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Mitotic count (MC) is an important histological parameter for cancer diagno-
sis and grading, but the manual process to obtain this metric is tedious and not fully
reproducible across different pathologists. To mitigate this problem, several deep
learning models have been utilized to speed up the process. Typically, the problem
is formulated as a two-stage deep learning pipeline: the detection stage for propos-
ing the potential candidates for mitotic cells and the classification stage for refining
prediction confidences from the former stage. However, this paradigm can lead to
inconsistencies in the classification stage due to the poor prediction quality of the
detection stage and the mismatches in training data distributions between the two
stages. This thesis proposes a Refine Cascade Network (ReCasNet), an improved
deep learning pipeline that introduces three improvements to alleviate the afore-
mentioned problems. First, window relocation was used to suppress poor-quality
false positive boxes produced by the detection stage around the sliding window bor-
der. Second, we proposed an additional deep learning model to align the poorly
centered objects to the true object center. Third, additional data were queried from
the training slides to teach the classification stage to bridge the training distribu-
tion gap between the two stages. We evaluated the performance of ReCasNet on
two public large-scale mitotic figure recognition datasets, canine cutaneous mast
cell tumor (CCMCT) and canine mammary carcinoma (CMC). By using our pro-
posed pipeline, we achieved up to 4.8% F1 improvements for mitotic cell detection
performance and 44.1% reductions in mean absolute percentage error (MAPE) for
MC prediction. Techniques that underlie our proposed method can be generalized
to other detection and classification algorithms and should contribute to improving

the performances of deep learning models in broad digital pathology applications.
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Chapter I

INTRODUCTION

This chapter describes the problem statement containing the rationale for au-
tomatic mitosis detection, the topic primarily discussed throughout this thesis, along
with the thesis objective and scope of work. The problem statement first explains
the importance of mitotic count on tumor grading and its challenge. Then, deep
learning systems that were proposed to automate the process were introduced along
with the potential issue with the current paradigm. Lastly, the method for mitigating
the aforementioned issue was proposed along with a brief result to demonstrate its
effectiveness. The thesis objective and scope of work then state the main objective
of this thesis, which is proposing an improvement of the existing two-stage mitosis
detection pipeline by modifying the existing automatic mitosis detection system.
Part of this thesis was published in Artificial Intelligence in Medicine.

1.1 Problem statement

Cancer is the major leading cause of death worldwide, and early detection of
this disease greatly increases the survivorship rate of the patients (Hawkes, 2019).
Typically, during the cancer diagnosis process, the pathologist is responsible for
identifying the important histologic parameter of the tissue samples from the pa-
tient. One of the most important parameters is a Mitotic Count (MC), an integer
that indicates the number of tumor cells during the division process (mitosis) at the
area with the highest mitotic density (hotspot). To obtain this value, the patholo-
gist has to manually scan through the tumor tissue and find the area that has the
highest mitosis cell concentration and count all of them within the 10 high-power
microscopic fields region. With the increasing use of digital pathology, whole slide
images (WSI) that could store the whole tissue inside a single file is now routinely
generated in several pathology laboratories. However, the method for obtaining mi-
totic count is still relatively unchanged as the process just changes from observing
from the microscope to a computer image. In addition, an acquisition of this met-
ric (MC) is tedious and could not be fully reproducible (Veta et al., 2016). This
is because the identification of cells during mitosis is subjective across different
pathologists. Thus, several studies (Pan et al., 2021) have proposed an algorithm to
assist pathologists by automatically recognizing mitotic figures in the WSI and iden-
tifying the hotspot area. The current trend in automatic mitosis detection is the use
of deep learning as it has demonstrated a highly promising image recognition per-
formance and is now widely used in a wide range of medical imaging applications,



including histopathological image analysis (Srinidhi et al., 2021).

Despite the significant improvement in the machine learning field, the model
is still not flawless, as prediction errors are still being made. For the mitosis detec-
tion task, a lack of availability of clean data collection is a major obstacle to model
improvement. This is because, as mentioned before, the identification of mitotic fig-
ures is subjective across different pathologists. First, the mitosis figure itself could
also be divided into several substages, namely prophase, metaphase, anaphase, and
telophase. The identification of cells during prophase is difficult as there is no clear
visual difference from the normal cell. This problem leads to drastically different
mitotic counts reported by the experts (Bertram et al., 2019). Second, the WSI ac-
quisition process is flawed since the slide is only scanned on a single focal plane that
could not be refocused. This results in some objects becoming out-of-focus, leading
to poor texture information. Despite these problems, automated mitosis detection
is still an important task in histopathological image analysis and is an active area of
research.

To develop an automatic mitosis detection system, a dataset has to be created
so that model could learn to distinguish mitotic figures from other cells. Thus,
many competitions, such as the ICPR MITOS-2012 (Roux et al., 2013), AMIDA
2013 (Veta et al., 2014), ICPR MITOS-ATYPIA-2014 (Racoceanu et al., 2014),
and TUPAC16 (Veta et al., 2019), provided an annotation of mitosis cell location on
several high power fields (HPF) and organized the competition to improve mitosis
detection performance. However, the annotations are only provided on the HPF
level, but not on the whole slide level. This leads to the model not understanding
the full context of the WSI, as the vast majority of the area is still not annotated.
In addition, the number of annotated mitosis cells provided in these challenges is
low, often fewer than one thousand objects each. Therefore, canine cutaneous mast
cell tumor (CCMCT) (Aubreville et al., 2019) and the canine mammary carcinoma
(CMC) (Aubreville et al., 2020a) dataset that provides a complete annotation on the
WSI are later introduced into the field. These datasets allow the model to learn from
the greatly increased diversity, which greatly contributes to a significant increase in
model performance (Aubreville et al., 2019). Nonetheless, these datasets are not
flawless since they are annotated with a fixed-size bounding box with a radius of 25
pixels, a stark difference from the realistic setting as the mitosis cell does not have
a static cell area.

The formulation of deep learning approaches to solve the task, in addition to
imperfections in data acquisition and annotation, has a significant impact on how
well the model performs. In most deep learning systems for mitosis detection, the
task of mitosis recognition is frequently divided into two steps: the detection and



classification stages (Chen et al., 2016; Li et al., 2018; Alom et al., 2020). One
of the main causes of this is that the model cannot operate directly on WSI due to
its enormous size. Instead, the WSI must be divided into smaller patches using a
sliding window, from which the inference is then carried out on by the detection
stage on each window to determine where mitotic figures are located using deep
object detection or segmentation model. The classification stage then refines the
prediction results by first extracting the position of each predicted mitotic figure
and revising the corresponding image patch to center it around the mitotic figure
and ensure that only one mitotic figure is contained within the patch. After that,
each revised image patch is fed into a deep object classifier to generate a confidence
score. The classification stage significantly improves mitotic figure recognition per-
formance by overcoming the disadvantage of the detection stage, which must handle
a much broader variety of image patches, some with no mitotic figure and others
with multiple mitotic figures.

Despite the advantages mentioned above, the classification stage of a multi-
stage pipeline suffers from inconsistent input data received from the detection stage
and a mismatch in training distribution. The outputs of inference at the detection
stage would inevitably include inaccurate object locations and poor bounding boxes,
resulting in inconsistently positioned objects at the image patch of the following
stage. The inconsistency results in classification stage performance degradation be-
cause most convolutional neural networks do not possess the shift-invariant prop-
erty to properly handle the changes in distributions of object locations and bounding
boxes produced by the detection stage (Engstrom et al., 2017). The use of a sliding
window makes the situation even worse because it may split an object into pieces
across multiple patches, increasing the number of low-quality false positives. It is
also not negligible that the training data distributions differ between the two stages.
The classification stage mainly observes mitotic figures and other objects with sim-
ilar appearances, whereas the detection stage learns the entire data distribution of
the WSI. When the classification stage receives inputs without a mitotic figure, this
training distribution mismatch results in an out-of-distribution problem. By using
all predictions, even those with low confidence, from the detection stage to train
the classification stage, DeepMitosis (Li et al., 2018) alleviates this issue. On large
datasets, however, where the detector suggests hundreds of thousands of objects,
this method is impractical.

To address all of these issues, we propose Refine Cascade Network (ReCas-
Net), an improved deep learning pipeline for improving mitosis recognition per-
formance on large-scale mitotic figure recognition datasets. Our pipeline improves
classification stage performance by increasing the consistency of input data distri-
bution and exposing the model to more informative data. First, we propose Win-



dow Relocation, a simple but effective method for overcoming the weakness of an
overlapping sliding window by removing objects near the window border and re-
evaluating them as the center of newly extracted patches. This method attempts to
eliminate bad bounding boxes while requiring less computation than the overlap-
ping sliding window. Second, we present an Object Center Adjustment Stage, a
deep learning model that bridges the gap between the classification and detection
stages. To reduce the variance in input translation, it generates new image patches
that center on mitotic figures predicted by the detection stage and feeds them to
the classification stage. Third, we improve the DeepMitosis verification model’s
training data sampling process (i.e., classification stage) by focusing on a subset
of informative samples from the proposed objects on which the detector and the
classifier disagree the most.

We demonstrated the effectiveness of ReCasNet on the CCMCT and CMC
datasets. Our proposed pipeline achieved 83.2% test F1 on the CCMCT dataset
and 82.3% test F1 on the CMC dataset, which is a +1.2 and +4.8 percentage point
improvements over the baseline work, respectively (Aubreville et al., 2019, 2020a).
We also benchmarked the performance on the slide level on both datasets to compare
the HPF and mitotic count (MC) produced by our pipeline to the ground truth. It was
also found that our method resulted in up to 44.1%, and 49.3% less mean absolute
percentage error (MAPE) compared to the baseline under the fully automated and
human-in-the-loop mitotic count, respectively.

1.2 Objective

The primary objective of this thesis is to propose a new method to mitigate the
existing problem of the two-stage object detection pipeline on large-scale mitosis
detection tasks, which suffer from poor-quality bounding boxes produced by the
detector and inconsistencies in training distribution across multiple stages. The
experiments were also conducted to verify the effectiveness of our method.

1.3 Scope of work

This thesis is mainly focused on improving the mitotic recognition perfor-
mance on large-scale mitosis detection tasks where a large quantity, complete
bounding box annotation of mitotic figures over the whole slide image could be
obtained.



Chapter 11

BACKGROUND

This chapter describes the background knowledge necessary for the thesis.
The chapter is divided into three subchapters: deep convolutional neural network
(CNN), deep objection detection, translation variance in the CNN, and mitotic fig-
ure.

2.1 Deep convolutional neural network

This subchapter explains the progression of convolutional neural network
(CNN) architecture spanning from LeNet-5 (Lecun et al., 1998) to ConvNext (Liu
et al., 2022), a CNN architecture currently used in our work.

LeNet-5

LeNet-5 is one of the first proposed CNN architectures. It introduced the con-
cept of the Convolution-Activation-Subsampling scheme to recognize handwritten
digit characters. First, the convolution layer was used to extract features from the
image then activation was performed to add a non-linearity to the optimization pro-
gram. Since the network architecture in this age is still shallow, Tanh activation is
still commonly used as the function is zero-centered. After that, the subsampling
operation (average pooling) was applied to reduce the feature size to decrease the
computation cost and observe a wider receptive field. By using this architecture,
it achieved less than 1% test set error on the MNIST character recognition dataset.
Figure 2.1 illustrates the overview of LeNet-5 architecture.

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
32¢32 6@28x28

S2: 1. maps C5: layer .
6@14x14 120 " o tayer quTPuT

Fu\lconAecﬂon | Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

Figure 2.1: Illustration of LeNet-5 architecture. The image is taken from
(Lecun et al., 1998).



AlexNet

AlexNet (Krizhevsky et al., 2012) is a CNN architecture proposed in 2012. It
achieved a vastly superior classification performance over the traditional method on
the ImageNet dataset (Deng et al., 2009) in that year. To accommodate a change in
a greatly increased image size of 224 x 224 compared to the MNIST dataset which
has a resolution of 28 x 28, it had proposed several improvements over LeNet-5.
First, the proposed network was scaled up with the size of the image. AlexNet had
increased the filter size, the number of filters, and the number of layers from 5 to
8. As a result, the use of Tanh as an activation function was becoming untenable
as it suffered from a vanishing gradient after multiple layers. Therefore, a non-
saturated Relu was used instead to avoid this problem. Second, it changed the non-
overlapping mean filter used in LeNet-5 to an overlapping max filter to increase the
size of the receptive field and capture a sharp input signal. Third, it introduced the
concept of multi-GPU training to hasten the training process. Figure 2.2 illustrates
the overview of the AlexNet architecture.

L

193 78 204 zo4g \dense

T Ee T s dense dense|
1000
192 128 Max L |

Max 128 Max pooling
pooling pooling

Figure 2.2: Illustration of AlexNet architecture. The image is taken from
(Krizhevsky et al., 2012).

VGG

VGG (Simonyan and Zisserman, 2015) is a CNN architecture proposed in
2014 and achieved second place in the 2014-ImageNet competition. It changed the
paradigm of CNN architectural design by prioritizing the depth of the network and
the number of filters over the size of the filter. Compared to AlexNet, which has the
largest filter size of 11 x 11, the filter size in VGG architecture was no larger than
a mere 3 x 3 filters, and the number of layers was instead increased to compensate
for the decreased filter size. With this approach, the number of convolution layers
that could be stacked was increased to 19 layers. Nonetheless, further scaling this
network was significantly becoming more difficult due to gradient exploding and
vanishing problems.



ResNet

ResNet architecture (He et al., 2016) overcame the problem of vanishing gra-
dient problem by introducing a skip connection to bypass multiple layers so that the
gradient could be backpropagated to the top of the network. Combined with the in-
clusion of batch normalization proposed by Inception-v2 (Ioffe and Szegedy, 2015),
it allowed the number of layers (depth) of the network to be greatly increased to 152,
leading to a significantly better image classification performance while not suffer-
ing major training instability. This paper also adopted the use of bottleneck block
to reduce computation cost while maintaining the same classification performance.
Figure 2.3 illustrates the architecture of ResNet-34.

Figure 2.3: Illustration of ResNet-34 architecture. The image is taken from
(He et al., 2016).

SENet

Squeeze-and-Excitation Networks (SENet) (Hu et al., 2018) adopted a popu-
larly used attention mechanism in the natural language processing field (Vaswani
et al., 2017) to the existing CNN architecture, allowing it better understand the
global image context. This work proposed a Squeeze-and-Excitation (SE) block
that performed a global average pooling to compress a H x W x C feature map into
a1x1xC. Then, it was further compressed into a 1 x 1 x ¢ tensor and got uncom-
pressed back to the original 1 x 1 x C feature map. After that, the uncompressed
feature map was multiplied by the original feature. This forced the model to learn
the importance of each channel by interacting with other channels as the information
was compressed twice so that only important feature was retained. The design of
this block is similar to the attention mechanism which had interaction with all other
word embeddings in the whole input sequence. An illustration of the SE block is
shown in Figure 2.4.

EfficientNet

One way to improve the performance of the CNN architecture is by increasing
the network depth, the number of filters (network width), or input image resolution.
Nevertheless, this method is not well-scaled as the performance gain diminishes
as the model size keeps increasing. EfficientNet (Tan and Le, 2019) conducted an
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ResNet Module
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Figure 2.4: Illustration of Squeeze and Excitation block on the convolution
block of the ResNet architecture. The image is taken from (Hu et al., 2018).

extensive experiment to examine the relationship between the breadth, depth, and
resolution of the CNN by searching for an optimal relation between them. It was
found that the breadth, depth, and resolution obtained through the search were more
effective than scaling only one parameter and could also generalize across different
network architectures. This proposed architecture also adopted SE block and mobile
inverted bottleneck block (Sandler et al., 2018) as a base convolution block to utilize
global information and efficiently learned the representation.

Vision Transformer

Even though convolution neural networks are typically used in image recog-
nition architecture because they can capture spatial correlation, Vision Transformer
(Dosovitskiy et al., 2021) chose to abandon this presumption and instead use a
purely attention-based model. Vision Transformer was inspired by BERT (Devlin
et al., 2019), which outperformed Bidirectional LSTM (Huang et al., 2015), which
operated the input (word) sequentially, by using self-attention (Vaswani et al., 2017)
and a feedforward layer as key network components. The interaction between the
words in the sentence was represented by self-attention, and the feedforward layer
was then utilized to aggregate the collected data. The two layers were then grouped
into a building block and used it to stack the block many times to increase the model
complexity. However, despite the improvement in Natural Language Processing,
this framework could not be directly applied in computer vision as the image is an
extremely long sequence of pixels.



Vision Transformer circumvented the aforementioned problem by breaking
down the whole image into a sequence of small image patches. Each flattened patch
was then projected into a low-dimension input and fed into a Transformer Encoder
that returned the object class as an output. The attention in this setting was repur-
posed into a module that observed the interactions between each patch throughout
the whole image, albeit at the cost of a highly inefficient amount of model param-
eters compared to the standard CNN architecture. Despite its shortcoming, Vision
Transformer achieved a competitive result to a state-of-the-art CNN during the pub-
lished time. Figure 2.5 illustrates the architecture of Vision Transformer.

Vision Transformer (ViT) Transformer Encoder
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Figure 2.5: Overview of Vision Transformer. The image is taken from
(Dosovitskiy et al., 2021).

Swin Transformer

Despite the use of a Transformer leading to great success in the image recog-
nition task, it came at the cost of being extremely parameter inefficient since it could
not efficiently harness the spatial information like CNN. Moreover, both memory
and computation complexity also scaled quadratically with the image size as the
number of tokens was also quadratically multiplied, leading to drastically increased
computation cost in the self-attention layer. Therefore, Swin Transformer (Liu et al.,
2021) was proposed to mitigate the aforementioned problems. Instead of using at-
tention to learn the interaction between each patch in the whole image, Swin Trans-
former opted for a hierarchical structure where each transformer layer could only
attend to a small area within the image. The limited window was then gradually
merged and overlapped with neighboring patches as the number of layers was in-
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creased to expand the receptive field. This allowed the model to be more computa-
tionally efficient as its mechanism could utilize local information more effectively
while reducing the computation complexity when computing self-attention to lin-
early scale with the image size. The architecture was also shown to be highly effec-
tive in other vision tasks, such as object detection and semantic segmentation. An
architectural overview of the Swin Transformer is shown in Figure 2.6.
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(a) Swin Transformer (ours) (b) ViT

Figure 2.6: Swin Transformer architecture compared to standard Vision
Transformer. The image is taken from (Liu et al., 2021).

ConvNext

ConvNext (Liu et al., 2022) proposed an alternative to modern Vision Trans-
formers by examining the factors that contributed to transformers’ success and ap-
plying them to the standard CNN architecture. Their work suggested that the con-
cept of patching the convolutional filter in the network stem, increasing kernel size,
and shifting from standard Batchnorm-ReLU normalization to a GELU-Layernorm
scheme (Hendrycks and Gimpel, 2016; Ba et al., 2016) that mimics the behavior
of the transformer, along with proper computationally efficient convolutional block
design and scaling (Xie et al., 2017; Sandler et al., 2018), led to a network with
higher image recognition performance. Their work also showed that under the same
computational budget, when used as a network backbone, ConvNext yielded bet-

ter performance than the transformer counterparts in several major computer vision
fields.
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2.2 Deep object detector

A deep object detector is a deep learning model that receives an image as an
input and returns a set of bounding boxes {(z1, y1, w1, h1, S1), es (Tns Yny Wiy A,
S»)}, where each tuple in the set represents the center of the predicted object, ob-
ject width, object height, positive object confidence, respectively. Typically, mod-
ern object detectors use a CNN to extract image features, which are used to feed
to the classification and regression output head that return the confidence of each
class and the size of the bounding box, respectively. Since the predicted bounding
might sometimes be overlapped with each other, non-maximum suppression was
performed on the overlapped predictions, retaining only the one with the highest
confidence.

The subchapters explain the progression of deep object detector model starting
from Overfeat (Sermanet et al., 2013) to YOLOF (Chen et al., 2021), an object
detector currently used in our work.

Overfeat

Overfeat is one of the first works that applied a deep convolutional neural net-
work to an object detection task. This work tackled the problem in a very straightfor-
ward approach by using the CNN trained on an image classification task to perform
inference in a sliding window fashion over multiple scales. However, simply ap-
plying this method does not work since the objects have different sizes, and some
patches might not even contain any object at all. Therefore, this work modified the
existing network to be suitable for the object detection task by training the model to
distinguish between foreground and background objects and introducing another re-
gressor to adjust the size of the predefined bounding box. Nevertheless, this method
is extremely computationally extensive since the inference has to be performed mul-
tiple times over multiple scales on a single image.

R-CNN

Regions with CNN features (R-CNN) (Girshick et al., 2014) offered a con-
siderable performance gain over Overfeat by removing the sliding window element.
Instead of using a sliding window to perform inference across the whole image,
R-CNN used a selective search to propose the regions that were likely to contain
a foreground object (region of interest). A CNN was then applied to the proposed
region to extract the features and the prediction head to recognize object class and
adjust the size of the bounding box. This method had a significant advantage over a
sliding window approach as the number of inferences was now limited to the num-
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ber of the proposed regions. Nonetheless, an inference still had to be performed
on a single image several times to extract features from all proposals. In addition,
since the proposal could be any shape, every proposal had to be resized into a single,
fixed-size image. Figure 2.7 showed an overview of R-CNN pipeline.

R-CNN: Regions with CNN features
= 7 warped region ﬂl aeroplane? no. |

____________________

i erson? yes.
={p yes. |
CNNN :

B “ | 4| tvmoni.tor? no. |
1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

Figure 2.7: Overview of R-CNN pipeline. The image is taken from (Girshick
et al., 2014).

Fast R-CNN

Fast Region-based Convolutional Network (Fast R-CNN) (Ren et al., 2015b)
significantly improved the detection performance over R-CNN as an inference was
now only performed once to obtain the detection result. Fast R-CNN used a selective
search to propose the region of interest on the extracted CNN features from the
image instead of directly proposing it from the raw input. Moreover, the ROI pooling
was also proposed to convert the raw feature maps of different sizes into a fixed-
size feature vector without the use of image resizing. This improvement allowed
the training of Fast R-CNN to be 10 times faster than R-CNN and 200 times faster
at test time. However, this method still relied on a selective search algorithm to
generate object proposals, leading to a significant time bottleneck during training
and testing.

Faster R-CNN

Faster R-CNN (Ren et al., 2015b) completely removed the use of a selective
search to propose an object of interest and replaced it with a region proposal network
(RPN), resulting in a fully convolutional network for the object detection task. The
RPN divides the image into multiple 32 x 32 grids where each grid contains &
fixed-size box named anchor. The objective of the RPN is to learn whether there
exists a foreground object in each anchor and perform a regression to adjust the
anchor size. If the anchor predicted that it contains a foreground, the fixed-size
vector is then extracted from the feature map generated by the backbone using ROI
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pooling and fed to another CNN, which predicts the exact object class and refines
the bounding box generated by the FPN. Since this network required two CNNs to
perform detection, this design paradigm could also be referred to as a two-stage
detector. Figure 2.8 showed an overview of Faster R-CNN.
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Figure 2.8: Overview of Faster R-CNN. The image is taken from (Ren et al.,
2015a).

Cascade R-CNN

Though a fully convolutional network was viable with the advent of Faster
R-CNN, it also came up with some heuristics to make it functional. One important
heuristic is the usage of an anchor, a set of rough, pre-defined bounding boxes that
were used as guidance for the RPN to distinguish whether there was an object that
overlapped with the anchor. When the ground truth highly intersects with the an-
chor, the anchor is considered a positive object and then fed to the second stage to
adjust the pre-generated box. Otherwise, it is treated as a negative anchor (back-
ground). However, the process of determining whether there was an object close
to the anchor is also another heuristic since it used Intersection-over-Union (IOU),
which was fixed to a static threshold of 0.5, as a criterion. Cascade R-CNN (Cai
and Vasconcelos, 2018) stated in their work that the process of selecting an IOU
threshold is indeed a non-negligible problem. Choosing a higher IOU threshold
caused the model to perform better at a high IOU evaluation threshold but worse at
a low 10U evaluation threshold, and vice versa. This indicated that testing at dif-
ferent IOU evaluation thresholds from the fixed training value caused performance
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degradation due to distribution mismatch.

Cascade R-CNN, therefore, proposed a method that would allow the model
to be trained at multiple IOU thresholds by iteratively performing bounding box
correction with progressive IOU threshold. As shown in Figure 2.9, Faster R-CNN
used RPN to generate rough bounding boxes (B0, left) and then performed an ROI
pooling, which converted each box into a fixed-size feature vector and fed it to a sec-
ond stage CNN (H1, left) to provide a box correction (B1, left). Cascade R-CNN
instead performed the correction process in an iteratively bootstrapped manner. The
corrected box (B1, right) was then further fed to another pooling layer and second-
stage CNN (H1, right) again, and the process was iteratively repeated until satisfied
(H3). Each bounding box correction CNN was also not matched at the same level
of the IOU threshold and was set to be progressively increased for the latter one.
This simple modification improved the detection performance by 4% absolute per-
formance improvement over the Faster R-CNN.

ki

| = conv

Faster R-CNN Cascade R-CNN

Figure 2.9: A comparsion between the second stage of Faster-RCNN and
Cascade-RCNN. The image is taken from (Cai and Vasconcelos, 2018).

Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) (Liu et al., 2016) was among the first
object detector to get recognized as a one-stage detector: a standalone CNN that can
generate bounding boxes and their respective class without the need for the external
module. SSD removed ROI pooling, along with the second convolution module re-
sponsible for correcting the bounding boxes coarsely generated by the first detection
stage, and instead relied on the first stage itself to adjust the prediction. However,
this inevitably led to a decrease in detection performance as the model itself also had
to handle input scale variance while finding possible objects. Thus, SSD mitigated
these problems by allowing the feature maps from other backbone stages to be pro-
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posed by the anchor, allowing the model to predict the object at different scales. In
addition, along with distinguishing foreground from background objects, the object
proposal (anchor) generated by the RPN also had to correct the position and size in
case the proposed object is not a background. These changes led to severe training
instability due to greatly increased task complexity, and many techniques had to
be used to stabilize the training process. By using their proposed framework, SSD
yielded a comparable performance to Faster-RCNN on the pascal VOC dataset (Ev-
eringham et al., 2010) while being able to achieve a real-time inference (> 30FPS).
YOLOV2 and YOLOv3 (Redmon et al., 2016; Redmon and Farhadi, 2017) could
also be considered a successor of SSD as they further stabilized the training pro-
cess and formalized all main training heuristics. Figure 2.10 showed a complete
architecture of SSD.
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Figure 2.10: A complete architecture of SSD. The image is taken from (Liu
et al., 2016).

Feature Pyramid Network (FPN)

One of the prominent issues when using a CNN-based object detector is its
inability to truly achieved scale invariance. This result in the model not producing
the same output even if the object is the same but scaled differently. Consequently,
the detector’s effectiveness is generally correlated with object size, as the class that
contains a lot of large objects is often easier to be detected than the medium or small
one. Therefore, Feature Pyramid Network (FPN) (Lin et al., 2017a) was among the
first to recognize this issue and propose a method to mitigate this problem. Figure
2.11 illustrates the detection network when incorporated with FPN.

Their work pointed out that the scale problem could easily alleviate if the
model could detect objects at different scales. A straightforward way to do this is
performing inference on the same at different scales in a pyramidal manner. How-
ever, this method is computationally extensive since it has to perform an inference
on the image several times. Thus, instead of using the original image, they used
the representation learned during the forward pass of the network at different down-
sampled levels as a scaled version of an input. The selected representation of each
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downsampled level was then projected with additional convolutional blocks and
combined with upscaled information of the lower stage to generate the bounding
boxes. This method allowed the detector to generate output at different scales while
only incurring marginal extra computation cost, resulting in a greatly increased de-
tection performance on the COCO object detection dataset (Lin et al., 2014). Due to
its simplicity, the FPN was widely adopted in most detectors, even in Transfomer-
based backbones that required fewer inductive biases than CNN. Thus, it is still an
active research field on how to effectively improve representation at different scales.

—>» 1x1 conv

Figure 2.11: An example of FPN when used with a detection network and
its upscaling module. The image is taken from (Lin et al., 2017a).

RetinaNet

Despite the success of the one-stage detector that yields a promised detec-
tion performance, this approach also introduced a new major challenge: it coupled
the classification and regression task. The two-stage detectors separated the task of
proposing the object and correcting position into two distinct networks, allowing the
classification and regression task to be separately optimized, eventually leading to a
stabilized training process. On the other hand, both objectives are being optimized
at the same time in the one-stage detector, resulting in a severe vanishing classi-
fication loss. This is because most boxes generated by the anchor are background
objects, causing an average classification loss to be very low as the positive object
loss is overwhelmingly weighted out by the negative ones. Ultimately, this causes
the ratio between regression and classification to be drifted from the intended value
and makes positive objects harder to classify.
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RetinaNet (Lin et al., 2017b) thus proposed focal loss to mitigate the vanish-
ing classification loss. The focal loss is a parameterized version of standard cross
entropy loss by multiplying the standard loss with (1 — p;)?. Due to the nature of the
exponential function, the additional term allows the loss of an object with low confi-
dence to be scaled down stronger than high confidence one, resulting in foreground
objects getting significantly more loss weight than the background one. The param-
eter v was used to control the extremeness of the exponential and should be adjusted
proportionally to the ratio between foreground and background object. Combining
with FPN, RetinaNet yielded a considerable performance improvement compared
to SSD, YOLOV2, and Faster-RCNN. Figure 2.12 illustrates the change in classifi-
cation loss when varying ~.

CE(p) = — log(p:) -
FL(p) = —(1 — p1)" log(pr)

well-classified
examples
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Figure 2.12: A plot showing a change in classification loss when varying
focal loss parameter v. The image is taken from (Lin et al., 2017b).

You Only Look One-level Feature (YOLOF)

You Only Look One-level Feature (YOLOF) (Chen et al., 2021) revisited the
issue of FPN on modern detector. Initially, most works in the object detection field
believed that the success of FPN largely came from its ability to utilize multi-scale
feature and perform prediction at multiple scales. Thus, many works had been work-
ing toward finding better way to represent multi-scale feature (Liu et al., 2018; Ghi-
asi et al., 2019; Tan et al., 2020). This work showed that this common belief was
not entirely correct. As shown in Figure 2.13, when removing the multiple-scale
feature element from the FPN, the performance only dropped by 0.9 % (b) while re-
moving the multi-scale prediction resulted in 12.0 % in detection performance (c),
suggesting that the prediction at multiple scales was way more important than good
multi-scale information. This finding was also held largely true in a large Vision
Transformer model (Li et al., 2022).

This work also proposed that removing the FPN while retaining the same level
of performance was possible. They introduced a Dilated Encoder network neck,
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Figure 2.13: A detection performance comparison on different FPN design.
The image is taken from (Chen et al., 2021).

as illustrated in Figure 2.14, to learn features at different scales by stacking dilated
convolution to simulate input to varying scales and residual connections to preserve
the information from the previous downsampled level. However, the proposed neck
also raised a new issue as the number of anchors was significantly reduced com-
pared to standard FPN. This caused the proportion of positive anchors to be greatly
increased, leading to class imbalance as the standard MaxIoU anchor matching al-
gorithm preferred a large object over the small one since it assigned the box that
is highly overlapped with the ground truth to be a positive object. Thus, they pro-
posed to perform Uniform Matching that had the same number of positive anchors
regardless of object sizes instead of using standard IOU matching. It was found that
YOLOF achieved better detection performance than RetinaNet and also performed
an inference three times faster.

Projector Residual Blocks

Figure 2.14: An illustration of Dilated Encoder proposed in YOLOF. The
image is taken from (Chen et al., 2021).

2.3 Translation variance in the CNN

Even though the convolution neural network is now widely used in computer
vision tasks, its robustness to real-world situations is still questionable. One main
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reason is that CNN is prone to adversarial example (Goodfellow et al., 2015). For
example, the confidence of the classifier could be drastically different just by ap-
plying small noise to the image. Even without such a complicated attack, CNN’s
ability to handle input translation variance is also in question.

Engstrom et al. (Engstrom et al., 2017) showed that the CNN is also still prone
to adversarial attacks caused by simple geometric transformations like rotation and
translation operation, and the use of translation and rotation is not sufficient to re-
solve this problem. This is because even though CNN could tolerate variance in
input translation due to a presence of a downsampling layer, it does not possess a
shift-invariant property. This topic is highly related to our thesis since the positive
object (mitotic figure) resides closely with many background objects. Figure 2.15
shows an example of an adversarial attack caused by simple geometric transforma-
tions.
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Figure 2.15: Example of adversarial attack caused by simple geometric trans-
formations. The image is taken from (Engstrom et al., 2017).

2.4 Mitotic figure

A mitotic figure (MF) is a cell undergoing the division process (mitosis). It is
defined as a group of a nucleus containing short rods or spikes of chromosomes get-
ting unbounded by a nuclear membrane (Donovan et al., 2020). The phase of mitosis
could be further divided into four main phases: Prophase, Metaphase, Anaphase,
and Telophase. The cell division process starts in Prophase where the chromosomes
begin to undergo a condensation process, resulting in reduced chromosome length
and increased thickness. The condensed chromosomes then align themselves at the
center of the cell in a linear plate, band, or ring shape during Metaphase. After
that, in Anaphase, the chromosomes will start splitting into two equal clusters and
then moving to opposite ends of the cell at the Telophase stage. Finally, the two
clusters are physically separated into two different cells in the process named Cy-
tokinesis. Photograph examples of the mitotic figure at different stages and their
characteristics are shown in Figure 2.16.
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Figure 2.16: Characteristics of the mitotic figure. The image is taken from
(Donovan et al., 2020).
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Chapter 111

RELATED WORK

This chapter describes the prior works that are closely related to our prob-
lem setup. First, we review the traditional machine learning approach for mitosis
detection that requires expert guidance to design an informative feature that could
describe the visual property of the mitosis cell. Next, we move on to the deep learn-
ing approach, which primarily uses CNN instead to create a set of convolutional
filters that could distinguish mitotic figures from other objects, and their modifica-
tions to improve the pipeline performance. Finally, we focus on the works and their
findings that come along with the advent of large-scale mitosis recognition datasets.

Many detection algorithms have been proposed to solve the problem of auto-
matic mitosis detection. Hand-crafted object detection was once a popular approach
for automatic mitosis detection (Veta et al., 2013; Khan et al., 2012; Sommer et al.,
2012; Paul and Mukherjee, 2015; Tek, 2013; Huang and Lee, 2012; Nateghi et al.,
2017; Paul et al., 2015). Prior to the resurgence of the deep learning approach, it
was also widely used in general computer vision tasks. In this method, the object
candidates were proposed first by assigning the probability of each pixel being a mi-
totic figure using traditional computer vision techniques, and then a threshold was
applied. Following that, the pathologist’s knowledge was used to extract the shape,
texture, and statistical features of the mitotic figure candidates. Finally, the ex-
tracted features were fed into a classifier to differentiate between objects of interest
and the background. On the ICPR MITOS-2012, AMIDA 2013, and ICPR MITOS-
ATYPIA-2014 datasets, this approach outperformed deep object detection. How-
ever, this approach would likely to struggle on large-scale datasets because manually
handcrafting the features that could represent hundred of thousands of mitotic fig-
ures would be extremely laborious and might not even be well-generalized to new
datasets.

Deep learning is another solution to the problem. This paradigm achieves
cutting-edge performance on a wide range of general computer vision tasks, includ-
ing image classification, object detection, and semantic segmentation. Furthermore,
it could be used for medical imaging tasks, leading to widespread adoption (Litjens
et al., 2017). Malon et al. (Malon and Cosatto, 2013) proposed the location of the
candidate for mitotic cells using image processing, and then recognized mitotic fig-
ures using hand-crafted and CNN features. Ciresan et al. (Ciresan et al., 2013) used
CNN to train a single-stage pixel-level classifier to recognize mitotic figures on an
image patch and performed inference in a sliding window fashion, eliminating the
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need for hand-crafted features. CasNN (Chen et al., 2016) was among the first to
detect mitosis using a two-stage pipeline. The first stage involved training a seman-
tic segmentation network to suggest the location of mitotic cells. Following that,
the classification network was used to fine-tune the prediction result. DeepMitosis
(Li et al., 2018) switched the first stage’s detection algorithm from semantic seg-
mentation to object detection, resulting in a significant performance improvement.
A semantic segmentation network was used to estimate the bounding box in the
dataset without pixel-level annotation. MitosisNet (Alom et al., 2020) altered the
first stage by framing the problem as multi-task learning, in which both segmen-
tation and detection tasks were trained concurrently. Despite significant progress,
benchmarks are mostly performed on small-scale datasets.

The introduction of a large-scale mitosis detection dataset (Aubreville et al.,
2019, 2020a) allowed for the evaluation of model performance on a per-slide ba-
sis. Aubreville et al. (Aubreville et al., 2020b) compared three deep learning-based
methods for identifying the mitotic density in the WSI of canine cutaneous mast cell
tumor (CCMCT). A two-stage pipeline with a dedicated object detector achieved
the highest correlation between the predicted and ground truth mitotic count. Fur-
thermore, the models’ predictions outperformed individual experts in most cases.
Bertram et al. (Bertram et al., 2021) later demonstrated that using a model to as-
sist a human expert by pre-selecting the region of interest resulted in a consistently
more accurate mitotic count. In terms of speed, Fitzke et al. (Fitzke et al., 2021)
proposed a high-throughput deep learning system that could detect mitosis on the
WSI in 0.27 minutes per slide. Most importantly, when compared to human expert
evaluation, their system resulted in a change in tumor grading in some cases.



Chapter 1V

METHOD

In this chapter, we explain each component of our proposed pipeline in full
detail. The organization of this chapter starts by explaining an overview of the pro-
posed pipeline. Then, it delves into the detail of each component, starting from the
rationale for each component, their advantage our the existing baseline and their
mechanism, and some implementation details.

An overview of our pipeline is shown in Figure 4.1. The pipeline is divided
into four stages. First, a detection stage employs an object detector to propose the
location of potential candidates for the mitotic figures in the WSI by splitting the
WSI into many small sliding window grids and performing inference on each of
them. Following that, a window relocation algorithm discards all low-quality false
positive predictions around the image’s border and re-evaluates them at the newly
created patch. The extracted object is then getting refined in an object center adjust-
ment stage to be more aligned with the image patch center. Finally, a classification
stage re-evaluates the confidence of every object by observing each cell separately.
An additional data sampling technique is further used to enhance the classifica-
tion stage by selecting additional informative training examples from the WSI using
disagreement between the detection and classification stages as a criterion. Each
subchapter describes each stage in full detail.

4.1 Detection stage

The detection stage is the first stage of the pipeline and is in charge of locating
every mitosis cells in the image. It is a deep object detector that takes an image as
input and returns a set of bounding boxes {(x1, y1, w1, 1, S1)s ey (Tns Yns Wiy Pny Sn) },
where each tuple in the set represents the predicted object’s center, width, height,
and positive object confidence, in that order. Because of the sheer size of the WSI,
the slide is segmented into smaller patches in a sliding window fashion. The sliding
window algorithm breaks down the slide with the dimension of W x H into [ %] x [£]
image patches (window) with the window size of K x K. The detection stage then
infers on each patch to determine the location of the mitotic figures within it. To
train the detector, we use the CCMCT and CMC baseline data sampling strategies
but slightly alter the training process by sampling training images beforehand rather
than querying them on the fly to stabilize the training process.
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Figure 4.1: A summary of our proposed pipeline. The green dashed box
highlights our contributions. Our pipeline now includes two more stages:
window relocation and object center adjustment. Window Relocation is used
to remove unnecessary low-quality predictions from the sliding window bor-
ders. The object center adjustment stage is in charge of aligning the esti-
mated positive class object’s center from the detection stage to the image
patch center. In the classification stage, data selection is used to select ad-
ditional training samples from the vast area of the WSI in order to improve
the model performance.
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Despite being able to perform an inference on the WSI, the use of the sliding
window algorithm also cause a large quantity of low-quality false positive predic-
tions to be generated during the inference process. This is due to the fact that the
object near the window boundary may be partially split into multiple objects in
multiple sliding windows, causing then to become multiple poor-quality false pos-
itive bounding boxes. Therefore, an overlapping sliding window is often used to
alleviate this issue by allowing the windows to overlap with the previous one. As
a result, partially split boxes around the window border are fully covered, but re-
dundant predictions are also still being produced in excess, but fewer in quantity.
As a result, non-maximum suppression (NMS) is employed as a post-processing
technique to eliminate redundant objects. NMS suppresses the bounding box when
there exist nearby bounding boxes of which an intersection over union (IOU) is over
a certain threshold and has higher confidence. By removing the low-quality, low-
confidence boxes while keeping the high-quality, high-confidence ones, the use of
NMS greatly reduces the likelihood of false-positive predictions. Despite the ad-
vantage, the overlapping windows increased the number of patches to perform in-
ference to | K(‘{‘igﬂ x [ K(f{ 0)1, where ¢ is an overlapping ratio. Moreover, though
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Figure 4.2: An illustration of the window relocation algorithm. Within the
non-overlapping sliding windows A and B, there is an object of interest (or-
ange box). As a result, patches A and B each produce a low-quality box
with the center at points P1 and P2, respectively. Because they are in the
relocation area, both centers are viable candidates for relocation. The win-
dow relocation algorithm begins by discarding the two boxes in both patches.
Then, patches A’ and B’ are created from scratch, with patch center points
P1 and P2. The newly created patches are then fed into the detector, which
returns two blue boxes.

the problem is mitigated, this method does not guarantee good performance at the
borders.

4.2 Window relocation

Window Relocation is a simple algorithm for removing poor quality predic-
tions near the sliding window border. This method aims to eliminate the overlapping
sliding window’s two main flaws. The first flaw is that when the IOU is not high
enough for NMS to suppress, poor quality predictions around the window border
persist, resulting in an increased number of false positives during the final evalua-
tion. Another flaw is that the computation resource is wasted when the window and
its surroundings do not contain any object, which is especially problematic for this
task because mitotic figures are frequently sparsely distributed across the WSI.

The window relocation algorithm is depicted in Figure 4.2. Window reloca-
tion addresses both issues in three steps. First, a relocation area is defined around
the border of each patch (the yellow area in Figure 4.2). All positive objects whose
center resides in the area are then discarded. After that, for each discarded object,
the new window whose center is the center of the discarded object is created (patch
A’ and B’ in Figure 4.2). Finally, the detector performs inference on the newly
created windows. By following these steps, the object’s focus is shifted from the
window border to the newly created window center. This algorithm provides us
with three advantages. First, it would reduce the poor quality predictions around
the window border as most of them are removed. Second, having a relocated object
positioned at the window center results in a more consistent detection result. Third,
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this method does not increase computation costs in areas with no objects. Though
this method may result in redundant predictions, it has little impact on the overall
pipeline because the new consistently produced boxes can be easily removed using
NMS.

Next, we define a clear definition of a relocation area. If the condition below
is met, the ith object in each window may be considered to be in the relocation area.

(min(x;,yi, K —x;, K —y;) < M) A (S; > D)) 4.1)

In other words, the center of the object that is fewer than equal to M pixel from
the window border in any axis and has higher positive object confidence than D is
in a relocation area and is eligible for window relocation.

M is a hyperparameter determining a distance threshold from a window bor-
der, affecting the number of re-observed objects. If M is set to a low value, window
relocation would act as a non-overlapping sliding window. In contrast, a high value
of M would allow more objects to be re-scored. Setting M to a high value would
also come with a trade-off because it would result in an increased computation cost
since the detector has to re-infer more objects. Nevertheless, the use of window
relocation is expected to have less computation costs than the overlapping sliding
window. This is because it would only try to re-inference the objects around the
window border, and the objects in the datasets are often sparse. D is a positive con-
fidence threshold used by the detector to discard obvious negative objects. For both
datasets, it is set to 0.05.

Since we know beforehand during the annotation process that the mitotic fig-
ure often has a form of circular shape with a radius around 25 pixels, we also follow
this assumption and set M to 25 pixels. It should be noted that this method would
be ineffective for general object detection tasks because the object shape could not
be known ahead of time.

4.3 Object center adjustment Stage

Although many false-positive samples around the sliding window’s border are
reevaluated after window relocation, poor-quality bounding boxes continue to cause
input inconsistency at the classification stage. Because of the input translation vari-
ance, the extracted object may not be positioned at the image patch center, resulting
in classification stage performance degradation. As a result, after window relo-
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Figure 4.3: An illustration of the object center adjustment stage. The object
center adjustment stage learns to estimate the distance between the extracted
patch center (red dot) and the true positive class object center (green dot) and
its class. The model estimated the location of the object center (yellow dot)
during inference and generates a new image patch at the predicted location
if the predicted object is recognized as a positive class. The blue box is a
detection stage-predicted bounding box.

cation, we introduce an object center adjustment stage as a refinement process to
reduce position inconsistency of the positive class objects in the image patch by
making the object center more aligned to the image patch center to reduce input
translation variance. The object center adjustment stage is a model that learns to
find the positive object’s center by estimating the distance between the image patch
center and the ground truth positive class object center. Then, during an inference,
it predicts the object center location and creates a new patch with the predicted loca-
tion as the center if the object class is positive. Because the concept of object center
is ambiguous for non-cell background and broad tissue texture areas, the negative
class objects are not adjusted. The object center adjustment stage is depicted in
Figure 4.3.

To train the model to estimate the position of the object center, we generate the
data representing the object center at different locations in the patch as an input to the
model. The generation process starts by randomly sampling positive and negative
objects from the dataset and extracting them in an image patch. By doing so, the
image center of the sampled object is always at the same position as the ground
truth object center. Then, random geometric transformations, which are random
image shifting, flipping, rotation, are applied to the sampled image. As a result, the
ground truth center is shifted from the image center by (dx,dy) pixels. After the
image is transformed, the model learns to predict the position of the object center



28

by predicting (dx,dy). The value of dx, dy is drawn from a normal distribution and
is limited to a small value (dx,dy < 12 pixels) because we assume that the center
of the predicted object should be close to the ground truth object center.

Since the objective of this stage is to relocate the center of the positive ob-
ject, the class of the object has to be known beforehand, which is not practical in a
real-world situation. Therefore, the object class has to be inferred from the model.
We could straightforwardly obtain the class by using object confidence from the
detection stage. The detected object could be inferred as a positive class when the
confidence is above a certain threshold. However, using detector confidence might
not be ideal as the confidence produced by the poor bounding boxes might be inac-
curate. Therefore, we added an auxiliary task for the object center adjustment stage
to classify the object class. Since the input to this stage is just an extracted patch,
it allows the model to observe a single object at a time, removing an unnecessary
distraction from other objects. As a result, the confidence produced by this improve-
ment should be superior to the detector confidence because it inherits the advantage
of the limited observation like the classification stage, and it also has information
of the annotated object center.

The object center adjustment stage is a CNN that outputs two prediction heads:
the main regression head to estimate the distance from the image center to the
ground truth center (dx,dy), and the auxiliary classification head to predict the
object class. The model is optimized using relocation loss L,.; as shown below.

Lrel — )\regLreg + (1 S~ )\reg)Lcls- (42)

The relocation loss L, is a combination of the regression loss L,., and clas-
sification loss L, weighted by the parameter \,.,. The classification loss is a stan-
dard cross-entropy loss calculated between the predicted and the ground truth ob-
ject class. The regression loss is an L1 loss calculated between the predicted and
the ground truth object center distance. To prevent regression noise, the regression
loss calculation is ignored when the ground truth class is negative. An illustration
of the building block of the object center adjustment stage is shown in Figure 4.4.

During inference, the model receives an extracted object as input and returns
the object class and location of its center as an output by estimating the distance
from the object center to the patch center. If the predicted object confidence ex-
ceeds a certain threshold, the object is considered positive, and a new patch with
the predicted location at its center is generated. If the object’s confidence is lower
than the threshold, the model does nothing.
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Figure 4.4: An overview of an object center adjustment stage. An illustration
of the building block of the object center adjustment stage. The model out-
puts two prediction heads: a relocation head for predicting the distance from
the image center, and a classification head for identifying the object class.

4.4 Classification stage

After the object center adjustment stage, the extracted object’s center moves
closer to the patch center and is ready to be fed to the classification stage. A classi-
fication stage is a model that looks similar to the object center adjustment stage but
functions differently. This stage, in contrast to the previous one, is a CNN that only
outputs a classification score. The classification stage takes an extracted object from
the object center adjustment stage as input and returns the confidence of the object.
This stage could be argued to be redundant because the object center adjustment
stage could also return the confidence. However, t he main difference between this
stage and the previous one is that the object is always centered in the image. This
reduces the significance of having the model capture object translation variance.
As a result, data augmentation strategies that could change the location of the ob-
ject center are not used during training, resulting in improved training stability and
recognition performance.

This stage’s training procedure is similar to the object center adjustment
model. First, positive and negative objects are sampled at random from the dataset
in a separate area. The samples are then augmented and fed to the classifier, which
predicts the object confidence. We follow DeepMitosis (Li et al., 2018) for the final
object confidence calculation. The final object confidence S is weighted between
the confidence produced by the detection stage Sy.; and the classification stage S,
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using the weight w as shown below.
S = wSget + (1 — w)SClS. (43)

4.5 Active learning data selection

Even though the proposed pipeline performs well, the dataset is still under-
utilized. This is because the classification stage only looks at annotated objects
and ignores the vast of majority of the unannotated areas. DeepMitosis (Li et al.,
2018) addressed this issue by employing the detector to extract image regions from
the original WSI in order to train the classification stage. However, in a large-scale
dataset, this method became less effective because it generated an enormous num-
ber of objects from the negative class of WSIs. Inclusion of these additional data
would result in not only a severe class imbalance, but also a problem with negative
class uninformativeness. Therefore, we propose that only the informative subset of
proposed objects should be chosen based on active learning approach.

We use an L1 distance between the detector’s and classifier’s positive class
confidence to quantify the informativeness of a proposed object. This criterion pro-
vides us with two benefits. First, it would encourage the classifier to learn from
the detector, which is generally better at filtering out negative objects. Second, it
discourages the selection of noisy annotations because many objects in the positive
class may not have been annotated as such. Both the detector and the classifier would
return high positive class confidences in these cases and discard them. In this work,
we select the top N (N = 20,000) negative objects with the highest informativeness
as additional queries for retraining the classification model.



Chapter V

EXPERIMENTAL SETUP

This chapter explains the experimental setup used in our work, starting from
the characteristic of the datasets used for the performance benchmarking. Then, the
detailed training configuration of each component of the proposed method on each
dataset, including other classification and detection algorithms used in this study.
After that, we inform about the data sampling process and augmentation strategies
for each model component. Finally, we define every quantitative evaluation protocol
used in our thesis.

5.1 Dataset

Canine Mammary Carcinoma (CMC) Dataset

The first dataset chosen for benchmarking of our method was the CODAEL
variant of the CMC (Aubreville et al., 2020a) dataset, a database of mitosis cells
residing in dog mammary tumors. The prominent characteristic of this dataset
was the availability of a complete mitotic figure annotation on the WSI level using
algorithm-aided annotation and the consensus of experts. In addition, hard negative
cells (mitosis figures lookalikes) were also annotated within the dataset, allowing
the model to have more learning context. The CMC dataset contained an annotation
of 13,907 mitotic figures on 21 WSIs, of which 7 of them were held out for testing.
The CMC dataset consists of two classes: Mitosis, and Nonmitosis. The samples
were collected from the Institute of Veterinary Pathology, Freie Universitit Berlin,
Berlin, Germany, and scanned using Aperio ScanScope CS2, Leica at a resolution
of 0.25 microns per pixel (400X). Figure 5.1 shows an example of the scanned whole
slide image from the CMC dataset.

Figure 5.1: Example of the scanned image in the CMC dataset. Green dots
indicate the position of mitotic figures.
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Canine Cutaneous Mast Cell Tumor (CCMCT) Dataset

The second dataset chosen for benchmarking of our method was the ODAEL
variant of the CCMCT (Aubreville et al., 2019) dataset, a database of mitosis cell
resided in the most common skin tumor on dog. This dataset also provided a com-
plete mitotic figure annotation on the WSI level using algorithm-aided annotation
and the consensus of experts. Similar to the CMC dataset, hard negative objects
(mitosis figures lookalikes) were also annotated with the inclusion of granulocytes
and mast cells. The CMC dataset contained an annotation of 44,880 mitotic figures
on 32 WSIs, of which 11 of them were held out for testing. The CCMCT dataset
consists of four classes: Mitosis, Mitosis-lookalike, granulocytes, and mast cells.
The samples were also collected from the Institute of Veterinary Pathology, Freie
Universitdt Berlin, Berlin, Germany, and scanned using Aperio ScanScope CS2,
Leica at a resolution of 0.25 microns per pixel (400X).

5.2 Detection stage

We used the same data preparation strategy as for the CCMCT and CMC base-
lines. 50% of the cropped patches were obtained at random from the training slide.
40% of the cropped images contained at least one mitotic figure. 10% of cropped
images contained at least one mitotic figure-lookalike (class NonMitosis in the CMC
dataset and Mitosis-lookalike in the CCMCT dataset). According to this strategy,
5,000 cropped patches were chosen from each training slide, for a total of 105,000
and 70,000 patches for the CCMCT and CMC datasets, respectively. With more
data sampled using this strategy, we did not see a significant improvement in detec-
tion performance.

The training was conducted using Faster R-CNN (Ren et al., 2015a) with
ResNet-50 (He et al., 2016) as a network backbone with an input training resolu-
tion of 512 x 512. The network backbone was initialized using ImageNet pre-trained
weights (Deng et al., 2009). We did not modify the base detection algorithm ex-
cept for the number of output classes. We sampled 5,000 image patches from each
training slide using the same data sampling strategy as the baseline. The training
framework was based on an object detection framework MMDetection (Chen et al.,
2019). The model was trained with a batch size of 4 and the SGD optimizer. The
model was trained for 8 epochs with an initial learning rate of 10-3, which was di-
vided by 10 after 5 and 7 epochs. During training, only random flip and standard
photometric augmentation were used.

Apart from YOLOF, every detection model was trained using the same train-
ing schedule and data augmentation strategy as described in Faster R-CNN in the
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main methods. For YOLOF, we trained the model with a batch size of 16 and fol-
lowed the original works’ augmentation strategy. YOLOF was trained with an initial
learning rate of 1.5 x 10~2 for 16 epochs which were divided by 10 after 10 and 14
epochs.

Our re-implementation of the training process of the detection stage is similar
to the baseline works (Aubreville et al., 2019, 2020a) except for a few details. To
improve the reproducibility and speed of the training processes, we pre-sampled
a fixed number of training windows per slide instead of querying them on the fly.
Second, whereas the original work used a complex training schedule with a super-
convergence scheme and early stopping based on validation performance, we chose
a simple training schedule with a fixed number of epochs and a standard step decay.
This modification also improved the training’s stability and reproducibility. The
detection stage’s input size was also increased from 256 x 256 to 512 x 512.

Despite the mentioned discrepancy in the detection stage, they have little to
no impact on the performance of the whole pipeline. We demonstrated this claim
by performing inference with our whole pipeline on the prediction result from the
detection stage of the baseline works instead of our trained detector. This yielded
82.3% and 81.6% test F1 on the CCMCT and CMC datasets, respectively, which
is very close to the one reported in Table 6.1 (82.4% and 81.6% in row 7). Please
note that the comparison was conducted without the window relocation stage be-
cause we only had access to the prediction output and not the actual baseline detector
model.

5.3 Object center adjustment stage

The training was conducted using EfficientNet-B4 (Tan and Le, 2019) as a net-
work backbone with an input training resolution of 128 x 128. The network backbone
was initialized using ImageNet (Deng et al., 2009) pre-trained weights. The model
was trained using a batch size of 64 and Adam as an optimizer. The model was
trained with an initial learning rate of 10~ for 30,000 iterations which were divided
by 10 after 22,500 and 27,000 iterations. \,., was set to 0.95 for every experiment.
During training, random image geometric and standard photometric augmentation
were used. The positive class threshold was set to 0.2 for the CMC dataset and 0.5
for the CCMCT dataset.
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5.4 Classification stage

The training was conducted using EfficientNet-B4 (Tan and Le, 2019) as a net-
work backbone with an input training resolution of 128 x 128. The network was ini-
tialized using ImageNet pre-trained weights. The model was trained on the CCMCT
dataset with an initial learning rate of 5 x 10~* for 30,000 iterations, which were di-
vided by 10 after 22,500 and 27,000 iterations. The model was trained on the CMC
dataset without data selection with an initial learning rate of 5 x 10~* for 15,000
iterations, which were divided by 10 after 10,000 and 13,000 iterations. The model
was trained on the CMC dataset with data selection with an initial learning rate of
5 x 10~ for 24,000 iterations, which were divided by 10 after 15,000 and 21,000 it-
erations. Random image geometric and standard photometric augmentation except
for random translation were used during training.

For other classification networks, they were trained using the same training
schedule and data augmentation strategy as described for EfficientNet-B4 in the
main methods, except for ConvNext-S. When ConvNext-S was trained on the CMC
dataset, the initial learning rate was set at 5 x 10=4 for 16,000 iterations and were
divided by 10 after 8,000 and 14,000 iterations.

5.5 Data augmentation strategies

Table 5.1 shows a detailed list of augmentation strategies of the object cen-
ter adjustment and classification stages. Random rotation was still allowed in the
classification stage because the relocated object center patch can still rotate.

Table 5.1: List of augmentation strategy of the the classification and object
center adjustment stage.

Augmentation strategy|/Classification stagel Object center Intensity
adjustment stage

probability
Random flip 0.5 0.5 -
Random brightness 0.5 0.5 (0.8, 1.2)
Random contrast 0.5 0.5 (0.8,1.2)
Random gaussian blur 0.25 0.25 (3x3), (5x5)
Random hue 1 1 (-0.1, 0.1)
Random rotation 1 1 (-90, 90)
Random translation 0 1 dy,d, ~ N(0,6%)
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5.6 Quantitative evaluation protocol

The performance of our proposed system is quantitatively evaluated using F1
as primary metrics for mitotic figure recognition. The TP, FP, and FN refer to a
true positive, false positive, and false negative, respectively. The predicted objects
are considered a true positive when the center of the predicted object is fewer than
25 pixels from the ground truth object center. Otherwise, it is considered a false
positive. If there does not exist a predicted object with 25 pixels from the ground
truth object, the object is considered a false negative. The F1 score is calculated
using the following formula:

TP
F1 — score = I (5.1)
TP+ 5(FP+FN)

The performance of the proposed pipeline on mitotic count prediction was evaluated
using mean absolute error (MAE), and mean absolute percentage error (MAPE).
The mean absolute error is an average absolute L1 distance between the predicted
and ground truth mitotic count formulated as follow:

A _
MAE:;Z\%—%\ (5.2)
-
where y;, 7;, n refers to predicted mitotic count at slide ¢, ground truth mitotic count
at slide i, and total number of test WSI, respectively. On the other hand, the mean

absolute percentage error instead use proportion of error calculated as shown below:

n

MAPE = % Z
=1

Yi — Yi
Yi

(5.3)




Chapter VI

RESULTS

In this chapter, we report the performance of our proposed compared to the es-
tablished baselines on the cell level which measures the competency of the proposed
pipeline and image level to examine the generalizability across the whole WSI. It
also includes multiple ablation studies to examine the robustness of our method
when some components are removed or altered. The report also includes findings
found using the proposed pipeline and an experiment under a realistic setup.

We verified the effectiveness of the proposed method on the CCMCT (Aubre-
ville et al., 2019) and CMC (Aubreville et al., 2020a) datasets. We followed the
prior works Aubreville et al. (2019) and used F1 (%) as a primary evaluation metric
with precision and recall as a secondary metric and using the same train-test split.
We reported an average of three along with standard deviations. The models used
for evaluation were the checkpoints at the last training step.

The performance of our method was summarized in 6.1. Ultimately, the use
of the proposed pipeline resulted in a significant increase in pipeline recognition
performance from 82.0% to 83.2% on the CCMCT dataset and 77.5% to 82.3% on
the CMC dataset. Data selection and object center adjustment stage were the main
contributing factors for the pipeline improvement since they contributed 2.6% and
3.4% absolute performance improvement. The findings suggested that consistency
of input and exposure to additional unannotated data during the classification stage
were critical for performance improvement. Figure 6.1 depicts the qualitative im-
provement in WSI inference following the addition of each technique to the pipeline.
After each stage, more mitotic figures (green dots) were correctly classified.

Despite a change in the detection algorithm, namely from Faster R-CNN-
ResNet50 to RetinaNet-ResNet18 (Lin et al., 2017b), Cascade R-CNN-ResNet50
(Cai and Vasconcelos, 2018), and YOLOF-ResNet101 (Chen et al., 2021), the ben-
efits of our method could still be clearly observed (Table 6.1). For instance, the
detection performance gap between RetinaNet-ResNet18 and other algorithms was
as large as 11.4% F1 on the CMC dataset; however, the whole-pipeline performance
gap was reduced to only 0.5% F1. This also indicates that our method enables the
use of a fast detection algorithm to accelerate inference time with minor classifica-
tion performance cost.

Interestingly, the results in Table 6.1 also showed that the model that per-



37

formed better on the COCO detection dataset (Lin et al., 2014) did not necessarily
perform better on mitosis detection. This could be because mitotic objects, unlike
objects in other datasets, are typically the same size, sparsely populated, and rarely
overlap with each other. This pattern was also seen at the classification stage. As
shown in Table 6.2, classification networks that performed well on the ImageNet
dataset did not necessarily perform better on the mitosis detection task. ConvNext-
S, for example, outperformed a larger ConvNext-B on both mitosis datasets, despite
having the same architectural design. Hence , the search for a suitable detection and
classification model for mitosis tasks is still ongoing area of research.

The method’s performance was then evaluated solely on the detection part.
The window relocation stage consistently improved detection performance on both
CCMCT and CMC datasets, as shown in Table 6.3. The object center adjustment
stage, on the other hand, had little to no effect. This is because the object center
adjustment stage only slightly shifted the object center and had no effect on the
detection’s confidence score.

The mispredictions produced by our pipeline were then investigated by ob-
serving false-positive errors and categorizing them as easy or hard errors. The hard
errors are hard-negative objects that are misidentified as positive classes, whereas
the easy errors are misidentifications of the positive class with a non-hard nega-
tive object or background image. Figure 6.2 depicts a visualization of our method’s
false-positive errors. When compared to the baseline, our method significantly re-
duced the number of easy false positive predictions. Nonetheless, the distinction be-
tween positive and hard-negative samples still remained unresolved. This indicated
that variance in input translation was not the only cause of the confusion between
hard-negative and positive objects.

The subchapters below study an effect of the individual approach, an end-
to-end evaluation, and a discussion of our method. Faster R-CNN-ResNet50 and
EfficientNet-B4 were used as base detection algorithms and classification networks,
respectively.

6.1 Effect of object center adjustment stage

In this subchapter, we study the effect of the object center adjustment stage on
the proposed pipeline. First, we demonstrate that the presence of this stage improves
the proposed object center quality. Then, to confirm our design choice, we provide
ablation studies. omega was set to zero for each experiment, and window relocation
was not included.
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Table 6.1: The test F1 (%) performance of the proposed method evaluated on
the CCMCT and CMC datasets. + denotes standard deviation. The baseline
numbers in the CMC dataset were obtained from the erratum in their Github.

Detector Method CCMCT F1(%)CMC F1(Y%)
RetinaNet  [Baseline (Detection stage) 62.8 72.6
(Aubreville et al., 2020a, 2019)
RetinaNet  [Baseline (Full pipeline) 82.0 77.5
(Aubreville et al., 2020a, 2019)
RetinaNet  [Detection stage 68.4 + 0.5 59.0+£09
+ Classification stage, 794 +£0.2 77.3 +£0.2
(reproduced baseline, w = 0)
+ Data selection 81.2+0.2 80.3 + 0.1
+ Object center adjustment 82.3+0.1 81.5+ 0.1
+ Weight confidence (w = 0.4) 82.4 £ 0.1 81.6 £0.1
+Window relocation 82.6 +£ 0.1 81.8 +£ 0.1
Faster R-CNN [Detection stage 78.2 +0.5 70.4 +0.3
+ Classification stage, 79.9 £ 0.3 784 +£0.2
(reproduced baseline, w = 0)
+ Data selection 81.8 + 0.1 80.3 + 0.1
+ Object center adjustment 82.5+0.1 81.8 £ 0.1
+ Weight confidence (w = 0.4) 83.0£0.1 82.1 £0.1
+Window relocation 83.2 £ 0.1 82.3 +0.1
Cascade R-CNN|Detection stage 75.8 £ 0.2 70.2 £ 0.6
+ Classification stage, 79.9 £ 0.0 78.9 £ 0.1
(reproduced baseline, w = 0)
+ Data selection 81.7+ 0.0 80.3 + 0.1
+ Object center adjustment 82.3+0.1 81.3+0.0
+ Weight confidence (w = 0.4) 82.7+0.1 81.5+0.1
+ Window relocation 829 + 0.1 819 + 0.1
YOLOF  |Detection stage 69.4 + 0.8 62.1 £ 0.1
+ Classification stage, 79.8 £0.3 78.7 £ 0.6
(reproduced baseline, w = 0)
+ Data selection 81.2 4+ 0.5 80.1 £ 0.4
+ Object center adjustment 82.0 + 0.1 81.2+0.2
+ Weight confidence (w = 0.4) 82.1 0.1 81.1 £0.1
+ Window relocation 823+ 0.1 814 + 0.5
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Table 6.2: Effect of changing classification network on the performance of
the whole pipeline. All models used Faster-RCNN-ResNet50 as a base de-
tection algorithm. Our method still consistently improved the whole pipeline

despite using different classification networks.

Classification network |CCMCT Test F1(%)CMC Test F1(%)
ResNet-152 82.5+0.1 81.5+0.4
EfficientNet-B4 83.2+0.1 82.3+0.1
ConvNext-S (Liu et al., 2022) 82.4+0.1 81.7+0.1
ConvNext-B (Liu et al., 2022) 82.4+0.1 81.5+0.1

Table 6.3: Effect of the proposed method on the detection stage of the CMC
and CCMCT dataset. The window relocation stage consistently improved the
detection performance, while the object center adjustment stage had little to

no effect.
Detection Method CCMCT F1(%)CMC F1(%0)
algorithm
RetinaNet |Detection stage 68.4 +0.5 59.0+0.9
+ Object center adjustment, 68.4 + 0.5 59.0 £ 0.9
+ Relocation stage 70.6 £ 0.4 64.1 £09
Faster-RCNN Detection stage 782 +0.5 70.4 +0.3
+ Object center adjustment,  78.2 + 0.5 704 £ 0.3
+ Relocation stage 78.9 +0.3 72.4 4+ 0.2
Cascade-RCNN|Detection stage 75.8 £0.2 70.2 £ 0.6
+ Object center adjustment,  75.8 + 0.2 70.2 £ 0.6
+ Relocation stage 76.9 £ 0.1 72.2 £ 0.5
YOLOF  Detection stage 69.4 + 0.8 62.1 + 0.1
+ Object center adjustment,  69.4 + 0.8 62.1 + 0.1
+ Relocation stage 71.0 £ 0.6 65.1 £0.5
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Figure 6.1: Example of whole pipeline detection results on the WSI. Red,
blue, and green dots indicate false negative, false positive, and true positive,
respectively. The detection threshold was set at the value that yielded the
highest F1.
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Figure 6.2: Multiple Bar charts showing the frequency of easy and hard false
positive (FP) errors on the CCMCT and CMC dataset. Our method greatly
reduced the number of easy false positive predictions, yet confusion between
positive and hard-negative samples still remained in high quantity.
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One metric that can measure the performance of the object center adjustment
stage is the distance between the patch center and the original location. This metric
did not include false positives because they were irrelevant at this stage. On the
CMC dataset, the object center adjustment stage reduced the average distance from
3.61 to 3.40. The results indicated that using the object center adjustment stage
significantly reduces the input translation variance.

Next, we justify the exclusion of negative class in the regression loss and the
presence of auxiliary head. Table 6.5 shows that the model performance reduced
from 81.8% test F1 to 81.1% when the negative class was included in the regres-
sion loss. The results show that the ambiguity of the object center in the negative
class object caused regression noise during training, resulting in lower performance.
Furthermore, the auxiliary head improves model performance from 81.5 to 81.8 per-
cent, demonstrating the importance of multi-task learning.

We also conducted ablation studies on the choice of pipeline design and the
removal of data augmentation strategies that could change the location of the object
center. Table 6.4 shows that translation augmentation improved the performance of
the classification stage of the base pipeline. However, the object center adjustment
training scheme is more efficient than data augmentation because it formulates the
problem as a multi-task problem. We confirmed this by substituting an object center
adjustment stage for a classification stage and producing object confidence with its
classification head instead. It was discovered that by only using the object center
adjustment stage, the overall pipeline performance improved from 80.5% to 81.3%
on the CMC dataset. The performance was increased to 81.8% by further stacking
the relocation and classification stages. However, having a translation augmenta-
tion in the stacked pipeline’s classification stage degraded performance. The results
also showed that when the translation variance of the object center was controlled,
translation augmentation hampered performance.

6.2 Effect of window relocation

This subchapter sought to assess the impact of window relocation on the entire
pipeline. The table 6.6 compares window relocation to the sliding window method.
The use of overlapping sliding windows had no effect on pipeline performance be-
cause most of the overproduced samples could be removed using the object cen-
ter adjustment stage and non-maximum suppression. On the CMC dataset, using
window relocation improved the pipeline’s performance over the non-overlapping
sliding window and the overlapped one by 0.2% test F1 absolute improvement. The
outcome suggested that some of produced errors could not be mitigated by solely
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Table 6.4: The result of the ablation study on the importance of the object
center adjustment stage conducted on the CMC dataset. The use of an object
center adjustment stage outperformed the classification stage with transla-
tion augmentation. In addition, the removal of translation augmentation at
the classifications stage was crucial for the performance improvement of the
whole pipeline.

Method CMC test F1(%)
Classification stage 80.3 + 0.1
Classification stage w/ translation augmentation 80.5+0.3
Object center adjustment stage 81.3+0.1
Object center adjustment stage+Classification stage 81.8 £ 0.1
Object center adjustment stage+Classification stage, 81.5+0.1
(w/ translation augmentation)

Table 6.5: The result of the ablation study of the object center adjustment
stage conducted on the CMC dataset. The use of an auxiliary head improved
the stage performance while the inclusion of negative class for relocation loss
resulted in reduced performance.

Negative class relocation loss | Auxiliary head | CMC test F1(%)
- - 81.5+0.2
v - 81.1 £ 0.1
- v 81.8 + 0.1

using the center adjustment stage. This is because the overproduced object’s center
may be too far away for the object center adjustment stage to adjust back to the actual
center. Furthermore, we found that window relocation only adds a small amount of
inference time over non-overlapping sliding windows in a practical setting. This is
due to the low density of mitotic figures in the WSI. Furthermore, unlike overlapping
sliding windows, window relocation could ignore the majority of the background
image because it did not contain any objects to begin with.

Since both window relocation and object center adjustment stage have a sim-
ilar objective of improving poor quality predictions for the detection stage, we con-
ducted an ablation study to observe the effect of each component separately. Table
6.7 shows a comparison of the two components on the CMC dataset. Window relo-
cation improved the test F1 from 80.3% to 81.1%. Nevertheless, the performance
was inferior to the object center adjustment stage, which achieved 81.8%. This is
because window relocation mostly affects the objects positioned around the sliding
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Table 6.6: A comparison of different sliding window algorithms on the
CMC dataset. Window relocation outperformed overlapping sliding win-
dows while incurring less computation cost.

Method CMUC test F1(%) | Number of test
inference window
Non-overlapping sliding window 82.1 +0.1 211482 (+0%)
Overlapping sliding window 82.1 +0.1 261909 (+23.8%)
Window relocation 823+ 0.1 217368 (+2.7%)

Table 6.7: A comparison between window relocation and object center ad-
justment stage on the CMC dataset. Window relocation could partially mit-
igate the problem of input translation variance.

Window relocation | Object center adjustment stage | CMC test F1(%)
- - 80.3 £ 0.1
v - 81.1 £0.2
- v 81.8 + 0.1
v v 82.1 £ 0.1

window border.

6.3 Effect of data selection algorithm

In this chapter, we demonstrate that our informativeness criterion works well
for this task. As aresult, we provided a comparison of our method to three baselines.
The first baseline is DeepMitosis (Li et al., 2018) query strategy, which queries every
negative object proposed by the classification stage from the training slides. The
second baseline is uncertainty sampling, a strong baseline in the Active Learning
field (Settles, 2009). This method measures the uncertainty produced by the model
as a selection criterion for data acquisition. We used entropy as an uncertainty
measurement and used classification stage confidence to produce model uncertainty.
The third baseline is K-Center-greedy (Sener and Savarese, 2018), a query strategy
based on the core set approach. It aims to select the samples that provide the most
coverage over the training distribution by minimizing the distance between a data
point and its nearest chosen samples. We also follow their work by using the output
after the last convolutional layer of the classification stage to represent the data point
and L2 as a distance function. During the experiments, the window relocation and
object center adjustment stages were not included and the data were collected using
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Table 6.8: The effect of data selection algorithm on the performance of the
pipeline on the CMC dataset.

Query method CMC test F1(%)
Baseline (no query) 77.6 £0.2
DeepMitosis (query all) 80.0 + 0.2
K-Center greedy 79.0 +£ 0.1
Uncertainty sampling 79.8 £ 0.1
Disagreement (Ours) 80.3 - 0.1

Table 6.9: The performance of the pipeline on the CMC dataset when varying
the number of datapoints quired using the data selection algorithm.

Number of quiried datapoints | CMC test F1(%0)
0 (no query) 77.6 +£0.2
2,000 77.8 +£0.3
5,000 784+ 04
10,000 79.2 £ 0.2
20,000 (Ours) 80.3 + 0.1
40,000 80.2 £ 0.1

the same classification model as an uncertainty estimator for every baseline.

The results of our experiment are shown in table 6.8. Our method outper-
formed DeepMitosis’ querying strategy and Active Learning baselines, and every
Active Learning baseline outperformed not selecting any data at all. The results
supported our claim that overexposure to negative samples resulted in suboptimal
performance but was still preferable to not querying any additional data at all.

Next, we examined the effect of the query size on model performance. The
result in Table 6.9 indicated that the performance tended to increase as more dat-
apoints were included in the labeled pool. However, its capability stagnated when
over 20,000 samples were selected. This is because the criteria used for data selec-
tion were strictly based on informativeness. Thus, the sample became less informa-
tive as more data were queried, resulting in an overabundance of uninformative data
and class imbalance.
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6.4 End-to-End evaluation

We further evaluated our method in an end-to-end setting by comparing the
mitotic count produced by our method to the ground truth for each WSI. We follow
the definition of mitotic count in Meuten et al.(Meuten et al., 2016) by counting the
number of mitotic figures in 10 high-power fields (HPF, 2.37 mm?) with an aspect
ratio of 4:3 surrounding the area of WSI with the highest density of mitotic figures.
In other words, the HPF for calculating mitotic count was selected by identifying
the rectangular window of size 7110 x 5333 pixels that contains the highest num-
ber of predicted mitotic figures (Bertram et al., 2019). Once an HPF for a WSI
was selected, mitotic count was calculated under two settings: fully-automated and
human-in-the-loop. Under the fully-automated setting, the number of predicted mi-
totic figures in the selected HPF was taken as the mitotic count. This setting mimics
the situation where the models were used to obtain mitotic count without supervi-
sion. On the other hand, the number of annotated mitotic figures in the selected
HPF was instead used as the mitotic count in the human-in-the-loop setting. This
scenario simulates the situation in which the selected HPF is given to expert pathol-
ogists who can recognize the majority, if not all, mitotic figures. Furthermore, this
setting emphasizes the model’s ability to propose good HPF rather than its ability
to predict individual mitotic figures. MAPE and MAE at the prediction threshold
which yielded the lowest MAPE were reported in Table 6.10. The performances for
the baseline method were calculated using the predictions provided in the authors’
GitHub. This shows that our method significantly improved mitotic counts on both
CCMCT and CMC datasets under both fully-automated and human-in-the-loop set-
tings. Figure 6.3 shows the comparison of mitotic counts produced by our method
and the baseline method on individual WSI. Our method clearly resulted in more
accurate mitotic counts, especially when the mitotic density is high.

Table 6.10: The end-to-end performance of the proposed method evaluated
on the CCMCT and CMC datasets. Our method consistently outperformed
the baseline in both settings.

Dataset | Method | Fully-Automated | Human-In-The-Loop
MAPE | MAE | MAPE MAE
CCMCT | Baseline | 18.8 10.5 11.2 4.4
Ours 10.5 8.3 6.8 1.9
CMC | Baseline 7.8 3.1 8.1 2.4
Ours 5.6 1.9 5.6 1.6
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Figure 6.3: Scatter plots illustrating the predicted mitotic count and the
ground truth on the CCMCT and CMC dataset under the fully-automated
setting. Compared to the baseline, our method clearly changed the predicted
MC when the object appeared in high density, though the effect become less
noticeable on the slides with low mitotic figures.

6.5 Algorithm-aided mitotic count

We aimed to observe the effect of our pipeline on a real use case by having
a human expert perform a mitotic count on the HPF proposed by our pipeline on
the CCMCT dataset. First, the expert received a large rectangle box representing
the HPF proposed by our method. After that, the expert had to draw a bounding
box on every mitotic figure found in the proposed field, and a mitotic count is then
calculated from the number of annotated objects. Bounding boxes predicted by
the model were intentionally hidden from the expert in this setting. We used Slid-
erunner (Aubreville et al., 2018) as an annotation tool. An annotation time was
also measured during the experiment. It was measured starting from the first to the
last annotated mitotic figures in the slide. Figure 6.4 showed the result of our ex-
periment. The mitotic count produced by the human expert is significantly lower
than the one purely proposed by the model when the ground truth when the mitotic
figures appeared in high density. The relation between an annotation time and the
ground truth mitotic count followed a linear trend. Surprisingly, the annotation time
dropped sharply when the ground truth mitotic count was above a certain value. We
believed that the error came from the fact that the diagnosis would not change even
if more mitotic cells were to be counted in the HPF with high MC. The result also
indicated that only providing the HPF was not enough for an accurate mitotic count,
and disagreement among the selection of the region of interest for the mitotic count
was not the only issue.
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Figure 6.4: A result of algorithm-aided manual mitotic count. The MC pro-
duced by a human expert was significant lower than the one purely proposed
by the model and the ground truth when the mitotic figures appeared in high
density.



Chapter VII

DISCUSSION

This chapter provides insight into the results and finding reported in the pre-
vious chapter. First, it clarifies the difference between the proposed method and the
former works. Then, it goes on each proposed component in detail on their advan-
tage and shortcoming along with the quantitative result to verify the effectiveness of
the proposed method. Lastly, it discusses some unresolved issues in the proposed
pipeline, involving the quality of the dataset used for benchmarking and foreseeable
problems in a real-world application when a pathologist is included in the loop.

Unlike most previous studies, which focused on improving mitosis detec-
tion pipeline performance by increasing model capability or data variety, our study
looked at the interaction between different stages of the pipeline, a problem often
overlooked in the field. Inconsistencies between the detection and classification
stages, we argued, could lead to mispredictions due to a variety of mechanisms.
First, poor-quality detection-stage bounding boxes that do not consistently center on
object locations can confuse classification-stage training. Furthermore, a mismatch
in the training distribution between the detection and classification stages will result
in poor performance on out-of-distribution samples. To directly mitigate the afore-
mentioned problems in a two-stage pipeline, three improvements were introduced:
the window relocation stage, the object center adjustment stage, and improved data
selection. The proposed pipeline outperformed previously reported baselines on
two large-scale mitosis detection datasets at both individual mitotic object detec-
tion and mitotic count prediction (Tables 6.1, 6.10). The advantages of our method
are also applied to other detection and classification algorithms (Tables 6.1, 6.2, and
6.3).

The window relocation stage, which is the first proposed component of our
pipeline next to the detection stage, is a straightforward algorithm that enhances de-
tection around a sliding window’s boundary by re-inferencing the objects that are
close to the border. It should be noted that this approach is more effective than an
overlapping sliding window since only the areas around the window border were
reobserved rather than creating additional windows. Thus, overall detection infer-
ence time was significantly decreased as a result (Table 6.6). In addition, window
relocation also swaps out the poor predictions that were placed around the win-
dow’s edge with newly created patches that solely focused on the objects. Figure
7.1 provides illustrations of instances where window relocation produces superior
bounding boxes. However, the effectiveness of this approach significantly depends
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on the presumptions that mitotic figures were sparsely populated and around the
same size on WSI, which are not always true in general object detection datasets.

Non-overlapping sliding window Overlapping sliding window Window relocation

Figure 7.1: Illustrations of instances where window relocation produces su-
perior bounding boxes. Black lines indicated sliding window boundaries,
and bounding boxes were differently color-coded so that overlapping boxes
were more visually distinguishable.

The object center adjustment stage is the second proposed component of our
pipeline. This stage is in charge of moving the predicted object’s center from the
detection stage closer to the actual object’s center, reducing translation variance for
the classification stage. Translational variance would not normally be a significant
issue in image classification. However, because mitotic figures are frequently found
in close proximity to background objects, a slight shift in the input image patch is
enough to confuse the classification model between positive and background ob-
jects. Figure 7.2 shows that a three-pixel shift can cause the classifier’s confidence
to drop from around 0.9 to 0.2, and that the object center adjustment stage is crit-
ical for stabilizing the classifier’s confidence. The object center adjustment also
produced better results than the conventional translation augmentation (Table 6.4).

Even though the object center adjustment stage (Figure 7.3(a)) may success-
fully shift the predicted object centers closer to the actual object centers, there were
some inevitable errors (Figure 7.3(b)). A common cause of misalignment corre-
sponds to mitotic objects in the late telophase stage during which the two daughter
cells looked like two separate mitotic figures. This pattern made the model centers
on one of the daughter cells rather than the actual center in the middle of the two
cells. In other cases, the model was unable to make a proper adjustment because
the initially anticipated object centers were too far from the actual center. Addi-
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tionally, it should be mentioned that the object center adjustment method is suitable
for mitosis detection due to the ability to precisely define and annotate the center
of each unique cell. As a result, the technique should probably be able to apply to
other pathology tasks that could clearly indicate the object center. However, general
images contain many objects whose definition of a center may be ambiguous.

Finally, we reduced the training distribution mismatch between the detection
and classification stages by querying additional training data for the classification
stage based on the detector-classifier disagreement. This method offers an advan-
tage over a query-all approach because the detector often generates too many more
negative objects than positive objects, including a large number of uninformative
samples. Furthermore, even though the aforementioned problems can be alleviated,
the classifier will not be capable of learning the entire distribution of the WSI as
long as it still relies solely on the detector to generate training samples.

Despite the improvement in the model’s ability to recognize mitotic figures,
its capability was still limited due to the lack of a gold standard label was still unre-
solved. Currently, most of the public datasets available were annotated by a consen-
sus of broad-certified pathologists, which inevitably led to some mitotic figures not
getting annotation, potentially leading to errors in the mitotic count. One promi-
nent example for the former statement was the mitosis cell during prophase because
the cell itself is difficult to identify with light microscopy (Donovan et al., 2020).
This leads to the pathologists not counting them since they cannot be reliably dis-
tinguished, and therefore, consequently hindered the model for identifying all the
mitotic figures in the whole slide image. It should also be noted that the bulk of
performance gains through ReCasNet came from easy false positive objects (Fig-
ure 6.2). The issue of confusion between hard-negative and positive mitotic figures
remains unresolved.

An improvement in mitotic count proposed by the model, even if performing
better than the pathologist, also does not always directly lead to a more accurate
diagnosis. This is because the availability of a method to achieve a more accurate
mitotic count would violate the assumption of tumor grading protocol (Bloom and
Richardson, 1957; Avallone et al., 2021) that is solely based on observation using a
light microscopic image. The use of Phosphohistone H3 (PHH3), a cell proliferation
marker, has been shown to increase the proportion of high-grade cancers during
tumor proliferation assessment (van Steenhoven et al., 2020), and it is also likely
that our model would have the same effect since the pathologists tend to undercount
when the mitotic density in the slide is high. Despite the aforementioned downsides,
the model should be able to assist the pathologist to distinguish different phases of
mitosis cells, which might even change the grading protocol when Al-assisted tumor
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Figure 7.2: Confidence of objects produced by the detector being fed to the
classifier when perturbed by image translation. The images on the left were
sampled from the detection results, and the numbers in the center grid are
positive object confidence produced by the classifier after shifting the image.
On the other hand, the right grid showed object confidence when the object
center adjustment stage was applied to the produced box before being fed to
the classification stage. The confidence of the classification model without
object center adjustment varies drastically compared to its counterpart. For
example, when the top-left image was left-shifted up by three pixels, the
classifier confidence without the object adjustment stage dropped from 51.2
to 27.8, while its counterpart only reduced from 81.0 to 75.2. when Red
boxes indicate the position of the most frequently proposed adjusted object
center.
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(b) Failure cases of object center adjustment stage.

Figure 7.3: Example prediction results produced by the object center adjust-
ment stage on the CMC dataset. (a) shows successful examples. (b) shows
failure examples. The first four images of are failures at the telophase stage.
Red, yellow, and green dots indicate original, relocated, and ground truth
object center, respectively. The red boxes are the bounding box produced by
the detection stage.



Chapter VIII

CONCLUSION & FUTURE WORK

8.1 Conclusion

We propose ReCasNet, an enhanced deep learning pipeline that improves the
two-stage mitosis detection pipeline in three ways. First, we presented window relo-
cation, a method for reducing the number of false positives introduced by the sliding
window algorithm by removing predictions around the window border and assign-
ing them to a new window for re-inference. Second, we proposed the object center
adjustment stage, which is a deep learning model in charge of adjusting the predicted
center of the mitotic cell from the detection stage. This improves the consistency
of the classification stage’s inputs to be positioned at the image center. Third, we
used an active learning technique to address inconsistencies in training data distri-
bution by identifying additional informative examples based on the disagreement
between the two stages in order to train the classification stage. On the CCMCT
and CMC datasets, our proposed method significantly improves the overall pipeline
performance in terms of both detection of individual mitotic figures and end-to-end
region-of-interest proposal and mitotic count predictions.

8.2 Future work

Though the experiments on the CMC and CMMCT dataset in our work have
been thoroughly conducted to verify the effectiveness of our method, the study is
still limited to a single pathology scanner, and the model transferability from ca-
nine tissue to humans is still unexamined. We plan to further scale our method on
different scanners with human tissue to observe the generalization of our work. We
also aim to create a dataset with gold-standard information using PHH3 immunos-
taining to resolve the everlasting issue of confusion between mitosis cells and the
other lookalike object.



8.3 Thesis timeline

Figure 8.1 shows the timeline of our thesis starting from October 2020.

Activity / Month 1 /23|45 6 7 8 9 10 11 12 13

Problem definition

Literature review

Developing prototype

Developing Framework
& Analysis

‘Writing Articles

‘Writing Proposal

‘Writing Thesis

Figure 8.1: Thesis timeline.
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