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This thesis presents fundamental solutions of a two-dimensional, elastic, 

multi-layered medium under surface loadings by taking the influence of material 

micro-structure into account. An underlying mathematical model for simulating 

such small-scale influence is established within the continuum-based framework via 

the well-known couple stress theory. For each material layer, the generalized 

Navier’s equation governing the displacement field is established and the method of 

Fourier integral transform is applied to derive its general solution in a transformed 

space. A set of boundary conditions and the continuity of fields along the material 

interfaces are enforced to obtain a system of linear algebraic equations governing 

all unknown degrees of freedom of the whole layered medium in the transformed 

space. An efficient quadrature is then adopted to carry out all involved integrals 

arising from Fourier integral transform inversion. A selected set of results is also 

reported not only to confirm the validity of established solutions but also to 

demonstrate the capability of the selected mathematical model to simulate the size-

dependency when the external and internal length scales are comparable. An 

approximation of a functionally graded material rested on a rigid base is also 

investigated using the same model. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter briefly offers an overview of the proposed research. The key motivation 

together with the significance of the present study is provided, first, and then followed 

by the background and review of relevant literatures to not only demonstrate the 

current growths in the area but also pinpoint the existing current gap of knowledge. 

The objective, the scope of work, the methodology, and the research procedure for the 

present investigation are then summarized. Finally, expected outcomes and 

contribution of the proposed study are clearly addressed. 

1.1 Motivation and Significance 

Technology in the present time has improved dramatically and due to the fact that the 

innovations in manufacturing are also develop in the same direction, a lot of 

instruments with great functions are created. Small-scale materials (e.g., carbon 

nanotubes, lithium ion, nano-clusters, nano-crystals, etc.) and various tiny devices 

(e.g., MEMS, NEMS, micro- and nano-sensors, actuators, chips, etc.) have a large 

reputation in many industrial societies these day; including, natural and medical 

sciences, engineering, and modern industries. (e.g., Ratner and Ratner 2003, Booker 

and Boysen 2005, Park et al. 2011, Yang et al. 2016) They are taking over the long-

time-used traditional macro-material. The reason regards to its popularity comes from 

its desirable properties (e.g., Yang et al. 2001, Liao et al. 2005, Peng et al. 2008, Qian  

et al. 2008). Therefore, many studies on this particular kind of material are 

undergoing extensively.  

 To create a better understanding toward nanoscale technology, the following 

examples of materials and instruments are given. Carbon nanotubes are used as a 

reinforcement in cement-based materials to control micro-cracks due to its useful 

physical properties (i.e., tensile strength, bonding force, Young’s modulus, and 

ductility) that is much higher and better than the other reinforcement materials (Han et 

al. 2011). Nanowires, made of soluble metals, are utilized in the creation of molecular 

electronics such as transistors and memory devices in electronics (Booker and Boysen 
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2005). Nanosensor is one of the interesting nanoscale devices that adopts 

spectroscopic techniques to detect the type of material or its composite as those 

molecules are excited by a different frequency of light (Booker and Boysen 2005). 

 The trend of material coating has increased through decades. Apart from being 

an additional surface for the macro-structures, it has become one of the choice in 

producing the tiny element as it can maintain the size of the products to be about the 

same as the without-coating version while its physical features may get modified due 

to the side-effect of coating. For instance, Nano-coating on glass-like materials that 

makes it become hydrophilic or hydrophobic matters (Ratner and Ratner 2003). 

Silicon nitride (SiNx) coating on Gallium arsenide (GaAs) material in optoelectronic 

devices that capable of blocking the chemical reaction that could lead to a reducing in 

its efficiency (Lu et al. 2013). A multiwalled reinforcement in carbon nanotubes has 

turned out to be one of the popular choices for the armaments due to its significant 

low values of fracture strengths and smaller failure strains (Peng et al. 2008) 

These instruments and materials are usually coated in multiple layers and each 

layer may provide different material properties which make it become more 

complicated when the whole behavior of the object has to be defined. The most basic 

kind of test that often perform to obtain the material property is the indentation test 

which can be done in a wide ranges of scale, from macro- to micro- or even nano-

scale. Unfortunately, as the materials are in micro-range, the test cannot be carried out 

easily due to its extent. Hence, modeling is chosen, instead, to carry out all the study 

using capable theories and assumptions. 

 In the usual situation, a well-recognized theory, Cauchy continuum or classical 

theory, is chosen as a core basis in a simulation. But it is evident from several works 

(e.g., Fleck et al. 1994, Ma and Clarke 1994, Wong et al. 1997, Chong and Lam 1999, 

Chong et al. 2001), that the behavior of the microscopic structure from the experiment 

has a completely deviate trend compared to those in macro-scale. This trait is later 

called size-dependence and it makes many scientists become aware of the significance 

of the material body’s dimension. Therefore, a lot of researches and developments for 

these small matters have been taken up till dates. Numerous theories can be used for 

the study on size-dependency effects for such a small-scale medium. One of the 
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reputable theories that can reflect the scaling effects is couple stress theory which 

have been used in many applications.  

 For couple stress theory, couple stress is the main quantity that makes this 

theory becomes capable of behaviors observation. The same is indisposed for the 

classical continuum as the couple stress has never appeared in the continuum. This 

couple stress theory has become more popular from the fact that when there is no 

association of the couple stresses on the body of material, the theory can simply turn 

back to be like those results  from conventional theory and it is expected to be more 

accurate and reliable theory as the characteristic length of material has been taken into 

account. Therefore, couple stress theory has become popular in the present time. 

Every mechanics problem, such as, dislocation, crack, and indentation, that were 

solved in classical theory context, can also be developed in the same sense using 

couple stress theory. For that reason, several publications of the related works and 

applications using couple stress theory (e.g., Gourgiotis and Georgiadis 2008, 

Gourgiotis and Georgiadis 2011, Gourgiotis et al. 2011, Itou 2013, Seyyed 

Fakhrabadi 2015, Baxevanakis et al. 2017, Baxevanakis et al. 2017, Zisis 2018) are 

released in the last decade. 

 There were only a few works for the type of problem which a medium’s 

surface exposes to an external excitation in the framework of couple stress theory. As 

it has been known that the basic of indentation problem came from the idea of loading 

on the top of the surface, the very first work was introduced as a point load subjected 

to the half-plane (Muki and Sternberg 1965). Nevertheless, the work did not receive 

much response.  Until recent years, the microscale element trend raise up among 

industries, these sorts of problem are then once again revisited (Zisis et al. 2014).  

As it has been stated before that the multilayer are taking a big step in the 

modernized industrial community and due to the urge of producing an infinitesimal 

element, some properties of material has to be determined initially. Since the medium 

has become more complicated than the homogeneous system, an existing solution that 

were derived in the past cannot demonstrate the behaviors of these material. 

Therefore, the fundamental solution for the multilayer media subjected to an arbitrary 

surface loading is chosen as a topic in this study. The parametric study along with the 

other interesting characteristic will be investigated, too.  
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1.2 Background and Review 

Classical continuum has been the core of knowledge in solid mechanics and rooted 

for a long period of time. Until 1887, Voigt started to propose an idea that polar-

forces should acting on the body of continuum as it could be more realistic than the 

long-time-used conventional theory. But Voigt neither gave a full detail nor a model 

of his idea (Voigt 1887, Vardoulakis 2019). Two decades later, Cosserat and Cosserat 

(1909) started to purpose a mathematical model for the theory by adding couple-

stresses to the system. The action led to the reconstruction of force-equilibrium 

equations and forming an additional couple-stress equilibrium equation. The 

consequence of involving couple stresses in the domain leads to a non-symmetric 

force-stress tensor which is unusual for the classical theory. Kinematics quantities for 

this theory are displacements and rotation. The number of degrees of freedom in 

continuum has increase doubly from three to six which makes the whole theory 

become much more complicated than the classical theory. In addition, the Cosserats 

were using microrotation that describe the rotation of each infinitesimal element 

independently which this trait should not appear in continuum mechanics (Neff 2006, 

Grekova 2012, Vardoulakis 2019). Therefore, only a few numbers of applications 

were found during that period. 

 In 1960s, several researchers brought back the Cosserats theory, developed the 

constrained rotation for the continuum mechanics and used it instead of the original 

microrotation (Mindlin and Tiersten 1962, Mindlin 1963, Koiter 1964, Mindlin 1964, 

Toupin 1964). This theory was latter called linearized couple-stress theory. The 

developed theory was derived under an acceptable physical explanation and the 

number of degrees of freedom was reduced to be only three. It is also remarked that 

the material properties used in this theory need to be restricted with some constrains.  

Even though, some parts of the theory are left indeterminate, this couple stress theory 

has been well-recognized by many academics and has been applied to several works 

in mechanics engineering.  

 Sometimes later, the works once again revisited, an additional equilibrium 

equation based on representative volume element was generated to govern the nature 

of couple stresses (Yang et al. 2002). The relations led to a mathematical conclusion 

of having symmetrical couple stress tensor, however, the theory still suffer from the 
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indeterminacy of the spherical part in couple stress tensor and faced some unreal 

physical conditions due to the improper assumption used during the derivation of an 

additional equilibrium equations (Münch et al. 2017). Nonetheless, the theory was 

entitled as ‘modified couple stress theory’ and grouped as one of the indeterminate 

couple stress theories. 

In these recent years Hadjesfandiari and Dargush (2011) went back to the very 

first indeterminate couple stress theory and claimed that they had found an important 

characteristic of couple stress tensor that were missed by other researchers. The 

remarkable point in the discovery was that couple-stresses is a skew-symmetric tensor 

and with this statement some material parameters was reduced. Furthermore, it had 

been found that the spherical part that was a problematic issue in the past vanished, 

and every parameter could be determined and admissible in both mathematical and 

physical sense unlike all the previous presented theories. This theory was set under 

the name ‘consistent couple stress theory’. Later, other researchers found that the 

proposed theory was actually not consistent at all as the boundary conditions were ill-

posed from the start. Despite all that, it was not mean that this consistent couple stress 

theory was all wrong. It was rather a special case of the typical couple stress theory 

(Neff et al. 2016). 

 The first work in the area of surface on loading problems in couple stress 

theory was studied by Muki and Sternberg (1965). Homogeneous isotropic elastic 

half-plane in plane-strain condition was excited by various types of load (i.e., 

concentrated normal load, concentrated shear load, uniformly distributed normal load, 

uniformly distributed shear load) was observed. Moreover, an indentation problem for 

the same medium was introduced in the final part of the study where a rigid flat-ended 

punch is applied on the surface.  

After the work of Muki and Sternberg, no appearance of work associated in 

this field of problem were found for decades. Until 2014, another research in the 

indentation problem was published (Zisis et al. 2014). The solutions were derived 

through the method of stress function and singular integral. Three types of indenter 

were selected in the observation including, flat punch, cylindrical indenter, and wedge 

indenter. Although, the research focused on the indentation, this work showed a good 

potential in a development of this branch of knowledge in the future. Next, in 2016, 
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(Gourgiotis and Zisis solved for the same problem as Zisis et al. (2014) by 

determining the Green’s function through singular integral transform before applied to 

the indentation for cylindrical rigid punch, rigid wedge, and any punch that generating 

uniform pressure. The study was remaining in the homogeneous isotropic elastic half-

plane. Then, another punching work launched by Karuriya and Bhandakkar (2017) 

which follow Zisis et al. (2014) scheme but modified the medium to be a finite 

thickness single layer of homogenous isotropic elastic material having a rigid 

foundation where it is subjected to a rigid, cylindrical, and wedge punch. More 

recently, another associated publication investigated on the Burmister’s problem for a 

single layer media that is bonded perfectly to inflexible base (Zisis 2018). Two 

different sets of boundary condition at the bottom surface of the layer were set as 

rotation at the bottom is equal to zero and, for the other case, couple stress is equal to 

zero. These two cases were observed and compared over two different Poisson’s ratio 

value through the results of field quantities  

From a framework of all half-plane and layer problems in couple stress theory, 

it has been found that there is a great possibility of successfully extending the model 

into the multilayer fashion. More importantly, those set of problem in the half-plane 

and layer can be utilized as a benchmark solutions for the verification of this soon to 

be developed solutions as all of them is the special case of the layered problems to 

ensure the correctness.   

1.3 Objectives 

The present research aims to (1) develop a set of fundamental solutions of a layered 

elastic medium under prescribed surface loading by taking into account the length-

scale effect and (2) investigate the size dependent behavior of predicted elastic fields. 

1.4 Scopes of Work 

The research is aimed to be conducted within the following context: (i) a medium is 

two-dimensional, consists of infinite layers with constant thickness adhered perfectly 

at the interfaces, and is rested on a rigid foundation; (ii) each layer is made of a 

homogeneous, isotropic, linearly elastic material with its behavior governed by the 

linearized couple stress theory (Mindlin and Tiersten 1962, Mindlin 1963, Koiter 

1964); the body force and body couple vanish throughout the medium; and the 
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medium is only excited by a set of arbitrarily distributed, surface loadings. In 

addition, all involved governing field equations and the corresponding value problem 

are confined to linear and static cases (i.e., the inertia effect is assumed negligible). 

1.5 Methodology and Research Procedure 

The methodology and research procedure for the present study can be summarized as 

shown in the following step: 

(1)  A two-dimensional, layered medium is first fictitiously partitioned 

along the material interfaces into a collection of infinite layers of 

uniform thickness. 

(2)  A linearized couple stress theory (Mindlin and Tiersten 1962, 

(Mindlin 1963, Koiter 1964); is adopted to form a set of basic field 

equations (i.e., equilibrium equations, kinematics, and constitutive 

laws) of each infinite layer. Equilibrium equations in terms of the 

displacement in in-plane condition are then derived. 

(3) A method of Fourier integral transform is employed to derive a pair of 

linear ordinary differential equations governing the displacement of 

each layer in the transform space.  

(4) A standard technique in the theory of differential equations is adopted 

to derive a general solution of the displacement in the transform space. 

The general solutions for other field quantities in the transformed space 

such as the rotation, the force stress and the couple stress are then 

obtained via the direct substitution in the transformed field equations. 

(5) Boundary conditions at the top surface of the top layer and at the 

bottom surface of the bottom layer together with the continuity along 

the material interfaces are employed to form a set of linear algebraic 

equations governing all unknown coefficients. 

(6) An efficient solution procedure is chosen to determine all unknown 

coefficients and then, an existing algorithm for carrying out Fourier 

integral inversion is adopted to determine all field quantities in the 

physical space. 
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(7) The proposed solution procedure is implemented in a form of an in-

house computer code and then verified by comparing with existing 

benchmark cases. 

(8) Results for some fundamental loading cases are then summarized and 

reported. 

(9) An extensive parametric study is performed to explore the length-scale 

effect and size dependent behavior of predicted responses. 

1.6 Expected Outputs and Contributions 

The current work should offer a better understanding in mechanical responses and 

size dependent behavior of small-scale layered media under surface excitations within 

the context of theoretical simulations via a couple-stress, linear elasticity theory. An 

implemented in-house computer code is capable of simulating responses of interest in 

the level of complexity involved and, in addition, offering an initial 

estimation/evaluation before conducting any experiments to mainly save cost and time 

associated with random/trial-and-error processes. Furthermore, results from the 

present study should provide a fundamental basis for the potential extension of 

applying the couple stress theory to explore the size dependent behaviors and length-

scale effects of other types of boundary value problems such as dislocations, cracks, 

and indentations.   
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CHAPTER 2 

PROBLEM FORMULATION 

 

In this chapter, the description and statement of the research problem are stated 

clearly. Then, the linearized couple stress theory is briefly summarized. Finally, a set 

of basic field equations governing field quantities for two-dimensional media 

subjected to a plane-strain condition is established. A pair of governing equations in 

terms of the in-plane displacement is also summarized. 

2.1 Problem Description and Statement 

Consider a two-dimensional, infinite, layered medium as depicted in Figure 2.1. The 

medium consists of N  infinite layers with a constant thickness and perfectly bonded 

along the straight interfaces. A two-dimensional, Cartesian reference coordinate 

system { , ; }x y O  is chosen such that the origin O  is located at the top surface of the 

1st layer; the x-axis spans along the infinite direction of the layer; and the y-axis 

directs downward. The bottom surface of the last layer (i.e., the Nth layer) is bonded 

perfectly to the rigid foundation whereas the top surface of the top layer (i.e.,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.1  Schematic of two-dimensional layered medium rested on rigid 

foundation and subjected to surface loading 
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the 1st layer) is subjected to arbitrarily distributed normal traction 0p , arbitrarily 

distributed shear traction 
0q , and arbitrarily distributed couple 

0m  over the region 

[ , ]x a a − . Each layer is made of a homogeneous, isotropic, linearly elastic material 

and subjected to zero body force and body couple. The thickness of the medium in the 

direction perpendicular to the x y−  plane is assumed significantly large such that the 

plane-strain condition prevails.  

 A statement of the research problem is to determine the associated elastic field 

(e.g., the displacement, the rotation, the force stress, and the couple stress) within the 

layered media due to the applied surface loading. The length-scale effect and size 

dependency of the predicted response is also of interest.  

2.2 Linearized Couple Stress Theory 

According to the linearized couple stress theory proposed by Mindlin and Tiersten 

(1962), Mindlin (1963), and Koiter (1964), equilibrium equations resulting from the 

conservation of linear and angular momentum are given, in a three-dimensional, 

Cartesian coordinate system 1 2 3{ , , ; }x x x O , by  

, 0ji j i+ F =  (1) 

, 0ji j ijk jk i+ +C =    (2) 

where ji  denotes a force-stress tensor; ji  denotes a couple-stress tensor; ijk  is a 

standard permutation tensor; and iF  and iC  are the volumetric body force and the 

volumetric body couple, respectively; and ,if  stands for the spatial derivative of a 

function f  with respect to the coordinate ix . From here to what follows, standard 

indicial notation and summation convention apply except stated otherwise. 

In the absence of the body force and the body couple throughout the body, the 

equilibrium equations (1) and (2) become 

, 0ji j =  (3) 

, 0ji j ijk jk+ =    (4) 

The force-stress tensor ji  can be further rewritten in symmetric and skew-symmetric 

parts as follows 
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( ) [ ]ji ji ji= +    (5) 

where the parentheses and bracket are used to designate the symmetric and skew-

symmetric parts of the tensor, respectively. 

Also, the couple-stress tensor 
ji  is decomposed into sphearical part ( )S

ij  and 

deveatoric part ( )D

ij  as shown 

( ) ( )D S

ij ijji = +    (6) 

where the spherical part and deviatoric part of couple stress can be described as 

( )
i

D

ij jm =   (7) 

( ) 1

3

S

ij kkij  =  (8) 

It is worth noticing that in the classical, size-independent linear elasticity theory, the 

couple-stress tensor does not exist or vanishes, and the force-stress tensor is 

essentially symmetric.  

By substituting (6)-(8) into (3) and (4), it yields one equilibrium equation as 

( ), ,

1
0

2
jk j jkl il jim = −  (9) 

Note particularly that the spherical part of the couple stress tensor is eliminated from 

the equation as ,((1/ 3) ) 0i jj kl ikjk   =  and the spherical part itself is left indeterminate 

in linearized couple stress theory. 

The force traction it  and the moment traction im  on the smooth boundary 

relate to the force-stresses and couple-stresses through 

i ji jt = n  (10) 

i ji jm = n  (11) 

However, according to the theory, the boundary conditions at any point in continuum 

or at any smooth section can be specified a priori but only five of them (i.e., three 

force-tractions and two couple-tractions) are eligible as following expression 

( )
( ),

1

2

n

i ji j ijk j nn k
P n n m = −  (12) 

( )
( )

n

i ji j inn
R m n m n= −  (13) 
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where 
( ) i j ijnn

m n n m=  is the normal component of the deviatoric part of couple stress 

tensor. 

The gradient of the displacement vector 
iu , denoted by 

,i ju , can be also decomposed 

into symmetric and skew-symmetric parts as 

, ( , ) [ , ]i j i j i ju = u +u  (14) 

where the symmetric part 
( , )i ju  and the anti-symmetric part 

[ , ]i ju  are recognized as the 

infinitesimal strain tensor 
ij  and the infinitesimal rotation tensor 

ij  

( , ) , ,

1
( )

2
i j ij i j j iu = = u +u  (15) 

[ , ] , ,

1
( )

2
i j ij i j j iu = = u u −  (16) 

It is important to remark that in couple stress theory, the rotation tensor ij  is used as 

the measure of the curvature of a material element. Due to the skew symmetry of ij , 

it can be represented in terms of an axial vector, called the rotation vector i , as 

,

1 1

2 2
i ijk kj ijk k j= = u     (17) 

ji ijk k=    (18) 

,i i j id = dx   (19) 

The gradient of the rotation tensor can also be decomposed into symmetric and 

skew-symmetric parts as  

, ( , ) [ , ]i j i j i j=  +  (20) 

( , ) , ,

1
( )

2
i j i j j i ij=   +   (21) 

[ , ] , ,

1
( )

2
i j i j j i ij=   −   (22) 

The symmetric part ij  can be viewed as the infinitesimal strain of the rotation tensor 

whereas the skew-symmetric part ij  is termed the curvature tensor. Due to the 

characteristic of the skew-symmetric tensor ij , all its diagonal entries vanish and this 

is therefore suitable for the curvature measure; in particular, it results directly from 
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the rotation tensor that produces no elongation in the material element. Similar to the 

rotation tensor 
ij , the curvature tensor 

ij  can also be represented in terms of an 

axial vector, called the curvature vector 
i , as 

, ,

1 1 1

2 2 2
i ijk kj ijk k j ji j= = =       (23) 

ji ijk k=    (24) 

For the case of isotropic, linearly elastic materials, the strain-energy density 

function taken the presence of the couple stress into account becomes 

( )
1

, 2 2
2

ij ij ii jj ij ij ij ij ij jiW W            = + + +  (25) 

where l  and m  are Lamé constans defined in the same fashion as that in the size 

independent classical continuum and   together with   denote the material constant 

accounting for the couple-stress effect which is responsible for the length-scale effect.  

Via the existence of ( ),ij ijW   , the constitutive relation for the force-stress and the 

couple stress tensor can be readily established with the final expressions: 

( )
2ij kk ijij

ij

W
   




= = +


 (26) 

4 4ij ij ji

ij

W
m   




= = +


 (27) 

The material constant h  can be related to the elastic shear modulus   by 

2


=  (28) 

where  is termed the internal characteristic length of a material.  

For the positive definiteness of the stored energy density function, all material 

constants must obey  

3 2 0 +   (29a) 

0   (29b) 

0   (29c) 

1 1





−    (29d) 
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2.3 Two-dimensional, Plane-strain Case 

A set of basic field equations for a two-dimensional body subjected to a plane-strain 

condition can be readily obtained from that presented in the previous section. Stress 

components involved in this problem are shown in Figure 2.2. A two-dimensional, 

Cartesian reference coordinate system { , ; }x y O  and standard notation and convention 

for the force-stress components and the couple-stress components are shown 

schematically in Figure 2.2. 

For the case of zero body force and body couple, the force and moment 

equilibrium equations are given explicitly, for this particular case, by 

0
yxxx

x y

 
+ =

 
 (30a) 

0
xy yy

x y

  
+ =

 
   (30b) 

0
yzxz

xy yx
x y


 


+ + − =

 
 (30c) 

 

 

 

 
Figure  2.2  Schematic indicating force-stress and couple-stress components for two-

dimensional problems 
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where { , , , }xx xy yx yy     are in-plane components of the force-stress tensor and 

{ , }xz yz   are non-zero components of the couple stress tensor as indicated in Figure 

2.2 The in-plane displacements 
xu  and 

yu , the rotation normal x y−  plane 
z , the 

infinitesimal in-plane strain components { , , }xx xy yx yy   =  and the curvatures 
xz  

and 
yz  are related for the plane-strain condition via the following linearized 

kinematics 

x
xx

u

x



=


 (31a) 

1

2

yx
xy

uu

y x


 
= + 

  
   (31b) 

y

yy

u

y



=


 (31c) 

1

2

y x
z

u u

x y


 
= − 

  
  (32) 

z
yz

y





=


 (33a) 

z
xz

x





=


   (33b) 

The compatibility conditions to ensure the existence of the in-plane displacement xu  , 

yu  and the rotation z  are given by 

2 22

2 2
2

yy xyxx

y x x y

   
+ =

   
 (34a) 

yz xz

x y

  
=

 
   (34b) 

xy xxz

x x y

   
= −

  
  (34c) 

yy xyz

y x y

   
= −

  
   (34d) 

The constitutive relations relating the force-stress tensor, the couple-stress tensor, the 

infinitesimal strain tensor, and the rotation take the form 
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4 4 z
yz yz

y


  


= =


 (35a) 

4 4 z
xz xz

x


  


= =


   (35b) 

2
[(1 ) ]

1 2
xx xx yy


   


= − +

−
 (36a) 

2
[ (1 ) ]

1 2
yy xx yy


   


= + −

−
   (36b) 

2 2xy xy   = −   (36c) 

2 2yx xy   = +     (36d) 

where   denotes the two-dimensional Laplacian operator and   is the Poisson’s 

ratio. 

2.4 Governing Equations in terms of Displacement 

By substituting (31)-(33) into (35)-(36), it leads to the expressions of the force stress 

and couple stress in terms of the in-plane displacements xu  and yu  

2
(1 )

1 2

yx
xx

uu

x y


  



 
= − + 

−   
 (37) 

2
(1 )

1 2

yx
xx

uu

x y


  



 
= + − 

−   
 (38) 

y yx x
xy

u uu u

y x x y
  

     
= + −  −   

      
 (39) 

y yx x
yx

u uu u

y x x y
  

     
= + +  −   

      
 (40) 

2 2

2
2

y x
xz

u u

x x y
 

  
= −     

 (41) 

2 2

2
2

y x
yz

u u

x y y
 

  
= −     

 (42) 

Upon substituting (37)-(40) into the force equilibrium equations (30a) and (30b), it 

gives rise to a pair of equilibrium equations in terms of displacements 
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2
(1 ) 0

1 2

y y yx x x
u u uu u u

x x y y y x x y


   



              
− + + + +  − =        

 −               
        (43) 

2
(1 ) 0

1 2

y y yx x x
u u uu u u

x y x x y y x y


   



              
+ −  − + + − =        

      −          
        (44) 

Terms associated with the Laplacian operator   can be further expanded to obtain 

3 33 3

3 2 2 3

y y yx x x
u u uu u u

x y x x y y x y
 

      
 − = − + −              

 (45) 

It is important to remark that the moment equilibrium equation (30c) is not employed 

here as the key governing equation but it provides the sufficient conditions for 

determining the skew-symmetric part of the force-stress tensor in terms of the couple-

stress tensor. By substituting (45) into (43) and (44), it leads to a two-dimensional 

version of Navier’s equations for the linearized couple stress theory 

2 2 2 2 4 3 3

3 3 2 2 4 2 2

( ) ( ) 0

( ) ( ) 0

xx y x y y x y x y x y

yx y x y x y x y x x y

u

u

   

   

  +  −   +    +   +      
=     

  +   +    +  −  +       

 (46) 

where 2(1 ) / (1 2 )  = − − , 1/ (1 2 ) = − , /  = , /x x =   , /n n n

x x =   , 

/y y =   , and /n n n

y y =   . 
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CHAPTER 3 

SOLUTION PROEDURE 

 

This chapter presents the development of a general solution of the displacement for a 

representative infinite layer via the method of Fourier integral transform. The general 

solutions in the transformed space for other field quantities such as the rotation, the 

force stress and the couple stress are also established for the representative layer. 

Finally, the boundary conditions at top surface and bottom surface of the layered 

medium together with the continuity conditions along the material interfaces and the 

general solutions for each layer are employed to form a system of linear algebraic 

equations governing the unknown constants.  

3.1 General Solutions for Displacement of Representative Layer 

To determine the general solution of (48) for a representative infinite layer occupying 

a region ( , ), [ , ]x y a b −   , it is appealing to employ the method of Fourier 

integral transform (e.g., Sneddon (1951); Karasudhi (1991); Asaro and Lubarda 

(2006); Sadd (2014). Fourier integral transform of any function ( , )f f x y=  defined 

over the region ( , ), [ , ]x y a b −    and its inverse with respect to the coordinate x  

are defined by  

( , ) ( , ) i xf y f x y e dx


−

=   (47a) 

1
( , ) ( , )

2

i xf x y f y e d 




−

−

=     (47b) 

By applying Fourier integral transform with respect to the coordinate x  to the system 

(46), it leads to the following system of linear, ordinary differential equations with 

respect to the coordinate y : 

2 2 2 4 2 3

2 3 2 2 2 2

(1 ) [( ) ] 0

[( ) ] (1 ) ( ) 0

xy y y y

yy y y

uD D i D D

ui D D D

      

       

 − + + − − − +     
=     

− − + − + + +       

 (48) 

The general solution of (48) can be obtained via a standard procedure in a theory of 

differential equations; i.e., the general solution can be assumed in the following form 
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x y

y

u A
e

u B


    

=   
    

 (49) 

where , ,A B  and  are unknown constants. Upon substituting (49) into the system 

(48) and then carrying out all involved differentiations, it leads to 

2 2 2 4 2 3

2 3 2 2 2 2

0(1 ) [( ) ]

0[( ) ] (1 ) ( )

y
Ai

e
Bi

         

         

 − + + − − − +    
=    

− − + − + + +     
 (50) 

Since the system (50) is valid for all [ , ]y a b , the unknown constants ,A B  must 

satisfy  

2 2 2 4 2 3

2 3 2 2 2 2

0(1 ) [( ) ]

0[( ) ] (1 ) ( )

Ai

Bi

        

         

 − + + − − − +    
=    

− − + − + + +     
 (51) 

For the system (51) to admit nontrivial solutions for the unknown constants ,A B , the 

coefficient matrix must be singular, i.e.,  

2 2 2 4 2 3

2 3 2 2 2 2

(1 ) [( ) ]
det 0

[( ) ] (1 ) ( )

i

i

        

         

 − + + − − − +
= 

− − + − + + + 
 (52) 

By carrying out the determinant on the left hand side of (52), it yields the following 

algebraic equation for the parameter  : 

2 2 2 2 2( ) ( ) 1 0      − − − =   (53) 

The characteristic equation (53) yields following four different roots 

1 | | =
 (54a) 

2 | | = −
   (54b) 

3 =
 (54c) 

4 = −
   (54d) 

where | |  denotes the absolute value of   and 

2 1
 


= +

 (55) 

It is worth noting that the first two roots 1 2,   are of multiplicity 2. By taking care of 

the presence of repeated roots, the complete general solution of (46) takes the form 
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31 2 4311 11 21 22 4

311 11 21 22 4

x yy y y

y

u AA A A A A
y e y e e e

u BB B B B B

  
               

= + + + + +                
               

 (56) 

where A
ij
,B

ij
 ( , 1,2i j = ) and A

i
,B

i
 ( 3,4i = ) are unknown functions of the transform 

parameter  . By substituting (56) into (48), it leads to the relationship among all 

unknown functions as follows: 

2 2 2
11 12| |

2 2 2
11 12

2 2 2
21| |

2 2 2
21

| | 2(1 ) | | ( 2 )

| | ( 2 ) 2( ) | |

| | 2(1 ) | | ( 2 )

| | ( 2 ) 2( ) | |

y

y

A Ai i
e

B Bi i

Ai i
e

Bi i





       


        

       


        

−

       − − − − +
+        − − + +       

   − − − − +
+ +  

− − + +  

22

22

2 2
12 22| | | |

2 2
12 22

2 2
3 4

2 2
3 4

| | | |

| | | |

0

0

y y

y y

A

B

A Ai i
ye ye

B Bi i

A Ai i
e e

B Bi i

 

 

     
 

     

   
 

   

−

−

    
    

   

      − − − −
+ +      

− −      

      − − −  
+ + =        

− − −       

      (57) 

where the fact that 1 = −  has been utilized. Since (57) must valid for all [ , ]y a b , 

it reduces to six systems of homogenous equations: 

2 2 2
11 12

2 2 2
11 12

0| | 2(1 ) | | ( 2 )

0| | ( 2 ) 2( ) | |

A Ai i

B Bi i

       


        

      − − − − +  
+ =        

− − + +        
         (58a) 

2 2 2
21 22

2 2 2
21 22

0| | 2(1 ) | | ( 2 )

0| | ( 2 ) 2( ) | |

A Ai i

B Bi i

       


        

      − − − − +  
+ =        

− − + +        
        (58b) 

2
12

2
12

0| |

0| |

Ai

Bi

  

  

   − −  
=    

−    
 (58c) 

2
22

2
22

0| |

0| |

Ai

Bi

  

  

   − −  
=    

−    
   (58d) 

2
3

2
3

0

0

Ai

Bi

 

 

   − −  
=    

− −    
 (58e) 

2
4

2
4

0

0

Ai

Bi

 

 

   −  
=    

−    
 (58f) 

Solving (58) leads to following relations among all unknown functions 

11 1 2| |A i C i C = − −  (59a) 
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11 1B C=    (59b) 

12 2| |A i C= −  (59c) 

12 2B C=    (59d) 

21 3 4| |A i C i C = −  (59e) 

21 3B C=  (59f) 

22 4| |A i C=     (59g) 

22 4B C=    (59h) 

3 5A i C= −  (59i) 

3 5B C=  (59j) 

4 6A i C=    (59k) 

4 6B C=  (59l) 

where iC  ( 1,2,..,6i = ) are independent unknown functions of   and 3 4 = − . 

Substituting (59) into (56) leads to the general solution for the displacement in the 

transformed space 

   | | | |

| | | |

1 2 3 4| | | |

5 6

| | | || | | |

        

y y
x y y

y y
y

y y

u i ii y e i y e
C e C C e C

u ye ye

i i
C e C e

 
 

 

 

    

  

 

 

−

−

−

−

−     − + − −   
= + + +         

       

−   
+ +   

   

 (60) 

3.2 General Solutions for Other Field Quantities 

By using the general solution for the displacement (60), the general solution for the 

rotation, the force stress, and the couple stress components in the transformed space 

can also be obtained. First, by taking Fourier integral transform to the field equations 

(32) and (37)-(42), it leads to 

1

2

x
z y

du
i u

dy
 

 
= − − 

 
 (61) 

2
(1 )

1 2

y

xx x

du
i u

dy


   



 
= − − 

−  
 (62) 
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2
(1 )

1 2

y

yy x

du
i u

dy


   



 
= − − 

−  
 (63) 

2 3
3 2

2 3

yx x x
xy y y

d udu du d u
i u i u + i

dy dy dy dy
      

  
= − − − −    

   

 (64) 

2 3
3 2

2 3

yx x x
yx y y

d udu du d u
i u i u i

dy dy dy dy
      

  
= − + + − −    

   

 (65) 

22 x
xz y

du
i u

dy
   

 
= − 

 
 (66) 

2

2
2

y x
yz

du d u
i

dy dy
  

 
= − + 

 
 (67) 

Next, by substituting the general solution (60) into (61)-(67), it gives rise to 

6

| | | |

4

222

5

2

2( )( ) ( ) ( (
2

)y y yy

z

i
e C Ce C e C e             −−= + − + + − + −  (68) 

1 2 3

4 5 6

2 (

        )

((3 2 ) )

((3 2 ) )

y y

xx

y

y y y

e C y e C e C

y e C e C e C

  

  

  



      

    

−

− −−

= − −

+ −

+ − +

− +
 (69) 

1 2 3

4 5 6

2 ( (1 2 )

        (1 2 ) )

( )

( ) y

yy

y y y

y y

e C y e C e C

y e C e C e C

  

  

  



      

    

−

− −

+

+

= − −

+

+

−−−
 (70) 

2 | | 2 | | 2 | |

1 2 3

2 | | 2 2 2 2 2

4 5

2 2 2 2 2

6

(2 ( 2 ) 2

        ( ) (( ) ( ) )

        (( ) ( ) ) )

2

y y y

xy

y y

y

i e C y e C e C

y e C e C

e C

  

 



     

      

  













−

−

−

= − + + + +

− + + + + −−

+ + + −

 (71) 

2 | | 2 | | 2 | |

1 2 3

2 | | 2 2 2 2 2

4 5

2 2 2 2 2

6

(2 ( 2 ) 2

         ( ) +(( ) ( ) )

         (( ) ( ) ) ))

2

y y y

yx

y y

y

i e C y e C e C

y e C e C

e C

  

 



     

    



 

 



 

  

−

−

−

−

= − + + + +

− + + − −

+ + − −

 (72) 

| | | |

2 4

3 2 3

5 6

2

2 (( ) ( )

         ( ) ( ) )

1 1 y

x

y

y

z

ye C C

C e

e

e C 

 

 



   

   



−

−= + − +

− − − −
 (73) 

2 | | 2 | |

2 4

3 3

5

2

6

2

2 ( 1) ( 1)

         ( ) ( ) )

( y y

yz

y y

i e C e C

e C e C

 

 

     

    

−

−

= + + +

− − + −
 (74) 
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Once the unknown functions  ( 1,2,...,6)iC i =  are determined, the general solutions 

(60) and (68)-(74) can be used together with Fourier integral transform inversion to 

achieve the field quantities in the physical space. 

3.3 Governing Equations for Whole Layered Medium 

To obtain the complete solution of the elastic field within the layered medium shown 

in Figure 2.1, it is evident that the six unknown functions  ( 1,2,...,6)iC i =  for each 

layer must be determined. To differentiate the unknown functions for each layer, the 

superscript “ ( )k ” is then added to designate the thk  layer, i.e., 

( )  ( 1,2,...,6; 1,2,..., )k

iC i k N= = . For a layered medium consisting of N  layers, the 

total number of unknown functions C
i

(k )
 to be determined is equal to 6N . To provide 

sufficient conditions, the boundary conditions at the top surface and bottom of the 

medium and the continuity along the material interfaces must be enforced. More 

specifically, the boundary conditions on the top surface of the 1th  layer, the boundary 

conditions on bottom surface of the thN  layer, and the continuity conditions along the 

material interface connecting the thk  and ( 1)thk +  layers for  1,2,..., 1k N= −   are 

given, respectively, by 

(1)

(1)

0yy y a
p

=
=    (75a) 

(1)

(1)

0yx y a
q

=
=    (75b) 

(1)

(1)

0yz y a
m

=
=    (75c) 

( )

( ) 0
N

N

x y b
u

=
=    (76a) 

( )

( ) 0
N

N

y y b
u

=
=    (76b) 

( )

( ) 0
N

N

yz y b


=
=  or 

( )

( ) 0
N

N

z y b


=
=  (76c) 

( ) ( 1)

( ) ( 1)

k k

k k

x xy b y a
u u

+

+

= =
=    (77a) 

( ) ( 1)

( ) ( 1)

k k

k k

y yy b y a
u u

+

+

= =
=    (77b) 

( ) ( 1)

( ) ( 1)

k k

k k

z zy b y a
 

+

+

= =
=  (77c) 
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( ) ( 1)

( ) ( 1)

k k

k k

yy yyy b y a
 

+

+

= =
=    (77d) 

( ) ( 1)

( ) ( 1)

k k

k k

yx yxy b y a
 

+

+

= =
=  (77e) 

( ) ( 1)

( ) ( 1)

k k

k k

yz yzy b y a
 

+

+

= =
=  (77f) 

where ( )ka  and ( )kb  denote the y -coordinates of the top and bottom surface of the thk  

layer. By taking Fourier integral transform of (75)-(77) with respect to the coordinate 

x , it yields 

(1)

(1)

0yy y a
p

=
=  (78a) 

(1)

(1)

0yx y a
q

=
=    (78b) 

(1)

(1)

0yz y a
m

=
=  (78c) 

( )

( ) 0
N

N

x y b
u

=
=  (79a) 

( )

( ) 0
N

N

y y b
u

=
=    (79b) 

( )

( ) 0
N

N

yz y b


=
=  or 

( )

( ) 0
N

N

z y b


=
=    (79c) 

( ) ( 1)

( ) ( 1)

k k

k k

x xy b y a
u u

+

+

= =
=  (80a) 

( ) ( 1)

( ) ( 1)

k k

k k

y yy b y a
u u

+

+

= =
=    (80b) 

( ) ( 1)

( ) ( 1)

k k

k k

z zy b y a
 

+

+

= =
=    (80c) 

( ) ( 1)

( ) ( 1)

k k

k k

yy yyy b y a
 

+

+

= =
=    (80d) 

( ) ( 1)

( ) ( 1)

k k

k k

yx yxy b y a
 

+

+

= =
=  (80e) 

( ) ( 1)

( ) ( 1)

k k

k k

yz yzy b y a
 

+

+

= =
=  (80f) 

where the “bar” is employed to designate the transformed function. From the general 

solutions of the representative layer established in Section 3.1 and Section 3.2, the 

transformed quantities ( )k

xu , ( )k

yu , ( )k

z , 
( )k

yy , 
( )k

yx , and 
( )k

yz  at the top and bottom 

surfaces of the thk  layer can be obtained as 
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( ) ( ) ( )

1

( ) ( ) ( )

2

( ) ( ) ( )

3( )

( ) ( ) ( )

4

( ) ( ) ( )

5

( )( ) ( )
6

( )

( )

( )
( )

( )

( )

( )

k k k
x

k k k
y

k k k

z k

k k k

x

k k k

y

kk k

z

u y a C

u y a C

y a C

u y b C

u y b C

Cy b






 =  
   

=   
   

=   
=   

=   
   =
   
   =   

M  (81) 

( ) ( )
( )

1
( ) ( )

( )

2

( ) ( ) ( )

3( )

( ) ( ) ( )

4

( )( ) ( )
5

( )( ) ( )
6

( )

( )

( )
( )

( )

( )

( )

k k
k

yx

k k
k

yy

k k k
yz k

k k k
yx

kk k

yy

kk k

yz

y a C

y a C

y a C

y b C

Cy b

Cy b














 =  
   =   
   =   

=   
=   

   
=

   
   =   

N  (82) 

where ( )k
M  and ( )k

N  are known 6x6-matrices of the thk  layer whose entries depends 

on the transform parameter  . Note in particular that the explicit expression of both 

( )k
M  and ( )k

N  can be readily established from the general solutions of the 

displacement, rotation, force stress and couple stress presented in the previous 

sections. By enforcing the three boundary conditions (78), the three boundary 

conditions (79), and the six continuity conditions (80) for all 1N −  material interfaces 

together with the results (83) and (84), it leads to a system of 6N  linear algebraic 

equations governing the 6N  unknowns ( )  ( 1,2,...,6; 1,2,..., )k

iC i k N= =  in the 

transformed space. An efficient linear solved is then selected to determine the root

( )k

iC .  

 Another efficient means to determine the unknown functions ( )k

iC  based on 

the direct stiffness scheme can also be employed. First, the system of six linear 

equations (81) is inverted to obtain the functions ( )k

iC  in terms of the transformed 

displacements and rotations at the top and bottom surfaces and then the results are 

substituted in (82), this yields 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 1

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) (( ) ( )

( ) ( )

( ) ( )
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  ==
 
  == 
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( ) ( )
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( ) ( )

( ) ( )
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( )

( )
( )

( )

( )
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k k
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k k
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k k

y

k k k
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u y a

u y a

y a

u y b

u y b

y b






   =
   

=   
   

=   
=   

=   
   =
   
   =   

K  (83) 

where 
( ) ( )k K  is termed the stiffness matrix of the thk  layer in the transformed space 

defined by 

( ) ( ) ( ) 1( ) ( )( ( ))k k k   −=K N M    (84) 

It is evident that the unknown functions C
i

(k )
 are eliminated and the stiffness 

equations (83) indicate the relationship among the transformed quantities on the 

boundaries of the layer. By choosing the displacements and rotations at the 

boundaries of each layer as the primary unknowns together with the continuity of the 

displacements and rotations at the material interfaces, the total number of independent 

unknowns now reduces to 3N  (i.e., the displacements and rotations at the top surface 

of all layers ( ) ( )( )k k

xu y a= , ( ) ( )( )k k

yu y a= , and ( ) ( )( )k k

z y a =  for 1,2,...,k N= ). A 

system of 3N  linear algebraic equations governing all those unknowns can be formed 

from the natural boundary conditions (78) and the continuity conditions (80d)-(80f) 

for all 1N −  material interfaces. Once the displacements and rotations at the top 

surface and material interfaces are determined, the unknown functions ( )k

iC  for each 

layer can be obtained from (81). 

3.4 Fourier Integral Transform Inversion 

Once the unknown functions C
i

(k )
 for each layer are determined, the displacements, 

the rotation, the force stress and the couple stress within the layered medium in the 

transformed space are known. Then, Fourier integral transform inversion formula 

(47b) is utilized to obtain the integral formula for the elastic field in the physical 

space. An efficient algorithm (e.g., the direct evaluation of the integral via an efficient 

quadrature rule and the so-called fast Fourier transform algorithm) is then selected to 

perform such inversion.    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

A computer code has been implemented, under the platform of FORTRAN90, using 

the proposed scheme presented in Chapter 3 for a general multi-layer elastic medium 

subjected to arbitrary surface loading and fully bonded to the rigid base. The flow of 

the implemented code can be briefly summarized as follows. Once all essential 

information (e.g., geometry of the medium, loading conditions, material properties, 

etc.) is inserted into the input interface, the stiffness matrix of each layer is first 

constructed, for each value of the transform parameter, via the proper numerical 

scheme for the matrix inversion. The stiffness matrices for all layers together with the 

continuity and equilibrium conditions along the material interfaces and the prescribed 

surface loadings are then assembled to form the stiffness equation for the whole 

medium. The unknown displacements and rotations at all material interfaces, for each 

value of the transform parameter, are obtained by numerically solving a system of 

linear equations. Such information is then used to determine the unknown coefficients 

for each layer and, subsequently, all field quantities including the displacements, the 

rotation, the force stresses and the couple stresses in the transformed space can be 

readily obtained from the direct substitution. To obtain the elastic field at any point in 

the physical space, the Fourier integral inversion is applied, and this can be achieved 

in a separate efficient routine based mainly on Gaussian quadrature. 

 To verify the implemented computer code, two problems, one associated with 

a half-plane subjected to a uniformly distributed normal traction and the other 

corresponding to a single layer medium under the normal point force, are considered. 

For the half-plane case, computed results are benchmarked with the classical solution 

where the couple stresses are fully ignored whereas for the single layer medium, 

results reported by Zisis (2018) are used as the basis for the comparison. To further 

verify the implemented routine for handling the multi-layer medium via the direct 

stiffness scheme, the single layer medium is fictitiously partitioned into several layers 

with the same material properties and the multi-layer scheme is applied to construct 

the solution and then compared with the available reference solution. Once the 
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solution scheme is fully tested, extensive results are obtained for various cases and 

reported to demonstrate the characteristic of predicted solution and size dependence 

behavior for a wide range of internal and external length scales.  

For the purpose of discussion of material length-scale effects and the 

comparison of results with those predicted by the size-independent continuum theory 

(i.e., the classical theory of linear elasticity), a reference material characteristic length 

0
 is introduced such that 

0=  where   is a non-dimensional parameter. In this 

sense, results predicted by the classical linear elasticity must be recovered as the 

parameter   approaches zero. In addition, the reference shear modulus 0  is also 

introduced for the normalization of the shear modulus of different layers where 

0/  = . 

4.1 Homogeneous Half-plane 

Consider an elastic half-plane subjected to a uniformly distributed normal traction 0p  

on its surface over the region [ , ]a a− . To simulate this scenario within the context of 

the current formulation (a layered medium perfectly bonded to a rigid base), a single 

layer model is employed and the thickness of the layer h  is chosen to be sufficiently 

large in comparison with the half length of the loading region a  (i.e., / 1000h a = ).  

Results of the normalized normal force-stress components along the line of symmetry 

(i.e.,  0x = ) are reported as a function of the normalized coordinate /y a  as shown in 

Figure 4.1 for 0/ 1a = , 0.33 = , and various values of the parameter   together 

with the exact classical solution. The result is seen that as   approaches zero (i.e., the 

material length scale is much smaller than the size of loading region), obtained results 

converge to the classical solution In addition, for the case that the length of the 

loading region is comparable to the material characteristic length , the force stresses 

predicted by the couple stress theory significantly deviate from that predicted by the 

classical continuum. 
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Figure  4.1  Normalized normal force stress xx  and yy  along the line of symmetry 

of elastic half-plane under uniformly distributed normal traction. Result reported for 

0.33 =  and 0/ 1a = . 

 

4.2. Single Layer Media 

Now, consider a single homogeneous layer medium of thickness h  perfectly bonded 

to a rigid base. To allow the comparison with results reported in Zisis (2018), a 

particular surface loading condition associated with a concentrated normal point force 

and two values of Poisson’s ratio (i.e., 0.00 =  and 0.49 = ) are considered in the 

simulations. Computed results for the displacement and rotation at the top surface and 

the force stress and couple stress components at the bottom surface are reported along 

with the reference solutions in Figures 4.2-4.13 for various values of the ratio /h . It 

is seen that the excellent agreement between the present results and the benchmark 

solutions is apparent. In addition, this set of results clearly indicates that by taking the 

material micro-structure into consideration (via the presence of couple stresses), the 

field quantities are noticeably different from those predicted by the size-independent 

elasticity theory, especially when the characteristic material length scale becomes 

comparable to the thickness of the layer. The larger the material length scale, the 
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stronger the size-dependent effect. Note also that as the ratio /h  increases (i.e., the 

external length scale becomes larger than the internal length scale), the couple stress 

components start decaying and finally approaching zero as /h  reaching infinity.  

Next, the response of a single layer medium subjected to a uniformly 

distributed normal traction 
0p  over the region [ , ]a a−  is investigated. In the 

numerical study, the thickness of the layer is taken as 
0/ 1h =  and, to facilitate the 

investigation of the size dependency of predicted solutions, various values of the 

normalized half-length of the loading region 0/a  are considered. A selected set of 

results associated with the normalized vertical stress 
yy  along the line of symmetry 

is reported in Figure 4.14 for both 0 =  and 1 = . It is evident that solutions 

predicted by the couple stress theory become size dependent and significantly 

deviates from the classical solution (which is clearly size independent) as the size of 

the loading region reduces to be comparable to the material length scale . 

To further confirm the size-dependent behavior of predicted response due to 

the presence of couple stress with 0  , the normalized vertical stress yy  at a 

selected point, 0x =  and / 2y h= , is also reported as a function of the normalized 

half-length of the loading region as shown in Figure 4.15. It is seen that the solution 

predicted by the couple stress theory is size-dependent for a wide range of 0/a . In 

particular, as 0/a  increases, the predicted solution decays monotonically and finally 

converges to the classical case. Note also that in the neighborhood of 0/ 0a = , 

results obtained from the  couple stress theory is nearly constant and this implies the 

size independent behavior as observed in the classical case. While the size dependent 

characteristic disappears as the size of the loading region is much smaller than the 

material length scale, the influence of couple stresses is still significant and cannot be 

ignored in modeling. 

To additionally verify the validity of implemented code usage for multi-layer 

media, the same single homogenous layer medium subjected to a uniformly 

distributed normal traction 0p  over the region [ , ]a a−  is resolved by using the multi-

layer scheme. In the simulations, Poisson’s ratio 0.5 = , the material length scale 
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0=  and the overall thickness 
0h =   are considered. The layer is devided into 2, 4, 

and 10 identical layers with the same material properties. Results for certain field 

quantities at certain locations within the medium, generated by a single-layer, 2-layer, 

4-layer, and 10-layer models, are reported in Figures 4.16-4.19. It is seen that results 

from all four models are identical and this should confirm the correctness of the multi-

layer scheme.  
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Figure  4.2 Normalized horizontal displacements xu  at the top surface of a single 

homogeneous layer under normal concentrated force with 0 = . 
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Figure  4.3 Normalized vertical displacements yu  at the top surface of a single 

homogeneous layer under normal concentrated force with 0 = . 
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Figure  4.4 Normalized rotations z  at the top surface of a single homogeneous layer 

under normal concentrated force with 0 = . 
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Figure  4.5 Normalized vertical stresses yy  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0 = . 
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Figure  4.6 Normalized shear stresses yx  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0 = . 
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Figure  4.7 Normalized couple stresses 

yz  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0 = . 
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Figure  4.8 Normalized horizontal displacements xu  at the top surface of a single 

homogeneous layer under normal concentrated force with 0.49 = . 
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Figure  4.9 Normalized vertical displacements 

yu  at the top surface of a single 

homogeneous layer under normal concentrated force with 0.49 = . 
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Figure  4.10 Normalized rotations z  at the top surface of a single homogeneous 

layer under normal concentrated force with 0.49 = . 
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Figure  4.11 Normalized vertical stresses yy  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0.49 = . 
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Figure  4.12 Normalized shear stresses yx  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0.49 = . 
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Figure  4.13 Normalized couple stresses yz  at the bottom surface of a single 

homogeneous layer under normal concentrated force with 0.49 = . 
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Figure  4.14 Normalized vertical stresses yy  along the line of symmetry of a single 

layer medium plane under uniformly distributed normal traction. Results are reported 

for 0.33 = , / 1h a = , {0,1} , and various values of /a . 
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Figure  4.15 Normalized vertical stresses yy  at a point 0x =  and / 2y h=  of a 

single layer medium plane under uniformly distributed normal traction versus the 

normalized half-length of loading region. Result reported for 0.33 = , / 1h a = , and 

{0,1} . 
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Figure  4.16 Profile of normalized vertical displacement yu  at / 0.5y h =  for a single 

homogeneous layer medium under uniformly distributed normal traction having with 

0h = =  and 0.5 = . 
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Figure  4.17  Profile of normalized vertical stress yy  at / 0.5y h =  for a single 

homogeneous layer medium under uniformly distributed normal traction having with 

0h = =  and 0.5 = . 
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Figure  4.18 Profile of normalized couple stress xz  at / 0.5y h =  for a single 

homogeneous layer medium under uniformly distributed normal traction having with 

0h = =  and 0.5 = . 
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Figure  4.19 Profile of normalized couple stress yz  at / 0.5y h =  for a single 

homogeneous layer medium under uniformly distributed normal traction having with 

0h = =  and 0.5 = . 

 

4.3. Layer on Half Plane under Uniformly Distributed Loads 

Now, the elastic response of a single elastic layer rested on a half plane, as illustrated 

in Figure 4.20, is fully investigated. The shear modulus, Poison’s ratio and the 

normalized length scale of material for the layer and the half plane are denoted by 

(1) (1) (1),,    and 
(2) (2) (2),,   , respectively. Three representative surface loadings 

including a uniformly distributed normal traction 0p  (see Figure 4.20(a)), a uniformly 

distributed shear traction 0q  (see Figure 4.20(b)), and a uniformly distributed couple 

traction 0m  (see Figure 3 Figure 4.20(c)) acting over a finite region [ , ]a a−  are 

considered in the numerical investigation. To explore the influence of the material 

contrast (in terms of the shear modulus) on predicted elastic fields, simulations are 

gone through for various values of the shear modulus ratio 
(1) (2)/  =  while 

Poisson’s ratio and the normalized length scale of the material  for both the layer and 

the half plane are taken to be identical (i.e., (1) (2)=  =  and 
(1) (2) 1 = = ).  
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Figure  4.20 Schematics of a layer rested on a half plane under (a) uniformly 

distributed normal traction, (b) uniformly distributed shear traction, and (c) uniformly 

distributed couple traction. 

 

In the numerical study, the following parameters 0.30 = , 1 =  and 0/ 1a a= =  

are employed. Representative results for the force stress and the couple stress at the 

bottom surface of the layer (i.e., at y h= ) are reported, as a function of the 

normalized coordinate /x h , in Figures 4.21, 4.22, and 4.23 for the first, second and 

third type of loading conditions, respectively. It is seen, from these results, that the 

shear modulus ratio   has the strong effect on both the value and the distribution of 

the elastic field within the layer for all three loading cases. In particular, the 

displacements and stresses start exhibiting deviation from those for the case of an 

elastic layer rested on an elastic foundation (i.e., 0 = ) as the ratio   increases from 

zero. Clearly, such discrepancy is still significant when the shear modulus of the half 
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plane is comparable to that of the layer or the ratio   falls in the practical range in 

surface coating applications. Note also that results for the case 0 =  does not always 

constitute the upper or lower bound solution and this, as a result, implies the need, in 

the modeling, to properly handling the finite modulus of the substrate below the layer. 

 The size dependent characteristic of predicted elastic responses due to the 

presence of couple stresses is further investigated. In the simulations, the thickness of 

the layer, the shear modulus ratio, the normalized length scale, and Poisson’s ration 

are taken as / 1a h = , 0.5 = , (1) (2) 1 = = , and (1) (2) 0.3 = =   while the 

normalized half-length of the loading region 0/a a=  is varied. Results for the 

normalized forces stresses xy , yx  and yy  and normalized couple stress yz  at the 

bottom of the elastic layer (i.e., along / 2y h= ) are reported in Figures 4.24, 4.26 and 

4.28 for all three types of surface loading. In addition, the normalized force stresses 

xx  and yy , the normalized shear stresses xy  and yx , and the normalized force 

stress yx  and couple stress yz  along the line of symmetry (i.e., along 0x = ) are 

reported in Figures 4.25, 4.27 and 4.29 for the first, second and third loading 

conditions. Results for the force stresses predicted by the classical elasticity (without 

couple stresses) are also included for sake of comparison and discussion. It is evident 

from this set of results that both the force stresses and couple stresses predicted from 

the couple stress theory become size dependent and deviates from the classical 

solution. This observation is in contrast to the characteristic of the classical solution. 

As the size of the loading region is sufficiently small and comparable to the material 

length scale , the discrepancy of the two solutions can be significant. On the 

contrary, results for all types of loading converge to those from the classical elasticity 

as a  is sufficiently large in comparison with . 

To further explore the influence of the ratio /a h  on the size dependency of 

predicted responses due to the presence of the couple stresses ( 0  ), certain stress 

components at a selected point 0x = , / 2y h=  are reported as a function of the 

normalized half-length of the loading region 0/a  in Figures 4.30-4.32 for all three 

loading cases. It is seen again that the solution predicted by the couple stress theory is 

size dependent for a wide range of /a . In particular, as /a  increases, the predicted 
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solution reduces monotonically and finally converges to the classical case. In 

addition, in the neighborhood of 0/a = , the result obtained from the couple stress 

theory is nearly constant and this also implies the size independent behavior as 

observed in the classical case. Although the size dependent characteristic disappears 

as the size of the loading region is much smaller than the material length scale, the 

influence of the couple stresses is still significant (indicating by the discrepancy of the 

two solutions) and cannot be ignored in the modeling. Note also that the smaller the 

value of the ratio /a h , the larger the discrepancy between the classical solution and 

that from the couple stress theory. 

Finally, the influence of the material contrast on the size dependent behavior is 

also demonstrated via predicted results for stresses at a representative point within the 

layer. In particular, the vertical stress 
yy  (for the first loading case), the shear stress 

yx  (for the second loading case) and the couple stress yz  (for the third loading case) 

at 0x = , / 2y h=  are reported in Figures 4.33, 4.34 and 4.35, respectively, for 

/ 1a h = , 0.30 =  and various values of the shear modulus ratio (1) (2)/  = . As can 

be seen from these results, the ratio   does not alter the size dependent characteristic 

of the predicted solutions except that the larger the magnitude of the predicted stresses 

is observed as   decreases. 
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  (a)       (b) 

   

  (c)       (d) 

Figure  4.21 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed normal traction. Results are 

reported for 0.30 = , and 0/ 1a = . 
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  (a)       (b) 

   

  (c)       (d) 

Figure  4.22 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed shear traction. Results are 

reported for 0.30 = , and 0/ 1a = . 
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  (a)       (b) 

 
  (c)       (d) 

Figure  4.23 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed couple traction. Results are 

reported for 0.30 = , and 0/ 1a = . 
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 (a)      (b) 

   
  (c)                 (d) 

Figure  4.24 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed normal traction. Results are 

reported for / 1a h = , 0.5 = , 
(1) (2) 1 = = , and (1) (2) 0.3 = = . 
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 (a)                 (b) 

Figure  4.25 Results for (a) normalized horizontal stress xx  and (b) normalized 

vertical stress yy  along the line of symmetry of the elastic layer under uniformly 

distributed normal traction. Results are reported for / 1a h = , 0.5 = , (1) (2) 1 = = , 

and (1) (2) 0.3 = = . 
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  (a)                 (b) 

  
  (c)                  (d) 

Figure  4.26 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed shear traction. Results are 

reported for / 1a h = , 0.5 = , 
(1) (2) 1 = = , and (1) (2) 0.3 = = . 
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  (a)                 (b) 

Figure  4.27 Results for (a) normalized shear stress xy  and (b) normalized shear 

stress yx  along the line of symmetry of the elastic layer under uniformly distributed 

shear traction. Results are reported for / 1a h = , 0.5 = , 
(1) (2) 1 = = , and 

(1) (2) 0.3 = = . 
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  (a)                  (b) 

   
  (c)                  (d) 

Figure  4.28 Results for (a) normalized shear stress xy , (b) normalized shear stress 

yx , (c) normalized vertical stress yy , and (d) normalized couple stress yz  at the 

bottom surface of the layer under uniformly distributed couple traction. Results are 

reported for / 1a h = , 0.5 = , 
(1) (2) 1 = = , and (1) (2) 0.3 = = . 
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  (a)                 (b) 

Figure  4.29 Results for (a) normalized shear stress yx  and (b) normalized couple 

stress yz  along the line of symmetry of the elastic layer under uniformly distributed 

couple traction. Results are reported for / 1a h = , 0.5 = , (1) (2) 1 = = , and 

(1) (2) 0.3 = = . 

 
Figure  4.30 Normalized vertical stress yy  at a selected point 0x = , / 2y h=  within 

the elastic layer under uniformly distributed normal traction versus the normalized 

half-length of loading region. Results are reported for 0.5 = , 
(1) (2) 1 = = , and 

(1) (2) 0.3 = = . 
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Figure  4.31 Normalized shear stress yx  at a selected point 0x = , / 2y h=  within 

the elastic layer under uniformly distributed shear traction versus the normalized half-

length of loading region. Results are reported for 0.5 = , (1) (2) 1 = = , and 

(1) (2) 0.3 = = . 

 
Figure  4.32 Normalized couple stress yz  at a selected point 0x = , / 2y h=  within 

the elastic layer under uniformly distributed couple traction versus the normalized 

half-length of loading region. Results are reported for 0.5 = , 
(1) (2) 1 = = , and 

(1) (2) 0.3 = = . 
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Figure  4.33 Normalized vertical stress yy  at a selected point 0x = , / 2y h=  within 

the elastic layer under uniformly distributed normal traction versus the normalized 

half-length of loading region. Results are reported for / 1a h = , (1) (2) 1 = = , and 

(1) (2) 0.3 = = . 

 
Figure  4.34 Normalized shear stress yx  at a selected point 0x = , / 2y h= within 

the elastic layer under uniformly distributed shear traction versus the normalized half-

length of loading region. Results are reported for / 1a h = , 
(1) (2) 1 = = , and 

(1) (2) 0.3 = = . 
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Figure  4.35 Normalized couple stress 0/yz m  at a selected point 0x = , /2y h=  

within the elastic layer under uniformly distributed couple traction versus the 

normalized half-length of loading region. Results are reported for / 1a h = , 

(1) (2) 1 = = , and (1) (2) 0.3 = = . 

 

4.4 Layered Media Consisting of Periodic Bi-materials 

To demonstrate the novel aspect of the present study in handling multi-layered media 

loaded on the surface with the presence of couple stresses, consider a layered material 

rested on a rigid base. The layered medium of total thickness H  is fabricated by two 

different elastic materials which are arranged alternately into layers of a periodic 

structure as shown in Figure 4.36. The elastic shear modulus, Poisson’s ratio, the 

material length scale, and the layer thickness of the first and second materials are 

denoted by 
(1) (1) (1) (1), , ,h   and

(2) (2) (2) (2), , ,h  , respectively. The layered medium 

is subjected Hertzian traction over a region [ , ]a a− . In particular, the distribution of 

the normal traction over a region [ , ]a a−  takes the following form  

2 2

0( )p x p a x= −  (87) 

where 0p  denotes the maximum pressure (also see Figure 4.36). In the simulations, 

the medium consisting of 10 layers with (1) (2)h h=  and with the normalized thickness 
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0/ 1H =  is chosen and the following two scenarios, one associated with 

(1) (2)0.5 1 = = , (1) (2) 0.25 = = , (1) (2) 1 = =  and the other corresponding to 

(1) (2)2 2 = = , (1) (2) 0.25 = = , (1) (2) 1 = = , are considered. It is remarked that 

the top layer is made of a stiffer material and a more flexible material for the first and 

the second scenarios, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.36 Schematic of two-dimensional layered medium consisting of two 

different materials arranged alternately and rested on rigid foundation. The layered 

medium shown is subjected to Hertzian traction over the region [ , ]a a− . 

 

 Results for the horizontal and vertical displacements and the rotations along 

the top surface (i.e., along 0y = ),  the vertical displacement along the line of 

symmetry (i.e., along 0x = ), the force stresses and couple stresses along the bottom 

surface (i.e., along y H= ) , and certain components of force and couple stresses 

along the line of symmetry are reported for both scenarios in Figures 4.37-4.39, 

Figure 4.40, Figures 4.41-4.46, and Figures 4.47, respectively. Solutions predicted by 

the classical theory of linear elasticity are also reported, per necessary, for the sake of 

comparison. From obtained results, it is seen that the presence of couple stresses 

significantly alter the elastic field (both the displacements and stresses) from that 

predicted by the size-independent elasticity theory. In particular, it tends to stiffen the 
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medium. Also, it is found that the surface displacements and rotations for the case 

with the stiffer layer lying on the top are slightly lower than those of the other case. 

Similary to the computed force stresses (i.e., xx , 
xy , 

yx , and 
yy ) at the bottom 

surface for the two cases (associated with the stiffer and more flexible layer lying on 

the top) that are also different on a small scale for both classical and size-dependent 

linear elasticity theories. However, couple stresses (i.e., xz  and 
yz ) measurement at 

the bottom of the layer for the case of stiffer layer laminated first is higher than 

another case. It is also seen from results shown in Figures 4.40 and 4.47 that the rate 

of decay along the depth of the bi-material layer is higher when the maerial becomes 

more flexible.  
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Figure  4.37 Normalized horizonal displacement 
xu  along the top surface of the 

periodic bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , 
(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.38 Normalized vertical displacement yu  along the top surface of the 

periodic bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , (1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.39 Normalized rotation 

z  along the top surface of the periodic bi-

materials layered medium under Hertzian loading. Results are reported for / 1a H = , 

(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.40 Normalized vertical displacement yu  along line of symmetry  the 

periodic bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , (1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.41 Normalized horizontal stress 

xx  along the bottom surface of the 

periodic bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , 
(1) (2) 1 = = , and (1) (2) 0.25 = = . 

x / h

0.0 0.2 0.4 0.6 0.8 1.0

2
m

0
u

y /
 p

0
a

0.0

0.1

0.2

0.3

0.4

0.5
Classical elasticity
Couple stress elasticity

m
(1)

=0.5m
(2)

m
(1)

=2m
(2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60 

 

Figure  4.42 Normalized shear stress xy  along the bottom surface of the periodic bi-

materials layered medium under Hertzian loading. Results are reported for / 1a H = , 

(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.43 Normalized shear stress yx  along the bottom surface of the periodic bi-

materials layered medium under Hertzian loading. Results are reported for / 1a H = , 

(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.44 Normalized vertical stress yy  along the bottom surface of the periodic 

bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , (1) (2) 1 = = , and (1) (2) 0.25 = = . 

x / h

-5 -4 -3 -2 -1 0 1 2 3 4 5

m
x

z /
 p

0
l

0

-3e-9

-2e-9

-1e-9

0

1e-9

2e-9

m
(1)

=0.5m
(2)

m
(1)

=2m
(2)

 
Figure  4.45 Normalized couple stress 

xz  along the bottom surface of the periodic bi-

materials layered medium under Hertzian loading. Results are reported for / 1a H = , 

(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.46 Normalized couple stress yz  along the bottom surface of the periodic bi-

materials layered medium under Hertzian loading. Results are reported for / 1a H = , 

(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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Figure  4.47 Normalized vertical stress yy  along line of symmetry of the periodic 

bi-materials layered medium under Hertzian loading. Results are reported for 

/ 1a H = , 
(1) (2) 1 = = , and (1) (2) 0.25 = = . 
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4.5 Functionally Graded Layer on Rigid Base 

As a final example, consider a single layer medium of thickness h , rested on a rigid 

base and subjected to a uniformly distributed load 0p  over the region [ , ]a a−  as 

shown schematically in Figure 4.48. The medium is made of a functionally graded 

material with its properties varying across the thickness of the layer. In particular, the 

graded material properties, considered in the numerical study, are assumed in the 

following linear, exponential, and quadratic forms 

(0)( ) 1
y

A y A
h


 

= + 
 

 (88) 

( )
/

(0)( ) 1
y h

A y A = +  (89) 

2

(0)( ) 1
y

A y A
h


  

= +     

 (90) 

where ( )A A y=  denotes the value of the material parameter at any depth y , (0)A  is 

the value of the material parameter at the top surface (i.e., 0y = ), and   is a grading 

constant. It is worth noticing that the grading constant   appearing in (88)-(90) can 

be written as 

(1) (0) (1)

(0) (0)

1
A A A

A A


−
= = −  (91) 

where (1)A  denotes the value of the material parameter at the bottom surface (i.e., 

y h= ).  

To simulate the mechanical response of this functionally graded layer, within 

the context of the proposed scheme, the medium is first portioned into N  identical 

sub-layers and each sub-layer is then represented by a homogeneous layer whose 

material properties are taken from those at the middle of the sub-layer. It is apparent 

that such approximation improves as N  increases and finally converges to the 

functionally graded layer as the number of sub-layers is sufficiently large. For this 

particular problem, it is found that 100N =  is adequate to ensure the convergence of 

the predicted solutions. 
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Figure  4.48 Schematic of two-dimensional layer made of a functionally graded 

material and subjected to uniformly distributed normal traction 0p . The layer is 

discretized into N  identical sub-layers. 

 

In a numerical evaluation, the thickness of the layer is taken as 0/ 1h =  and   

the shear modulus, Poisson’s ratio or characteristic length of the material is chosen 

and graded according to (88)-(90) while the remaining two material parameters are 

taken to be uniform across the layer. For the sake of brevity, only results for the 

vertical displacement yu  at top surface (i.e., 0y = ), the shear stress yx  at bottom 

surface (i.e., y h= ), the horizontal stress xx  and the vertical stress yy  along the line 

of symmetry (i.e., 0x = ) in indeterminate couple stress theory are reported and 

compared for the chosen values of the grading constant   and grading function forms 

(88)-(89) in Figures 4.49-4.51, 4.52-4.54, 4.55-4.57, and 4.58-4.60, respectively. 

It can be seen from the results that when the grading constant and gradation 

function are used differently, the predicted fields diverge from each other. This 

deviate trend can be observed better in the case of initial material parameter at the 

surface is much higher than the other end. The small gap of variation in material 

parameter between the two surface (i.e. small gradation constant  ) provides 

insignificant change in the field quatities no matter which gradation function used as 

the values that generated by every form are about the same. Especially in the case of 
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the gradation of characteristice length , all the results from the different cases are 

scarcely told apart. However, for the case of Poisson’s ratio gradation, the horizontal 

stress 
xx  has become greatly sensitive to the change eventhough the gap of gradation 

is not large. 

  

 

 

 

  (a)                (b) 

Figure  4.49 Normalized vertical displacement yu  at the top surface of (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 0.3 =

, 1 = , and various grading functions. 
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  (a)                 (b) 

Figure  4.50 Normalized vertical displacement 
yu  at the top surface of (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 

1 = , and various grading functions. 

 

  (a)                  (b) 

Figure  4.51 Normalized vertical displacement yu  at the top surface of (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 

0.3 = , and various grading functions. 
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  (a)                (b) 

Figure  4.52 Normalized shear stress yx  at the bottom surface of (a) small different 

between (0)  and (1) , and (b) large different between (0)  and (1)  medium under 

uniformly distributed normal traction. Results are reported for / 1a h = , 0.3 = , 

1 = , and various grading functions. 

  

  (a)                (b) 

Figure  4.53 Normalized shear stress yx  at the bottom surface of (a) small different 

between (0)  and (1) , and (b) large different between (0)  and (1)  medium under 

uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 1 = , 

and various grading functions. 
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  (a)                (b) 

Figure  4.54 Normalized shear stress 
yx  at the bottom surface of (a) small different 

between 
(0)  and 

(1) , and (b) large different between 
(0)  and 

(1)  medium under 

uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 

0.3 = , and various grading functions. 

 

  (a)                 (b) 

Figure  4.55 Normalized horizontal stress xx  along the line of symmetry for (a) 

small different between (0)  and (1) , and (b) large different between (0)  and (1)  

medium under uniformly distributed normal traction. Results are reported for / 1a h =

, 0.3 = , 1 = , and various grading functions. 
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  (a)                 (b) 

Figure  4.56 Normalized horizontal stress xx  along the line of symmetry for (a) 

small different between 
(0)  and 

(1) , and (b) large different between 
(0)  and 

(1)  

medium under uniformly distributed normal traction. Results are reported for / 1a h =

, 1 = , 1 = , and various grading functions. 

 

  (a)                 (b) 

Figure  4.57 Normalized horizontal stress xx  along the line of symmetry for (a) 

small different between (0)  and (1) , and (b) large different between (0)  and (1)  

medium under uniformly distributed normal traction. Results are reported for / 1a h =

, 1 = , 0.3 = , and various grading functions. 
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  (a)                 (b) 

Figure  4.58 Normalized vertical stress yy  along the line of symmetry for (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 0.3 =

, 1 = , and various grading functions. 

 

  (a)                 (b) 

Figure  4.59 Normalized vertical stress yy  along the line of symmetry for (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 

1 = , and various grading functions. 
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  (a)                 (b) 

Figure  4.60 Normalized vertical stress yy  along the line of symmetry for (a) small 

different between (0)  and (1) , and (b) large different between (0)  and (1)  medium 

under uniformly distributed normal traction. Results are reported for / 1a h = , 1 = , 

0.3 = , and various grading functions. 
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CHAPTER 5 

CONCLUSION 

 

A set of fundamental solutions of a two-dimensional, elastic, layered medium under 

arbitrarily distributed loadings at the surface has been established by taking the 

material micro-structure into account. The indeterminate couple stress theory has been 

selected to form the mathematical model with the appearance of the material length 

scale and, in addition, to formulate the key equations governing the elastic field 

within each layer. An analytical solution procedure, based mainly upon the method of 

Fourier integral transform, has been successfully adopted to obtain the closed form 

general solution of the elastic field of each layer in the Fourier transform space. Such 

results have been further applied to construct the stiffness equation for each layer. 

Upon enforcing the continuity and equilibrium conditions along the material 

interfaces between layers together with a standard assembly procedure, it leads to a 

final system of equations governing nodal quantities along the interfaces of the whole 

layered medium. An efficient numerical quadrature has been implemented to carry out 

all involved integrals resulting from Fourier transform inversion.  

Results from a comprehensive numerical study, upon the comparison with 

available benchmark cases, has confirmed the correctness of the formulation and the 

corresponding solution procedure. It has also been found that as the length of the 

loading region is comparable to the internal material characteristic length (induced by 

the integration of the couple stresses within the medium); the predicted solutions 

become size dependent and deviate significantly from those predicted from the size-

independent continuum mechanics. As the size of the loading region becomes 

sufficiently large or relatively small in comparison with the internal material length 

scale, the size dependent characteristics disappears. However, for the latter case, 

while the size dependence cannot be observed, responses predicted with the presence 

of the couple stresses are still significantly different from the classical case. Results 

from various cases confirm the necessity to integrate the size dependent effect into the 

mathematical model when the influence of material micro-structure becomes 

significant or, equivalently, the external and internal length scales are comparable. 
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Resulting from the development in a general framework allowing an arbitrary number 

of layers with arbitrary thickness and material properties to be treated, the model can 

be used to simulate a layered medium made of functionally graded materials (FGM). 

Although the present study focuses mainly on the layered media excited only 

by the prescribed surface loadings, the mathematical model has the direct application 

as the first approximation to investigate the indentation or contact problems where the 

distribution of the pressure under the indenter is presumed a priori. To offer a better 

approach, a set of fundamental solutions established for specific loading conditions 

can be used as the essential basis to formulate a set of equations governing the 

unknown contact pressure. This task is considered as a nontrivial extension of the 

current study. In addition, the generalization to treat problems in fully three-

dimensional settings is also of crucial interest to further broaden the modelling 

capability in handling more practical cases.   
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