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The present study used three algorithms consisting of Support Vector Machine
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model, and 3) constructing the risk map of As. To perform models efficiently, the
parameters used to generate the models have to be selected based on the correlation of each
hydrochemical parameter with As concentration, which could explain the mechanisms of
As release in groundwater. Due to major parameters in the dataset were monotonic and not
presented by the normal distribution, thus, Spearman’s correlation was conducted to screen
the suitable parameters. The results showed that parameters correlated with As mostly
supported by the mechanism of As release in groundwater, which is dominantly controlled
by the reducing condition. Spearman’s correlation technique would help to select the
crucial parameters in the further modeling process. To select an appropriate model to
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Chapter 1 Introduction

1.1 Introduction

Groundwater is the most valuable resource of drinking water especially, in
South East Asia and developing countries (Winkel, Berg et al. 2008, Cho,
Sthiannopkao et al. 2011). However, arsenic (As) contamination in groundwater is a
major problem in many countries and regions because As is one of the major
carcinogenic elements, which mostly presents in a toxic form as an inorganic species
in natural water systems including groundwater (WHO 2018). Arsenic can be
considered as a toxic element to humans in several forms, especially arsenite (As
(11)), arsenate (As(V)), and organic As compounds. A lethal dose in humans is 1.5
mg/kg of body weight (WHO 2018). The acute intoxication symptoms include
vomiting, abdominal pain, muscular pain, diarrhea, and weakness, with flushing of the
skin, and chronic intoxication symptoms, including dermal lesions such as
hypopigmentation and hyperpigmentation, skin cancer, peripheral neuropathy, lung
cancers, bladder and peripheral vascular disease (WHO 2018). Due to the As toxicity,
the monitoring strategies methods to observe As contamination need to be improved
to quantify and predict As concentrations in groundwater. The proper method might
be used to provide necessary information for better assessment and manage public
health (Cho, Sthiannopkao et al. 2011). However, due to lacking equipment and
human resource, dealing with local As contamination problems in regional areas
remains problematic (DGR 2017). Therefore, modeling approaches for As
concentrations using geological and on-site measurement data can be an alternative to

characterize and measure the As contamination potential, as well as to provide



predictive information for better public health management (Winkel, Berg et al. 2008,
Cho, Sthiannopkao et al. 2011, Bindal and Singh 2019). The prediction information in
terms of the probability and risk map, that generated from the model, will help to
support groundwater management and to plan to install a monitoring well system for
the local government agencies. The probability map usually uses in many types of
environmental science studies to inform the general information about a percent
chance to encounter some study's element. On the other hand, the risk map can define
an area in which it will encounter the study’s element (Sajedi Hosseini, Malekian et
al. 2018). The prediction information in terms of the probability and risk map, that
generated from the model, can help to support groundwater management and to plan
to install groundwater monitoring wells system for the local government agencies.
The probability map usually uses in many types of environmental science studies to
inform the general information about a percent chance to encounter some study's
focused elements. On the other hand, the risk map can define an area in which it will
encounter the study’s focused element (Sajedi Hosseini, Malekian et al. 2018).
Currently, machine learning (ML) has been applied in several fields in
environmental scientist’s study. The MLs power comes from their powerful nonlinear
modeling capability, which usually uses for assessment in environmental science
aspects. To study groundwater contamination, machine learning (ML) has been
applied for the prediction of several risk assessments in groundwater resources
(Winkel, Berg et al. 2008, Sajedi Hosseini, Malekian et al. 2018, Bindal and Singh
2019, Podgorski, Wu et al. 2020). There are several algorithms such as random forest
(RF), support vector machine (SVM), and artificial neural network (ANN). Random

Forest (RF) classifier for interpretations of the land cover shows that this algorithm is



very fast, and has satisfactory results with the limited data set (Havryliuk, Korol et al.
2018, Podgorski, Wu et al. 2020). The algorithm could provide better detection of the
variability in apartment values and predicts them more effectively than multiple
regression (Marjan, Kilibarda et al. 2018). Support vector machine (SVM) was used
to determine the risk of nitrate contamination in groundwater (Sajedi Hosseini,
Malekian et al. 2018), and it is good to classify data and trends to be resistant to the
overfitting problem. An artificial neural network (ANN) has been applied to evaluate
the As contamination in groundwater. Furthermore, combine with the PCA technique,
ANN algorithms provide a significant result to determine the As contamination in
groundwater in Cambodia, Laos, and Thailand areas (Cho, Sthiannopkao et al. 2011).
All three algorithms are suitable to handle a large amount of data to generate a model,
which have many hydrochemical and physical variables to analyze and predict the

groundwater contamination.

Rayong groundwater basin is located between Chonburi and Rayong
provinces and contact with the gulf of Thailand coastal. Groundwater in the Rayong
groundwater basin has been found an As contamination problem in groundwater
(Kerdthep, Tongyonk et al. 2009, Boonkhao, Phanprasit et al. 2017,
Pipattanajaroenkul, Sonthiphand et al. 2018, Boonkaewwan, Sonthiphand et al. 2020).
Besides, the study area is the part of the Eastern Economic Corridor (EEC), where is
the project for the economic development of Thailand’s Eastern Seaboard and the
government has been launching measures to support the economic growth in EEC. In
the future, the EEC can grow into a new trade center in Asia (Ootsahkarn 2018).

Thus, the demand for the groundwater resource in this region will be dramatically



increased; thus, the groundwater quality of groundwater has to be considered as the

priority before pumping groundwater to supply for each sector.

However, the parameters that use in the implementation of ML approaches of
groundwater pollution risk usually used only physical parameters (Winkel, Berg et al.
2008, Sajedi Hosseini, Malekian et al. 2018). It is limited understanding in integrating
physical and hydrochemical parameters of groundwater to assess contamination in
groundwater, particularly As contamination in the urbanized coastal aquifer (Zubair,
Begum et al. 2015). As mentioned, to fulfill this research gap, this study attempted to
apply ML algorithms, including RF, SVM, and ANN to investigate and predict the As
contamination in Rayong coastal basins. Thus, the main objectives of the current
study are: (i) to evaluate the machine learning algorithms that suitable to predict the
As contamination in groundwater, (ii) to investigate the environmental factors (e.g.,
hydrochemical characteristics, soil types, land use/landcover) influencing on As
contamination in groundwater. This study provided the appreciative predictive
information for better public health management and groundwater quality control to

support the EEC project in this area.

1.2 Objectives

1. To evaluate the machine learning algorithms suitable to assess the As

contamination in groundwater.

2. To investigate the environmental factors influencing an As contamination in

groundwater.



1.3 Hypothesis

1. The machine learning algorithms can provide risk areas of As contamination
in groundwater.
2. The hydrochemical parameters mainly are the influencing environmental

factors on As contamination in groundwater.
1.4 Scope of the study
1. The geological and hydrochemical parameters in the Rayong groundwater
basin were applied in the modeling

2. The period of hydrochemical and physical data was from the dry season in

2012 until the rainy season in 2019.



Chapter 2 Literature Review

2.1 Study area

The study area is located between Chonburi and Rayong provinces, combined
with 9 sub-district, Nong yai, Bang lamung, Satthip, Si racha, Ban chang, Mueang
Rayong, Pluak deang and King amphoe nikhom phatthana, covering Rayong
groundwater basin, which has faced the problem of As contamination in groundwater.
The study area has a mountain in the west area and a large plain in the middle part of
the basin (DGR 2012, DGR 2017), covering areas approximately 2,236 km?, as shown

in Figure 1.
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Figure 1 Study area



2.1.1 Geology characteristics

Biotite granite in Carboniferous age rocks is located in the Northern and
Western part of Rayong groundwater basin as shown in Figure 2. Alluvia and
Terrance's deposits are in the middle part of the Rayong groundwater basin (DMR
2007) as shown in Figure 2. There is a source of the organic component, affecting the

reducing condition in the groundwater environment.

Geology map
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I:I Quaternary terrain (Qt)

Reference: Department of
mineral and resource, Thailand
(2015)

Figure 2 Geologic map
2.1.2 Soil characteristics

The soil type in the study area is derived from the Land Development Department
(LDD) (LDD 2016). A soil map was classified by each soil type in the study area
based on soil textures. The new classification can be separated into 7 types as shown

in Table 1 and Figure 3.



Table 1 Soil types classification based on soil texture and proportion of soil types in
the study area

Soil texture Percentage in the study area (%)
Gravel, Gravel loam 6.75
Gravel loam, Sand 0.70
Sand, Sandy Loam 31.52
Sandy loam, Silt Loam 35.03
Silt loam, Silt 2.53
Silt, Clay loam 2.47
Clay 21.01

Note: rock land and slope complex are not included in a calculation.
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Figure 3 Soil map
2.1.3 Hydrogeologicaly characteristics

Colluvium sediment (Qc) in the quaternary age; has the largest aquifer area as
compared to other hydrologic units. Another main hydrologic unit is alluvium
sediment in quaternary age, which locate alongside the main river in the study area.

Both aquifer characteristics have rich organic matter, which can provide a reducing



condition in groundwater. The reducing condition in groundwater is suitable for the
release of arsenide, which is the most severe form of in As species (Jacks 2017). The
other two aquifers are the consolidated aquifers, including granite and carbonate
aquifers, which are located in the mountainous areas distributed around the

groundwater basin.

Hydrological map
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Groundwater resources,
Thailand (2017)

Figure 4 Hydrological map
2.1.4 Land use

In the study area, the majority of land use is dominant by agricultural areas
average around 80% in the total area following by Forest (8%), Urban (5%), Mining
(4%), Irrigation (2%), and water (>1%) (LDD, 2016). The agricultural area majority
by rice fields and cassava. For mining, the majority is sand mining following by

granite and limestone mining (DMR 2007).
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Land use map
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Figure 5 Land use map
2.1.5 Meteorological

Thailand usually experiences dry weather in winter because of the northeast
monsoon which is the main cause that controls the climate of this region (TMD 2015).
The later period, summer, is characterized by gradually increasing rainfall with
thunderstorms. The onset of the southwest monsoon leads to intensive rainfall from
mid-May until early October. Rainfall peak is in August or September which some
areas are probably flooded. However, dry spells are commonly occurred for 1 to 2
weeks or more from June to early July due to the northward movement of the ITCZ to
southern China. According to a general annual rainfall pattern, most areas of the
country receive 1,200- 1,600 mm a year (TMD 2015). In Rayong province, Rainfall
annual average around 1,500 mm/year, which average rate for rain annually in

Thailand (TMD 2015).
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2.2 Arsenic

2.2.1 Arsenic toxicity

As is a natural component of the earth’s crust, which is widely distributed in
the environment throughout water and land. As is very toxic in inorganic form, which
mostly in Arsenate and Arsenide from. People are exposed to inorganic As in many
several ways such as: through drinking contaminated water, using as food preparation
and irrigation of crops, eating contaminated food, and industrial process. Long-term
exposure to inorganic As, mainly through drinking-water and food, can lead to
chronic symptoms such as Skin lesions and skin cancer. As in from of inorganic is a
confirmed as a carcinogen and significant contaminant in drinking-water in
worldwide. As can also occur in an organic form. Inorganic As compounds are highly

toxic while organic As compounds are less harmful to health.

Acute effects: The symptoms of acute As poisoning include abdominal pain,
vomiting, and diarrhea. These are usually followed by tingling, numbness, and muscle
cramping, and death (WHO 2018).

Long-term effects: Skin cancer is the first symptom, which usually is observed

in long-term exposure with high levels of inorganic As case. Following by
pigmentation changes and skin lesions (hyperkeratosis). These might be occurred with
a minimum exposure of five years with As poisoning (WHO 2018). As contamination
in drinking water is globally and there are several numbers regions where As
contamination in drinking water is very significant. In currently circumstance is

recognized that at least 140 million people in 50 countries have been consuming
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contaminated water, which As is above 10 pg/L that excess the WHO provisional

guideline value.

2.2.2 Arsenic sources and behavior

2.2.2.1 Arsenic source

Arsenic is a common element that occurs in the environment. Generally, As
can find in igneous and sediment rocks, where it is a higher level in fine-grained
sediment and marine sediment (Naidu and Bhattacharya 2009). The arsenic
compound in rock can enter As groundwater system mainly through the weathering
process (Maity, Kar et al. 2011). As species in groundwater is linked to As occurring
in mineral, soil, and water phases. There are many minerals that As rich mineral,
including olivenite (Cu2OHAsSO.), proustite (AgsAsSs), orpiment (As2Ss3), realgar
(AssSs), and tennantite (Cus[Cuas(Fe,Zn)2]AssS13), cobaltite (CoAsS), enargite
(CusAsSy), arsenolite (As203), and FeAsS (Francesconi et al., 2002). Soil also
consider potential As sources, because As is more highly concentrated in soils than
rock (Meharg and Rahman 2003). Generally, the most As toxic form in the soil is
usually found in inorganic form. The average concentration in soil of As around 3 to 4
mg/L (Mukherjee, Bhattacharya et al. 2009). Alluvial and organic soil types contained
higher As concentration, exceed the standard level (Smith, Naidu et al. 2001). An As
source in water is usually found in low concentration. Arsenate As(lIl) and arsenide
As(V), also are the most abundant As species in water. A redox potential, presence of
adsorbents, humid substances, pH, dissolved organic matter, and clay minerals are the

factors that affected the As in natural water (Bissen and Frimmel 2003).
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2.2.2.2Mechanisms of Arsenic Release to Groundwater

The release mechanisms of As to groundwater is related to aquifer and
sediment. Normally, the As concentration is very low and varies around 1-2 mg/L
(Taylor and Mclennan 1985). However, with four major geochemical processes such
as reductive dissolution, alkali desorption, sulfide oxidation, and geothermal
processes (Figure 6), additional As concentration can release into groundwater. The
reductive dissolution process is a common geochemical process that releases
additional As from aquifer sediments into the aqueous system (Bauer and Blodau
2006). Iron hydroxides Fe(OH)z are the main component associated with this reaction.
It is affected in high pH conditions, the desorption process becomes stronger, leading
to high levels of As in groundwaters (Welch, Westjohn et al. 2000). Alkaline
desorption usually occurs, where pH is high and low oxygen and leads to be an
anaerobic environment. It directly affects the release of As in groundwater by
changing the subsurface environment to a reduction condition (Sanjrani et al., 2019).
The oxidation of As sulfides is a source of As and. Sulfide oxidation minerals can
release As in the aquifer. The Oxidation of As-bearing sulfides is recognized as an
important cause of As contamination in groundwater and produce producing of acid
drainage, containing toxic inorganic pollution (Nriagu, Bhattacharya et al. 2007).

Geothermal is also the main geochemical process that triggers the As release process
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in groundwater and mobile it to cold aquifers (Bundschuh and Maity 2015).

Geological environment and occurring countries
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Figure 6 Natural geochemical processes that release As into groundwater (Herath,

Vithanage et al. 2016)
2.2.2.3 Redox condition

The redox reaction is the chemical reaction that important for As distribution
in the environment including groundwater. Reduction and oxidation reaction can
provide different conditions in the groundwater and can affect As mobilizing as
shown in Figure 7. Reduction condition usually occurs in less oxygen environment for
example in alluvial, deltaic sediments aquifer and also fine-grain sediment aquifer.
Thus, created an anaerobic environmental condition. As adsorbed, which play an
important role of As mobilizing, is affected by reduction condition. Some anaerobic
bacteria and dissolved organic carbon (DOC) also play a crucial role to an As
mobilizing in groundwater with a reduction condition by dissolved As absorbents
(Cummings, Caccavo et al. 1999). Therefore, The reducing reactions under anaerobic

conditions can cause a result of As concentrations in groundwaters going higher
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(Ahmed, Bhattacharya et al. 2004). Oxidation reaction occurs in the environment,
where has a high ration of oxygen. In this condition arsenite As(lll) is unstable; thus,
it will be oxidized to arsenate As(V). However, this process is very slow if it has only
oxygen to process. Therefore, ferric iron Fe(lll), manganese oxides MnO, clay
minerals, and some microorganisms have to play the vital role to intensively increase
the rate of As(lll) oxidation converting into the less toxic As(V) form this reaction is
thermodynamically feasible over a wide range of pH values (Scott and Morgan 1995).
Moreover, clay minerals and some microorganisms, including Pseudomonas
arsenitoxidans, Alcaligenes faecalis, Cenibacterium arsenoxidans, Thermus sp.,
Thermus thermophilus, and Agrobacterium tumefaciens, also can oxidize As(l11) (Lin

and Puls 2000, Valenzuela, Campos et al. 2009).

Reducing Conditions As(Y)
Anaerobic
In minerals in aquifer
Sediments Adsorption
Organic Carbon T
Metal oxides
Anaerobic Aerobic
bacteria bacteria
I arid/'semi-arid areas
As-bearing Fe(OH), Mn0,, Fe(OH), Al.O,
) Clay minerals
Redwuctive dissolution Oxidizing Conditions
Aerobic
As(II)

Figure 7 Illustration of the mechanisms of mobilization and redox transformation of
As in aquifer sediments (Herath, Vithanage et al. 2016)



16

2.3 Machine learning

2.3.1 RF (Random forest)

Random forest algorithm is a modification of bagging that built a large
collection of decision trees and average them. Therefore, random forests are popular
and are implemented in a variety of packages (Breiman 2001). The bagging can
demonstrate, given a train set X= X1, ..., Xn with dependent Y=Y, ..., Yn, bagging
repeat (A times) selected a random data from the training set and fits trees as this

sample: a=1, ..., A:

1. Ample, with replacement, n training, X, Y; will be Xa, Ya.
2. Train a classification or regression tree f. on Xa, Ya.
After training, predictions for samples, the prediction from all the individual

regression trees on X' can be averaging as an equation 1
f=%2_,fa(X') —-mmmmmmmmmmmm e Eq. 1

This process can lead to better model performance, because it decreases the number of
variances in the model, and didn’t increase the bias. This means using a single tree is
highly sensitive to noise and error, however, the average of many trees is minimum
noise and error. Simply training many trees on a single training set would give
strongly correlated. Moreover, to estimate the uncertainty of the prediction results, the
predictions from all the individual regression trees on x' can be made as a standard

deviation as an equation 2.

A-1

o= J e Eq. 2
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A is an optimal number of free parameters. Generally, multiple trees are used,
depending on the size and nature of the training set. Using cross-validation or
observing the out-of-bag error can be found an optimal number of trees A. The

training and test error tends to level off after some number of trees have been fit.

2.3.2 SVM (Support vector machine)

Support vector machine (SVM) is one of the most usually used algorithms for
prediction methods based on risk evaluation and classification (Evgeniou, Pontil et al.
2000). The SVM can simplify formulation is the linear equation as equation 3, where

the hyperplane lies on the space of the input data x.

f(X) = W-X +D.-==-—---m oo Eq. 3

In their general formula of SVM, a hyperplane is a feature space induced by a
kernel K (the kernel defines a dot product in that space. The hypothesis space of the
kernel K is defined as a set of “hyperplanes” in feature space. This can be also set of
Reproducing kernel Hilbert space (RKHS). Also, SVM is a subset of hyperplanes,

which can be formally written as Eq. 4

(f:|f|2>00)- Eq. 4

Where K is the kernel, and [f|_k”2 is the RKHS norm of the function (Wahba,

1990). For example, for the linear case mentioned above, K is the kernel K(x,, X,) =

X;-X,, the functions considered are of the form f(x) = w-x + b, and the RKHS norm of
these functions is simply the norm of w, namely [f|%=/w[In fact SVM consider

subsets of this space can be written as Eq. 5

(FiIf|Z>AZ) rommmmrmmemeemece e Eq.5
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The goal of SVM is to find the solution with the "optimal" RKHS norm, that is, to

find the optimal A. This SVM search for the optimal A has been discussed in the
literature (Evgeniou, Pontil et al. 2000). SVM is learning machine algorithms that
minimize the empirical error while taking into account the complexity of the
hypothesis space used by minimizing the RKHS norm of the |f|2. SVM in practice

minimizes a tradeoff between empirical error and complexity of hypothesis space.

SVM classification

Min (2 +CEley 11— yf () | -—mmr- Eq.6

SVM regression

Min [f[2+CEiy [y = f() | -ereeee Eq.7

C is called "regularization parameter"”, which controls the tradeoff between

empirical error and complexity of the hypothesis space.

2.3.3 ANN (Artificial neural network)

Acrtificial Neural Network is a computing system inspired by a biological
neural network that constitutes an animal brain (Gupta, Akinola et al. 2019). Such
systems “learn” to perform tasks by considering examples, generally without being
programmed with any task-specific rules. The Neural Network is constructed from 3
types of layers: An input layer, Hidden layers, and Output layer, which produce the

result for given inputs, as shown in Figure 8.
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Figure 8 DNN diagram
The 3 yellow circles on the image above. They represent the input layer and usually

are noted as vector X. There are 4 blue and 4 green circles that represent the hidden
layers. These circles represent the “activation” nodes and usually are noted as W or 6.
The red circle is the output layer or the predicted value. Each node is connected with
each node from the next layer and each connection has a particular weight. Weight

can be seen as the impact that that node has on the node from the next layer.

2.3.4 Summarize all algorithms

Every model generating algorithm, such as RF, SVM, and ANN has its
advantage and disadvantage points as shown in Table 2. Random Forest (RF) is very
fast and has satisfactory results with the limited data set (Havryliuk, Korol et al.
2018). However, there are many disadvantages of RF algorithms, e.g. for very large
data sets, the size of the trees can take up a lot of memories. Thus, this algorithm
needs a lot of computation resources for calculation. Moreover, this algorithm tends to
overfit the data, so the model can’t analyze a new data set (Kho 2018). Support vector

machine (SVM) is good to classify data and trends to be resistant to overfitting
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problems (K 2019). Nevertheless, SVM still has some disadvantages such as it does
not perform very well when the data set has more noises i.e., target classes are
overlapping. In case the number of features for each data point exceeds the number of
the training data sample, the SVM will underperform (K 2019). Artificial neural
networks (ANN) can learn and model complex and non-linear relationships, which
very crucial, many of the relationships between inputs and outputs are non-linear and
complex. Moreover, ANN can infer and analyze the unseen relationships between
data (Mahanta 2017). A disadvantage of ANN is the unexplained behavior of the
network: when ANN produces a probing solution, it does not give a clue as to why
and how (Mijwil 2018). All three algorithms are suitable to handle a large amount of

data, which have many variables to analyze and predict the model.

Table 2 Summarize the advantage and disadvantage of RF, SVM, ANN

RF SVM ANN
Advantages e Fast process e Resist e Learning ability
e  Work well overfitting e Analyze unseen
with limited relationships
data
Disadvantages e Usea lot of ¢ Not perform e Unexpected
computation well with behavior of the
resource noising data network
e Trended to e Not work e Overfitting
overfitting with data
that has
variable
more than
the sample

2.4 Risk and probability occurred maps

2.4.1 Probability map

A probability occurred map is a map that defines the probability distribution of

occurred event. The distribution of occurred events bases on the probability level can
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be arranged as shown in Table 3. The probability level starts from 0 to 1 or 0-100%,
when the probability level enhances the chance of the event to occur will increase as
well. Many researchers used a probability to show the risk assessment in groundwater
to clearly understand the distribution of a pollutant (Winkel, Berg et al. 2008, Sajedi

Hosseini, Malekian et al. 2018).

Table 3 The occurrence of the event based on probability level (Garvey 2001)
Probability of Occurrence

0-10% or | Very unlikely to occur

11-40% | or | Unlikely to occur

41-60% | or | May occur about half of the time

61-90% | or | Likely to occur
91 - 100% | or | Very likely to occur

2.4.2 Risk map

Generally, a risk map is also known as a data map visualization tool for
communicating specific risks. A risk map helps a decision maker identify and
prioritize the risks associated with their concerning topic. Risk pollution occurred map
in groundwater is widely used in groundwater contamination assessment to determine
and recognize areas that are more trended to contaminate than others (Winkel, Berg et
al. 2008, Sajedi Hosseini, Malekian et al. 2018).

2.5 Spearman’s correlation

Spearman'’s rank-order correlation is the nonparametric version of the Pearson
product-moment correlation. Spearman's correlation coefficient, (p, also signified by
rs) measures the strength and direction of the association between two ranked
variables. Spearman's correlation determines the strength and direction of the
monotonic relationship between your two variables rather than the strength and
direction of the linear relationship between your two variables, which is what

Pearson's correlation determines. A monotonic relationship is a relationship that does
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one of the following: (1) as the value of one variable increases, so does the value of
the other variable; or (2) as the value of one variable increases, the other variable
value decreases. Examples of monotonic and non-monotonic relationships are

presented in the diagram below:

Monotonic Monotonic Mon-Monaotonic

Figure 9 monotonic and non-monotonic relationships diagrams
There are two methods to calculate Spearman's correlation depending on

whether: (1) your data does not have tied ranks or (2) your data has tied ranks. The

formula for when there are no tied ranks is:

_q_ 6x4f
p= 1 n(n2-1) Eq. 8

where di = difference in paired ranks and n = number of cases. The formula to

use when there are tied ranks is:

0= 2ilxi—=x)(yi—=y)
VZilxi—x)2 %i(i-y)

where i = paired score. The Spearman correlation coefficient, rs, can take

values from +1 to -1. A rsof +1 indicates a perfect association of ranks, a rs of zero
indicates no association between ranks and arsof -1 indicates a perfect negative
association of ranks. The closer rs is to zero, the weaker the association between the
ranks. It is important to realize that statistical significance does not indicate the

strength of Spearman'’s correlation. The statistical significance testing of the Spearman
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correlation does not provide you with any information about the strength of the
relationship. Thus, achieving a value of p = 0.001, for example, does not mean that
the relationship is stronger than if you achieved a value of p = 0.04. This is because
the significance test is investigating whether you can reject or fail to reject the null
hypothesis. If you set a = 0.05, achieving a statistically significant Spearman rank-
order correlation means that you can be sure that there is less than a 5% chance that
the strength of the relationship you found (your p coefficient) happened by chance if

the null hypothesis were true (Laerd 2018).

2.6 IDW

Interpolation is a method to predict an unknown from known values. From the
definition, we need some known values to do an interpolation using any interpolation
method. The known values which are commonly called sampling points can be
gathered from some measurements and site investigations like drilling, surveying, etc.
Using the known value from some locations, we are trying to predict the value of
other neighborhood location that is close to the known location. There are many
interpolation methods available including Inverse Distance Weighting (IDW). Inverse
Distance Weighted interpolation is a deterministic spatial interpolation approach to
estimate an unknown value at a location using some known values with corresponding
weighted values. The basic IDW interpolation formula can be seen in equation 10.
Where x* is the unknown value at a location to be determined, w is the weight, and x
is the known point value. The weight is the inverse distance of a point to each known
point value that is used in the calculation. Simply the weight can be calculated using

equation 11.
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Figure 10 gives an illustration of how the IDW interpolation works. As can be
seen in the figure, a value at position x will be determined from sampling points 1, 2,
and 3, with the distances to x point, are d1x, d2x, and d3x. Using equation 11, each
respective weight will be calculated and then the value at position x will be

determined using equation 10 (Geomatics 2019).
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Figure 10 Inverse Distance Weight (IDW) Interpolation

2.7 Quartile regression

Usually, the studies to evaluated models' performance are mostly evaluated the
prediction performance of the model and disregarded models' uncertainties. It is well
known that uncertainty is inherent in modeling (Solomatine and Shrestha 2009), thus
it is crucial to report the uncertainty of the model to make it transparent in decision-
support tools (Uusitalo, Lehikoinen et al. 2015). To evaluate the uncertainty of the

models, commonly using prediction intervals. One way of generating the prediction
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interval is through quantile regression. As opposed to linear regression which needs to
estimate the conditional mean of the response variable given certain values of the
predictor variables, quantile regression aims at estimating conditional quantiles
(typically, median) of the response variable. quantile regression is not limited to just
finding the median, but can calculate any quantile (percentage) for a particular value

in the feature’s variables. the quantile regression model equation for the T quantile is
Q:(yi) = Bo(D) + P1(Ox; .. AP (Dxjp L = 1, .0, 1 =mmmmmmmmmem Eq.12

To create a prediction interval, we can now use other gquantile values. For
example, in the image below we have 0.9 77and 0.023 percentiles (Figure 11). This
gives a prediction interval with a 0.95 probability of having the true value within its

bounds.

— =0.023

T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

Figure 11 Predictions for quantiles
There are several statistical measures of uncertainty such as mean prediction interval

( MPI1) and prediction interval coverage probability ( PICP), which were used as

suggested by Shrestha and Solomatine (Shrestha and Solomatine 2006). MPI is the
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average of the widths of the prediction intervals, where the lower values of MPI
indicate lower uncertainty. The best method MPI and PICP values are calculated as:
MPI =~ S0 (PL{PPET — PLIOWET) cemmnee Eq. 13

PICP = ~¥%,C,C = (1, PLIPYe" <y, < PL{PP", 0, otherwise ) -------- Eq. 14
where yt is the observed value, PLYW" and PL;FP*"are lower and upper prediction
limits respectively. The PICP is the more important measurement of uncertainty as it
indicates the number of observations that fall within the estimated interval (Dogulu et
al., 2015). Therefore, MPI is used as a supplementary metric: between models with
similar PICP values, the one with a lower MPI is regarded as the better model

(Muthusamy, Godiksen et al. 2016).
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Chapter 3 Methodology

3.1 Framework of research

The overall framework of this study is shown in Figure 12. The preparing data
process was conducted by collecting data such as groundwater chemical data, Soil
type, land use, geologic, aquifer, etc. from various departments. The data were
categorized as deep and shallow aquifers. The arsenic concentration parameter was
classified by standard arsenic in drinking water to using them in the modeling process.
Other parameters were screened by spearman’s correlation technique to screen out
unnecessary parameters. In the modeling process, the spatial modeling uses a different
algorithm to generate different probability models such as Support vector machine
(SVM), Random Forest (RF), and Artificial neural networks (ANNs) these models

will produce a probability map that can locate the As potential area.

The probability map will be compared with each other in the validation process. There
are three aspects that we used in the validation process to measure the models such as
prediction performance, uncertainty evaluation, and Validation with field data. The
best probability map was classified between risk and non-risk areas by the Cut-off
value technique. Then, the map was calculated with the population density and water

consumption data in the study area to generate the risk maps.
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Figure 12 Framework of the present study
3.2 Data preparation and field-collected data

3.2.1 Data preparation

The data were collected from various government departments such as the
Department of mineral and resource (DMR), Department of Groundwater Resources
(DGR), and Land Development Department (LDD). These data can be classified into
two groups physical and hadrochemical data. The period of hydrochemical data was
collected around 2011-2012, 2017-2018, and 2019 in dry and rainy seasons around
the study area (DMR 2007, DGR 2012, LDD 2016, DGR 2017). The missing data of
each hydrochemical parameters are replaced with limit detection of the measure tool.
The purpose of the study want the risk map to do not confuse the user, so we attempt
to merge data from dry and rainy seasons every year together. Thus, this will make
the risk map simply to use and increase the number of data to generate a model, which

increases the performance of the model.
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3.2.1.1 Physical data

The physical data were collected from various government departments and
the form of the data categorized as raster data, which ready to use in the modeling
process. The data combined with various aspects such as geological characteristics,
soil properties, soil texture, aquifer characteristics, groundwater level. The date of

these data is not over 10 years as shown in Table 4.

Table 4 Source of physical data

Data Data source Year
Geological characteristics | Ministry of Natural 2015
Resources
Soil properties Land Development 2011
Department
Aquifer characteristics Department of 2017
Groundwater Resources
Land use Land Development 2015
Department
Elevation USGS 2019
Population density National Statistical Office 2019
Groundwater consumption | Department of 2019
Groundwater Resources

3.2.1.2 Hydrochemical data

Hydrochemical data is collected from the Department of Groundwater
Resources (DGR) and categorize as the point data that aren’t ready to use in the
modeling process. Hydrochemical data, including a concentration of Calcium (Ca),
Magnesium (Mg), Sodium (Na), Potassium(K), Iron (Fe), Chloride (Cl), Fluoride(F"),
Carbonate (CO3%), Bicarbonate (HCOs?), Sulfate (SO4%), Nitrate (NOs), Phosphate
(POys), Cadmium (Cd), Chromium (Cr®*), Copper (Cu), Mercury (Hg), Manganese

(Mn), Nickel(Ni), Lead(Pb), Selenium(Se), Zine(Zn), and other hydrochemical
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parameters, such as Electrical Conductivity(EC), Temperature, pH, Total dissolved

solids (TDS) and Total hardness (TTH).

3.2.2 Field collected data

The field data were collected during 31 August — 1 September 2019 from
twenty-seventh wells around the Rayong groundwater basin shown in Figure 13 and
Table 5. The collecting methods will follow the groundwater sampling guidelines for

Superfund and RCRA Project Managers (USEPA 2002).

Sampling map

[:] Basin
Sampling well

® Deepwell

©® shallow well

Hydrogeologic

[ ] Permian lime stone (Pl)

I Granite(Gr)

I Quaternary alluvium (Qa)
I Quaternary colluvium (Qc)
{71 PC metasedimentary (PCms)

Reference: Department of
Groundwater Resources,
Thailand (20171

Figure 13 Groundwater sampling map



Table 5 Groundwater sampling aquifer

. . Well Aquifer
No Name Latitude Longitude type
1| G10 | -12°-41'-46.748"S | -101°-17'-54.635" W Deep Gr
2| G7 -12°-45'-19.991" S | -101°-18'-42.622" W Deep Gr
3| G8 -12°-44'-20.841" S | -101°-16'-55.013" W Deep Gr
4| G9 -12°-42'-56.31"S | -101°-19'-22.872" W Deep Gr
5|J11 -12°-58'-20.979" S | -101°-22' -54.267" W Deep Gr
6|J2 -13°-1'-46.882" S | -101°-6'-19.05" W Deep Gr
7133 -12°-56'-50.222" S | -101°-2'-11.284" W Deep Gr
8|J4 -13°-4'-32.647"S | -101°-16'-9.835" W Deep Gr
9J8 -12°-50'-37.698" S | -101°-9'-26.373" W Deep Gr
18 | G3 -12°-50'-34.81"S | -101°-18'-50.928" W Deep Gr
19 ] J10 -12°-54'-5.369" S | -101° -14'-49.394" W Deep Gr
20 | J6 -12°-46'-21.475" S | -101°-1'-28.79" W Deep Gr
21 | )7 -12°-49'-57.246" S | -101°-5'-18.295" W Deep Gr
10 | J1 -12°-41'-46.748" S | -101°-17'-54.635" W | Shallow Qa
11 | G1 -12°-54'-2.419" S -101°-22'-24.755" W | Shallow Qcl
12 | G11 | -12°-39'-41.817"S | -101°-17'-44.834" W | Shallow Qcl
13| G12 | -12°-39'-58.382"S | -101°-15'-0.359" W Shallow Qcl
14 | G13 -12°-40'-7.653" S -101°-14' -56.597" W | Shallow Qcl
15 | G14 -12°-40'-18.213" S | -101°-14'-54.271" W | Shallow Qcl
16 | G15 | -12°-40'-48.242"S | -101°-10'-8.196" W Shallow Qcl
17| G2 -12°-53'-2.933"S | -101°-18'-53.016" W | Shallow Qcl
22 | J13 -12°-40'-40.22" S | -101°-22'-17.722" W | Shallow Qa
23 |J14 -12°-41'-42.018" S | -101°-11'-59.16" W Shallow Qa
24 | G17 | -12°-44'-52.257" S | -101°-10'-53.785" W | Shallow Qcl
25 | G19 | -12°-46'-21.952"S | -101°-6'-53.877" W Shallow Qcl
26 | G4 -12°-49'-12.899" S | -101°-17'-14.244" W | Shallow Qcl
27 |1 J9 -12°-51'-12.963" S | -101°-14'-17.753" W | Shallow Qcl
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3.2.2.1 Data measuring in the field

Groundwater level

All groundwater levels will be measured from the reference point by the use of

a weighted steel tape and chalk or an electric tape (USEPA 2002).

Hydrochemical parameters measured on-site

Hydrochemical parameters, consisting of EC, ORP, Temperature, pH, will be

measured on-site by a multi-parameter meter (USEPA 2002).
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3.2.2.2 Total arsenic analysis

The collecting methods are according to Ground-Water Sampling Guidelines
for Superfund and The Resource Conservation and Recovery Act (RCRA) Project
Managers (USEPA 2002). The collected samples will be fixed by HCl(con) 1 cc. and
contained under 4°C. Then the samples will be sent to the UAE laboratory to analyst
the amount of total arsenic in water samples by the Hydride Generation AAS

technique with a detection limit of 0.3 pg/L.

3.3 Arsenic contamination probability map

3.3.1 Framework of the arsenic contamination probability map

The dataset will be divided into arsenic concentration and other parameters.
The Arsenic concentration will use to conduct the probability model. On the other
hand, other parameters will be screen by Spearman’s correlation method to eliminate
unnecessary parameters, separately between shallow and deep aquifers. After that, the
selected parameters will be interpolated by Inverse Distance Weight (IDW)
interpolation process that was used to create the arsenic probability map as shown in

Figure 14,
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Figure 14 Framework of constructing the probability map of As

3.3.2 Spearman’s correlation
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Nonparametric Spearman's rank correlation was calculated using the SPSS

software to study the monotonic relationships between arsenic and physical

parameters and hadrochemical parameter, to draw inferences about mechanisms of

arsenic release. A correlation was considered significant when the correlation

coefficient (rs) excess 0.1.

3.3.3 IDW interpolation

To make the points data (Hydrochemical parameter) ready to use in the

modeling process, the data will be interpreted from point data to raster data by using

the IDW interpolation package in R-studio software. IDW interpolation is the

interpretation process that usually use to generate raster data. It can generate the point

data (concentration) into area data (concentration area) by averaging the point data.
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3.3.4 Model probability

The framework of model probability was showed in Figure 15. Star with,
Arsenic concentrations parameter which obtained from the dataset was be used to
provide a groundwater probability map in the Rayong groundwater basin. According
to the World health organization, a threshold of arsenic (10 ug/l) was to be used to
classify the polluted and non-polluted wells. Groundwater wells were classified into 2
types as follows: the polluted type when arsenic concentration is above 10 ug/l, and
the non-polluted type when arsenic concentration is below 10 ug/l. After that, the
datasets were randomly divided into a training dataset (70% of the dataset) and a
testing dataset (30% of the dataset). The training set will be used to provide the
probability models along with three algorithms, consisting of SVM, RF, and ANN
through coding by SDM package in R-studio software (Naimi and Aradjo 2016). The
probability models had measured their performance. If their performance is above
60% of the area under the curve (AUC), the model will be acceptable. In contrast, if
the model performance is below 60% of AUC, the model had to be calibrated and
provide the new models until it reaches 60% AUC (Havryliuk, Korol et al. 2018).
When finishing the model, the arsenic probability map will be generated using the
data from IDW interpolation using the SDM package in R-studio software (Naimi and

Araujo 2016).
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Figure 15 Framework of constructing the probability model of As

3.4 Probability map validation

3.4.1 Evaluating prediction performance

To measure the performance of the model, the models were validated with
30% of cases that were not used for training. Model accuracy was evaluated using an
area under curve (AUC) and Root mean square (RMSE). The Receiver operating
characteristic (ROC) is a probability curve to measurement a model’s performance for
classification problems at various threshold settings. It uses area under curve (AUC)
representing a degree or measure of separability. It tells how much the model is
capable of distinguishing between classes (Narkhede 2018). Moreover, a graphical
comparison was conducted using Taylor diagrams (Taylor 2001), which enable
visualization of the models' performances using correlation coefficients, RMSE, and

standard deviations (SD) (Choubin, Malekian et al. 2017).
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3.4.2 Evaluate models uncertainty

To make sure the models are work properly and reliably, the quantile
regression (QR) was used to assess the predictive uncertainty of the models. These
methods evaluate the model residuals and consider all sources of uncertainty, which is
in contrast to the classic methods (such as Monte Carlo-based methods) in which the
estimate usually regards only one source of uncertainty (Solomatine and Shrestha

2009).

3.4.3 Validation with field data

To evaluate the performance of models, The As concentration collected in the
field were used to compare between the actual value and prediction value from

probability map in each model using Root mean square as a measurement indicator.

3.5 Groundwater pollution risk map

3.5.1 Probability cutoff value

The best model selected through comparing every model using prediction
performance and uncertainty to select them was used to create the risk map. But,
before the probability map can be used to create the risk map. It had to classify by cut-
off value first. The cutoff value was calculated through the Caret package in R-studio
software. The cutoff value was used to determine the risk area and non-risk area in the
probability map (Bindal and Singh 2019). The cut-off value was used to classify
between Arsenic probability risk area and non-risk area in the probability map. When
Arsenic probability greater than the cutoff value the area will be classified as the risk
area. In contrast, when the area had a probability below the cutoff value, this area will

be classified as a non-risk area (Winkel, Berg et al. 2008).
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3.5.2 Risk map for As
After producing the probability map which already classifies by cut-off value.

The risk map was created by using Qgis software using data of population density and

water consumption in Rayong groundwater basin base on equation 13. The population

density data derived from The Bureau Of Registration Administration in 2020 (BRA

2020) and the water consumption came from the Department of Groundwater resource

2020 (DGR 2020). The water consumption data created by using the pumping rate of
groundwater well selected the well that used in domestic and agricultural use. The
pumping rate from the selected wells was normalized in the range from 0-1, and the
interpolation was carried out with the IDW technique to generate water consumption

map.
Risk = Probability map x Population density x Water consumption ----------- Eq. 13

The unit of As risk map is the people who use groundwater that might expose
to As per square kilometer. To make them more simple, the map unit will be
classified into five risk levels such as Very High, High, Moderate, Low, and Very low

using equal interval mode to classify (Bindal and Singh 2019).
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Chapter 4 Results

4.1 Groundwater wells data
The groundwater quality parameters were obtained from the Department of

Groundwater Resources (DGR). The secondary data was separated into 2 datasets
consisting of a deep well and shallow well groups, which represented hydrochemical
data in the deep aquifer and the shallow aquifer. The descriptive statistics of
groundwater quality parameters in the deep aquifer were shown in Table 6. There are
twenty-four hydrochemical parameters.

Generally, according to the field measurement parameters, pH ranged from
4.10 t08.30 with an average of 6.93 indicating groundwater was slightly acidic. The
electrical conductivity (EC) values ranged from 0.0 to 31,000 ps/cm, with an average
of 754.36 ps/cm. Similarly, the total dissolved solids (TDS) values were 12.26-
19855.00 mg/l. Lastly, total hardness values were in the range of 3-7,100 mg/l, with
an average value of 309.27 mg/I.

Generally, Ca and Mg range from 0.10-1400 mg/l and 0-1,100 mg/I,
respectively. Na and Cl had range from 0.01-6,000 mg/l and 1.5-1,1000 mg/I
similarly with K and Fe with range between 0.87-240 mg/l and 0.01-270 mg/I
respectively. In addition, for other anions, F, HCO3, SO4, NOs also had range from
0.01-16.60 mg/l, 1-494 mg/l, 0.1-2800 mg/l and 0.01-80.6 mg/l, respectively. Arsenic
was in the range between 0.30-280 g/l with an average of 13.85 pg/l, which is higher
than the groundwater drinking standard the other heavy metals in the deep aquifer had
a wide range concentration. For example, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, Zn had
ranges from 0.4-1.5 pg/l, 2.40-20 pg/l, 3-400 pg/l, 0.1-10 pg/l, 5-22000 pg/l, 1-30

pa/l, 0.70-27.7 pg/l, 0.3-160 pg/l, and 5-150000 pg/l respectively.
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The metals which were detected to be higher than groundwater standard was Hg, Mn,
Ni, Pb, Se, and Zn.

The descriptive statistics of groundwater quality parameters in the shallow
aquifer shown in Table 7. According to the field measurement parameters, pH ranged
from 3.10-8.30 with an average of 6.77, indicating more slightly acidic than that in the
deep aquifer. The electrical conductivity (EC) values ranged from 2.28 to 44,400
ps/cm, with an average of 1644.5 ps/cm. Besides, TDS values were in the range of
13-27,600 mg/l. Lastly, TDS ranged from 1-6,600 mg/l with average value 277.83
mg/l.

Similar to those parameters in the deep aquifer, Ca and Mg were in the range
of 0.05-620 mg/l and 0-1,400 mg/l respectively. Na and Cl had a range from 0.005-7
7,000 mg/l and 0.20-13,166 mg/l, which was similar to K and Fe with a range
between 0.01-710 mg/l and 0-70 mg/l respectively. In addition, for other anions, F,
HCO3s, SO4, NO3 also had widely range from 0.01-11.20, 0-5,700, 0.1-1,800, and
0.01-240 mg/l, respectively.

Arsenic was in the range of 0.3-500 pg/l with an average of 12.85 pg/l, which
was higher than the groundwater drinking standard. The other heavy metals in the
shallow aquifer had a wide range of concentrations. Cadmium, Cr, Cu, Hg, Mn, Ni,
Pb, Se, Zn had a wide range from 0.4-0.6 pg/l, 2.40-40 pg/l, 3-500 pg/l, 0.1-700 pg/l,
5-18000 pg/l, 1-180 pg/l, 0.70-60 pg/l, 0.3-160 ug/l, and 5-1900 pg/l respectively.
The metals which were detected to be higher than the groundwater standard was Cu,
Mn, Ni, Pb, and Se.

To know the distribution of data, Skewness and Kurtosis measurement were

used to describe groundwater quality parameters. In particular, groundwater quality
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parameters in the deep aquifer were explained by normal distribution were just only
pH, HCOg, Cr, and Ni with Skewness and Kurtosis -0.89/2.25, 0.29/-0.74, -0.53/1.37,
1.90/5.13 respectively. As compared to those in the deep aquifer, groundwater quality
parameters in the shallow aquifer which close to be normal distribution were only pH
and Cr with Skewness and Kurtosis around -0.89/2.25, 1.90/5.13 respectively.

Table 6 Description statistics in the deep aquifer

Unit N Minimu Maximum Mean DeSvtida.tio Skewnes | Kurtosi Detec;io
m n S S n limit
EC “rsrfc 236 | 0.00 | 31000.00 | 754.36 | 2884.50 9.52 94.85 -
pH - |23 | 410 8.30 6.93 0.64 -0.89 2.25 1-14
TDS | mg/l | 236 | 12.60 | 19855.00 | 740.39 | 2640.95 6.52 43.49 5.00
E‘;trz' mg/l | 236 | 100.00 | 7100.00 | 309.27 | 917.80 5.79 34.75 | 100.00
Ca | mg/l | 236 | 0.10 1400.00 | 71.27 | 164.99 5.21 30.66 0.05
Mg | mg/l | 236 | 0.00 1100.00 | 25.38 | 105.42 7.44 61.41 0.00
Na | mgll | 236 | 0.01 6000.00 | 144.14 | 634.69 6.80 49.69 | 0.005
K | mg/ | 236 | 087 240.00 9.30 18.98 8.74 96.20 | 0.005
Fe | mgl | 236 | 0.01 270.00 3.30 18.19 13.62 | 198.73 | 0.005
Cl | mg/l | 236 | 150 | 11000.00 | 259.85 | 1329.45 7.08 50.97 0.2
F. | mon | 236 | o0.01 16.60 1.08 1.95 4.56 27.32 0.01
HSO mg/l | 236 | 1.00 494.00 | 175.87 | 105.05 0.29 -0.74 0
SOs | mg/l | 236 | 0.10 2800.00 | 6250 | 317.56 7.08 52.54 0.10
NOs | mg/l | 236 | 0.01 80.60 4.51 9.06 4.38 26.81 0.01
As | upgl | 236 | 0.30 280.00 | 13.85 | 34.56 5.87 37.72 0.30
cd | pgh | 236 | 0.40 1.50 0.40 0.07 15.36 | 236.00 | 0.40
crét | ugh | 236 10 20.00 8.58 3.42 -0.53 1.37 10
Cu | upgh | 236 | 3.00 400.00 7.08 29.36 10.97 | 139.18 | 3.00
Hg | ug/l | 236 | 0.10 10.00 0.16 0.64 15.27 | 234.08 | 0.10
Mn | pg/d | 236 | 5.00 | 22000.00 | 784.49 | 2239.41 6.73 53.86 5.00
Ni | pgll | 236 | 1.00 30.00 3.59 4.40 1.90 5.13 1.00
Pb | upgd | 236 | 0.70 21.70 1.37 2.67 5.08 28.65 0.70
Se | ugll | 236 | 030 160.00 2.14 11.32 12.15 | 163.98 | 0.30
zn | ugh | 236 | 500 | T°09000 | HSIT A4 g991 | 10447 | 500

*Bold characters using pg/l unit
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Table 7 Description statistics in the shallow aquifer

unit N Minimum | Maximum | Mean Desitgt.ion Skewness | Kurtosis Delti(rar?ittion
EC ps/cm 417 2.28 | 44400.00 | 1644.50 5470.32 5.14 27.59 -
pH - 417 3.10 8.30 6.77 0.81 -1.27 3.53 1-14
TDS mg/l 417 13.00 | 27600.00 | 1081.84 | 3537.66 4.99 25.75 5.00
;’g:gl mg/l 417 100.00 | 6600.00 | 277.83 753.74 5.11 28.24 100.00
Ca mg/l 417 0.05 620.00 49.41 88.08 4.10 18.21 0.05
Mg mg/l 417 0.00 | 1400.00 35.49 132.07 6.11 43.34 0.00
Na mg/l 417 0.005 | 7000.00 | 237.40 930.57 5.53 31.25 0.005
K mg/l 417 0.01 710.00 20.30 66.33 7.44 62.81 0.005
Fe mg/l 417 0.0005 70.00 3.64 9.10 4.29 22.02 0.005
Cl mg/l 417 0.20 | 13166.00 | 433.07 | 1741.68 5.37 30.00 0.2
F. mg/l 417 0.01 11.20 0.45 0.99 6.16 51.80 0.01
HCOs | mgyl 417 0.00 | 5700.00 | 180.75 356.96 10.37 | 143.88 0
SO4 mg/l 417 0.10 | 1800.00 77.16 254.08 4.79 23.31 0.10
NOs mg/l 417 0.01 240.00 12.48 27.56 4.88 30.33 0.01
As pg/l 417 0.30 500.00 12.85 41.81 7.97 77.05 0.30
Cd pg/l 417 0.40 0.60 0.40 0.01 20.42 417.00 0.40
Cré* ug/ | 417 2.40 40.00 8.79 3.71 1.58 16.43 10
Cu pg/l 417 3.00 500.00 14.51 38.30 6.10 62.71 3.00
Hg ug/l | 417 0.10 |  700.00 1.92 34.35 20.27 | 41277 0.10
Mn pg/l 417 5.00 | 18000.00 | 700.29 | 1483.19 5.58 49.26 5.00
Ni g/l 417 1.00 180.00 3.18 9.54 15.52 284.81 1.00
Pb pg/l 417 0.70 60.00 1.66 4.85 7.66 69.89 0.70
Se g/l 417 0.30 160.00 3.85 17.17 7.14 54.84 0.30
Zn ug/l 417 5.00 | 1900.00 66.14 159.11 8.11 85.59 5.00

*Bold characters using pg/l unit
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4.2 Field data

The results of field groundwater wells were as shown in Table 8. Ten
groundwater wells out of twenty-seven wells found total As concentrations exceeding
the standard of drinking water of 10 pg/l. Total As concentrations were in the range of

0.8-52.6 ug/l with an average value of 18.11 pg/l as shown in Table 9.

The in-situ measurement parameters were shown in Tables 8 and 9. The range
of pH was in the range of 3.41-7.79 with an average value of 6.83 indicating a slightly
acidic condition. Depth to groundwater table was in the range of 1.4-14.18 m. with an
average of 5.46 m. Furthermore, the EC value ranged from 78.1 to 32,000 ps/cm.
(average = 2677.35 ps/cm) and ORP was in the range between 1.40-288.4 mV

(average = 5.64 mV).

For total As concentration, the average total As concentrations of Gr, Qa, and
Qcl were 16.69, 27.5, and 17.19 pug/l, respectively, which were higher than the
groundwater drinking standard. The maximum total As concentration was found at
52.60 pg/l in the Qc aquifer, following by 44.40 and 34.40 pg/l in Gr and Qa,

respectively (Table 10).
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Table 9 Descriptive statistics of in-situ measured parameters and total As
concentration in groundwater during 31 August — 1 September 2019

Max Min Mean Std.
Water table (m.) 14.18 | 1.40 5.46 3.62
Temp.(C) 31.60 | 28.10 29.65 0.74
pH 7.79 | 341 6.83 0.96
ORP 288.40 | 140 5.64 3.73
EC 32000.00 | 78.10 | 2677.35 | 6400.63
As(ug/l) 52.60 | 0.80 18.11 15.83

Table 10 Descriptive statistics of total As concentrations in Gr, Qa, and Qcl aquifers
during 31 August — 1 September 2019

Std.
Max Min Mean | Deviation
Gr 44.40 1.30 | 16.69 14.35
Qa 34.40 20.60 | 27.50 6.90
Qc 52.60 0.80 | 17.19 17.91

4.3 Spearman’s correlation

In this study, Spearman's correlation was used to examine the correlation
between parameters. In the deep aquifer, hydrochemical parameters were correlated as
shown in Table 11. The significant correlations between total As with pH, TDS, Ca,
Mg, F and HCO3 at 0.01 level with positive correlation were at r=0.222, r=0.230,
r=0.170, r=0.171, r=0.183, r=0.291, respectively and shown a significant correlation

at 0.05 level with TTH, (r=0.165).

The hydrochemical parameters in the shallow aquifer were correlated at 0.01
level between total As and EC, pH, TDS, TTH (total hardness), Ca, Mg, Na, K, Fe,
Cl, F, HCO3, S04, NO3, Cr, Cu, Hg, Mn, Ni, Pb and Se with r=0.368,0.255, 0.385,
0.281, 0.253, 0.288, 0.420, 0.144, 0.450, 0.190, 0.375, 0.383, 0.159, -0.230, -0.292, -

0.230, 0.327, 0.415, 0.240, 0.155, 0.421, respectively. In the deep aquifer, the
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Spearmen’s correlation of physical parameters was correlated as shown in Table 13.
Furthermore, total As has a significant correlation with Granite (r=-0.172) at the 0.01
level, as well as correlated with DEM Forest, Sandy soil, Quaternary colluvium

aquifer at r=0.161, r=-0.145, r=-0.150 and r=0.155 at 0.05 level, respectively.

In shallow aquifer, the Spearmen’s correlation of physical parameters was
correlated as shown in Table 14. Total As had a significant correlation with Granite
(r=-0.172) at the 0.01 level, as well as correlated with DEM, Forest, Sandy soil,
Quaternary colluvium aquifer at r=0.161, r=-0.145, r=-0.150, and r=0.155 at 0.05
level, respectively. Total As had a significant correlation at 0.01 level with DEM,
Sandy soil, Clay soil, Granite, Qmc with r=-0.193, r=-0.127, r=0.143, r=0.206, r=-
0.152, respectively, and had a significant correlation at 0.05 level with sand,
Agricultural area (Field), and Quaternary colluvium at r=0.097, r=-0.124, r=-0.111,

respectively.

In conclusion, the parameters that meet a significant correlation both in 0.05
and 0.01 levels were selected as the selected parameters for further modeling process

as shown in Table 15.
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Table 15 Spearman’s correlation with physical and hydrochemical parameters in
both deep and shallow aquifers

Parameters Deep aquifer Shallow aquifer
Physical parameters DEM, Silt loam, Forest, DEM, Sandy loam, Silt
Quaternary, Granite loam, Clay loam,
Agricultural(fields), Gr, Qc,
Qmc
Chemical parameters EC, pH, TDS, TTH, EC, pH, TDS, TTH,
Ca, Mg, F, HCO3 Ca, Mg, Na, K, Fe, CI
F, HCO3, SO4, NO3,
Cd, Cr, Cu, Hg, Mn,
Ni, Pb, Se

4.4Probability map
The selected models including RF, SVM, ANN were used to generate a

probability map with the deep and shallow aquifers by the sdm and neutral net
packages in R-studio software. The probability map shows the probability area of
total As concentration exceeding the standard of drinking water (Figure 17). The
result of the probability map showed RF had fine distribution probability areas. Also,
the results of the SVM and ANN map had roughly probability distribution areas
compared to RF. To evaluate a high probability area, each probability map was

classified into 4 probability levels as follows: very high, high, moderates, and low.

For the deep aquifer, the SVM probability map showed district areas,
consisting of Si Racha, Bang Lamung, Pluak Daeng, Nikhom Phatthana, and Sattahip,
was classified in the very high probability area of 48.5%, 35.21%, 11.54%, 2.84%,
and 1.49%, respectively, as shown in Table 21. Moreover, other district areas such as
Ban Khai, Nong Yai, Ban Chang, Ban Bueng, and Mueng Rayong were classified in
the high-level areas with 12.82%, 4.0%, 3.97%, 3.69%, and 2.86%, respectively. The

RF probability map, in the deep aquifer, showed district areas, which are Pluak
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Daeng, Bang Lamung, and Si Racha in the very high-level probability areas of 40%,
40%, and 20%, respectively. Other district areas including Ban Khai, Nikhom
Phatthana, Ban Bueng, Mueang Rayong, Ban Chang were in the high-level areas of
29.76%, 9.01%, 4.14%, 0.23%, and 0.06%, respectively as shown in Table 22. Lastly,
Sattahip and Nong Yai districts were in the moderate level areas of 5.36% and 2.76%,
respectively. The ANN probability map in the deep aquifer of Mueang Rayonh, Si
Racha, Pluak Daeng, Bang Lamung, Nikhom Phatthana, Sattahip, Nong Yai, Ban
Chang, Ban Bueng, and Ban Khai districts was in very high-level areas of 21.06%,
17.9%, 17.69%, 12.5%, 11.4%, 5.56%, 4.04%, 3.84%, 2.98%, and 2.15%,

respectively as shown in Table 23.
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a)

ANN_DEEP
High: 1

Low:0 I

Figure 16 The probability map in the deep aquifer derived from a) RF, b) SVM, c)
ANN and the probability map in the shallow aquifer derived from d) RF, ) SVM and
f) ANN
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Table 16 Percentage probability of each district derived from SVM model in the deep

aquifer
Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 11.54 26.1 24.57 8.45
Mueang Rayong 0 2.86 22.47 43.51
Nong Yai 0 4.09 1.71 0
Ban Chang 0 3.97 9.69 3.44
Ban Khai 0 12.82 18.57 28.79
Sattahip 1.49 1.76 5.05 10.96
Si Racha 48.5 17.58 3.18 0
Ban Bueng 0 3.69 0.41 0
Nikhom Phatthana 2.87 10.19 11.93 4.29
Bang Lamung 35.21 16.29 1.54 0

Table 17 Percentage probability of each district derived from RF model in the deep

Tabl

deep

aquifer
Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 40 12.38 25.98 0
Mueang Rayong 0 0.23 22.02 0
Nong Yai 0 0 2.76 0
Ban Chang 0 0.06 8.96 0
Ban Khai 0 29.76 13.82 0
Sattahip 0 0 5.36 0
Si Racha 20 31.37 3.17 0
Ban Bueng 0 4,14 0.67 0
Nikhom Phatthana 0 9.01 10.99 0
Bang Lamung 40 12 5.55 0
e 18 Percentage probability of each district derived from ANN model in the
aquifer
Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 17.69 36.97 29.96 25.16
Mueang Rayong 21.06 24.51 30.66 15.65
Nong Yai 4.04 2.96 0.25 1.55
Ban Chang 3.84 16.3 11.23 8.27
Ban Khai 2.15 4.97 12.08 23.51
Sattahip 5.56 6.18 1.66 3.98
Si Racha 17.9 2.18 1.15 5.19
Ban Bueng 2.98 0 0.11 0.72
Nikhom Phatthana 11.4 3.94 8.58 10.5
Bang Lamung 12.5 1.57 4.24 4.67
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For the shallow aquifer, the SVM probability map consisting of Mueang
Rayong, Si Racha, and Nikhom Phatthana districts were classified in very high-level
areas of 57.69%, 38.46%, and 3.85%, respectively, as shown in Table 24. Other
districts including Sattahip, Ban Khai, Bang Lamung, and Pluak Deang were
categorized in the high-level area of 3.69%, 0.58%, 0.38%, and 0.37%, respectively.
Besides, Ban Chang, Nong Yai, and Ban Bueng districts were classified in the

moderate level of 8.42%, 2.08%, and 1.33%, respectively.

In Table 25, based on the RF probability map in the shallow aquifer, Mueang
Rayong, Si Racha, Pluak Deang, Nikhom Phatthana, Ban Khai, Bang Lamung were
defined as the very high-level area, which was of 31.62%, 30.65%, 12.67%, 12.41%,
6.33%, 6.33%, respectively. Furthermore, other areas including Ban Chang and Ban
Bueng were grouped in the high-level area of 0.38% and 0.16%, respectively. The
moderate level including Sattahip and Nong Yai districts is 5.08% and 2.18%,
respectively. The ANN probability map in the shallow aquifer was shown in Table 26,
which shows districts with the very high-level area consisting of Mueang Rayong,
Pluak Daeng, Ban Khai, Si Racha, Sattahip, Ban Chang, Bang Lamung, Nikhom
Phatthana, Nong Yai, and Ban Bueng districts of 25.81%, 20.37%, 16.26%, 10.66%,

6.79%, 5.09%, 4.87%, 4.44%, 3.1%, and 1.92%, respectively.
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Table 19 Percentage probability of each district derived from SVM model in the
shallow aquifer

Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 0 0.38 21.1 51.07
Mueang Rayong 57.69 83.35 15.65 14.43
Nong Yai 0 0 2.08 4.68
Ban Chang 0 0 8.42 0.27
Ban Khai 0 0.58 16.95 19.85
Sattahip 0 3.69 4.8 0.88
Si Racha 38.46 11.06 9.33 1.5
Ban Bueng 0 0 1.33 2
Nikhom Phatthana 3.85 0.37 11.94 2.87
Bang Lamung 0 0.37 7.58 2.3

Table 20 Percentage probability of each district derived from RF model in the
shallow aquifer

Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 12.67 2.16 26.16 37.74
Mueang Rayong 31.62 66.6 10.97 4.77
Nong Yai 0 0 2.18 17.83
Ban Chang 0 0.38 8.45 0.01
Ban Khai 6.33 2.45 19 15.64
Sattahip 0 0 5.08 0
Si Racha 30.65 19.57 7.05 5.91
Ban Bueng 0 0.16 1.48 2.33
Nikhom Phatthana 12.41 8.13 11.08 4.43
Bang Lamung 6.33 0 7.69 11.31

Table 21 Percentage probability of each district derived from ANN model in the
shallow aquifer

Districts Very high (%) | High (%) | Moderate (%) | Low (%)
Pluak Daeng 20.37 8.67 13.75 27.28
Mueang Rayong 25.81 0.89 1.48 11.72
Nong Yai 3.1 10.2 6.3 0.92
Ban Chang 5.09 2.66 5.23 9.6
Ban Khai 16.26 12.3 12.74 17.73
Sattahip 6.79 6.84 2.19 2.08
Si Racha 10.66 28.1 12.17 5.95
Ban Bueng 1.92 0 0 0.89
Nikhom Phatthana 4.44 14.92 21.25 15.59
Bang Lamung 4.87 12.72 24.75 7.35
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4.5 Performance of models

4.5.1 Prediction performance
The prediction performance of the models was evaluated using AUC and

RMSE measurements which were shown in Tables 22 and 23. The goodness of fitting
(Training dataset) for the deep aquifer revealed that. an ANN model had AUC=1 and
RMSE=5E-5, following by SVM (AUC=0.73, RMSE=0.48) and RF (AUC=0.93,
RMSE=0.34). In the shallow aquifer, the goodness of fitting from ANN had AUC=1
and RMSE=7.3E-5, following by SVM (AUC=0.84, RMSE=0.41) and RF

(AUC=0.93, RMSE=0.33).

Furthermore, to evaluate the appropriate model, the predictive performance
(Test dataset) needs to be mainly considered (Bindal and Singh 2019). In deep
aquifer, RF (AUC=0.72, RMSE=0.48) model was the best model as compared with
SVM (AUC=0.69, RMSE=0.49) and ANN (AUC=0.65, RMSE=0.62). In addition, in
the shallow aquifer, RF (AUC=0.81, RMSE=0.42) also was the best model following
by SVM (AUC=0.79, RMSE=0.44) and ANN (AUC=0.78, RMSE=0.47). The
visualization of the models' performance was supported by using the Taylor diagram
(Taylor 2001) as shown in Figure 16. The RF had a higher correlation with observed
total As probability and had lower RMSE compared to those of SVM and ANN in

both the deep and shallow aquifers.

Table 22 Performances of SVM, RF, and ANN in the deep aquifer

Model Train Test
RMSE AUC RMSE AUC
SVM 0.48 0.73 0.49 0.69
RF 0.34 0.93 0.48 0.72
ANN 5E-05 1.00 0.62 0.65




Table 23 Performances of SVM, RF, and ANN in the shallow aquifer
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Model Train Test
RMSE AUC | RMSE AUC
SVM 041 | 0.84 0.44 0.79
RF 0.33| 0.93 0.42 0.81
ANN 7.3E-05 1 0.53 0.75
e a)
® rRF
® svm
TD-SHALLOW . ANN
02 o 02 O Ref
o T b)

Standard deviation

Figure 17 Taylor’s diagram for a) the deep aquifer and b) the shallow aquifer

4.5.2 Models uncertainty

The uncertainty results of training and test groups in the deep aquifer were
shown in Table 24. The training groups showed uncertainty values of three models,
which were measured by PICP and MPI indicators, revealing the uncertainty of the

individual model in the descending order as follows: SVM (PICP=0.27, MPI1=0.16),
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RF (PICP=0.53, MPI=0.49), and ANN (PICP=0.69, MPI=1.3E-4). For testing data,
the lowest uncertainty model was RF (PICP=0.20, MPI=0.13), following by SVM

(PICP=0.16, MPI=0.15), and ANN (PICP=0.05, MP1=6.075E-10).

The uncertainty results of training and test groups in the shallow aquifer were
shown in Table 25. Again, the training group showed uncertainty values of three
models, which were measured by PICP and MPI indicators, indicating the uncertainty
of the individual model in the descending order as follows: SVM (PICP=0.50,
MPI=0.37), RF (PICP=0.58, MPI=0.44) and ANN (PICP=0.86, MPI=8.7E-5). For the
testing data, the lowest uncertainty model was RF (PICP=0.34, MPI1=0.27) following

by ANN (PICP=0.25, MPI=1.63E-10), and SVM (PICP=0.23, MP1=0.39).

Table 24 Uncertainty analysis of SVM, RF, and ANN of the deep aquifer

Models Train Test

PICP MPI PICP MPI
SVM 0.27 0.16 0.16 0.15
RF 0.53 0.49 0.20 0.13
ANN 0.69 | 1.3E-4 0.05 | 6.075E-10

Table 25 Uncertainty analysis of SVM, RF, and ANN of the shallow aquifer

Models Train Test

PICP MPI PICP MPI
SVM 0.50 0.37 0.23 0.39
RF 0.58 0.44 0.34 0.27
ANN 0.86 | 8.7E-05 0.25| 1.63E-10

4.5.3 Validation with field data
To evaluate performance between the deep and shallow aquifers of probability

map, total As concentration collected in the field during 31 August — 1 September
2019 were used to compare between the actual value and the prediction value from the
probability map. The validation results were shown in Table 26, which revealed

RMSE values for probability map of deep and shallow aquifer. The deep aquifer
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showed that RF had the lowest RMSE (0.48) compared with SVM (RMSE=0.73) and
ANN (RMSE=0.67). Similarly, RF also had the lowest RMSE (0.75) compared to

SVM (RMSE=0.76) and ANN (RMSE=0.84).

Table 26 Validation model with field data during 31 August — 1 September 2019

RMSE

SVM

RF

ANN

Deep

0.73

0.48

0.67

Shallow

0.76

0.75

0.84

4.6 Groundwater pollution risk map

The groundwater pollution risk map can be generated by using the RF
probability map (cut-off value for deep and shallow aquifers were 0.589 and 0.596,
respectively) multiply with the population density and water consumption map in the
study area. Then, the risk maps were classified by an equal interval method into five
categories as follows: very low, low, moderate, high, and very high. Total As shown
in Table 27, the percentage of groundwater pollution risk area in the deep aquifer had
areas in very high-level including Sattahip and Ban Khai districts of 71.9% and
28.1%, respectively. Ban Chang district was classified as in the high-level area
(15.6%). The district classified as the moderate level included Si Racha, Bang
Lamung, Mueang Rayong, Pluak Daeng, Nikhom Phatthana of 73.89%, 16.87%,
3.48%, 0.57%, and 0.13%, respectively. The very low-level districts were Nong Yai

and Ban Bueng (2.77% and 1.52%, respectively.

The Percentage of groundwater pollution risk area in the deep aquifer was
shown in Table 28, revealing that Mueang Rayong and Ban Khai districts were

classified in the very high-risk level of 99.27% and 0.73%, respectively. For the high-
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level area, there was only Nikhom Phatthana covering 3.65%. There are two districts
classified as the moderate level consisting of Si Racha and Pluak Daeng of 41.73%
and 0.29%, respectively. Ban Chang district was grouped in the low-level area
(0.94%). Lastly, Bang Lamung, Sattahip, Nong Yai, and Ban Bueng districts areas
were classified in the very low-level of 8.07%, 4.99%, 2.54%, and 1.40%,

respectively.

Table 27 Percentage of groundwater pollution risk area in the deep aquifer

Districts Very High | Moderate | Low Very

high low
Pluak Daeng 0.00 0.00 0.57| 32.76 22.57
Mueang Rayong 0.00 0.00 3.48 0.10 22.31
Nong Yai 0.00 0.00 0.00 0.00 2.77
Ban Chang 0.00 [ 15.58 0.00 0.79 9.14
Ban Khai 28.13 | 77.26 506 | 26.14 14.89
Sattahip 71.87 7.16 0.00 0.02 5.03
Si Racha 0.00 0.00 73.89 5.94 7.44
Ban Bueng 0.00 0.00 0.00 0.00 1.52
Nikhom Phatthana 0.00 0.00 0.13| 33.39 6.23
Bang Lamung 0.00 0.00 16.87 0.87 8.10

Table 28 Percentage of groundwater pollution risk area in the shallow aquifer

Districts Very high | High | Moderat | Low Very
e low
Pluak Daeng 0.00| 0.00 0.29 9.29 26.52
Mueang Rayong 99.27 | 91.62 55.22 | 29.76 10.66
Nong Yai 0.00| 0.00 0.00 0.00 2.54
Ban Chang 0.00| 0.00 0.00 0.94 8.54
Ban Khai 0.73| 4.73 1.22 0.94 18.80
Sattahip 0.00| 0.00 0.00 0.00 4.99
Si Racha 0.00| 0.00 41.73 | 16.95 8.35
Ban Bueng 0.00| 0.00 0.00 0.00 1.40
Nikhom 0.00| 3.65 155| 4212 11.23
Phatthana
Bang Lamung 0.00| 0.00 0.00 0.00 8.07
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Chapter 5 Discussions

5.1 Parameters associated with As mechanisms in groundwater

The As concentration that exceeds the drinking water standard of 10 ug/I
(WHO 2018) is a common problem in groundwater supply wells. The natural As
sources in groundwater mostly come from the weathering of certain rock types in the
region and release into groundwater. For example, in a Quaternary aquifer such as Qcl
and Qa have As concentration around 27.50 and 17.19 mg/l, respectively. For granite
base rock, it has As a concentration approximately 16.69 mg/l (Acharyya, Shah et al.

2005).

The other sources of As in groundwater can be from anthropogenic activities
such as precipitation and water infiltrating through municipal waste in landfills that
was contaminated with various organic and inorganic substances from the municipal
waste and it contains As concentration around 0.004 mg/l (Wexler and Maus 1988).
The result of the previous studies indicates that the sources of As in groundwater
probably came from both natural and anthropogenic sources (Garelick, Jones et al.

2008, Shankar, Shanker et al. 2014, Boonkaewwan, Sonthiphand et al. 2020)

Therefore, to screening unnecessary parameters before using them in the
modeling process, the spearman’s correlation was used in this process. For making
sure the spearman’s correlation selected useful parameters, the correlation between
other parameters and total As concentration in groundwater had to be toughly
considered. In the deep aquifer, the strong positive of total As correlated with pH and
bicarbonate (HCO3) indicates the reducing environment in the groundwater system.

This was in agreement with previous studies which revealed high total As
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concentrations in groundwater were positively correlated with high bicarbonate
(HCOs3) concentrations in the reducing condition in the groundwater environment
(Nickson, McArthur et al. 2000, Charlet, Chakraborty et al. 2007). Ca had a strong
positive correlation with Mg (r=0.672) and HCOz (r=0.744) implying the dissolution
of calcite from geological formations into groundwater. Also, the good correlation
between Mg and Na (r=0.466) indicates that ion exchange happened in groundwater
(Sae-Ju, Chotpantarat et al. 2019). TDS was strongly correlate with EC (r=0.612), Na
(r=0.546), CI (r=0.50), SO4 (r=0.350), Mg (r=0.611) and Ca (r=0.672). Similarly, the
EC was positive correlation with Na (r=0.642), Cl (r=0.526), SO (0.428), Mg
(r=0.595) and Ca (r=0.710). These good correlations with the EC indicate that the
increase in salinity was caused by groundwater mineralization and seawater intrusion
(Sae-Ju, Chotpantarat et al. 2019). These results can confirm that the deep aquifer in

the Rayong groundwater basin was influenced by seawater intrusion.

For the shallow aquifer, Ca also had a strong positive correlation with Mg
(r=0.650) and HCO3- (r=0.790) indicating the dissolution of calcite in aquifers. Also,
the correlation between Mg and Na (r=0.630) indicates that ion exchange was
occurring during seawater intrusion. TDS was strongly correlate with EC (r=0.957),
Na (r=0.839), CI(r=0.720), SO4(r=0.647), Mg (r=0.710) and Ca (r=0.799). Similarly,
the EC was positive correlation with Na (r=0.817), CI(r=0.696), S04(0.623),
Mg(r=0.692) and Ca (r=0.786). These good correlations with the EC indicate that the
increase in salinity was caused by groundwater mineralization and seawater intrusion
(Sae-Ju, Chotpantarat et al. 2019). These results can confirm that the shallow aquifer
in the Rayong groundwater basin also influent by seawater intrusion. Furthermore,

arsenic had a positive correlation with pH and a negative correlation with NOs,
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implying that reducing conditions might cause the release of As in the shallow aquifer
in the Rayong groundwater basin. From the previous study, the reduction environment
was mainly caused by the hydrogeological characteristic, and through a denitrification
process, make As released into groundwater (Boonkaewwan, Sonthiphand et al.
2020). Usually, the majority of As in groundwater was in oxidation form including
As-rich Fe oxyhydroxide (FeOH) and As-bearing pyrite that exists as a coating on
grain particle in sedimentary grain in the oxidation process (Thornton 1996, Bowell,
Alpers et al. 2014). However, in the reducing environment which was derived by
microbial degradation of organic matter in groundwater consumed O, and NOg in the
process while release As into groundwater, this was the major event that impacts
directly to As concentration in groundwater (Nickson, McArthur et al. 2000).

However, anthropogenic activities, such as agriculture, urbanized wastewater,
livestock, industrial estates, and municipal landfill sites, some organic pollutants
and/or organic acid from the ground surface leaches into the groundwater
environment, enchanting the reducing conditions with a high correlation with SO4 and
NOs. Therefore, from the correlation between SO4 and NO3 with negative correlation
(r = -0.086) which mean when SO release from organic matter was increased, the
consumption of NO3s by microorganism was also increased this can imply the source
of reducing condition in the shallow aquifer came from anthropogenic activities
(Boonkhao, Phanprasit et al. 2017).

The physical parameters influencing total As concentrations in groundwater
are mainly from hydrogeological characteristics, soil types, and agricultural area
(Tables 14 and 15). For examples, in shallow aquifer total As was mainly associated

to sandy soil (r =-0.127), clay(r = 0.143), granite(r = 0.206) and quaternary alluvium
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(r = -0.152). From the correlation, we can indicate that bedrock and soil were the
major sources of As release into the groundwater environment. Moreover, the
correlation with the agricultural (r = -0.124) area might indicate the anthropogenic
activities from agriculture in the area. However, although the physical parameters can
be screened by this technique, it doesn’t help much in terms of explaining the
mechanism of As release in groundwater. Thus, as mention above we can conclude
that Spearman’s correlation can be used as a screening parameter tool, which is
efficient to enhance the modeling process by eliminating unnecessary parameters out
of datasets. Furthermore, the influence factors that affected an As mechanism in the

study area might come from both natural and anthropogenic sources.

5.2 Evaluating prediction performance

The goodness-of-fit and predictive performance of the models were also
quantified using RMSE and AUC measurements. In the training step of the deep
aquifer, the ANN model produced an overfitting goodness-of-fit of total As
probability with RMSE=5E-5 and AUC=1.00, following by SVM (RMSE=0.48,
AUC=0.73) and RF (RMSE=0.34, AUC=0.93). This also happened in the shallow
aquifer as shown in the descending order: ANN (RMSE=7.3E-5, AUC=1), SVM
(RMSE=0.41, AUC=0.84), RF (RMSE=0.33, AUC=0.93). Based on the goodness-of-
fit result, ANN shows the sign of overfitting with very small RMSE and high AUC
compared to those of other models. Commonly, the overfitting in the ANN model is
found when ANN algorithms work with a small dataset (Rao, Prasad et al. 2018).
Thus, we can indicate that ANN was not an appropriate model using for the modeling

process in this study.
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The predictive performance of the model as shown in Tables 17 and 18 had
the result of RF with RMSE=0.42 and AUC=0.72 following by SVM (RMSE=0.44,
AUC=0.79) and ANN (RMSE=0.53, AUC=0.75). The goodness-of-fit of the model
shows how well the model fits the training dataset. The prediction and generalization
abilities of the model cannot be evaluated using only the goodness-of-fit of the model
because it was measured by the data that were used to calibrate the model (Henseler
and Sarstedt 2013). Therefore, the predictive performance (the accuracy of the model
in the testing step) reflects the ability of the model in the accurate prediction. The
result of prediction performance indicated that the RF had the best performance

compared to the performances of SVM and ANN in both deep and shallow aquifers.

Furthermore, from a previous study using Taylor’s diagrams can describe a
model’s performance in visualization form (Rahmati, Choubin et al. 2019). The
visualization of the models' performance using the Taylor diagram confirmed that the
RF was the appropriate model to predict total As concentrations in groundwater in
this study area as presented in Figure 16. According to the Taylor criteria (i.e.,
correlation, standard deviation, and RMSE), the RF had the highest correlation with
the observed total As probability and had the lowest RMSE as compared to those
values of the SVM and ANN models (Taylor 2001). The validation with actual field
data showed that RF had the lowest RMSE in both deep and shallow aquifers (RMSE
=0.48 and 0.75, respectively) compared to those of SVM (RMSE = 0.73 and 0.76) and
ANN (RMSE =0.67 and 0.84). Thus, it could confirm that the RF model was the
appropriate model in the prediction groundwater pollution risk map of total As than

SVM and ANN. (Cutler, Edwards et al. 2007, Podgorski, Wu et al. 2020).
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5.3 Uncertainty assessment

The uncertainty for each ML model was determined using QR methods. To
determine the uncertainty of ML models, we applied only the testing data to carry out.
In this study, based on uncertainty assessment, two statistics are consisting of mean
prediction interval (MPI) and prediction interval coverage probability (PICP), which
were used as suggested by Rahmati (Rahmati, Choubin et al. 2019). MPI was the
average of the widths of the prediction intervals, where the lower values of MPI
indicates the lower uncertainty. PICP was the probability that the observed values are

within the prediction intervals.

The result of PICP in the deep aquifer showed that RF had the lowest
uncertainty (PICP=0.20) as compared to those of SVM (PICP=0.16) and ANN
(PICP=0.05) (Table 9). In the shallow aquifer, RF also had the lowest uncertainty
(PICP=0.34) as compared to those of SVM (PICP=0.23) and ANN (PICP=0.25)
(Table 10). Since the PICP measurements for the three models are very different,
there was no need to compare the MPI value (Rahmati et al., 2019). The PICP was the
more important measurement of uncertainty as it indicates the number of observations
that fall within the estimated interval (Dogulu, Lopez Lopez et al. 2015). Therefore,
MPI was used as a supplementary metric between models with similar PICP values,
the one with a lower MPI was regarded as the better model (Muthusamy, Godiksen et
al. 2016). Thus, the QR calculated that the RF model had the lowest uncertainty
compared to the uncertainty values of SVM and ANN in both shallow and deep
aquifers. As mentioned above, based on the prediction performance and uncertainty
assessment, we can conclude that the RF was the appropriate model to predict the

total As risk area in both deep and shallow aquifers.
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5.4 Risk map assessment

Many of the literature in the study area (Pipattanajaroenkul, Sonthiphand et al.
2018, Boonkaewwan, Sonthiphand et al. 2020), which study the As mechanism in
Rayong groundwater basin found that As contamination in Rayong groundwater basin
appeared to be a potential risk and need a proper method to locate risk area.
Therefore, the present study used risk maps that output from the RF model multiplied
with population density and water consumption to indicate the districts that
potentially had people to expose to As contaminated in groundwater. The result
showed that the districts that may have people expose to As in the deep groundwater
aquifer were mostly in the north part of the Rayong groundwater basin such as
Sattahip and Ban Khai districts, which had very-highly risk level, following by Ban
Chang district which had a high-risk level of exposure. Other districts that might have
people expose to As contaminated in the deep aquifer were Si Racha, Bang Lamung,

Mueang Rayong, Pluak Daeng, and Nikhom Phatthana.

Based on the exposure of local people with As contaminated in the shallow
groundwater aquifer, it mostly affected in the south path of Rayong groundwater
basins such as Mueang Rayong and Ban Khai districts had a very-highly risk level,
following by Nikhom Phatthana district (high-risk exposure) as well as Si Racha and

Pluak Daeng districts also had a moderate risk level.

In summary, the risk map in the deep aquifer appeared to had more risk in the
northern part of the Rayong groundwater basin whereas in the shallow aquifer it
appears to have high risk in the southern part of the Rayong groundwater basin as

shown in Figure 18. Furthermore, based on various types of land uses in Rayong
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groundwater basin including industrial estate, agricultural areas, and urban areas,
particularly, two landfills in the Mueang District that is close to the estuary of the
groundwater basin (Boonkaewwan, Sonthiphand et al. 2020). Also, the risk areas of
the shallow aquifer might be affected by anthropogenic activity in the study area such

as landfill, agricultural, and industrial areas.

Very low
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Low
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Figure 18 Groundwater pollution risk map of As contamination in a) the deep aquifer
and b) the shallow aquifer
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Chapter 6 Conclusions and recommendations

6.1 Conclusion

The increasing demand for groundwater has caused concern for groundwater
risk assessment, especially on the EEC area project in eastern, Thailand. In this
research, the machine learning algorithms had been applied to predict As
contamination in Rayong coastal aquifers. Based on the present study, the majority of
water quality parameters were not a normal distribution. Thus, spearman’s correlation
was used in this study. From the correlation analysis, hydrochemical parameters were
correlated with each other, including As concentration at the significant level,
explaining As mechanisms in the groundwater environment. Therefore, using
Spearman’s correlation to screen unnecessary parameters before modeling might be
served as an alternative way to select suitable parameters apart from the PCA method.
The correlation result indicated that the point source of As in this study area was

caused by both natural and anthropogenic sources.

In the modeling process, ANN showed a sign of overfitting in the goodness-
of-fit, which was usually found in ANN algorithms with a small dataset. In prediction
performance and uncertainty evaluation, the results indicated that the RF model had
the highest prediction performance and the lowest uncertainty compare with the SVM
model. Thus, it can be concluded that the RF model was the most suitable model for
predicting As contamination in the Rayong groundwater basin compared to SVM and
ANN models. The result of the risk map from the RF model indicates that the deep
aquifer, the northern part of Rayong groundwater basin had a higher risk for people to

expose to As contaminated in groundwater. In contrast, the shallow aquifer indicates
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that the southern part of the Rayong groundwater basin had a higher chance for people
to expose to As in groundwater, which might be related to anthropogenic activities in

the Mueang District that is close to the estuary of the Rayong groundwater basin.

The outcome of this study can be used to help decision-makers, i.e. DGR and
other organizations, to manage groundwater resources and protect the environment in
the study region. For example, the risk area where suitable to install a filter tank for
remediation and treat groundwater can be located. Moreover, base on the risk map,
the decision-maker can propose a suitable policy to sustainably manage groundwater

consumption in the study area.

6.2 Recommendation

Since the difference of hydrochemical facies between rainy and dry seasons, it
would be further considered this effect. Furthermore, in this study, the contributing
factors to the modeling process in deep and shallow aquifers are different and give
significant information. Therefore, in future studies, an attempt to study groundwater
modeling integrated with ML techniques should be considered under different seasons

and in both aquifers.

In addition, the study of As contamination in groundwater using a
hydrogeochemical model should consider the speciation of As, As(ll1), and As(IV) in
groundwater. This was directly correlated to the oxidizing or reducing conditions in
this area. When considering As(lll) and As(IV), we can use this information to

classify the potential risk area better than the use of total As concentration.

Moreover, in the selected parameter process by the Spearman’s correlation, it

would work well with hydrochemical parameters, which can describe As mechanisms
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in groundwater. However, for physical parameters, this technique doesn’t help much
to screen unnecessary parameters. Thus, the use of hydrochemical parameters only in

the modeling process was recommended in terms of time-saving.

In summary, the limitation of this study showed in many aspects as follows:
the seasonal effect may relate to the chemical mechanism of As in aquifer, the total
As parameter might not be enough to determine the risk area affected by As
contamination. All of these aspects might affect the accuracy and reliability of

predicting As risk area.

Furthermore, the methodology applied in this study can be used to study other
types of contaminants in polluted groundwater. This will be useful in the investigation
of groundwater contamination and remediation in other areas. Also, the study can be
applied using only conventional on-site measurement parameters to predict pollution

in groundwater that might decrease the cost to analyze other parameters.
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APPENDIX
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Figure 21 J3 groundwater well
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Figure 24 J7 groundwater well
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Figure 30 J74 groundwater well
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Figure 36 G8 groundwater well




Figure 39 G11 groundwater well
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Figure 42 G14 groundwater well
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Table 29 Detection limits and the standard level (DGR, 2017)
Detection Standard
Parameters Unit | Analysis techniques Limit level
Physical
Pt- Spectrophoto metric-Single Wavelength
Color Co (2120C) 0 5
NT
Turbidity U Nephelometric(2013B) 0.01 5
pH - - 1.0-140 7-8.5
Chemical

TDS mg/l | Dried at 103-105C 5 600
Total Hardness mg/l | EDTA Titrimetric (2340C) 100 300
Non-Carbonate

Hardness mg/l | Calculatioon/EDTA Titrimetric (2340C) 0 200
Ca mg/l | EDTA Titrimetric (2340C) 0.05 -
Mg mg/l | Calculatioon 0 -
Na mg/l | Drect Air-Ace tylene Flame (3111B) 0.005 -
K mg/l | Drect Air-Ace tylene Flame (3111B) 0.005 -
Fe mg/l | Drect Air-Ace tylene Flame (3111B) 0.005 0.5
Cl mg/l | Argento metric (4500-FD) 0.2 250
F mg/l | SP ANDS (4500-FD) 0.01 0.7
C0o2 mg/l | SPANDS (4500-FD) 0 -
HCO3 mg/l | Titration(2320B) 0 -
S04 mg/l | Titration(2320B) 0.1 200
NO2 mg/l | Tubidimetric (4500 -SO4 E) 0.01 45
PO4 mg/l | Cadmium Reduction (4500-NOE) 0.0001 -

Heavy metal

As mg/l | Hydride Generation AAS (3114B) 0.0003 0.01
Cd mg/l | Drect Air-Ace tylene Flame (3111B) 0.0004 0.003
Cr mg/l | Colorimetric(3111B) 0.01 0.05
Cu mg/l | Drect Air-Ace tylene Flame (3111B) 0.003 1
Hg mg/l | Hydride Generation AAS (3114B) 0.0001 0.001
Mn mg/l | Drect Air-Ace tylene Flame (3111B) 0.005 0.5
Ni mg/l | Drect Air-Ace tylene Flame (3111B) 0.001 0.02
Pb mg/l | Drect Air-Ace tylene Flame (3111B) 0.007 0.01
Se mg/l | Hydride Generation AAS (3114B) 0.003 0.01
Zn mg/l | Drect Air-Ace tylene Flame (3111B) 0.005 5
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