, BCRP, MRP1, MRP2) are 
implicated in active transport of diverse compounds being their substrates across 
plasma membrane (Fletcher et al., 2010). The ABC transporters have been found in 
various normal tissues as well as in cancer tissues.  These transporters can be 
determinant of drug absorption and disposition, depending on the tissues they express 
(Szakács et al., 2008).  For example, P-gp is found in the apical surface of small and 
large intestine having a role in limiting drug absorption (Sparreboom et al., 1997; 
Johnstone et al., 2000).  In cancer, these transporters play a cellular protective role 
against xenobiotics or chemical threats through limiting the intracellular accumulation 
of the threats (Chan et al., 2004).   

P-gp is the most studied ABC transporters in MDR development.  In addition to 
P-gp, several cancer cells such as liver cancer, breast cancer and renal cancer have 
been shown high levels of MRP2 expression (Cantz et al., 2000; Faneyte et al., 2004; 
Schaub et al., 1999).  The expression of MRP2 resulted in resistance to  
chemotherapeutic drug substrate of MRP2 such as methotrexate (Hooijberg et al 1999), 
cisplatin, vinblastine, camptothecin (Evers et al., 2000).  The expressed levels of the 
ABC transporters can be affected by several factors such as culture condition, cancer 
cell type or drug/chemical exposure (Fardel et al., 2005).  For example, atorvastatin 
and pitavastatin could increase mRNA and protein levels of MRP2 in HepG2 cells after 
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24 hr exposure (Kobayashi et al., 2013).  Another example is sulforaphane.  This drug 
could increase MRP2 protein level in HepG2 cells, A549 cells and Caco2 cells after 
treatment for 48 hr (Harris and Jeffery, 2007).  Sodium arsenic (ASIII) was able to up-
regulate MRP2 mRNA and protein in both primary rat hepatocytes and normal human 
hepatocytes via activation of the mitogen-activated protein kinase (MAPK) pathway 
(Vernhet et al., 2001).  However, sodium arsenic (ASIII) had no effect on MRP1 and 
MRP3 mRNA levels (Vernhet et al., 2001).  Hence, regulation of gene expression of each 
ABC transporter may be different.  It has been report tetramethylpyrazine reduced 
both P-gp and MRP2 levels in doxorubicin-resistant liver cancer cells (BEL-74022/dox 
cells) (Wang et al., 2010).  However, lipopolysaccharide had the opposite effect on 
extents of P-gp mRNA and MRP2 mRNA in rat liver.  The P-gp mRNA levels in liver 
tissues from Wistar rats given lipopolysaccharide 2 mg / kg increased significantly, as 
compared with that of the control group.  On the contrary, the level of MRP2 mRNA 
in the rat liver decreased (Vos et al., 1998).   
3. Mechanisms involving an expression of MRP2  

Changing in expression levels of MRP2 has been reported in the cells exposed 
with a number of compounds such camptothecin, cisplatin (Ke et al., 2013), tamoxifen 
(Choi et al., 2007).  For example, the MCF-7 cells treated with tamoxifen for 9 months 
developed drug resistance via up-regulation of functional MRP2 level (Choi et al., 2007).  
Changing in MRP2 expression is reported to be associated with number of signaling 
pathways such as MAPK and LXR-SREBP signaling pathways (Jakubikova et al., 2005; 
Kobayashi et al., 2013; Xiao et al., 2012).  Proteins in the MAPK signaling pathway 
include extracellular signal regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase 
(JNK) which involving of protein kinase cascades (Zhang and Liu, 2000).  These proteins 
have been related to regulation of cell proliferation, differentiation, and cell survival 
adaptation (McCubrey et al., 2007).  Activation of this MAPK pathway can result in 
activation of other transcription factors such as c-Jun (AP-1), ATF2, p53 (Kim and Choi, 
2010) and NF-kB (Tsai et al., 2003).   

An involvement of MAPK pathway in MRP2 up-regulation has been 

demonstrated.  For example, gemcitabine at the concentrations of 11.4 and 114 μg / 
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ml increased the extent of MRP2 mRNA in pancreatic cancer cells (Bxpc-3 cells), which 
was related to a rising of RAF/ERK mRNA (Xiao et al., 2012).  A tyrosine kinase inhibitor 
gefitinib (5 µM) could suppress expression of MRP2 mRNA in gemcitabine-resistant 
pancreatic cancer cells (Xiao et al., 2012).  Furthermore, the suppressive effect of IL-1 

β on MRP2 mRNA level in HepG2 cells involved with an inhibition of MAPK pathway 

(Hisaeda et al., 2004).  In addition, it was reported that a p38 inhibitor (SB203580) could 
reduce MRP2 protein expression in Caco2 cells (Vinette et al., 2015).  It should be 
nothing that several transcription factors in survival adaptation of cancer cells such as 
AP-1, FOXO, NF-kB are also reported to involve with regulation of MRP2 at transcription 
process (Wagner and Nebreda, 2009). 
4. Metformin and anti-cancer activities 

Metformin (N, N dimethylbiguanide hydrochloride) is a biguanide anti-diabetic 
drug with various pharmacological activities including anti-carcinogenic effect.  The 
mechanism of metformin action is related to its ability to inhibit the mitochondrial 
respiratory chain complex I, leading to reduction of ATP synthesis.  Consequently, AMP-
activated protein kinase (AMPK) is activated, causing a decrease in hepatic glucose 
production as well as inhibition of cancer cells division (Viollet et al., 2012).  Metformin 
has been reported to inhibit proliferation of various cancer cells such as prostate 
cancer, colon cancer, ovarian cancer and breast cancer via AMP-activated protein 
kinase (AMPK) / mammalian Target of Rapamicin (mTOR) pathway (Ben Sahra et al., 
2010) as well as via activation of the MAPK pathway (Hwang et al., 2013).  At the 
concentration of 10 mM, metformin could cause cell cycle arrest in G0-G1 phase and 
apoptosis in the MCF-7 cells after 24-72 hr treatment, possibly due to inhibition of 
MAPK/ERK phosphorylation (Queiroz et al., 2014).  The similar effect of metformin on 
cell cycle and apoptosis was also observed in HTh74 thyroid cancer, doxorubicin-
resistant thyroid cancer (HTh74Rdox) and triple negative breast cancer cells 
(ER/PR/Her-2 negative) (Chen et al., 2012; Liu et al., 2009).  Metformin produced 
apoptosis in HTh74 and HTh74Rdox cells through inhibition of ERK phosphorylation 
(Chen et al., 2012), whereas its apoptotic effect in ER/PR/Her-2 negative involved 
activation of AMPK pathway.  Activation of AMPK resulted in phosphorylation of p53, 
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a tumor suppressor gene (Liu et al., 2009; Jones et al., 2005).  It was also reported that 
activation of AMPK signaling pathway caused suppression of MAPK/ERK pathway (Tosca 
et al., 2010; Hwang et al., 2013).    
5. Effect of metformin on expression of the ABC transporters  

Currently, there are no reports about the effect of metformin on MRP2 function 
and expression.  Metformin at 10 mM was shown to reduce MDR1 (P-gp) expression at 
gene and protein levels in doxorubicin-resistant MCF-7 breast cancer cells (Kim et al., 
2010).  This down-regulation effects was correlated to activation of AMPK signaling 
pathway and inhibition of NF-kB function (Kim et al., 2010).  Moreover, metformin in 
the concentrations ranging from 1 mM to 10 mM decreased mRNA and protein level 
of P-gp in concentration dependent manner in 5-fluorouracil resistant hepatoma cell 
line (Bel-7402 cells).  This result was associated with activation of the AMPK / mTOR 

pathway and the inhibition of HIF1-α, a transcription factor associated P-gp expression 
(Ling et al., 2014).  In addition, treatment the doxorubicin-resistant K562 cells with 
metformin at concentration 1 mM and 5 mM for 48 hr reduced mRNA and protein 
levels of P-gp via the inhibition of MAPK / ERK pathway (Xue et al., 2016).  Metformin-

mediated suppression of HIF1-α in Cholangiocarcinoma cells (RBE and HCCC-9810 
cells) might be responsible to a decreased MRP1 protein level (Ling et al., 2014).  As 

known, HIF1-α is transcription factor involving in regulation of several genes including 
MDR1 (P-gp), ABCC1 (MRP1), ABCC2 (MRP2) (Lv, 2015; Wang and Minko, 2004).  Hence, 
it is likely that metformin affect the expression ABC transporters via different signaling 
mechanisms.  As shown in Figure 1, metformin decrease MRP2 mRNA expression 
through AMPK activation leading to inhibition of mitogen-activated kinase (MAPK) 
signaling pathway in breast cancer cells.  
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 Figure 1 Proposed signal transduction pathways involving with MRP2 
 expression in breast cancer cells.  
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CHAPTER III 
MATERIALS AND METHODS 

1. Materials 

1.1 Chemicals and reagents: Metformin was obtained from Aurolab (Tamil Nadu, 

India). 

Other chemicals including bovine serum albumin (BSA), ethylenediamine 
tetraacetic acid (EDTA), 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT reagent), penicillin G sodium, protease inhibitor cocktail, streptomycin sulfate, 
Triton X-100, trypsin, 5(6)-carboxy-2′,7′-dichlorofluorescein diacetate (CDCFDA), 
indomethacin were obtained from Sigma Chemical Co. (St Louis, MO, USA).  Compound 
C (an AMPK inhibitor) was purchased from Calbiochem (San Diego, CA, USA).  Super 
signal West Pico chemiluminescent substrates and TRIzol® Reagent were purchased 
from Pierce Biotechnology (Rockford, IL, USA).  

RPMI-1640 medium and fetal bovine serum (FBS) were purchased from Gibco 
Life Technologies (Grand Island, NY, USA).  

Polyvinylidine difluoride (PVDF) membranes were purchased from Pall 
Gelman Laboratory (Pensacola, FL, USA).   

ImProm-II™ reverse transcription system was purchased from Promega 
(Madison, WI, USA).    

BCA Protein Assay Kit was purchased from Thermo Scientific™ (Rockford, IL, 
USA) 
1.2 Antibodies: The mouse monoclonal anti-ERK1/2 and anti-phosphorylated ERK1/2, 
the rabbit monoclonal anti-p38 and anti-phosphorylated p38,  secondary goat 
anti-rabbit IgG (H&L) horseradish peroxidase (HRP) were  purchased from Cell 
Signaling Technology (Beverly, MA, USA).  Secondary goat  anti-mouse IgG (H&L) 
horseradish peroxidase (HRP) was purchased from  Calbiochem (San Diego, CA, USA).  
1.3 Experimental instruments 

1.  Autoclave: Hirayama, Saitama, Japan  
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2.  GE ImageQuant LAS 4000: GE Healthcare Life-Sciences Ltd., Branch,   
 Taiwan   

3.  Hot air oven: MEMMERT, Buchenbach, Germany  
4.  Humidified carbon dioxide incubator: Forma Scientific, Marietta, OH,  

     USA   
5.  Inverted microscope: Axiovert 135, Zeiss, Konstanz, Germany 

 6.  Microplate reader: Wallac 1420 Perkin-Elmer Victor 3, Perkin Elmer lnc.,  
     Waltham, Massachusetts, USA  
 7.  Multiwell plates: Corning, New York, USA  
 8.  NanoDrop™ 2000/2000c Spectrophotometers: Thermo Scientific,       
          Wilmington, UK  
 9.  OmniPAGE mini vertical systems: Cleaver Scientific, Warwickshire, UK   
 10.  Orbital shaker: OS-20, Biosan, Riga, Latvia  
 11.  pH meter: CG 842, Schott, Hofheim, Germany  
 12.  Refrigerated centrifuge: Z 383K, Hermle Labortechink, Burladingen,   
       Germany  
 13.  Tissue culture flasks: Corning, New York, USA  
 14.  Vortex mixer: mode K550-GE. Scientific Industries, New York, USA  
 15.  Water bath: WB22, Memmert, Hannover, Germany 
1.4 Cell culture 

Human breast adenocarcinoma MCF-7 cell line was obtained from American 
Type Culture Collection (ATCC® HTB22™). The cells (passage between 160-180) were 
grown in RPMI-1640 (supplement with 10% heat-inactivated fetal bovine serum and 
1% penicillin-streptomycin) in humidified 37 °C, 5% CO2 and 95% air.  The culture 
medium were changed every other day.  The cells were sub-cultured by trypsin-EDTA 
at 80% confluence.  
 
 

 

 



 
 

 

13 

2. Methods 

2.1 MTT assay   

 Cell viability was determined by an MTT assay.  The cells were seeded onto 96 

well-plates at the density of 3.1x104 cells/cm2 and cultured for 2 days.  Then, the cells 

were treated with metformin at various concentrations ranging from 1 mM to 20 mM 

for 24 and 72 hr.  At the end of each treatment period, the cells were washed and 

further incubated with MTT reagent (0.5 mg/ml) for another 4 hr.  The formazan crystals 

generated inside the cells were dissolved with DMSO, and measured the absorbance 

at 570 nm with a microplate reader (Wallac 1420 VICTOR 3, PerkinElmer Inc., USA).  The 

concentrations of metformin that produced cell death of less than 20% were 

considered non-cytotoxic.  

2.2 Substrate accumulation assay 

 The MRP2 activity was determined by a substrate accumulation assay.  The 

cells were seeded onto 24 well-plates at 1.16 x 105 cells/cm2, and cultured for 2 days.  

On the day of experiment, the cells were washed with Hank’s balanced salts solution 

(HBSS) and incubated with metformin (at a concentration ranging from 1 to 5 mM) for 

30 min.  Subsequently, an MRP2 substrate 5(6)-Carboxy-2’,7’-dichlorofluorescein 

diacetate (CDCF-DA) at a concentration of 5 µM was added into the assay system for 

another 30 min.  In this study, indomethacin, a known MRP2 inhibitor at a concentration 

of 500 µM was used as a positive control group.  At the end of the incubation period, 

cells were washed with ice-cold PBS and lysed with 0.1% Triton X-100.  The fluorescent 

intensity of dichlorofluorescein CDCF was determined with a microplate reader (Wallac 

1420 Perkin-Elmer Victor 3; Perkin Elmer Inc.) at an excitation wavelength 485 nm and 

emission wavelength 535 nm.  The protein was quantified by BCA Protein Assay Kit 

(Thermo Scientific™, USA) at 570 nm. 

 Furthermore, changing in MRP2 function in the MCF-7 cells after prolonged 

treatment with metformin was also determined with a substrate accumulation assay.  
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In this experiment, the cells were treated with metformin (up to 5 mM) for 24 and 48 

hr.  At the end of each treatment period, the cells were washed 3 times prior to 

measurement of MRP2 activity with the uptake assay as abovementioned.  The MRP2 

activity was estimated by the % increase in intracellular CDCF in the presence of 

indomethacin (500 µM). 

2.3 Reverse transcriptase polymerase chain reaction (RT-PCR) assay 

The mRNA contents of ABCC2 (MRP2), MDR1 (P-gp), ABCG2 (BCRP) and beta 
actin were determined by an RT-PCR technique.  The cells were seeded onto 6 well-
plates at the density of 1.05 x105 cells/cm2 and cultured for 2 days.  On the day of 
experiment, the cells were lysed and extracted for total RNA using TRIzol ® reagent 
according to the manufacturer’s instructions (Gibco Life Technologies, Grand Island, 
NY, USA) and kept at -80 °C.  The amounts of RNA samples were quantified using a 
NanoDrop™ 2000/2000c spectrometer at the wavelengths 260 and 280 nm.  RNA was 
reversely transcribed to cDNA by ImProm-II TM reverse transcription system (Promega, 
USA), with specific primers as follows: 5′-CAG ACA GCA GGA AAT GAA GTT GAA-3′ and 
5′-ACC AAC TCA CAT CCT GTC TGA-3′ for P-gp,  5′-ACT TGT GAC ATC GGT AGC ATG C-3′ 
and 5′-GTG GGC GAA CTC GTT TTG-3′ for MRP2, 5′-TGA CAT TAA GGA GAA GCT GTG CTA-
3′ and 5′-GAG TTG AAG GTA GTT TCG TGG ATG-3′ for beta actin and 5′-ATC CCC AGG 
CCT CTA TAG CT-3′ and 5′-GAG ATT GAC CAA CAG ACC ATC A-3′ for BCRP (The Gemini 
Singapore Science Park II, Singapore).  Then, PCR amplification was conducted with the 
PCR conditions as follows: (1) for P-gp determination: an initial denaturing at 95°C for 
5 minutes, 30 cycles of denaturing at 95°C for 30 s, annealing at 55°C for 30 s and 
extension at 72°C for 30 s; (2) for MRP2 and beta actin determinations: an initial 
denaturing at 95°C for 5 minutes, 40 cycles of denaturing at 94°C for 30 s, annealing at 
60°C for 30 s and extension at 72°C for 40 s; and (3) for BCRP determination: an initial 
denaturing at 95°C for 5 minutes, 30 cycles of denaturing at 95°C for 30 s, annealing at 
58°C for 30 s and extension at 72°C for 40 s. The PCR products were determined by 
gel electrophoresis (1.5% agarose) and detected by the reporter dye (SYBR) Green 
under a luminescence-Image analyzer (ImageQuant™ LAS 4000, GE Healthcare Bio-
sciences, Japan). 
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Effects of metformin on mRNA levels of MRP2, BCRP and P-gp were also 
examined in metformin-treated cells.  The cells were treated with metformin (at 
concentration ranging from 1 to 5 mM) for either 24 or 48 hr.  Subsequently, the cells 
were washed and determined for mRNA via the RT PCR technique described above. In 
addition, an involvement of AMPK inhibitor compound C (10 µM) into the medium 
during the metformin treatment period (24 hr).  
2.4 Western blot analysis 

The amount of protein expression was determined by western blot analysis.  In 
this study, activities of ERK1/2 and p-38 were determined from changing in their 
phosphorylated forms, which can be detected by the western blot technique.  The 
cells were seeded onto 6 well-plates at the density of 1.05 x105 cells/cm2 and cultured 
for 2 days.  The cells were treated with metformin 5 mM either in the presence or 
absence of an AMPK inhibitor Compound C at a concentration of 10 µM for 24 hr.  
Then, the cells were washed with PBS three times prior to treatment with ice-cold 
RIPA lysis buffer (50 mM Tris-HCl pH 6.8, 150 mM NaCl, 1% Tritron-X, 0.5% sodium 
deoxycholate and 0.1% SDS) supplemented with protease inhibitor cocktails (1:100). 
The cell lysate was centrifuged at 16,000x g for 15 min at 4 oC. The precipitated portion 
was collected.  The amount of protein in precipitated samples was quantified using 
BCA Protein Assay Kit and measured the absorbance spectrophotometrically at 570 
nm.  

Subsequently, each of protein samples (at the amount of 80 µg) was boiled in 

sample buffer (60 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol 
and0.01% bromophenol blue) at 95 oC for 5 min.  After the denaturation process, the 
protein samples were run on a 12% SDS-polyacrylamide gel electrophoresis at the 
constant voltage of 100 V for 120 min, followed by electrical transfer to PVDF 
membrane at the constant voltage of 60 V for 120 min.  Then, the membranes were 
blocked with 5% BSA in TBS-T (50 mM Tris-base, 150 mM NaCl and 0.05% Tween 20) 
for 30 min at room temperature.  After the blocking process, the membranes were 
probed with primary antibodies for ERK1/2 (1:2000), p-ERK1/2 (1:1000), p-38 (1:2000), 
p-p-38 (1:1000) or beta actin (1:1000) at 4 oC overnight.  Subsequently, the membranes 
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were washed for 7 min with TBS-T three times and incubated with corresponding HRP-
conjugated secondary antibody in TBS-T for 60 min at room temperature.  After 
incubation, the membranes were washed and developed using the Super signal West 
Pico chemiluminescent substrates.  The membranes were visualized by a GE 
ImageQuant LAS 4000.  The activities of ERK1/2 and p-38 were normalized to beta 
actin and shown as relative fold induction. 
2.5 Data analysis  

Data were expressed as mean ± SEM obtained from three separated 

experiments (n=3).  Statistical analyses were performed by one-way analysis of 

variance (ANOVA), followed by the post-hoc Dunnett’s test.  Differences were 

considered statistically significance when p < 0.05.    
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CHAPTER IV 
RESULTS 

4.1 Effect of metformin on cell viability 

 Metformin caused cytotoxicity to the MCF-7 cells after treatment for either 24 

or 72 hr in concentration dependent manner.  The apparent cytotoxic concentrations 

of metformin in this study were greater than 10 mM at 24 hr-treatment and 5 mM at 

72 hr-treatment, respectively (Figure 2). 

       
  Figure 2 Cell viability after treatment with metformin (1-20 mM) for 24 and 72 hr.  
 
4.2 Direct effect of metformin on MRP2 function  

 Basal MRP2 activity in MCF-7 cells was determined by the fold-increase of 
intracellular CDCF in the presence of MRP2 specific inhibitor.  In this study, addition of 
an MRP2 inhibitor indomethacin (500 µM) increased intracellular CDCF accumulation 
by approximately 2.38 fold (Figure 3).  Regarding to this, the MCF-7 cells grown under 
my experimental condition contained MRP2 function at appreciable level.  Metformin 
at the concentrations upto 5 mM had no significant effect on intracellular CDCF levels, 
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comparing with the untreated control group (without metformin) (Figure 3).  The results 
suggested that metformin had no inhibitory effect against MRP2 activity.  

The alteration of MRP2 activities after prolonged treatment (either 24 or 48 hr) 
the cells with metformin was also assessed with the use of indomethacin mediated 
fold-increase of intracellular CDCF.  As shown in Figure 4, indomethacin-mediated 
intracellular CDCF accumulation in the cells treatment with metformin (upto 5 mM) 
for 24 hr did not increase significantly, comparing to those of the control group.  Upon 
extending the metformin treatment period to 48 hr, metformin at the non-cytotoxic 
concentration of 5 mM was able to cause a significant increase of intracellular CDCF 
accumulation in the presence of indomethacin by approximately 2.22 fold.  The results 
suggested that metformin at high concentration (5 mM) could increase basal MRP2 
activity in MCF-7 cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Effect of metformin at the concentration upto 5 mM and indomethacin  
(500 µM) on intracellular CDCF accumulation in the MCF-7 cells after 30 min 
incubation.  Data were calculated and expressed as the percentage (%) of untreated 
control group. *p < 0.05 vs control (n=3 separated experiments). 
 
 

2.38 fold 
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Figure 4 Basal MRP2 activity in the metformin-treated MCF-7 cells.  The cells were 
pretreated with metformin for either 24 hr A) and 48 hr B) prior to determining 
intracellular CDCF accumulation in the presence and absence of indomethacin (500 
µM). Significant increase in intracellular CDCF in the presence of indomethacin (500 
µM) in relative to those in the absence of indomethacin indicated the basal MRP2 
activity.  Each bar represents the mean ± SEM obtained from 3 separated experiments 
(n=3).  *p < 0.05 compared with the control group. 
 

A. 

B. 

2.22 fold 
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4.3 Effect of metformin on expression of the ABC transporters in MCF-7 cells. 

Baseline mRNA levels of certain ABC transporters including MRP2, P-gp and 

BCRP in specific subtypes of MCF-7 cells were examined as follows: MRP2 mRNA in 

parental MCF-7 cells (wildtype; MCF-7/WT), P-gp mRNA in doxorubicin resistant MCF-7 

cells ( MCF-7/dox cells)  and BCRP mRNA in mitoxantrone resistant cells ( MCF-7/MX 

cells) .  The mRNA extents of these specific ABC transporters were clearly shown in 

Figure 5. 

As shown in Figure 6 and 7 treatment the cells with metformin either for 24 or 

48 hr reduced MRP2 mRNA in concentration dependent manner.  This suppressive 

effect was statistically significant at the concentrations of 2.5 and 5 mM for 24 hr-

treatment period. Upon extending the treatment period to 48 hr, metformin at the 

concentration of 1 mM was able to reduce MRP2 mRNA significantly (Figure 7). 

Furthermore, the effects of metformin on P-gp mRNA and BCRP mRNA levels 

were further examined in MCF-7/dox cells and MCF-7/MX cells, respectively.  As shown 

in Figure 8 and 9, metformin (5 mM) significantly decreased the relative amount of P-

gp mRNA in MCF-7/ dox cells, but not BCRP mRNA in MCF-7/ MX cells after 24 hr 

treatment.  

 

 
Figure 5 Basal mRNA level of MRP2 in MCF-7 cells, P-gp in MCF-7/dox cells and BCRP 
in MCF-7/MX cells. 
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Figure 6 Relative MRP2 mRNA level in the metformin treated MCF-7 cells for 24 hr. A) 
Representative profile of MRP2 mRNA.  B) Bar graph represents the mean ± SEM (n=3) 

of MRP2 mRNA level after normalized with beta actin mRNA (MRP2/beta actin mRNA).  
Data are expressed as the percentage of the control group.  *p < 0.05 indicated 
statistically significant difference from the control group. 
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46.78% 
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Figure 7 Relative MRP2 mRNA level in the metformin treated MCF-7 cells for 48 hr. A) 
Representative profile of MRP2 mRNA.  B) Bar graph represents the mean ± SEM (n=3) 

of MRP2 mRNA level after normalized with beta actin mRNA (MRP2/beta actin mRNA).  
Data are expressed as the percentage of the control group.  *p < 0.05 indicated 
statistically significant difference from the control group. 
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Figure 8 Relative P-gp mRNA level in the metformin treated MCF-7/dox cells for 24 hr. 

A) Representative profile of P-gp mRNA.  B) Bar graph represents the mean ± SEM (n=3) 

of P-gp mRNA level after normalized with beta actin mRNA (P-gp/beta actin mRNA).  
Data are expressed as the percentage of the control group.  *p < 0.05 indicated 

statistically significant difference from the control group.  
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Figure 9 Relative BCRP mRNA level in the metformin treated MCF-7/MX cells for 24 hr. 

A) Representative profile of BCRP mRNA.  B) Bar graph represents the mean ± SEM 

(n=3) of BCRP mRNA level after normalized with beta actin mRNA (BCRP/beta actin 

mRNA).  Data are expressed as the percentage of the control group. *p < 0.05 indicated 

statistically significant difference from the control group. 
 
 
 
 

B. 
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4.4 An involvement of the AMP-activated protein kinase (AMPK) pathway in 
metformin-mediated reduction of MRP2 mRNA expression in MCF-7 cells. 

An involvement of AMPK pathway in metformin-mediated reduction of MRP2 

mRNA levels in MCF-7 cells was further investigated.  In this study, an AMPK activator 

AICAR was able to reduce MRP2 mRNA level in the MCF-7 cells after 24-hr treatment. 

However, extents of MRP2 mRNA in the cells treated with AICAR and compound C 

were comparable to those in the untreated control group (Figure 10).  These results 

suggested that an activation of AMPK could result in down-regulation of MRP2 at 

transcription level.  Treatment the cells with metformin (5 mM) for 24 hr significantly 

reduced MRP2 mRNA level (Figure 9).  Addition of compound C in the culture medium 

could prevent the suppressive action of metformin on MRP2 mRNA expression.  The 

MRP2 mRNA extents in the metformin-treated MCF-7 cells increased significantly from 

33.22 % to 75.18 % (by approximately 2.26 fold) in the presence of compound C 

(Figure 10).  These findings suggested that metformin might decrease MRP2 mRNA 

expression at the transcription level through activation of AMPK pathway. 
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Figure 10 Relative MRP2 mRNA level in the MCF-7 cells treated with metformin for 24 
hr. A) Representative profile of MRP2 mRNA.  B) Bar graph represents the mean ± SEM 
(n=3) of MRP2 mRNA level after normalized with beta actin mRNA (MRP2/beta actin 
mRNA). Data are expressed as the percentage of the control group.  *p < 0.05 indicated 
statistically significant difference from the control group; #p < 0.05 indicated 
statistically significant difference between treatment in the presence and absence of 
compound C. 

52.33% 

33.22% 
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 Furthermore, the inter-relationship between AMPK and MAPK pathways was 
also investigated in this study.  Activation of MAPK family including ERK and p38 has 
been related to an increased expression of MRP2 mRNA.  In this study, compound C 

caused higher phosphorylated p38 protein (p-p38) level, as compared with that of the 

control group. However, it had no effect on ERK activation (Figure 11).  Treatment the 

MCF-7 cells with metformin (5 mM) for 24 hr reduced the phosphorylated form of ERK 

and p38, as compared with those of the untreated control groups.  Moreover, 
compound C could prevent the suppressive effect of metformin on either ERK or p38 

activation (Figure 12). 
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Figure 11 Effects of metformin on the expression of ERK1/2 and its phosphorylated 
form (p-ERK1/2) in MCF-7 cells. (A) Immunoblots of ERK and phosphorylated ERK.  (B) 
Densitometrical analysis of immunoblots calculated as the ratio of phosphorylated 
ERK to ERK.  Each bar represents the mean ± SEM obtained from separated 
experiments (n=3).  *p < 0.05 compared with the control group. 
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35.51% 
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Figure 12 Effects of metformin on the expression of p38 and its phosphorylated form 
(p-p38) in MCF-7 cells. (A) Immunoblots of p38 and phosphorylated p38.  (B) 
Densitometrical analysis of immunoblots calculated as the ratio of phosphorylated 
p38 to p38.  Each bar represents the mean ± SEM obtained from separated 
experiments (n=3).  *p < 0.05 compared with the control group 
 

149.60% 

41.86% 
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CHAPTER V 
DISCUSSION 

 Metformin is a biguanide anti-diabetic drug with cytotoxic property against 

various cancer cell lines such as human pancreatic cancer cells (Bao et al., 2012), 

thyroid cancer cells (Chen et al., 2012), human glioblastoma multiform cells (Ucbek et 

al., 2014), prostate cancer cells (Ben et al., 2008) and colon cancer cells (Buzzai et al., 

2007).  Expression of the ABC efflux transporters in particular P-gp and MRP2 may cause 

MDR in cancer cells.  It would be interesting whether metformin could overcome MDR 

by interfering these drug efflux pumps.  In this study, effects of metformin on function 

and expression of MRP2 transporter were determined in the living breast cancer MCF-

7 cells.  Hence, it was crucial to select the non-cytotoxic concentrations of metformin 

for conducting transporter experiments.  In this study, the concentrations that 

produced cell death of less than 20% were considered non-cytotoxic. The cytotoxicity 

of metformin toward MCF-7 cells was concentration-and time- dependent. The 

maximal non-cytotoxic concentrations of metformin in the MCF-7 cells were 10 mM at 

24 hr-treatment and 5 mM at 72 hr-treatment. 

 Apparently, metformin had no direct interfering effect on MRP2 activity.  

However, the result from the functional studies of MRP2 suggested that metformin (at 

5 mM) might be able to increase MRP2 function after prolonged 48 hr treatment.  It 

could be hypothesized that an increased activity involved with up-regulation of mRNA 

or protein levels.  However, there were reports that metformin (1-10 mM) decreased 

P-gp activities in MCF-7/dox cells after 2 days treatment.  

 Although P-gp and MRP2 belong to the superfamily of ABC transporters, they 
are encoded by different gene.  P-gp is encoded by MDR1 gene whereas MRP2 is an 
ABCC2 gene product.  These two transporters may be under different gene regulation 
pathway.  Changing in mRNA or protein expression of each transporter in response to 
chemical treatment could vary and not in agreeable direction.  It was reported that 
the extent of P-gp mRNA in hepatocytes isolated from lipopolysaccharide-treated rats 
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increased whereas the extent of MRP2 mRNA decreased (Vos et al., 1998).  Hence, it 
might be anticipated that metformin had different effects on P-gp and MRP2 
expression. 

High expression of drug efflux transporters including P-gp and MRP2 has been 

widely accepted as a mechanism responsible for multidrug-resistance (MDR) in cancer, 

leading to chemotherapeutic failure (Baguley, 2010).  Although P-gp is the most studied 

efflux transporter in MDR phenomenon, expression of MRP2 has been linked to drug 

resistance in various cancer cells such as human colorectal carcinoma and breast 

cancer cell line (Hinoshita et al., 2000; Choi et al., 2007).  It was demonstrated that 

MRP2 overexpression caused cisplatin-resistance in human colorectal carcinoma 

(Hinoshita et al., 2000), and tamoxifen-resistance in breast cancer cells (Choi et al., 

2007).  Any compounds with abilities to suppress MRP2 function and/or expression 

might also be useful in reversing MDR in cancer.   

Based on the RT-PCR analysis, human breast cancer MCF-7 cell line used in this 

study expressed high level of MRP2 mRNA.  Moreover, the baseline MRP2 activity in 

the wildtype MCF-7 cells was at appreciable level as suggested by 3.5 fold-increase of 

intracellular CDCF in the presence of an MRP2 inhibitor indomethacin (500 µM).  In 

addition to the wildtype MCF-7 cell line, the acquired MDR/MCF-7 cells types were 

also used in this study.  They were doxorubicin resistant MCF-7 cells (MCF-7/dox) which 

expressed high P-gp level and mitoxantrone resistant MCF-7 cells (MCF-7/MX) which 

expressed high BCRP level.  In this study, metformin was able to reduce mRNA extents 

of MRP2 and P-gp in breast cancer cells (MCF-7; MCF-7/dox) after 1 day treatment.  In 

addition, the effect of metformin on MRP2 expression was apparently greater than that 

on P-gp expression in MCF-7/dox.  After 24 hr treatment, metformin at the 

concentration of 2.5 mM significantly suppressed MRP2 mRNA level by 56.58%, but 

not P-gp mRNA level.  The effect of metformin on P-gp mRNA level could be observed 

at the concentration of 5 mM after 24 hr treatment.  Moreover, the suppressive effect 
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of metformin on MRP2 expression at transcription level was concentration- and time- 

dependent.  Furthermore, the down-regulation effect of metformin on BCRP mRNA 

level in MCF-7/MX cells was not statistically significant.   

Mechanisms involving gene regulation of the ABC transporters superfamily have 

been reported.  For example, mollugin decreased P-gp expression at the transcription 

and translation processes in doxorubicin resistant breast cancer cell lines through 

AMPK-mediated repression of NF-kB and CREB (Tran et al., 2013).  In addition, vincristine 

could activate the PI3K/Akt pathway in lymphoma cell lines, resulting in down-

regulation of P-gp expression (Garcia et al., 2009).  Expression of MRP2 could be 

associated with survival signaling pathways including ERK and p-38 in MAPK signaling 

pathways (Dhillon et al., 2007).  It was reported that IL-1β decreased MRP2 mRNA 

through inhibit ERK, leading to disruption of IRF3 binding to ISRE on the MRP2 promoter 

in human hepatoblastoma cells (Hisaeda et al., 2004).  Moreover, sodium arsenic could 

increase MRP2 expression of mRNA and protein in both primary rat hepatocyte and 

normal human hepatocyte via JNK in the MAPK pathway (Vernhet et al., 2001).  Hence, 

it was likely that inhibition of MAPK pathway was able to down-regulate mRNA and 

protein of MRP2. 

The relationship between AMPK and MAPK signaling pathways has been 

demonstrated.  Metformin inhibits mitochondrial respiratory complex I, leading to 

activates AMP-activated protein kinase (AMPK) (Viollet et al., 2012).  Activation of AMPK 

has been linked to inhibition of the mammalian target of rapamycin (mTOR) pathway 

as well as MAPK pathway (Zoncu et al., 2011; Tosca et al., 2010).  Inhibition of mTOR 

pathway can alter mRNA translation and protein synthesis, which possibly leads to 

inhibition of cancer cell growth (Zoncu et al., 2011).  It has been reported that 

activation of AMPK pathway leads to suppression of MAPK activities in several cells 

such as skeletal muscle (Hwang et al., 2013), sensory neurons (Tillu et al., 2012) and 

bovine granulosa cells (Tosca et al., 2010).   
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In this study, mechanisms of metformin-mediated down-regulation of MRP2 

were investigated in the human breast cancer cell line MCF-7.  The results suggested 

that the down-regulation effect of metformin at transcription level involved AMPK 

pathway.  Treatment the MCF-7 cells with an AMPK activator AICAR (100 µM) for 24 hr 

caused significant reduction of MRP2 mRNA level.  The presence of an AMPK inhibitor 

compound C (10 µM) could prevent the AICAR-mediated decrease of MRP2 mRNA.  

The results further demonstrated that compound C could prevent the reduction of 

MRP2 mRNA in the cells treated with metformin (5 mM).  Furthermore, metformin (5 

mM) after 24 hr-treatment significantly reduced phosphorylated ERK and p38, 

suggesting the inhibitory action of metformin on basal MAPK activities. The presence 

of compound C could prevent the suppressive effect of metformin on both 

phosphorylated ERK and p38.  Taken together, it was likely that metformin could 

decrease MRP2 mRNA expression at the transcription level through activation of AMPK 

pathway and suppression of ERK and p38 activities. 

 Moreover, the MCF-7 cells treated with metformin (5 mM) for 48 hr apparently 
had an increased MRP2 activity, despite reduction of mRNA level.  It was possible that 
changing in extents of mRNA and protein levels might not be always correlated (Pascal 
et al., 2008; Maier et al., 2009).  It has been reported that no significant correlation 
between mRNA and protein expression in lung adenocarcinomas (Chen et al., 2002).  
Further determination of MRP2 protein level should be pursued.  Furthermore, 
activation of AMPK has been linked to an increase of Na+, K+ ATPase activity in skeletal 
muscle cells (Benziane et al., 2012).  The inductive effect of metformin, a known AMPK 
activator, on MRP2 functionality via increasing ATPase activity should be also studied 
in the future. 

In conclusion, metformin had no direct effect on MRP2 activity.  However, 
prolonged exposure of the MCF-7 cells with metformin for 24-48 hr could result in 
down-regulation of MRP2 mRNA, possibly through AMPK mediated inhibition of MAPK 
signaling pathway. 
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