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CHAPTER 1 INTRODUCTION 
 

1.1 BACKGROUND AND MOTIVATION 

Genetic variations in human genome are broad, ranging from single nucleotide 
variants (SNVs), indels, to copy number alteration (CNA). CNA includes large 
chromosomal aneuploidy events involving entire chromosomes. While most genetic 
variations have no apparent impact on human health, some manifest at the earliest 
stages of tumorigenesis and accumulate throughout subsequent tumor 
developments (2).  

Genetic mutations are either germline or somatic. Germline mutations are 
inherited and not frequently unique to cancer population. On the other hand, 
somatic mutations occur during a person’s lifetime and play a significant role in 
tumorigenesis (3). A typical cancer begins with somatic mutations in genes related to 
the regulation of cell division and cellular function which make the cells 
nonresponsive to signals that control cell growth or death. Uncontrolled cell growth 
subsequently results in tumor mass development. In the late stages, the tumor can 
become metastatic, where cancer cells spread into neighboring tissues or enter the 
bloodstream, traverse throughout the body, and form new tumors at different sites.  
 Tumor biopsy followed by histopathological examination or next generation 
sequencing is a standard approach for cancer diagnosis which can reveal molecular 
characteristics of the tumor tissue. However, tumor biopsy is invasive, may damage 
nearby tissues, is not applicable when the tumor locations are inaccessible, and 
cannot detect metastasis at distant sites (4, 5). Furthermore, because each tumor is 
heterogeneous, the mutation profiles identified from a biopsy would not accurately 
reflect the entire tumor mutational landscape. This introduces bias and error into the 
selection of personalized therapies (6). Consequently, a non-invasive technique that 
can capture the broad genetic heterogeneity of the tumor would be highly desirable.  
 To address the limitations of tumor biopsy, liquid biopsy was developed as 
an alternative method for cancer diagnosis by analyzing circulating tumor DNA 
(ctDNA) in the plasma from patients’ blood samples, which are much easier to 
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collect than tissue samples. Hence, liquid biopsy is rapid, non-invasive, and has the 
potential to capture ctDNA shed from both primary tumor sites and metastatic sites 
in the patient. The technique can also be practically performed multiple times to 
monitor the course of treatment or the progression of the disease (7). Because ctDNA 
in the cancer patient predominantly derives from apoptosis and tumor cell necrosis 
throughout the body (8, 9) , analysis of ctDNA can yield insights into tumor-specific 
mutational landscape and intra-tumor heterogeneity that were not covered by 
traditional tissue biopsy (10). However, although ctDNA levels in cancer patients’ 
bloodstream were reportedly higher than those in healthy individuals (11) , ctDNA 
analysis for cancer diagnosis still requires dedicated devices and techniques with high 
sensitivity due to low quantity of ctDNA and contamination of genomics DNA from 
normal cells (12, 13) .  
 Next-generation sequencing (NGS) has evolved dramatically in the past 
several years. NGS is a technology that parallelly sequences massive amounts of DNA 
sequences in a sample. It becomes more popular and widely used in clinical 
oncology due to its high accuracy and sensitivity for mutation detection (14, 15). 
Furthermore, it systematically provides genomic profiles from both tumor tissue and 
ctDNA samples (16, 17). Applications of NGS in cancer genomics mainly focuses on 
whole-exome sequencing (WES) and whole-genome sequencing (WGS) (18). However, 
whole genome sequencing requires high cost as it covers the full length of the 
genome. In situations where only some parts of the genome are of interest or where 
high-confidence variant detection is not needed, low-coverage sequencing can be 
more cost-effective (19, 20). 
 Ultra-low pass whole genome sequencing (ULP-WGS) or low-coverage 
sequencing (~0.1-0.3x coverage) is emerging as a cost-effective alternative that allows 
population-scale screening of mutations and copy number alterations for the entire 
genome. It produces a mere fraction of the data per sample compared to standard 
NGS techniques and relies on computational methods to fill in the missing 
information (21). ULP-WGS has been used to quantify tumor fractions (22-27) and 
estimate copy number alterations (28-31), etc. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

In a previous study (32), ULP-WGS, coupled with ichorCNA software to 
estimate tumor fraction, was utilized to screen tumor with greater than 10% in ctDNA 
for performing subsequent whole-exome sequencing. This lets clinicians filter out 
samples with low tumor-specific DNA that would not benefit from further in-depth 
investigation and save costs. Furthermore, previous study also provides 
comprehensive ctDNA mutation profiles from multiple patients and shows high 
concordance between whole-exome sequencing results of ctDNA and tumor tissue 
samples. However, many issues regarding the applicability of ctDNA-based liquid 
biopsy have not been covered by previous studies, namely (i) whether the capability 
of this technique varies across cancer types, (ii) whether ctDNA can capture genetic 
variants from multiple tumor sites within the same patient, and (iii) whether the 
technique can effectively monitor cancer progression and treatment response across 
multiple timepoints. 

This study obtained ctDNA, tumor, and normal DNA whole-exome sequencing 
data for bioinformatics analysis from the Queen Sirikit Centre for Breast Cancer 
(QSCBC) and from the neoantigen and cancer vaccine project of the Immunotherapy 
Excellence Center, King Chulalongkorn Memorial Hospital. QSCBC data were 
collected between 2019-2021 from 10 breast cancer and 1 sarcoma patients. Data 
from the Immunotherapy Excellence Center were collected between 2020-2021 from 
4 gastrointestinal cancer patients and 1 melanoma patient with liver metastasis. The 
tumor fractions of all ctDNA samples were previously determined using ichorCNA 
prior to whole-exome sequencing. Solid tumor tissues were obtained from biopsy or 
surgery. Normal samples were obtained from peripheral blood mononuclear cells 
(PBMC). Circulating tumor DNA were obtained from blood samples. Sample 
collections, processing, and sequencing have been performed earlier. The scope of 
this thesis starts from the processing and bioinformatics analysis of raw DNA 
sequencing data onwards. 
 Our main purpose is to assess the concordance between whole-exome 
sequencing of ctDNA and tumor tissue samples in various cancer types and across 
multiple time points. In one case, the patient was diagnosed with multiple cancers, 
which would let us assess whether ctDNA analysis can capture mutation profiles 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

from multiple tumor sites. We will also determine the impact of tumor fraction in 
ctDNA sample on the quality of whole-exome sequencing. Our work indicates the 
potential of ctDNA-based liquid biopsy to supplement and/or replace tumor biopsy 
in clinical applications.  
 

1.2 RESEARCH OBJECTIVE 

1. To assess the concordance of mutational landscapes detected from liquid 
biopsy of circulating tumor DNA and tumor tissue in cancer patients 

2. To evaluate the ability of liquid biopsy of circulating tumor DNA to capture 
genetic variants from multiple tumor sites within the same patient 

 

1.3 SCOPE OF THE RESEACH 

1.3.1. To assess the impact of ctDNA fraction on the quality of WES by 
comparing the number of identified variants and the correlation of variant 
allele frequency estimated from ctDNA and tumor tissue sample. 

1.3.2. To evaluate the degree of concordance between mutational 
landscapes derived from ctDNA and tumor biopsy by calculating the fraction 
of common variants and the correlation of variant allele frequency 

1.3.3. To assess whether cancer-relevant variants can be consistently 
identified from exome sequencing of ctDNA 

1.3.4. To evaluate the ability of ctDNA to capture variants from multiple 
metastatic tumors within the same patient. 

 

1.4 EXPECTED OUTCOMES 

Circulating tumor DNA can capture entire genetic variation in tumor and 
mutational landscape of tumor and can be a representative of tumor biopsy in the 
further clinical applications of cancer. 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 LITERATURE REVIEW 
 

2.1 HALLMARK OF CANCER AND CARCINOGENESIS 

Cancer is one of the leading causes of mortality. It is a disease in which the 

growth of specific cells become uncontrollable, and the affected cells eventually 

expand and spread to other parts of the body. Cells regularly divide and proliferate 

to form new cells to replace damaged and old cells. When this process goes awry, 

damaged or abnormal cells keep proliferating when they should not. Tumors, which 

are tissue masses, arise from the expansion of these cells. Tumors can be benign or 

cancerous (malignant). Cancerous tumors can eventually spread to other parts of the 

body and form new tumors via a process called metastasis. In contrast, non-

cancerous (benign) tumors do not infiltrate nearby tissues and rarely reoccur after 

removal. However, benign tumors can still develop into excessively large tissue mass 

that can cause serious negative effects or even death, such as benign brain tumor 

(33, 34). 

2.1.1 HALLMARK OF CANCER  

The broad genotypes of cancer cell are a consequence of six key 

abnormalities in cell physiology that collectively drive malignant cell 

development, namely 1) self-sufficiency in growth signals, 2) insensitivity to 

growth-inhibitory signals, 3) evasion of programmed cell death, 4) infinite 

replicative capacity, 5) persistent angiogenesis, and 6) tissue invasion and 

metastasis (Figure 1) (35). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 

Figure  1 Hallmark of cancer consists of six steps 
:1) self-sufficiency in growth signals 2) insensitivity to growth-inhibitory (antigrowth) 
signals 3) evasion of programmed cell death (apoptosis) 4) infinite replicative 
capacity 5) persistent angiogenesis and 6) tissue invasion and metastasis  
 

2.1.2 CARCINOGENESIS 

Carcinogenesis, or the process of cancer formation typically consists of 

three stages: initiation, promotion, and progression (Figure 2) (36-38). 

 

Figure  2 The three-phase process of carcinogenesis after carcinogen exposure and 
the different scientific applications based on primary cancer animal models 
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1. Initiation 

Cancer development begins with initiation. Initiators 

can be exogenous agents (e.g., cigarette smoke, radiation, virus) 

or endogenous substances (e.g., bile acids, reactive oxygen 

species) that cause DNA damages. When these damages are 

incorrectly repaired, the changes in DNA in damaged cell 

become permanent and irreversible (39). All daughter cells 

from the division of the mutant cell will also carry the same 

mutations. More exposure to the initiators naturally lead to 

greater risk of carcinogenesis. (37, 38) 

2. Promotion 

Promotion is the second stage that occurs on initiated 

cells and stimulate the cells to divide. The intracellular or 

extracellular environment of the cells or the promoters can 

influence cancer development. These factors enhance the 

clonal growth of mutated cells, which eventually leads to 

accumulation of tumor mass. However, promoters may not 

cause cancer on their own (37, 40). 

3. Progression  

The third stage progression is the transformation of a 

benign tumor into a neoplasm and finally malignancy. In this 

step, tumor cells compete with one another to survive, 

resulting in the emergence and selection of more mutations 

that make the tumor cells more aggressive. As the tumor 

grows in size, individual cells accumulate different mutations, 

leading to increased heterogeneity within the tumor mass (40).   
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2.2 GENETIC VARIATION IN CANCER 

A genetic variation (or a mutation) is a permanent change in the DNA 

sequence, which provides instructions for cells to function. Most alterations to a 

person's DNA are harmless but certain variations can lead to genetic disorders. 

Hundreds of potential genetic changes can develop during each round of cell 

division (41).Genetic variations can be categorized into two major classes based on 

how they arise: 1) germline variations and 2) somatic variations (Figure 3) 

2.2.1. GERMLINE VARIATIONS 

Only around 5%–10% of all malignancies are caused by germline 

variations. Germline variations occur in a sperm cell or an egg cell and are 

directly transmitted from a parent to a child. Every cell in the newborn 

contains the same germline mutations. Hereditary cancers are those that 

result from pathogenic germline variations. To date, more than 50 different 

hereditary cancers have been identified (42). 

2.2.2. SOMATIC VARIATIONS 

The most frequent causes of cancer are somatic or acquired genomic 

variations, which result from the accumulation of DNA damages over the 

course of a person's lifetime. Different cells in a person’s body contain 

different set of somatic variations. A few typical carcinogens are smoking, UV 

radiation, viruses, chemical exposures, and aging (42). 
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Figure  3 Genetic variations based on the tissue from which they arise 
 

2.2.3 TYPES OF GENETIC VARIATIONS 

Genetic variations can cause multiple types of changes on the DNA 

sequences, including small variations such as single nucleotide base 

substitutions, indels, and larger structural variations such as copy number 

alterations (CNA), which refers to major aneuploidy of individual genes, 

genomic regions, or whole chromosomes (43) (Figure 4). 

 

Figure  4 Two types of genetic variations consist of small and structural genetic 
variations 
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2.2.3.1 Small variation (1-50 bp) 

1. Substitution  

There are six possible substitutions for the Watson-Crick 

base pairings: C>A, C>G, C>T, T>A, T>C, and T>G (44). A 

substitution in a protein coding region could change a codon 

to one that encodes a different amino acid and result in a 

small change on the protein produced (also called missense 

mutation), or one that encodes the same amino acid and 

cause no change on the protein produced (also called silent 

mutation), or it could change an amino-acid-coding codon to a 

stop codon, resulting in an incomplete protein (also called 

nonsense mutation) (45). 

Synonymous mutations, or silent mutations, are 

substitutions in the coding regions that do not affect the 

amino acid sequences of the produced proteins. Non-

synonymous mutations are substitutions in the coding regions 

that affect the amino acid sequences of the produced 

proteins. Non-synonymous mutations consist of missense and 

nonsense mutations. Although synonymous mutations do not 

affect the amino acid sequences, they can impact gene 

functions in rare cases (46). 

2. Indels 

An insertion or a deletion affecting 2 or more 

nucleotide positions. Small and large indels are distinguished 

on the basis of length, with small indels spanning less than 

1kb (47). 
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2.2.3.2 Structural variation (>50 bp)   

Structural variations (SVs) are also known as chromosomal 

rearrangements. SVs involve rearrangements of large DNA segments 

that can affect DNA copy number (43). 

1. Copy number variations (CNV) 

Copy number variation is a form of structural variation 

that changes the copy count of genes or other genetic 

elements at certain genomic positions via a duplication or 

deletion event. Copy number variations account for 4.8-9.5% 

of the entire length of the human genome. Copy number 

variations are critical in mammals for generating diversity in the 

population but are also a cause of diseases (48). 

2. Inversion 

Inversions occur when a segment of DNA breaks off 

from the chromosome and is then reinserted into the original 

breakpoints in an inverted orientation. Although inversions do 

not result in DNA gains or losses, they can still have negative 

effects on gene function and regulation. For example, a gene 

can be disrupted by an inversion if its coding region is 

truncated or if its regulatory elements are relocated far away 

from the gene (49). 

3. Translocation 

Translocation occurs when a region of one 

chromosome is relocated to a nonhomologous chromosome 

or to a different location on the same chromosome. 
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Translocations place genes in novel linkage associations and 

create chromosomes with no homologous partner (50). 

 

2.3 SOMATIC VARIANT IDENTIFICATION AND ANALYSIS 

Variant calling is the process of analyzing next generation sequencing (NGS) 

data to identify the differences in genomic sequence of a person compared to 

references. This will reveal a large amount of genetic variation information, such as 

single nucleotide variation (SNV), insertion and deletion sites, structural variation 

sites, and copy number variations. Different analysis pipelines were developed 

specifically for identifying each type of genetic variants. This study focuses on the 

detection of somatic SNVs from a comparative analysis of tumor-normal paired 

samples from cancer patients (51). 

 

 

 

 

 

 

 

Figure  5 Sequencing pipeline of NGS analysis and somatic variant calling 
 

2.3.1 ALIGNMENT AND PRE-PROCESSING OF NGS DATA  

Before variant calling, NGS reads must be pre-processed and aligned 

to reference sequences. Alignment allows us to map each read to the 

corresponding genomic position and identify differences between DNA 
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sequences in the sample and the reference. Aligner software such as Burrows-

Wheeler Aligner (BWA) can be used. The resulting alignments are stored in 

binary alignment (BAM) file format. After an initial alignment, the base quality 

scores may be recalibrated and a second round of realignment may be 

performed to reduce false-positive alignments around indels. The quality of 

the final results may be further checked to ensure that sufficient sequencing 

coverage was obtained and that there is no contamination (Figure 5A) (51).  

 

2.3.2 SOMATIC VARIANT CALLING 

To call somatic variants, a normal tissue or blood sample is required, 

in addition to tumor tissue sample, to rule out germline mutations that 

would also be present in normal cells (Figure 5B). Popular somatic mutation 

callers include MuTect2 (52), Strelka2 (53), and VarScan2 (54). Each caller has 

distinct advantages and disadvantages, and therefore combining results from 

two or more callers can provide higher sensitivity and specificity. Low tumor 

purity and low sequencing depth can make the detection of somatic 

mutations more challenging. Candidate somatic variants should be further 

screened to remove alignment artifacts and common variants that are 

unlikely to be pathogenic. Variant allele frequency, or the fraction of mutant 

allele, can be used to select variants of interest. Some studies suggested that 

utilizing a panel of normals (PoN), or a collection of DNA data from normal 

specimens, to identify and remove recurring sequencing artifacts is beneficial. 

Reads on both strands should support the same variant alleles without bias 

in read position, base quality, or mapping quality. High-quality SNVs or indels 

should also be present at extremely low frequency (MAF < 0.001). Finally, 

candidate variants should be visualized via tools such as Integrative Genomics 

Viewer (51).  
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2.4 PRECISION MEDICINE IN ONCOLOGY 

 Precision medicine is a new therapeutic approach that aims to treat and 

prevent the disease by analyzing each patient's unique characteristics and using that 

information to select the best treatments. Large-scale omics data, including 

genomics, proteomics, epigenomics, and metabolomics enable precision medicine by 

providing detailed information about the patients at molecular level. Models 

developed from these data to predict disease progression and treatment response 

help clinicians make the optimal therapeutic decisions. The Human Genome Project 

and advancements in NGS can be considered as the first step of precision medicine 

(55). In the context of cancer, NGS can discover clinically actionable variations (56). 

The effectiveness of precision medicine in the treatment of cancer has been shown 

in many researchs (57-59). The notion of somatic variations as the primary cause of 

cancer development is known as precision oncology (60).  

 

2.5 TUMOR BIOPSY AND THE EMERGENCE OF LIQUID BIOPSY IN CLINICAL PRACTICE 

2.5.1 TUMOR BIOPSY AND ITS ADVANTAGES AND DISADVANTAGES 

Tissue biopsy is the extraction of tumor tissue using fine needle or 

open surgery. Subsequent genetic and histopathological assessment of these 

tissue samples can determine the type of tumor, which aids oncologists in 

developing a personalized treatment plan. Although tissue biopsy is 

important, it is invasive, expensive, time-consuming, and, most importantly, 

sometimes ineffective at capturing the broad genetic heterogeneity of a 

tumor. This is because only a small region of the tumor is sampled. 

Furthermore, repeating tissue biopsies multiple times to monitor tumor 

progression or treatment response is not feasible. Tissue biopsy is also not 

applicable when the tumor itself is undetectable, such as early-stage tumor 

and metastatic site. 
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2.5.2 LIQUID BIOPSY 

Liquid biopsy is a recent non-invasive diagnostic and prognostic 

technique in precision oncology that has gained a lot of attention in recent 

years as a way to overcome the limits of tissue biopsies (61). The term liquid 

biopsy was first used to describe the study of circulating tumor cells (CTCs) in 

the bloodstream, but it is now mostly used to describe the analysis of 

circulating, or cell-free, tumor DNA (ctDNA). Liquid biopsy encompasses the 

analyses of any body fluids, including blood, plasma, serum, saliva, urine, and 

gastric juice, for clinical evaluation. Since 2004, when Guardant Health 

developed the first commercially accessible liquid biopsy test, clinical use of 

liquid biopsy has expanded considerably. In 2016, liquid biopsy (limited to 

ctDNA analysis) was formally adopted as a diagnostic method in major 

laboratories. Currently, multiple FDA-approved commercial liquid biopsy tests 

are available, such as the cobas® EGFR Mutation Test v2, which identifies 

whether specific patients with non-small cell lung cancer are eligible for EGFR 

tyrosine kinase inhibitors. Because liquid biopsy is non-invasive, it can be 

repeatedly performed to monitor tumor progression or treatment response. 

Furthermore, liquid biopsy can capture diverse tumor DNA that were shed 

from organs that are difficult to access via biopsy. Hence, genetic data 

obtained through liquid biopsy can be a better representative of the 

complete population of tumor cells. Importantly, liquid biopsy enables early 

tumor detection (61).  

2.5.2.1 Cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA)  

Circulating cell-free DNA (cfDNA) and circulating tumor DNA are 

DNA that were shed from cells into the bloodstream. cfDNA were first 

identified in 1948 by Mandel and Metais in blood samples from 

healthy individuals. Later, ctDNA were identified in cancer patients' 
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blood.  ctDNA was thought to originate from tumor tissue since it has 

several cancer-associated molecular features, including single 

nucleotide genetic variations, methylation, cancer-derived viral 

sequences, rearrangements, amplifications, microsatellite instability, 

and loss of heterozygosity. In addition to blood, cfDNA and ctDNA can 

also be obtained from cerebrospinal fluid, saliva, and in extremely 

low concentrations from urine. There are two proposed pathways for 

the release of DNA from cells into the bloodstream. The first is passive 

release of DNA through cell death (apoptosis or necrosis). The second 

is active secretion where living tumor cells release extracellular 

vesicles, including exosomes and prostasomes, that carry DNA 

fragments of lengths between 150 and 250 bp, (Figure 6). (8, 61, 62) 

 

Figure  6 The process of release small fragments of cell-free DNA and into 
circulation by multiple mechanisms.  
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 The comparison of advantages and disadvantages between liquid biopsy and 

tumor biopsy for clinical application are summarized in Figure 7 (63). 

 
Figure  7 Advantages of liquid biopsy vs. tissue biopsy during the metastatic 
cascade.  
 

2.6 NEXT GENERATION SEQUENCING (NGS) AND ITS APPLICATION IN CLINICAL 

ONCOLOGY  

NGS is a massively parallel DNA/RNA sequencing technique that provides 

ultra-high throughput, scalability, and speed. NGS has revolutionized biological 

sciences, allowing labs to perform a wide range of applications and analyze 

biological systems at an unprecedented scale (56, 64). Typical applications of NGS 

are the analyses of whole genome or exome, also called whole genome sequencing 

(WGS) or whole exome sequencing (WES), respectively. NGS can also be applied to 

deeply sequence specific target regions, known as targeted sequencing, or to analyze 

RNA transcripts, known as RNA-Seq or called transcriptome sequencing, to discover 

novel RNA isoforms, splice sites, and to quantify gene expression levels, or to 

analyzes epigenetic factors such as genome-wide DNA methylation and DNA-protein 

bindings. In the context of cancer, NGS enables the detection of rare somatic 

variants, and tumor subclones (64). 
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In this study, we focused on the applications of NGS at genomics level (Table 

1).  

2.6.1. WHOLE-GENOME SEQUENCING (WGS) 

WGS is the most thorough NGS approach what examines the whole 

3.2 billion bases of the human genome. The tremendous decrease in 

sequencing cost has made WGS an affordable tool for genomics research. 

WGS can be applied to the genomes of diverse species. Sequencing coverage, 

which is the average number of reads that align to a specific location on the 

genome, is an important quality parameter for a WGS study. Variant discovery 

in human genome requires approximately 30× to 50× coverage to achieve an 

acceptable degree of confidence (65, 66). 

2.6.2. WHOLE EXOME SEQUENCING (WES) 

Whole exome sequencing is a targeted sequencing technique that 

focuses on exons which account for a little less than 2% of the human 

genome length. Because the majority of disease-causing mutations occur on 

exons, WES is a more cost-effective alternative to WGS for clinical 

applications. In WES, DNA fragments that correspond to exons are 

preferentially captured and sequenced. A typical WES analysis yields a 

sequencing coverage of 50x to 100× (65, 66). 
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Table  1 Comparison of whole genome sequencing (WGS), whole exome sequencing (WES)  

Technique 
Target 
Regions 

Sequencing 
depth 

Variants 
Detected 

Advantages Limitations 

WGS 
Entire 

genome 
>30X ~4,000,000 

• Identifies variants 
in all genomes 

• Detects genome 
rearrangements, 
CNV, novel SNP 
and structural 
variants 

• Uniform depth of 
sequencing 

• Highest cost 
• Largest volume of 

data is produced 
• Require long and 

most complex 
analysis 

• Limited 
application in 
clinical diagnostic 

WES 
2% of 

genome 
>50X~100X ~20,000 

• Identifies variants 
in all protein-
coding regions 

• Low cost 
compared to 
WGS 

• Possibility to have 
incomplete 
exome coverage 

• Cannot detect 
non-coding and 
structural variants 

• Require exome 
capture or 
enrichment 
methods during 
library preparation 

 

In addition to commonly used NGS methods, this study also utilized a low-

coverage sequencing technique known as ultra-low pass genome sequencing (ULP-

WGS) which can provide a rough overview of DNA copy number alteration at low 

cost.  

2.6.3 ULTRA-LOW PASS GENOME SEQUENCING (ULP-WGS) 

ULP-WGS is a low-cost, high-throughput DNA-sequencing method that 
can detect large-scale structural variations on the genomes with only 0.1x to 
3x sequencing coverage. This method utilizes imputation algorithms to fill in 
the missing information and improve the accuracy of variant calling. In the 
field of cancer diagnosis, ULP-WGS can be used to identify somatic copy 
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number alterations (SCNAs) and estimate the fraction of tumor DNA among 
cfDNA in patients’ blood sample (22-27)(28-31). This enables copy number 
variation profiling and tracking over time (32). 

 

2.7 PREVIOUS STUDIES OF CIRCULATING TUMOR DNA 

In a previous study (32), ULP-WGS coupled with ichorCNA software was used 
to estimate the tumor fraction in cfDNA and to screen patients with greater than 10% 
in ctDNA fraction for performing subsequent whole-exome sequencing (Figure 8). This 
lets clinicians save costs and time by filtering out samples with low tumor-specific 
DNA that would not benefit from further in-depth NGS investigation. Furthermore, 
several previous studies have shown high concordance between whole-exome 
sequencing results of ctDNA and tumor tissue samples.  

However, many issues regarding the applicability of ctDNA-based liquid biopsy 
have not been covered by previous studies, namely (i) whether the capability of this 
technique varies across cancer types, (ii) whether ctDNA can capture genetic variants 
from multiple tumor sites within the same patient, and (iii) whether the technique 
can effectively monitor cancer progression and treatment response across multiple 
timepoints. 
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Figure  8  Previous study workflow in applying ULP-WGS with their developed 
software “ichorCNA” to simultaneously estimate copy number variation and 
quantify tumor fraction from cfDNA sample of cancer patients prior WES 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 EXPERIMENTAL 
 

3.1 BIOINFORMATICS ANALYSIS  

 Sequenced ULP-WGS of ctDNA data were mapped to the hg 19 (GRCh37) 

reference genome (0.1-0.3X genome-wide coverage). Analysis of the ULP-WGS data 

was quantified the tumor DNA fraction by ichorCNA software (32). The effect of tumor 

DNA fraction on variant discovery will be further explored. For WES, sequenced data 

were aligned to the hg38 (GRCh38) reference genome using the Burrows-Wheeler 

Aligner (BWA) (67) and processed using the standard Genome Analysis Toolkit (GATK) 

pipeline (68), comprising duplicate marking, indel realignment, and base quality score 

recalibration. Germline variants in PBMC samples were called with HaplotypeCaller 

(69), which also realigned reads onto the inferred haplotypes. HaplotypeCaller model 

uses ploidy in its genotype likelihood calculations which unsuitable for somatic 

variant calling. Somatic variants in ctDNA and tumor biopsy samples were called 

using 3 tools, Mutect2 (52) for calling low-frequency variants, Strelka2 (53) for calling 

high-frequency variants, and VarScan (54) for calling high-frequency variants to 

supplement Strelka. Each tool identified somatic variants by comparing variants 

observed in ctDNA or tumor tissue against the reads found in normal DNA. Variant 

Call Format (VCF) files from 3 different variant callers were merged into single VCF 

file. The VCF file was converted to Mutation Annotation Format (MAF) files containing 

called variants of ctDNA and tumor biopsies and subjected to quality filtering. 

Candidate variants will be filtered out if the (1) variant allele frequency (VAF) in both 

ctDNA and tumor was lower than 1%. For each variant, the calculation of VAF were 

calculated from number of alternated sequencing reads found in total sequencing 

reads (2) VAF of normal tissue was higher than 5% (3) number of alternated reads in 

tumor was lower than 4 reads (4) number of total reads of normal or tumor DNA was 

less than 8 reads. Synonymous variants were included in this study in order to 

evaluate trend of concordance between patients’ paired samples along with only 
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non-synonymous variants group. In addition, cancer relevant genes and cancer 

genetic mutation in this study were annotated by the Catalogue of Somatic Mutation 

in Cancer (COSMIC) database (44, 70).  

 

3.2 CONCORDANCE ANALYSIS  

 The concordance between mutational profiles derived from WES of ctDNA 

and tumor was calculated at two levels. The first level is based on the number of (i) 

concordant variants and (ii) variants that were detected in only tumor tissue or only 

ctDNA sample (discordant variants) that passed the quality cutoff defined above. The 

numbers of concordant and discordant variants between ctDNA and paired tumor 

tissue would represent the ability of ctDNA to capture variants found in tumor tissue. 

Whereas the numbers of concordant and discordant variants between samples 

across time points would illustrate the drift of genetic variation over time. The 

Jaccard similarity index between the sets of variants will be calculated in order to 

evaluate the similarity between two sets.  

The second level of concordance analysis is based on the Pearson’s linear 

correlation of variant allele frequencies (VAF) of shared variants that were identified 

in both source materials. For the melanoma patient who has both skin and liver 

tumor tissue biopsies (MN01), the concordance between ctDNA and each tissue was 

evaluated separately. 

   

3.3 CANCER-RELEVANT GENE CLASSIFICATION 

 To identify cancer relevant genes from ctDNA and matched tumor tissue 

samples, first we divided group of genes based on each cancer type and sorted 

genes by mutation frequency from highest to lowest mutation frequency of genes 

which were found among all patients. Top  genes for each cancer type were 

compared with genes from Cancer Browser in COSMIC database (44) based on tissue 
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types related to cancer, and tier-1 genes, which have been documented with cancer-

relevant activities, from Cancer Gene Census from COSMIC (71). For additional 

databases, Human Protein Atlas was also be used to identify the protein expression 

levels in cancer patient and in normal tissue related to the cancer type. ClinVar was 

used to assess clinical significance (e.g., pathogenic, likely pathogenic, uncertain 

significance, etc.). The mutation landscape was visualized using Maftools (72) (version 

2.8.0) in R (version 4.1.3). 

  

3.4 STATISTICAL ANALYSIS 

Standard descriptive statistics were used to characterize the profile of 

mutation types (e.g., substitution, insertion, deletion), the level of overlap between 

ctDNA and tumor, the mutation landscape, and the profile of base substitutions (e.g., 

C>T/G>A, T>G/A>C) identified in each patient and cancer type. The level of overlap 

of identified variants between ctDNA and tumor tissue samples in each patient will 

be calculated as the number of shared variants detected in both ctDNA and tumor 

divided by the number of all tumor variants. Systematic differences in the profiles of 

mutation types or base substitutions between tumor and ctDNA variants will be 

further explored to identify possible underlying mechanisms, which may reflect the 

heterogeneity of the tumor. Moreover, the mutation types and base substitution 

profiles between ctDNA and tumor were compared to determine whether circulating 

tumor DNA can capture a similar profile as the tumor’s.  

Standard inferential statistics and Pearson’s correlation coefficients were 
considered significant if the p-values were less than 0.01. Mann-Whitney U test to 
check whether VAFs of concordant variants are higher than those of discordant 
variants. Venn diagrams were visualized using ggvenn (version 0.1.9). This study used 
ggplot2 (version 3.3.6) for visualization in R. 
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3.5 PATIENT CHARACTERISTICS  

ctDNA and tumor whole exome sequencing (WES) data from 18 samples from 

15 cancer patients with 4 cancer types were analyzed (Table 2). There are nine 

patients with breast cancer, one patient with sarcoma, four patients with 

gastrointestinal cancer (one cecum cancer, two colon cancer, and one duodenum 

cancer), and one melanoma patient with tissues collected from both the primary 

skin site and a metastatic liver site. There were 2 patients who more than single 

paired ctDNA and tumor samples, BC01 with 2 different timepoints of paired samples 

and MN01 with 2 paired samples of ctDNA and tumor at skin site and liver site. Lower 

than 6 months of time interval between paired ctDNA and tumor tissue sample 

collection was defined as same timepoint (APPENDIX A). Due to external logistical 

factors in some timepoints, there is lack of paired ctDNA or paired tumor tissue 

sample in some cases. Thus, in concordance analysis, some of paired samples were 

compared from cross timepoint (APPENDIX B). In concordance analysis, the time 

interval between paired ctDNA and tumor tissue sample collections varied from 0 to 

17 months, with a median of 3 months. In parallel, the data collection workflow 

starts with an ultra-low pass whole-genome sequencing (ULP-WGS) and whole exome 

sequencing of the blood samples to assess ctDNA fractions before continuing 

comparative analysis of paired ctDNA and tumor tissue samples (Figure 9). 

 Table  2. Patient characteristics  
Cancer type Number of samples 

Breast 9 (60 %) 
Sarcoma 1 (6.67%) 
Gastrointestinal 4 (26.67%) 

- Cecum 1  

- Colon 2 

- Duodenum 1 

Melanoma 1 (6.67%) 
Total 15 
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Figure  9  Study workflow of 15 cancer patients  
Blue box indicates ctDNA protocol and analysis. After a preliminary round of WES 

quality check, 6 samples with lower than 17% ctDNA fractions were also excluded 

from comparative analysis with tumor WES. 

 
 
 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 RESULTS AND DISCUSSIONS 
 

In this study, we assessed the impact of the threshold for ctDNA fraction on 
the quality of whole exome sequencing (WES) of ctDNA samples, analyzed the 
degree of concordance between WES of ctDNA and tumor samples based on cancer 
types and tumor sites, analyzed the trend of variant allele frequency associated with 
concordance among paired samples and showed the potential drift in mutational 
profiles over time when paired ctDNA and tumor tissues and paired ctDNA samples 
were collected several months apart. Due to there are some reports about 
synonymous mutations relevant to human cancer (73, 74) also we assumed that 
including synonymous variants along with non-synonymous variants would make the  
degree of concordance between ctDNA and tumor clearer. Thus, we also evaluated 
the trend of results from only non-synonymous variants and all variants included 
synonymous variants whether including synonymous variants in analysis may improve 
the trend of overall results in order to suggest including synonymous variants in 
further analysis.  
 

4.1 ASSESSMENT OF CTDNA TUMOR FRACTION THRESHOLD 

To identify an appropriate cutoff for ctDNA fraction, the relationship between 

ctDNA fractions estimated from ULP-WGS and the number of variants identified from 

ctDNA WES was first analyzed. This shows that there is a positive correlation between 

ctDNA fraction and the number of identified non-synonymous variants with non-

significant (Figure 10A, Pearson’s correlation = 0.4657, p-value = 0.069) and the 

number of all variants with significant trend (Figure 10C, Pearson’s correlation = 

0.6202, p-value = 0.006). Furthermore, very low number of non-synonymous variants 

(≤10) and all variants included synonymous variants (≤90) were identified in all 

samples with ≤16.4% ctDNA fractions and that ctDNA fractions above 30% appeared 

to have no impact on the number of identified variants. The median number of 

identified non-synonymous variants and all variants for samples with ≤16.4% ctDNA 
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fractions are 3 and 10 variants while the median for samples with >30% ctDNA 

fractions are 95 and 296 variants. The copy number profiles for the five patients with 

low ctDNA fractions were shown in Figure 11.  

When focusing the group of patients with sufficient numbers of identified 

variants (>30% ctDNA fractions), there is also a positive trend between ctDNA 

fractions and the concordance between ctDNA WES and tumor WES data on non-

synonymous variants (Pearson’s correlation = 0.4473, p-value = 0.1448, Figure 10B). 

In contrast, there is no correlation between ctDNA fractions and the concordance 

between ctDNA WES and tumor WES data in when all variants were included 

(Pearson’s correlation = 0.0516, p-value = 0.8734, Figure 10D). The degree of 

concordance was calculated as the Pearson’s correlation between the variant allele 

frequencies (VAF) of shared variants identified in both WES data. As the fluctuation in 

concordance remains high in all variants and only nonsynonymous regardless of 

ctDNA fraction, likely due to other factors from the patient and tumor, our results 

suggest that an appropriate cutoff for ctDNA fraction to ensure high quality WES data 

lies between 16% and 30%. This is in contrast with previous report (32) that 

recommended a rather lowest cutoff of 3% ctDNA fraction and 10% of optimal 

ctDNA fraction for performing WES. We found that a low number of variants were 

identified in all five samples with ctDNA fraction below 16.4% (7.20-16.42%). 

Although there may be other factors that could explain the low number of identified 

variants, our finding indicates that the cutoff for ctDNA fraction needs to be carefully 

established.  
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Figure  10 Assessment of ctDNA tumor fraction threshold 
A) Comparison between estimated ctDNA fraction and the number of non-
synonymous variants identified in ctDNA WES. Very low number of non-synonymous 
variants were identified when ctDNA fraction is 16.4% or lower. Samples with ctDNA 
fraction above 30% shows similar numbers of identified non-synonymous variants. 
The overall Pearson’s correlation between ctDNA fractions and number of identified 
variants is 0.4657. B) Comparison between ctDNA fraction and the degree of 
concordance (Pearson’s correlation) between variant allele frequency estimated 
from ctDNA and tumor tissue samples. Only samples with sufficient number of non-
synonymous variants (ctDNA fraction above 30%) are shown. The is a positive trend 
between ctDNA fraction and concordance with Pearson’s correlation of 0.4473. C), 
D) Similar plot as A), B) but used the number of all variants (Pearson’s correlation = 
0.6202) and the degree of concordance (Pearson’s correlation) between variant 
allele frequency of all variants estimated from ctDNA and tumor tissue samples for 
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the comparison, respectively. Each dot represents a sample (BC: breast cancer, GC: 
gastrointestinal cancer, SC: sarcoma, MN: melanoma). The numbers following tm 
(tumor) and ct (ctDNA) indicate the sample collection time point (1 or 2 or 3).  

 
Figure  11 The copy number profiles for the five patients with low ctDNA fractions 
From overall 18 samples of 15 patients, these five patients with ctDNA fraction 

lower than 16.42% were excluded from this study before comparative analysis. The 
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median number of identified non-synonymous variants and all variants from these 

samples are 10 (range from 3 to 90 variants) and 3 variants (range from 1-3 

variants), respectively, which were insufficient for comparative analysis. 

 

4.2 CONCORDANCE BETWEEN CTDNA WES AND TUMOR WES 

As different cancer types may exhibit different degrees of heterogeneity and 
variations in mutational profiles that can affect the concordance between ctDNA WES 
and tumor WES, data from patients with different cancer types were analyzed 
separately. The overlap between variants identified from ctDNA and tumor tissues 
WES of breast cancer patients and gastrointestinal cancer patients were showed in 
Figure 12. For patients with multiple sample collection time points, concordances 
were calculated between WES of ctDNA and tumor samples that were collected 
closest to each other to minimize the impact from the drift in mutational profile over 
time (Figure 15D and 15H). This results in six ctDNA-tumor pairs from five breast 
cancer patients, four ctDNA-tumor pairs from four gastrointestinal cancer patients, 
and two ctDNA-tumor pairs from one melanoma patient were showed in APPENDIX 
B. 

4.2.1 CONCORDANCE BETWEEN CTDNA WES AND TUMOR WES BASED ON 

CANCER TYPE 

 For breast cancer patients, the average Jaccard index for the overlap 

of identified all variants (Figure 13A) and non-synonymous variants (Figure 

13B) from ctDNA WES and tumor WES are 0.41 (SD = 0.10) and 0.59 (SD = 

0.16), with average time interval between sample collection of 6 months 

(range from 0 to 17 months). Variant allele frequencies (VAF) of shared 

variants estimated from ctDNA and tumor WES are moderately concordant 

with Pearson’s correlation of 0.71 (SD = 0.16, Figure 13A) for all variants and 

0.78 (SD = 0.13, Figure 13D) for only non-synonymous variants.  
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For gastrointestinal cancer patients, the average Jaccard index for the 
overlap of identified all variants (Figure 14C) and non-synonymous variants 
(Figure 14D) are 0.54 (SD = 0.25) and 0.64 (SD = 0.34), with average time 
interval between sample collection of 2 months. The high standard deviation 
is due to an outlier case with extremely low concordance (Jaccard Index of 
0.15, 9 shared variants out of 61 identified in both ctDNA and tumor WES 
from only non-synonymous variants and Jaccard Index of 0.18, 161 shared 
variants out of 913 identified in both ctDNA and tumor WES from all variants). 
Nonetheless, the concordant in VAF of shared variants of overall 
gastrointestinal patient cases are still moderately high for both all variants 
(average Pearson’s correlation = 0.64, SD = 0.32, Figure 14A) and only non-
synonymous variants (average Pearson’s correlation = 0.74, SD = 0.21, Figure 
14D).   

In all patients except GC02, the Jaccard indices of identified non-
synonymous variants from ctDNA and tumor tissue were higher than those of 
all variants (including synonymous variants) (Figure 12). This indicates a higher 
variety of synonymous variants. Similarly, most of the correlations of variant 
allele frequency between ctDNA WES and tumor WES in patients were also 
higher when only non-synonymous variants were considered (except for 
BC02, BC09 and GC03 where inclusion of synonymous variants improve the 
correlation). Hence, while including synonymous variants can broaden the 
identified mutational landscape, it may also introduce noises into the analysis 
depending on the cases. 

In addition, although WES of ctDNA and tumor may identify similar 
sets of variants with highly correlated variant allele frequencies (VAF) with 
Pearson’s correlation reaching 0.89 for all variants and 0.92 for 
nonsynonymous variants in some patients (Figure 13 and 14), the actual VAFs 
can differ quite a lot (e.g., higher ctDNA VAF than tumor VAF in BC08 in Figure 
13 and higher tumor VAF than ctDNA VAF in GC03 in Figure 14). This may not 
necessarily indicate poor quality of ctDNA WES because VAF in tumor WES 
can also be affected by tumor purity and intra-tumor heterogeneity  (75-78). 
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The lack of strong correlation between ctDNA fraction and the concordance 
in VAFs between ctDNA and tumor (Figure 10B and 10D) suggested that the 
latter explanations are more likely. Anyway, this discrepancy would be 
difficult to resolve because WES of multiple biopsies of the same tumor 
would be required to establish the ground truth VAFs for comparing with 
results from ctDNA. 

For concordance variants, VAFs are either consistently higher in tumor 
tissue or consistently higher in ctDNA (Figure 16). This consistency indicates 
the high quality of VAF estimated from ctDNA. At the same time, the fact that 
VAFs are sometimes higher in tumor and sometimes higher in ctDNA 
depending on the patients also illustrates the impact from several factors 
such as tumor heterogeneity, contamination of normal tissue, and the 
shedding rate of tumor DNA into the bloodstream that can heavily influence 
the VAF values. On the other hand, discordant variants are mostly rare 
variants with significantly lower VAFs than those of concordant variants 
(Wilcoxon rank sum test P-value < 0.01) as expected (Figure 17).  Rare variants 
identified only ctDNA likely originated from cancer cells in the area not 
covered by the biopsy. Hence, ctDNA can complement biopsy to obtain a 
more complete tumor genomic information (79). 
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Figure  12 The overlap of shared variants between ctDNA and tumor as identified by 
WES. 
 A) B) The overlap of all variants included synonymous variants and only non-

synonymous variants between paired WES samples of breast cancer patients, 

respectively C) D) Similar to A) B) but from gastrointestinal cancer patients.  
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Figure  13 Concordance between ctDNA WES and tumor WES in breast cancer 
patients 
A) Correlation between variant allele frequencies (VAF) of shared all variants 
identified in both ctDNA and tumor WES for each breast cancer patient. B) 
Distribution VAF in tumor. C) Distribution of VAF in ctDNA. D) E) F) Similar plots as A) 
B) C) but from shared only non-synonymous variants. Dashed lines indicate the best 
linear fits. Each color represents a patient.  
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Figure  14 Concordance between ctDNA WES and tumor WES in gastrointestinal 
cancer patients  
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4.2.2 CTDNA CAPTURES MUTATIONAL PROFILES FROM MULTIPLE TUMOR SITES 

For the melanoma patient with two tumor sites, a primary skin site 

and a metastatic liver site, tissues from both sites were collected within the 

same week, and ctDNA sample was collected in the following month. ctDNA 

WES is slightly more concordant with WES of the skin tissue than with WES of 

the liver tissue both when considering all variants (Figure 15A) and when 

considering only non-synonymous variants (Figure 15E). The Jaccard indices 

for the overlap of identified all variants are 0.11 between ctDNA and skin site 

and 0.22 between ctDNA and liver site, respectively. The Jaccard indices for 

the overlap of identified non-synonymous variants are 0.23 and 0.47, 

respectively. The Pearson’s correlations of VAF estimated from ctDNA and 

tumor tissue are 0.71 and 0.31, respectively, for all variants, and 0.74 and 

0.68, respectively, for non-synonymous variants. Furthermore, ctDNA can 

capture 56 total variants (Figure 15D) and 22 non-synonymous variants (Figure 

15H) that overlap between the two tumor sites as well as 38 and 12 

additional total and non-synonymous variants, respectively, that are unique 

to one tumor site. It is interesting that the mutational profile identified from 

WES of ctDNA is more concordant with the metastatic liver site than the 

primary skin site (Figure 15D and Figure 15H), while the correlation of VAF 

between ctDNA and tumor from primary site is still higher than between 

ctDNA and the metastases site (Figure 15A and 15E). This may be due to two 

reasons. First, more DNA molecules may be shed from metastatic cells into 

the bloodstream compared to the primary site. Second, the lower number of 

unique variants from the metastatic site suggests that the metastatic tumor is 

less heterogeneous than the primary tumor in terms of variation but the 

higher VAFs in the primary site still indicate a better relative concentration of 

primary site variants in ctDNA sample. 
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Figure  15 Concordance between ctDNA WES and tumor WES in melanoma patient 
with multiple tumor sites. 
A) Correlation between variant allele frequencies (VAF) of shared all variants 
identified in both ctDNA and tumor WES for a melanoma patient with two tumor 
sites. B) Distribution VAF in tumor. C) Distribution of VAF in ctDNA. D) Overlap 
between all variants identified from ctDNA and tumor tissues from different sites of 
the melanoma patient. E) F) G) H) Similar plots as A) B) C) D) but from shared only 
non-synonymous variants.   
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Figure  16 Line plot of paired allele frequencies of concordant variants from tumor 
and ctDNA which were collected in the same or closest timepoint. 
 A) B) showed trends of VAF tend to be higher in tumor among all variants and only 
non-synonymous variants, respectively while C) D) showed VAF trends tend to be 
higher in ctDNA. 
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Figure  17 Boxplot of variant allele frequency of ctDNA concordant variant and 
discordant variants.  
Most of concordant groups had high VAF than discordant groups of ctDNA. A) B) from 
all variants and only non-synonymous variants of breast cancer patient group, 
respectively C) D) Similar plots as A) B) but from gastrointestinal cancer E) F) Similar 
plots as A) B) but from a melanoma patient which the concordant variants were 
from ctDNA and tumor at skin site G) H) Similar plots as E) F) but from tumor at liver 
site. 
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4.3 THE DRIFT IN MUTATIONAL PROFILES OVER TIME  

Because ctDNA samples were collected at different time interval after tumor 

tissue biopsies in each case, the extent of the drift of mutational profiles captured by 

ctDNA over time can also be indirectly evaluated. There is almost no correlation 

between the amount of time interval between sample collections and the degree of 

concordance in estimated VAF (Figure 18A, Pearson’s correlation = -0.15, p-value = 

0.6206) when all variants were considered and a moderate negative correlation when 

only non-synonymous variants were considered (Figure 18B, Pearson’s correlation = -

0.49, p-value = 0.0753). The number of discordant variants (unique to ctDNA or to 

tumor WES) also increases, from a median of 147.5-192 total variants and 18.5-25.5 

non-synonymous variants to a median of 130-87.5 and 30.5-18.5, respective, as time 

passes. A similar finding has been reported (49). However, the drop in concordance, 

which likely resulted from the drift in mutational profiles as the tumor progresses, 

reiterate the need for inexpensive, non-invasive technique that can be repeatedly 

performed to monitor the molecular status of the tumor over time 

Figure  18 Negative relationship between the time interval between ctDNA and 
tumor tissue sample collections and the degree of concordance of estimated VAFs  
A) from all variants (Pearson’s correlation = -0.15) B) from only non-synonymous 
variants (Pearson’s correlation = -0.49). Each dot labeled with patient code 
followed by tumor and ctDNA sample with number of timepoint, respectively.  
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 As there are two cases where ctDNA samples were collected at two 

timepoints, we can evaluate the drift in mutational profiles overtime in these 

patients. BC01 patient has two ctDNA and tumor sample timepoints while GC01 has 

two ctDNA timepoints and a single tumor sample timepoint (Figure 19). The results of 

BC01 and GC01 showed most variations of ctDNA at 2nd timepoint has concordant 

with ctDNA and tumor from 1st timepoint. It indicated capability in capturing major 

variants which highly presented in this patient overtime. In addition, the drift in 

mutational profile of ctDNA 2nd timepoint of BC01 were only detected by tumor from 

2nd timepoint which were collected 2 months previously. There are 11 and 2 variants 

of all variants and only non-synonymous of ctDNA 2nd timepoint were detected in 

only tumor at 2nd timepoint. These 2 non-synonymous variants are 

TEX13D_Ala135Val_c.404C>T and ZNF367_Arg109LeufsTer10_c.326_348del which 

TEX13D gene has been reported highly point mutation in breast cancer patient from 

COSMIC database but there is no report in variant level. This indicates that ctDNA 

capable to capture cancer-relevant gene and show the relationship of reiterated 

ctDNA along with tumor tissue progression when time passed.  
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Figure  19 Concordance between ctDNA WES from different timepoints and tumor 
WES show drift of mutation  
A) From BC01 patient who has 2 different timepoint of ctDNA and tumor samples. 

Unique variants of ctDNA sample (yellow) in 3 Venn diagram, ctDNA two timepoints 

and the first timepoint of tumor, was compared with second timepoint of tumor 

sample (green) B) GC01 patient who has 2 timepoints of ctDNA samples and single 

timepoint of tumor sample. 

 

4.4 WES OF CTDNA AND TUMOR TISSUE IDENTIFY SIMILAR MUTATIONAL LANDSCAPES 

 The ability of ctDNA WES to capture clinically relevant characteristics of the 

tumor mutational landscape was evaluated based on whether ctDNA WES can 

identify similar mutation profile (Figure 20) and base substitution frequencies (Figure 

21), which could be matched against known mutational signatures to identify the 

underlying molecular mechanism of cancer, and variants of the top cancer-related 

genes as tumor WES.  
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From Figure 20 found the consistent mutation type profile between ctDNA 

and tumor samples in individual patients from both non-synonymous and all 

variants. The profile of mutation type in all variants included the variants from non-

coding regions (i.e., 5’ UTR, 3’UTR, splice region, intron region) which were reported 

direct and indirect effects on cancer were also considered (73, 80, 81). Interestingly, 

even though we performed whole-exome sequencing but the results were able to 

capture other mutation types which from non-exonic regions, especially intron. Intron 

mutations were captured at higher rates than most frequent mutations in exon such 

as missense mutation and were found at the highest number of mutations than all 

mutation types from both ctDNA and tumor samples. This can be explained by 

evidence from the previous study that significantly high number of mutations from 

non-exonic regions can be obtained from exome sequencing data of breast cancer 

patients. When comparing the number of mutations from exonic regions with non-

exonic regions, the number of mutations in non-exonic regions was higher than in 

exonic regions 1.3 times up to 4.6 times based on different capture reagents in library 

preparation step. Also, there were reports of 50-64.5% of sequenced bases outside 

target regions were captured in library preparation step of exome sequencing (82, 83). 

Despite the fact that a captured library is highly enriched for target regions, a 

significant fraction of DNA fragments still fall outside of target regions, which is 

dependent on capture efficiency (84). 

For the comparison between profile of base substitution between ctDNA and 

tumor samples in overall patients showed in pair from left to right, respectively 

(Figure 21). There were also consistent in all pairs of ctDNA and tumor samples. 

Moreover, individual patients’ signatures from base substitutions can be different or 

similar to other patients in the same cancer type. For instance, the predominant 

number of C>T base substitutions which associated with signature 1A/B, 6, 7, 11, 15, 

or 19 were predominantly found in breast cancer patients, BC01, BC08, BC09, also in 

gastrointestinal cancer patients, GC03 and GC04. The signatures were found in 
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patients can indicate underlying mechanism such as signature 1/B associated with 

elevated rate of spontaneous deamination of 5-methyl-cytosine which mostly found 

in many cancer types (85). 

In Figure 22, Top genes for each cancer type were downloaded from the 

Cancer Gene Census via COSMIC database (also called tier-1 genes). In almost all 

cases, the same variants of tier-1 genes and the same base substitution profiles 

identified in tumor WES could also be identified in ctDNA WES. For breast cancer 

patients, known oncogenes and tumor suppressor genes such as ESR1, KRAS, PIK3CA, 

PIK3R1, MUC16 were consistently identified in both ctDNA and tumor WES across 

patients (Figure 21A). A discordant case, such as the gain of PICK3CA variant in ctDNA 

WES of patient BC02, do not appear to be correlated with low ctDNA fractions nor 

low VAFs. For gastrointestinal cancer patients, 8 tier-1 genes were identified among 

top frequently mutated genes, namely APC, CASP8, GRIN2A, MYH9, TP53, ASXL1, 

CDH11, and KRAS. All variants of tier1 genes were detected in both ctDNA and tumor 

samples (Figure 21B). For the melanoma patient with two tumor sites, three tier-1 

genes, namely PSIP1, RSPO2, and SF3B1, were identified in both tumor tissues and 

ctDNA (Figure 15C). Three additional variants of tier-1 genes (BRCA2, MAF, and 

HOXD11) were identified exclusively in one sample.  

From mutational landscape of all samples, WES of ctDNA can consistently 

capture top cancer-related genes (Cancer Gene Census (71)) identified in tumor 

tissues from all cancer types (Figure 22), namely ESR1, KRAS, PIK3CA, PIK3R1and 

MUC16 genes for breast cancer, APC, CASP8, TP53, KRAS, CDH11, GRIN2A, ASXL1 and 

MYH9 genes for gastrointestinal cancer, and PSIP1, RSPO2, and SF3B1 genes for 

melanoma/liver cancer. CtDNA WES can also identify additional top cancer genes not 

found in tumor, but further validations would be required. Overall, these findings 

indicate that WES of ctDNA is reliable for probing the genetic profiles of tumor.  
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Top  known cancer-related genes in breast cancer patient group, including 

ESR1, KRAS, PIK3CA, PIK3R1, FAT1 (86-88), MED12 (89, 90) and MUC16 (91-93) genes 

had been associated with breast cancer. Mutation of ESR1 gene is a common cause 

of acquired resistance to therapy with an aromatase inhibitor in metastatic cancer. 

ESR1 may play a role in metastatic progression in breast cancer (94, 95). PIK3CA and 

PIK3R1 mutations can lead to oncogenesis and hyperactivity of PI3K signaling 

pathway which is involved with cell cycle, growth and proliferation (96).  

Furthermore, KRAS mutations, which is an important factor in tumor initiation, 

progression, metastatic formation in early stage of colorectal cancer (97) as well as in 

gastrointestinal carcinomas (98) were detected in both breast cancer and 

gastrointestinal cancer groups. The top 20 frequently detected genes in 

gastrointestinal cancer group include known cancer genes, including APC, CASP8, 

TP53, KRAS, CDH11, GRIN2A, ASXL1 and MYH9. APC have been detected in the 

majority of colorectal tumors (99). In addition, APC is a potential prognostic 

biomarker in colorectal cancer (100), as well as GRIN2A (101, 102), ASXL1 (103), MYH9 

(104), TP53 (105), CDH11 (106), and CASP8 (107). CASP8 is associated with apoptosis 

pathway which is one of the mechanisms that generate cell-free tumor DNA in the 

bloodstream. Presumably, CASP8 mutations may be linked to the level of ctDNA 

fractions (108).  

For the melanoma patient, PSIP1, RSPO2, and SF3B1 gene, which were 

reported in Cancer Gene Census, are among 22 genes that were found to be 

mutated in both ctDNA and the two tumor sites. Only SF3B1 gene had been directly 

reported as a likely pathogenic and common mutation in melanoma (109-111). 

Although ctDNA can capture additional mutations, these mutations were not strongly 

associated with melanoma. 
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Figure  20 The profile of mutation type 
An example profile of mutation type from single patient which compared between 

ctDNA (left) and tumor (right) sample from all variants (top) which included 

synonymous and non-coding regions. 

 

  
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 48 

 

Figure  21 The profile of base substitution 
A) The profile of base substitutions in 5 breast cancer patients consists of 6 pairs of 

ctDNA and tumor samples which there is a BC01 patient with two timepoints. Top 

left box plot showed overall base substitutions from all patients and percentage of 

mutations were calculated from number of each base substitution type with total 

number of base substitutions in each sample. C>T, C>G, T>C, C>A, T>G, and T>A 

base substitutions were indicated in red, purple, yellow, blue, orange, and green 

color, respectively. Top right box plot showed type of base substitution, transition 

(Ti) and transversion (Tv), from overall patients with percentage of mutations. The 

overall profile of base substitutions in the group showed on the bottom.  B) as 

similar to A) but in 4 gastrointestinal cancer patients with GC01 patient, there is two 

ctDNA samples from different timepoint with one tumor sample. C) as similar to A) 

and B) but in a melanoma patient with two multiple tumor sites and a ctDNA 

sample.  
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Figure  22 ctDNA WES identifies similar mutation landscape of top cancer-related 
genes as tumor tissue’s.  
Top cancer-related genes for each cancer type were downloaded from Cancer Gene 
Census via COSMIC database. Genes were ordered based on mutation frequencies 
across patients of the same cancer type (Frequencies shown on the right y-axis). 
Tumor mutational burden (TMB) for each tumor is indicated at the top of the plot. 
Sample types and patient IDs are indicated with colors just below the plot. Base 
substitution profiles are shown at the bottom of the plot. A) The mutational profiles 
identified from ctDNA and tumor WES of breast cancer patients. B) Similar plot for 
gastrointestinal cancer patients. C) Similar plot for the melanoma patient with two 
tumor sites. 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 
 

Our study has assessed the capability of ctDNA to capture tumor mutational 
profile and evaluated concordance between tumor and ctDNA variants from different 
sampling time points. We have shown that the level of ctDNA fraction is related to 
the degree of correlation between somatic variants identified in ctDNA and tumor 
tissue samples. Our result indicates that increasing the ctDNA fraction threshold from 
previous report can improve the quality of WES analysis and variant calling of ctDNA 
samples.  We found that including synonymous variants into the concordance 
analysis improves the correlation between ctDNA and tumor in some cases. Hence, 
we recommend doing this on a case-by-case basis. In addition, we identify small 
changes in mutation profiles over time that do not significantly affects the degree of 
concordance between ctDNA and tumor samples that were collected several 
months apart. However, the shorter gap time between tumor tissue and ctDNA 
sample collection led to higher concordance level. Lastly, WES analysis of ctDNA has 
potential to capture genetic alterations from multiple tumor sites within the same 
patients and complement WES analysis of tumor tissue. From these advantages, 
ctDNA analysis has a strong potential for clinical diagnostic, prognostic, and treatment 
follow-up. 
 

Limitation of this study 
The number of patients is not high enough to establish statistical significance 

regarding the concordance between whole exome sequencing of ctDNA and tumor 
tissue, especially as there are multiple factors, such as cancer type, ctDNA fraction, 
and time interval between sample collections, that contribute to the variability of 
mutational profiles identified from ctDNA. Due to logistical and patient health issues, 
we could not obtain samples from more time points to analyze the drift in 
mutational profiles over time quantitatively. These issues also lengthened the time 
interval between tumor tissue biopsy and ctDNA sample collections, which 
consequently affected the level of concordance. The analysis of the drift in 
mutational profiles over time was not ideal because the trend was based on data 
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from multiple patients with different molecular characteristics and it lacks validation. 
Nonetheless, this study’s cohort is still consisted of samples with diverse molecular 
signatures and ctDNA characteristics and should be able to represent real 
applications of whole exome sequencing on ctDNA samples. 
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