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PRECIPITATION ESTIMATES OVER THAILAND. Advisor: Asst. Prof.
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Over the years, meteorological satellite instruments have produced Satellite
Precipitation Estimates (SPEs) that can supply rainfall intensity rates globally.
However, these datasets do not directly reflect the actual values of ground
measurements so it is imperative to correct the systematic biases of SPEs to produce
reliable hydrologic models. Thus, the aim of this study is to assess the effectiveness
of bias correction of SPE products over Thailand. The Precipitation Estimates from
Remotely Sensed Information using Artificial Neural Networks — Cloud
Classification System (PERSIANN-CCS), Global Satellite Mapping of Precipitation
- Near Real Time (GSMaP_NRT), and Integrated Multi-satellitE Retrievals for GPM
(IMERG) Early version were evaluated in comparison to the Thai Meteorological
Department (TMD) gauge measurements from 2003 to 2018. Subsequently, the SPEs
were corrected by using Scaling, Quantile Mapping (QM), and an Acrtificial Neural
Network (ANN) correction. Both the original PERSIANN-CCS and IMERG Early
generally exhibit overestimation over Thailand while the GSMaP_NRT slightly
underestimate rainfall. The original IMERG Early also shows the least RMSE
overall, followed by GSMaP_NRT, then by PERSIANN-CCS. GSMaP_NRT shows
the highest Equitable Threat Score (ETS) while IMERG Early has the lowest ETS
because it has large amounts of false alarms. All products exhibit higher errors during
the wet season, high underestimation during heavy and extreme rainfall, and higher
errors near the coastal areas where high rainfall occurs. IMERG Early also shows the
least RMSE in all river basins. After bias correction, the adjusted IMERG Early
dataset still provides the least RMSE for all basins regardless of which correction
method was applied. The ANN bias correction method performs the best among the
three methods in terms of RMSE. However, it increases the underestimation and
RMSE of extreme rainfall events and worsens ETS of PERSIANN-CCS and
GSMaP_NRT. Only the QM bias correction is able to consistently reduce errors of
extreme rainfall and improve ETS. Overall, the ANN adjusted IMERG Early dataset
has the least RMSE in all river basins.
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CHAPTER 1
INTRODUCTION
1.1. Background of the Study

Precipitation is a key parameter for various field of study. Accurate quantification
of precipitation over certain areas is one of the key factors required to obtain reasonable
results from hydrologic analyses. There are various ways to measure and estimate
rainfall over specific locations. However, as the spatiotemporal representation increases,
the resolution of the measurements lowers as shown in Figure 1-1. One of the simplest
and most accurate methods is by the use of rain gauges as it can physically measure the
depth of rainfall over a given period. Consequently, since the measurement is only
located in a point location, it can only be considered as accurate within the vicinity of
the rain gauge station. Another way to estimate precipitation is through the use of
ground-based radars. It gives a better spatial distribution of rainfall compared to a rain
gauge while maintaining a significant amount of accuracy as the sensors are still
ground-based. However, since the radar indirectly measures the rainfall through signals
from the pulses of microwaves, interference and physical obstructions can reduce the
accuracy of the precipitation estimates. Similarly, space-borne radars equipped on
satellites can also estimate precipitation. One of the advantages of satellite-based
precipitation estimates is its spatial coverage which provides rainfall measurements for
almost anywhere around the whole globe. Nevertheless, the data from satellite sensors

has its drawbacks since the estimates come from indirect measurements.
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Figure 1-1. Resolution of Rainfall Quantification over Spatiotemporal
Representation (Kirstetter, 2019)

Satellite precipitation estimates (SPEs) have the potential to provide rainfall data
for almost every location in the world. However, these estimates contain systematic
biases that need to be corrected. Moreover, other rainfall products have their own
advantages and disadvantages. Combining different datasets may enhance the quality
of precipitation estimates. Taking the spatial coverage of satellite rainfall data and the

accuracy of rain gauge measurements can improve hydrologic models and simulations.

1.2. Objectives of the Study
The main objective of this study is to assess the effectiveness of bias correction of

satellite precipitation estimates. Specifically, the study aims:

1. To quantify the systematic bias of near-real-time (NRT) satellite precipitation
estimates compared to rain gauges in Thailand;

2. To adjust the bias of the SPE products in each basin using Scaling, Quantile
Mapping (QM), and Artificial Neural Network (ANN) bias correction methods; and
3. To determine which adjusted SPE product and its respective bias correction

method has the least overall error in each basin within the country.
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1.3. Scope and Limitations

The study focuses on the assessment of the performance of the original and
corrected NRT SPE products at a daily timescale within the boundaries of Thailand.
The 123 TMD synoptic stations are used as basis for the evaluation of SPE products.
Selected gauges are to be filtered in accordance to a Double Mass Consistency Analysis
with respect to the other Thai Meteorological Department (TMD) synoptic stations
within the same basin. Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Network (PERSIANN-CCS), Global Satellite Mapping of
Precipitation Near Real Time version (GSMaP_NRT), and Integrated Multi-satellitE
Retrievals for GPM (IMERG) Early Run from 2003 to 2018 at a daily time scale are the
selected SPE products to be evaluated. The year 2003 has been selected to provide
consistency in terms of temporal coverage for all the SPE dataset. In addition, the daily
maximum and minimum temperatures at the same TMD stations are included in the
study as additional input predictors for the ANN bias correction method. However, the
temperature data available is only until the middle of 2017; therefore, the ANN

testing/validation period would be shortened until the end of 2016.

SPEs are to be evaluated with quantitative statistics and categorical statistics.
Quantitative statistics include computation of mean bias (BIAS), root-mean-squared
error (RMSE), and correlation coefficient (CORR) while categorical statistics include
determination of probability of detection (POD), false alarm ratio (FAR), and equitable
threat score (ETS). In terms of comparison, the SPE product with the lowest RMSE

would be selected as the best performing dataset within each river basin.



After the evaluation, all of the selected SPE products would be corrected within
each river basin. Scaling correction, quantile mapping, and an ANN model would be
utilized to adjust the SPE rainfall pixel with an available rain gauge station. The three
bias correction methods would use the same datasets for their respective calibration
phases. The scaling correction would utilize a Time-Space Variable (TSV) approach,
wherein the bias factor applied to the data varies by month and by basin. Likewise, the
QM correction would separate the data by basin to produce a cumulative distribution
function (CDF) for each basin. Furthermore, the ANN correction would follow a
backward-propagation Multi-layer Perceptron (MLP) regression model with the input
vector containing the original satellite rainfall value, maximum temperature, and
minimum temperature while the output value being the adjusted satellite rainfall value.
All river basin would have its own ANN model with one hidden layer containing 8
hidden nodes to account for consistency as any additional number of hidden nodes to
this does not lower the resulting error during the training phase for the datasets. The
activation function used for the ANN model would be a Rectified Linear Unit instead
of the sigmoid and hyperbolic tangent function in order to account for the vanishing

gradient problem.

In addition, the error between the values of the original and corrected pixels would
be interpolated using a simple inverse-distance weighing (IDW) interpolation method
over the whole river basin. This error map would be used to adjust non-gauged pixels
within the basin. The calibration (training) period for the bias correction would start
from 2003 until 2010 while the validation (testing) period would be from 2011 to 2018.
Any data that are not within the set time period (2003 to 2018) would not be included
in the analysis. Moreover, gauge stations that are inconsistent with TMD synoptic
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stations would be removed. Furthermore, although bias correction will significantly
reduce its systematic errors and enhance its detection skills, these methods may not be

able to correct the daily random errors

1.4. Significance of the Study

The improvement of the NRT daily SPE precipitation data would provide various
development for many fields. In hydrology, the corrected SPE data would allow for
better flood and drought models and warning systems as it could provide data to cover
ungauged area. Other fields, such as in agriculture or in meteorology, may use the
adjusted datasets for monitoring or forecasting. Furthermore, including an ANN model
on correction would provide more insight to how machine learning methodologies

could be used for water resources engineering.



CHAPTER 2
LITERATURE REVIEW

2.1. Satellite Precipitation Estimates

SPE products are estimated from space-borne radar instruments, sensors, and/or
imagers. The greatest asset of estimations from satellites is that it can approximate the
precipitation rate for the whole globe. Since the 1960s, satellite missions started aiming
for the improvement of meteorological observations (Kidd & Huffman, 2011). Over the
years, the technology greatly advanced with gave way for better measurement

instruments.

The meteorological satellites can be classified into two types; geostationary (GEO)
and Low Earth Orbiting (LEO) satellites (Hu et al., 2019; Kidd & Huffman, 2011) as
shown in Figure 2-1. GEO satellites are positioned approximately 38500 kilometers
above the equator and orbits at around the same speed as the rotation of the Earth. These
satellites are equipped with visible (VIS) and infrared (IR) sensors which can provide
images every 30 minutes. VIS images have a spatial resolution of approximately 1 km
by 1 km while IR sensors has approximately 4 km by 4 km. On the other hand, LEO
satellites can provide better measure precipitation with the addition of passive
microwave (PMW) sensors which measures precipitation more directly. However,
these satellites can only pass over a given location approximately twice every day.
Unlike GEO satellites, these satellites are located at a lower altitude of approximately
850 kilometers above the surface of Earth and has an overpass twice a day. However,
the products from LEO satellites provides higher resolution data of approximately 250

meters to 1 kilometer.
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Figure 2-1. GEO and LEO Satellite Orbits

Thakur et al. (2017) classifies the satellite rainfall estimation into four methods
using VIS/IR, PMW, active microwave (AMW) sensors, and blending multiple data
from different sensors. Rainfall measurements estimated from VIS/IR are computed by
establishing statistical relationships between the cloud parameters and rainfall intensity.
VIS images are used to identify cloud classifications and delineate cloud area which
sets apart the regions with and without rain. However, these images are limited as it is
only visible during the day. IR images fills in the gaps by using cloud temperatures to
supplement the estimate. VIS/IR algorithms are able to detect and produce continuous
rainfall data. However, these products have low accuracy because cloud temperatures
are not directly related to rainfall intensity (Hu et al., 2019). Kidd and Huffman (2011)
stated that emission from precipitation particles can be used to quantify rainfall as
emissions from rain droplets increase the MW radiation observed while precipitation
ice particles causes scattering which reduces MW radiation. However, these techniques
differ as rain drop emission relates to the measurements of rainfall throughout the whole
atmosphere column while ice precipitation scattering occurs more at the upper parts of

a cloud. One of the challenges for PMW rainfall products is that LEO satellites only



have up to two observations per day which cannot provide continuous retrievals. Figure

2-2 illustrates the difference between what these sensors can detect.
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Figure 2-2. Difference between VIS/IR and MW sensors on Satellites (Kirstetter,
2019)

AMW observations provide the most direct rainfall estimation compared to VIS/IR
and PMW retrievals. The precipitation radar (PR) on the satellite utilizes the relation
between radar reflectivity and rain rate to estimate precipitation (Thakur et al., 2017).
This radar measurement can provide data of the vertical structure of precipitation which
improves the calculation for the precipitation rate. The first PR deployed into orbit was
the Tropical Precipitation Measurement Mission (TRMM) PR. However, the TRMM
ended last 2015 after depleting its fuel source. The single-frequency radar was then
succeeded by the Global Precipitation Mission (GPM) dual-frequency precipitation
radar (DPR). The DPR can improve the observations and retrievals for precipitation in
cold seasons, especially in higher latitudes. However, similar to PMW retrievals, AMW

observations cannot estimate rainfall intensity continuously.



Each SPE product has a particular algorithm which makes it distinct. For example,
each sensor retrieval technique has its own advantages and disadvantages. Multi-sensor
techniques are employed to overcome the gaps of the observations of each satellite.
Combining the frequency of VIS/IR sample with the direct measurement of PMW
improves the quality of precipitation estimation from satellite retrievals. There have
also been techniques to calibrate IR observations with PMW. One of the most common
techniques is using blended algorithms which produces calibration curves to map sensor
observations to each other (e.g. IR with PMW). Various organizations and agencies
have produced their own satellite rainfall products using diverse and complex
techniques such as incorporating cloud processes or use of artificial neural network
(ANN). Table 2-1 lists the details of the satellite-based rainfall products discussed.
Moreover, Figure 2-3 illustrates the timeline for the improvements of SPEs over the
recent years.

2.1.1. Tropical Precipitation Measurement Mission (TRMM) Multi-satellite

Precipitation Analysis (TMPA)
With the joint development of National Aeronautics and Space Administration

(NASA) of the United States of America and the National Space Development Agency
(NASDA) of Japan (which has now merged with into the Japan Aerospace Exploration
Agency), TRMM was launched in 1997 and was the first dedicated precipitation
mission to be launched (Li, Wang, Chen, & Austin, 2019). The mission officially ended
after 17 years of service in 2015. The remains of the spacecraft and its instrument landed
over the South Indian Ocean with majority of its part scorched from the entry into Earth.
The TRMM satellite housed its PR, the TRMM Microwave Imager (TMI), and Visible

and Infrared Scanner (VIRS). The mission produced various precipitation products



ranging from its single sensor retrieval to merged multi-satellite (Huffman et al., 2007).
The TRMM Multi-satellite Precipitation Analysis (TMPA) product merged various
satellite data and calibrated with the TMI observations in order to produce a high-
quality estimate for precipitation. The two major datasets from TMPA were the NRT
version 3B42-RT and the post-real-time 3B42-V7 which is mainly used for research
(Maggioni, Meyers, & Robinson, 2016). The 3B42-RT product has a spatiotemporal
resolution of 0.25° for every 3 hours which covers 50°S to 50°N from March 2000 to
2015 when the mission ended. The NRT product has a latency of approximately 9 hours.
On the other hand, the 3B42-V7 has the same resolution and coverage but has longer
latency at roughly 2 months. This late release is due to the bias adjustment using the

Global Precipitation Climatology Centre (GPCC) gauge analysis.

1960 1997 2004 2005 2011 2014 2015 2019
First Meteorological Tropical Rainfall CMORPH ~ GSMaP  CMORPH-KF Global Precipitation PERSIANN-CDR IMERG V6
Satellite Mission Measurement Mission Algorithm  Algorithm — Algerithrm  Mission - IMERG V1 Algorithm Aleorithm
TRMM ER?
[ NN
GPM ERA
1997 2004 2009 2012 2015
PERSIANN Algorithm PERSIANN-CCS GSMaP-MVK  TRMM V7 TRMM
Algorithm Algorithm  Algorithm Era Ends

Figure 2-3. Timeline of SPE development in recent years.

2.1.2. Climate Prediction Center (CPC) Morphing Technique (CMORPH)
CMORPH is developed by the National Oceanic and Atmospheric Administration

(NOAA). Its product directly utilizes the PMW observation with cloud motion from IR
observations (Kidd & Huffman, 2011). The retrievals are computed by generating cloud
system advection vectors (CSAV) from IR observations and morphing precipitation

shape and rate by time-weighted linear interpolation between forward- and backward-
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propagated PMW observations (Joyce, Janowiak, Arkin, & Xie, 2004). The produced
estimate from CMORPH has a spatiotemporal resolution of 0.25° x 0.25°for every 30
minutes that covers 60°S to 60°N from 1998 to present at a latency of 18 hours.
CMORPH-Kalman Filter (KF) is another CPC product that uses Kalman Filter to
provide higher resolution data at 8km by 8km every thirty minutes (Joyce & Xie, 2011).

2.1.3. Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Network (PERSIANN)

In the early 1990s, integrating ANN into precipitation estimation has already been
studied which showed promising results (Kidd & Huffman, 2011). Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Network
(PERSIANN) has been produced by the Center for Hydrometeorology and Remote
Sensing (CHRS) at the University of California Irvine (UCI) since 1997 (Hsu, Gao,
Sorooshian, & Gupta, 1997). The PERSIANN algorithm utilizes the brightness
temperature of the observed and neighboring pixels from longwave IR images to
calculate the precipitation rate using ANN. Over the years, various developments of
this satellite-based precipitation estimates have been produced (Nguyen et al., 2018).
The family of products include PERSIANN, PERSIANN Cloud Classification System
(PERSIANN-CCS), and PERSIANN Climate Data Record (PERSIANN-CDR). All of
these products have a similar spatial coverage of 60°S to 60°N but differs in their
spatiotemporal resolution and latency. The three products may be distinctly
differentiated by its utilization purpose. PERSIANN and PERSIANN-CCS are more
suitable for short-term applications (Hong, Hsu, Sorooshian, & Gao, 2004).
PERSIANN incorporates quality control by calibration using PMW retrievals before it

is released after 2 days. Moreover, it has a spatiotemporal resolution of 0.25° by 0.25°
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every hour. On the other hand, PERSIANN-CCS is available as an NRT product with
latency of approximately 1 hour and a higher spatial resolution of 0.04° by 0.04°.
Although this product is less calibrated than the original PERSIANN, Nguyen et al.
(2018) states that PMW calibrated PERSIANN-CCS products are available for data
after 2014. PERSIANN-CDR s a bias adjusted product that has a record since 1983
which makes it applicable for historical and long-term statistical analysis in
hydrometeorological studies (Ashouri et al., 2015). PERSIANN-CDR has a similar

spatiotemporal resolution with the original PERSIANN but its latency is approximately
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2.1.4. Global Satellite Mapping of Precipitation (GSMaP)

As early as 2002, Japan has been producing its own high-resolution satellite-based
precipitation estimates. Currently, Global Satellite Mapping of Precipitation (GSMaP)
utilizes PMW and IR observations for its rainfall estimates. GSMaP_MWR
(Microwave Retrievals) converts brightness temperatures to precipitation rate values
(Mega et al., 2018). The algorithm of this product has been updated in order to

incorporate the orographic effect on precipitation. It has a spatiotemporal resolution of
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0.25° by 0.25° every hour covering 60°S to 60°N globally. GSMaP_NRT offers a
product for short-term applications at a latency of 4 hours and provides data from 2008
to present. It propagates precipitation rates from the previous product forward in time
in accordance to cloud motion vectors which is then adjusted using Kalman filter,
similar to the CMORPH methodology (Ushio et al., 2009). Contrarily, GSMaP_MVK
has a longer latency at 3 days but it delivers a more accurate precipitation estimate
compared to the previous products. It also has precipitation estimates since 2000 to
present. This product improves the described methodology as well as the morphing
technique of CMORPH by including backward propagation. The overall flowchart is
shown in Figure 2-4. A more recent product of JAXA is the GSMaP_Gauge which
utilizes gauge stations to remove the bias in the satellite-based estimate. The global
gauge data of CPC has been used to adjust the GSMaP_MVK and GSMaP_NRT. In
addition, a new product named GSMaP_NOW has been released recently to provide
actual real time precipitation half-hourly data with latency less than 1 hour. It utilizes
extrapolation of half an hour into the future using cloud motion vector from GEO
satellites (Japan Aerospace Exploration Agency, 2019). It currently provides data from

27 June 2019 to present.
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Figure 2-4. GSMaP Algorithm Flowchart (Mega et al, 2019)

2.1.5. Integrated Multi-satellitE Retrievals for GPM (IMERG)
With the success of TRMM, the Global Precipitation Mission (GPM) has been

initiated by NASA and the Japan Aerospace Exploration Agency (JAXA) as its
successor. Notably, other international space agencies such as the Centre National
d’Ftudes Spatiales (CNES), Indian Space Research Organization (ISRO), National
Oceanic and Atmospheric Administration (NOAA), and European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) have joined the mission. In
this mission, the satellite instrument has been equipped with a dual-frequency
precipitation radar (DPR) which provides better detection of precipitation occurrences

by approximately 1.5 times compared to the TRMM PR (Gao, Tang, & Hong, 2017).

NASA has released its GPM era satellite precipitation estimate named Integrated
Multi-SatellitE Retrievals for GPM (IMERG). This satellite-based rainfall product
utilizes global rain gauge, IR, PMW, and DPR datasets to estimate the precipitation
(Huffman et al., 2015). Aside from building from the TRMM algorithm, it incorporates
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multiple methodologies from satellite rainfall products of various agencies. The
IMERG algorithm uses cloud motion vectors and Kalman filter to improve spatial
resolution of the products similar to CMORPH-Kalman Filter (KF) and GSMaP-MVK
products. Moreover, it applies the IR segmentation methodology of PERSIANN-CCS
to fill in gaps within the data using microwave-calibrated IR retrievals. The process
flow for IMERG are visualized in Figure 2-5. Similar to most satellite products, IMERG
utilizes post-calibration by adjusting the satellite precipitation estimates using global
gauge data. The output IMERG Version 6 (V6) product has a spatiotemporal resolution
of 0.1° by 0.1° every 30 minutes with full global coverage from 1998 to present for the
current version. There are three sub-product which differs in their latency. These
datasets are 3B-HHR-E (Early), 3B-HHR-L (Late), and 3B-HHR (Final) with latencies
of approximately 4 hours, 14 hours, and 3.5 months respectively. As the latency
increase, more data are used to improve the precipitation estimates. Although Early and
Late datasets are both NRT products, the former may be utilized for potential flood or
landslide warnings while latter would be more applicable for agricultural forecasting or
drought monitoring (Sungmin et al., 2017). Similar to the TMPA algorithm, the Final
product is adjusted with the expectation that its monthly sum would be equal to the

monthly satellite-gauge combination of IMERG.
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Figure 2-5. IMERG Algorithm Flowchart (Huffman et al., 2015)

2.2. Satellite Precipitation Estimates Evaluation

SPEs are evaluated against ground truths with regards to the error through
quantitative statistics and detection skill by forecast verification through categorical
statistics. The quantitative statistics for the evaluation of SPEs are the mean error or
bias (BIAS), relative bias (RBIAS), mean absolute error (MAE), root-mean-squared
error (RMSE), and the correlation coefficient (CORR) of the SPE product with respect
to the rain gauge measurements at the same point location. On the other hand, the
accuracy of a products can be verified by categorical statistics the determination of the
number of correct (hits) and incorrect (miss) prediction produced by the SPE. If both
of the SPE product and rain gauge measurement show occurrence of rainfall, it would

be considered to be a hit. In the same way, should both datasets show no sign of rainfall,
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it is simply regarded as a true negative. Otherwise, when the SPE product shows
occurrence of rainfall while the gauge measurement does not, the prediction is
considered to be a false alarm. Conversely, when the SPE product does not show
occurrence of rainfall while the gauge measurement does, the SPE product has missing
data. This concept is illustrated in Figure 2-6, where a, b, ¢, and d are the number of
hits, false alarms, misses, and true negatives respectively. It also relates how the

contingency table show conditional probability for forecast-event pairs.
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Figure 2-6. 2x2 Contingency Table for Forecast-Event Pairs (Wilks, 2011)
With the hits, false alarms, missing data, and true negatives, the SPEs products can
be further analyzed by calculating the probability of detection (POD), false alarm ratio
(FAR), and skill scores depending on the purpose of the analysis. Each skill score uses
varying equations as shown in Table 2.2, which provide a different representation of
the data (Wilks, 2011). Heidke Skill Score (HSS) measures accuracy of the prediction

or estimate with respect to random chances. Peirce Skill Score (PSS) evaluates the true
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skill of the prediction by separating the correct and false prediction. Critical Success

Index (CSI), sometimes known as the threat score (TS), determines the performance of

the correct prediction. On the other hand, Gilbert Skill Score (GSS), usually referred to

as Equitable Threat Score (ETS), relies on the number of true negatives unlike TS.

Table 2-2. Equations for Evaluation of SPEs

QUANTITATIVE STATISTICS CATEGORICAL STATISTICS
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In the evaluation of SPEs, products have similarities and differences to the results

of the analysis, especially when compared to other agencies. For example, Climate

Hazards Group InfraRed Precipitation with Station (CHIRPS) monthly rainfall data

from NOAA prove to be similar to gauge data during the rainy season in Ethiopia

(Musie, Sen, & Srivastava, 2019). On the other hand, Famine Early Warning Systems




Network Rain Fall Estimation (FEWS-Net RFE) data overestimates number of rainy
days but underestimates precipitation rate when compared to rain gauges (Lekula,

Lubczynski, Shemang, & Verhoef, 2018).

During its era, TRMM products showed the best performance among other SPEs
(Musie etal., 2019; Trinh-Tuan, Matsumoto, Ngo-Duc, Nodzu, & Inoue, 2019; Y. Yang
& Luo, 2014). Moreover, the post real-time product TMPA 3B42 provided better
correlation and detection than its NRT (Behrangi et al., 2011; Z. Wang, Zhong, Lai, &
Chen, 2017). In addition, a consistent feature of TRMM s its ability to capture
precipitation patterns whether it is annual (Tan & Santo, 2018), monthly (Hur,
Raghavan, Nguyen, & Liong, 2016; Musie et al., 2019), or daily (Yuan et al., 2018).
However, its products still had some issues when it came to the estimation of rainfall.
Musie et al. (2019) noted that TRMM has a tendency to overestimate daily rainfall in
dry seasons. In some cases, the overestimation is more prevalent with higher rainfall
intensity (Tan & Santo, 2018; Y. Yang & Luo, 2014). Moreover, although different
study areas have different conditions, there are some consistent results. A number of
studies show that TRMM products have high POD but its FAR also show high values
(Hur et al., 2016; Kenabatho, Parida, & Moalafhi, 2017; Musie et al., 2019; Y. Yang &
Luo, 2014). This scenario leads to lower skill scores, especially with CSI. Some authors
noted that the gauge adjusted 3B42V7 product performed better than the NRT product
of IMERG (X. Wang, Ding, Zhao, & Wang, 2019; Z. Wang et al., 2017). Even though
these datasets cannot be directly compared because of their differences in spatial
resolution, latencies, and post-processes, it shows that gauge-adjusted products have a

clear advantage to non-adjusted counterparts.
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In the case of CMORPH, most studies reported underestimation of rainfall in both
monthly (Habib, Haile, Sazib, Zhang, & Rientjes, 2014) and daily scales (Jamandre &
Narisma, 2013; Lekula et al., 2018). However, in Northwest China, it seems that
overestimation of both rainfall occurrence and rate is more evident (Y. Yang & Luo,
2014). Trinh-Tuan et al. (2019) noted that the CMORPH product performs better in
areas with higher station density, which suggests that the density of gauge networks

may influence the performance of SPEs.

With GSMaP having various products, each one has a different result when
compared to ground truths. The GSMaP_NRT product showed that it has trouble
capturing daily rainfall patterns when compared to gauges (Deng et al., 2018). On the
other hand, the post-processed GSMaP_MVK is able to compensate in improving
rainfall as it can capture monthly variations (Bui, Ishidaira, & Shaowei, 2019).
However, this product still has a problem with underestimation of rainfall accumulation.
Underestimation is more evident during the winter months (Hur et al., 2016; Tian,
Peters-Lidard, Adler, Kubota, & Ushio, 2010) which may stem from the PMW
estimates that tend to also underestimate winter precipitation (Nguyen et al., 2018).
Conversely, the MVK product show different results during summer. In Continental
United States (CONUS), precipitation is overestimated while underestimation is
observed in Singapore and Vietnam (Bui et al., 2019; Hur et al., 2016). The
precipitation estimation is improved with the gauge-adjusted GSMaP_Gauge which
showed less underestimation during dry season compared to its unadjusted version
which may be attributed to the propagation algorithm that cannot capture small-scale
storm events. It is worth noting that even with the improvements brought by the
adjustment, the SPE still underestimates rainfall in areas with complex terrain (Deng et
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al., 2018). Bui et al. (2019) mentioned that some areas have sparse gauge networks that
ultimately affect the performance of blended SPE in areas with varying elevations. A
sufficient number of gauge stations would be needed to produce better satellite-gauge

data.

For PERSIANN, there is a consistent pattern of overestimation (Alharbi, Hsu, &
Sorooshian, 2018; Behrangi et al., 2011; Y. Yang & Luo, 2014). However, with higher
precipitation, the products more often underestimate daily rainfall rate (Katiraie-
Boroujerdy, Asanjan, Hsu, & Sorooshian, 2017; Z. Yang et al., 2016). Inversely, in
Ethiopia and Malaysia, PERSIANN-CDR tend to underestimate light rain and
overestimate moderate to heavy rain (Musie et al., 2019; Tan & Santo, 2018). All three
product tend to show higher POD and also higher FAR than other SPEs (Nguyen et al.,
2018; Tan & Santo, 2018). In CONUS, the bias-adjusted PERSIANN-CDR also
performed better in capturing rainfall pattern and precipitation rate estimation (Nguyen
et al., 2018). However, similar to GSMaP, PERSIANN products also show

underestimation during winter.

As the successor of TRMM, IMERG has shown its capability to build on its
predecessor. When compared to TRMM, IMERG has shown significant improvement
in terms of estimation and detection (X. Wang et al., 2019). Although the post real-time
product TMPA 3B42 shows better performance than the IMERG NRT products as
previously mentioned, the IMERG Final still show superiority with less bias, better
correlation, and good overall skill score (Tan & Santo, 2018; Z. Wang et al., 2017;
Yuan et al., 2018). In a study in UAE, the Early product showed high POD and

correlation with respect to an event-based analysis (Mahmoud, Hamouda, & Mohamed,
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2019). In the case of Southeastern Austria and Upper Huaihe River Basin, all products
overestimate light rain and underestimate moderate to heavy intensities (Su, Li, Zhu,
Cui, & Wang, 2019; Sungmin et al., 2017). This similarity may stem from both study
area are located in the mid-Ilatitudes. However, the opposite is true in the low latitudes
of Malaysia which shows underestimation of no and light intensity but overestimation
of moderate to heavy rain (Tan & Santo, 2018). Overall, IMERG shows significant
improvement from TMPA products and that gauge-adjusted products provide superior

benefits compared to NRT.

In general, POD lowers and FAR increases with higher intensity as shown in Figure
2-7 (Behrangi et al., 2011). These false alarms may also contribute to overestimation of
rainfall (X. Wang et al., 2019). Adjustment of SPEs is needed because bias-adjusted
products (TMPA 3B42, IMERG Final, PERSIANN-CDR, etc.) provided better
performance which enhances their applicability in practical (Behrangi et al., 2011;
Nguyen et al., 2018; Z. Wang et al., 2017). However, blending with gauge data does
not always lead to better precipitation estimation (Bui et al., 2019). Sufficient gauge
stations are needed to produce better blended satellite-gauge data. Similar to the case
in Malaysia, global gauge datasets sometimes do not have enough coverage in some
countries as is depicted in Figure 2-8 (Tan & Santo, 2018). This suggests that correction
using local gauge may have a better effect. Furthermore, performance of SPEs (BIAS,
POD, FAR, etc.) significantly vary depending on elevation and location of the study
area (Deng et al, 2018; Trinh-Tuan et al, 2019). These conditions must be considered
also in the adjustment of the datasets. Analysis by using precipitation indexes helped in
decomposition of errors and categorizing climate patterns (Hur et al., 2016; Katiraie-
Boroujerdy et al., 2017; Nguyen et al., 2018).
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Figure 2-7. POD and FAR over increasing rainfall intensity (Behrangi et al., 2011)
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Figure 2-8. GPCP Gauges over the whole country of Malaysia (Tan & Santo, 2018)

2.3. Satellite Precipitation Estimates Bias Correction

As shown in the previous section, systematic errors are present in SPE products,
especially in NRT products. Bias correction is required to remove these errors and fully
utilize the SPEs. This process may require ancillary data (e.g. wind, temperature, cloud
movement, etc) and ground truths (e.g. gauge measurements, multi-sensor data, radar
estimates, etc) to adjust each rainfall estimate at specified time scales. The common

bias correction methods are bias factor scaling, curve fitting and regression, and
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quantile mapping (QM) (Deng et al., 2018; Gumindoga, Rientjes, Haile, Makurira, &

Reggiani, 2016; Z. Yang et al., 2016).

Bias correction methods were initially used for correction of radar rainfall data and
climate models (Gumindoga et al., 2016). Corrections are applied to climate model
prediction such as precipitation and temperature to accurately represent the possible
actual scenario in the future (Amengual, Homar, Romero, Alonso, & Ramis, 2012;
Jakob ThemeRlI, Gobiet, & Leuprecht, 2011). From the study of Jakob Themell et al.
(2011), direct methods, such as local intensity scaling or QM, are more effective in bias
correction of climate model data than indirect methods, such as linear regression and
resampling. This claim holds true in another study where distribution mapping is the
best correction method among five other processes (Teutschbein & Seibert, 2012).

2.3.1. Scaling Correction

In scaling correction, the method applies a bias factor (BF) to the SPE dataset
through either multiplication or addition (Gumindoga et al., 2016; Habib et al., 2014).
The BF may be computed in various ways depending on the spatiotemporal analysis
involved. However, the most common form of the BF equation is shown in Equation 1

as

BFzzn:Gi/zn:Si (1)

where n is the total number of gauge stations, i is the observed gauge stations, G is
the gauge measurement, and S is the satellite estimate (Lekula et al., 2018). Allowing
the influence of spatio-temporal variability in the bias correction of SPEs would show

another form of the BF equation in Equation 2 as Time-Space Variable (TSV),
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YE=d-ls(i, t)

BFrsy = == (2)
TV nt=d-lG (i, 1)

where d is the selected day, i is the observed gauge station, t is the Julian day number
(Habib et al., 2014). The value of | in the literature equals to 7 which gives a seven-day
time window for the BF factor. Other forms may take on Time-Space Fixed (TSF) and
Time Variable (TV) as shown in Equations 3 and 4 respectively

TEEIREISG )
ZIZIZZTGG D)

BFTSF R (3)
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BFw = St—aTeincr (@)
t=d Zi=1 G(i,t)

Another scaling method is referred to as Distribution Transformation which is an
additive approach (Gumindoga et al., 2016). It first computes a bias factor for monthly

mean of gauge and satellite as shown in Equation 5,

DT,

NG |_:C3

(5)

where G and Sp are the monthly mean of the gauge measurements and satellite
estimates respectively for all gauge stations. In addition, the methodology also

computes for a bias factor for the variation which is shown by Equation 6,
DT, = s (6)
T — S.L.

Finally, the corrected satellite value would be computed by Equation 7,

Spr = (S, — S,)DT, + DTS, (7)
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where SDT is the corrected SPE and SO is the original SPE value. The advantage
of this method is that it adjusts the satellite with respect to standard deviation and
percentile values.

2.3.2. Regression and Curve Fitting

With regression and curve fitting, SPEs are corrected by using a certain function
that relates the satellite data with ground truths. In some cases, it could be as simple
fitting the precipitation estimate with gauge measurements through simple or multiple
linear regression as with climate model downscaling and bias correction (Jakob
Themelil et al., 2011; Teutschbein & Seibert, 2012). However, it is also possible to use
other equations such as polynomial and power functions to determine the corrected
value of SPEs (Deng et al., 2018; Gumindoga et al., 2016). In the study of Deng et al.
(2018), the Mean Error (ME) is plotted again the Precipitation Intensity (PI) to fit a
quadratic function for correcting the SPE product. Figure 2-9 shows the plot and

functions used in the said study.
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Figure 2-9. Curve fitting P1 vs ME for a) 0 < Pl <= 20 and b) 20 mm/day < PI
(Deng et al., 2018)
On the other hand, Gumindoga et al. (2016) shows a power transform function for

correcting SPE as shown in Equation 8,
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P*=aP® (8)

where P* is the corrected SPE value, P is the monthly rainfall from gauge, a is the
factor that represent the corrected SPE to be equal to the gauge mean, and b is the
coefficient of variation (CV) of the satellite to the gauge measurements. The variables
a and b are coefficients for the power function which are then optimized using a
generalized reduced gradient algorithm.

2.3.3. Quantile Mapping

In the QM methodology, the cumulative distribution functions (CDF) of both gauge
and SPEs are used for bias correction. As with climate model downscaling, the CDFs
may be fitted into a specific distribution (Teutschbein & Seibert, 2012). However,
empirical or non-parametric distributions have been considered to produce better results
as the curve fitting is not required (Z. Yang et al., 2016). The basic equation of QM is

shown by Equation 9,
Saaj = CDFG*(CDFs(Sor)))  (9)

where CDF-1G is the inverse CDF of the gauge measurements, CDFS is the CDF
of the SPE at the same gauge location, and Sadj and Sori are the adjusted and original
SPE values respectively. This concept is represented in Figure 2-10 where PMW
estimates are used instead of gauge measurements to correct PERSIANN-CCS

(Karbalaee, Hsu, Sorooshian, & Braithwaite, 2017).
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Figure 2-10. Quantile Mapping Algorithm (Karbalaee et al., 2017)

Scaling correction of SPEs show that the processed data have improved correlation,
reduced biases, and less false alarms (Lekula et al., 2018; Saber & Yilmaz, 2018). When
comparing between scaling methods in Zambezi River Basin, the multiplicative method
STB and additive method DT were the most effective in correcting the mean values
(Gumindoga et al., 2016). However, multiplicative methods are considered to be better
than additive method in some areas (Saber & Yilmaz, 2018). Moreover, in an area
where spatio-temporal variations are significant, the TSF method barely adjusted the

data (Habib et al., 2014).

With the Quadratic fitting method used by Deng et al. (2018), the RMSE decreased
and correlation increased after correction. Moreover, the precipitation intensity patterns
by gauges were captured by the corrected data. However, in the study, the product
chosen for correction was GSMaP_Gauge which was already adjusted. Furthermore,
the corrected data resulted in higher standard deviation which may be rooted from bias

that the curve fitting may not be able to adjust.

In the study of Gumindoga et al. (2016), the Empirical QM method was the least

performing correction method. However, it showed that QM is more effective in terms
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of rainfall accumulation such as in monthly and annual time scales. It is stated that the
QM method does not fully adjust daily events as it loses effectiveness with time scales
less than a month (Alharbi et al., 2018; Z. Yang et al., 2016). It is also worth noting that
the effectiveness of QM correction depends on the data used for adjustment. Corrected
SPE data using with PMW-based rainfall estimates, which are less effective during
winter, show improvement only during the summer season when compared to radar

data (Karbalaee et al., 2017).

QM methodologies were coupled with other processes to improve correction.
Common methodologies were to apply separation by zones and interpolation. Corrected
SPE using QM coupled with separation by climate zones showed better performance
compared to without separation (Alharbi et al., 2018). It is also able to capture daily

rainfall pattern in a time series as shown in Figure 2-11.

Interpolation methods provide spatial variability in QM bias correction (Habib et
al., 2014). Inverse Distance Weighing (IDW) and Gaussian Weighing (GW) are some
of the interpolation methods used with QM (Alharbi et al., 2018; Z. Yang et al., 2016).
In the study of Z. Yang et al. (2016), the 1° x 1° box grids were used in Chile to
consolidate gauge data for one CDF per season. Figure 2-12 illustrates the location of
the box grids, gauges, CDFs, and Gaussian function. The SPE adjusted by the coupled
QM-GW is computed by Equation 10,

R, = Z wyy - CDF; Y (CDFs_js(ri(0)) = Z wy () (10)

jen jen

where Ri is the adjusted rainfall, ri(t) is the satellite rainfall at pixel i at time t, wij

is the gaussian weight, CDFG-js-1 is the inverse CDF of the gauge rainfall
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measurement for season s at box j, CDFS-js is the CDF of the SPE for season s at box

J. The Gaussian weights are computed by Equation 11 and 12,

(-8

, d;i
dl] T # (12)

where dij is the normalized distance of pixel i to the center of the nearby box j, dij
is the actual distance of pixel i to nearby box j, D is the farthest distance between two
box centers, and C is the Gaussian shape parameter with a value of 0.33 in the study.
All statistical metrics were consistently improved in the annual and monthly scale.
Although random errors still exist in local daily time steps, the adjusted data captures
the daily pattern of the rain gauges.

Mean Daily Areal Cumulative Precipitation for Zone 3 (2010 20!6)
2010 - 2011 e 012 - 2013

Rain Gauges @ Original PERSIANN-CCS ¢ Adjusted PERSIANN-CCS without CZ ® Adjusted PERSIANN-CCS with CZI

Figure 2-11. Mean Daily Accumulated Rainfall (Alharbi et al., 2018)
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Figure 2-12. CDF Calculation Procedure (Z. Yang et al., 2016)

2.4. Bias Correction using Machine Learning

With the increase in availability of large datasets in recent years, machine

learning algorithms have gained popularity for its advanced capability in data analytics

and processing which could be straining for traditional programs (Rebala, Ravi, &

Churiwala, 2019). Contrary to conventional programming which inputs data into a

program, machine learning algorithms produces the programs using both input and

output data as shown in Figure 2-13. Due to this structure, challenging problems are

solved indirectly without requiring detailed description of the models. However, the

algorithms would need huge amounts of data to produce accurate results.
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Traditional Programming Machine Learning

Figure 2-13. Difference between traditional programming and machine learning
(Lee, 2019)

Problems that machine learning algorithms can solve can be differentiated into
three types; regression (prediction), classification, and clustering (Lee, 2019;
Swamynathan, 2019). Regression or prediction refers to producing models which
estimates and predicts continuous values using the relationships between the labelled
data and variables. Classification seeks to identify the discrete values, groups or
categories of the data. Clustering groups the data points with similar characteristics.

Examples of each type is depicted in Figure 2-14.
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Figure 2-14. Examples of Machine Learning Problem Types; (a) regression, (b)
classification, and (c) clustering (Lee, 2019)
Some more advanced machine learning algorithms are the combination and
improvement of the mentioned problem types. Artificial neural networks (ANNSs) are
extension of the logistic regression model which is also useful in classification (Rebala

et al., 2019). Simple classification algorithms such as polynomial classifiers have a
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tendency to overfit noisy data whereas ANN algorithms provide better performance
(Kubat, 2017). This algorithm, also known as a Multilayer Perceptron (MLP), is called
a neural network because it imitates the functions of an oversimplified brain. Each node
or perceptron (neuron) of the ANN (brain) is connected to another by a transfer function
(synapse) which transmits the data (electric pulse or stimuli) as shown in Figure 2-15.
In the feed-forward propagation scheme, a neuron sums its weighted inputs then
subjects it to a transfer function where it passes the information to the next neuron. The

weighted sum of the inputs or the net input can be solved using Equation 18

n
net = z Wjixi -0 (18)
i=1

where net is the net input vector, xi is the input value, wiji is its corresponding weight,
and 0 is the bias of the neuron or perceptron (Du & Swamy, 2013). On the other hand,

the most common transfer function is a sigmoid which is shown in equation 19

1
¢(net) = W (19)

where ¢ is the transfer function. These steps are repeated until it reaches the nodes of
the output layer. The key algorithm in using ANN is its backpropagation algorithm.
This approach simply propagates back the difference between the actual predicted value
and the output of the ANN model. The algorithm utilizes a gradient-descent based

approach to adjust the weights. This adjustment is simply done by Equation 20 to 22
witt = wf; + AW, (20)

J

AW = néth; + adWii™t (21)
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v;(1 —y)(t; — y;) ; at output layer (22a)
{hi(l —h;) Z 87" 'wy; ; at hidden layer (22b)

where wtji is the weight from node j to node 1 at iteration t, AW is the weight change,
n is the learning rate of the gradient descent, éni is the gradient descent factor of node
i at layer n, and a is the momentum rate (Kubat, 2017). The learning rate dictates how
fast the adjusted weight would reach convergence while the momentum rate controls
how much the adjusted weight oscillates per iteration (Rebala et al., 2019). The typical
values for learning rate and momentum rate used in practice are 0.1 and 0.9 respectively
(Du & Swamy, 2013). The forward-backward propagation continues until the
computation reaches the convergence or when it reaches a predesignated number of

iterations. The ANN schematic is shown in Figure 2-15.

!
.-.-....-....... W1

Figure 2-15. Scheme of a sample neural network (Rebala et al., 2019)
Although the sigmoid and tanh functions have been widely used in most neural
networks, these activation function exhibits some limitations in terms of its reliability
(LeCun, Bottou, Orr, & Muller, 1998; Nwankpa, ljomah, Gachagan, & Marshall, 2018).
There would be cases where once the net input vector reaches a significantly high value,

the output of the sigmoid function becomes saturated and very close to the value of 0
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and 1 for sigmoid and 1 and -1 for the tanh function. This result would make the slope
of the function needed for the gradient descent method become extremely low to the
point that it would not have much changes in the node affected. This problem is
commonly known as the Vanishing Gradient (Roodschild, Sardifias, & Will, 2020).
Therefore, in recent years, the Rectified Linear Unit (ReLU) transfer function has
gained popularity in neural networks as it overcomes the limitation of the sigmoid
function. As shown in Figure 2-16, the ReLU function would not have the same
problem encountered with the sigmoid function as there are no presence of saturation
at high values. Moreover, because of the simplicity of the function, it allows for faster
computations that which benefits deep learning models (Nwankpa et al., 2018; Oostwal,

Straat, & Biehl, 2020; Roodschild et al., 2020).

However, the ReLU still poses some problems. In some cases that the learning rate
is not adjusted properly, a ReL U node can potentially stop working in the training phase
due to having a lower boundary situated at the zero value (Nwankpa et al., 2018). This
state is known as the “dying ReLU” problem. Literature has shown that this problem
can be circumvented by properly adjusting the learning rate or adapting a variation of
the transfer function which is the Leaky ReLU (Oostwal et al., 2020). This activation
function adjusts the ordinate negative values in proportion to a constant instead of

simply replacing them as zeroes.
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Figure 2-16. (a) Sigmoid and Hyperbolic Tangent vs (b) ReLU Activation Functions

ANNs can be further improved to provide better results for specific purposes.
Recurrent neural networks (RNNs) are used for sequential data such as time series and
repetitive datasets. In addition, convolutional neural networks (CNNs) may be more
useful for image and feature processing as it uses convolution to measure the overlap
between figures. On the other hand, another advanced machine learning method is by
applying Support Vector Machine (SVM). SVM is a classification type algorithm.
However, by adapting regression algorithms in the methodology, it is possible to predict

continues values.

Machine learning algorithms may also be utilized in hydrology and water
resources engineering. Although the most popular machine learning method is ANN,
the common machine learning algorithm in statistical downscaling and bias correction
is SVM (Kumar, Ramsankaran, Brocca, & Munoz-Arriola, 2019; Kundu, Khare, &
Mondal, 2017; Lary, Remer, MacNeill, Roscoe, & Paradise, 2009; Najafi, Moradkhani,
& Wherry, 2011; Sachindra, Ahmed, Rashid, Shahid, & Perera, 2018; Vandal, Kodra,
& Ganguly, 2019). One of the reasons why SVM is popular is because SVMs evolved

from actual theory while ANN considers the heuristics within the data (Lary et al.,
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2009). However, aside from selection of predictors, SVM-type of algorithms require
the selection of the kernel algorithm for the its process which may not be a one-for-all-
situations case (Sachindra et al., 2018). In the case of SPE correction, neural network-
based algorithms are still more commonly employed than SVM-based (Kumar et al.,
2019; Ngo-Duc, Matsumoto, Kamimera, & Bui, 2013; Tao, Gao, Hsu, Sorooshian, &
Ihler, 2016). However, the predictor data for their correction usually comes from
gridded data and/or satellite data such interpolated rainfall dataset (Ngo-Duc et al.,
2013), IR imagery (Nasrollahi, Hsu, & Sorooshian, 2013), and soil moisture (Kumar et
al., 2019). On the other hand, ground data used as neural network predictors for the
purpose of rainfall prediction are usually meteorological parameters such as
temperature, relative humidity, wind speed, atmospheric pressures, and the like (Abbot
& Marohasy, 2012; Coulibaly & Evora, 2007; Devi, Arulmozhivarman, Venkatesh, &
Agarwal, 2016; Kashiwao et al., 2017; Velasco, Serquifia, Zamad, Juanico, & Lomocso,

2019).
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CHAPTER 3
METHODOLOGY
3.1. Study Area

The study area covers the whole Thailand. The country is situated in the mainland
of South East Asia. As shown by Figure 3-1, | t shares its border with Cambodia on the
east, Laos on the north east, Myanmar on the west, and Malaysia on the south. the
country has a tropical climate which is influenced by seasonal monsoons and tropical
storms. Southwest monsoon season occurs during May to October bringing large
amount of rainfall. This is followed by the northeast monsoon on October to February
which is the cooler period, especially in December and January. Afterwards, the dry

period occurs from February to May, with April typically being the hottest month.
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Figure 3-1. Averaged Monthly Rainfall and Temperature Over Thailand
There are 22 major river basins as defined by the Office of Natural Water Resources
(ONWR) in Thailand. However, because the Sakae Krang river basin does not contain
a TMD gauge stations in its vicinity, it would be merged with the Lower Chao Phraya

river basin as the rainfall patterns in the area is similar to each other. Thus, the river
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basins used in this study would amount to a total of 21 major watersheds as shown in

as shown in Figure 3-2.
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Figure 3-2. Thailand River Basin and TMD Station Locations
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3.2. Data Sources

Rain gauge measurements were used for the evaluation and bias correction of the
SPE products. The 123 TMD synoptic stations from would be used for the evaluation
of the study. The locations of these are also shown previously in Figure 3-2. However,
only the data from year 2003 and above would be used in the study to account for the
consistency of data coinciding with the SPE products. Furthermore, although the
synoptic stations have better data quality, it contains some missing data during some
years as well as in some stations. In addition to the rainfall data from the TMD stations,
the minimum and maximum daily temperature records would be used as supplementary
predictors in the ANN bias correction approach that would be discussed later. The
temperature records cover years as early as 1975 to present; however, in this study, both
datasets only have measurements until early 2017. Thus, the validation period of the

ANN bias correction would be until the end of 2016.

A Double Mass Curve analysis was performed to determine the consistency of the
rain gauge observations with each other. It would compare the cumulative annual values
of a station with the average cumulative annual values of reference stations (Searcy and
Hardison, 1960). In the case of this study, the consistency of each TMD gauges within
a river basin would be analyzed with the average rainfall data of other TMD synoptic
stations therein. Should a basin have less than 3 gauges within it, the consistency

analysis would not be conducted.

As for the satellite data, the NRT SPE products for the study are PERSIANN-CCS,
GSMAP_NRT, and IMERG Early. The satellite data are retrieved at an hourly time

scale from 2003 coverage to 2018. The coverage of the data is selected in order for all
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products would have consistency in the temporal scale. Moreover, since the SPE
products are in UTC format, the sub-daily data would be aggregated to daily starting
from the time of collection in local time, UTC+7. The time coverage of the datasets is

shown in Figure 3-3. The specific product details are presented in Table 3-1.

1999 2000 2003 2010 2018
CALIBRATION VALIDATION

TMD SYNOPTIC STATIONS
Present

GSMaP_NRT V7

Figure 3-3. Temporal Coverage of Rain Gauge Data and SPE Products

Table 3-1. SPE Product Spatiotemporal Resolutions and Latency

SPE Product Spatial Temporal Latency
PERSIANN-CCS 0.04° x 0.04° 1 hour ~ 1 hour
GSMaP NRT 0.1°x0.1° 1 hour 4 hours
IMERG Early 0.1°x0.1° 30 mins 4 hours

3.3. Methodology

The methodology of the study is illustrated in Figure 3-4 which depicts the overall
procedure to obtain the bias corrected SPE datasets and determine which adjusted
product performs the best in each river basin. After the data collection, the original SPE
products would be evaluated using the TMD manual stations over Thailand. Afterwards,
all SPE product would be subjected to bias correction by Scaling, Quantile Mapping
(QM), and Artificial Neural Network (ANN) approaches. The adjusted product that
produced the least RMSE in a river basin would be considered as the best performing

dataset in that specific basin.
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The evaluation of the SPE products would be conducted by determining the
following factors; quantitative statistics, categorical statistics, rainfall patterns, monthly
performance, precipitation intensity performance, and basin-specific performance. The
metrics used for quantitative statistics are the mean bias (BIAS), root-mean-squared
error (RMSE), and correlation coefficient (CORR). On the other hand, the categorical
statistics considers the probability of detection (POD), false alarm ratio (FAR), and
Equitable Threat Score (ETS). The formula and optimal values of the categorical
statistics are listed in Table 3-2. Furthermore, ETS was chosen among the other skill
score metrics because of its ability to consider true negatives in its computation and its

non-linearity which heavily weighs the mistakes over correct prediction (Wilks, 2011).

The rainfall pattern would be evaluated by comparing the average monthly rainfall
over Thailand in each year. The monthly performance is evaluated by determining both
quantitative and categorical statistics for each month of the year. On the other hand, the
performance of the SPE in terms of its precipitation intensity estimation is evaluated by
determining the quantitative statistics in specific intervals as provided the TMD
guidelines shown in Table 3-3. As for the basin-specific evaluation, the quantitative
statistics would be determined in reference to the TMD gauges that are present within
a specific basin. Afterwards, the SPE evaluation results would be compared with each
other to determine which original SPE dataset produced the best performance over

Thailand.
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After the comparison of the evaluation, three bias correction methodologies would
be implemented in this study. As mentioned previously, the adjustments would be
carried out to the three SPE products in the study using scaling correction, quantile
mapping, and ANN bias correction methods. The calibration period for all methods
would be from 2003 to 2010 while the validation period would be from 2011 to 2018,
except for the ANN correction that would be shortened to the end of 2016. All

corrections are done in only SPE rainfall pixels that contains a TMD stations within it.

Table 3-2. Categorical Statistics Formula and Optimal Values

Metric Formula Optimal Value
a
POD 1
a—+c
FAR L 0
b+d
a — aref
ETS a—aertb+c 1

Table 3-3. TMD Precipitation Intensity Ranges

Precipitation Intensity Range
Light Rain 0.1 — 10 mm/day
Moderate Rain 10.1 — 35 mm/day
Heavy Rain 35.1 — 90 mm/day
Extreme Rain > 90 mm/day

The scaling correction would follow a TSV approach which would vary the bias
factor depending on month and basin. Each bias factor would be computed from the
data within the calibration period from 2003 to 2010. After obtaining these values, the

said bias factors would be applied to the SPE datasets in both calibration and validation
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period and compared to the gauge values in order to determine the performance of the

adjusted SPE products.

In addition, the Quantile Mapping approach would be utilized to correct the SPE
products. In order to apply this method, the cumulative distribution functions (CDF) of
both satellite and gauge daily rainfall data needs to be constructed. In this study, the
CDFs would vary within each river basin to account for the spatial variability. Similar
to the scaling correction, only the data from the calibration period would be used for

building the CDFs to be used in this correction.

As for the ANN bias correction method, the study would utilize the Scikit-Learn
library of Python to conduct the training and testing of the Multilayer Perceptron neural
network for the bias correction. The parameters of the ANN model would be set with
regards to values that are recommended for practical use for the stochastic gradient
descent method. The learning rate is set at a constant of 0.01 while the momentum rate
is at 0.9. In order to prevent the model from running infinitely, the maximum number
of iterations would be at 1 million iterations with an error tolerance of 1x10°. However,
unlike the typical methods, the model would employ a Rectified Linear Unit (ReLU)
function instead of the commonly used sigmoid function. This change of activation
function is done to avoid the vanishing gradient problem that occurs for with the

sigmoid and hyperbolic tangent functions.

The input predictor vector would contain the SPE rainfall value, maximum
temperature, and minimum temperature while the target value in the output layer would
be the adjusted SPE rainfall value. In this study, only one hidden layer would be

employed in order to account for simplicity of the model. The number of nodes within
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the hidden layer would be selected by through trial and error. The selected number of
hidden nodes would be the lowest possible value in which adding more nodes would
not cause fluctuations of the RMSE during training phase. Moreover, due to the nature
of scaling that is required for the data, some of the outputs may results in negative value

which is impossible for rainfall data. Negative values are automatically replaced as zero.

Afterward the correction at each gauged pixel, the deterministic interpolation
method IDW would be used to interpolate the error between the original and adjusted
SPEs. The interpolation is applied throughout the whole country. The difference
between these two values would be used to correct subsequent ungauged pixels as
shown in Figure 3-5. Since the interpolated error may be larger than the original daily

rainfall value, any negative values would automatically be converted to zero.

After bias correction, the RMSE and normalized RMSE of each adjusted SPE in
each basin would be compared in order to determine the best performing adjusted SPE.
The normalized RMSE is included in order to objectively compare the bias corrected

datasets. The normalized RMSE is computed by applying Equation 23 (Wilks, 2011).

, RMSE
Normalized RMSE = ———  (23)
stdeVgayge
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CHAPTER 4
EVALUATION OF SATELLITE PRECIPITATION ESTIMATES
OVER THAILAND

The evaluation of the selected SPEs over Thailand shows the varying performances
of the three products as well as each of its innate characteristics, such as spatial and
temporal accuracy. Each SPE product is compared to surface precipitation
measurements using the 123 synoptic rain gauges of TMD located all over Thailand.
The time frame observed for the evaluation is set from year 2003 to 2018 to provide
consistency in terms of the data availability of all considered products. Every product
would be evaluated in terms of quantitative and categorical statistics, annual
accumulated time series comparison, monthly rainfall variation, and varying
precipitation intensity.

4.1.1. Annual Precipitation

As shown in Figure 4-1, the annual rainfall scatterplots of each satellite product
are plotted against the rain gauge measurements. PERSIANN-CCS shows greater
spread of data; however, it can be observed that the higher rainfall intensities are
underestimated. As for GSMaP_NRT, the annual satellite rainfall has less spread and
the alignment to the 1:1 line is more evident in comparison to PERSIANN-CCS.
Among the three SPE products evaluated, the IMERG Early has the least spread based
on visual inspection. However, it is evident for all products that the higher rainfall is

underestimated.

As for the quantitative statistics of each product, Table 4-1 details the values of
their biases, RMSEs, and correlation coefficients. Based on the computed bias, both

PERSIANN-CCS and IMERG Early tend to overestimate annual rainfall values. On the
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other hand, GSMaP_NRT shows a tendency of underestimation for the yearly
precipitation. As for the RMSE, PERSIANN-CCS has the highest value at 680.0 mm,
followed by GSMaP_NRT at 470.0 mm, then IMERG Early with 451.7 mm. Among
the three products, PERSIANN-CCS has the least correlation at 0.55. The correlation
coefficient of GSMaP_NRT and IMERG Early are relatively close to each other at 0.79
and 0.82 respectively. However, it is evident that IMERG Early has the better

performance overall in terms of annual precipitation.

PERSIANN-CCS GSMAP_NRT IMERG Early
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Figure 4-1. Annual Scatterplot of SPE Products

Table 4-1. Annual Precipitation Quantitative Statistics

PERSIANN-CCS | GSMaP NRT IMERG Early
BIAS (mm/yr) 199.5 -120.1 171.5
RMSE (mm/yr) 636.0 470.0 451.7
CORR 0.5 0.8 0.8

In terms of the annual satellite rainfall averaged over the study period shown in
Figure 4-2, all SPE products follow the known patterns over Thailand where lower
rainfall is evident in the northern regions and increases in intensity to the southern
regions. However, the underestimation of GSMaP_NRT can be observed as even the
central region of Thailand has relatively low annual rainfall. On the other hand, IMERG

Early produces higher rainfall in the northern regions and other parts of the country. As
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for the southern region, all SPE products show the same patterns with higher rainfall

occurring near the shore.

PERSIANN-CCS GSMAP_NRT IMERG Early
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Figure 4-2. Average Annual Rainfall for PERSIANN-CCS (left), GSMaP_NRT
(center), and IMERG Early (right)

4.1.2. Monthly Precipitation
In terms of monthly rainfall, Figure 4-3 illustrates the scatterplot of the monthly

precipitation of each SPE product versus the gauge observation. Both PERSIANN-CCS
and GSMaP have high spread of their data. PERSIANN-CCS clearly shows
underestimation of higher rainfall values while there are significantly higher
occurrences of overestimation for GSMaP_NRT. However, majority of the
GSMaP_NRT data is still below the 45° line. As for IMERG Early, it can be observed
that the data does not have a large spread unlike the two other SPE. Moreover, the
monthly values align well to the 1:1 line, even though the high precipitation intensities

are still underestimated.
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As listed in Table 4-2, the computed monthly values for the quantitative
statistics of each SPE product follow the same pattern as the annual precipitation. Both
PERSIANN-CCS and IMERG Early still tend overestimate the rainfall while
GSMaP_NRT shows underestimation of the monthly precipitation. PERSIANN-CCS
has the higher RMSE and lowest CORR values. On the other hand, IMERG Early still

performs the best among the three SPEs in terms of both RMSE and correlation

coefficient.

GSMAP_NRT IMERG Early

PERSIANN-CCS

Satellite Monthly Rain vs Gauge Monthly Rain Satellite Monthly Rain vs Gauge Monthly Rain

b
o
=3
=3

10004 o 1000 7

w
1=
=

500

Satellite Rain (mm/mon)
Y

Satellite Rain (mm/man)
Satellite Rain (mm/man)
15
S
3

o

500 1000 1500 2000

Gauge Rain (mm/mon)

e 0
500 1000 1500 2000 0

Gauge Rain (mm/mon)

2000

500
Gauge Rain (mm/mon)

1000 1500

Figure 4-3. Monthly Scatterplot of SPE Products

Table 4-2. Monthly Precipitation Quantitative Statistics

PERSIANN-CCS GSMaP_NRT IMERG Early
BIAS (mm/mon) 15.6 -12.1 12.7
RMSE (mm/mon) 121.4 96.4 86.0
CORR 0.7 0.8 0.8

Each SPE product has been plotted in a monthly timeseries graph as shown in
Figure 4-4. PERSIANN-CCS mostly overestimates rainfall by the end of the year;
however, it still underestimated rainfall in 2011 and slightly in 2016. As for
GSMaP_NRT, it mostly underestimates in early years but the monthly rainfall
estimations have gotten closer in the recent years. Similarly, IMERG Early also

improved its performance in recent years in which the overestimation has been lessened
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to a degree where the monthly satellite rainfall and gauge measurements are almost the

same.
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Figure 4-4. Cumulative Average Monthly Rainfall over Thailand

4.2. Daily Precipitation Assessment

4.2.1. Over Whole Study Period

Figure 4-5 shows the scatterplot of the daily satellite precipitation in comparison
to the daily gauge rainfall observations. Due to having a finer temporal resolution, the
data points for all SPE products shows higher spread. The larger spread of data is
evident in the GSMaP_NRT dataset. As for the PERSIANN-CCS, its data does not
align well to the 1:1 line. A significant portion of its points over estimates low intensity

rainfall and also underestimates high intensity rainfall. In addition, although IMERG
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Early may visually appear better than the other two SPE products, the dataset still has

a noticeable spread as well as clear underestimation of high intensity precipitation.

In terms of their quantitative statistics, all evaluated SPE products still maintain
similar pattern as with the annual and monthly rainfall as presented in Table 4-3.
However, it is observed that the correlation coefficient has been significantly lowered.
This change is expected as daily rainfall proved to be harder to estimate because of
various reasons, including sudden pulses of rainfall evident in the tropical region which

is difficult to be fully captured by the satellite data.
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Figure 4-5. Daily Scatterplot of SPE Products

Table 4-3. Daily Precipitation Quantitative Statistics

PERSIANN-CCS GSMaP_NRT IMERG Early
BIAS (mm/day) 0.5 -0.5 0.4
RMSE (mm/day) 13.3 12.3 11.0
CORR 0.4 0.5 0.6

4.2.2. By Month

In order to further evaluate the daily rainfall, the satellite precipitation data has
been separated and evaluated by month. Both PERSIANN-CCS and IMERG Early tend
to have similar patterns. The only difference is that IMERG Early showed better
performance than PERSIANN-CCS. Both datasets show overestimation in wet months

and underestimation in dry months as shown in Figure 4-6. Moreover, the RMSE for
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both SPE products on Figure 4-7 shows that wet months have higher errors while dry

months have lower values. Inversely, Figure 4-8 illustrates that the correlation

coefficients for these two SPEs are higher during dry month but lower in wet months.

As for GSMaP_NRT, the observed underestimation from the previous evaluation

remains evident, especially in the wet months from May to October. On the other hand,

GSMaP_NRT has lower errors in wet season compared to CCS but have higher errors

in colder months from November to January. As for the correlation, the computed

values do not vary significantly, but it can still be observed that the correlation

coefficients are lower in the wet season similar to the other two SPE products.
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Figure 4-8. CORR of Daily Rainfall per Month

4.2.3. By Precipitation Intensity
Furthermore, separating the satellite data by rainfall intensity gives insight on

how well the SPE products performance depending on occurring precipitation. The
range for the rainfall intensities are based on the precipitation range prescribed by TMD
with light rain at 0.1 — 10 mm, moderate rain at 10.1 — 35 mm, heavy rain at 35.1 — 90
mm, and extreme rain at anything above 90 mm per day. As shown in Figure 4-10, it is
evident that all three SPE products follow the same patterns. Light rain is overestimates
while everything above said intensity is underestimated. In addition, as the precipitation
intensity increases, the underestimation increases. Among the three SPEs, PERSIANN-
CCS generally has the largest values except for moderate rainfall. On the other hand,
GSMaP_NRT generally has the lower bias except during moderate and heavy rainfall.
IMERG Early produced the least bias in moderate and heavy rainfall. In terms of RMSE,
Figure 4-11 illustrates that IMERG Early has least error for moderate to extreme rainfall
while GSMaP_NRT has least error for no rain and light rain. As for correlation, all
three SPEs still show the same pattern in which the correlation values increase with
higher intensities as depicted in Figure 4-12. All evaluated satellite products resulted in

poor correlation coefficient values. Even though the extreme rainfall has slightly better
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correlation, it is still relatively small in comparison to the overall daily precipitation.

Overall, IMERG Early shows the best performance among the three SPE products.

10.0
0.0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
-70.0
-80.0
-90.0

1.7 0.7 1.0 F737 40

BIAS (mm/day)

st

No Rain Light Rain Moderate Rain Heavy Rain Extreme Rain
B CCS mGSMaP mIMERG
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4.2.4. By Basin

Taking into account the spatial variability of rainfall over the country, the
datasets have been separated and evaluated by basin. As shown in Figure 4-13,
PERSIANN-CCS and IMERG Early show similar patterns; however, PERSIANN-CCS
showed greater overestimation in the central and eastern region of the country. On the
other hand, GSMaP_NRT showed general underestimation in the northern, central, and
eastern region of Thailand. However, the southern regions near the Gulf of Thailand
showed overestimation as more rainfall occur in these areas. It is worth noting that the
basin on the southwestern region of the country has generally been underestimated by
all SPE products. Figure 4-14 show that all SPE product show lower RMSE in the
northern half of the country but increases in value in the southern regions, especially
near the oceans. Among the three SPEs, IMERG Early still show better performance as
the colors of each basin tend to be lighter and greener which indicates lower errors. The
similar pattern is observed in Figure 4-15 where CCS has worst performance in most

basins IMERG Early showed better correlation in the northeast and southern basins.
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4.3. Precipitation Detection Assessment

4.3.1. Over Whole Study Area
Aside from quantitative statistics, categorical statistics have been applied to

evaluate the detection skill of the satellite precipitation products. Table 4-1 lists the
percentage of detections and the skill scores. Figure 4-16 shows the differences between
the POD, FAR, and ETS of the three SPE datasets. PERSIANN-CCS produced the
lowest POD among the three SPESs. This dataset is followed by GSMaP_NRT and then
by IMERG Early. IMERG Early shows an impressive score which is almost close to
the optimal POD value of 1. However, this incredible score is pulled down by the
relatively high FAR of IMERG Early. This result means that IMERG Early has a lot of
false alarms which partially explains why it has a very high POD. Due to the SPE
product predicting numerous counts of false alarms, there are only few values that
would count as missing data which ultimately leads to higher POD scores. This can be

confirmed with the ETS score of IMERG Early in which it resulted lower than
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PERSIANN-CCS which had the smallest POD score among the three. In terms of daily
precipitation detection, GSMaP_NRT showed the best performance while the IMERG

Early resulted as the worst.

Table 4-4. Precipitation Categorical Statistics

PERSIANN-CCS GSMaP_NRT IMERG Early

Hits 26.4% 29.7% 34.4%

False Alarms 14.5% 14.9% 28.9%
Misses 9.6% 6.3% 1.6%

True Negative 49.5% 49.1% 35.1%
POD 0.73 0.82 0.95
FAR 0.35 0.33 0.46
ETS 0.33 0.39 0.28

Precipitation Detection Scores
1.00 0.95

0.80

0.60

0.40

0.20

0.00

POD FAR ETS
m PERSTANN-CCS ®GSMaP NRT = IMERG Early

Figure 4-15. Precipitation Detection Skill of SPE Products

4.3.2. By Month
When separated by month, all of the evaluated SPE product show the similar

pattern of their detection skill scores. As shown in Figure 4-17, it is evident that the
POD is lower during December to February but higher during March to November.
Inversely, the FAR is higher from November to April and lower from May to October

as observed in Figure 4-18. Moreover, similar to the overall daily detection skill,
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IMERG Early still does not perform well as shown in the ETS values illustrated in

Figure 4-19. GSMaP_NRT still showed the best detection skill among the three SPEs.
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Figure 4-18. ETS of Daily Rainfall per Month
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4.3.3. By Basin

In terms of spatial variation by basin, the detection skills still show the same
pattern. As shown in Figure 4-20, the IMERG Early has high POD among the three,
while GSMaP_NRT has lower POD in the southern region of the country. The FAR of
PERSIANN-CCS and GSMaP_NRT is slightly similar to each other as illustrated in
Figure 4-21. However, it is very evident that IMERG Early has worse FAR in most
areas. Although all SPE product does not have a high detection skill score,

GSMaP_NRT still showed better results overall in ETS as shown in Figure 4-22.
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Figure 4-19. POD of Daily Rainfall per Basin

62



PERSIANN-CCS GSMAP_NRT IMERG Early
A

ORIGINAL - FAR ORIGINAL - FAR
] 0-0.1 | 0-0.1 | L] 0-01 |
Bl 01-02 ol B 01-02f . 01-02]
] 0.2-03 (] 0.2-03 ] 02-03 |
— 0.3-04 = 03-04 | | 03-04
] 0.4-05 1 [ 0.4-0.5 ] 04-05
— 0.5-0.6 — 0.5-0.6 — 0.5-06
= 0.6-0.7 R = 0.6-0.7 [ 0.6-07
] 0.7-08 L (] 0.7-0.8 ] 0.7-08
|| 0.8-0.9 N [ | 0.8-09 | 0.8-09
100 o | 09-1 T, W er | 0.9-1 consr | 0.9-1
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Figure 4-21. ETS of Daily Rainfall per Basin

4.4. Summary of Evaluation
Each one of the three SPE products has its advantages and disadvantages. In
addition, there are also some characteristics in the satellite data that are common to all.
In all temporal scale, the precipitation at higher intensities are heavily underestimated

as confirmed by separating the data by intensity. Furthermore, the satellite data shows
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higher errors and lower correlations in the wet months. In terms of spatial variability,
higher errors are located in areas near the shore. The similarity among these conditions
is that higher rainfall occurs in these situations. However, it is worth noting that for the
southern region of Thailand, the correlation coefficient values are higher even though
stronger rainfall occurs in those areas. In terms of detection, both the POD and FAR is
better during wet months. However, the ETS does not seem to improve during the wet

season.

On the other hand, the differences between each SPE product are more
noticeable. Both PERSIAN-CCS and IMERG Early tend to overestimate rainfall in any
time scale while GSMaP_NRT has a tendency to underestimate precipitation. The
difference between PERSIANN-CCS and IMERG Early is that the latter shows the best
performance in terms of quantitative statistics. IMERG Early fall short in its daily
precipitation detection where there are large amounts of false alarms. This result shows
that IMERG Early has the worst detection skill in terms of ETS. In considering the best
performing unadjusted SPE dataset, the purpose of selection should be carefully
considered in order to properly utilize the best dataset for the situation. In terms of
RMSE, IMERG Early is the best performing satellite precipitation product. If detection
skill is considered, GSMaP_NRT has the best skill score among the three. In any case,
the evaluated SPE products still contain errors that should be adjusted which would be

covered in the next section.
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CHAPTER 5
BIAS CORRECTION OF SATELLITE PRECIPITATION
ESTIMATES

As explained in the methodology, there are three bias correction methods that
would be applied to the three SPE products evaluated in the previous section. These
methods are the scaling, quantile mapping (QM), and artificial neural network (ANN)
bias correction approaches. The scaling bias correction method utilizes a Time-Space
Varied (TSV) scaling factor in consideration of the spatiotemporal variability present
in SPE products. In the case of the QM and ANN bias correction, the observed
precipitation gauge measurements would be corrected according to within each of the

21 river basins considered in the study area to account for spatial variations.

5.1. Calibration

Each bias correction method has its own way in calibrating its model. The
scaling bias correction uses the ratio of the mean of the satellite and gauge rainfall
values as the bias factor. The QM approach creates a cumulative distribution function
(CDF) from both the satellite and gauge data. The values of the bias factors and the
produced CDF are included in the appendix. The ANN method uses the calibration
dataset to train the neural network. From initial trials using IMERG Early, it was shown
that the value of the RMSE does not change significantly with additional nodes in this
setup. However, it is noticeable that the time of computation increases further with more
nodes as shown in Figure 5-1. In the case of this study, the total number of nodes within

the hidden layer would be set at 8 nodes.
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Figure 5-1. Results of Initial ANN trials using varying number of hidden nodes
However, all of these methods aim to reduce the bias of the target dataset to a value
almost or equal to zero as shown in Figure 5-2. In order to determine the performance

of each bias correction, the main parameter to be used would be the resulting RMSE.
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Figure 5-2. BIAS of Original and Adjusted SPE Products - Calibration
As shown in Figure 5-3, the resulting RMSE for each method and each SPE
product varies from each other. Both PERSIANN-CCS and IMERG Early show that

their RMSE is reduced after applying the scaling and ANN corrections while their
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RMSE slightly increases after the QM bias correction was utilized. On the other hand,
the RMSE of GSMaP_NRT slightly increased after being adjusted through the scaling
and QM approaches. Only the ANN bias correction effectively lowered the RMSE of

all three SPE products.
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Figure 5-3. RMSE of Original and Adjusted SPE Products - Calibration
5.2. Validation

As for the validation phase, the resulting BIAS values for each adjusted SPE are
no longer close to or equal to the value of zero as shown in Figure 5-4. In addition, the
PERSIANN-CCS and IMERG Early, which are originally overestimated, resulted in
slight underestimation after bias correction. Conversely, the GSMaP_NRT, which
originally underestimated the gauge observations, showed overestimation after
correction. However, it is worth noting that the bias of GSMaP_NRT after applying the

ANN bias correction is almost equal to zero which indicates good performance.
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Figure 5-4. BIAS of Original and Adjusted SPE Products - Validation

In terms of RMSE, it is evident in Figure 5-5 that the results are slightly the
same as the calibration phase. The adjusted PERSIANN-CCS shows the same pattern;
however, it is evident that the scaling correction only lowers the RMSE slightly. As for
the GSMaP_NRT, the resulting RMSE greatly increased after the scaling adjustment.
In addition, the IMERG Early also shows increased RMSE after the scaling correction
in the validation phase. For all three SPE products, the scaling correction shows higher
errors in the validation phase than the calibration phase. As for the QM scaling, it seems
that the method does not significantly improve the resulting RMSE for all SPE products.
On the other hand, it is still evident that the ANN bias correction consistently lowered

the RMSE of the satellite data.
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Figure 5-5. RMSE of Original and Adjusted SPE Products - Validation

5.3. Comparison of Bias Corrected SPE Products

5.3.1. Annual and Monthly Precipitation Patterns
The improvements of bias correction methods can be easily observed in higher

timescales. Figure 5-6 illustrates the scatterplot for the both the original and adjusted
SPE products in terms of annual timescale. The most noticeable change in pattern for
the adjusted annual rainfall of PERSIANN-CCS is that the spread of the data has been
reduced in which the cloud of points is closer to the 1:1 line in comparison to the
original data. This change is evident in all of the bias correction method; however, the
ANN bias correction for PERSIANN-CCS stands out from the other two methods
because the annual rainfall of higher intensities is shown to be closer each other even
though they are still underestimated. As for the GSMaP_NRT, the data points have been
slightly shifted upwards for all bias correction methods. This result shows that the
underestimation of GSMaP_NRT has been reduced overall. However, after applying
the scaling bias correction, the adjusted GSMaP_NRT appears to have more

overestimated values especially in the higher intensities. On the other hand, the ANN
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correction still showed underestimation of the stronger annual rainfall. The QM

adjustment scheme seem to have the most consistent slope for the data among the three

correction methods. Since the IMERG Early already had a better scatterplot than the

other two original SPE products, the most notable improvement is that the data has been

shifted downwards to address the overestimation of the original dataset. Furthermore,

it is worth noting that the scaling and QM bias correction improved the annual rainfall

values in the higher intensities in which the ANN still show underestimation of these

rainfall values.
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Figure 5-6. Annual Rainfall Scatterplot of Adjusted SPE Products

Furthermore, as shown in Figure 5-7, the biases for the annual rainfall of both

PERSIANN-CCS and IMERG Early in all cases shows significant reductions. On the

other hand, the bias of the adjusted GSMaP_NRT only after applying the ANN bias
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correction method as the scaling and the QM corrections resulted in great
overestimation. However, except for the annual GSMaP_NRT rainfall adjusted by
scaling, all of the cases resulted in reduced errors in the annual timescale as shown in
Figure 5-8. The increased error brought by the scaling bias correction to the
GSMaP_NRT could be attributed to the original SPE being underestimated. Since the
scaling adjustment scheme would increase rainfall values to reduce the bias, rainfall
values that are already high would be transformed into larger numbers. Regardless, the
correlation between the annual satellite and gauge rainfall values did not decrease as
illustrated in Figure 5-9. Among the three adjusted SPE, the IMERG Early still resulted
in the least RMSE for the annual timescale. The RMSE values for the adjusted IMERG
Early datasets are close to each other but the scaling adjusted data resulted in the lowest

value.
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Figure 5-7. BIAS of Adjusted SPE Products Annual Rainfall

71



686

433 418 452

371 371 376

CCS GSMaP IMERG
EORI mBF QM mANN
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Figure 5-9. CORR of Adjusted SPE Products Annual Rainfall
Proceeding to a finer temporal scale, Figure 5-10 shows the monthly rainfall
scatterplot for all three SPE products before and after correction. PERSIANN-CCS
shows higher spread of data and higher overestimation in some data points after
applying the scaling and QM bias correction. In addition, after the ANN adjustment,

the corrected PERSIANN-CCS not only showed less overestimation in lower intensities
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but also caused consistent underestimation of higher monthly rainfall values. The

pattern after the bias correction seems to be consistent for all SPE products.
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Figure 5-10. Monthly Rainfall Scatterplot of Adjusted SPE Products

As for the quantitative statistics, the pattern of the adjusted bias in the monthly
timescale is similar to the annual rainfall cases as shown in Figure 5-11. The main
difference is evident in the RMSE as illustrated in Figure 5-12. Unlike in the annual
timescale, the RMSE for the QM adjusted datasets is higher as their values are close to
the original monthly RMSE. As for the scaling correction, it still increased the resulting
error value for the GSMaP_NRT. On the other hand, the ANN bias correction resulted
in the lowest overall error for all three SPE products with adjusted IMERG Early dataset

having the least RMSE. However, in Figure 5-13, it is shown that the ANN adjustment
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scheme slightly decreased the correlation of the adjusted GSMaP_NRT and IMERG to

the gauge.
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Figure 5-11. BIAS of Adjusted SPE Products Monthly Rainfall
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Figure 5-12. RMSE of Adjusted SPE Products Monthly Rainfall
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Figure 5-13. CORR of Adjusted SPE Products Monthly Rainfall
As for the monthly rainfall pattern in each year, Figure 5-14, Figure 5-15, and
Figure 5-16 depicts the yearly accumulated average monthly rainfall for PERSIANN-
CCS, GSMaP_NRT, and IMERG Early respectively. The monthly rainfall for all three
SPEs seems to align significantly closer to the gauge observations after applying the
ANN correction scheme in years where the differences between the three methods are

more noticeable. However, in most cases, the three methods performed almost similarly.
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Figure 5-15. Monthly Rainfall Timeseries in each year for Adjusted GSMaP_NRT
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Figure 5-16. Monthly Rainfall Timeseries in each year for Adjusted IMERG Early

5.3.2. Daily Precipitation and Detection Skill Analysis

In terms of the daily timescale, Figure 5-17 illustrates the scatterplot of the three
SPE products with each bias correction method. The scaling and QM adjusted datasets
became slightly more spread out after the correction which resulted in some rainfall
values being overestimated further. This pattern is more evident in the case of applying
scaling correction to GSMaP_NRT. Similar to the annual and monthly timescale, this
result could be attributed from the original GSMaP_NRT being generally
underestimated which further increased the values for high rainfall estimates. As for the
ANN adjusted PERSIANN-CCS, the data points seem to be lowered. This result
reduced the overestimation of the lower intensities; however, it increased the
underestimation of the rainfall in higher intensities. Furthermore, this pattern after

applying ANN bias correction shows similarities with the GSMaP_NRT and IMERG
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Early. In terms of the resulting bias, the pattern for the daily rainfall resembles the one
from the annual and monthly timescales as shown in Figure 5-18. Overall, the originally
overestimated SPE products become slightly underestimated and originally
underestimated become slightly overestimated respectively. However, as shown in
Figure 5-19, the adjusted results vary from the higher timescales. Notably, the QM bias
correction slightly increased the errors for all three SPE products. However, the scaling
adjusted GSMaP_NRT still has significantly increased RMSE overall which may be
attributed to the underestimation of the original SPE product. In addition, all of the
ANN adjusted product still showed lower RMSE than their original versions. In terms
of the daily rainfall, the ANN adjusted IMERG Early has the least errors among the all
cases. Furthermore, among the three SPE products, IMERG Early consistently had the

highest correlation values as shown in Figure 5-20.
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Figure 5-17. Daily Rainfall Scatterplot of Adjusted SPE Products
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Figure 5-19. RMSE of Adjusted SPE Products Daily Rainfall
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Figure 5-20. CORR of Adjusted SPE Products Daily Rainfall

As for detection, only QM and ANN bias correction methods can adjust zero to
non-zero values and vice-versa. The scaling bias correction cannot adjust the detection
skill because of its multiplicative nature. Figure 5-21 and Figure 5-22 shows that the
ANN bias correction method increased the POD and FAR of PERSIANN-CCS and
GSMaP_NRT but slightly reduced both for IMERG Early which originally already had
higher values. On the other hand, the QM bias correction reduced the POD and FAR
for GSMaP_NRT and IMERG Early. This result can be attributed from the QM method
itself where if the satellite CDF may convert the satellite rainfall value to zero if the
gauge CDF value of zero is higher than the satellite. Therefore, anything less than that
satellite rainfall value would be converted to zero, resulting in decreased POD and/or
decreased FAR. Conversely, if the gauge CDF value of zero is lower than the satellite,
the adjusted satellite value of zero would be transformed to the corresponding non-zero
value. This scenario results in increased FAR and/or POD which is evident with the
QM adjusted PERSIANN-CCS. Because mispredictions are weighed more in ETS, it
is evident that the skill scores of SPE products that had increased FAR were

significantly reduced as shown in Figure 5-23. These results are apparent with both QM
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and ANN adjusted PERSIANN-CCS as well as with the ANN adjusted GSMaP_NRT.
On the other hand, the ETS of both QM adjusted GSMaP_NRT, QM adjusted IMERG
Early, and ANN adjusted Early increased due to the reduction of their respective FAR.
Among the bias corrections, the QM adjustment scheme has the best potential in

improving the detection skill of the SPE products.
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Figure 5-21. POD of Adjusted SPE Products Daily Rainfall
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Figure 5-22. FAR of Adjusted SPE Products Daily Rainfall
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Figure 5-23. ETS of Adjusted SPE Products Daily Rainfall

5.3.3. Precipitation and Detection Analysis by Month
Figure 5-24 shows the bias by month of each case of PERSIANN-CCS. The

scaling correction of this SPE product significantly reduced the bias by each month and
result in slight overestimation in dry months and slight underestimation wet months.
This outcome is possible with scaling because monthly variations were considered in
the bias correction method. Similarly, the ANN bias correction shows the same pattern;
however, the underestimation is noticeably greater especially in the month of
September. On the other hand, the QM correction resulted in general underestimation
except for April, May, June, and November. Moreover, among the three methods, the
ANN bias correction resulted in the least RMSE over all months as shown in Figure 5-
25. Similarly, majority of the months have slightly higher correlation after applying the
ANN bias correction as illustrated in Figure 5-26. The disadvantage of ANN can be
seen again in the detection skill of the adjusted SPE product as shown in Figure 5-27
and Figure 5-28. Although the POD has been increased, the FAR of the adjusted SPE

products also increased. This outcome significantly lowers the ETS as observed in
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Figure

5-29. Therefore, applying the scaling correction to PERSIANN-CCS could be

the option if the main concern for the correction is maintaining an acceptable skill score.
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Figure 5-24. BIAS of Adjusted PERSIANN-CCS Daily Rainfall by Month
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Figure 5-25. RMSE of Adjusted PERSIANN-CCS Daily Rainfall by Month
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Figure 5-26. CORR of Adjusted PERSIANN-CCS Daily Rainfall by Month
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Figure 5-27. POD of Adjusted PERSIANN-CCS Daily Rainfall by Month
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Figure 5-28. FAR of Adjusted PERSIANN-CCS Daily Rainfall by Month
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Figure 5-29. ETS of Adjusted PERSIANN-CCS Daily Rainfall by Month

As for the scaling adjusted GSMaP_NRT, the correction resulted in general

overestimation of rainfall throughout the whole year except October as shown in Figure
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5-30. This result supports the reason why the GSMaP_NRT performed poorly after
applying scaling correction. The QM adjusted GSMaP_NRT still shows the same
underestimation in dry months; however, the wet months tend to be overestimated.
Inversely, the ANN adjusted GSMaP_NRT follows the same pattern with the
PERSIANN-CCS where dry months are overestimated and wet months show
underestimation. Because daily rainfall is generally underestimated in the months of
December and January, it can be observed from Figure 5-31 that the scaling correction
greatly increased the RMSE for these months. Similar to PERSIANN-CCS, the ANN
bias correction still produces the least RMSE over all of the months as illustrated in
Figure 5-32. Moreover, Figure 5-33 shows increased correlation after applying ANN
correction. In terms of detection, the patterns are similar to the overall results of
GSMaP_NRT in which QM reduces while ANN increases both POD and FAR for all
months as shown in Figure 5-34 and Figure 5-35. These outcomes are reflected in the
ETS as illustrated in Figure where ANN shows lower scores while QM resulted in

slightly higher values.
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Figure 5-30. BIAS of Adjusted GSMaP_NRT Daily Rainfall by Month
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Figure 5-31. RMSE of Adjusted GSMaP_NRT Daily Rainfall by Month
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Figure 5-32. CORR of Adjusted GSMaP_NRT Daily Rainfall by Month
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Figure 5-33. POD of Adjusted GSMaP_NRT Daily Rainfall by Month
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Figure 5-34. FAR of Adjusted GSMaP_NRT Daily Rainfall by Month
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Figure 5-35. ETS of Adjusted GSMaP_NRT Daily Rainfall by Month

In terms of bias, the results for IMERG Early is slightly similar to PERSIANN-
CCS as shown in Figure 5-36. The scaling correction adjusted the bias into slightly
overestimating daily rainfall from November to February while having slight
underestimation during the rest of the year. The QM bias correction shows
underestimation in majority of the months but overestimates in the months of February
to April. The ANN bias correction resulted in lower biases but the underestimation is
more evident in the months of May, Jun, September, and October. Similar to both
PERSIANN-CCS and GSMaP_NRT, Figure 5-37 illustrates that the ANN bias

correction resulted in the least RMSE in each month throughout the year. As for the
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correlation, except January, the ANN bias correction has the highest value every month
as shown in Figure 5-38. Because IMERG Early already has a high POD and high FAR,
the QM and ANN bias correction methods were able to improve the ETS each month
by lowering the POD and FAR as illustrated in Figure 5-39, Figure 5-40, and Figure 5-

41. Among the three bias correction methods, QM still resulted in the highest ETS in

each month.
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Figure 5-36. BIAS of Adjusted IMERG Early Daily Rainfall by Month
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Figure 5-37. RMSE of Adjusted IMERG Early Daily Rainfall by Month
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Figure 5-38. CORR of Adjusted IMERG Early Daily Rainfall by Month
IMERG Early Bias Correction POD by Month
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Figure 5-39. POD of Adjusted IMERG Early Daily Rainfall by Month
IMERG Early Bias Correction FAR by Month
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Figure 5-40. FAR of Adjusted IMERG Early Daily Rainfall by Month
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IMERG Early Bias Correction ETS by Month
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Figure 5-41. ETS of Adjusted IMERG Early Daily Rainfall by Month

5.3.4. Precipitation and Detection Analysis by Basin

Figure 5-42 illustrates the bias of each basin for every case of bias correction
method with the three SPE products, including the original dataset. Evidently, the
PERSIAN-CCS and IMERG Early which initially overestimate daily rainfall turn to
underestimate rainfall in some basins. Inversely, GSMaP_NRT overestimates daily
rainfall in majority of basins in all correction methods. As for the errors, each pair of
SPE product and applied bias correction method still follow the overall results as shown
in Figure 5-43. The ANN bias correction shows improvement in all basins compared to
the original SPE products. Scaling correction improved some basins in the central
region for the PERSIANN-CCS and IMERG Early while worsens the errors in some
basins for GSMaP_NRT. The QM method does not significantly improve any basins
compared to the other two methods. However, even after correction, it is noticeable that
the errors are still higher near the coastal areas where higher intensities of rainfall occur.
In addition, the correlation improved in most basins after applying ANN bias correction

method to each SPE product as shown in Figure 5-44.
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Figure 5-42. BIAS of Adjusted SPE Products Daily Rainfall by Basin
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Figure 5-44. CORR of Adjusted SPE Products Daily Rainfall by Basin

Consistent to the results of the previous evaluations, the POD and FAR of some
basins are reduced for GSMaP_NRT and IMERG Early after applying the QM bias
correction methods as illustrated in Figure 5-45 and Figure 5-46. Inversely, the ANN
bias correction significantly increased the values of POD and FAR in some basins of
GSMaP_NRT and PERSIANN-CCS. As observed in Figure 5-47 the ANN corrected

GSMaP_NRT and PERSIANN-CCS showed lower ETS while the QM adjusted
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GSMaP_NRT and IMERG Early showed increased ETS. The improvements are more

notiaceable in the central, east, and some parts of the southern regions.
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Figure 5-45. POD of Adjusted SPE Products Daily Rainfall by Basin
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Figure 5-46. FAR of Adjusted SPE Products Daily Rainfall by Basin
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Figure 5-47. ETS of Adjusted SPE Products Daily Rainfall by Basin

5.3.5. Precipitation Analysis by Intensity
Figure 5-48 illustrates the bias of each original and adjusted SPE product by

precipitation intensity. It is evident that the bias adjusted SPE products still follow the
same pattern as the original datasets. However, the result is slightly different from the
previous evaluations. In terms of no rain to moderate rain, the bias does not vary
significantly from each other regardless of SPE product. On the other hand, the heavy

and extreme rainfall reveals that the ANN bias correction method increases the
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underestimation in these precipitation intensities. In reducing the underestimation of
extreme rainfall, the scaling and QM correction methods provide better results. In the
case of the extreme rainfall of GSMaP_NRT, the scaling correction significantly
reduces the bias because the original SPE products is generally underestimated.
However, in observing Figure 5-49, it is noticeable that the scaling correction for
GSMaP_NRT still increases the errors for the extreme rainfall. QM correction is the
only method that reduces the errors for the extreme rainfall. In any other precipitation
range, the ANN method provides lower RMSE values. Furthermore, Figure 5-50 shows

that the ANN correction also results in the highest correlation coefficient for each case.
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Figure 5-48. BIAS of Adjusted SPE Products Daily Rainfall by Basin
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PERSIANN-CCS Bias Correction RMSE by Intensity
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Figure 5-49. RMSE of Adjusted SPE Products Daily Rainfall by Basin
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PERSIANN-CCS Bias Correction CORR by Intensity
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Figure 5-50. CORR of Adjusted SPE Products Daily Rainfall by Basin
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5.4. Comparison of Adjusted SPE Products

Table 5-1 summarizes the strong and weak points of each bias correction
method applied in this study. Scaling correction can take advantage of its capability to
consider space and time variations easily. Moreover, the method is fairly simple and
easy to understand and execute. In addition, it is effective in dealing with
overestimations even if the method is simple. However, it still has its disadvantages.
Firstly, the scaling method in this study cannot improve detection skills as it only
applies the bias factor through multiplicative means. Furthermore, as shown with the
GSMaP_NRT dataset, it is weak in dealing with underestimations where it would tend
to increase high rainfall which may result in higher errors. Finally, there is little room
for improvement in the methodology. Because of its simplicity, there are only limited
ways to improve the method. One of the ways to improve the scaling is by including an

additive factor which may be able to deal with detection skills.

As for the QM correction method, it is good at dealing with extreme rainfall
intensities. It was able to successfully lower underestimation and RMSE for extreme
rainfall. Furthermore, it is effective at reducing false alarms. Both of these advantages
can be attributed to its methodology in mapping the satellite CDF to the gauge CDF. In
addition, although it is more complex than scaling correction, the methodology is
generally understandable with enough background on statistics. As such, there is still
room for improvement for the method as other statistical methods may be incorporated
in the approach. One of the key disadvantages of QM in this study is that it is less
effective with non-extreme events. Another disadvantage is that similar to the case of
reducing false alarms, the method can reduce corrects hits and convert them into
missing data.
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Table 5-1. Summary of strong and weak points of each bias correction method

Advantages Limitations
Can consider space and time Cannot improve detection
variations skills
Scallng Simple and not complicated to Weak with underestimation
Correction execute
Effective with dealing with Little room for improvement in
overestimations the methodology
Good at dealing with extreme
rainfall intensities Ineffective with non-extreme
Effective at reducing false events
Quantile alarms
Mapping More complex than scaling but
generally understandable Lowers POD by turning real
Has room for improvement in prediction to missing data
the methodology
Greatly reduces overall errors Methodologgol)s( like a black
Artificial Effective at reducing non- Requires more data to execute
Neural extreme rainfall more effectively
Network Can be applied to all three SPEs | Weak against extreme events

Extremely large room for
improvement

Lowers detection skill by
increasing false alarms

The ANN bias correction method has both great strong points and weak points.

The most compelling attribute of the ANN correction is that it greatly reduces the

overall error, especially with non-extreme rainfall. Moreover, it can be applied to all

three SPEs used in the study. In addition, since the field and study of neural networks

is still growing, there is a large room for improvement for this method such as using

deep learning tools and methods. However, at its core, a neural network is still like a

black box in which the structure itself may not give full insight of the model. Also,

these networks require large amounts of data in order to accurately train the model and

properly predict the target output. In addition, the ANN model developed in this study

showed weakness in improving extreme rainfall events. False alarms were also
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increased for PERSIANN-CCS and GSMaP_NRT in trying to predict for hit.
Additional data and information would be able to help in creating a better neural

network for bias correction.

Finally, Table 5-2 lists the RMSE of each adjusted SPE product over each river
basin in the country. In this study, the adjusted SPE with the lowest RMSE would be
selected as the best performing SPE product and bias correction method. The lowest
RMSE for all basin resulted from the ANN adjusted IMERG Early. In addition, Table
5-3 illustrates the normalized RMSE of each adjusted SPE product. Although some
basins in the northern part have less RMSE values than the basins in southern part, the
normalized RMSE shows that the resulting error is not significantly far from each other.
When the error is observed relative to the standard deviation by basin, it gives a better

insight on how the SPE actually performs.
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CHAPTER 6
Conclusions and Recommendations

6.1. Conclusions
Satellite precipitation estimates are great supplementary data for rainfall
quantification as these products provide coverage over the vast majority of the world.
These space-borne radars can fill in the gaps in areas without dense rain gauge networks
and ground radar stations. However, as shown in the literatures and results of this study,

SPE products still have biases that should be corrected in order to be fully utilized.

In terms of the evaluation, each of the original SPE product has its strong points
and weak points. It is observed that the precipitation is consistently underestimated as
rainfall intensity increases. Furthermore, higher errors and lower correlations are more
noticeable during the wet months and in high and extreme rainfall events. Moreover,
higher errors can be observed in the coastal areas such as the southern and eastern parts
of Thailand. As for the detection skill, the POD and FAR are better during wet months
than the dry months. Likewise, the ETS of the SPE products is slightly lower during
the wet season even though its values do not vary from each month significantly.
PERSIAN-CCS and IMERG Early overestimate rainfall overall in any time scale while
GSMaP_NRT tended to underestimate precipitation. Furthermore, IMERG Early
shows the best performance in terms of quantitative statistics. However, IMERG Early
has the lowest ETS among the three SPES because there are higher amounts of false
alarms.

For the bias correction calibration and validation phases, it can already be
inferred which SPE products and bias correction method would work well together. It

has been shown that QM and scaling correction have high RMSE values for
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PERSIANN-CCS and GSMaP_NRT respectively. This result implies that the methods
may not work well together. On the other hand. the ANN correction method
consistently shows lowered RMSE for all three SPE products. Overall, the ANN
correction method shows consistently satisfactory results in terms of quantitative
statistics. From the annual to daily timescale, the ANN correction bests the other two
methods in terms of RMSE. Although the scaling correction has better bias reduction
by month due to its methodology being able to consider monthly variations, the ANN
correction still has the least errors. The same pattern applies with the analysis by basin.
However, the ANN correction has some weaknesses in address detection skKills.
Although it lowers the errors, the POD and FAR for PERSIANN-CCS and GSMaP are
increased which significantly decrease the ETS of both SPE products. One of the
possible reasons why the detection skill of IMERG does not worsen unlike the other
two may be attributed to the fact that it already has high POD and FAR. Furthermore,
the ANN correction method lacks in addressing extreme rainfall. Based on the analysis
by precipitation, the ANN correction greatly increases underestimation as well as the
RMSE. On the other hand, the areas in which the ANN correction lacks are where QM
correction proved to be more capable. Although the QM tends to reduce POD, it also
reduces the FAR which improves ETS. Moreover, the QM consistently lowers the
underestimation and RMSE in extreme rainfall intensities.

In terms of the correction methods, scaling correction is simple and it has the
capability to easily consider spatiotemporal variations. Even with its simplicity, it is
effectively reducing overestimations. However, the scaling method in this study cannot
improve detection skills and it is weak in dealing with underestimations. As for the QM

correction method, it deals with reducing both the biases and errors of extreme rainfall
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intensities. It is also effective improving detection skills. However, the QM method in
this study is less effective with normal rainfall events. As for the ANN, the bias
correction method can greatly reduce the overall error, especially with non-extreme
rainfall for all three SPEs used in the study. However, the model requires more data
input in order train the model. The ANN adjusted SPE products does not improve in
the extreme rainfall events. Moreover, ANN aims to match between SPEs and
observation while Scaling and QM aim to reduce the bias so ANN should not be

compared directly with Scaling and QM.

The adjusted satellite precipitation estimate product with the least error for all
basin is the ANN adjusted IMERG Early. Therefore, in this study, it is the best
performing bias correction. However, it should be noted that this adjusted dataset still
has its disadvantage in terms of its detection skills and its high error and bias in the
extreme rainfall. The purpose of using the adjusted satellite precipitation should also be
considered as each SPE product and correction method has its own specific qualities
that makes it unique in certain scenarios. Understanding the basics of each methodology
is beneficial in deciding which bias correction method should be applied as each one

has its own advantages and limitations.
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6.2. Recommendations
Further research is recommended in order to improve both the evaluation and
correction. As for improving the evaluation, it may be possible to further specifically
look into each region or basin in order to have a clearer understanding of the more
detailed processes within each area. It would be beneficial to find a different perspective
in evaluating the SPEs. Moreover, rain gauges located in mountainous areas are vital in

improving the quality of SPEs.

As stated previously, each bias correction method has its own advantages to
potentially improve its adjustments. As for the scaling correction, the resulting satellite
values from an underestimated product increased its higher rainfall values. Therefore,
this outcome should be considered when improving the scaling correction. Additionally,
it may possible to have an additive factor which would be able to address its weakness
in its inability to improve detection skills, similar to the work of Gumindoga et al.
(2016). In terms of the QM bias correction, this adjustment scheme did not perform
well on non-extreme events. It would be recommended to separate the data to extreme
and non-extreme data for the correction. Moreover, it may be possible to apply other
statistical concepts such as multivariate CDF in order to account for non-rainfall factors
such as in the ANN method. Similarly, although the ANN method has shown its
capability in correcting the biases of satellite rainfall products, there are still numerous
ways to improve the methodology. It would be recommended to apply deep learning
techniques such as a 3D Convolutional Neural Networks (CNN) and take into account
both spatial and temporal patterns in the training process. Since SPE datasets are grid

files, taking advantage of these additional data points could potentially improve results.
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Lastly, instead of simply conducting bias correction, it is possible to explore
other options in utilizing SPE data, especially in near real-time applications. Some
approaches include the merging of the SPE products with rain gauge measurements
and/or other precipitation quantification. This approach may improve the prediction in

areas with sparse gauge networks as more datasets may be utilized in the estimations.
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