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PRECIPITATION ESTIMATES OVER THAILAND) อ.ท่ีปรึกษาหลกั : ผศ. ดร.
ปิยธิดา เรืองรัศมี 

  

ในช่วงหลายปีท่ีผา่นมา ดาวเทียมอุตุนิยมวิทยาไดท้ าให้เกิดการพฒันาการประมาณปริมาณฝนจากขอ้มูลดาวเทียมท่ี
ให้อตัราความเขม้ฝนท่ีครอบคลุมพ้ืนท่ีทัว่โลก อย่างไรก็ตาม ขอ้มูลจากดาวเทียมมิไดเ้ป็นการวดัปริมาณฝนตกในพ้ืนท่ีโดยตรง 
ดังนั้น จึงจ าเป็นจะตอ้งมีการปรับแก้ความเอนเอียงเชิงสถิติของการประมาณปริมาณฝนจากขอ้มูลดาวเทียมส าหรับการน าไป
ประยุกต์ใช้กบัแบบจ าลองทางอุทกวิทยาเพ่ือให้ได้ผลลพัธ์ท่ีสามารถน าไปใชป้ระโยชน์ได้ วตัถุประสงค์ของการศึกษาน้ีเพ่ือ
ประเมินประสิทธิผลของการปรับแกค้วามเอนเอียงเชิงสถิติของการประมาณปริมาณฝนจากขอ้มูลดาวเทียมในพ้ืนท่ีประเทศไทย 
โดยประเมินข้อมูล  3 ข้อมูล  ได้แก่ Precipitation Estimates from Remotely Sensed Information using 

Artificial Neural Networks – Cloud Classification System (PERSIANN-CCS), Global Satellite 

Mapping of Precipitation - Near Real Time (GSMaP_NRT) แ ล ะ  Integrated Multi-satellitE 

Retrievals for GPM (IMERG) Early version เปรียบเทียบกับขอ้มูลฝนจากสถานีตรวจวดัของกรมอุตุนิยมวิทยา
ในช่วงปีพ.ศ. 2546 – 2561 และปรับแกก้ารประมาณปริมาณฝนจากขอ้มูลดาวเทียมดว้ย 3 วิธี ไดแ้ก่ Scaling, Quantile 

Mapping (QM) และ  Artificial Neural Network (ANN) จากผลการศึกษาพบว่าโดยภาพรวมทั้ งประ เทศ 
PERSIANN-CCS และ IMERG Early มีปริมาณฝนท่ีสูงกว่าขอ้มูลฝนจากสถานีตรวจวดั ส าหรับ GSMaP_NRT 

มีปริมาณฝนท่ีน้อยกว่าข้อมูลฝนจากสถานีตรวจวัด  โดย IMERG Early มีค่ า RMSE น้อยท่ี สุด  รองลงมาคือ 

GSMaP_NRT และ PERSIANN-CCS ตามล าดบั GSMaP_NRT มีค่า Equitable Threat Score (ETS) สูง
ท่ีสุด ในขณะท่ี IMERG Early มีค่า ETS นอ้ยท่ีสุด เน่ืองจากมีค่า false alarm ท่ีสูง ขอ้มูลฝนจากดาวเทียมทั้ง 3 ขอ้มูล
มีความคลาดเคลื่อนสูงในช่วงฤดูฝน ในช่วงเหตุการณ์ฝนตกหนกัและฝนตกหนกัมากมีปริมาณฝนท่ีน้อยกว่าขอ้มูลฝนจากสถานี
ตรวจวดั และมีความคลาดเคลื่อนสูงในบริเวณชายฝ่ังซ่ึงเป็นบริเวณท่ีมีปริมาณฝนตกหนัก IMERG Early มีค่า RMSE 

น้อยท่ีสุดในทุกลุ่มน ้ า หลงัการปรับแกค้วามเอนเอียงเชิงสถิติทั้ง 3 วิธี พบว่า IMERG Early ท่ีปรับแกแ้ลว้มีค่า RMSE 

น้อยท่ีสุดในทุกลุ่มน ้ า เมื่อประเมินจาก RMSE วิธี ANN ให้ผลท่ีดีท่ีสุดเมื่อเปรียบเทียบทั้ง 3 วิธี อย่างไรก็ตามในช่วง
ปริมาณฝนตกหนกัมาก ปริมาณฝนท่ีปรับแกค้วามเอนเอียงเชิงสถิติดว้ยวิธี ANN มีค่านอ้ยกว่าขอ้มูลฝนจากสถานีตรวจวดัมาก
ขึ้น มีค่า RMSE สูงขึ้น และท าให้ขอ้มูลฝนจากขอ้มูลดาวเทียม PERSIANN-CCS และ GSMaP_NRT ท่ีปรับแก้
ความเอนเอียงเชิงสถิติดว้ยวิธี ANN มี ETS ท่ีนอ้ยลง มีเพียงการปรับแกค้วามเอนเอียงเชิงสถิติดว้ยวิธี QM ท่ีสามารถท าให้
ความคลาดเคลื่อนของปริมาณฝนตกหนักมากลดลง และเพ่ิม ETS โดยภาพรวม การปรับแกค้วามเอนเอียงเชิงสถิติของขอ้มูล
ฝนจากดาวเทียม IMERG Early ดว้ยวิธี ANN มีค่า RMSE ท่ีนอ้ยท่ีสุดในทุกลุ่มน ้า 

 

สาขาวิชา วิศวกรรมแหล่งน ้า ลายมือช่ือนิสิต ................................................ 
ปีการศึกษา 2563 ลายมือช่ือ อ.ท่ีปรึกษาหลกั .............................. 
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Over the years, meteorological satellite instruments have produced Satellite 

Precipitation Estimates (SPEs) that can supply rainfall intensity rates globally. 

However, these datasets do not directly reflect the actual values of ground 

measurements so it is imperative to correct the systematic biases of SPEs to produce 

reliable hydrologic models. Thus, the aim of this study is to assess the effectiveness 

of bias correction of SPE products over Thailand. The Precipitation Estimates from 

Remotely Sensed Information using Artificial Neural Networks – Cloud 

Classification System (PERSIANN-CCS), Global Satellite Mapping of Precipitation 

- Near Real Time (GSMaP_NRT), and Integrated Multi-satellitE Retrievals for GPM 

(IMERG) Early version were evaluated in comparison to the Thai Meteorological 

Department (TMD) gauge measurements from 2003 to 2018. Subsequently, the SPEs 

were corrected by using Scaling, Quantile Mapping (QM), and an Artificial Neural 

Network (ANN) correction. Both the original PERSIANN-CCS and IMERG Early 

generally exhibit overestimation over Thailand while the GSMaP_NRT slightly 

underestimate rainfall. The original IMERG Early also shows the least RMSE 

overall, followed by GSMaP_NRT, then by PERSIANN-CCS. GSMaP_NRT shows 

the highest Equitable Threat Score (ETS) while IMERG Early has the lowest ETS 

because it has large amounts of false alarms. All products exhibit higher errors during 

the wet season, high underestimation during heavy and extreme rainfall, and higher 

errors near the coastal areas where high rainfall occurs. IMERG Early also shows the 

least RMSE in all river basins. After bias correction, the adjusted IMERG Early 

dataset still provides the least RMSE for all basins regardless of which correction 

method was applied. The ANN bias correction method performs the best among the 

three methods in terms of RMSE. However, it increases the underestimation and 

RMSE of extreme rainfall events and worsens ETS of PERSIANN-CCS and 

GSMaP_NRT. Only the QM bias correction is able to consistently reduce errors of 

extreme rainfall and improve ETS. Overall, the ANN adjusted IMERG Early dataset 

has the least RMSE in all river basins. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background of the Study 

Precipitation is a key parameter for various field of study. Accurate quantification 

of precipitation over certain areas is one of the key factors required to obtain reasonable 

results from hydrologic analyses. There are various ways to measure and estimate 

rainfall over specific locations. However, as the spatiotemporal representation increases, 

the resolution of the measurements lowers as shown in Figure 1-1. One of the simplest 

and most accurate methods is by the use of rain gauges as it can physically measure the 

depth of rainfall over a given period. Consequently, since the measurement is only 

located in a point location, it can only be considered as accurate within the vicinity of 

the rain gauge station. Another way to estimate precipitation is through the use of 

ground-based radars. It gives a better spatial distribution of rainfall compared to a rain 

gauge while maintaining a significant amount of accuracy as the sensors are still 

ground-based. However, since the radar indirectly measures the rainfall through signals 

from the pulses of microwaves, interference and physical obstructions can reduce the 

accuracy of the precipitation estimates. Similarly, space-borne radars equipped on 

satellites can also estimate precipitation. One of the advantages of satellite-based 

precipitation estimates is its spatial coverage which provides rainfall measurements for 

almost anywhere around the whole globe. Nevertheless, the data from satellite sensors 

has its drawbacks since the estimates come from indirect measurements. 
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Figure  1-1. Resolution of Rainfall Quantification over Spatiotemporal 

Representation (Kirstetter, 2019) 

Satellite precipitation estimates (SPEs) have the potential to provide rainfall data 

for almost every location in the world. However, these estimates contain systematic 

biases that need to be corrected. Moreover, other rainfall products have their own 

advantages and disadvantages. Combining different datasets may enhance the quality 

of precipitation estimates. Taking the spatial coverage of satellite rainfall data and the 

accuracy of rain gauge measurements can improve hydrologic models and simulations. 

1.2. Objectives of the Study 

The main objective of this study is to assess the effectiveness of bias correction of 

satellite precipitation estimates. Specifically, the study aims: 

1. To quantify the systematic bias of near-real-time (NRT) satellite precipitation 

estimates compared to rain gauges in Thailand; 

2. To adjust the bias of the SPE products in each basin using Scaling, Quantile 

Mapping (QM), and Artificial Neural Network (ANN) bias correction methods; and 

3. To determine which adjusted SPE product and its respective bias correction 

method has the least overall error in each basin within the country. 
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1.3. Scope and Limitations 

The study focuses on the assessment of the performance of the original and 

corrected NRT SPE products at a daily timescale within the boundaries of Thailand. 

The 123 TMD synoptic stations are used as basis for the evaluation of SPE products. 

Selected gauges are to be filtered in accordance to a Double Mass Consistency Analysis 

with respect to the other Thai Meteorological Department (TMD) synoptic stations 

within the same basin. Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Network (PERSIANN-CCS), Global Satellite Mapping of 

Precipitation Near Real Time version (GSMaP_NRT), and Integrated Multi-satellitE 

Retrievals for GPM (IMERG) Early Run from 2003 to 2018 at a daily time scale are the 

selected SPE products to be evaluated. The year 2003 has been selected to provide 

consistency in terms of temporal coverage for all the SPE dataset. In addition, the daily 

maximum and minimum temperatures at the same TMD stations are included in the 

study as additional input predictors for the ANN bias correction method. However, the 

temperature data available is only until the middle of 2017; therefore, the ANN 

testing/validation period would be shortened until the end of 2016. 

SPEs are to be evaluated with quantitative statistics and categorical statistics. 

Quantitative statistics include computation of mean bias (BIAS), root-mean-squared 

error (RMSE), and correlation coefficient (CORR) while categorical statistics include 

determination of probability of detection (POD), false alarm ratio (FAR), and equitable 

threat score (ETS). In terms of comparison, the SPE product with the lowest RMSE 

would be selected as the best performing dataset within each river basin. 
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After the evaluation, all of the selected SPE products would be corrected within 

each river basin. Scaling correction, quantile mapping, and an ANN model would be 

utilized to adjust the SPE rainfall pixel with an available rain gauge station. The three 

bias correction methods would use the same datasets for their respective calibration 

phases. The scaling correction would utilize a Time-Space Variable (TSV) approach, 

wherein the bias factor applied to the data varies by month and by basin. Likewise, the 

QM correction would separate the data by basin to produce a cumulative distribution 

function (CDF) for each basin. Furthermore, the ANN correction would follow a 

backward-propagation Multi-layer Perceptron (MLP) regression model with the input 

vector containing the original satellite rainfall value, maximum temperature, and 

minimum temperature while the output value being the adjusted satellite rainfall value. 

All river basin would have its own ANN model with one hidden layer containing 8 

hidden nodes to account for consistency as any additional number of hidden nodes to 

this does not lower the resulting error during the training phase for the datasets. The 

activation function used for the ANN model would be a Rectified Linear Unit instead 

of the sigmoid and hyperbolic tangent function in order to account for the vanishing 

gradient problem. 

 In addition, the error between the values of the original and corrected pixels would 

be interpolated using a simple inverse-distance weighing (IDW) interpolation method 

over the whole river basin. This error map would be used to adjust non-gauged pixels 

within the basin. The calibration (training) period for the bias correction would start 

from 2003 until 2010 while the validation (testing) period would be from 2011 to 2018. 

Any data that are not within the set time period (2003 to 2018) would not be included 

in the analysis. Moreover, gauge stations that are inconsistent with TMD synoptic 
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stations would be removed. Furthermore, although bias correction will significantly 

reduce its systematic errors and enhance its detection skills, these methods may not be 

able to correct the daily random errors 

1.4. Significance of the Study 

The improvement of the NRT daily SPE precipitation data would provide various 

development for many fields. In hydrology, the corrected SPE data would allow for 

better flood and drought models and warning systems as it could provide data to cover 

ungauged area. Other fields, such as in agriculture or in meteorology, may use the 

adjusted datasets for monitoring or forecasting. Furthermore, including an ANN model 

on correction would provide more insight to how machine learning methodologies 

could be used for water resources engineering.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Satellite Precipitation Estimates 

SPE products are estimated from space-borne radar instruments, sensors, and/or 

imagers. The greatest asset of estimations from satellites is that it can approximate the 

precipitation rate for the whole globe. Since the 1960s, satellite missions started aiming 

for the improvement of meteorological observations (Kidd & Huffman, 2011). Over the 

years, the technology greatly advanced with gave way for better measurement 

instruments.  

The meteorological satellites can be classified into two types; geostationary (GEO) 

and Low Earth Orbiting (LEO) satellites (Hu et al., 2019; Kidd & Huffman, 2011) as 

shown in Figure 2-1. GEO satellites are positioned approximately 38500 kilometers 

above the equator and orbits at around the same speed as the rotation of the Earth. These 

satellites are equipped with visible (VIS) and infrared (IR) sensors which can provide 

images every 30 minutes. VIS images have a spatial resolution of approximately 1 km 

by 1 km while IR sensors has approximately 4 km by 4 km. On the other hand, LEO 

satellites can provide better measure precipitation with the addition of passive 

microwave (PMW) sensors which measures precipitation more directly. However, 

these satellites can only pass over a given location approximately twice every day. 

Unlike GEO satellites, these satellites are located at a lower altitude of approximately 

850 kilometers above the surface of Earth and has an overpass twice a day. However, 

the products from LEO satellites provides higher resolution data of approximately 250 

meters to 1 kilometer.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

 

 

Figure  2-1. GEO and LEO Satellite Orbits 

Thakur et al. (2017) classifies the satellite rainfall estimation into four methods 

using VIS/IR, PMW, active microwave (AMW) sensors, and blending multiple data 

from different sensors. Rainfall measurements estimated from VIS/IR are computed by 

establishing statistical relationships between the cloud parameters and rainfall intensity. 

VIS images are used to identify cloud classifications and delineate cloud area which 

sets apart the regions with and without rain. However, these images are limited as it is 

only visible during the day. IR images fills in the gaps by using cloud temperatures to 

supplement the estimate. VIS/IR algorithms are able to detect and produce continuous 

rainfall data. However, these products have low accuracy because cloud temperatures 

are not directly related to rainfall intensity (Hu et al., 2019). Kidd and Huffman (2011) 

stated that emission from precipitation particles can be used to quantify rainfall as 

emissions from rain droplets increase the MW radiation observed while precipitation 

ice particles causes scattering which reduces MW radiation. However, these techniques 

differ as rain drop emission relates to the measurements of rainfall throughout the whole 

atmosphere column while ice precipitation scattering occurs more at the upper parts of 

a cloud. One of the challenges for PMW rainfall products is that LEO satellites only 
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have up to two observations per day which cannot provide continuous retrievals. Figure 

2-2 illustrates the difference between what these sensors can detect. 

 

Figure  2-2. Difference between VIS/IR and MW sensors on Satellites (Kirstetter, 

2019) 

AMW observations provide the most direct rainfall estimation compared to VIS/IR 

and PMW retrievals. The precipitation radar (PR) on the satellite utilizes the relation 

between radar reflectivity and rain rate to estimate precipitation (Thakur et al., 2017). 

This radar measurement can provide data of the vertical structure of precipitation which 

improves the calculation for the precipitation rate. The first PR deployed into orbit was 

the Tropical Precipitation Measurement Mission (TRMM) PR. However, the TRMM 

ended last 2015 after depleting its fuel source. The single-frequency radar was then 

succeeded by the Global Precipitation Mission (GPM) dual-frequency precipitation 

radar (DPR). The DPR can improve the observations and retrievals for precipitation in 

cold seasons, especially in higher latitudes. However, similar to PMW retrievals, AMW 

observations cannot estimate rainfall intensity continuously. 
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Each SPE product has a particular algorithm which makes it distinct. For example, 

each sensor retrieval technique has its own advantages and disadvantages. Multi-sensor 

techniques are employed to overcome the gaps of the observations of each satellite. 

Combining the frequency of VIS/IR sample with the direct measurement of PMW 

improves the quality of precipitation estimation from satellite retrievals. There have 

also been techniques to calibrate IR observations with PMW. One of the most common 

techniques is using blended algorithms which produces calibration curves to map sensor 

observations to each other (e.g. IR with PMW). Various organizations and agencies 

have produced their own satellite rainfall products using diverse and complex 

techniques such as incorporating cloud processes or use of artificial neural network 

(ANN). Table 2-1 lists the details of the satellite-based rainfall products discussed. 

Moreover, Figure 2-3 illustrates the timeline for the improvements of SPEs over the 

recent years. 

2.1.1. Tropical Precipitation Measurement Mission (TRMM) Multi-satellite 

Precipitation Analysis (TMPA) 

With the joint development of National Aeronautics and Space Administration 

(NASA) of the United States of America and the National Space Development Agency 

(NASDA) of Japan (which has now merged with into the Japan Aerospace Exploration 

Agency), TRMM was launched in 1997 and was the first dedicated precipitation 

mission to be launched (Li, Wang, Chen, & Austin, 2019). The mission officially ended 

after 17 years of service in 2015. The remains of the spacecraft and its instrument landed 

over the South Indian Ocean with majority of its part scorched from the entry into Earth. 

The TRMM satellite housed its PR, the TRMM Microwave Imager (TMI), and Visible 

and Infrared Scanner (VIRS). The mission produced various precipitation products 
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ranging from its single sensor retrieval to merged multi-satellite (Huffman et al., 2007). 

The TRMM Multi-satellite Precipitation Analysis (TMPA) product merged various 

satellite data and calibrated with the TMI observations in order to produce a high-

quality estimate for precipitation. The two major datasets from TMPA were the NRT 

version 3B42-RT and the post-real-time 3B42-V7 which is mainly used for research 

(Maggioni, Meyers, & Robinson, 2016).  The 3B42-RT product has a spatiotemporal 

resolution of 0.25° for every 3 hours which covers 50°S to 50°N from March 2000 to 

2015 when the mission ended. The NRT product has a latency of approximately 9 hours. 

On the other hand, the 3B42-V7 has the same resolution and coverage but has longer 

latency at roughly 2 months. This late release is due to the bias adjustment using the 

Global Precipitation Climatology Centre (GPCC) gauge analysis.  

 

Figure  2-3. Timeline of SPE development in recent years. 

2.1.2. Climate Prediction Center (CPC) Morphing Technique (CMORPH) 

CMORPH is developed by the National Oceanic and Atmospheric Administration 

(NOAA). Its product directly utilizes the PMW observation with cloud motion from IR 

observations (Kidd & Huffman, 2011). The retrievals are computed by generating cloud 

system advection vectors (CSAV) from IR observations and morphing precipitation 

shape and rate by time-weighted linear interpolation between forward- and backward-
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propagated PMW observations (Joyce, Janowiak, Arkin, & Xie, 2004). The produced 

estimate from CMORPH has a spatiotemporal resolution of 0.25° x 0.25°for every 30 

minutes that covers 60°S to 60°N from 1998 to present at a latency of 18 hours. 

CMORPH-Kalman Filter (KF) is another CPC product that uses Kalman Filter to 

provide higher resolution data at 8km by 8km every thirty minutes (Joyce & Xie, 2011). 

2.1.3. Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Network (PERSIANN) 

In the early 1990s, integrating ANN into precipitation estimation has already been 

studied which showed promising results (Kidd & Huffman, 2011). Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Network 

(PERSIANN) has been produced by the Center for Hydrometeorology and Remote 

Sensing (CHRS) at the University of California Irvine (UCI) since 1997 (Hsu, Gao, 

Sorooshian, & Gupta, 1997). The PERSIANN algorithm utilizes the brightness 

temperature of the observed and neighboring pixels from longwave IR images to 

calculate the precipitation rate using ANN. Over the years, various developments of 

this satellite-based precipitation estimates have been produced (Nguyen et al., 2018). 

The family of products include PERSIANN, PERSIANN Cloud Classification System 

(PERSIANN-CCS), and PERSIANN Climate Data Record (PERSIANN-CDR). All of 

these products have a similar spatial coverage of 60°S to 60°N but differs in their 

spatiotemporal resolution and latency. The three products may be distinctly 

differentiated by its utilization purpose. PERSIANN and PERSIANN-CCS are more 

suitable for short-term applications (Hong, Hsu, Sorooshian, & Gao, 2004). 

PERSIANN incorporates quality control by calibration using PMW retrievals before it 

is released after 2 days. Moreover, it has a spatiotemporal resolution of 0.25° by 0.25° 
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every hour. On the other hand, PERSIANN-CCS is available as an NRT product with 

latency of approximately 1 hour and a higher spatial resolution of 0.04° by 0.04°. 

Although this product is less calibrated than the original PERSIANN, Nguyen et al. 

(2018) states that PMW calibrated PERSIANN-CCS products are available for data 

after 2014. PERSIANN-CDR is a bias adjusted product that has a record since 1983 

which makes it applicable for historical and long-term statistical analysis in 

hydrometeorological studies (Ashouri et al., 2015). PERSIANN-CDR has a similar 

spatiotemporal resolution with the original PERSIANN but its latency is approximately 

3 months. 

Table  2-1. SPE Details and Information  

 

2.1.4. Global Satellite Mapping of Precipitation (GSMaP) 

As early as 2002, Japan has been producing its own high-resolution satellite-based 

precipitation estimates. Currently, Global Satellite Mapping of Precipitation (GSMaP) 

utilizes PMW and IR observations for its rainfall estimates. GSMaP_MWR 

(Microwave Retrievals) converts brightness temperatures to precipitation rate values 

(Mega et al., 2018). The algorithm of this product has been updated in order to 

incorporate the orographic effect on precipitation. It has a spatiotemporal resolution of 
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0.25° by 0.25° every hour covering 60°S to 60°N globally. GSMaP_NRT offers a 

product for short-term applications at a latency of 4 hours and provides data from 2008 

to present. It propagates precipitation rates from the previous product forward in time 

in accordance to cloud motion vectors which is then adjusted using Kalman filter, 

similar to the CMORPH methodology (Ushio et al., 2009). Contrarily, GSMaP_MVK 

has a longer latency at 3 days but it delivers a more accurate precipitation estimate 

compared to the previous products. It also has precipitation estimates since 2000 to 

present. This product improves the described methodology as well as the morphing 

technique of CMORPH by including backward propagation. The overall flowchart is 

shown in Figure 2-4. A more recent product of JAXA is the GSMaP_Gauge which 

utilizes gauge stations to remove the bias in the satellite-based estimate. The global 

gauge data of CPC has been used to adjust the GSMaP_MVK and GSMaP_NRT. In 

addition, a new product named GSMaP_NOW has been released recently to provide 

actual real time precipitation half-hourly data with latency less than 1 hour. It utilizes 

extrapolation of half an hour into the future using cloud motion vector from GEO 

satellites (Japan Aerospace Exploration Agency, 2019). It currently provides data from 

27 June 2019 to present. 
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Figure  2-4. GSMaP Algorithm Flowchart (Mega et al, 2019) 

2.1.5. Integrated Multi-satellitE Retrievals for GPM (IMERG) 

With the success of TRMM, the Global Precipitation Mission (GPM) has been 

initiated by NASA and the Japan Aerospace Exploration Agency (JAXA) as its 

successor. Notably, other international space agencies such as the Centre National 

d’Études Spatiales (CNES), Indian Space Research Organization (ISRO), National 

Oceanic and Atmospheric Administration (NOAA), and European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) have joined the mission. In 

this mission, the satellite instrument has been equipped with a dual-frequency 

precipitation radar (DPR) which provides better detection of precipitation occurrences 

by approximately 1.5 times compared to the TRMM PR (Gao, Tang, & Hong, 2017). 

NASA has released its GPM era satellite precipitation estimate named Integrated 

Multi-SatellitE Retrievals for GPM (IMERG). This satellite-based rainfall product 

utilizes global rain gauge, IR, PMW, and DPR datasets to estimate the precipitation 

(Huffman et al., 2015). Aside from building from the TRMM algorithm, it incorporates 
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multiple methodologies from satellite rainfall products of various agencies. The 

IMERG algorithm uses cloud motion vectors and Kalman filter to improve spatial 

resolution of the products similar to CMORPH-Kalman Filter (KF) and GSMaP-MVK 

products. Moreover, it applies the IR segmentation methodology of PERSIANN-CCS 

to fill in gaps within the data using microwave-calibrated IR retrievals. The process 

flow for IMERG are visualized in Figure 2-5. Similar to most satellite products, IMERG 

utilizes post-calibration by adjusting the satellite precipitation estimates using global 

gauge data. The output IMERG Version 6 (V6) product has a spatiotemporal resolution 

of 0.1° by 0.1° every 30 minutes with full global coverage from 1998 to present for the 

current version. There are three sub-product which differs in their latency. These 

datasets are 3B-HHR-E (Early), 3B-HHR-L (Late), and 3B-HHR (Final) with latencies 

of approximately 4 hours, 14 hours, and 3.5 months respectively. As the latency 

increase, more data are used to improve the precipitation estimates. Although Early and 

Late datasets are both NRT products, the former may be utilized for potential flood or 

landslide warnings while latter would be more applicable for agricultural forecasting or 

drought monitoring (Sungmin et al., 2017). Similar to the TMPA algorithm, the Final 

product is adjusted with the expectation that its monthly sum would be equal to the 

monthly satellite-gauge combination of IMERG. 
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Figure  2-5. IMERG Algorithm Flowchart (Huffman et al., 2015) 

2.2. Satellite Precipitation Estimates Evaluation 

SPEs are evaluated against ground truths with regards to the error through 

quantitative statistics and detection skill by forecast verification through categorical 

statistics. The quantitative statistics for the evaluation of SPEs are the mean error or 

bias (BIAS), relative bias (RBIAS), mean absolute error (MAE), root-mean-squared 

error (RMSE), and the correlation coefficient (CORR) of the SPE product with respect 

to the rain gauge measurements at the same point location. On the other hand, the 

accuracy of a products can be verified by categorical statistics the determination of the 

number of correct (hits) and incorrect (miss) prediction produced by the SPE. If both 

of the SPE product and rain gauge measurement show occurrence of rainfall, it would 

be considered to be a hit. In the same way, should both datasets show no sign of rainfall, 
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it is simply regarded as a true negative. Otherwise, when the SPE product shows 

occurrence of rainfall while the gauge measurement does not, the prediction is 

considered to be a false alarm. Conversely, when the SPE product does not show 

occurrence of rainfall while the gauge measurement does, the SPE product has missing 

data. This concept is illustrated in Figure 2-6, where a, b, c, and d are the number of 

hits, false alarms, misses, and true negatives respectively. It also relates how the 

contingency table show conditional probability for forecast-event pairs. 

 

Figure  2-6. 2x2 Contingency Table for Forecast-Event Pairs (Wilks, 2011) 

With the hits, false alarms, missing data, and true negatives, the SPEs products can 

be further analyzed by calculating the probability of detection (POD), false alarm ratio 

(FAR), and skill scores depending on the purpose of the analysis. Each skill score uses 

varying equations as shown in Table 2.2, which provide a different representation of 

the data (Wilks, 2011). Heidke Skill Score (HSS) measures accuracy of the prediction 

or estimate with respect to random chances. Peirce Skill Score (PSS) evaluates the true 
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skill of the prediction by separating the correct and false prediction. Critical Success 

Index (CSI), sometimes known as the threat score (TS), determines the performance of 

the correct prediction. On the other hand, Gilbert Skill Score (GSS), usually referred to 

as Equitable Threat Score (ETS), relies on the number of true negatives unlike TS. 

Table  2-2. Equations for Evaluation of SPEs 

QUANTITATIVE STATISTICS CATEGORICAL STATISTICS 

BIAS 
1

𝑛
∑(𝑆𝑖 − 𝐺𝑖)

𝑛

𝑖=1

 POD 
𝑎

𝑎 + 𝑐
 

RBIAS 
∑ (𝑆𝑖 − 𝐺𝑖)𝑛

𝑖=1

∑ (𝐺𝑖)𝑛
𝑖=1

× 100% 

FAR 
𝑏

𝑏 + 𝑑
 

HSS 
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 

MAE 
1

𝑛
∑|𝑆𝑖 − 𝐺𝑖|

𝑛

𝑖=1

 PSS 
𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑐)(𝑏 + 𝑑)
 

RMSE √
1

𝑛
∑(𝑆𝑖 − 𝐺𝑖)2

𝑛

𝑖=1

 CSI 
𝑎

𝑎 + 𝑏 + 𝑐
 

CORR 

∑ (𝑆𝑖 − 𝑆́)(𝐺𝑖 − 𝐺́)𝑛
𝑖=1

√∑ (𝐺𝑖 − 𝐺́)
2𝑛

𝑖=1 × √∑ (𝑆𝑖 − 𝑆́)
2𝑛

𝑖=1

 
ETS 

𝑎 − 𝑎𝑟𝑒𝑓

𝑎 − 𝑎𝑟𝑒𝑓 + 𝑏 + 𝑐
 

𝑎𝑟𝑒𝑓 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑛
 

In the evaluation of SPEs, products have similarities and differences to the results 

of the analysis, especially when compared to other agencies. For example, Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS) monthly rainfall data 

from NOAA prove to be similar to gauge data during the rainy season in Ethiopia 

(Musie, Sen, & Srivastava, 2019). On the other hand, Famine Early Warning Systems 
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Network Rain Fall Estimation (FEWS-Net RFE) data overestimates number of rainy 

days but underestimates precipitation rate when compared to rain gauges (Lekula, 

Lubczynski, Shemang, & Verhoef, 2018). 

During its era, TRMM products showed the best performance among other SPEs 

(Musie et al., 2019; Trinh-Tuan, Matsumoto, Ngo-Duc, Nodzu, & Inoue, 2019; Y. Yang 

& Luo, 2014). Moreover, the post real-time product TMPA 3B42 provided better 

correlation and detection than its NRT (Behrangi et al., 2011; Z. Wang, Zhong, Lai, & 

Chen, 2017). In addition, a consistent feature of TRMM is its ability to capture 

precipitation patterns whether it is annual (Tan & Santo, 2018), monthly (Hur, 

Raghavan, Nguyen, & Liong, 2016; Musie et al., 2019), or daily (Yuan et al., 2018). 

However, its products still had some issues when it came to the estimation of rainfall. 

Musie et al. (2019) noted that TRMM has a tendency to overestimate daily rainfall in 

dry seasons. In some cases, the overestimation is more prevalent with higher rainfall 

intensity (Tan & Santo, 2018; Y. Yang & Luo, 2014). Moreover, although different 

study areas have different conditions, there are some consistent results. A number of 

studies show that TRMM products have high POD but its FAR also show high values 

(Hur et al., 2016; Kenabatho, Parida, & Moalafhi, 2017; Musie et al., 2019; Y. Yang & 

Luo, 2014). This scenario leads to lower skill scores, especially with CSI. Some authors 

noted that the gauge adjusted 3B42V7 product performed better than the NRT product 

of IMERG (X. Wang, Ding, Zhao, & Wang, 2019; Z. Wang et al., 2017). Even though 

these datasets cannot be directly compared because of their differences in spatial 

resolution, latencies, and post-processes, it shows that gauge-adjusted products have a 

clear advantage to non-adjusted counterparts. 
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In the case of CMORPH, most studies reported underestimation of rainfall in both 

monthly (Habib, Haile, Sazib, Zhang, & Rientjes, 2014) and daily scales (Jamandre & 

Narisma, 2013; Lekula et al., 2018). However, in Northwest China, it seems that 

overestimation of both rainfall occurrence and rate is more evident (Y. Yang & Luo, 

2014). Trinh-Tuan et al. (2019) noted that the CMORPH product performs better in 

areas with higher station density, which suggests that the density of gauge networks 

may influence the performance of SPEs. 

With GSMaP having various products, each one has a different result when 

compared to ground truths. The GSMaP_NRT product showed that it has trouble 

capturing daily rainfall patterns when compared to gauges (Deng et al., 2018). On the 

other hand, the post-processed GSMaP_MVK is able to compensate in improving 

rainfall as it can capture monthly variations (Bui, Ishidaira, & Shaowei, 2019). 

However, this product still has a problem with underestimation of rainfall accumulation. 

Underestimation is more evident during the winter months (Hur et al., 2016; Tian, 

Peters-Lidard, Adler, Kubota, & Ushio, 2010) which may stem from the PMW 

estimates that tend to also underestimate winter precipitation (Nguyen et al., 2018). 

Conversely, the MVK product show different results during summer. In Continental 

United States (CONUS), precipitation is overestimated while underestimation is 

observed in Singapore and Vietnam (Bui et al., 2019; Hur et al., 2016). The 

precipitation estimation is improved with the gauge-adjusted GSMaP_Gauge which 

showed less underestimation during dry season compared to its unadjusted version 

which may be attributed to the propagation algorithm that cannot capture small-scale 

storm events. It is worth noting that even with the improvements brought by the 

adjustment, the SPE still underestimates rainfall in areas with complex terrain (Deng et 
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al., 2018). Bui et al. (2019) mentioned that some areas have sparse gauge networks that 

ultimately affect the performance of blended SPE in areas with varying elevations. A 

sufficient number of gauge stations would be needed to produce better satellite-gauge 

data.  

For PERSIANN, there is a consistent pattern of overestimation (Alharbi, Hsu, & 

Sorooshian, 2018; Behrangi et al., 2011; Y. Yang & Luo, 2014). However, with higher 

precipitation, the products more often underestimate daily rainfall rate (Katiraie-

Boroujerdy, Asanjan, Hsu, & Sorooshian, 2017; Z. Yang et al., 2016).  Inversely, in 

Ethiopia and Malaysia, PERSIANN-CDR tend to underestimate light rain and 

overestimate moderate to heavy rain (Musie et al., 2019; Tan & Santo, 2018). All three 

product tend to show higher POD and also higher FAR than other SPEs (Nguyen et al., 

2018; Tan & Santo, 2018). In CONUS, the bias-adjusted PERSIANN-CDR also 

performed better in capturing rainfall pattern and precipitation rate estimation (Nguyen 

et al., 2018). However, similar to GSMaP, PERSIANN products also show 

underestimation during winter.  

As the successor of TRMM, IMERG has shown its capability to build on its 

predecessor. When compared to TRMM, IMERG has shown significant improvement 

in terms of estimation and detection (X. Wang et al., 2019). Although the post real-time 

product TMPA 3B42 shows better performance than the IMERG NRT products as 

previously mentioned, the IMERG Final still show superiority with less bias, better 

correlation, and good overall skill score (Tan & Santo, 2018; Z. Wang et al., 2017; 

Yuan et al., 2018). In a study in UAE, the Early product showed high POD and 

correlation with respect to an event-based analysis (Mahmoud, Hamouda, & Mohamed, 
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2019). In the case of Southeastern Austria and Upper Huaihe River Basin, all products 

overestimate light rain and underestimate moderate to heavy intensities (Su, Lü, Zhu, 

Cui, & Wang, 2019; Sungmin et al., 2017). This similarity may stem from both study 

area are located in the mid-latitudes. However, the opposite is true in the low latitudes 

of Malaysia which shows underestimation of no and light intensity but overestimation 

of moderate to heavy rain (Tan & Santo, 2018). Overall, IMERG shows significant 

improvement from TMPA products and that gauge-adjusted products provide superior 

benefits compared to NRT. 

In general, POD lowers and FAR increases with higher intensity as shown in Figure 

2-7 (Behrangi et al., 2011). These false alarms may also contribute to overestimation of 

rainfall (X. Wang et al., 2019). Adjustment of SPEs is needed because bias-adjusted 

products (TMPA 3B42, IMERG Final, PERSIANN-CDR, etc.) provided better 

performance which enhances their applicability in practical (Behrangi et al., 2011; 

Nguyen et al., 2018; Z. Wang et al., 2017). However, blending with gauge data does 

not always lead to better precipitation estimation (Bui et al., 2019). Sufficient gauge 

stations are needed to produce better blended satellite-gauge data. Similar to the case 

in Malaysia, global gauge datasets sometimes do not have enough coverage in some 

countries as is depicted in Figure 2-8 (Tan & Santo, 2018). This suggests that correction 

using local gauge may have a better effect. Furthermore, performance of SPEs (BIAS, 

POD, FAR, etc.) significantly vary depending on elevation and location of the study 

area (Deng et al, 2018; Trinh-Tuan et al, 2019). These conditions must be considered 

also in the adjustment of the datasets. Analysis by using precipitation indexes helped in 

decomposition of errors and categorizing climate patterns (Hur et al., 2016; Katiraie-

Boroujerdy et al., 2017; Nguyen et al., 2018). 
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Figure  2-7. POD and FAR over increasing rainfall intensity (Behrangi et al., 2011) 

 

Figure  2-8. GPCP Gauges over the whole country of Malaysia (Tan & Santo, 2018) 

2.3. Satellite Precipitation Estimates Bias Correction 

As shown in the previous section, systematic errors are present in SPE products, 

especially in NRT products. Bias correction is required to remove these errors and fully 

utilize the SPEs. This process may require ancillary data (e.g. wind, temperature, cloud 

movement, etc) and ground truths (e.g. gauge measurements, multi-sensor data, radar 

estimates, etc) to adjust each rainfall estimate at specified time scales. The common 

bias correction methods are bias factor scaling, curve fitting and regression, and 
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quantile mapping (QM) (Deng et al., 2018; Gumindoga, Rientjes, Haile, Makurira, & 

Reggiani, 2016; Z. Yang et al., 2016). 

Bias correction methods were initially used for correction of radar rainfall data and 

climate models (Gumindoga et al., 2016). Corrections are applied to climate model 

prediction such as precipitation and temperature to accurately represent the possible 

actual scenario in the future (Amengual, Homar, Romero, Alonso, & Ramis, 2012; 

Jakob Themeßl, Gobiet, & Leuprecht, 2011). From the study of Jakob Themeßl et al. 

(2011), direct methods, such as local intensity scaling or QM, are more effective in bias 

correction of climate model data than indirect methods, such as linear regression and 

resampling. This claim holds true in another study where distribution mapping is the 

best correction method among five other processes (Teutschbein & Seibert, 2012). 

2.3.1. Scaling Correction 

In scaling correction, the method applies a bias factor (BF) to the SPE dataset 

through either multiplication or addition (Gumindoga et al., 2016; Habib et al., 2014). 

The BF may be computed in various ways depending on the spatiotemporal analysis 

involved. However, the most common form of the BF equation is shown in Equation 1 

as  

𝐵𝐹 = ∑ 𝐺𝑖

𝑛

𝑖=1

∑ 𝑆𝑖

𝑛

𝑖=1

⁄      (1) 

where n is the total number of gauge stations, i is the observed gauge stations, G is 

the gauge measurement, and S is the satellite estimate (Lekula et al., 2018). Allowing 

the influence of spatio-temporal variability in the bias correction of SPEs would show 

another form of the BF equation in Equation 2 as Time-Space Variable (TSV), 
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𝐵𝐹𝑇𝑆𝑉 =
∑ 𝑆(𝑖, 𝑡)𝑡=𝑑−𝑙

𝑡=𝑑

∑ 𝐺(𝑖, 𝑡)𝑡=𝑑−𝑙
𝑡=𝑑

     (2) 

where d is the selected day, i is the observed gauge station, t is the Julian day number 

(Habib et al., 2014). The value of l in the literature equals to 7 which gives a seven-day 

time window for the BF factor. Other forms may take on Time-Space Fixed (TSF) and 

Time Variable (TV) as shown in Equations 3 and 4 respectively 

𝐵𝐹𝑇𝑆𝐹 =
∑ ∑ 𝑆(𝑖, 𝑡)𝑖=𝑛

𝑖=1
𝑡=𝑇
𝑡=1

∑ ∑ 𝐺(𝑖, 𝑡)𝑖=𝑛
𝑖=1

𝑡=𝑇
𝑡=1

      (3) 

𝐵𝐹𝑇𝑉 =
∑ ∑ 𝑆(𝑖, 𝑡)𝑖=𝑛

𝑖=1
𝑡=𝑑−𝑙
𝑡=𝑑

∑ ∑ 𝐺(𝑖, 𝑡)𝑖=𝑛
𝑖=1

𝑡=𝑑−𝑙
𝑡=𝑑

    (4) 

Another scaling method is referred to as Distribution Transformation which is an 

additive approach (Gumindoga et al., 2016). It first computes a bias factor for monthly 

mean of gauge and satellite as shown in Equation 5, 

𝐷𝑇𝜇 =
𝐺𝜇

𝑆𝜇
      (5) 

where Gμ and Sμ are the monthly mean of the gauge measurements and satellite 

estimates respectively for all gauge stations. In addition, the methodology also 

computes for a bias factor for the variation which is shown by Equation 6, 

𝐷𝑇𝜏 =
𝐺𝜏

𝑆𝜏
      (6) 

Finally, the corrected satellite value would be computed by Equation 7, 

𝑆𝐷𝑇 = (𝑆𝑜 − 𝑆𝜇)𝐷𝑇𝜇 + 𝐷𝑇𝜏𝑆𝜏     (7) 
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where SDT is the corrected SPE and SO is the original SPE value. The advantage 

of this method is that it adjusts the satellite with respect to standard deviation and 

percentile values. 

2.3.2. Regression and Curve Fitting 

With regression and curve fitting, SPEs are corrected by using a certain function 

that relates the satellite data with ground truths. In some cases, it could be as simple 

fitting the precipitation estimate with gauge measurements through simple or multiple 

linear regression as with climate model downscaling and bias correction (Jakob 

Themeßl et al., 2011; Teutschbein & Seibert, 2012). However, it is also possible to use 

other equations such as polynomial and power functions to determine the corrected 

value of SPEs (Deng et al., 2018; Gumindoga et al., 2016). In the study of Deng et al. 

(2018), the Mean Error (ME) is plotted again the Precipitation Intensity (PI) to fit a 

quadratic function for correcting the SPE product. Figure 2-9 shows the plot and 

functions used in the said study.  

 

Figure  2-9. Curve fitting PI vs ME for a) 0 < PI <= 20 and b) 20 mm/day < PI 

(Deng et al., 2018) 

On the other hand, Gumindoga et al. (2016) shows a power transform function for 

correcting SPE as shown in Equation 8, 
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𝑃∗ = 𝑎𝑃𝑏     (8) 

where P* is the corrected SPE value, P is the monthly rainfall from gauge, a is the 

factor that represent the corrected SPE to be equal to the gauge mean, and b is the 

coefficient of variation (CV) of the satellite to the gauge measurements. The variables 

a and b are coefficients for the power function which are then optimized using a 

generalized reduced gradient algorithm.  

2.3.3. Quantile Mapping 

In the QM methodology, the cumulative distribution functions (CDF) of both gauge 

and SPEs are used for bias correction. As with climate model downscaling, the CDFs 

may be fitted into a specific distribution (Teutschbein & Seibert, 2012). However, 

empirical or non-parametric distributions have been considered to produce better results 

as the curve fitting is not required (Z. Yang et al., 2016). The basic equation of QM is 

shown by Equation 9, 

𝑆𝑎𝑑𝑗 = 𝐶𝐷𝐹𝐺
−1(𝐶𝐷𝐹𝑆(𝑆𝑜𝑟𝑖))      (9) 

where CDF-1G is the inverse CDF of the gauge measurements,  CDFS is the CDF 

of the SPE at the same gauge location, and Sadj and Sori are the adjusted and original 

SPE values respectively. This concept is represented in Figure 2-10 where PMW 

estimates are used instead of gauge measurements to correct PERSIANN-CCS 

(Karbalaee, Hsu, Sorooshian, & Braithwaite, 2017).  
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Figure  2-10. Quantile Mapping Algorithm (Karbalaee et al., 2017) 

Scaling correction of SPEs show that the processed data have improved correlation, 

reduced biases, and less false alarms (Lekula et al., 2018; Saber & Yilmaz, 2018). When 

comparing between scaling methods in Zambezi River Basin, the multiplicative method 

STB and additive method DT were the most effective in correcting the mean values 

(Gumindoga et al., 2016). However, multiplicative methods are considered to be better 

than additive method in some areas (Saber & Yilmaz, 2018). Moreover, in an area 

where spatio-temporal variations are significant, the TSF method barely adjusted the 

data (Habib et al., 2014).  

With the Quadratic fitting method used by Deng et al. (2018), the RMSE decreased 

and correlation increased after correction. Moreover, the precipitation intensity patterns 

by gauges were captured by the corrected data. However, in the study, the product 

chosen for correction was GSMaP_Gauge which was already adjusted. Furthermore, 

the corrected data resulted in higher standard deviation which may be rooted from bias 

that the curve fitting may not be able to adjust. 

In the study of Gumindoga et al. (2016), the Empirical QM method was the least 

performing correction method. However, it showed that QM is more effective in terms 
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of rainfall accumulation such as in monthly and annual time scales. It is stated that the 

QM method does not fully adjust daily events as it loses effectiveness with time scales 

less than a month (Alharbi et al., 2018; Z. Yang et al., 2016). It is also worth noting that 

the effectiveness of QM correction depends on the data used for adjustment. Corrected 

SPE data using with PMW-based rainfall estimates, which are less effective during 

winter, show improvement only during the summer season when compared to radar 

data (Karbalaee et al., 2017). 

QM methodologies were coupled with other processes to improve correction. 

Common methodologies were to apply separation by zones and interpolation. Corrected 

SPE using QM coupled with separation by climate zones showed better performance 

compared to without separation (Alharbi et al., 2018). It is also able to capture daily 

rainfall pattern in a time series as shown in Figure 2-11.  

Interpolation methods provide spatial variability in QM bias correction (Habib et 

al., 2014). Inverse Distance Weighing (IDW) and Gaussian Weighing (GW) are some 

of the interpolation methods used with QM (Alharbi et al., 2018; Z. Yang et al., 2016). 

In the study of Z. Yang et al. (2016), the 1° x 1° box grids were used in Chile to 

consolidate gauge data for one CDF per season. Figure 2-12 illustrates the location of 

the box grids, gauges, CDFs, and Gaussian function. The SPE adjusted by the coupled 

QM-GW is computed by Equation 10, 

𝑅𝑖 = ∑ 𝑤𝑖𝑗 ∙ 𝐶𝐷𝐹𝐺−𝑗𝑠
−1 (𝐶𝐷𝐹𝑆−𝑗𝑠(𝑟𝑖(𝑡))) = ∑ 𝑤𝑖𝑗 ∙ 𝑟′

𝑖(𝑡)

𝑗∈𝛺

      (10)

𝑗∈𝛺

 

where Ri is the adjusted rainfall, ri(t) is the satellite rainfall at pixel i at time t, wij 

is the gaussian weight, CDFG-js-1 is the inverse CDF of the gauge rainfall 
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measurement for season s at box j, CDFS-js is the CDF of the SPE for season s at box 

j. The Gaussian weights are computed by Equation 11 and 12, 

𝑤𝑖𝑗 =

exp (− (
𝑑𝑖𝑗
̅̅ ̅̅

𝐶 )

2

)

∑ exp (− (
𝑑𝑖𝑗
̅̅ ̅̅

𝐶 )

2

)4
𝑗=1

     (11) 

𝑑𝑖𝑗
´ =

𝑑𝑖𝑗

𝐷
      (12) 

where dij is the normalized distance of pixel i to the center of the nearby box j, dij 

is the actual distance of pixel i to nearby box j, D is the farthest distance between two 

box centers, and C is the Gaussian shape parameter with a value of 0.33 in the study. 

All statistical metrics were consistently improved in the annual and monthly scale. 

Although random errors still exist in local daily time steps, the adjusted data captures 

the daily pattern of the rain gauges. 

 

Figure  2-11. Mean Daily Accumulated Rainfall (Alharbi et al., 2018) 
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Figure  2-12. CDF Calculation Procedure (Z. Yang et al., 2016) 

2.4. Bias Correction using Machine Learning 

 With the increase in availability of large datasets in recent years, machine 

learning algorithms have gained popularity for its advanced capability in data analytics 

and processing which could be straining for traditional programs (Rebala, Ravi, & 

Churiwala, 2019). Contrary to conventional programming which inputs data into a 

program, machine learning algorithms produces the programs using both input and 

output data as shown in Figure 2-13. Due to this structure, challenging problems are 

solved indirectly without requiring detailed description of the models. However, the 

algorithms would need huge amounts of data to produce accurate results.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 

 

 

Figure  2-13. Difference between traditional programming and machine learning 

(Lee, 2019) 

 Problems that machine learning algorithms can solve can be differentiated into 

three types; regression (prediction), classification, and clustering (Lee, 2019; 

Swamynathan, 2019). Regression or prediction refers to producing models which 

estimates and predicts continuous values using the relationships between the labelled 

data and variables. Classification seeks to identify the discrete values, groups or 

categories of the data. Clustering groups the data points with similar characteristics. 

Examples of each type is depicted in Figure 2-14. 

 

Figure  2-14. Examples of Machine Learning Problem Types; (a) regression, (b) 

classification, and (c) clustering (Lee, 2019) 

 Some more advanced machine learning algorithms are the combination and 

improvement of the mentioned problem types. Artificial neural networks (ANNs) are 

extension of the logistic regression model which is also useful in classification (Rebala 

et al., 2019).  Simple classification algorithms such as polynomial classifiers have a 
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tendency to overfit noisy data whereas ANN algorithms provide better performance 

(Kubat, 2017). This algorithm, also known as a Multilayer Perceptron (MLP), is called 

a neural network because it imitates the functions of an oversimplified brain. Each node 

or perceptron (neuron) of the ANN (brain) is connected to another by a transfer function 

(synapse) which transmits the data (electric pulse or stimuli) as shown in Figure 2-15. 

In the feed-forward propagation scheme, a neuron sums its weighted inputs then 

subjects it to a transfer function where it passes the information to the next neuron. The 

weighted sum of the inputs or the net input can be solved using Equation 18 

𝑛𝑒𝑡 = ∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

− 𝜃      (18) 

where net is the net input vector, xi is the input value, wji is its corresponding weight, 

and θ is the bias of the neuron or perceptron (Du & Swamy, 2013). On the other hand, 

the most common transfer function is a sigmoid which is shown in equation 19 

𝜙(𝑛𝑒𝑡)  =
1

1 + 𝑒−𝑛𝑒𝑡
       (19) 

where ϕ is the transfer function. These steps are repeated until it reaches the nodes of 

the output layer. The key algorithm in using ANN is its backpropagation algorithm. 

This approach simply propagates back the difference between the actual predicted value 

and the output of the ANN model. The algorithm utilizes a gradient-descent based 

approach to adjust the weights. This adjustment is simply done by Equation 20 to 22 

𝑤𝑗𝑖
𝑡+1 = 𝑤𝑗𝑖

𝑡 + 𝛥𝑊𝑗𝑖
𝑡       (20) 

𝛥𝑊𝑗𝑖
𝑡 = 𝜂𝛿𝑖

𝑡ℎ𝑗 + 𝛼𝛥𝑊𝑗𝑖
𝑡−1      (21) 
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𝛿𝑖
𝑛 =  {

𝑦𝑖(1 − 𝑦𝑖)(𝑡𝑖 − 𝑦𝑖) ; 𝑎𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟      (22𝑎)

ℎ𝑖(1 − ℎ𝑖) ∑ 𝛿𝑖
𝑛−1𝑤𝑗𝑖  ; 𝑎𝑡 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟   (22𝑏)    

 

where wtji is the weight from node j to node i at iteration t, ΔW is the weight change, 

η is the learning rate of the gradient descent, δni is the gradient descent factor of node 

i at layer n, and α is the momentum rate (Kubat, 2017). The learning rate dictates how 

fast the adjusted weight would reach convergence while the momentum rate controls 

how much the adjusted weight oscillates per iteration (Rebala et al., 2019). The typical 

values for learning rate and momentum rate used in practice are 0.1 and 0.9 respectively 

(Du & Swamy, 2013). The forward-backward propagation continues until the 

computation reaches the convergence or when it reaches a predesignated number of 

iterations. The ANN schematic is shown in Figure 2-15. 

 

Figure  2-15. Scheme of a sample neural network (Rebala et al., 2019) 

Although the sigmoid and tanh functions have been widely used in most neural 

networks, these activation function exhibits some limitations in terms of its reliability 

(LeCun, Bottou, Orr, & Muller, 1998; Nwankpa, Ijomah, Gachagan, & Marshall, 2018). 

There would be cases where once the net input vector reaches a significantly high value, 

the output of the sigmoid function becomes saturated and very close to the value of 0 
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and 1 for sigmoid and 1 and -1 for the tanh function. This result would make the slope 

of the function needed for the gradient descent method become extremely low to the 

point that it would not have much changes in the node affected. This problem is 

commonly known as the Vanishing Gradient (Roodschild, Sardiñas, & Will, 2020). 

Therefore, in recent years, the Rectified Linear Unit (ReLU) transfer function has 

gained popularity in neural networks as it overcomes the limitation of the sigmoid 

function. As shown in Figure 2-16, the ReLU function would not have the same 

problem encountered with the sigmoid function as there are no presence of saturation 

at high values. Moreover, because of the simplicity of the function, it allows for faster 

computations that which benefits deep learning models (Nwankpa et al., 2018; Oostwal, 

Straat, & Biehl, 2020; Roodschild et al., 2020). 

However, the ReLU still poses some problems. In some cases that the learning rate 

is not adjusted properly, a ReLU node can potentially stop working in the training phase 

due to having a lower boundary situated at the zero value (Nwankpa et al., 2018). This 

state is known as the “dying ReLU” problem. Literature has shown that this problem 

can be circumvented by properly adjusting the learning rate or adapting a variation of 

the transfer function which is the Leaky ReLU (Oostwal et al., 2020). This activation 

function adjusts the ordinate negative values in proportion to a constant instead of 

simply replacing them as zeroes.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 

 

 

Figure  2-16. (a) Sigmoid and Hyperbolic Tangent vs (b) ReLU Activation Functions 

ANNs can be further improved to provide better results for specific purposes. 

Recurrent neural networks (RNNs) are used for sequential data such as time series and 

repetitive datasets. In addition, convolutional neural networks (CNNs) may be more 

useful for image and feature processing as it uses convolution to measure the overlap 

between figures. On the other hand, another advanced machine learning method is by 

applying Support Vector Machine (SVM). SVM is a classification type algorithm. 

However, by adapting regression algorithms in the methodology, it is possible to predict 

continues values.  

 Machine learning algorithms may also be utilized in hydrology and water 

resources engineering. Although the most popular machine learning method is ANN, 

the common machine learning algorithm in statistical downscaling and bias correction 

is SVM (Kumar, Ramsankaran, Brocca, & Munoz-Arriola, 2019; Kundu, Khare, & 

Mondal, 2017; Lary, Remer, MacNeill, Roscoe, & Paradise, 2009; Najafi, Moradkhani, 

& Wherry, 2011; Sachindra, Ahmed, Rashid, Shahid, & Perera, 2018; Vandal, Kodra, 

& Ganguly, 2019). One of the reasons why SVM is popular is because SVMs evolved 

from actual theory while ANN considers the heuristics within the data (Lary et al., 
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2009). However, aside from selection of predictors, SVM-type of algorithms require 

the selection of the kernel algorithm for the its process which may not be a one-for-all-

situations case (Sachindra et al., 2018). In the case of SPE correction, neural network-

based algorithms are still more commonly employed than SVM-based (Kumar et al., 

2019; Ngo-Duc, Matsumoto, Kamimera, & Bui, 2013; Tao, Gao, Hsu, Sorooshian, & 

Ihler, 2016). However, the predictor data for their correction usually comes from 

gridded data and/or satellite data such interpolated rainfall dataset (Ngo-Duc et al., 

2013), IR imagery (Nasrollahi, Hsu, & Sorooshian, 2013), and soil moisture (Kumar et 

al., 2019). On the other hand, ground data used as neural network predictors for the 

purpose of rainfall prediction are usually meteorological parameters such as 

temperature, relative humidity, wind speed, atmospheric pressures, and the like (Abbot 

& Marohasy, 2012; Coulibaly & Evora, 2007; Devi, Arulmozhivarman, Venkatesh, & 

Agarwal, 2016; Kashiwao et al., 2017; Velasco, Serquiña, Zamad, Juanico, & Lomocso, 

2019). 
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CHAPTER 3 

METHODOLOGY 

3.1. Study Area 

The study area covers the whole Thailand. The country is situated in the mainland 

of South East Asia. As shown by Figure 3-1, I t shares its border with Cambodia on the 

east, Laos on the north east, Myanmar on the west, and Malaysia on the south. the 

country has a tropical climate which is influenced by seasonal monsoons and tropical 

storms. Southwest monsoon season occurs during May to October bringing large 

amount of rainfall. This is followed by the northeast monsoon on October to February 

which is the cooler period, especially in December and January. Afterwards, the dry 

period occurs from February to May, with April typically being the hottest month. 

  

Figure  3-1. Averaged Monthly Rainfall and Temperature Over Thailand 

There are 22 major river basins as defined by the Office of Natural Water Resources 

(ONWR) in Thailand. However, because the Sakae Krang river basin does not contain 

a TMD gauge stations in its vicinity, it would be merged with the Lower Chao Phraya 

river basin as the rainfall patterns in the area is similar to each other. Thus, the river 
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basins used in this study would amount to a total of 21 major watersheds as shown in 

as shown in Figure 3-2. 

 

Figure  3-2. Thailand River Basin and TMD Station Locations 
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3.2. Data Sources 

Rain gauge measurements were used for the evaluation and bias correction of the 

SPE products. The 123 TMD synoptic stations from would be used for the evaluation 

of the study. The locations of these are also shown previously in Figure 3-2. However, 

only the data from year 2003 and above would be used in the study to account for the 

consistency of data coinciding with the SPE products. Furthermore, although the 

synoptic stations have better data quality, it contains some missing data during some 

years as well as in some stations. In addition to the rainfall data from the TMD stations, 

the minimum and maximum daily temperature records would be used as supplementary 

predictors in the ANN bias correction approach that would be discussed later. The 

temperature records cover years as early as 1975 to present; however, in this study, both 

datasets only have measurements until early 2017. Thus, the validation period of the 

ANN bias correction would be until the end of 2016. 

A Double Mass Curve analysis was performed to determine the consistency of the 

rain gauge observations with each other. It would compare the cumulative annual values 

of a station with the average cumulative annual values of reference stations (Searcy and 

Hardison, 1960). In the case of this study, the consistency of each TMD gauges within 

a river basin would be analyzed with the average rainfall data of other TMD synoptic 

stations therein. Should a basin have less than 3 gauges within it, the consistency 

analysis would not be conducted.  

As for the satellite data, the NRT SPE products for the study are PERSIANN-CCS, 

GSMAP_NRT, and IMERG Early. The satellite data are retrieved at an hourly time 

scale from 2003 coverage to 2018. The coverage of the data is selected in order for all 
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products would have consistency in the temporal scale. Moreover, since the SPE 

products are in UTC format, the sub-daily data would be aggregated to daily starting 

from the time of collection in local time, UTC+7. The time coverage of the datasets is 

shown in Figure 3-3. The specific product details are presented in Table 3-1. 

 

Figure  3-3. Temporal Coverage of Rain Gauge Data and SPE Products 

Table  3-1. SPE Product Spatiotemporal Resolutions and Latency 

SPE Product Spatial Temporal Latency 

PERSIANN-CCS 0.04° x 0.04° 1 hour ~ 1 hour 

GSMaP_NRT 0.1° x 0.1° 1 hour 4 hours 

IMERG Early 0.1° x 0.1° 30 mins 4 hours 

 

3.3. Methodology 

The methodology of the study is illustrated in Figure 3-4 which depicts the overall 

procedure to obtain the bias corrected SPE datasets and determine which adjusted 

product performs the best in each river basin. After the data collection, the original SPE 

products would be evaluated using the TMD manual stations over Thailand. Afterwards, 

all SPE product would be subjected to bias correction by Scaling, Quantile Mapping 

(QM), and Artificial Neural Network (ANN) approaches. The adjusted product that 

produced the least RMSE in a river basin would be considered as the best performing 

dataset in that specific basin. 
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The evaluation of the SPE products would be conducted by determining the 

following factors; quantitative statistics, categorical statistics, rainfall patterns, monthly 

performance, precipitation intensity performance, and basin-specific performance. The 

metrics used for quantitative statistics are the mean bias (BIAS), root-mean-squared 

error (RMSE), and correlation coefficient (CORR). On the other hand, the categorical 

statistics considers the probability of detection (POD), false alarm ratio (FAR), and 

Equitable Threat Score (ETS).  The formula and optimal values of the categorical 

statistics are listed in Table 3-2. Furthermore, ETS was chosen among the other skill 

score metrics because of its ability to consider true negatives in its computation and its 

non-linearity which heavily weighs the mistakes over correct prediction (Wilks, 2011). 

The rainfall pattern would be evaluated by comparing the average monthly rainfall 

over Thailand in each year. The monthly performance is evaluated by determining both 

quantitative and categorical statistics for each month of the year. On the other hand, the 

performance of the SPE in terms of its precipitation intensity estimation is evaluated by 

determining the quantitative statistics in specific intervals as provided the TMD 

guidelines shown in Table 3-3. As for the basin-specific evaluation, the quantitative 

statistics would be determined in reference to the TMD gauges that are present within 

a specific basin. Afterwards, the SPE evaluation results would be compared with each 

other to determine which original SPE dataset produced the best performance over 

Thailand. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4
3

 

 

 

F
ig

u
re

  
3
-4

. 
F

lo
w

ch
a
rt

 o
f 

th
e 

M
et

h
o
d

o
lo

g
y



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 

 

After the comparison of the evaluation, three bias correction methodologies would 

be implemented in this study. As mentioned previously, the adjustments would be 

carried out to the three SPE products in the study using scaling correction, quantile 

mapping, and ANN bias correction methods. The calibration period for all methods 

would be from 2003 to 2010 while the validation period would be from 2011 to 2018, 

except for the ANN correction that would be shortened to the end of 2016. All 

corrections are done in only SPE rainfall pixels that contains a TMD stations within it. 

Table  3-2. Categorical Statistics Formula and Optimal Values 

Metric Formula Optimal Value 

POD 
𝑎

𝑎 + 𝑐
 1 

FAR 
𝑏

𝑏 + 𝑑
 0 

ETS 

𝑎 − 𝑎𝑟𝑒𝑓

𝑎 − 𝑎𝑟𝑒𝑓 + 𝑏 + 𝑐
 

1 

 

Table  3-3. TMD Precipitation Intensity Ranges 

Precipitation Intensity Range 

Light Rain 0.1 – 10 mm/day 

Moderate Rain 10.1 – 35 mm/day 

Heavy Rain 35.1 – 90 mm/day 

Extreme Rain > 90 mm/day 

 

The scaling correction would follow a TSV approach which would vary the bias 

factor depending on month and basin. Each bias factor would be computed from the 

data within the calibration period from 2003 to 2010. After obtaining these values, the 

said bias factors would be applied to the SPE datasets in both calibration and validation 
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period and compared to the gauge values in order to determine the performance of the 

adjusted SPE products.  

In addition, the Quantile Mapping approach would be utilized to correct the SPE 

products. In order to apply this method, the cumulative distribution functions (CDF) of 

both satellite and gauge daily rainfall data needs to be constructed. In this study, the 

CDFs would vary within each river basin to account for the spatial variability. Similar 

to the scaling correction, only the data from the calibration period would be used for 

building the CDFs to be used in this correction. 

As for the ANN bias correction method, the study would utilize the Scikit-Learn 

library of Python to conduct the training and testing of the Multilayer Perceptron neural 

network for the bias correction. The parameters of the ANN model would be set with 

regards to values that are recommended for practical use for the stochastic gradient 

descent method. The learning rate is set at a constant of 0.01 while the momentum rate 

is at 0.9. In order to prevent the model from running infinitely, the maximum number 

of iterations would be at 1 million iterations with an error tolerance of 1x10-6. However, 

unlike the typical methods, the model would employ a Rectified Linear Unit (ReLU) 

function instead of the commonly used sigmoid function. This change of activation 

function is done to avoid the vanishing gradient problem that occurs for with the 

sigmoid and hyperbolic tangent functions.  

The input predictor vector would contain the SPE rainfall value, maximum 

temperature, and minimum temperature while the target value in the output layer would 

be the adjusted SPE rainfall value. In this study, only one hidden layer would be 

employed in order to account for simplicity of the model. The number of nodes within 
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the hidden layer would be selected by through trial and error. The selected number of 

hidden nodes would be the lowest possible value in which adding more nodes would 

not cause fluctuations of the RMSE during training phase. Moreover, due to the nature 

of scaling that is required for the data, some of the outputs may results in negative value 

which is impossible for rainfall data. Negative values are automatically replaced as zero. 

Afterward the correction at each gauged pixel, the deterministic interpolation 

method IDW would be used to interpolate the error between the original and adjusted 

SPEs. The interpolation is applied throughout the whole country. The difference 

between these two values would be used to correct subsequent ungauged pixels as 

shown in Figure 3-5. Since the interpolated error may be larger than the original daily 

rainfall value, any negative values would automatically be converted to zero. 

After bias correction, the RMSE and normalized RMSE of each adjusted SPE in 

each basin would be compared in order to determine the best performing adjusted SPE. 

The normalized RMSE is included in order to objectively compare the bias corrected 

datasets. The normalized RMSE is computed by applying Equation 23 (Wilks, 2011). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑠𝑡𝑑𝑒𝑣𝑔𝑎𝑢𝑔𝑒
 (23) 
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Figure  3-5. Bias Correction – Interpolation Scheme Example 
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CHAPTER 4 

EVALUATION OF SATELLITE PRECIPITATION ESTIMATES 

OVER THAILAND 

The evaluation of the selected SPEs over Thailand shows the varying performances 

of the three products as well as each of its innate characteristics, such as spatial and 

temporal accuracy. Each SPE product is compared to surface precipitation 

measurements using the 123 synoptic rain gauges of TMD located all over Thailand. 

The time frame observed for the evaluation is set from year 2003 to 2018 to provide 

consistency in terms of the data availability of all considered products. Every product 

would be evaluated in terms of quantitative and categorical statistics, annual 

accumulated time series comparison, monthly rainfall variation, and varying 

precipitation intensity. 

4.1.1. Annual Precipitation 

 As shown in Figure 4-1, the annual rainfall scatterplots of each satellite product 

are plotted against the rain gauge measurements. PERSIANN-CCS shows greater 

spread of data; however, it can be observed that the higher rainfall intensities are 

underestimated. As for GSMaP_NRT, the annual satellite rainfall has less spread and 

the alignment to the 1:1 line is more evident in comparison to PERSIANN-CCS. 

Among the three SPE products evaluated, the IMERG Early has the least spread based 

on visual inspection. However, it is evident for all products that the higher rainfall is 

underestimated. 

 As for the quantitative statistics of each product, Table 4-1 details the values of 

their biases, RMSEs, and correlation coefficients. Based on the computed bias, both 

PERSIANN-CCS and IMERG Early tend to overestimate annual rainfall values. On the 
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other hand, GSMaP_NRT shows a tendency of underestimation for the yearly 

precipitation. As for the RMSE, PERSIANN-CCS has the highest value at 680.0 mm, 

followed by GSMaP_NRT at 470.0 mm, then IMERG Early with 451.7 mm. Among 

the three products, PERSIANN-CCS has the least correlation at 0.55. The correlation 

coefficient of GSMaP_NRT and IMERG Early are relatively close to each other at 0.79 

and 0.82 respectively. However, it is evident that IMERG Early has the better 

performance overall in terms of annual precipitation. 

 

Figure  4-1. Annual Scatterplot of SPE Products 

Table  4-1. Annual Precipitation Quantitative Statistics 

 PERSIANN-CCS GSMaP_NRT IMERG Early 

BIAS (mm/yr) 199.5 -120.1 171.5 

RMSE (mm/yr) 686.0 470.0 451.7 

CORR 0.5 0.8 0.8 

 

 In terms of the annual satellite rainfall averaged over the study period shown in 

Figure 4-2, all SPE products follow the known patterns over Thailand where lower 

rainfall is evident in the northern regions and increases in intensity to the southern 

regions. However, the underestimation of GSMaP_NRT can be observed as even the 

central region of Thailand has relatively low annual rainfall. On the other hand, IMERG 

Early produces higher rainfall in the northern regions and other parts of the country. As 
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for the southern region, all SPE products show the same patterns with higher rainfall 

occurring near the shore.  

 

Figure  4-2. Average Annual Rainfall for PERSIANN-CCS (left), GSMaP_NRT 

(center), and IMERG Early (right) 

4.1.2. Monthly Precipitation 

 In terms of monthly rainfall, Figure 4-3 illustrates the scatterplot of the monthly 

precipitation of each SPE product versus the gauge observation. Both PERSIANN-CCS 

and GSMaP have high spread of their data. PERSIANN-CCS clearly shows 

underestimation of higher rainfall values while there are significantly higher 

occurrences of overestimation for GSMaP_NRT. However, majority of the 

GSMaP_NRT data is still below the 45° line. As for IMERG Early, it can be observed 

that the data does not have a large spread unlike the two other SPE. Moreover, the 

monthly values align well to the 1:1 line, even though the high precipitation intensities 

are still underestimated.  
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 As listed in Table 4-2, the computed monthly values for the quantitative 

statistics of each SPE product follow the same pattern as the annual precipitation. Both 

PERSIANN-CCS and IMERG Early still tend overestimate the rainfall while 

GSMaP_NRT shows underestimation of the monthly precipitation. PERSIANN-CCS 

has the higher RMSE and lowest CORR values. On the other hand, IMERG Early still 

performs the best among the three SPEs in terms of both RMSE and correlation 

coefficient.  

 

Figure  4-3. Monthly Scatterplot of SPE Products 

Table  4-2. Monthly Precipitation Quantitative Statistics 

 
PERSIANN-CCS GSMaP_NRT IMERG Early 

BIAS (mm/mon) 15.6 -12.1 12.7 

RMSE (mm/mon) 121.4 96.4 86.0 

CORR 0.7 0.8 0.8 

 

 Each SPE product has been plotted in a monthly timeseries graph as shown in 

Figure 4-4. PERSIANN-CCS mostly overestimates rainfall by the end of the year; 

however, it still underestimated rainfall in 2011 and slightly in 2016. As for 

GSMaP_NRT, it mostly underestimates in early years but the monthly rainfall 

estimations have gotten closer in the recent years. Similarly, IMERG Early also 

improved its performance in recent years in which the overestimation has been lessened 
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to a degree where the monthly satellite rainfall and gauge measurements are almost the 

same.  

 

Figure  4-4. Cumulative Average Monthly Rainfall over Thailand 

4.2. Daily Precipitation Assessment 

4.2.1. Over Whole Study Period 

 Figure 4-5 shows the scatterplot of the daily satellite precipitation in comparison 

to the daily gauge rainfall observations. Due to having a finer temporal resolution, the 

data points for all SPE products shows higher spread. The larger spread of data is 

evident in the GSMaP_NRT dataset. As for the PERSIANN-CCS, its data does not 

align well to the 1:1 line. A significant portion of its points over estimates low intensity 

rainfall and also underestimates high intensity rainfall. In addition, although IMERG 
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Early may visually appear better than the other two SPE products, the dataset still has 

a noticeable spread as well as clear underestimation of high intensity precipitation. 

 In terms of their quantitative statistics, all evaluated SPE products still maintain 

similar pattern as with the annual and monthly rainfall as presented in Table 4-3. 

However, it is observed that the correlation coefficient has been significantly lowered. 

This change is expected as daily rainfall proved to be harder to estimate because of 

various reasons, including sudden pulses of rainfall evident in the tropical region which 

is difficult to be fully captured by the satellite data. 

 

Figure  4-5. Daily Scatterplot of SPE Products 

Table  4-3. Daily Precipitation Quantitative Statistics 

 PERSIANN-CCS GSMaP_NRT IMERG Early 

BIAS (mm/day) 0.5 -0.5 0.4 

RMSE (mm/day) 13.3 12.3 11.0 

CORR 0.4 0.5 0.6 

4.2.2. By Month 

 In order to further evaluate the daily rainfall, the satellite precipitation data has 

been separated and evaluated by month. Both PERSIANN-CCS and IMERG Early tend 

to have similar patterns. The only difference is that IMERG Early showed better 

performance than PERSIANN-CCS. Both datasets show overestimation in wet months 

and underestimation in dry months as shown in Figure 4-6. Moreover, the RMSE for 
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both SPE products on Figure 4-7 shows that wet months have higher errors while dry 

months have lower values. Inversely, Figure 4-8 illustrates that the correlation 

coefficients for these two SPEs are higher during dry month but lower in wet months. 

As for GSMaP_NRT, the observed underestimation from the previous evaluation 

remains evident, especially in the wet months from May to October. On the other hand, 

GSMaP_NRT has lower errors in wet season compared to CCS but have higher errors 

in colder months from November to January. As for the correlation, the computed 

values do not vary significantly, but it can still be observed that the correlation 

coefficients are lower in the wet season similar to the other two SPE products. 

 

Figure  4-6. BIAS of Daily Rainfall per Month 

 

Figure  4-7. RMSE of Daily Rainfall per Month 
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Figure  4-8. CORR of Daily Rainfall per Month 

4.2.3. By Precipitation Intensity 

 Furthermore, separating the satellite data by rainfall intensity gives insight on 

how well the SPE products performance depending on occurring precipitation. The 

range for the rainfall intensities are based on the precipitation range prescribed by TMD 

with light rain at 0.1 – 10 mm, moderate rain at 10.1 – 35 mm, heavy rain at 35.1 – 90 

mm, and extreme rain at anything above 90 mm per day. As shown in Figure 4-10, it is 

evident that all three SPE products follow the same patterns. Light rain is overestimates 

while everything above said intensity is underestimated. In addition, as the precipitation 

intensity increases, the underestimation increases. Among the three SPEs, PERSIANN-

CCS generally has the largest values except for moderate rainfall. On the other hand, 

GSMaP_NRT generally has the lower bias except during moderate and heavy rainfall. 

IMERG Early produced the least bias in moderate and heavy rainfall. In terms of RMSE, 

Figure 4-11 illustrates that IMERG Early has least error for moderate to extreme rainfall 

while GSMaP_NRT has least error for no rain and light rain. As for correlation, all 

three SPEs still show the same pattern in which the correlation values increase with 

higher intensities as depicted in Figure 4-12. All evaluated satellite products resulted in 

poor correlation coefficient values. Even though the extreme rainfall has slightly better 
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correlation, it is still relatively small in comparison to the overall daily precipitation. 

Overall, IMERG Early shows the best performance among the three SPE products. 

 

Figure  4-9. BIAS of Daily Rainfall by Intensity 

 

Figure  4-10. RMSE of Daily Rainfall by Intensity 
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Figure  4-11. CORR of Daily Rainfall by Intensity 

4.2.4. By Basin  

 Taking into account the spatial variability of rainfall over the country, the 

datasets have been separated and evaluated by basin. As shown in Figure 4-13, 

PERSIANN-CCS and IMERG Early show similar patterns; however, PERSIANN-CCS 

showed greater overestimation in the central and eastern region of the country. On the 

other hand, GSMaP_NRT showed general underestimation in the northern, central, and 

eastern region of Thailand. However, the southern regions near the Gulf of Thailand 

showed overestimation as more rainfall occur in these areas. It is worth noting that the 

basin on the southwestern region of the country has generally been underestimated by 

all SPE products. Figure 4-14 show that all SPE product show lower RMSE in the 

northern half of the country but increases in value in the southern regions, especially 

near the oceans. Among the three SPEs, IMERG Early still show better performance as 

the colors of each basin tend to be lighter and greener which indicates lower errors. The 

similar pattern is observed in Figure 4-15 where CCS has worst performance in most 

basins IMERG Early showed better correlation in the northeast and southern basins. 
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Figure  4-12. BIAS of Daily Rainfall by Basin 

 

Figure  4-13. RMSE of Daily Rainfall by Basin 
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Figure  4-14. CORR of Daily Rainfall by Basin 

4.3. Precipitation Detection Assessment 

4.3.1. Over Whole Study Area 

 Aside from quantitative statistics, categorical statistics have been applied to 

evaluate the detection skill of the satellite precipitation products. Table 4-1 lists the 

percentage of detections and the skill scores. Figure 4-16 shows the differences between 

the POD, FAR, and ETS of the three SPE datasets. PERSIANN-CCS produced the 

lowest POD among the three SPEs. This dataset is followed by GSMaP_NRT and then 

by IMERG Early. IMERG Early shows an impressive score which is almost close to 

the optimal POD value of 1. However, this incredible score is pulled down by the 

relatively high FAR of IMERG Early. This result means that IMERG Early has a lot of 

false alarms which partially explains why it has a very high POD. Due to the SPE 

product predicting numerous counts of false alarms, there are only few values that 

would count as missing data which ultimately leads to higher POD scores. This can be 

confirmed with the ETS score of IMERG Early in which it resulted lower than 
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PERSIANN-CCS which had the smallest POD score among the three. In terms of daily 

precipitation detection, GSMaP_NRT showed the best performance while the IMERG 

Early resulted as the worst. 

Table  4-4. Precipitation Categorical Statistics 

 PERSIANN-CCS GSMaP_NRT IMERG Early 

Hits 26.4% 29.7% 34.4% 

False Alarms 14.5% 14.9% 28.9% 

Misses 9.6% 6.3% 1.6% 

True Negative 49.5% 49.1% 35.1% 

POD 0.73 0.82 0.95 

FAR 0.35 0.33 0.46 

ETS 0.33 0.39 0.28 

 

 

Figure  4-15. Precipitation Detection Skill of SPE Products 

4.3.2. By Month 

 When separated by month, all of the evaluated SPE product show the similar 

pattern of their detection skill scores. As shown in Figure 4-17, it is evident that the 

POD is lower during December to February but higher during March to November. 

Inversely, the FAR is higher from November to April and lower from May to October 

as observed in Figure 4-18. Moreover, similar to the overall daily detection skill, 
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IMERG Early still does not perform well as shown in the ETS values illustrated in 

Figure 4-19. GSMaP_NRT still showed the best detection skill among the three SPEs. 

 

Figure  4-16. POD of Daily Rainfall per Month 

 

Figure  4-17. FAR of Daily Rainfall per Month 

 

Figure  4-18. ETS of Daily Rainfall per Month 
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4.3.3. By Basin 

 In terms of spatial variation by basin, the detection skills still show the same 

pattern. As shown in Figure 4-20, the IMERG Early has high POD among the three, 

while GSMaP_NRT has lower POD in the southern region of the country. The FAR of 

PERSIANN-CCS and GSMaP_NRT is slightly similar to each other as illustrated in 

Figure 4-21. However, it is very evident that IMERG Early has worse FAR in most 

areas. Although all SPE product does not have a high detection skill score, 

GSMaP_NRT still showed better results overall in ETS as shown in Figure 4-22. 

 

Figure  4-19. POD of Daily Rainfall per Basin 
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Figure  4-20. FAR of Daily Rainfall per Basin 

 

Figure  4-21. ETS of Daily Rainfall per Basin 

4.4. Summary of Evaluation 

 Each one of the three SPE products has its advantages and disadvantages. In 

addition, there are also some characteristics in the satellite data that are common to all. 

In all temporal scale, the precipitation at higher intensities are heavily underestimated 

as confirmed by separating the data by intensity. Furthermore, the satellite data shows 
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higher errors and lower correlations in the wet months. In terms of spatial variability, 

higher errors are located in areas near the shore. The similarity among these conditions 

is that higher rainfall occurs in these situations. However, it is worth noting that for the 

southern region of Thailand, the correlation coefficient values are higher even though 

stronger rainfall occurs in those areas. In terms of detection, both the POD and FAR is 

better during wet months. However, the ETS does not seem to improve during the wet 

season.  

On the other hand, the differences between each SPE product are more 

noticeable. Both PERSIAN-CCS and IMERG Early tend to overestimate rainfall in any 

time scale while GSMaP_NRT has a tendency to underestimate precipitation. The 

difference between PERSIANN-CCS and IMERG Early is that the latter shows the best 

performance in terms of quantitative statistics. IMERG Early fall short in its daily 

precipitation detection where there are large amounts of false alarms. This result shows 

that IMERG Early has the worst detection skill in terms of ETS. In considering the best 

performing unadjusted SPE dataset, the purpose of selection should be carefully 

considered in order to properly utilize the best dataset for the situation. In terms of 

RMSE, IMERG Early is the best performing satellite precipitation product. If detection 

skill is considered, GSMaP_NRT has the best skill score among the three. In any case, 

the evaluated SPE products still contain errors that should be adjusted which would be 

covered in the next section. 
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CHAPTER 5 

BIAS CORRECTION OF SATELLITE PRECIPITATION 

ESTIMATES 

 As explained in the methodology, there are three bias correction methods that 

would be applied to the three SPE products evaluated in the previous section. These 

methods are the scaling, quantile mapping (QM), and artificial neural network (ANN) 

bias correction approaches. The scaling bias correction method utilizes a Time-Space 

Varied (TSV) scaling factor in consideration of the spatiotemporal variability present 

in SPE products. In the case of the QM and ANN bias correction, the observed 

precipitation gauge measurements would be corrected according to within each of the 

21 river basins considered in the study area to account for spatial variations.  

5.1. Calibration 

 Each bias correction method has its own way in calibrating its model. The 

scaling bias correction uses the ratio of the mean of the satellite and gauge rainfall 

values as the bias factor. The QM approach creates a cumulative distribution function 

(CDF) from both the satellite and gauge data. The values of the bias factors and the 

produced CDF are included in the appendix. The ANN method uses the calibration 

dataset to train the neural network. From initial trials using IMERG Early, it was shown 

that the value of the RMSE does not change significantly with additional nodes in this 

setup. However, it is noticeable that the time of computation increases further with more 

nodes as shown in Figure 5-1. In the case of this study, the total number of nodes within 

the hidden layer would be set at 8 nodes. 
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Figure  5-1. Results of Initial ANN trials using varying number of hidden nodes 

However, all of these methods aim to reduce the bias of the target dataset to a value 

almost or equal to zero as shown in Figure 5-2. In order to determine the performance 

of each bias correction, the main parameter to be used would be the resulting RMSE. 

 

Figure  5-2. BIAS of Original and Adjusted SPE Products - Calibration 

 As shown in Figure 5-3, the resulting RMSE for each method and each SPE 

product varies from each other. Both PERSIANN-CCS and IMERG Early show that 

their RMSE is reduced after applying the scaling and ANN corrections while their 
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RMSE slightly increases after the QM bias correction was utilized. On the other hand, 

the RMSE of GSMaP_NRT slightly increased after being adjusted through the scaling 

and QM approaches. Only the ANN bias correction effectively lowered the RMSE of 

all three SPE products. 

 

Figure  5-3. RMSE of Original and Adjusted SPE Products - Calibration 

5.2. Validation 

 As for the validation phase, the resulting BIAS values for each adjusted SPE are 

no longer close to or equal to the value of zero as shown in Figure 5-4. In addition, the 

PERSIANN-CCS and IMERG Early, which are originally overestimated, resulted in 

slight underestimation after bias correction. Conversely, the GSMaP_NRT, which 

originally underestimated the gauge observations, showed overestimation after 

correction. However, it is worth noting that the bias of GSMaP_NRT after applying the 

ANN bias correction is almost equal to zero which indicates good performance. 
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Figure  5-4. BIAS of Original and Adjusted SPE Products - Validation 

 In terms of RMSE, it is evident in Figure 5-5 that the results are slightly the 

same as the calibration phase. The adjusted PERSIANN-CCS shows the same pattern; 

however, it is evident that the scaling correction only lowers the RMSE slightly. As for 

the GSMaP_NRT, the resulting RMSE greatly increased after the scaling adjustment. 

In addition, the IMERG Early also shows increased RMSE after the scaling correction 

in the validation phase. For all three SPE products, the scaling correction shows higher 

errors in the validation phase than the calibration phase. As for the QM scaling, it seems 

that the method does not significantly improve the resulting RMSE for all SPE products. 

On the other hand, it is still evident that the ANN bias correction consistently lowered 

the RMSE of the satellite data. 
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Figure  5-5. RMSE  of Original and Adjusted SPE Products - Validation 

5.3. Comparison of Bias Corrected SPE Products 

5.3.1. Annual and Monthly Precipitation Patterns 

 The improvements of bias correction methods can be easily observed in higher 

timescales. Figure 5-6 illustrates the scatterplot for the both the original and adjusted 

SPE products in terms of annual timescale. The most noticeable change in pattern for 

the adjusted annual rainfall of PERSIANN-CCS is that the spread of the data has been 

reduced in which the cloud of points is closer to the 1:1 line in comparison to the 

original data. This change is evident in all of the bias correction method; however, the 

ANN bias correction for PERSIANN-CCS stands out from the other two methods 

because the annual rainfall of higher intensities is shown to be closer each other even 

though they are still underestimated. As for the GSMaP_NRT, the data points have been 

slightly shifted upwards for all bias correction methods. This result shows that the 

underestimation of GSMaP_NRT has been reduced overall. However, after applying 

the scaling bias correction, the adjusted GSMaP_NRT appears to have more 

overestimated values especially in the higher intensities. On the other hand, the ANN 
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correction still showed underestimation of the stronger annual rainfall. The QM 

adjustment scheme seem to have the most consistent slope for the data among the three 

correction methods. Since the IMERG Early already had a better scatterplot than the 

other two original SPE products, the most notable improvement is that the data has been 

shifted downwards to address the overestimation of the original dataset. Furthermore, 

it is worth noting that the scaling and QM bias correction improved the annual rainfall 

values in the higher intensities in which the ANN still show underestimation of these 

rainfall values. 

 

Figure  5-6. Annual Rainfall Scatterplot of Adjusted SPE Products 

Furthermore, as shown in Figure 5-7, the biases for the annual rainfall of both 

PERSIANN-CCS and IMERG Early in all cases shows significant reductions. On the 

other hand, the bias of the adjusted GSMaP_NRT only after applying the ANN bias 
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correction method as the scaling and the QM corrections resulted in great 

overestimation. However, except for the annual GSMaP_NRT rainfall adjusted by 

scaling, all of the cases resulted in reduced errors in the annual timescale as shown in 

Figure 5-8. The increased error brought by the scaling bias correction to the 

GSMaP_NRT could be attributed to the original SPE being underestimated. Since the 

scaling adjustment scheme would increase rainfall values to reduce the bias, rainfall 

values that are already high would be transformed into larger numbers. Regardless, the 

correlation between the annual satellite and gauge rainfall values did not decrease as 

illustrated in Figure 5-9. Among the three adjusted SPE, the IMERG Early still resulted 

in the least RMSE for the annual timescale. The RMSE values for the adjusted IMERG 

Early datasets are close to each other but the scaling adjusted data resulted in the lowest 

value. 

 

Figure  5-7. BIAS of Adjusted SPE Products Annual Rainfall 
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Figure  5-8. RMSE of Adjusted SPE Products Annual Rainfall 

 

Figure  5-9. CORR of Adjusted SPE Products Annual Rainfall 

 Proceeding to a finer temporal scale, Figure 5-10 shows the monthly rainfall 

scatterplot for all three SPE products before and after correction. PERSIANN-CCS 

shows higher spread of data and higher overestimation in some data points after 

applying the scaling and QM bias correction. In addition, after the ANN adjustment, 

the corrected PERSIANN-CCS not only showed less overestimation in lower intensities 
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but also caused consistent underestimation of higher monthly rainfall values. The 

pattern after the bias correction seems to be consistent for all SPE products. 

 

Figure  5-10. Monthly Rainfall Scatterplot of Adjusted SPE Products 

As for the quantitative statistics, the pattern of the adjusted bias in the monthly 

timescale is similar to the annual rainfall cases as shown in Figure 5-11. The main 

difference is evident in the RMSE as illustrated in Figure 5-12. Unlike in the annual 

timescale, the RMSE for the QM adjusted datasets is higher as their values are close to 

the original monthly RMSE. As for the scaling correction, it still increased the resulting 

error value for the GSMaP_NRT. On the other hand, the ANN bias correction resulted 

in the lowest overall error for all three SPE products with adjusted IMERG Early dataset 

having the least RMSE. However, in Figure 5-13, it is shown that the ANN adjustment 
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scheme slightly decreased the correlation of the adjusted GSMaP_NRT and IMERG to 

the gauge. 

 

Figure  5-11. BIAS of Adjusted SPE Products Monthly Rainfall 

 

Figure  5-12. RMSE of Adjusted SPE Products Monthly Rainfall 
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Figure  5-13. CORR of Adjusted SPE Products Monthly Rainfall 

As for the monthly rainfall pattern in each year, Figure 5-14, Figure 5-15, and 

Figure 5-16 depicts the yearly accumulated average monthly rainfall for PERSIANN-

CCS, GSMaP_NRT, and IMERG Early respectively. The monthly rainfall for all three 

SPEs seems to align significantly closer to the gauge observations after applying the 

ANN correction scheme in years where the differences between the three methods are 

more noticeable. However, in most cases, the three methods performed almost similarly. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76 

 

 

Figure  5-14. Monthly Rainfall Timeseries in each year for Adjusted PERSIANN-CCS 

 

Figure  5-15. Monthly Rainfall Timeseries in each year for Adjusted GSMaP_NRT 
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Figure  5-16. Monthly Rainfall Timeseries in each year for Adjusted IMERG Early 

5.3.2. Daily Precipitation and Detection Skill Analysis 

 In terms of the daily timescale, Figure 5-17 illustrates the scatterplot of the three 

SPE products with each bias correction method. The scaling and QM adjusted datasets 

became slightly more spread out after the correction which resulted in some rainfall 

values being overestimated further. This pattern is more evident in the case of applying 

scaling correction to GSMaP_NRT. Similar to the annual and monthly timescale, this 

result could be attributed from the original GSMaP_NRT being generally 

underestimated which further increased the values for high rainfall estimates. As for the 

ANN adjusted PERSIANN-CCS, the data points seem to be lowered. This result 

reduced the overestimation of the lower intensities; however, it increased the 

underestimation of the rainfall in higher intensities. Furthermore, this pattern after 

applying ANN bias correction shows similarities with the GSMaP_NRT and IMERG 
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Early. In terms of the resulting bias, the pattern for the daily rainfall resembles the one 

from the annual and monthly timescales as shown in Figure 5-18. Overall, the originally 

overestimated SPE products become slightly underestimated and originally 

underestimated become slightly overestimated respectively. However, as shown in 

Figure 5-19, the adjusted results vary from the higher timescales. Notably, the QM bias 

correction slightly increased the errors for all three SPE products. However, the scaling 

adjusted GSMaP_NRT still has significantly increased RMSE overall which may be 

attributed to the underestimation of the original SPE product. In addition, all of the 

ANN adjusted product still showed lower RMSE than their original versions. In terms 

of the daily rainfall, the ANN adjusted IMERG Early has the least errors among the all 

cases. Furthermore, among the three SPE products, IMERG Early consistently had the 

highest correlation values as shown in Figure 5-20. 

 

Figure  5-17. Daily Rainfall Scatterplot of Adjusted SPE Products 
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Figure  5-18. BIAS of Adjusted SPE Products Daily Rainfall 

 

Figure  5-19. RMSE of Adjusted SPE Products Daily Rainfall 
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Figure  5-20. CORR of Adjusted SPE Products Daily Rainfall 

 As for detection, only QM and ANN bias correction methods can adjust zero to 

non-zero values and vice-versa. The scaling bias correction cannot adjust the detection 

skill because of its multiplicative nature. Figure 5-21 and Figure 5-22 shows that the 

ANN bias correction method increased the POD and FAR of PERSIANN-CCS and 

GSMaP_NRT but slightly reduced both for IMERG Early which originally already had 

higher values. On the other hand, the QM bias correction reduced the POD and FAR 

for GSMaP_NRT and IMERG Early. This result can be attributed from the QM method 

itself where if the satellite CDF may convert the satellite rainfall value to zero if the 

gauge CDF value of zero is higher than the satellite. Therefore, anything less than that 

satellite rainfall value would be converted to zero, resulting in decreased POD and/or 

decreased FAR. Conversely, if the gauge CDF value of zero is lower than the satellite, 

the adjusted satellite value of zero would be transformed to the corresponding non-zero 

value. This scenario results in increased FAR and/or POD which is evident with the 

QM adjusted PERSIANN-CCS. Because mispredictions are weighed more in ETS, it 

is evident that the skill scores of SPE products that had increased FAR were 

significantly reduced as shown in Figure 5-23. These results are apparent with both QM 
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and ANN adjusted PERSIANN-CCS as well as with the ANN adjusted GSMaP_NRT. 

On the other hand, the ETS of both QM adjusted GSMaP_NRT, QM adjusted IMERG 

Early, and ANN adjusted Early increased due to the reduction of their respective FAR. 

Among the bias corrections, the QM adjustment scheme has the best potential in 

improving the detection skill of the SPE products. 

 

Figure  5-21. POD of Adjusted SPE Products Daily Rainfall 

 

Figure  5-22. FAR of Adjusted SPE Products Daily Rainfall 
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Figure  5-23. ETS of Adjusted SPE Products Daily Rainfall 

5.3.3. Precipitation and Detection Analysis by Month 

 Figure 5-24 shows the bias by month of each case of PERSIANN-CCS. The 

scaling correction of this SPE product significantly reduced the bias by each month and 

result in slight overestimation in dry months and slight underestimation wet months. 

This outcome is possible with scaling because monthly variations were considered in 

the bias correction method. Similarly, the ANN bias correction shows the same pattern; 

however, the underestimation is noticeably greater especially in the month of 

September. On the other hand, the QM correction resulted in general underestimation 

except for April, May, June, and November. Moreover, among the three methods, the 

ANN bias correction resulted in the least RMSE over all months as shown in Figure 5-

25. Similarly, majority of the months have slightly higher correlation after applying the 

ANN bias correction as illustrated in Figure 5-26. The disadvantage of ANN can be 

seen again in the detection skill of the adjusted SPE product as shown in Figure 5-27 

and Figure 5-28. Although the POD has been increased, the FAR of the adjusted SPE 

products also increased. This outcome significantly lowers the ETS as observed in 
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Figure 5-29. Therefore, applying the scaling correction to PERSIANN-CCS could be 

the option if the main concern for the correction is maintaining an acceptable skill score. 

 

Figure  5-24. BIAS of Adjusted PERSIANN-CCS Daily Rainfall by Month 

 

Figure  5-25. RMSE of Adjusted PERSIANN-CCS Daily Rainfall by Month 

 

Figure  5-26. CORR of Adjusted PERSIANN-CCS Daily Rainfall by Month 
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Figure  5-27. POD of Adjusted PERSIANN-CCS Daily Rainfall by Month 

 

Figure  5-28. FAR of Adjusted PERSIANN-CCS Daily Rainfall by Month 

 

Figure  5-29. ETS of Adjusted PERSIANN-CCS Daily Rainfall by Month 

 As for the scaling adjusted GSMaP_NRT, the correction resulted in general 

overestimation of rainfall throughout the whole year except October as shown in Figure 
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5-30. This result supports the reason why the GSMaP_NRT performed poorly after 

applying scaling correction. The QM adjusted GSMaP_NRT still shows the same 

underestimation in dry months; however, the wet months tend to be overestimated. 

Inversely, the ANN adjusted GSMaP_NRT follows the same pattern with the 

PERSIANN-CCS where dry months are overestimated and wet months show 

underestimation. Because daily rainfall is generally underestimated in the months of 

December and January, it can be observed from Figure 5-31 that the scaling correction 

greatly increased the RMSE for these months. Similar to PERSIANN-CCS, the ANN 

bias correction still produces the least RMSE over all of the months as illustrated in 

Figure 5-32. Moreover, Figure 5-33 shows increased correlation after applying ANN 

correction. In terms of detection, the patterns are similar to the overall results of 

GSMaP_NRT in which QM reduces while ANN increases both POD and FAR for all 

months as shown in Figure 5-34 and Figure 5-35. These outcomes are reflected in the 

ETS as illustrated in Figure where ANN shows lower scores while QM resulted in 

slightly higher values. 

 

Figure  5-30. BIAS of Adjusted GSMaP_NRT Daily Rainfall by Month 
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Figure  5-31. RMSE of Adjusted GSMaP_NRT Daily Rainfall by Month 

 

Figure  5-32. CORR of Adjusted GSMaP_NRT Daily Rainfall by Month 

 

Figure  5-33. POD of Adjusted GSMaP_NRT Daily Rainfall by Month 
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Figure  5-34. FAR of Adjusted GSMaP_NRT Daily Rainfall by Month 

 

Figure  5-35. ETS of Adjusted GSMaP_NRT Daily Rainfall by Month 

 In terms of bias, the results for IMERG Early is slightly similar to PERSIANN-

CCS as shown in Figure 5-36. The scaling correction adjusted the bias into slightly 

overestimating daily rainfall from November to February while having slight 

underestimation during the rest of the year. The QM bias correction shows 

underestimation in majority of the months but overestimates in the months of February 

to April. The ANN bias correction resulted in lower biases but the underestimation is 

more evident in the months of May, Jun, September, and October. Similar to both 

PERSIANN-CCS and GSMaP_NRT, Figure 5-37 illustrates that the ANN bias 

correction resulted in the least RMSE in each month throughout the year. As for the 
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correlation, except January, the ANN bias correction has the highest value every month 

as shown in Figure 5-38. Because IMERG Early already has a high POD and high FAR, 

the QM and ANN bias correction methods were able to improve the ETS each month 

by lowering the POD and FAR as illustrated in Figure 5-39, Figure 5-40, and Figure 5-

41. Among the three bias correction methods, QM still resulted in the highest ETS in 

each month. 

 

Figure  5-36. BIAS of Adjusted IMERG Early Daily Rainfall by Month 

 

Figure  5-37. RMSE of Adjusted IMERG Early Daily Rainfall by Month 
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Figure  5-38. CORR of Adjusted IMERG Early Daily Rainfall by Month 

 

Figure  5-39. POD of Adjusted IMERG Early Daily Rainfall by Month 

 

Figure  5-40. FAR of Adjusted IMERG Early Daily Rainfall by Month 
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Figure  5-41. ETS of Adjusted IMERG Early Daily Rainfall by Month 

5.3.4. Precipitation and Detection Analysis by Basin 

 Figure 5-42 illustrates the bias of each basin for every case of bias correction 

method with the three SPE products, including the original dataset. Evidently, the 

PERSIAN-CCS and IMERG Early which initially overestimate daily rainfall turn to 

underestimate rainfall in some basins. Inversely, GSMaP_NRT overestimates daily 

rainfall in majority of basins in all correction methods. As for the errors, each pair of 

SPE product and applied bias correction method still follow the overall results as shown 

in Figure 5-43. The ANN bias correction shows improvement in all basins compared to 

the original SPE products. Scaling correction improved some basins in the central 

region for the PERSIANN-CCS and IMERG Early while worsens the errors in some 

basins for GSMaP_NRT. The QM method does not significantly improve any basins 

compared to the other two methods. However, even after correction, it is noticeable that 

the errors are still higher near the coastal areas where higher intensities of rainfall occur. 

In addition, the correlation improved in most basins after applying ANN bias correction 

method to each SPE product as shown in Figure 5-44. 
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Figure  5-42. BIAS of Adjusted SPE Products Daily Rainfall by Basin 
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Figure  5-43. RMSE of Adjusted SPE Products Daily Rainfall by Basin 
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Figure  5-44. CORR of Adjusted SPE Products Daily Rainfall by Basin 

 Consistent to the results of the previous evaluations, the POD and FAR of some 

basins are reduced for GSMaP_NRT and IMERG Early after applying the QM bias 

correction methods as illustrated in Figure 5-45 and Figure 5-46. Inversely, the ANN 

bias correction significantly increased the values of POD and FAR in some basins of 

GSMaP_NRT and PERSIANN-CCS. As observed in Figure 5-47 the ANN corrected 

GSMaP_NRT and PERSIANN-CCS showed lower ETS while the QM adjusted 
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GSMaP_NRT and IMERG Early showed increased ETS. The improvements are more 

notiaceable in the central, east, and some parts of the southern regions. 

 

Figure  5-45. POD of Adjusted SPE Products Daily Rainfall by Basin 
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Figure  5-46. FAR of Adjusted SPE Products Daily Rainfall by Basin 
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Figure  5-47. ETS of Adjusted SPE Products Daily Rainfall by Basin 

5.3.5. Precipitation Analysis by Intensity 

 Figure 5-48 illustrates the bias of each original and adjusted SPE product by 

precipitation intensity. It is evident that the bias adjusted SPE products still follow the 

same pattern as the original datasets. However, the result is slightly different from the 

previous evaluations. In terms of no rain to moderate rain, the bias does not vary 

significantly from each other regardless of SPE product. On the other hand, the heavy 

and extreme rainfall reveals that the ANN bias correction method increases the 
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underestimation in these precipitation intensities. In reducing the underestimation of 

extreme rainfall, the scaling and QM correction methods provide better results. In the 

case of the extreme rainfall of GSMaP_NRT, the scaling correction significantly 

reduces the bias because the original SPE products is generally underestimated. 

However, in observing Figure 5-49, it is noticeable that the scaling correction for 

GSMaP_NRT still increases the errors for the extreme rainfall. QM correction is the 

only method that reduces the errors for the extreme rainfall. In any other precipitation 

range, the ANN method provides lower RMSE values. Furthermore, Figure 5-50 shows 

that the ANN correction also results in the highest correlation coefficient for each case. 
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Figure  5-48. BIAS of Adjusted SPE Products Daily Rainfall by Basin 
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Figure  5-49. RMSE of Adjusted SPE Products Daily Rainfall by Basin 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 

 

 

Figure  5-50. CORR of Adjusted SPE Products Daily Rainfall by Basin 
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5.4. Comparison of Adjusted SPE Products 

Table 5-1 summarizes the strong and weak points of each bias correction 

method applied in this study. Scaling correction can take advantage of its capability to 

consider space and time variations easily. Moreover, the method is fairly simple and 

easy to understand and execute. In addition, it is effective in dealing with 

overestimations even if the method is simple. However, it still has its disadvantages. 

Firstly, the scaling method in this study cannot improve detection skills as it only 

applies the bias factor through multiplicative means. Furthermore, as shown with the 

GSMaP_NRT dataset, it is weak in dealing with underestimations where it would tend 

to increase high rainfall which may result in higher errors. Finally, there is little room 

for improvement in the methodology. Because of its simplicity, there are only limited 

ways to improve the method. One of the ways to improve the scaling is by including an 

additive factor which may be able to deal with detection skills. 

As for the QM correction method, it is good at dealing with extreme rainfall 

intensities. It was able to successfully lower underestimation and RMSE for extreme 

rainfall. Furthermore, it is effective at reducing false alarms. Both of these advantages 

can be attributed to its methodology in mapping the satellite CDF to the gauge CDF. In 

addition, although it is more complex than scaling correction, the methodology is 

generally understandable with enough background on statistics. As such, there is still 

room for improvement for the method as other statistical methods may be incorporated 

in the approach. One of the key disadvantages of QM in this study is that it is less 

effective with non-extreme events. Another disadvantage is that similar to the case of 

reducing false alarms, the method can reduce corrects hits and convert them into 

missing data. 
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Table  5-1. Summary of strong and weak points of each bias correction method 

 Advantages Limitations 

Scaling 

Correction 

Can consider space and time 

variations 

Cannot improve detection 

skills 

Simple and not complicated to 

execute 
Weak with underestimation 

Effective with dealing with 

overestimations 

Little room for improvement in 

the methodology 

Quantile 

Mapping 

Good at dealing with extreme 

rainfall intensities Ineffective with non-extreme 

events Effective at reducing false 

alarms 

More complex than scaling but 

generally understandable Lowers POD by turning real 

prediction to missing data Has room for improvement in 

the methodology 

Artificial 

Neural 

Network 

Greatly reduces overall errors 
Methodology is like a black 

box 

Effective at reducing non-

extreme rainfall 

Requires more data to execute 

more effectively 

Can be applied to all three SPEs Weak against extreme events 

Extremely large room for 

improvement 

Lowers detection skill by 

increasing false alarms 

 

The ANN bias correction method has both great strong points and weak points. 

The most compelling attribute of the ANN correction is that it greatly reduces the 

overall error, especially with non-extreme rainfall. Moreover, it can be applied to all 

three SPEs used in the study. In addition, since the field and study of neural networks 

is still growing, there is a large room for improvement for this method such as using 

deep learning tools and methods. However, at its core, a neural network is still like a 

black box in which the structure itself may not give full insight of the model. Also, 

these networks require large amounts of data in order to accurately train the model and 

properly predict the target output. In addition, the ANN model developed in this study 

showed weakness in improving extreme rainfall events. False alarms were also 
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increased for PERSIANN-CCS and GSMaP_NRT in trying to predict for hit. 

Additional data and information would be able to help in creating a better neural 

network for bias correction. 

Finally, Table 5-2 lists the RMSE of each adjusted SPE product over each river 

basin in the country. In this study, the adjusted SPE with the lowest RMSE would be 

selected as the best performing SPE product and bias correction method. The lowest 

RMSE for all basin resulted from the ANN adjusted IMERG Early. In addition, Table 

5-3 illustrates the normalized RMSE of each adjusted SPE product.  Although some 

basins in the northern part have less RMSE values than the basins in southern part, the 

normalized RMSE shows that the resulting error is not significantly far from each other. 

When the error is observed relative to the standard deviation by basin, it gives a better 

insight on how the SPE actually performs. 
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CHAPTER 6 

Conclusions and Recommendations 

6.1. Conclusions 

Satellite precipitation estimates are great supplementary data for rainfall 

quantification as these products provide coverage over the vast majority of the world. 

These space-borne radars can fill in the gaps in areas without dense rain gauge networks 

and ground radar stations. However, as shown in the literatures and results of this study, 

SPE products still have biases that should be corrected in order to be fully utilized.  

 In terms of the evaluation, each of the original SPE product has its strong points 

and weak points. It is observed that the precipitation is consistently underestimated as 

rainfall intensity increases. Furthermore, higher errors and lower correlations are more 

noticeable during the wet months and in high and extreme rainfall events. Moreover, 

higher errors can be observed in the coastal areas such as the southern and eastern parts 

of Thailand. As for the detection skill, the POD and FAR are better during wet months 

than the dry months. Likewise, the ETS of the SPE products is slightly lower during 

the wet season even though its values do not vary from each month significantly. 

PERSIAN-CCS and IMERG Early overestimate rainfall overall in any time scale while 

GSMaP_NRT tended to underestimate precipitation. Furthermore, IMERG Early 

shows the best performance in terms of quantitative statistics. However, IMERG Early 

has the lowest ETS among the three SPES because there are higher amounts of false 

alarms. 

For the bias correction calibration and validation phases, it can already be 

inferred which SPE products and bias correction method would work well together. It 

has been shown that QM and scaling correction have high RMSE values for 
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PERSIANN-CCS and GSMaP_NRT respectively. This result implies that the methods 

may not work well together. On the other hand. the ANN correction method 

consistently shows lowered RMSE for all three SPE products. Overall, the ANN 

correction method shows consistently satisfactory results in terms of quantitative 

statistics. From the annual to daily timescale, the ANN correction bests the other two 

methods in terms of RMSE. Although the scaling correction has better bias reduction 

by month due to its methodology being able to consider monthly variations, the ANN 

correction still has the least errors. The same pattern applies with the analysis by basin. 

However, the ANN correction has some weaknesses in address detection skills. 

Although it lowers the errors, the POD and FAR for PERSIANN-CCS and GSMaP are 

increased which significantly decrease the ETS of both SPE products. One of the 

possible reasons why the detection skill of IMERG does not worsen unlike the other 

two may be attributed to the fact that it already has high POD and FAR. Furthermore, 

the ANN correction method lacks in addressing extreme rainfall. Based on the analysis 

by precipitation, the ANN correction greatly increases underestimation as well as the 

RMSE. On the other hand, the areas in which the ANN correction lacks are where QM 

correction proved to be more capable. Although the QM tends to reduce POD, it also 

reduces the FAR which improves ETS. Moreover, the QM consistently lowers the 

underestimation and RMSE in extreme rainfall intensities.  

In terms of the correction methods, scaling correction is simple and it has the 

capability to easily consider spatiotemporal variations. Even with its simplicity, it is 

effectively reducing overestimations. However, the scaling method in this study cannot 

improve detection skills and it is weak in dealing with underestimations. As for the QM 

correction method, it deals with reducing both the biases and errors of extreme rainfall 
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intensities. It is also effective improving detection skills. However, the QM method in 

this study is less effective with normal rainfall events. As for the ANN, the bias 

correction method can greatly reduce the overall error, especially with non-extreme 

rainfall for all three SPEs used in the study. However, the model requires more data 

input in order train the model. The ANN adjusted SPE products does not improve in 

the extreme rainfall events. Moreover, ANN aims to match between SPEs and 

observation while Scaling and QM aim to reduce the bias so ANN should not be 

compared directly with Scaling and QM. 

The adjusted satellite precipitation estimate product with the least error for all 

basin is the ANN adjusted IMERG Early. Therefore, in this study, it is the best 

performing bias correction. However, it should be noted that this adjusted dataset still 

has its disadvantage in terms of its detection skills and its high error and bias in the 

extreme rainfall. The purpose of using the adjusted satellite precipitation should also be 

considered as each SPE product and correction method has its own specific qualities 

that makes it unique in certain scenarios. Understanding the basics of each methodology 

is beneficial in deciding which bias correction method should be applied as each one 

has its own advantages and limitations. 
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6.2. Recommendations 

Further research is recommended in order to improve both the evaluation and 

correction. As for improving the evaluation, it may be possible to further specifically 

look into each region or basin in order to have a clearer understanding of the more 

detailed processes within each area. It would be beneficial to find a different perspective 

in evaluating the SPEs. Moreover, rain gauges located in mountainous areas are vital in 

improving the quality of SPEs. 

As stated previously, each bias correction method has its own advantages to 

potentially improve its adjustments. As for the scaling correction, the resulting satellite 

values from an underestimated product increased its higher rainfall values. Therefore, 

this outcome should be considered when improving the scaling correction. Additionally, 

it may possible to have an additive factor which would be able to address its weakness 

in its inability to improve detection skills, similar to the work of Gumindoga et al. 

(2016). In terms of the QM bias correction, this adjustment scheme did not perform 

well on non-extreme events. It would be recommended to separate the data to extreme 

and non-extreme data for the correction. Moreover, it may be possible to apply other 

statistical concepts such as multivariate CDF in order to account for non-rainfall factors 

such as in the ANN method. Similarly, although the ANN method has shown its 

capability in correcting the biases of satellite rainfall products, there are still numerous 

ways to improve the methodology. It would be recommended to apply deep learning 

techniques such as a 3D Convolutional Neural Networks (CNN) and take into account 

both spatial and temporal patterns in the training process. Since SPE datasets are grid 

files, taking advantage of these additional data points could potentially improve results. 
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Lastly, instead of simply conducting bias correction, it is possible to explore 

other options in utilizing SPE data, especially in near real-time applications. Some 

approaches include the merging of the SPE products with rain gauge measurements 

and/or other precipitation quantification. This approach may improve the prediction in 

areas with sparse gauge networks as more datasets may be utilized in the estimations. 
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