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The present study used three algorithms consisting of Support Vector Machine 

(SVM), Random Forest (RF), and Artificial Neuron Network (ANN) to locate risk area of 

arsenic (As)contamination in Rayong coastal aquifers, Thailand. There were three parts in 

this study consisting of 1) selecting the proper parameters 2) selecting the appropriate 

model, and 3) constructing the risk map of As. To perform models efficiently, the 

parameters used to generate the models have to be selected based on the correlation of each 

hydrochemical parameter with As concentration, which could explain the mechanisms of 

As release in groundwater. Due to major parameters in the dataset were monotonic and not 

presented by the normal distribution, thus, Spearman’s correlation was conducted to screen 

the suitable parameters. The results showed that parameters correlated with As mostly 

supported by the mechanism of As release in groundwater, which is dominantly controlled 

by the reducing condition. Spearman’s correlation technique would help to select the 

crucial parameters in the further modeling process. To select an appropriate model to 

generate the risk map, the model’s performance has to be measured by the prediction 

performance and uncertainty of each model. The prediction performance indicated that the 

RF algorithm has the highest performance as compared to those in SVM and ANN. In 

addition, the uncertainty of each model confirmed that the RF algorithm has the lowest 

uncertainty. Moreover, to confirm the performance of the models, the actual As 

concentration in field data were used to validate the prediction result of each model. The 

result, also confirms that the RF model was the best performance model compared with the 

other two models. Therefore, the RF was the appropriate algorithm that can generate the 

probability map to locate the areas of As contamination in groundwater. The result of the 

risk map obtained from the RF model indicated that the deep aquifer (granite aquifer, Gr), 

in the northern part of the Rayong basin has a higher risk for people who have used 

groundwater to expose to As. In contrast, the shallow aquifer revealed that the southern part 

of the Rayong basin has a higher risk for people who use groundwater, which is also 

supported by the location of the landfill and industrial estates in the Mueang District. The 

outcome of this study can be useful for the government and other organizations for 

groundwater resource management and environmental protection. Furthermore, the novelty 

of this research can be used to further study other groundwater aquifers contaminated with 

As in the world. 
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Chapter 1 Introduction 

1.1 Introduction 

Groundwater is the most valuable resource of drinking water especially, in 

South East Asia and developing countries (Winkel, Berg et al. 2008, Cho, 

Sthiannopkao et al. 2011). However, arsenic (As) contamination in groundwater is a 

major problem in many countries and regions because As is one of the major 

carcinogenic elements, which mostly presents in a toxic form as an inorganic species 

in natural water systems including groundwater (WHO 2018). Arsenic can be 

considered as a toxic element to humans in several forms, especially arsenite (As 

(III)), arsenate (As(V)), and organic As compounds. A lethal dose in humans is 1.5 

mg/kg of body weight (WHO 2018).  The acute intoxication symptoms include 

vomiting, abdominal pain, muscular pain, diarrhea, and weakness, with flushing of the 

skin, and chronic intoxication symptoms, including dermal lesions such as 

hypopigmentation and hyperpigmentation, skin cancer, peripheral neuropathy, lung 

cancers, bladder and peripheral vascular disease (WHO 2018). Due to the As toxicity, 

the monitoring strategies methods to observe As contamination need to be improved 

to quantify and predict As concentrations in groundwater. The proper method might 

be used to provide necessary information for better assessment and manage public 

health (Cho, Sthiannopkao et al. 2011). However, due to lacking equipment and 

human resource, dealing with local As contamination problems in regional areas 

remains problematic (DGR 2017). Therefore, modeling approaches for As 

concentrations using geological and on-site measurement data can be an alternative to 

characterize and measure the As contamination potential, as well as to provide 
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predictive information for better public health management (Winkel, Berg et al. 2008, 

Cho, Sthiannopkao et al. 2011, Bindal and Singh 2019). The prediction information in 

terms of the probability and risk map, that generated from the model, will help to 

support groundwater management and to plan to install a monitoring well system for 

the local government agencies. The probability map usually uses in many types of 

environmental science studies to inform the general information about a percent 

chance to encounter some study's element. On the other hand, the risk map can define 

an area in which it will encounter the study’s element (Sajedi Hosseini, Malekian et 

al. 2018). The prediction information in terms of the probability and risk map, that 

generated from the model, can help to support groundwater management and to plan 

to install groundwater monitoring wells system for the local government agencies. 

The probability map usually uses in many types of environmental science studies to 

inform the general information about a percent chance to encounter some study's 

focused elements. On the other hand, the risk map can define an area in which it will 

encounter the study’s focused element (Sajedi Hosseini, Malekian et al. 2018).   

Currently, machine learning (ML) has been applied in several fields in 

environmental scientist’s study. The MLs power comes from their powerful nonlinear 

modeling capability, which usually uses for assessment in environmental science 

aspects. To study groundwater contamination, machine learning (ML) has been 

applied for the prediction of several risk assessments in groundwater resources 

(Winkel, Berg et al. 2008, Sajedi Hosseini, Malekian et al. 2018, Bindal and Singh 

2019, Podgorski, Wu et al. 2020). There are several algorithms such as random forest 

(RF), support vector machine (SVM), and artificial neural network (ANN). Random 

Forest (RF) classifier for interpretations of the land cover shows that this algorithm is 
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very fast, and has satisfactory results with the limited data set (Havryliuk, Korol et al. 

2018, Podgorski, Wu et al. 2020). The algorithm could provide better detection of the 

variability in apartment values and predicts them more effectively than multiple 

regression (Marjan, Kilibarda et al. 2018). Support vector machine (SVM) was used 

to determine the risk of nitrate contamination in groundwater (Sajedi Hosseini, 

Malekian et al. 2018), and it is good to classify data and trends to be resistant to the 

overfitting problem. An artificial neural network (ANN) has been applied to evaluate 

the As contamination in groundwater. Furthermore, combine with the PCA technique, 

ANN algorithms provide a significant result to determine the As contamination in 

groundwater in Cambodia, Laos, and Thailand areas (Cho, Sthiannopkao et al. 2011). 

All three algorithms are suitable to handle a large amount of data to generate a model, 

which have many hydrochemical and physical variables to analyze and predict the 

groundwater contamination. 

Rayong groundwater basin is located between Chonburi and Rayong 

provinces and contact with the gulf of Thailand coastal. Groundwater in the Rayong 

groundwater basin has been found an As contamination problem in groundwater 

(Kerdthep, Tongyonk et al. 2009, Boonkhao, Phanprasit et al. 2017, 

Pipattanajaroenkul, Sonthiphand et al. 2018, Boonkaewwan, Sonthiphand et al. 2020). 

Besides, the study area is the part of the Eastern Economic Corridor (EEC), where is 

the project for the economic development of Thailand’s Eastern Seaboard and the 

government has been launching measures to support the economic growth in EEC. In 

the future, the EEC can grow into a new trade center in Asia (Ootsahkarn 2018). 

Thus, the demand for the groundwater resource in this region will be dramatically 
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increased; thus, the groundwater quality of groundwater has to be considered as the 

priority before pumping groundwater to supply for each sector.   

However, the parameters that use in the implementation of ML approaches of 

groundwater pollution risk usually used only physical parameters (Winkel, Berg et al. 

2008, Sajedi Hosseini, Malekian et al. 2018). It is limited understanding in integrating 

physical and hydrochemical parameters of groundwater to assess contamination in 

groundwater, particularly As contamination in the urbanized coastal aquifer (Zubair, 

Begum et al. 2015). As mentioned, to fulfill this research gap, this study attempted to 

apply ML algorithms, including RF, SVM, and ANN to investigate and predict the As 

contamination in Rayong coastal basins. Thus, the main objectives of the current 

study are: (i) to evaluate the machine learning algorithms that suitable to predict the 

As contamination in groundwater, (ii) to investigate the environmental factors (e.g., 

hydrochemical characteristics, soil types, land use/landcover) influencing on As 

contamination in groundwater. This study provided the appreciative predictive 

information for better public health management and groundwater quality control to 

support the EEC project in this area. 

1.2 Objectives 

1. To evaluate the machine learning algorithms suitable to assess the As 

contamination in groundwater. 

2. To investigate the environmental factors influencing an As contamination in 

groundwater. 
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1.3 Hypothesis 

1. The machine learning algorithms can provide risk areas of As contamination 

in groundwater. 

2. The hydrochemical parameters mainly are the influencing environmental 

factors on As contamination in groundwater. 

1.4 Scope of the study 

1. The geological and hydrochemical parameters in the Rayong groundwater 

basin were applied in the modeling 

2. The period of hydrochemical and physical data was from the dry season in 

2012 until the rainy season in 2019.  
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Chapter 2 Literature Review 

2.1 Study area 

 The study area is located between Chonburi and Rayong provinces, combined 

with 9 sub-district, Nong yai, Bang lamung, Satthip, Si racha, Ban chang, Mueang 

Rayong, Pluak deang and King amphoe nikhom phatthana, covering Rayong 

groundwater basin, which has faced the problem of As contamination in groundwater. 

The study area has a mountain in the west area and a large plain in the middle part of 

the basin (DGR 2012, DGR 2017), covering areas approximately 2,236 km2, as shown 

in Figure 1. 

 

Figure  1 Study area 
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2.1.1 Geology characteristics 

Biotite granite in Carboniferous age rocks is located in the Northern and 

Western part of Rayong groundwater basin as shown in Figure 2. Alluvia and 

Terrance's deposits are in the middle part of the Rayong groundwater basin (DMR 

2007) as shown in Figure 2. There is a source of the organic component, affecting the 

reducing condition in the groundwater environment. 

 

Figure  2 Geologic map 

2.1.2 Soil characteristics 

The soil type in the study area is derived from the Land Development Department 

(LDD) (LDD 2016). A soil map was classified by each soil type in the study area 

based on soil textures. The new classification can be separated into 7 types as shown 

in Table 1 and Figure 3. 
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Table  1 Soil types classification based on soil texture and proportion of soil types in 

the study area 

Note:   rock land and slope complex are not included in a calculation. 

 

 

Figure  3 Soil map 

2.1.3 Hydrogeologicaly characteristics 

 Colluvium sediment (Qc) in the quaternary age; has the largest aquifer area as 

compared to other hydrologic units. Another main hydrologic unit is alluvium 

sediment in quaternary age, which locate alongside the main river in the study area. 

Both aquifer characteristics have rich organic matter, which can provide a reducing 

Soil texture Percentage in the study area (%) 
Gravel, Gravel loam 6.75 

Gravel loam, Sand 0.70 

Sand, Sandy Loam 31.52 

Sandy loam, Silt Loam 35.03 

Silt loam, Silt 2.53 

Silt, Clay loam 2.47 

Clay 21.01 
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condition in groundwater. The reducing condition in groundwater is suitable for the 

release of arsenide, which is the most severe form of in As species (Jacks 2017). The 

other two aquifers are the consolidated aquifers, including granite and carbonate 

aquifers, which are located in the mountainous areas distributed around the 

groundwater basin. 

 

Figure  4 Hydrological map 

2.1.4 Land use 

 In the study area, the majority of land use is dominant by agricultural areas 

average around 80% in the total area following by Forest (8%), Urban (5%), Mining 

(4%), Irrigation (2%), and water (>1%) (LDD, 2016). The agricultural area majority 

by rice fields and cassava. For mining, the majority is sand mining following by 

granite and limestone mining (DMR 2007). 
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Figure  5 Land use map 

2.1.5 Meteorological 

 Thailand usually experiences dry weather in winter because of the northeast 

monsoon which is the main cause that controls the climate of this region (TMD 2015). 

The later period, summer, is characterized by gradually increasing rainfall with 

thunderstorms. The onset of the southwest monsoon leads to intensive rainfall from 

mid-May until early October. Rainfall peak is in August or September which some 

areas are probably flooded. However, dry spells are commonly occurred for 1 to 2 

weeks or more from June to early July due to the northward movement of the ITCZ to 

southern China. According to a general annual rainfall pattern, most areas of the 

country receive 1,200- 1,600 mm a year (TMD 2015). In Rayong province, Rainfall 

annual average around 1,500 mm/year, which average rate for rain annually in 

Thailand (TMD 2015).  
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2.2 Arsenic 

2.2.1 Arsenic toxicity 

 As is a natural component of the earth’s crust, which is widely distributed in 

the environment throughout water and land.  As is very toxic in inorganic form, which 

mostly in Arsenate and Arsenide from. People are exposed to inorganic As in many 

several ways such as: through drinking contaminated water, using as food preparation 

and irrigation of crops, eating contaminated food, and industrial process. Long-term 

exposure to inorganic As, mainly through drinking-water and food, can lead to 

chronic symptoms such as Skin lesions and skin cancer. As in from of inorganic is a 

confirmed as a carcinogen and significant contaminant in drinking-water in 

worldwide. As can also occur in an organic form. Inorganic As compounds are highly 

toxic while organic As compounds are less harmful to health. 

Acute effects:  The symptoms of acute As poisoning include abdominal pain, 

vomiting, and diarrhea. These are usually followed by tingling, numbness, and muscle 

cramping, and death (WHO 2018). 

Long-term effects: Skin cancer is the first symptom, which usually is observed 

in long-term exposure with high levels of inorganic As case. Following by 

pigmentation changes and skin lesions (hyperkeratosis). These might be occurred with 

a minimum exposure of five years with As poisoning (WHO 2018). As contamination 

in drinking water is globally and there are several numbers regions where As 

contamination in drinking water is very significant. In currently circumstance is 

recognized that at least 140 million people in 50 countries have been consuming 
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contaminated water, which As is above 10 μg/L that excess the WHO provisional 

guideline value. 

2.2.2 Arsenic sources and behavior 

2.2.2.1 Arsenic source 

Arsenic is a common element that occurs in the environment. Generally, As 

can find in igneous and sediment rocks, where it is a higher level in fine-grained 

sediment and marine sediment (Naidu and Bhattacharya 2009). The arsenic 

compound in rock can enter As groundwater system mainly through the weathering 

process (Maity, Kar et al. 2011). As species in groundwater is linked to As occurring 

in mineral, soil, and water phases. There are many minerals that As rich mineral, 

including olivenite (Cu2OHAsO4), proustite (Ag3AsS3), orpiment (As2S3), realgar 

(As4S4), and tennantite (Cu6[Cu4(Fe,Zn)2]As4S13), cobaltite (CoAsS), enargite 

(Cu3AsS4), arsenolite (As2O3), and FeAsS (Francesconi et al., 2002). Soil also 

consider potential As sources, because As is more highly concentrated in soils than 

rock (Meharg and Rahman 2003). Generally, the most As toxic form in the soil is 

usually found in inorganic form. The average concentration in soil of As around 3 to 4 

mg/L (Mukherjee, Bhattacharya et al. 2009). Alluvial and organic soil types contained 

higher As concentration, exceed the standard level (Smith, Naidu et al. 2001). An As 

source in water is usually found in low concentration. Arsenate As(III) and arsenide 

As(V), also are the most abundant As species in water. A redox potential, presence of 

adsorbents, humid substances, pH, dissolved organic matter, and clay minerals are the 

factors that affected the As in natural water (Bissen and Frimmel 2003). 
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2.2.2.2Mechanisms of Arsenic Release to Groundwater 

 The release mechanisms of As to groundwater is related to aquifer and 

sediment. Normally, the As concentration is very low and varies around 1-2 mg/L 

(Taylor and Mclennan 1985). However, with four major geochemical processes such 

as reductive dissolution, alkali desorption, sulfide oxidation, and geothermal 

processes (Figure 6), additional As concentration can release into groundwater. The 

reductive dissolution process is a common geochemical process that releases 

additional As from aquifer sediments into the aqueous system (Bauer and Blodau 

2006). Iron hydroxides Fe(OH)3 are the main component associated with this reaction. 

It is affected in high pH conditions, the desorption process becomes stronger, leading 

to high levels of As in groundwaters (Welch, Westjohn et al. 2000). Alkaline 

desorption usually occurs, where pH is high and low oxygen and leads to be an 

anaerobic environment.  It directly affects the release of As in groundwater by 

changing the subsurface environment to a reduction condition (Sanjrani et al., 2019). 

The oxidation of As sulfides is a source of As and. Sulfide oxidation minerals can 

release As in the aquifer. The Oxidation of As-bearing sulfides is recognized as an 

important cause of As contamination in groundwater and produce producing of acid 

drainage, containing toxic inorganic pollution (Nriagu, Bhattacharya et al. 2007). 

Geothermal is also the main geochemical process that triggers the As release process 
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in groundwater and mobile it to cold aquifers (Bundschuh and Maity 2015). 

 

Figure  6 Natural geochemical processes that release As into groundwater (Herath, 

Vithanage et al. 2016) 

2.2.2.3 Redox condition 

 The redox reaction is the chemical reaction that important for As distribution 

in the environment including groundwater. Reduction and oxidation reaction can 

provide different conditions in the groundwater and can affect As mobilizing as 

shown in Figure 7. Reduction condition usually occurs in less oxygen environment for 

example in alluvial, deltaic sediments aquifer and also fine-grain sediment aquifer. 

Thus, created an anaerobic environmental condition. As adsorbed, which play an 

important role of As mobilizing, is affected by reduction condition. Some anaerobic 

bacteria and dissolved organic carbon (DOC) also play a crucial role to an As 

mobilizing in groundwater with a reduction condition by dissolved As absorbents 

(Cummings, Caccavo et al. 1999). Therefore, The reducing reactions under anaerobic 

conditions can cause a result of As concentrations in groundwaters going higher 
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(Ahmed, Bhattacharya et al. 2004). Oxidation reaction occurs in the environment, 

where has a high ration of oxygen. In this condition arsenite As(III) is unstable; thus, 

it will be oxidized to arsenate As(V). However, this process is very slow if it has only 

oxygen to process. Therefore, ferric iron Fe(III), manganese oxides MnO2, clay 

minerals, and some microorganisms have to play the vital role to intensively increase 

the rate of As(III) oxidation converting into the less toxic As(V) form this reaction is 

thermodynamically feasible over a wide range of pH values (Scott and Morgan 1995). 

Moreover, clay minerals and some microorganisms, including Pseudomonas 

arsenitoxidans, Alcaligenes faecalis, Cenibacterium arsenoxidans, Thermus sp., 

Thermus thermophilus, and Agrobacterium tumefaciens, also can oxidize As(III) (Lin 

and Puls 2000, Valenzuela, Campos et al. 2009). 

 

Figure  7 Illustration of the mechanisms of mobilization and redox transformation of 

As in aquifer sediments (Herath, Vithanage et al. 2016) 
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2.3 Machine learning 

2.3.1 RF (Random forest) 

 Random forest algorithm is a modification of bagging that built a large 

collection of decision trees and average them. Therefore, random forests are popular 

and are implemented in a variety of packages (Breiman 2001). The bagging can 

demonstrate, given a train set X= X1, …, Xn with dependent Y=Y1, …, Yn, bagging 

repeat (A times) selected a random data from the training set and fits trees as this 

sample:  a = 1, ..., A: 

1. Ample, with replacement, n training, X, Y; will be Xa, Ya. 

2. Train a classification or regression tree fa on Xa, Ya. 

After training, predictions for samples, the prediction from all the individual 

regression trees on X' can be averaging as an equation 1 

f = ∑ fa𝑎
𝑎=1 ( 𝑋′ ) ------------------------Eq. 1 

This process can lead to better model performance, because it decreases the number of 

variances in the model, and didn’t increase the bias. This means using a single tree is 

highly sensitive to noise and error, however, the average of many trees is minimum 

noise and error. Simply training many trees on a single training set would give 

strongly correlated. Moreover, to estimate the uncertainty of the prediction results, the 

predictions from all the individual regression trees on x' can be made as a standard 

deviation as an equation 2. 

𝜎 = √∑ (𝑓𝑎(x′ )−𝑓)2𝐴
𝑎=1

𝐴−1
-------------------Eq. 2 
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A is an optimal number of free parameters. Generally, multiple trees are used, 

depending on the size and nature of the training set. Using cross-validation or 

observing the out-of-bag error can be found an optimal number of trees A. The 

training and test error tends to level off after some number of trees have been fit. 

2.3.2 SVM (Support vector machine) 

 Support vector machine (SVM) is one of the most usually used algorithms for 

prediction methods based on risk evaluation and classification (Evgeniou, Pontil et al. 

2000). The SVM can simplify formulation is the linear equation as equation 3, where 

the hyperplane lies on the space of the input data x.  

f(x) = w⋅x +b.---------------------------- Eq. 3 

In their general formula of SVM, a hyperplane is a feature space induced by a 

kernel K (the kernel defines a dot product in that space. The hypothesis space of the 

kernel K is defined as a set of “hyperplanes” in feature space. This can be also set of 

Reproducing kernel Hilbert space (RKHS). Also, SVM is a subset of hyperplanes, 

which can be formally written as Eq. 4 

(f:|f|𝑘
2>∞)---------------------------------Eq. 4 

Where K is the kernel, and |f|_k^2 is the RKHS norm of the function (Wahba, 

1990). For example, for the linear case mentioned above, K is the kernel K(x1, x2) = 

x1⋅x2, the functions considered are of the form f(x) = w⋅x + b, and the RKHS norm of 

these functions is simply the norm of w, namely |f|𝑘
2

=|W|2In fact SVM consider 

subsets of this space can be written as Eq. 5 

(f:|f|𝑘
2>A2) -----------------------------Eq. 5 
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The goal of SVM is to find the solution with the "optimal" RKHS norm, that is, to 

find the optimal A. This SVM search for the optimal A has been discussed in the 

literature (Evgeniou, Pontil et al. 2000). SVM is learning machine algorithms that 

minimize the empirical error while taking into account the complexity of the 

hypothesis space used by minimizing the RKHS norm of the |f|𝑘
2 . SVM in practice 

minimizes a tradeoff between empirical error and complexity of hypothesis space.  

SVM classification 

Min |f|𝑘
2+C∑ |1 − 𝑦𝑓(𝑥)𝑖

𝑖=1 | ----------Eq.6 

SVM regression 

Min |f|𝑘
2+C∑ |𝑦 − 𝑓(𝑥)𝑖

𝑖=1 | ----------Eq.7 

 

C is called "regularization parameter", which controls the tradeoff between 

empirical error and complexity of the hypothesis space. 

2.3.3 ANN (Artificial neural network) 

 Artificial Neural Network is a computing system inspired by a biological 

neural network that constitutes an animal brain (Gupta, Akinola et al. 2019). Such 

systems “learn” to perform tasks by considering examples, generally without being 

programmed with any task-specific rules. The Neural Network is constructed from 3 

types of layers: An input layer, Hidden layers, and Output layer, which produce the 

result for given inputs, as shown in Figure 8. 
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Figure  8 DNN diagram 

The 3 yellow circles on the image above. They represent the input layer and usually 

are noted as vector X. There are 4 blue and 4 green circles that represent the hidden 

layers. These circles represent the “activation” nodes and usually are noted as W or θ. 

The red circle is the output layer or the predicted value. Each node is connected with 

each node from the next layer and each connection has a particular weight. Weight 

can be seen as the impact that that node has on the node from the next layer. 

2.3.4 Summarize all algorithms 

Every model generating algorithm, such as RF, SVM, and ANN has its 

advantage and disadvantage points as shown in Table 2. Random Forest (RF) is very 

fast and has satisfactory results with the limited data set (Havryliuk, Korol et al. 

2018). However, there are many disadvantages of RF algorithms, e.g. for very large 

data sets, the size of the trees can take up a lot of memories. Thus, this algorithm 

needs a lot of computation resources for calculation. Moreover, this algorithm tends to 

overfit the data, so the model can’t analyze a new data set (Kho 2018). Support vector 

machine (SVM) is good to classify data and trends to be resistant to overfitting 
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problems (K 2019). Nevertheless, SVM still has some disadvantages such as it does 

not perform very well when the data set has more noises i.e., target classes are 

overlapping. In case the number of features for each data point exceeds the number of 

the training data sample, the SVM will underperform (K 2019). Artificial neural 

networks (ANN) can learn and model complex and non-linear relationships, which 

very crucial, many of the relationships between inputs and outputs are non-linear and 

complex. Moreover, ANN can infer and analyze the unseen relationships between 

data (Mahanta 2017). A disadvantage of ANN is the unexplained behavior of the 

network: when ANN produces a probing solution, it does not give a clue as to why 

and how (Mijwil 2018). All three algorithms are suitable to handle a large amount of 

data, which have many variables to analyze and predict the model. 

Table  2 Summarize the advantage and disadvantage of RF, SVM, ANN 

 RF SVM ANN 

Advantages • Fast process 

• Work well 

with limited 

data 

• Resist 

overfitting 

• Learning ability 

• Analyze unseen 

relationships   

Disadvantages • Use a lot of 

computation 

resource 

• Trended to 

overfitting 

• Not perform 

well with 

noising data 

• Not work 

with data 

that has 

variable 

more than 

the sample 

• Unexpected 

behavior of the 

network 

• Overfitting  

 

2.4 Risk and probability occurred maps 

 2.4.1 Probability map 

 A probability occurred map is a map that defines the probability distribution of 

occurred event. The distribution of occurred events bases on the probability level can 
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be arranged as shown in Table 3. The probability level starts from 0 to 1 or 0-100%, 

when the probability level enhances the chance of the event to occur will increase as 

well. Many researchers used a probability to show the risk assessment in groundwater 

to clearly understand the distribution of a pollutant (Winkel, Berg et al. 2008, Sajedi 

Hosseini, Malekian et al. 2018). 

Table  3 The occurrence of the event based on probability level (Garvey 2001) 

Probability of Occurrence 

0 - 10% or Very unlikely to occur 

11 - 40% or Unlikely to occur 

41 - 60% or May occur about half of the time 

61 - 90% or Likely to occur 

91 - 100% or Very likely to occur 

 

2.4.2 Risk map 

 Generally, a risk map is also known as a data map visualization tool for 

communicating specific risks. A risk map helps a decision maker identify and 

prioritize the risks associated with their concerning topic. Risk pollution occurred map 

in groundwater is widely used in groundwater contamination assessment to determine 

and recognize areas that are more trended to contaminate than others (Winkel, Berg et 

al. 2008, Sajedi Hosseini, Malekian et al. 2018).  

2.5 Spearman’s correlation 

Spearman's rank-order correlation is the nonparametric version of the Pearson 

product-moment correlation. Spearman's correlation coefficient, (ρ, also signified by 

rs) measures the strength and direction of the association between two ranked 

variables. Spearman's correlation determines the strength and direction of the 

monotonic relationship between your two variables rather than the strength and 

direction of the linear relationship between your two variables, which is what 

Pearson's correlation determines. A monotonic relationship is a relationship that does 
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one of the following: (1) as the value of one variable increases, so does the value of 

the other variable; or (2) as the value of one variable increases, the other variable 

value decreases. Examples of monotonic and non-monotonic relationships are 

presented in the diagram below: 

 

Figure  9 monotonic and non-monotonic relationships diagrams 

There are two methods to calculate Spearman's correlation depending on 

whether: (1) your data does not have tied ranks or (2) your data has tied ranks. The 

formula for when there are no tied ranks is: 

ρ = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
  ------------ Eq. 8 

where di = difference in paired ranks and n = number of cases. The formula to 

use when there are tied ranks is: 

ρ =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑖

√∑ (𝑥𝑖−𝑥)2 ∑ (𝑦𝑖−𝑦)𝑖𝑖
 ------------- Eq. 9 

where i = paired score. The Spearman correlation coefficient, rs, can take 

values from +1 to -1. A rs of +1 indicates a perfect association of ranks, a rs of zero 

indicates no association between ranks and a rs of -1 indicates a perfect negative 

association of ranks. The closer rs is to zero, the weaker the association between the 

ranks. It is important to realize that statistical significance does not indicate the 

strength of Spearman's correlation. The statistical significance testing of the Spearman 
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correlation does not provide you with any information about the strength of the 

relationship. Thus, achieving a value of p = 0.001, for example, does not mean that 

the relationship is stronger than if you achieved a value of p = 0.04. This is because 

the significance test is investigating whether you can reject or fail to reject the null 

hypothesis. If you set α = 0.05, achieving a statistically significant Spearman rank-

order correlation means that you can be sure that there is less than a 5% chance that 

the strength of the relationship you found (your ρ coefficient) happened by chance if 

the null hypothesis were true (Laerd 2018). 

2.6 IDW 

Interpolation is a method to predict an unknown from known values. From the 

definition, we need some known values to do an interpolation using any interpolation 

method. The known values which are commonly called sampling points can be 

gathered from some measurements and site investigations like drilling, surveying, etc. 

Using the known value from some locations, we are trying to predict the value of 

other neighborhood location that is close to the known location. There are many 

interpolation methods available including Inverse Distance Weighting (IDW). Inverse 

Distance Weighted interpolation is a deterministic spatial interpolation approach to 

estimate an unknown value at a location using some known values with corresponding 

weighted values. The basic IDW interpolation formula can be seen in equation 10. 

Where x* is the unknown value at a location to be determined, w is the weight, and x 

is the known point value. The weight is the inverse distance of a point to each known 

point value that is used in the calculation. Simply the weight can be calculated using 

equation 11. 
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𝑥∗ =
𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛

𝑤1+𝑤2+⋯+𝑤𝑛
  -------- Eq. 10 

𝑤1 =
1

𝑑𝑖𝑥∗
𝑃

   ----------------------------------- Eq. 11 

Figure 10 gives an illustration of how the IDW interpolation works. As can be 

seen in the figure, a value at position x will be determined from sampling points 1, 2, 

and 3, with the distances to x point, are d1x, d2x, and d3x. Using equation 11, each 

respective weight will be calculated and then the value at position x will be 

determined using equation 10 (Geomatics 2019). 

 

Figure  10 Inverse Distance Weight (IDW) Interpolation 
 

2.7 Quartile regression 

Usually, the studies to evaluated models' performance are mostly evaluated the 

prediction performance of the model and disregarded models' uncertainties. It is well 

known that uncertainty is inherent in modeling (Solomatine and Shrestha 2009), thus 

it is crucial to report the uncertainty of the model to make it transparent in decision-

support tools (Uusitalo, Lehikoinen et al. 2015).  To evaluate the uncertainty of the 

models, commonly using prediction intervals. One way of generating the prediction 
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interval is through quantile regression. As opposed to linear regression which needs to 

estimate the conditional mean of the response variable given certain values of the 

predictor variables, quantile regression aims at estimating conditional quantiles 

(typically, median) of the response variable. quantile regression is not limited to just 

finding the median, but can calculate any quantile (percentage) for a particular value 

in the feature’s variables. the quantile regression model equation for the 𝜏th quantile is 

𝑄τ(𝑦𝑖) = 𝛽0(τ) + 𝛽1(τ)𝑥𝑖𝑙+…+𝛽𝑝(τ)𝑥𝑖𝑝 𝑖 = 1, … , 𝑛 -------------Eq.12 

To create a prediction interval, we can now use other quantile values. For 

example, in the image below we have 0.9 77and 0.023 percentiles (Figure 11). This 

gives a prediction interval with a 0 .95  probability of having the true value within its 

bounds. 

 

Figure  11 Predictions for quantiles 

There are several statistical measures of uncertainty such as mean prediction interval 

( MPI)  and prediction interval coverage probability ( PICP) , which were used as 

suggested by Shrestha and Solomatine (Shrestha and Solomatine 2006).  MPI is the 
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average of the widths of the prediction intervals, where the lower values of MPI 

indicate lower uncertainty. The best method MPI and PICP values are calculated as: 

𝑀𝑃𝐼 =
1

𝑛
∑ (𝑃𝐿𝑡

𝑢𝑝𝑝𝑒𝑟 − 𝑃𝐿𝑡
𝑙𝑜𝑤𝑒𝑟)𝑛

𝑡=1   -------- Eq. 13 

𝑃𝐼𝐶𝑃 =
1

𝑛
∑ 𝐶𝑛

𝑡=1 , 𝐶 = (1, 𝑃𝐿𝑡
𝑙𝑜𝑤𝑒𝑟 < 𝑦𝑡 < 𝑃𝐿𝑡

𝑢𝑝𝑝𝑒𝑟, 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 )  -------- Eq. 14 

where yt is the observed value, 𝑃𝐿𝑡
𝑙𝑜𝑤𝑒𝑟 and 𝑃𝐿𝑡

𝑢𝑝𝑝𝑒𝑟
are lower and upper prediction 

limits respectively. The PICP is the more important measurement of uncertainty as it 

indicates the number of observations that fall within the estimated interval (Dogulu et 

al., 2015) . Therefore, MPI is used as a supplementary metric:  between models with 

similar PICP values, the one with a lower MPI is regarded as the better model 

(Muthusamy, Godiksen et al. 2016). 
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Chapter 3 Methodology 

3.1 Framework of research 

 The overall framework of this study is shown in Figure 12. The preparing data 

process was conducted by collecting data such as groundwater chemical data, Soil 

type, land use, geologic, aquifer, etc. from various departments. The data were 

categorized as deep and shallow aquifers. The arsenic concentration parameter was 

classified by standard arsenic in drinking water to using them in the modeling process. 

Other parameters were screened by spearman’s correlation technique to screen out 

unnecessary parameters. In the modeling process, the spatial modeling uses a different 

algorithm to generate different probability models such as Support vector machine 

(SVM), Random Forest (RF), and Artificial neural networks (ANNs) these models 

will produce a probability map that can locate the As potential area. 

The probability map will be compared with each other in the validation process. There 

are three aspects that we used in the validation process to measure the models such as 

prediction performance, uncertainty evaluation, and Validation with field data. The 

best probability map was classified between risk and non-risk areas by the Cut-off 

value technique. Then, the map was calculated with the population density and water 

consumption data in the study area to generate the risk maps. 
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Figure  12 Framework of the present study 

3.2 Data preparation and field-collected data 

3.2.1 Data preparation 

 The data were collected from various government departments such as the 

Department of mineral and resource (DMR), Department of Groundwater Resources 

(DGR), and Land Development Department (LDD). These data can be classified into 

two groups physical and hadrochemical data. The period of hydrochemical data was 

collected around 2011-2012, 2017-2018, and 2019 in dry and rainy seasons around 

the study area (DMR 2007, DGR 2012, LDD 2016, DGR 2017). The missing data of 

each hydrochemical parameters are replaced with limit detection of the measure tool. 

The purpose of the study want the risk map to do not confuse the user, so we attempt 

to merge data from dry and rainy seasons every year together. Thus, this will make 

the risk map simply to use and increase the number of data to generate a model, which 

increases the performance of the model. 
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3.2.1.1 Physical data 

 The physical data were collected from various government departments and 

the form of the data categorized as raster data, which ready to use in the modeling 

process. The data combined with various aspects such as geological characteristics, 

soil properties, soil texture, aquifer characteristics, groundwater level. The date of 

these data is not over 10 years as shown in Table 4. 

Table  4 Source of physical data 

Data Data source Year 

Geological characteristics Ministry of Natural 

Resources 

2015 

Soil properties Land Development 

Department 

2011 

Aquifer characteristics Department of 

Groundwater Resources 

2017 

Land use Land Development 

Department 

2015 

Elevation USGS 2019 

Population density National Statistical Office 2019 

Groundwater consumption Department of 

Groundwater Resources 

2019 

 

3.2.1.2 Hydrochemical data 

Hydrochemical data is collected from the Department of Groundwater 

Resources (DGR) and categorize as the point data that aren’t ready to use in the 

modeling process. Hydrochemical data, including a concentration of Calcium (Ca), 

Magnesium (Mg), Sodium (Na), Potassium(K), Iron (Fe), Chloride (Cl), Fluoride(F-), 

Carbonate (CO3
2-), Bicarbonate (HCO3

2-), Sulfate (SO4
2-), Nitrate (NO3

-), Phosphate 

(PO4
-), Cadmium (Cd), Chromium (Cr6+), Copper (Cu), Mercury (Hg), Manganese 

(Mn), Nickel(Ni), Lead(Pb), Selenium(Se), Zine(Zn), and other hydrochemical 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30 

parameters, such as Electrical Conductivity(EC), Temperature, pH, Total dissolved 

solids (TDS) and Total hardness (TTH). 

3.2.2 Field collected data 

 The field data were collected during 31 August – 1 September 2019 from 

twenty-seventh wells around the Rayong groundwater basin shown in Figure 13 and 

Table 5.  The collecting methods will follow the groundwater sampling guidelines for 

Superfund and RCRA Project Managers (USEPA 2002). 

 

Figure  13 Groundwater sampling map 
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Table  5 Groundwater sampling aquifer 

No Name Latitude Longitude 

Well 

type 
Aquifer 

1 G10 -12º -41' -46.748" S -101º -17' -54.635" W Deep Gr 

2 G7 -12º -45' -19.991" S -101º -18' -42.622" W Deep Gr 

3 G8 -12º -44' -20.841" S -101º -16' -55.013" W Deep Gr 

4 G9 -12º -42' -56.31" S -101º -19' -22.872" W Deep Gr 

5 J11 -12º -58' -20.979" S -101º -22' -54.267" W Deep Gr 

6 J2 -13º -1' -46.882" S -101º -6' -19.05" W Deep Gr 

7 J3 -12º -56' -50.222" S -101º -2' -11.284" W Deep Gr 

8 J4 -13º -4' -32.647" S -101º -16' -9.835" W Deep Gr 

9 J8 -12º -50' -37.698" S -101º -9' -26.373" W Deep Gr 

18 G3 -12º -50' -34.81" S -101º -18' -50.928" W Deep Gr 

19 J10 -12º -54' -5.369" S -101º -14' -49.394" W Deep Gr 

20 J6 -12º -46' -21.475" S -101º -1' -28.79" W Deep Gr 

21 J7 -12º -49' -57.246" S -101º -5' -18.295" W Deep Gr 

10 J1 -12º -41' -46.748" S -101º -17' -54.635" W Shallow Qa 

11 G1 -12º -54' -2.419" S -101º -22' -24.755" W Shallow Qcl 

12 G11 -12º -39' -41.817" S -101º -17' -44.834" W Shallow Qcl 

13 G12 -12º -39' -58.382" S -101º -15' -0.359" W Shallow Qcl 

14 G13 -12º -40' -7.653" S -101º -14' -56.597" W Shallow Qcl 

15 G14 -12º -40' -18.213" S -101º -14' -54.271" W Shallow Qcl 

16 G15 -12º -40' -48.242" S -101º -10' -8.196" W Shallow Qcl 

17 G2 -12º -53' -2.933" S -101º -18' -53.016" W Shallow Qcl 

22 J13 -12º -40' -40.22" S -101º -22' -17.722" W Shallow Qa 

23 J14 -12º -41' -42.018" S -101º -11' -59.16" W Shallow Qa 

24 G17 -12º -44' -52.257" S -101º -10' -53.785" W Shallow Qcl 

25 G19 -12º -46' -21.952" S -101º -6' -53.877" W Shallow Qcl 

26 G4 -12º -49' -12.899" S -101º -17' -14.244" W Shallow Qcl 

27 J9 -12º -51' -12.963" S -101º -14' -17.753" W Shallow Qcl 

 

3.2.2.1 Data measuring in the field 

Groundwater level 

 All groundwater levels will be measured from the reference point by the use of 

a weighted steel tape and chalk or an electric tape (USEPA 2002).  

Hydrochemical parameters measured on-site 

 Hydrochemical parameters, consisting of EC, ORP, Temperature, pH, will be 

measured on-site by a multi-parameter meter (USEPA 2002).  
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3.2.2.2 Total arsenic analysis 

The collecting methods are according to Ground-Water Sampling Guidelines 

for Superfund and The Resource Conservation and Recovery Act (RCRA) Project 

Managers (USEPA 2002). The collected samples will be fixed by HCl(con) 1 cc. and 

contained under 4C. Then the samples will be sent to the UAE laboratory to analyst 

the amount of total arsenic in water samples by the Hydride Generation AAS 

technique with a detection limit of 0.3 µg/L.  

3.3 Arsenic contamination probability map  

3.3.1 Framework of the arsenic contamination probability map 

 The dataset will be divided into arsenic concentration and other parameters. 

The Arsenic concentration will use to conduct the probability model. On the other 

hand, other parameters will be screen by Spearman’s correlation method to eliminate 

unnecessary parameters, separately between shallow and deep aquifers. After that, the 

selected parameters will be interpolated by Inverse Distance Weight (IDW) 

interpolation process that was used to create the arsenic probability map as shown in 

Figure 14. 
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Figure  14 Framework of constructing the probability map of As 

3.3.2 Spearman’s correlation 

Nonparametric Spearman's rank correlation was calculated using the SPSS 

software to study the monotonic relationships between arsenic and physical 

parameters and hadrochemical parameter, to draw inferences about mechanisms of 

arsenic release. A correlation was considered significant when the correlation 

coefficient (rs) excess 0.1. 

3.3.3 IDW interpolation 

 To make the points data (Hydrochemical parameter) ready to use in the 

modeling process, the data will be interpreted from point data to raster data by using 

the IDW interpolation package in R-studio software. IDW interpolation is the 

interpretation process that usually use to generate raster data. It can generate the point 

data (concentration) into area data (concentration area) by averaging the point data. 
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3.3.4 Model probability  

 The framework of model probability was showed in Figure 15. Star with, 

Arsenic concentrations parameter which obtained from the dataset was be used to 

provide a groundwater probability map in the Rayong groundwater basin. According 

to the World health organization, a threshold of arsenic (10 g/l) was to be used to 

classify the polluted and non-polluted wells. Groundwater wells were classified into 2 

types as follows: the polluted type when arsenic concentration is above 10 g/l, and 

the non-polluted type when arsenic concentration is below 10 g/l. After that, the 

datasets were randomly divided into a training dataset (70% of the dataset) and a 

testing dataset (30% of the dataset). The training set will be used to provide the 

probability models along with three algorithms, consisting of SVM, RF, and ANN 

through coding by SDM package in R-studio software (Naimi and Araújo 2016). The 

probability models had measured their performance. If their performance is above 

60% of the area under the curve (AUC), the model will be acceptable. In contrast, if 

the model performance is below 60% of AUC, the model had to be calibrated and 

provide the new models until it reaches 60% AUC (Havryliuk, Korol et al. 2018). 

When finishing the model, the arsenic probability map will be generated using the 

data from IDW interpolation using the SDM package in R-studio software (Naimi and 

Araújo 2016). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 35 

 

Figure  15 Framework of constructing the probability model of As 

3.4 Probability map validation 

3.4.1 Evaluating prediction performance  

 To measure the performance of the model, the models were validated with 

30% of cases that were not used for training. Model accuracy was evaluated using an 

area under curve (AUC) and Root mean square (RMSE). The Receiver operating 

characteristic (ROC) is a probability curve to measurement a model’s performance for 

classification problems at various threshold settings. It uses area under curve (AUC) 

representing a degree or measure of separability. It tells how much the model is 

capable of distinguishing between classes (Narkhede 2018). Moreover, a graphical 

comparison was conducted using Taylor diagrams (Taylor 2001), which enable 

visualization of the models' performances using correlation coefficients, RMSE, and 

standard deviations (SD) (Choubin, Malekian et al. 2017). 
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3.4.2 Evaluate models uncertainty 

 To make sure the models are work properly and reliably, the quantile 

regression (QR) was used to assess the predictive uncertainty of the models. These 

methods evaluate the model residuals and consider all sources of uncertainty, which is 

in contrast to the classic methods (such as Monte Carlo-based methods) in which the 

estimate usually regards only one source of uncertainty (Solomatine and Shrestha 

2009).   

3.4.3 Validation with field data 

 To evaluate the performance of models, The As concentration collected in the 

field were used to compare between the actual value and prediction value from 

probability map in each model using Root mean square as a measurement indicator.  

3.5 Groundwater pollution risk map 

3.5.1 Probability cutoff value 

 The best model selected through comparing every model using prediction 

performance and uncertainty to select them was used to create the risk map. But, 

before the probability map can be used to create the risk map. It had to classify by cut-

off value first. The cutoff value was calculated through the Caret package in R-studio 

software. The cutoff value was used to determine the risk area and non-risk area in the 

probability map (Bindal and Singh 2019). The cut-off value was used to classify 

between Arsenic probability risk area and non-risk area in the probability map. When 

Arsenic probability greater than the cutoff value the area will be classified as the risk 

area. In contrast, when the area had a probability below the cutoff value, this area will 

be classified as a non-risk area (Winkel, Berg et al. 2008). 
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3.5.2 Risk map for As 
  After producing the probability map which already classifies by cut-off value. 

The risk map was created by using Qgis software using data of population density and 

water consumption in Rayong groundwater basin base on equation 13. The population 

density data derived from The Bureau Of Registration Administration in 2020 (BRA 

2020) and the water consumption came from the Department of Groundwater resource 

2020 (DGR 2020). The water consumption data created by using the pumping rate of 

groundwater well selected the well that used in domestic and agricultural use. The 

pumping rate from the selected wells was normalized in the range from 0-1, and the 

interpolation was carried out with the IDW technique to generate water consumption 

map. 

Risk = Probability map x Population density x Water consumption -----------Eq. 13 

 The unit of As risk map is the people who use groundwater that might expose 

to As per square kilometer. To make them more simple, the map unit will be 

classified into five risk levels such as Very High, High, Moderate, Low, and Very low 

using equal interval mode to classify (Bindal and Singh 2019). 
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Chapter 4 Results 

4.1 Groundwater wells data 
The groundwater quality parameters were obtained from the Department of 

Groundwater Resources (DGR). The secondary data was separated into 2 datasets 

consisting of a deep well and shallow well groups, which represented hydrochemical 

data in the deep aquifer and the shallow aquifer. The descriptive statistics of 

groundwater quality parameters in the deep aquifer were shown in Table 6. There are 

twenty-four hydrochemical parameters.  

Generally, according to the field measurement parameters, pH ranged from 

4.10 to8.30 with an average of 6.93 indicating groundwater was slightly acidic. The 

electrical conductivity (EC) values ranged from 0.0 to 31,000 µs/cm, with an average 

of 754.36 µs/cm. Similarly, the total dissolved solids (TDS) values were 12.26-

19855.00 mg/l. Lastly, total hardness values were in the range of 3-7,100 mg/l, with 

an average value of 309.27 mg/l.  

Generally, Ca and Mg range from 0.10-1400 mg/l and 0-1,100 mg/l, 

respectively.  Na and Cl had range from 0.01-6,000 mg/l and 1.5-1,1000 mg/l 

similarly with K and Fe with range between 0.87-240 mg/l and 0.01-270 mg/l 

respectively. In addition, for other anions, F, HCO3, SO4, NO3 also had range from 

0.01-16.60 mg/l, 1-494 mg/l, 0.1-2800 mg/l and 0.01-80.6 mg/l, respectively. Arsenic 

was in the range between 0.30-280 µg/l with an average of 13.85 µg/l, which is higher 

than the groundwater drinking standard the other heavy metals in the deep aquifer had 

a wide range concentration. For example, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, Zn had 

ranges from 0.4-1.5 µg/l, 2.40-20 µg/l, 3-400 µg/l, 0.1-10 µg/l, 5-22000 µg/l, 1-30 

µg/l, 0.70-27.7 µg/l, 0.3-160 µg/l, and 5-150000 µg/l respectively.  
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The metals which were detected to be higher than groundwater standard was Hg, Mn, 

Ni, Pb, Se, and Zn. 

The descriptive statistics of groundwater quality parameters in the shallow 

aquifer shown in Table 7. According to the field measurement parameters, pH ranged 

from 3.10-8.30 with an average of 6.77, indicating more slightly acidic than that in the 

deep aquifer. The electrical conductivity (EC) values ranged from 2.28 to 44,400 

µs/cm, with an average of 1644.5 µs/cm. Besides, TDS values were in the range of 

13-27,600 mg/l. Lastly, TDS ranged from 1-6,600 mg/l with average value 277.83 

mg/l.  

Similar to those parameters in the deep aquifer, Ca and Mg were in the range 

of 0.05-620 mg/l and 0-1,400 mg/l respectively. Na and Cl had a range from 0.005-7 

7,000 mg/l and 0.20-13,166 mg/l, which was similar to K and Fe with a range 

between 0.01-710 mg/l and 0-70 mg/l respectively. In addition, for other anions, F, 

HCO3, SO4, NO3 also had widely range from 0.01-11.20, 0-5,700, 0.1-1,800, and 

0.01-240 mg/l, respectively.  

Arsenic was in the range of 0.3-500 µg/l with an average of 12.85 µg/l, which 

was higher than the groundwater drinking standard. The other heavy metals in the 

shallow aquifer had a wide range of concentrations.  Cadmium, Cr, Cu, Hg, Mn, Ni, 

Pb, Se, Zn had a wide range from 0.4-0.6 µg/l, 2.40-40 µg/l, 3-500 µg/l, 0.1-700 µg/l, 

5-18000 µg/l, 1-180 µg/l, 0.70-60 µg/l, 0.3-160 µg/l, and 5-1900 µg/l respectively. 

The metals which were detected to be higher than the groundwater standard was Cu, 

Mn, Ni, Pb, and Se. 

To know the distribution of data, Skewness and Kurtosis measurement were 

used to describe groundwater quality parameters. In particular, groundwater quality 
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parameters in the deep aquifer were explained by normal distribution were just only 

pH, HCO3, Cr, and Ni with Skewness and Kurtosis -0.89/2.25, 0.29/-0.74, -0.53/1.37, 

1.90/5.13 respectively. As compared to those in the deep aquifer, groundwater quality 

parameters in the shallow aquifer which close to be normal distribution were only pH 

and Cr with Skewness and Kurtosis around -0.89/2.25, 1.90/5.13 respectively. 

Table  6 Description statistics in the deep aquifer 

 Unit N 
Minimu

m 
Maximum Mean 

Std. 
Deviatio

n 

Skewnes
s 

Kurtosi
s 

Detectio
n limit 

EC 
µs/c
m 

236 0.00 31000.00 754.36 2884.50 9.52 94.85 - 

pH - 236 4.10 8.30 6.93 0.64 -0.89 2.25 1-14 

TDS mg/l 236 12.60 19855.00 740.39 2640.95 6.52 43.49 5.00 

Total 
hard 

mg/l 236 100.00 7100.00 309.27 917.80 5.79 34.75 100.00 

Ca mg/l 236 0.10 1400.00 71.27 164.99 5.21 30.66 0.05 

Mg mg/l 236 0.00 1100.00 25.38 105.42 7.44 61.41 0.00 

Na mg/l 236 0.01 6000.00 144.14 634.69 6.80 49.69 0.005 

K mg/l 236 0.87 240.00 9.30 18.98 8.74 96.20 0.005 

Fe mg/l 236 0.01 270.00 3.30 18.19 13.62 198.73 0.005 

Cl mg/l 236 1.50 11000.00 259.85 1329.45 7.08 50.97 0.2 

F. mg/l 236 0.01 16.60 1.08 1.95 4.56 27.32 0.01 

HCO

3 
mg/l 236 1.00 494.00 175.87 105.05 0.29 -0.74 0 

SO4 mg/l 236 0.10 2800.00 62.50 317.56 7.08 52.54 0.10 

NO3 mg/l 236 0.01 80.60 4.51 9.06 4.38 26.81 0.01 

As µg/l 236 0.30 280.00 13.85 34.56 5.87 37.72 0.30 

Cd µg/l 236 0.40 1.50 0.40 0.07 15.36 236.00 0.40 

Cr6+ µg/l 236 10 20.00 8.58 3.42 -0.53 1.37 10 

Cu µg/l 236 3.00 400.00 7.08 29.36 10.97 139.18 3.00 

Hg µg/l 236 0.10 10.00 0.16 0.64 15.27 234.08 0.10 

Mn µg/l 236 5.00 22000.00 784.49 2239.41 6.73 53.86 5.00 

Ni µg/l 236 1.00 30.00 3.59 4.40 1.90 5.13 1.00 

Pb µg/l 236 0.70 21.70 1.37 2.67 5.08 28.65 0.70 

Se µg/l 236 0.30 160.00 2.14 11.32 12.15 163.98 0.30 

Zn µg/l 236 5.00 
150000.0

0 
2189.7

0 
12845.4

4 
9.91 104.47 5.00 

*Bold characters using µg/l unit 
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Table  7 Description statistics in the shallow aquifer 

  
Unit N Minimum Maximum Mean 

Std. 
Deviation Skewness Kurtosis 

Detection 
limit 

EC µs/cm 417 2.28 44400.00 1644.50 5470.32 5.14 27.59 - 

pH - 417 3.10 8.30 6.77 0.81 -1.27 3.53 1-14 

TDS mg/l 417 13.00 27600.00 1081.84 3537.66 4.99 25.75 5.00 

Total 
hard 

mg/l 
417 100.00 6600.00 277.83 753.74 5.11 28.24 

100.00 

Ca mg/l 417 0.05 620.00 49.41 88.08 4.10 18.21 0.05 

Mg mg/l 417 0.00 1400.00 35.49 132.07 6.11 43.34 0.00 

Na mg/l 417 0.005 7000.00 237.40 930.57 5.53 31.25 0.005 

K mg/l 417 0.01 710.00 20.30 66.33 7.44 62.81 0.005 

Fe mg/l 417 0.0005 70.00 3.64 9.10 4.29 22.02 0.005 

Cl mg/l 417 0.20 13166.00 433.07 1741.68 5.37 30.00 0.2 

F. mg/l 417 0.01 11.20 0.45 0.99 6.16 51.80 0.01 

HCO3 mg/l 417 0.00 5700.00 180.75 356.96 10.37 143.88 0 

SO4 mg/l 417 0.10 1800.00 77.16 254.08 4.79 23.31 0.10 

NO3 mg/l 417 0.01 240.00 12.48 27.56 4.88 30.33 0.01 

As µg/l 417 0.30 500.00 12.85 41.81 7.97 77.05 0.30 

Cd µg/l 417 0.40 0.60 0.40 0.01 20.42 417.00 0.40 

Cr6+ µg/l 417 2.40 40.00 8.79 3.71 1.58 16.43 10 

Cu µg/l 417 3.00 500.00 14.51 38.30 6.10 62.71 3.00 

Hg µg/l 417 0.10 700.00 1.92 34.35 20.27 412.77 0.10 

Mn µg/l 417 5.00 18000.00 700.29 1483.19 5.58 49.26 5.00 

Ni µg/l 417 1.00 180.00 3.18 9.54 15.52 284.81 1.00 

Pb µg/l 417 0.70 60.00 1.66 4.85 7.66 69.89 0.70 

Se µg/l 417 0.30 160.00 3.85 17.17 7.14 54.84 0.30 

Zn µg/l 417 5.00 1900.00 66.14 159.11 8.11 85.59 5.00 

*Bold characters using µg/l unit  
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4.2 Field data 

 The results of field groundwater wells were as shown in Table 8. Ten 

groundwater wells out of twenty-seven wells found total As concentrations exceeding 

the standard of drinking water of 10 µg/l. Total As concentrations were in the range of 

0.8-52.6 µg/l with an average value of 18.11 µg/l as shown in Table 9.  

The in-situ measurement parameters were shown in Tables 8 and 9. The range 

of pH was in the range of 3.41-7.79 with an average value of 6.83 indicating a slightly 

acidic condition. Depth to groundwater table was in the range of 1.4-14.18 m. with an 

average of 5.46 m. Furthermore, the EC value ranged from 78.1 to 32,000 µs/cm. 

(average = 2677.35 µs/cm) and ORP was in the range between 1.40-288.4 mV 

(average = 5.64 mV).  

For total As concentration, the average total As concentrations of Gr, Qa, and 

Qcl were 16.69, 27.5, and 17.19 µg/l, respectively, which were higher than the 

groundwater drinking standard. The maximum total As concentration was found at 

52.60 µg/l in the Qc aquifer, following by 44.40 and 34.40 µg/l in Gr and Qa, 

respectively (Table 10).  
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Table  9 Descriptive statistics of in-situ measured parameters and total As 

concentration in groundwater during 31 August – 1 September 2019 
 

  Max Min Mean Std. 

Water table (m.) 14.18 1.40 5.46 3.62 

Temp.(C) 31.60 28.10 29.65 0.74 

pH 7.79 3.41 6.83 0.96 

ORP 288.40 1.40 5.64 3.73 

EC  32000.00 78.10 2677.35 6400.63 

 As(µg/l) 52.60 0.80 18.11 15.83 

 

Table  10 Descriptive statistics of total As concentrations in Gr, Qa, and Qcl aquifers 

during 31 August – 1 September 2019 
 

  Max Min Mean 

Std. 

Deviation 

Gr 44.40 1.30 16.69 14.35 

Qa 34.40 20.60 27.50 6.90 

Qc 52.60 0.80 17.19 17.91 

 

4.3 Spearman’s correlation 

 In this study, Spearman's correlation was used to examine the correlation 

between parameters. In the deep aquifer, hydrochemical parameters were correlated as 

shown in Table 11. The significant correlations between total As with pH, TDS, Ca, 

Mg, F and HCO3 at 0.01 level with positive correlation were at r=0.222, r=0.230, 

r=0.170, r=0.171, r=0.183, r=0.291, respectively and shown a significant correlation 

at 0.05 level with TTH, (r=0.165). 

The hydrochemical parameters in the shallow aquifer were correlated at 0.01 

level between total As and EC, pH, TDS, TTH (total hardness), Ca, Mg, Na, K, Fe, 

Cl, F, HCO3, SO4, NO3, Cr, Cu, Hg, Mn, Ni, Pb and Se with r=0.368,0.255, 0.385, 

0.281, 0.253, 0.288, 0.420, 0.144, 0.450, 0.190, 0.375, 0.383, 0.159, -0.230, -0.292, -

0.230, 0.327, 0.415, 0.240, 0.155, 0.421, respectively. In the deep aquifer, the 
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Spearmen’s correlation of physical parameters was correlated as shown in Table 13. 

Furthermore, total As has a significant correlation with Granite (r=-0.172) at the 0.01 

level, as well as correlated with DEM Forest, Sandy soil, Quaternary colluvium 

aquifer at r=0.161, r=-0.145, r=-0.150 and r=0.155 at 0.05 level, respectively.  

In shallow aquifer, the Spearmen’s correlation of physical parameters was 

correlated as shown in Table 14. Total As had a significant correlation with Granite 

(r=-0.172) at the 0.01 level, as well as correlated with DEM, Forest, Sandy soil, 

Quaternary colluvium aquifer at r=0.161, r=-0.145, r=-0.150, and r=0.155 at 0.05 

level, respectively. Total As had a significant correlation at 0.01 level with DEM, 

Sandy soil, Clay soil, Granite, Qmc with r=-0.193, r=-0.127, r=0.143, r=0.206, r=-

0.152, respectively, and had a significant correlation at 0.05 level with sand, 

Agricultural area (Field), and Quaternary colluvium at r=0.097, r=-0.124, r=-0.111, 

respectively.  

In conclusion, the parameters that meet a significant correlation both in 0.05 

and 0.01 levels were selected as the selected parameters for further modeling process 

as shown in Table 15. 
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Table  15 Spearman’s correlation with physical and hydrochemical parameters in 

both deep and shallow aquifers 
 

Parameters Deep aquifer Shallow aquifer 

Physical parameters DEM, Silt loam, Forest, 

Quaternary, Granite 

DEM, Sandy loam, Silt 

loam, Clay loam, 

Agricultural(fields), Gr, Qc, 

Qmc 

Chemical parameters EC, pH, TDS, TTH, 

Ca, Mg, F, HCO3 

EC, pH, TDS, TTH, 

Ca, Mg, Na, K, Fe, Cl 

F, HCO3, SO4, NO3, 

Cd, Cr, Cu, Hg, Mn, 

Ni, Pb, Se  

 

4.4Probability map 
 The selected models including RF, SVM, ANN were used to generate a 

probability map with the deep and shallow aquifers by the sdm and neutral net 

packages in R-studio software. The probability map shows the probability area of 

total As concentration exceeding the standard of drinking water (Figure 17). The 

result of the probability map showed RF had fine distribution probability areas. Also, 

the results of the SVM and ANN map had roughly probability distribution areas 

compared to RF. To evaluate a high probability area, each probability map was 

classified into 4 probability levels as follows: very high, high, moderates, and low.  

For the deep aquifer, the SVM probability map showed district areas, 

consisting of Si Racha, Bang Lamung, Pluak Daeng, Nikhom Phatthana, and Sattahip, 

was classified in the very high probability area of 48.5%, 35.21%, 11.54%, 2.84%, 

and 1.49%, respectively, as shown in Table 21. Moreover, other district areas such as 

Ban Khai, Nong Yai, Ban Chang, Ban Bueng, and Mueng Rayong were classified in 

the high-level areas with 12.82%, 4.0%, 3.97%, 3.69%, and 2.86%, respectively. The 

RF probability map, in the deep aquifer, showed district areas, which are Pluak 
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Daeng, Bang Lamung, and Si Racha in the very high-level probability areas of 40%, 

40%, and 20%, respectively. Other district areas including Ban Khai, Nikhom 

Phatthana, Ban Bueng, Mueang Rayong, Ban Chang were in the high-level areas of 

29.76%, 9.01%, 4.14%, 0.23%, and 0.06%, respectively as shown in Table 22. Lastly, 

Sattahip and Nong Yai districts were in the moderate level areas of 5.36% and 2.76%, 

respectively. The ANN probability map in the deep aquifer of Mueang Rayonh, Si 

Racha, Pluak Daeng, Bang Lamung, Nikhom Phatthana, Sattahip, Nong Yai, Ban 

Chang, Ban Bueng, and Ban Khai districts was in very high-level areas of 21.06%, 

17.9%, 17.69%, 12.5%, 11.4%, 5.56%, 4.04%, 3.84%, 2.98%, and 2.15%, 

respectively as shown in Table 23.  
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Figure  16 The probability map in the deep aquifer derived from a) RF, b) SVM, c) 

ANN and the probability map in the shallow aquifer derived from d) RF, e) SVM and 

f) ANN 

 
 
 
 
 
 
 

 

 

 

 
a) d) 

b) e) 

c) f) 
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Table  16 Percentage probability of each district derived from SVM model in the deep 

aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 11.54 26.1 24.57 8.45 

Mueang Rayong 0 2.86 22.47 43.51 

 Nong Yai 0 4.09 1.71 0 

Ban Chang 0 3.97 9.69 3.44 

Ban Khai 0 12.82 18.57 28.79 

Sattahip 1.49 1.76 5.05 10.96 

Si Racha 48.5 17.58 3.18 0 

Ban Bueng 0 3.69 0.41 0 

Nikhom Phatthana 2.87 10.19 11.93 4.29 

Bang Lamung 35.21 16.29 1.54 0 

Table  17 Percentage probability of each district derived from RF model in the deep 

aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 40 12.38 25.98 0 

Mueang Rayong 0 0.23 22.02 0 

Nong Yai 0 0 2.76 0 

Ban Chang 0 0.06 8.96 0 

Ban Khai 0 29.76 13.82 0 

Sattahip 0 0 5.36 0 

Si Racha 20 31.37 3.17 0 

Ban Bueng 0 4.14 0.67 0 

Nikhom Phatthana 0 9.01 10.99 0 

Bang Lamung 40 12 5.55 0 

Table  18 Percentage probability of each district derived from ANN model in the deep 

aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 17.69 36.97 29.96 25.16 

Mueang Rayong 21.06 24.51 30.66 15.65 

Nong Yai 4.04 2.96 0.25 1.55 

Ban Chang 3.84 16.3 11.23 8.27 

Ban Khai 2.15 4.97 12.08 23.51 

Sattahip 5.56 6.18 1.66 3.98 

Si Racha 17.9 2.18 1.15 5.19 

Ban Bueng 2.98 0 0.11 0.72 

Nikhom Phatthana 11.4 3.94 8.58 10.5 

Bang Lamung 12.5 1.57 4.24 4.67 
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For the shallow aquifer, the SVM probability map consisting of Mueang 

Rayong, Si Racha, and Nikhom Phatthana districts were classified in very high-level 

areas of 57.69%, 38.46%, and 3.85%, respectively, as shown in Table 24. Other 

districts including Sattahip, Ban Khai, Bang Lamung, and Pluak Deang were 

categorized in the high-level area of 3.69%, 0.58%, 0.38%, and 0.37%, respectively. 

Besides, Ban Chang, Nong Yai, and Ban Bueng districts were classified in the 

moderate level of 8.42%, 2.08%, and 1.33%, respectively.  

In Table 25, based on the RF probability map in the shallow aquifer, Mueang 

Rayong, Si Racha, Pluak Deang, Nikhom Phatthana, Ban Khai, Bang Lamung were 

defined as the very high-level area, which was of 31.62%, 30.65%, 12.67%, 12.41%, 

6.33%, 6.33%, respectively. Furthermore, other areas including Ban Chang and Ban 

Bueng were grouped in the high-level area of 0.38% and 0.16%, respectively.  The 

moderate level including Sattahip and Nong Yai districts is 5.08% and 2.18%, 

respectively. The ANN probability map in the shallow aquifer was shown in Table 26, 

which shows districts with the very high-level area consisting of Mueang Rayong, 

Pluak Daeng, Ban Khai, Si Racha, Sattahip, Ban Chang, Bang Lamung, Nikhom 

Phatthana, Nong Yai, and Ban Bueng districts of 25.81%, 20.37%, 16.26%, 10.66%, 

6.79%, 5.09%, 4.87%, 4.44%, 3.1%, and 1.92%, respectively. 
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Table  19 Percentage probability of each district derived from SVM model in the 

shallow aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 0 0.38 21.1 51.07 

Mueang Rayong 57.69 83.35 15.65 14.43 

Nong Yai 0 0 2.08 4.68 

Ban Chang 0 0 8.42 0.27 

Ban Khai 0 0.58 16.95 19.85 

Sattahip 0 3.69 4.8 0.88 

Si Racha 38.46 11.06 9.33 1.5 

Ban Bueng 0 0 1.33 2 

Nikhom Phatthana 3.85 0.37 11.94 2.87 

Bang Lamung 0 0.37 7.58 2.3 

 

 

Table  20 Percentage probability of each district derived from RF model in the 

shallow aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 12.67 2.16 26.16 37.74 

Mueang Rayong 31.62 66.6 10.97 4.77 

Nong Yai 0 0 2.18 17.83 

Ban Chang 0 0.38 8.45 0.01 

Ban Khai 6.33 2.45 19 15.64 

Sattahip 0 0 5.08 0 

Si Racha 30.65 19.57 7.05 5.91 

Ban Bueng 0 0.16 1.48 2.33 

Nikhom Phatthana 12.41 8.13 11.08 4.43 

Bang Lamung 6.33 0 7.69 11.31 

 

Table  21 Percentage probability of each district derived from ANN model in the 

shallow aquifer 
Districts Very high (%) High (%) Moderate (%) Low (%) 

Pluak Daeng 20.37 8.67 13.75 27.28 

Mueang Rayong 25.81 0.89 1.48 11.72 

Nong Yai 3.1 10.2 6.3 0.92 

Ban Chang 5.09 2.66 5.23 9.6 

Ban Khai 16.26 12.3 12.74 17.73 

Sattahip 6.79 6.84 2.19 2.08 

Si Racha 10.66 28.1 12.17 5.95 

Ban Bueng 1.92 0 0 0.89 

Nikhom Phatthana 4.44 14.92 21.25 15.59 

Bang Lamung 4.87 12.72 24.75 7.35 
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4.5 Performance of models 

4.5.1 Prediction performance  
The prediction performance of the models was evaluated using AUC and 

RMSE measurements which were shown in Tables 22 and 23. The goodness of fitting 

(Training dataset) for the deep aquifer revealed that. an ANN model had AUC=1 and 

RMSE=5E-5, following by SVM (AUC=0.73, RMSE=0.48) and RF (AUC=0.93, 

RMSE=0.34). In the shallow aquifer, the goodness of fitting from ANN had AUC=1 

and RMSE=7.3E-5, following by SVM (AUC=0.84, RMSE=0.41) and RF 

(AUC=0.93, RMSE=0.33).  

Furthermore, to evaluate the appropriate model, the predictive performance 

(Test dataset) needs to be mainly considered (Bindal and Singh 2019). In deep 

aquifer, RF (AUC=0.72, RMSE=0.48) model was the best model as compared with 

SVM (AUC=0.69, RMSE=0.49) and ANN (AUC=0.65, RMSE=0.62). In addition, in 

the shallow aquifer, RF (AUC=0.81, RMSE=0.42) also was the best model following 

by SVM (AUC=0.79, RMSE=0.44) and ANN (AUC=0.78, RMSE=0.47). The 

visualization of the models' performance was supported by using the Taylor diagram 

(Taylor 2001) as shown in Figure 16. The RF had a higher correlation with observed 

total As probability and had lower RMSE compared to those of SVM and ANN in 

both the deep and shallow aquifers. 

Table  22 Performances of SVM, RF, and ANN in the deep aquifer 

Model 
Train Test 

RMSE AUC RMSE AUC 

SVM 0.48 0.73 0.49 0.69 

RF 0.34 0.93 0.48 0.72 

ANN 5E-05 1.00 0.62 0.65 
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Table  23 Performances of SVM, RF, and ANN in the shallow aquifer 

Model 
Train Test 

RMSE AUC RMSE AUC 

SVM 0.41 0.84 0.44 0.79 

RF 0.33 0.93 0.42 0.81 

ANN 7.3E-05 1 0.53 0.75 

 

Figure  17 Taylor’s diagram for a) the deep aquifer and b) the shallow aquifer 
 

4.5.2 Models uncertainty 

The uncertainty results of training and test groups in the deep aquifer were 

shown in Table 24.  The training groups showed uncertainty values of three models, 

which were measured by PICP and MPI indicators, revealing the uncertainty of the 

individual model in the descending order as follows: SVM (PICP=0.27, MPI=0.16), 
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RF (PICP=0.53, MPI=0.49), and ANN (PICP=0.69, MPI=1.3E-4). For testing data, 

the lowest uncertainty model was RF (PICP=0.20, MPI=0.13), following by SVM 

(PICP=0.16, MPI=0.15), and ANN (PICP=0.05, MPI=6.075E-10).  

The uncertainty results of training and test groups in the shallow aquifer were 

shown in Table 25. Again, the training group showed uncertainty values of three 

models, which were measured by PICP and MPI indicators, indicating the uncertainty 

of the individual model in the descending order as follows: SVM (PICP=0.50, 

MPI=0.37), RF (PICP=0.58, MPI=0.44) and ANN (PICP=0.86, MPI=8.7E-5). For the 

testing data, the lowest uncertainty model was RF (PICP=0.34, MPI=0.27) following 

by ANN (PICP=0.25, MPI=1.63E-10), and SVM (PICP=0.23, MPI=0.39). 

Table  24 Uncertainty analysis of SVM, RF, and ANN of the deep aquifer 

Models 
Train Test 

PICP MPI PICP MPI 

SVM 0.27 0.16 0.16 0.15 

RF 0.53 0.49 0.20 0.13 

ANN 0.69 1.3E-4 0.05 6.075E-10 

 

Table  25 Uncertainty analysis of SVM, RF, and ANN of the shallow aquifer 

Models 
Train Test 

PICP MPI PICP MPI 

SVM 0.50 0.37 0.23 0.39 

RF 0.58 0.44 0.34 0.27 

ANN 0.86 8.7E-05 0.25 1.63E-10 
 

4.5.3 Validation with field data 

 To evaluate performance between the deep and shallow aquifers of probability 

map, total As concentration collected in the field during 31 August – 1 September 

2019 were used to compare between the actual value and the prediction value from the 

probability map. The validation results were shown in Table 26, which revealed 

RMSE values for probability map of deep and shallow aquifer. The deep aquifer 
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showed that RF had the lowest RMSE (0.48) compared with SVM (RMSE=0.73) and 

ANN (RMSE=0.67). Similarly, RF also had the lowest RMSE (0.75) compared to 

SVM (RMSE=0.76) and ANN (RMSE=0.84). 

Table  26 Validation model with field data during 31 August – 1 September 2019 

 

 RMSE 

SVM RF ANN 

Deep 0.73 0.48 0.67 

Shallow 0.76 0.75 0.84 

 

4.6 Groundwater pollution risk map 

The groundwater pollution risk map can be generated by using the RF 

probability map (cut-off value for deep and shallow aquifers were 0.589 and 0.596, 

respectively) multiply with the population density and water consumption map in the 

study area. Then, the risk maps were classified by an equal interval method into five 

categories as follows: very low, low, moderate, high, and very high. Total As shown 

in Table 27, the percentage of groundwater pollution risk area in the deep aquifer had 

areas in very high-level including Sattahip and Ban Khai districts of 71.9% and 

28.1%, respectively. Ban Chang district was classified as in the high-level area 

(15.6%). The district classified as the moderate level included Si Racha, Bang 

Lamung, Mueang Rayong, Pluak Daeng, Nikhom Phatthana of 73.89%, 16.87%, 

3.48%, 0.57%, and 0.13%, respectively. The very low-level districts were Nong Yai 

and Ban Bueng (2.77% and 1.52%, respectively.  

The Percentage of groundwater pollution risk area in the deep aquifer was 

shown in Table 28, revealing that Mueang Rayong and Ban Khai districts were 

classified in the very high-risk level of 99.27% and 0.73%, respectively. For the high-
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level area, there was only Nikhom Phatthana covering 3.65%. There are two districts 

classified as the moderate level consisting of Si Racha and Pluak Daeng of 41.73% 

and 0.29%, respectively.  Ban Chang district was grouped in the low-level area 

(0.94%). Lastly, Bang Lamung, Sattahip, Nong Yai, and Ban Bueng districts areas 

were classified in the very low-level of 8.07%, 4.99%, 2.54%, and 1.40%, 

respectively. 

Table  27 Percentage of groundwater pollution risk area in the deep aquifer 

Districts Very 

high 

High Moderate Low Very 

low 

Pluak Daeng 0.00 0.00 0.57 32.76 22.57 

Mueang Rayong 0.00 0.00 3.48 0.10 22.31 

Nong Yai 0.00 0.00 0.00 0.00 2.77 

Ban Chang 0.00 15.58 0.00 0.79 9.14 

Ban Khai 28.13 77.26 5.06 26.14 14.89 

Sattahip 71.87 7.16 0.00 0.02 5.03 

Si Racha 0.00 0.00 73.89 5.94 7.44 

Ban Bueng 0.00 0.00 0.00 0.00 1.52 

Nikhom Phatthana 0.00 0.00 0.13 33.39 6.23 

Bang Lamung 0.00 0.00 16.87 0.87 8.10 

 

 

Table  28 Percentage of groundwater pollution risk area in the shallow aquifer 

Districts Very high High Moderat

e 

Low Very 

low 

Pluak Daeng 0.00 0.00 0.29 9.29 26.52 

Mueang Rayong 99.27 91.62 55.22 29.76 10.66 

Nong Yai 0.00 0.00 0.00 0.00 2.54 

Ban Chang 0.00 0.00 0.00 0.94 8.54 

Ban Khai 0.73 4.73 1.22 0.94 18.80 

Sattahip 0.00 0.00 0.00 0.00 4.99 

Si Racha 0.00 0.00 41.73 16.95 8.35 

Ban Bueng 0.00 0.00 0.00 0.00 1.40 

Nikhom 

Phatthana 

0.00 3.65 1.55 42.12 11.23 

Bang Lamung 0.00 0.00 0.00 0.00 8.07 
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Chapter 5 Discussions 

5.1 Parameters associated with As mechanisms in groundwater 

The As concentration that exceeds the drinking water standard of 10 µg/l 

(WHO 2018) is a common problem in groundwater supply wells. The natural As 

sources in groundwater mostly come from the weathering of certain rock types in the 

region and release into groundwater. For example, in a Quaternary aquifer such as Qcl 

and Qa have As concentration around 27.50 and 17.19 mg/l, respectively. For granite 

base rock, it has As a concentration approximately 16.69 mg/l (Acharyya, Shah et al. 

2005).  

The other sources of As in groundwater can be from anthropogenic activities 

such as precipitation and water infiltrating through municipal waste in landfills that 

was contaminated with various organic and inorganic substances from the municipal 

waste and it contains As concentration around 0.004 mg/l (Wexler and Maus 1988). 

The result of the previous studies indicates that the sources of As in groundwater 

probably came from both natural and anthropogenic sources (Garelick, Jones et al. 

2008, Shankar, Shanker et al. 2014, Boonkaewwan, Sonthiphand et al. 2020)  

Therefore, to screening unnecessary parameters before using them in the 

modeling process, the spearman’s correlation was used in this process. For making 

sure the spearman’s correlation selected useful parameters, the correlation between 

other parameters and total As concentration in groundwater had to be toughly 

considered. In the deep aquifer, the strong positive of total As correlated with pH and 

bicarbonate (HCO3) indicates the reducing environment in the groundwater system. 

This was in agreement with previous studies which revealed high total As 
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concentrations in groundwater were positively correlated with high bicarbonate 

(HCO3) concentrations in the reducing condition in the groundwater environment 

(Nickson, McArthur et al. 2000, Charlet, Chakraborty et al. 2007). Ca had a strong 

positive correlation with Mg (r=0.672) and HCO3 (r=0.744) implying the dissolution 

of calcite from geological formations into groundwater. Also, the good correlation 

between Mg and Na (r=0.466) indicates that ion exchange happened in groundwater 

(Sae-Ju, Chotpantarat et al. 2019).  TDS was strongly correlate with EC (r=0.612), Na 

(r=0.546), Cl (r=0.50), SO4 (r=0.350), Mg (r=0.611) and Ca (r=0.672). Similarly, the 

EC was positive correlation with Na (r=0.642), Cl (r=0.526), SO4 (0.428), Mg 

(r=0.595) and Ca (r=0.710). These good correlations with the EC indicate that the 

increase in salinity was caused by groundwater mineralization and seawater intrusion 

(Sae-Ju, Chotpantarat et al. 2019).  These results can confirm that the deep aquifer in 

the Rayong groundwater basin was influenced by seawater intrusion. 

For the shallow aquifer, Ca also had a strong positive correlation with Mg 

(r=0.650) and HCO3- (r=0.790) indicating the dissolution of calcite in aquifers. Also, 

the correlation between Mg and Na (r=0.630) indicates that ion exchange was 

occurring during seawater intrusion. TDS was strongly correlate with EC (r=0.957), 

Na (r=0.839), Cl(r=0.720), SO4(r=0.647), Mg (r=0.710) and Ca (r=0.799). Similarly, 

the EC was positive correlation with Na (r=0.817), Cl(r=0.696), SO4(0.623), 

Mg(r=0.692) and Ca (r=0.786). These good correlations with the EC indicate that the 

increase in salinity was caused by groundwater mineralization and seawater intrusion 

(Sae-Ju, Chotpantarat et al. 2019). These results can confirm that the shallow aquifer 

in the Rayong groundwater basin also influent by seawater intrusion. Furthermore, 

arsenic had a positive correlation with pH and a negative correlation with NO3, 
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implying that reducing conditions might cause the release of As in the shallow aquifer 

in the Rayong groundwater basin. From the previous study, the reduction environment 

was mainly caused by the hydrogeological characteristic, and through a denitrification 

process, make As released into groundwater (Boonkaewwan, Sonthiphand et al. 

2020). Usually, the majority of As in groundwater was in oxidation form including 

As-rich Fe oxyhydroxide (FeOH) and As-bearing pyrite that exists as a coating on 

grain particle in sedimentary grain in the oxidation process (Thornton 1996, Bowell, 

Alpers et al. 2014). However, in the reducing environment which was derived by 

microbial degradation of organic matter in groundwater consumed O2 and NO3 in the 

process while release As into groundwater, this was the major event that impacts 

directly to As concentration in groundwater (Nickson, McArthur et al. 2000). 

However, anthropogenic activities, such as agriculture, urbanized wastewater, 

livestock, industrial estates, and municipal landfill sites, some organic pollutants 

and/or organic acid from the ground surface leaches into the groundwater 

environment, enchanting the reducing conditions with a high correlation with SO4 and 

NO3. Therefore, from the correlation between SO4 and NO3 with negative correlation 

(r = -0.086) which mean when SO4 release from organic matter was increased, the 

consumption of NO3 by microorganism was also increased this can imply the source 

of reducing condition in the shallow aquifer came from anthropogenic activities 

(Boonkhao, Phanprasit et al. 2017). 

 The physical parameters influencing total As concentrations in groundwater 

are mainly from hydrogeological characteristics, soil types, and agricultural area 

(Tables 14 and 15). For examples, in shallow aquifer total As was mainly associated 

to sandy soil (r = -0.127), clay(r = 0.143), granite(r = 0.206) and quaternary alluvium 
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(r = -0.152). From the correlation, we can indicate that bedrock and soil were the 

major sources of As release into the groundwater environment. Moreover, the 

correlation with the agricultural (r = -0.124) area might indicate the anthropogenic 

activities from agriculture in the area. However, although the physical parameters can 

be screened by this technique, it doesn’t help much in terms of explaining the 

mechanism of As release in groundwater. Thus, as mention above we can conclude 

that Spearman’s correlation can be used as a screening parameter tool, which is 

efficient to enhance the modeling process by eliminating unnecessary parameters out 

of datasets. Furthermore, the influence factors that affected an As mechanism in the 

study area might come from both natural and anthropogenic sources.  

5.2 Evaluating prediction performance 

 The goodness-of-fit and predictive performance of the models were also 

quantified using RMSE and AUC measurements. In the training step of the deep 

aquifer, the ANN model produced an overfitting goodness-of-fit of total As 

probability with RMSE=5E-5 and AUC=1.00, following by SVM (RMSE=0.48, 

AUC=0.73) and RF (RMSE=0.34, AUC=0.93). This also happened in the shallow 

aquifer as shown in the descending order: ANN (RMSE=7.3E-5, AUC=1), SVM 

(RMSE=0.41, AUC=0.84), RF (RMSE=0.33, AUC=0.93). Based on the goodness-of-

fit result, ANN shows the sign of overfitting with very small RMSE and high AUC 

compared to those of other models. Commonly, the overfitting in the ANN model is 

found when ANN algorithms work with a small dataset (Rao, Prasad et al. 2018). 

Thus, we can indicate that ANN was not an appropriate model using for the modeling 

process in this study. 
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The predictive performance of the model as shown in Tables 17 and 18 had 

the result of RF with RMSE=0.42 and AUC=0.72 following by SVM (RMSE=0.44, 

AUC=0.79) and ANN (RMSE=0.53, AUC=0.75). The goodness-of-fit of the model 

shows how well the model fits the training dataset. The prediction and generalization 

abilities of the model cannot be evaluated using only the goodness-of-fit of the model 

because it was measured by the data that were used to calibrate the model (Henseler 

and Sarstedt 2013). Therefore, the predictive performance (the accuracy of the model 

in the testing step) reflects the ability of the model in the accurate prediction. The 

result of prediction performance indicated that the RF had the best performance 

compared to the performances of SVM and ANN in both deep and shallow aquifers.  

Furthermore, from a previous study using Taylor’s diagrams can describe a 

model’s performance in visualization form (Rahmati, Choubin et al. 2019). The 

visualization of the models' performance using the Taylor diagram confirmed that the 

RF was the appropriate model to predict total As concentrations in groundwater in 

this study area as presented in Figure 16. According to the Taylor criteria (i.e., 

correlation, standard deviation, and RMSE), the RF had the highest correlation with 

the observed total As probability and had the lowest RMSE as compared to those 

values of the SVM and ANN models (Taylor 2001). The validation with actual field 

data showed that RF had the lowest RMSE in both deep and shallow aquifers (RMSE 

=0.48 and 0.75, respectively) compared to those of SVM (RMSE = 0.73 and 0.76) and 

ANN (RMSE =0.67 and 0.84). Thus, it could confirm that the RF model was the 

appropriate model in the prediction groundwater pollution risk map of total As than 

SVM and ANN. (Cutler, Edwards et al. 2007, Podgorski, Wu et al. 2020). 
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5.3 Uncertainty assessment 

 The uncertainty for each ML model was determined using QR methods. To 

determine the uncertainty of ML models, we applied only the testing data to carry out. 

In this study, based on uncertainty assessment, two statistics are consisting of mean 

prediction interval (MPI) and prediction interval coverage probability (PICP), which 

were used as suggested by Rahmati (Rahmati, Choubin et al. 2019). MPI was the 

average of the widths of the prediction intervals, where the lower values of MPI 

indicates the lower uncertainty. PICP was the probability that the observed values are 

within the prediction intervals.  

The result of PICP in the deep aquifer showed that RF had the lowest 

uncertainty (PICP=0.20) as compared to those of SVM (PICP=0.16) and ANN 

(PICP=0.05) (Table 9). In the shallow aquifer, RF also had the lowest uncertainty 

(PICP=0.34) as compared to those of SVM (PICP=0.23) and ANN (PICP=0.25) 

(Table 10). Since the PICP measurements for the three models are very different, 

there was no need to compare the MPI value (Rahmati et al., 2019). The PICP was the 

more important measurement of uncertainty as it indicates the number of observations 

that fall within the estimated interval (Dogulu, Lopez Lopez et al. 2015). Therefore, 

MPI was used as a supplementary metric between models with similar PICP values, 

the one with a lower MPI was regarded as the better model (Muthusamy, Godiksen et 

al. 2016). Thus, the QR calculated that the RF model had the lowest uncertainty 

compared to the uncertainty values of SVM and ANN in both shallow and deep 

aquifers. As mentioned above, based on the prediction performance and uncertainty 

assessment, we can conclude that the RF was the appropriate model to predict the 

total As risk area in both deep and shallow aquifers. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 67 

5.4 Risk map assessment  

Many of the literature in the study area (Pipattanajaroenkul, Sonthiphand et al. 

2018, Boonkaewwan, Sonthiphand et al. 2020), which study the As mechanism in 

Rayong groundwater basin found that As contamination in Rayong groundwater basin 

appeared to be a potential risk and need a proper method to locate risk area. 

Therefore, the present study used risk maps that output from the RF model multiplied 

with population density and water consumption to indicate the districts that 

potentially had people to expose to As contaminated in groundwater. The result 

showed that the districts that may have people expose to As in the deep groundwater 

aquifer were mostly in the north part of the Rayong groundwater basin such as 

Sattahip and Ban Khai districts, which had very-highly risk level, following by Ban 

Chang district which had a high-risk level of exposure. Other districts that might have 

people expose to As contaminated in the deep aquifer were Si Racha, Bang Lamung, 

Mueang Rayong, Pluak Daeng, and Nikhom Phatthana.  

Based on the exposure of local people with As contaminated in the shallow 

groundwater aquifer, it mostly affected in the south path of Rayong groundwater 

basins such as Mueang Rayong and Ban Khai districts had a very-highly risk level, 

following by Nikhom Phatthana district (high-risk exposure) as well as Si Racha and 

Pluak Daeng districts also had a moderate risk level.    

In summary, the risk map in the deep aquifer appeared to had more risk in the 

northern part of the Rayong groundwater basin whereas in the shallow aquifer it 

appears to have high risk in the southern part of the Rayong groundwater basin as 

shown in Figure 18. Furthermore, based on various types of land uses in Rayong 
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groundwater basin including industrial estate, agricultural areas, and urban areas, 

particularly, two landfills in the Mueang District that is close to the estuary of the 

groundwater basin (Boonkaewwan, Sonthiphand et al. 2020). Also, the risk areas of 

the shallow aquifer might be affected by anthropogenic activity in the study area such 

as landfill, agricultural, and industrial areas. 

 

Figure  18 Groundwater pollution risk map of As contamination in a) the deep aquifer 

and b) the shallow aquifer 
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Chapter 6 Conclusions and recommendations 

6.1 Conclusion 

 The increasing demand for groundwater has caused concern for groundwater 

risk assessment, especially on the EEC area project in eastern, Thailand. In this 

research, the machine learning algorithms had been applied to predict As 

contamination in Rayong coastal aquifers. Based on the present study, the majority of 

water quality parameters were not a normal distribution. Thus, spearman’s correlation 

was used in this study. From the correlation analysis, hydrochemical parameters were 

correlated with each other, including As concentration at the significant level, 

explaining As mechanisms in the groundwater environment. Therefore, using 

Spearman’s correlation to screen unnecessary parameters before modeling might be 

served as an alternative way to select suitable parameters apart from the PCA method. 

The correlation result indicated that the point source of As in this study area was 

caused by both natural and anthropogenic sources. 

In the modeling process, ANN showed a sign of overfitting in the goodness-

of-fit, which was usually found in ANN algorithms with a small dataset. In prediction 

performance and uncertainty evaluation, the results indicated that the RF model had 

the highest prediction performance and the lowest uncertainty compare with the SVM 

model. Thus, it can be concluded that the RF model was the most suitable model for 

predicting As contamination in the Rayong groundwater basin compared to SVM and 

ANN models. The result of the risk map from the RF model indicates that the deep 

aquifer, the northern part of Rayong groundwater basin had a higher risk for people to 

expose to As contaminated in groundwater. In contrast, the shallow aquifer indicates 
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that the southern part of the Rayong groundwater basin had a higher chance for people 

to expose to As in groundwater, which might be related to anthropogenic activities in 

the Mueang District that is close to the estuary of the Rayong groundwater basin. 

The outcome of this study can be used to help decision-makers, i.e. DGR and 

other organizations, to manage groundwater resources and protect the environment in 

the study region. For example, the risk area where suitable to install a filter tank for 

remediation and treat groundwater can be located. Moreover, base on the risk map, 

the decision-maker can propose a suitable policy to sustainably manage groundwater 

consumption in the study area. 

6.2 Recommendation 

 Since the difference of hydrochemical facies between rainy and dry seasons, it 

would be further considered this effect. Furthermore, in this study, the contributing 

factors to the modeling process in deep and shallow aquifers are different and give 

significant information. Therefore, in future studies, an attempt to study groundwater 

modeling integrated with ML techniques should be considered under different seasons 

and in both aquifers. 

 In addition, the study of As contamination in groundwater using a 

hydrogeochemical model should consider the speciation of As, As(III), and As(IV) in 

groundwater. This was directly correlated to the oxidizing or reducing conditions in 

this area. When considering As(III) and As(IV), we can use this information to 

classify the potential risk area better than the use of total As concentration.  

Moreover, in the selected parameter process by the Spearman’s correlation, it 

would work well with hydrochemical parameters, which can describe As mechanisms 
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in groundwater. However, for physical parameters, this technique doesn’t help much 

to screen unnecessary parameters. Thus, the use of hydrochemical parameters only in 

the modeling process was recommended in terms of time-saving. 

In summary, the limitation of this study showed in many aspects as follows: 

the seasonal effect may relate to the chemical mechanism of As in aquifer, the total 

As parameter might not be enough to determine the risk area affected by As 

contamination. All of these aspects might affect the accuracy and reliability of 

predicting As risk area. 

Furthermore, the methodology applied in this study can be used to study other 

types of contaminants in polluted groundwater. This will be useful in the investigation 

of groundwater contamination and remediation in other areas. Also, the study can be 

applied using only conventional on-site measurement parameters to predict pollution 

in groundwater that might decrease the cost to analyze other parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 72 

APPENDIX 

 

 

Figure  19 J1 groundwater well 
 

 

 

Figure  20 J2 groundwater well 
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Figure  21 J3 groundwater well 
 

 

Figure  22 J4 groundwater well 

 

Figure  23 J6 groundwater well 
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Figure  24 J7 groundwater well 

 

 

Figure  25 J8 groundwater well 

 

 

Figure  26 J9 groundwater well 

 

 

Figure  27 J10 groundwater well 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 75 

 

Figure  28 J11 groundwater well 

 

 

Figure  29 J13 groundwater well 

 

 

Figure  30 J14 groundwater well 
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Figure  31 G1 groundwater well 
 

 

 

Figure  32 G2 groundwater well 
 

 

 

Figure  33 G3 groundwater well 
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 Figure  34 G4 groundwater well  
 

 

 

Figure  35 G7 groundwater well 
 

 

 

Figure  36 G8 groundwater well 
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Figure  37 G9 groundwater well 
 

 

 

Figure  38 G10 groundwater well 

 
 

 

Figure  39 G11 groundwater well 
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Figure  40 G12 groundwater well 
 

 

 

Figure  41 G13 groundwater well 
 

 

 

Figure  42 G14 groundwater well 
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Figure  43 G15 groundwater well 
 

 

 

Figure  44 G17 groundwater well 
 

 

 

 

Figure  45 G19 groundwater well 
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Table  29 Detection limits and the standard level (DGR, 2017) 

Parameters Unit Analysis techniques 

Detection 

Limit 

Standard 

level 

Physical 

Color 

Pt-

Co 

Spectrophoto metric-Single Wavelength 

(2120C) 0 5 

Turbidity 

NT

U Nephelometric(2013B) 0.01 5 

pH - - 1.0-140 7-8.5 

Chemical 

TDS mg/l Dried at 103-105C 5 600 

Total Hardness mg/l EDTA Titrimetric (2340C) 100 300 

Non-Carbonate 

Hardness mg/l Calculatioon/EDTA Titrimetric (2340C) 0 200 

Ca mg/l EDTA Titrimetric (2340C) 0.05 - 

Mg mg/l Calculatioon 0 - 

Na mg/l Drect Air-Ace tylene Flame (3111B) 0.005 - 

K mg/l Drect Air-Ace tylene Flame (3111B) 0.005 - 

Fe mg/l Drect Air-Ace tylene Flame (3111B) 0.005 0.5 

Cl mg/l Argento metric (4500-FD) 0.2 250 

F mg/l SP ANDS (4500-FD) 0.01 0.7 

CO2 mg/l SPANDS (4500-FD) 0 - 

HCO3 mg/l Titration(2320B) 0 - 

SO4 mg/l Titration(2320B) 0.1 200 

NO2 mg/l Tubidimetric (4500 -SO4 E) 0.01 45 

PO4 mg/l Cadmium Reduction (4500-NOE) 0.0001 - 

Heavy metal 

As mg/l Hydride Generation AAS (3114B) 0.0003 0.01 

Cd mg/l Drect Air-Ace tylene Flame (3111B) 0.0004 0.003 

Cr mg/l Colorimetric(3111B) 0.01 0.05 

Cu mg/l Drect Air-Ace tylene Flame (3111B) 0.003 1 

Hg mg/l Hydride Generation AAS (3114B) 0.0001 0.001 

Mn mg/l Drect Air-Ace tylene Flame (3111B) 0.005 0.5 

Ni mg/l Drect Air-Ace tylene Flame (3111B) 0.001 0.02 

Pb mg/l Drect Air-Ace tylene Flame (3111B) 0.007 0.01 

Se mg/l Hydride Generation AAS (3114B) 0.003 0.01 

Zn mg/l Drect Air-Ace tylene Flame (3111B) 0.005 5 
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