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The investigation of chemical constituents of lichen Usnea baileyi (Stirt.)
Zahlbr. led to the isolation of ten new bisxanthones (US1-3, 5-11) and a new
depsidone (US4). The structures were unambiguously established by the spectroscopic
evidence including HRESIMS, 1D and 2D NMR, as well as comparison to literature data.
Moreover, the absolute configurations were elucidated through ECD analyses, DFT-NMR
calculations and subsequent DP4 probability score. The biological activities of isolated
bisxanthones were evaluated for antiparasitic, cytotoxic (US1-3), antibacterial, and
enzymatic inhibitory (tyrosinase and Ol-glucosidase) (US5-11) activities. The results
revealed null to mild bioactivities against Plasmodium falciparum (antiparasitic activity)
as well as cytotoxic activity against seven cell lines. US5 exhibited good antibacterial
activity against Escherichia coli ATCC25922 and Bacillus subtilis ATCC6633 (MIC 62.5
mg/mL for each bacteria). In addition, US6, the same co-structure as US5 revealed good
activity against B. subtilis (MIC 62.5 mg/mL). US10 and US11 displayed better activity on
Ol-glucosidase than a positive compound, acarbose with ICsq values 83, 64, and 94 mM,

respectively.

Moreover, 11 derivatives of usnic acid derived from Dakin oxidation (UD1-5) and
esterification (UE1-6) were prepared, characterized and evaluated for tyrosinase and Q-
glucosidase inhibitory activities. Interestingly, UD2, UD5, UE5, and UE6 displayed good
anti- Ol-glucosidase activity with ICxsy 43, 91, 27, and 69 pM, respectively.
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Chapter 1
INTRODUCTION

1.1 The lichen

Lichens are symbiotic association of fungal partner (mycobiont) and
photosynthetic partner (photobiont) such as green algae or cyanobateria. Lichens
comprise over 25,000 species with around 98% Ascomycota fungal partners, and
occur in a wide range of habitats like on or within rock, on soil, trees, shrubs, trucks,
animal carapaces and on bricks, leather, wood[1]. Lichens are divided into three main

types of thalli: crustose, foliose and fructicose (Figure 1.1) [2].

Xanthoria sp. Xanthoparmelia sp. Usnea sp.
(Crustose) (Foliose) (Fructicose)
Figure 1. 1 Types of lichen

1.2  Biological significance of lichen substances
Some of the biological meaning of the lichen metabolites were summarized

by Huneck and Yoshimura [3] as follows:

Lichens are slow-growing organisms, so the lichen metabolites are antibiotic
and active protective substances to protect against lower and higher plants by

themselves. The algae will be protected against too intensive irradiation by absorbing



UV ligsht of aromatic lichen substances. Symbiotic equilibrium promotion, which
affects the cell wall permeability of photobionts. Lichen metabolites such as
aliphatic and aromatic acids are strong chelating agents, which are very helpful for
supplying the lichen with minerals from the substrate. Antifeedant activities which
protect the lichen from insects and animals. Hydrophobic properties prevent the

saturation of the medulla with water and to allow continuous gas exchange.

X The usage of lichens

In the lichen division, lichens are composed of at least 8 orders, 45 families,
and 6,000 species [4].

Lichens have been used as folk and traditional medicine like traditional Indian
medicine or traditional Chinese medicine. Evernia furfuracea (L.) Mann, in the
Pameliaceae was used as drug [4]. In Arabian medicine, Alectoria usneoides was used
to treat enlarged spleen (splenomegaly) [4]. Letharia vulpine (L.) was used in
stomach diseases in Northern California [4]. In India, Parmelia chinense was used as
liniment for headache, and P. sancti-angeli was used to treat tinea. In Nepal, P.
nepalese (Taylyor) Hale ex Sipman was used in the treatment of toothache and sore
throat [4]. Usnea, belonging to Pameliaceae, is a fructicose lichen. Usnea generally
grows by hanging from tree branches, resembling grey and greenish hair [4]. Usnea
sp. was used in homeopathic system of medicine and traditional medicine in Pacific

island, New Zealand and traditional Chinese medicine. Around 500 A.D., U. diffracta



Vain was used as medicine in China. U. barbata has been prescribed to use for
uterine ailment by Hippocrates [4].

Lichens are used as basic material for perfume industry [3]. Up to 9,000 tons
of two lichens: Evernia prunastri (L.) Ach. and Pseudevernia furfuracea (L.) Zopf. have
been processed in Grasse, France. A typical “mossy” flavor from the ethanol extract
of both lichens is used not only as a component in certain perfumes, but also as a
fixative which keeps the flavor for a long time [3].

Moreover, lichens were used as basic material for dyes. In 1966, dyes from
Roccella species and other lichens were published by Kok [3]. Today, litmus is a

complex mixture of pigment prepared mainly from Roccella species [3].

1.3  Biological activities of lichen substances

The biological activities of lichen substances have been shown extensively
including antibiotic, antimycobacterial, antifungal, antiviral, antipyretic, anti-
inflammatory, analgesic, antiproliferative, antitumor and cytotoxic effects. The

biological activities in some recent studies are summarized in Table 1.1.



Table 1.1 Biological activities of some lichen substances [5-9]

Antiviral activities

Compounds

Viruses and viral enzymes

Depsidone: virensic acid and its

derivatives

Human immunodeficiency virus.

Butyrolactone acid:

protolichesterinic acid

HIV reverse transcriptase

(+)-Usnic acid and four orcinol

depsides

Epstein-Barr virus (EBV)

Emodin, 7-chloroemodin,
7-chloro-1-O-methylemodin,

5,7-dichloroemodin, hypericin

HIV, cytomegalovirus and other viruses

Antibiotic and antifungal activities

Compounds

Organisms

Usnic acid and its derivatives

Gram +ve bacteria, Bacteroides spp.,

Clostridium perfringens, Bacillus subtilis,
Staphylococcus aureus, Staphylococcus
spp., Enterococcus spp., Mycobacterium

aurum

Methyl orsellinate, ethyl
orsellinate, methyl B-orsellinate,

methyl haematommate

Epidermophyton floccosum,
Microsporum canis, M. gypseum,
Trichophyton rubrum,

T. mentagrophytes, Verticillium achliae,
Bacillus subtilis, Staphylococcus aureus,
Pseudomonas aeruginosa, Escherichia

coli, Candida albicans



Protolichesterinic acid

Helicobacter pylori

Pulvinic acid and its derivatives

Drechslera rostrata, Alternaria alternate,

Aerobic and anaerobic bacteria

Antitumour and antimutagenic activities

Compounds

Activities/cell types

(-)-Usnic acid

Antitumoral effect against Lewis Lung
carcinoma, P388 leukaemia, mitotic
inhibition, apoptotic induction,
antiproliferative effect against human

HaCaT keratinocytes

Scabrosin ester and its

derivatives, euplectin

Cytotoxic effect against murine P815

mastocytoma and other cell lines

Hydrocarpone, salazinic acid,

stictic acid

Apoptotic effect against primary culture

of rat hepatocytes

Psoromic acid, chrysophanol,

emodin and its derivatives

Antiproliferative effect against leukemia

cells

Salazinic acid and stictic acid

Apoptotic effect against primary culture

of rat hepatocytes

Enzyme inhibitory activities
Compounds Enzymes
Atranorin Trypsin, Pankreaselastase, Phosphorylase
Chrysophanol Glutathione reductase

Confluentic acid, 2-8-O-

methylperlatolic acid

Monoaminoxidase B

4-O-Methylcryptochlorophaeic

Prostataglandinsynthetase



acid

(+)-Protolichesterinic acid

5-Lipoxygenase (HIV reverse transcriptase)

Vulpinic acid

Phosphorylase

Norsolorinic acid

Monoamino oxidase

Physodic acid

Arginine decarboxylase

Usnic acid

Ornithine decarboxylase

1.4  Research scope

In Vietnam, the tropical monsoon climate is very suitable for lichen

development [10]. Vietnam has a number of diverse tropical lichen, but only a few

species have been studied [10]. The chemical constituents of Vietnamese lichens are

worth for further investigation in order to isolate novel compounds and/or

biologically active compounds according to the diversity of Vietnamese lichens. Thus,

the major purpose is to investigate the chemical constituents of Vietnamese lichen,

Usnea baileyi (Stirt.) Zahlbr. collected in highland.



Chapter 2
CHEMICAL CONSTITUENTS FROM LICHEN USNEA BAILEYI
21 Introduction
2.1.1 Usnea genus secondary metabolites

Usnea, appeared on host trees as a shrub-like, generally grows hanging from
tree branches, resembling grey and greenish hair (Figure 1.1). In the middle of the
thallus, an elastic chord or axis running through that can be indicated by carefully
pulling a filament apart from either end [11]. It is one of the largest genera in
Parmeliaceae with more than 600 species [12]. Many secondary metabolites of Usnea
genus have been reported.

Seven  compounds-(+) :usnic acid (1), 2-hydroxy-4-methoxy-3,6-
dimethylbenzoic acid (2), ethyl 2,4-dihydroxy-3,6-dimethylbenzoate (3), ethyl 2-
hydroxy-4-methoxy-3,6-dimethylbenzoate (4), evernic acid (5), barbatic acid (6) and
diffractaic acid (7) were isolated from U .emidotteries [13] (Figure 2.1)

In addition, Devehat and Boustie [14] isolated two new S-orcinol depsidones,
depsidone 1 (8) and cryptostictinolide (9), together with thirteen known compounds :
barbatic acid (6), atranorin (10), norstictic acid (11), stictic acid (12),
fumarprotocetraric acid (13), constictic acid (14), cryptostictic acid (15), menegazziaic
acid (16), peristictic acid (17), methyl Borcinolcarboxylate (18), (+)-usnic acid (1) and

ergosterol peroxide (19) from U .articulata collected in Indonesia (Figure 2.1).



Paranagama and Gunatilaka (2007) [15] isolated herbarin (20) and a
heptaketide, 1-hydroxydehydroherbarin (21) from lichen U. cavernosa (Figure 2.1).

From lichen U. alata growing on trees in La Carbonera, state of Mérida,
Venezuela, Keeton and Keogh (1973) [16], norstictic acid (11), stictic acid (12) and

caperatic acid (22) were isolated (Figure 2.1).

Me O Me O Me O
OH OFt OEt
e Me Me
2-Hydroxy-4-methoxy- Ethyl 2,4-dihydroxy- Ethyl 2-Hydroxy-4-
AU id (1 3,6-dimethylbenzoic acid 3,6- d|methylbenzoate methoxy-3,6-
(+)-Usnic acid (1) (%) dimethylbenzoate (4)
Me
d y
d >
OMe
Evernic acid (5) Me Barbatlc acid (6) Me  Diffractaic acid (7)
Me O Me
O CH,OH O Me
MeO o OH  Meo o =
CH,OH
CHO OHC COOH 2 - - HO
Depsidone 1 (8) Cryptostictinolide (9) Atranorln (10) O\>__//l COOH
(0]
Me Me O Me O 3
0 Me 0 Me 0
OH OH
HO (0] MeO (0] MeO (0] OH
CHO CHO CHO
HO o © HO™ o~ © OHC  COOH
Norstictic acid (11) Stictic acid (12) Fumaprotocetraric acid (13)

Figure 2. 1 Chemical constituents (1-22) from Usnea genus
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HO™ Mo O HO™ "o HO N O .
Constictic acid (14) Cryptostictic acid (15) Menegazziaic acid (16) < R
Me Q Me O ‘
(6} Me
OMe
OH
MeO 0 HO OH
COOMe Me HO
HO 0 (0] Methvl - olearboxyl 18 Ergosterol peroxide (19)
Peristictic acid (17) ethyl frorcinolcarboxylate (18)
oo Q Ve "™ 9 " H COOH
e & ¢ HsC
LI T ©Z ok cooon,
0 0 HO COOH
OMe O OMe O OH Caperatic acid (22)
Herbarin (20) 1-Hydroxydehydroherbarin (21)

Figure 2. 1 Chemical constituents (1-22) from Usnea genus (continuous)

2.1.2 U.bdileyi and its chemical constituents
Several species of Usnea have been investigated; nonetheless, there are a few

papers reporting for the constituents of U .baileyi.

Nguyen and co-workers [17] reported the chemical constituents of U. baileyi
thalli collected on tree barks at Lam Dong province, Vietham. Twenty seven
metabolites (Figure 2.2) from a detailed chromatographic fractionation of the
acetone extract, were elucidated as bailexanthone (23), bailesidone (24), stictic acid
(12), constictic acid (14), cryptostictic acid (15), hypoconstictic acid (25), menegazziaic
acid (16), 8-O-methylconstictic acid (26), methylstictic acid (27), 8-O-
methylmenegazziaic acid (28), virensic acid (29), 9'-O-methylprotocetraric acid (30),

protocetraric acid (31), barbatic acid (6), diffractaic acid (7), 4-O-demethylbarbatic acid
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(32), atranorin (10), (20R, 24R)-ocotillone (33), (20S, 24R)-ocotillone (34), betulonic
acid (35), wusnic acid (1), dasypogalactone (36), 7-hydroxy-5-methoxy-6-
methylphthalide ~ (37),  methyl  4-O-methylhaematomate  (38),  methyl
orcinolcarboxylate (39), atranol (40), and eumitrin A, (41).

Moreover, in 2010, Din and Elix [18] reported the presence of usnic acid (1),
salazinic acid (42), norstictic acid (11), atranorin (10) and protocetraric acid (31) as
major compounds (Figure 2.1) from lichen U. baileyi collected in Bukit Larut, Taiping,
Malaysia.

In 1973, Yang and Shibata [19] isolated eumitrin A; (43), eumitrin A, (41) and
eumitrin B (44) from yellow pigment of lichen U. baileyi (Stirt.) Zahlbr collected at

Yuriagehama (Figure 2.2).
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o R
(0]
HO o OH
—
o OH
(6]
24 R4: OH, Rj: Me, R3:MeCOCH, 20R: H
25R4: Me, R,: CH,OH, R3:0OH 30 R: oM
26 R;: CHO, R,: CH,0H, Ry: OMe -Hve
31R: OH

27 Ry: CHO, R;y: Me, R3:O0Me
28 R4: OH, Rj: Me, Rj3: OMe

(0}
(0}
HO OH
32
33 20R
34 20S
MeO R4 38 R;= COOMe R,=CHO
o R4 R3=OMe R,=Me
39 R,= COOMe R,=Me
R OH R3=OH R4=Me
OH O 7 il 40 R;=CHO  R,=H
37 2 R3=Me R,=OH
Me O
O  CH,OH
HO o OH
CHO
HO™ o © OH O OH O OH
Salazinic acid (42) Eumitrin A; (43) Eumitrin B (44)

Figure 2. 2 Chemical constituents (23-44) from U. baileyi

Within this underexplored chemodiversity, a collection of structurally unique
xanthones were reported [20]. In addition, ergochrome dimers structurally related to
the eumitrin [19] and secalonic acid series [21, 22] were scarcely reported from

lichen source, in particular from Usnea species. Such dimeric xanthones were
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privileged structures since they were endowed with various and significant
bioactivities [23]. Accordingly, secalonic acids exhibited a wide array of bioactivities
including cytotoxic, antibacterial, antitumor, and anti-HIV properties [24, 25]. The
structurally-related tetrahydroxanthone atropisomer phomoxanthone A from the
mangrove-associated fungus Phomopsis longicolla also displayed promising
antitumor properties [26], renewing the interest in isolating and synthesizing new
derivatives from this structural class. Numerous xanthone dimers were axially chiral
natural products and the preferred biaryl torsional angle (i.e. M- or P- helicity) plays a
prevalent role in their pharmacological activities. Secalonic acids were also of utmost
interest since they were reported to occur as mycotoxins with toxic,
fetotoxic/teratogenic, and mutagenic properties [27].

The fruticose lichen U. baileyi has been phytochemically investigated by
several authors and reported to contain depsides (barbatic and thamnolic acids),
depsidones (protocetraric, norstictic, and salazinic acids), aliphatic and paraconic
acids (caperatic and protolichesterinic acids), the dibenzofuran-related usnic acid, and
xanthone dimers [19, 28]. As to this latter phytochemical group, the late Asahina first
reported on the occurrence of yellow pigments within U. baileyi, the so-called
eumitrins A1, A2, B, and T (Asahina, 1967). A few years later, Shibata and co-workers
elucidated these eumitrins [19]. The HPLC-based chemical profiling of U. baileyi
recently revealed the occurrence of a wider set of dimeric xanthones, including

eumitrins A3 and B2, which are still to be structurally elucidated [18]. Some other
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unidentified dimeric xanthones were also reported from different lichen sources,
namely eumitrin U, X or Y [29-31].

In the search for new xanthone dimers from lichen source, our previous
phytochemical investigation of the acetone extract of U. baileyi led to the isolation
and structure elucidation of bailexanthone, along with a new depsidone, bailesidone

[17].

2.1.3 Objectives

In Vietnam, the tropical monsoon climate is very suitable for lichen
developing [10]. Vietnam has a number of diverse tropical lichens, but only a few
species have been studied [10]. The chemical constituents of Viethnamese lichens
are worth for further investigation in order to isolate novel compounds and/or
biologically active compounds according to the diversity of Vietnamese lichens.

The major purpose of this study is the isolation, structure elucidation,
synthesizing derivatives and evaluation biological activities of the chemical

constituents of Vietnamese lichen, U. baileyi collected in highland .

2.2 Experimental
2.2.1 Instruments and materials
2.2.1.1 Instruments and chemicals
Specific rotations were obtained on a Perkin-Elmer 341 digital polarimeter.

Electronic Circular Dichroism and corresponding UV-visible spectra were measured on
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a Jasco J-815 spectropolarimeter. The IR spectra were acquired using a Shimadzu
FTIR-8200 infrared spectrophotometer. 1D and 2D NMR spectra were acquired using a
Bruker Advance 400 MHz or a Bruker AM-500 MHz spectrometer. Chemical shifts are
referenced to the residual solvent signal (CDCl; : &, = 7.26, & = 77.1). HR-ESI-MS data
were recorded using a Bruker MicroTOF Q-ll mass spectrometer. Open-column
chromatography separations were performed on silica gel (40-63 um, Himedia). TLC
analyses were carried out on precoated silica gel 60 F254 or silica gel 60 RP-18 F254S
plates (Merck), and spots were visualized by spraying with 10% H,SO, solution

followed by heating.

2.2.1.2 Lichen material U.baileyi

In June 2015, lichen U. baileyi (Figure 2.3) was collected from the barks of
trees in Tam Bo mountain, Di Linh, Lam Dong, Vietnam where is 1000 m altitude. The
scientific name of this lichen was identified by Ms. Natwida Dangphui and Assistant
Professor Dr. Ek Sangvichien, Lichen Research Unit, Department of Biology, Faculty of

Science, Ramkhamhaeng University, Bangkok, Thailand.
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Figure 2. 3 The lichen Usnea baileyi

2.2.2 Extraction

Dried lichen U. baileyi was ground and extracted by maceration with acetone.
The solvent was removed in vacuo using rotatory evaporator to get acetone crude
extract which was applied to silica gel quick column eluting with dichloromethane
(Dc, CH,CL,), ethyl acetate (EtOAC), acetone (Ac) and methanol (MeOH) to obtain four
fractions: DC, EA, AC, and ME, respectively.

Isolation and purification of secondary metabolites from the extracts of lichen
U. baileyi was conducted by various methods such as column chromatography on

each fraction as Scheme 2.1.
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Lichen powder

Acetone
Acetone extract
W Washed with acetone
v
AcetoT crude Precipitate
Dcl EtOAcl Acl MeOHl
DC EA AC ME

Column chromatography

Secondary metabolites

Scheme 2. 1 The separation scheme of the fractions of U .baileyi

2.2.3 Biological activities
2.2.3.1 Cytotoxicity and antiparasitic activity of US1-3

This activity was carried out by Structure Feéedérative de Recherche BIOSIT,
Université de Rennes 1. The cytotoxicity of US1-3 was evaluated against a panel of 6
representative cell lines, namely Huh7 (differential hepatocellular carcinoma), Caco 2
(differentiating colorectal adenocarcinoma), MDA-MB-231 (breast carcinoma), HCT-116
(actively proliferating colorectal carcinoma), PC-3 (prostate carcinoma), NCI-H2 (lung
carcinoma), and diploid skin fibroblasts as normal cell lines for control. Cells were
grown as reported elsewhere and the inhibition of cell proliferation was determined

as in Coulibaly et al[32]. US1-3 were also assayed for their antiparasitic activity
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against the chloroquine-resistant strain of Plasmodium falciparum FcB1. The details
of the experimental procedure for this bioassay are similar to those formerly

reported [33].

2.2.3.2 Biological activities of compounds US5-11
2.2.3.2.1 Antibacterial activity

This activity was carried out by Lichen Research Unit and Lichen Herbarium,
Department of Biology, Faculty of Science, Ramkhamhaeng University. The minimum
inhibitory concentration (MIC ) for each compound was determined by the broth
micro-dilution method according to the recommendations of the Clinical and
Laboratory Standards Institute (CLSI).(CLSI, 2015) [34].

Compounds US5-11 were evaluated for their antimicrobial activities against
Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 25923), Esherichia coli
(ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC
10231) by micro-broth dilution method in 96-well culture plates. The test
microorganisms were incubated at 37 °C for 24 h in Mueller-Hinton broth and the
bacterial suspension were adjusted to 0.5 McFarLand unit. The inoculum was then
diluted 100 times and 100 uL of inoculum was added to 96-well.

Stock solution of each compound was dissolved in 100% dimethylsulfoxide
(DMSO) to a stock solution of 1 mg/mL. The compound was further two fold diluted

in DMSO and tested at final concentrations between 500 to 0.98 pg/mL.
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Chloramphenicol was used as a positive control. The growth was observed after 24
hours of incubation using visual reaction by addition color of iodonitrotetrazolium
(INT), wherereading +: growth color pink (growth) and reading — : growth color yellow

(no growth)

2.2.3.2.2 Tyrosinase inhibitory

The tyrosinase inhibitory activity was performed using 96 well micro plate [35]
with modification. Compounds were prepared in 10% DMSO in buffer and two fold
dilutions were done to obtain various concentrations. 50 yL of sample solution in
buffer were placed in 96 well plate, then 50 pL tyosinase enzyme from mushroom
(250 U/mL) were added and the mixture was incubated for 5 minutes. 50 yL of 5 mM
L-tyrosine was added later as a substrate; the mixtures were then incubated further
for 30 minutes. The reaction was measured at 490 nm. Kojic acid was used as a
positive control. The concentration range of extract used for the activity was 0-200
pg/mL. Percent of tyrosinase inhibition was calculated from the following equation

(1) and ICso was determined for each sample.

Adcontrol —AA sample
AA control

% Tyrosinase inhibition = X 100 (1)

Where "AA control" was the absorbance value at 490 nm without the test
sample and "AA sample" was the absorbance value with mixture contained the

sample.
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2.2.3.2.3 0Ol-glucosidase inhibitory

This inhibitory activity was evaluated according to [35].

Enzymatic activity was calculated by measuring absorbance at 405 nm
(ALLSHENG micro plate reader AMR-100). All samples were analyzed in triplicate at
various concentrations to obtain the ICs, value of each compound. The mean values

and standard deviation were also identified.

2.3 Results and discussion
2.3.1 Extraction and fractionation of lichen Usnea baileyi

The air-dried lichen powder (800 g) was extracted with acetone at room
temperature by maceration to get acetone extract (80 g) after evaporating acetone
under reduced pressure. The acetone extract (80 ¢) was washed many times with
acetone to obtain two parts: precipitate (23.7 ¢) and the acetone solution which was
further evaporated to afford the acetone fraction (56.2 g). The acetone fraction (56.2
g) was applied to silica gel quick column eluting with CH,Cl,, EtOAc, acetone and

MeOH to obtain four fractions: DC (31.2 g), EA (9.6 g), AC (6.5 ¢) and ME (4.6 g).

2.3.2 Separation of dichloromethane fraction

The dichloromethane fraction (DC, 31.2 g) was subjected to silica gel column
chromatography using a solvent system of n-hexane/EtOAc (8:2 to 0:1) affording four
subfractions DC1 (7.8 ¢), DC2 (9.5 ¢), DC3 (6.9 g), and DC4 (5.2 g) (Scheme 2.2).

Subfraction DC2 (9.5 ¢) was selected for further fractionation by silica gel column



20

chromatography using an isocratic mobile phase consisting of n-hexane/
CH,Cl,/MeOH (5:5:0.1) to afford subfractions DC2.1-5: DC2.1 (0.9 ¢), DC2.2 (1.2 o),
DC2.3 (1.8 g), DC2.4 (2.6 ¢), and DC2.5 (1.6 ¢). Fraction DC2.2 (1.2 g) was reseparated
by open-air column chromatography using an isocratic elution solvent system
consisting of n-hexane/EtOAc (6:4) to afford three fractions DC2.2.1-3. Further
fractionation of DC2.2.1 (201.3 mg) by silica gel column chromatography using n-
hexane/ CH,Cl,/EtOAC (3:2:1) solvent system to afford compounds US1 (4.6 mg), US2
(3.7 mg), US3 (1.1 mg), and US4 (1.5 mg). Further fractionation of DC2.2.2 (450.9 mg)
by silica gel column chromatography using n-hexane/ CH,Cl,/MeOH (3:7:0.1) solvent
system to afford compounds US5 (5.6 mg), US6 (6.7 mg), and US7 (2.4 mg). DCM2.2.3
(385.7 mg) by silica gel column chromatography using n-hexane/CH,Cl,/EtOAc/MeOH
(6:4:2:0.1) solvent system to afford compounds US8 (4.6 mg), US9 (5.2 mg), US10 (7.4
mg), and US11 (2.2 mg). The procedure for the fractionation of U. baileyi is

summarized in Schemes 2.2 and 2.3.

Lichen usnea baileyi (800 g)

Acetone

Acetone extract (80 g)

Washing by acetone
Liquid (56.2 g) Precipitated (23.7 g
Quick Cc
CHzClz EtOAC Ac MeOH
DC(31.2g) EA(9.6g) AC(6.5g) ME (4.6 g)

Scheme 2. 2 Procedure for the fractionation of U. baileyi
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DC(31.2g)
hexane: EtOAc hexane: EtOAc hexane: EtOAc
8:2 5:5 2:8 Ac
DC1 (7.8 g) DC2 (9.5 g) DC3(6.9 g) DC4 (5.2 g)
cc/s1
DC2.1 (0.9 g) DC2.2 (1.2 g) DC2.3 (1.8 g) DC2.4 (2.6 g) DC2.5 (1.6 g)
|CC/52
DC2.2.1 (201.3 mg) DC2.2.2 (450.9 mg) DC2.2.3 (385.7 mg)
cc/s3 | cc/s4 |cc/55
US1 (4.6 mg) US5 (5.6 mg) US8 (4.6 mg)
US2 (3.7 mg) US6 (7.7 mg) US9 (5.2 mg)
US3 (1.1 mg) US7 (2.4 mg) US10 (7.4 mg)
Us4 (1.5 mg) Solvent system: Us11 (2.2 mg)

S1: :hexane: CH,Cl,: MeOH (5: 5: 0.1)
S2: hexane: EtOAc (6: 4)
S3: hexane: CH,Cl,: EtOAc (3: 2: 1)
S4: hexane: CH,Cl,: MeOH (3: 7: 0.1)
S5: hexane: CH,Cl,: EtOAc : MeOH (6: 4: 2: 0.1)
CC: chromatography column (with normal silica gel)

Scheme 2.3 Procedure for the separation of DC fraction of U. baileyi

US1: yellow, amorphous solid. [0 + 28.00 (c 0.02, MeOH) ; Amax (log €)
205 (4.2), 249 (3.2), 339 (4.1) nm ; IR (KBr) Vmax 3400, 2907, 1732, 1628, 1424, 1335,

1258, 1212 cm-1; HRESIMS m/z 623.1792 [M-H]- (calcd. for Cs,Hs;045, 623.1770).

US2: yellow, amorphous solid. [1%% - 114.70 (c 0.02, MeOH) ; Amax (log €)
205 (3.1), 278 (1.6), 336 (1.4) nm; IR (KBr) Vmax 3455, 2959, 1746, 1628, 1453, 1368,

1218 cm-1 ; HRESIMS m/z 689.1820 [M+Nal+ (calcd. for C,H3,013Na, 689.1841).
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US3: yellow, amorphous solid. [0?%, - 57.00 (c 0.02, MeOH) ; Amax (log €)
238 (2.7), 270 (1.2), 317 (0.9) nm ; IR (KBr) Vmax: 3421, 3379, 1733, 1618, 1304 cm-1;

HRESIMS m/z 667.1658 [M-H]- (calcd. for CasHs;01s, 667.1663).

US4: white, amorphous solid. Amax (log €) 253 (1.9), 306 (2.1) ; IR (KBr) Vmax:
3424, 3291, 2951, 1749, 1736, 1729 cm-1; HRESIMS m/z 357.0614 [M-H]- (calcd. for

Cy5H130g, 357.0616).

US5: yellow, amorphous solid; [01%; - 104.4 (c 0.02, MeOH); Amax (log €)
232 (4.3), 269 (4.4), 371 (3.9) nm; HRESIMS m/z 633.1942 [M+Nal+ (calcd. for

C32H34012Na, 633.1948).

USé: yellow, amorphous solid; [00%, - 68.4 (c 0.02, MeOH); ); Amax (log €)
236 (4.3), 266 (4.4), 365 (4.0) nm; HRESIMS m/z 633.1922 [M+Nal+ (calcd. for

CayHa01Na, 633.1948).

UST: yellow, amorphous solid; [Q1%, - 34.0 (c 0.02, MeOH); Amax (log €) 207
(4.3), 266 (4.3), 367 (3.8) nm; HRESIMS m/z 647.1740 [M+Na]+ (calcd. for CsH3,015Na,

647.1741).

US8: yellow, amorphous solid; [01?°; - 18.8 (c 0.02, MeOH); Amax (log €) 236
(4.2), 267 (4.3), 373 (3.8) nm ; HRESIMS m/z 647.1766 [M+Nal+ (calcd. for

C32H32013Na, 6471741)
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US9: yellow, amorphous solid; [0, + 258.8 (c 0.02, MeOH); Amax (log €)
235 (4.3), 267 (4.4), 364 (3.8) nm; HRESIMS m/z 647.1748 [M+Nal+ (calcd. for

C32H32013Na, 6471741)

US10: yellow, amorphous solid; [0]%, - 259.0 (c 0.02, MeOH); Amax (log €)
243 (4.5), 283 (4.5), 336 (4.6) nm; HRESIMS m/z 689.1824 [M+Na]+ (calcd. for

C34H 34014Na, 689.1 846)

US11: yellow, amorphous solid; [0%, - 264.8 (c 0.02, MeOH); Amax (log €)
214 (4.4), 241 (4.4), 319 (4.6) nm; HRESIMS m/z 687.1716 [M+Nal+ (calcd. for

C34H32014Na, 687.1690).

2.3.3  Structural elucidation of compounds from dichloromethane fraction.
2.3.3.1 Compound US1

The molecular formula of US1 could be established as CsyH3,045 based on
C NMR and HRESIMS data, verifying the presence of 18 double-bond equivalents.
Owing to molecular formula requirements and 30 protons being evident from 'H
NMR analysis, two protons were deduced to occur as aliphatic hydroxy groups. The
'H and HSQC spectra revealed three hydrogen-bonded hydroxy sroups at &, 13.77
(1H, s, OH-8), 11.88 (1H, s, OH-1) and 11.73 (1H, s, OH-1"), two pairs of ortho—oriented
aromatic protons at 8y 7.48 (2H, d, J = 8.5 Hz, H-3 and H-3') and 6.63 (2H, d, J = 8.5
Hz, H-4 and H-4'); two oxygenated methine signals at 6 3.93 (1H, d, J = 11.5 Hz, H-5)

and 3.73 (1H, d, J = 10.5 Hz, H-5"); three methine signals at &y 2.98 (1H, dd, J = 12.0,
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4.5 Hz), 242 (1H, m, H-6) and 1.83 (1H, m, H-6'); three diastereotopic pairs of
methylene hydrogens at &, 2.74 (1H, dd, J = 19.0, 6.0 Hz, H-7) and 2.32 (1H, dd, J =
19.0, 6.5 Hz, H-7); at &y 2.20 and 2.15 (2H, m, H2-8') and at &y 1.95 (1H, m, H-7") and
1.21 (1H, m, H-7"); two methoxy signals at 6, 3.70 (3H, s) and at 6, 3.73 (3H, s); two
methyl groups at &y 1.17 (3H, d, J = 6.5 Hz) and at 1.12 (3H, d, J = 6.5 Hz). The two
methoxy groups could be straightforwardly defined as methyl ester moieties based
on HMBC correlations from H3-13' to C-12" and from H3-13 to C-12. The *C NMR
spectrum of US1 revealed an apparent twinning for many carbon resonances, leading
to infer that it might correspond to a dimeric structure with some slight differences
between each subunit. The scaffold of each subunit could be determined to be a
xanthone.

The first subunit was determined as a hexahydroxanthone based on the COSY
spectrum which allowed the development of a spin system identified as H-5'/H-
6'/(H3-11")/H2-7"/H2-8'/H-8a’. The chemical shift of C-5' (8¢ 80.3) was indicative of
the ipso location of a first aliphatic hydroxy group. The C-10" location of the methyl
ester group could be determined from the long-range heteronuclear correlation from
both the oxymethine proton H-5" at & 3.73 and the oxymethine proton H-8a’ at &
298 to C-12'. The chemical shift value of C-10" indicated that this carbon was
oxygenated and the HMBC correlations from H-8' to C-9" and from H-8a" to C-4' and

C-9a’ defined a chromenone core. The second spin system in this monomer involved
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two ortho-oriented aromatic protons and the connection of this phenyl ring to the Y-
pyrone nucleus of the hexahydroxanthone could be deduced from long-range
heteronuclear correlations from the aromatic protons H-3" at &y 7.48 and H-4" at &
6.63 to C-4a’ (8¢ 159.0) and C-9a’ (&, 107.4). A phenol group could be assigned at C-
1" as evidenced by HMBC correlations from the phenolic proton at 8 11.73 to C-1'
(&¢ 159.5), C-2' (&¢ 118.2) and C-9a’. Due to C-2' being a quaternary carbon, it can be
deemed that this specific site is linked to the other part of the compound. The key

COSY, HMBC and ROESY correlations of US1 are summarized as in Figure 2.4.

— COSY
~—~HMBC

COOMe OH »+—~ROESY

Figure 2.4 Key COSY, HMBC and ROESY correlations of compound US1

The second monomer, subunit Il, was highly reminiscent of the first one. The
most salient spectroscopic difference between the two sub-units being the intense
downfield shift of C-8 and C-8a compared to their homologous positions in the first
sub-unit (with respective &¢ values of 177.7 and 101.7 vs 20.4 and 51.2 ppm) that

indicated the occurrence of an enolic moiety at these positions, as further backed up
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by the HVMBC cross-peaks between the hydrogen-bonded hydroxy group OH-8 at &¢
13.77 and C-7 (8¢ 36.4), C-8 (8¢ 177.7) and C-8a (6¢ 101.7). The NMR signal patterns
related to this subunit, including COSY and HMBC data, confirmed a similar gross
structure of the rest of this monomer, compared to that of subunit I. Due to 'H NMR
resonances for two ortho oriented aromatic protons, the only remaining possibility
for monomeric units linkage was a bond tethering C-2 with C-2" which was depicted
in Figure 2.4. The tentative chemical shift assisnments of US1 are tabulated in

Tables 2.1 and 2.2.
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Figure 2. 5 Experimental ECD plot of US1



AWIAINTAUUNIINY 1A D
CHuLALONGKORN UNIVERSITY

27



Table 2.1 'H (500 MHz) NMR data of US1-3 (CDCl,)

Eumitrin C (US1)

Eumitrin D (US2)

Eumitrin E (US3)

No.
0., mult. U in Hz) 0., mult. U in Hz) O, mult. Uin Hz)
3 7.48, 1H, d, 8.5 7.76, 1H, d, 8.5 7.85, 1H,d, 8.5
a4 6.63, 1H, d, 8.5 6.58, 1H, d, 8.5 6.69, 1H, d, 8.5
5 3.93, 1H,d, 11.5 4.47, 1H, d, 3.5 4.37, 1H, d, 3.5
6 242 1H, m 2.89, 1H, m 2.16, 1H, m
2.74, 1H, dd, 19.0, 6.0 2.95, 1H, dd, 17.0, 8.5 235, 1H, m
.
232, 1H, dd, 19.0, 10.5  2.24, 1H, dd, 17.5, 4.0 2.16, 1H, m
3.22, 1H, d, 17.0
8a
3.10, 1H, d, 17.0
11 1.17, 3H, d, 6.5 1.30, 3H, d, 7.0 1.22, 3H, d, 6.0
13 3.70, 3H, s 3.67, 3H, s
1-OH 11.88, 1H, s 11.75, 1H, s 11.30, 1H, s
8-OH 13.77, 1H, s 7.09, 1H, br s
8a-OH 6.38, 1H, br s
o' 6.49, 1H, s 6.50, 1H, s
3 7.48, 1H, d, 8.5
aq’ 6.63, 1H, d, 8.5
5' 3.73, 1H, d, 10.5 5.03, 1H, dd, 12.0,5.0  5.01, 1H, dd, 12.0, 5.0
1.66, 1H, m 1.80, 1H, m
6" 1.83, 1H, m
1.74, 1H, m 1.69, 1H, m
, 1.95, 1H, m 1.86, 1H, m 1.89, 1H, m
.
1.21, 1H, m 1.52, 1H, m 1.52, 1H, m
1.86, 1H, m 1.89, 1H, m
g’ 2.15 - 2.20, 2H, m
1.52, 1H, m 1.52, 1H, m
8a’ 2.98, 1H, dd, 12.0, 4.5 297, 1H,dd, 12.0,5.0  2.97, 1H,dd, 12.5, 4.5
11 1.12,3H, d, 6.5 213, 3H, s 2.13, 3H, s
13’ 3.73, 3H, s 3.71, 3H, s 3.66, 3H, s
15’ 2.00, 3H, s 1.94, 3H, s
1"-OH 11.73, 1H, s 11.47, 1H, s 11.48, 1H, s




Table 2.2 °C (125 MHz) NMR data for US1-3 (CDCLy).
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ust us2 us3 us1 us2 us3
No. 5 5 5 No. 5 5 5
C C C C C @
1 159.0 159.5 161.4 1" 159.5 161.8 162.0
2 1177 107.5 118.5 2" 1182 111.4 111.4
3 140.4 143.1 145.4 3’ 1404 151.0 150.7
4 1077 107.3 107.5 4" 1077 115.5 115.0
da 1584 159.0 158.3 da’  159.0 156.5 156.7
5 77.1 87.7 74.8 5" 803 72.6 72.6
6 29.4 30.1 29.8 6 343 26.1 26.3
7 36.4 36.3 34.2 77 312 22.4 22.4
8 177.7 175.4 108.9 g’ 204 25.3 25.6
8a 1017 39.9 73.6 8a’ 512 48.7 48.8
9 187.3 194.4 195.0 o' 1974 197.6 197.6
9a  107.3 117.3 106.7 92" 1074 104.9 104.9
10 849 84.6 84.6 10" 875 83.4 83.6
11 18.1 21.0 15.1 11! 184 21.2 21.9
12 1693 168.9 165.5 12! 1704 170.3 169.8
13 530 53.4 13’ 534 53.4 53.4
14’ 169.8 170.4
15’ 20.9 20.8

The absolute configurations of 2,2'-secalonic acids and US1 were similar and

could be reliably determined from their n-t* ECD bands around 330 nm, that are

correlated with the configurations of the C-10 and C-10" stereogenic centers [36, 37].

A positive n-Tt* ECD band at 333 nm determined C-10 R, C-10" R configuration and
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also allowed the assignment of the other stereogenic centers based on the relative
stereochemistry, in excellent agreement with literature data [38-40].

Accordingly, the magnitude of the vicinal coupling constant value of the
oxymethine proton at H-5/H-5' bisects the dihedral angle of the adjacent proton(s).
Regarding the currently described structure, the elevated coupling constant of H-5
and H-5' determined the axial position of both these oxymethine protons and
established the C-5/C-6 and C-5'/C-6" trans-diaxial configuration, as in blennolide B or
xantholepinone A among others (*Jys1s=11.5 Hz and *Jig54e= 10.5 Hz) [39]. This
deduction was further supported by ROESY correlations between the oxymethine
proton at Oy 3.73 (H-5) and both the methyl group at &, 1.12 (H3-11') and the
methine proton at &, 2.98 (H-8a’) that determined the synfacial orientation of these
substituents while the lack of ROE correlation with the contiguous methyl ester
groups ascribed this latter functionality to the other face of the nucleus. The axial
orientation of H-5 was diagnostic of a space arrangement identical to that of eumitrin
A2 rather than that of eumitrin Al/eumitrin B [19] as further ascertained on various
bisxanthone scaffolds [41-44]. The absolute stereostructure assigcnment of C-5 was
proposed by the comparison of the NMR data of the long sought-after
tetrahydroxanthone hemisecanolic acid monomers, blennolide B and its C-5 epimer,
blennolide C, jointly determining a 5R, 5R" configuration[39]. Thus, the (5R, 6R, 10R,

5'R, 6'R, 10'R)-absolute configuration of US1, namely eumitrin C, was determined as
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displayed in Figure 2.4. Conversely, the ECD spectra of dimeric xanthones having a

hindered rotation is indicative of their axial rather than central chiralities [45].

2.3.3.2 Compound US2

US2 was isolated as light yellow amorphous solid. Its molecular formula was
determined to be CiH3Oy4 based on the sodiated molecular ion peak at m/z
689.1820 (calcd for CsqHs4014Na, 689.1841). In spite of the closely related molecular
formulae, the examination of the 'H and >C NMR spectra revealed some important
structural differences with US1 including the lack of the enolic signals that indicated
the absence of a A% double bond and the occurrence of an acetoxycarbonyl group
that could be located at C-5" based on the HMBC correlations from the
acetoxycarbonyl protons at & 2.00 (H3-15") to C-14' (6. 169.8) and C-5' (&¢ 72.6) as
further backed up by the HMBC crosspeak between the oxymethine proton H-5' (&
5.03) and C-14" (8¢ 169.8). Likewise, one of the methyl groups was downfield shifted
to &, 2.13 indicating its aromatic nature, consistently with the disappearance of an
aromatic proton signal and with the singlet status of the aromatic proton at &, 6.49
(H-2"). This methyl group was indeed located at C-3', based on the long-range
heteronuclear correlations from these protons to C-2' (& 111.4), C-3' (8¢ 151.0), and
C-4' (8¢ 115.5). The COSY spectrum revealed the H-5'/H2-6'/H2-7'/H2-8'/H-8a’ proton
spin system, further supported by the full set of possible 2J and 3J correlations

observed in the HMBC spectrum that established the hexahydroxanthone scaffold of
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the first monomer. The synfacial orientation of the acetoxycarbonyl and of the
methyl ester groups was established from the H3-13'/H3-15" ROE crosspeak while the
key ROE effect between the oxymethine proton at &, 5.03 (H-5') and the methine
proton at 8y 2.97 (H-8a") ascribed these protons to the other face of the structure.
As formerly observed for US1, the vicinal coupling constant value of the oxymethine
proton H-5" determined its axial orientation and thus defined a 5’'R configuration
identical to that of blennolide B to define the structure of this first subunit as
displayed in Figure 2.6.

The remaining signals were assigned to a hydrogen-bonded hydroxy proton at
Oy 11.75, ortho-oriented aromatic protons at &y 6.58 and 7.76, an oxygenated
methine protons at &y 4.47, an aliphatic methane proton at & 2.89, a diastereotopic
methylene proton at 8y 2.32/2.16 and a methyl group at &, 1.30. The thorough
analysis of long-range heteronuclear correlations established a partially saturated y-
pyrone system annulated to an aromatic ring. The molecular formula of US2
determined a double bond equivalent of 18, and the presence of the pentacyclic
biaryl scaffold determined so far along with the five carbonyl carbons [6¢ 175.4 (C-8),
170.3 (C-12'), 169.8 (C-14'), and 168.9 (C-12)] accounted for 17 elements of
unsaturation, thereby leaving one aliphatic ring system to be introduced in the
remaining part of the molecule. Accordingly, the analysis of the COSY spectrum
revealed the proton spin system of H-5/H-6/H3-11/H-7 which was cyclized to afford a

B-methyl-y-lactone moiety as deduced from HMBC correlations of the oxymethine
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proton at 8y 4.47 (H-5), the methine proton at 8, 2.89 (H-6), and the diastereotopic
methylene protons at &y 2.24 and 2.95 (H2-7) to C-8 (8¢ 175.4). The key HMBC
correlations from the methylene protons H2-7 to C-5 (& 87.7), C-9 (6. 194.4), C-10a
(Oc 84.6) and C-12 (6¢ 168.9) defined the connection between the chromone core
and both the y-butyrolactone moiety and the ester group, as depicted in Figure 2.6.
The planar structure of US2 was obtained by connecting the two monomeric units
via the linkage of hexahydroxanthone C-4' and chromanone C-2, evidenced by the
HMBC correlation of the aromatic proton at &y 7.76 (H-3) to C-4' (8¢ 115.5) and from
the aromatic methyl protons at Oy 2.13 to C-4'. The oxymethine proton H-5 was
coupled to the tertiary methine proton H-6 with a coupling constant of 3.6 Hz,
characteristic of trans-oriented protons in such ring system [46], as further validated
by ROE correlation between H-5 and CHs-11. This deduction was supported by the
long-range interunit H-3/H-11" ROE crosspeak, as earlier reported on dimeric
tetrahydroxanthone neosartorin that displays the same relative configuration and
axial chirality [47].

The structure of US2 comprised a rotationally hindered biaryl axis, as
evidenced by the axial chirality of compounds being similarly ortho-substituted to
the stereogenic biaryl axis [47, 48]. Each monomer of US2 revealed a benzoyl
chromophore with a maximum UV absorption near 240 nm [41, 49]. Based on the
blennolide series, it was demonstrated that the ECD Cotton effects at this

wavelength did not split [39]. On the opposite, the axially linked dimers display
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obviously split CE indicating that the chromophores interacted with each other, as
revealed by their opposite but not mirror ECD spectra plots. In such structures, axial
chiralities governed chromophore spatial position and the ECD spectrum [48, 50, 51].
Thus, the chromophores’ rotary manners were identical to those of the CD Exciton
Chirality Rule. The anticlockwise manner of the two benzoyl chromophores of US2
could be deduced from the negative exciton couplet centered at around 240 nm;
consistently with earlier reports on related structures [47, 48], as further backed up
by the ROE correlation between H-3 and H3-11" (Figure 2.7). The absolute
configuration of y-butyrolactone ring was deduced by comparison between both
predicted spectra with the experimental one, which revealed an excellent fit for a

(aS, 5R, 8a'R, 10'R, 5R, 6R, 10S) configuration (Figure 2.6).

Figure 2. 6 Chemical structure of US2
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Figure 2. 7 Key ROE correlations of compound US2

— Experimental ECD spectrum of 2
08 | - =« TDDFT ECD spectrum of 2

200 250 300 350 400
nm

Figure 2. 8 Comparison of the experimental ECD spectrum of US2 and calculated

ECD spectrum for the (aS, 5'R, 8a'R, 10'R, 5R, 6R, 10S) stereoisomer (UV shift = -12 nm)
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2.3.3.3 Compound US3

US3 was obtained as light yellow amorphous solid. Its molecular formula was
determined as Ci3H3,045 based on HRESIMS measurements (m/z 667.1658 calcd for
667.1668 [M-H]) and >C NMR data. The 'H NMR spectrum showed 30 protons,
revealing the occurrence of US3 supplementary aliphatic hydroxyl groups. The
thorough analysis of the 2D NMR spectra determined a similar hexahydroxanthone
monomeric building unit as in US2. As to the other subunit, the occurrence of a
hydrogen-bonded hydroxy proton at 8y 11.30 and the ortho-oriented aromatic
protons at &, 7.85 and 6.69 determined the unchanged constitutions of A and B
rings, as further supported by the key long-range heteronuclear correlations outlined

in Figure 2.9.

o H
NoH 0 Z ~OH
g o0
— COSY
~—~ HMBC
X\ NOESY

Figure 2. 9 Selected COSY and HMBC correlations of compound US3

The structural features elucidated account for 15 indices of hydrogen

deficiency, leaving three more to be introduced, while five more oxygen atoms still
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have to be incorporated into the structure. The COSY spectrum revealed the
Hs/He/(Hs-11)/H,-7 spin system, along with the HMBC correlations from the methyl
protons at 8y 1.22 to C-5 (&¢ 74.8), C-6 (&¢ 29.8), and C-7 (&¢ 34.0). An aliphatic
hydroxyl group could be located at C-8 based on the long-range heteronuclear
correlations from the hydroxyl proton at &y 7.09 to C-7, C-8 (6. 108.9), and C-8a (6
73.6). The linkage of the OH group to the carbon resonating at & 108.9 was
determined based on the HMBC cross-peak between the oxymethine proton at 8y
437 and C-8a. Owing to molecular formula requirements and to connectivity
constraints, a bicyclic framework tethering C-8a with C-10 through a lactone could be
determined, which was consistent with the resonating of C-8 at 6 108.9 that is
indicative of a hemiketalic carbon. Likewise, the chemical shift of the tertiary carbon
at O¢ 84.6 is in excellent agreement with earlier reports on molecules bearing a
methyl ester group on this specific position [39, 41, 48].

Similar to US2, the aS axial chirality of US3 could be determined based on
the negative Exciton couplet at 240 nm [41, 49]. The (10R/10°R) absolute
configurations could be determined based on the positive sign of the band ca 330
nm. The validity of this band to assien the absolute configurations of these
stereogenic centers was demonstrated on both ester/ester (e.¢. secalonic acid B),
lactone/ester (e.g. ergochrysine B), and lactone/lactone (e.g. ergoflavine) xanthone
dimers [43]. The null coupling constant value between H-5 and H-6 indicated their

synfacial orientation [39, 52], as further validated by the ROE crosspeak between H-5
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and H-6. This relative stereochemistry is in excellent agreement with *C NMR
spectroscopic data of usneaxanthones A-C [49]. Information regarding the relative
stereochemistry of this subunit was also completed by the ROE correlation between
both the hydroxyl at &, 6.38 (8a-OH) and at 7.09 (8-OH) and the oxygenated methine
at &, 4.37 (H-5), ascribing these substituents to the same side of the cyclohexane
nucleus. The relative stereochemistry of the lactone moiety could not be assigned
based on ROESY spectrum. The comparison of the C NMR data of the two
candidate diastereoisomers with the observed chemical shifts of US3 through
Goodman and Smith DP4 parameter resulted in the prediction of the relative
configuration with a 92.7% probability (Figure 2.10). This determined stereochemistry
was further validated by the excellent agreement between the ECD plot of US3 with
that of the recently reported usneaxanthone A, the absolute stereochemistry of
which was unambiguously determined through single crystal X-ray diffraction analysis

(Figure 2.11).

US3b

US3a US3b (92.7%)
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Figure 2. 10 Relative configuration for Eumitrin E (US3): DP4 probabilities of the two
candidate diastereoisomers

The substitution patterns of the monomeric units are indicative of their origins
from chrysophanol, following the so-called ravenelin pathway that leads to
xanthones displaying a methyl group at C-3 [20]. The understanding of the underlying
biosynthetic pathways giving rise to xanthone dimers dramatically rose through a
series of gene-deletion experiments carried out in the neosartorin-producing fungus
Aspergillus novofumigatus [53]. The biosynthesis of the monomeric building blocks
was proved to proceed from chrysophanol via Baeyer-Villiger monooxygenase, a
methyltransferase, a reductase and an acetyltransferase. The heterodimerization
would then involve p450 monooxygenase that most interestingly revealed sequence
similarity with a p450 encoded upstream of the biosynthetic gene cluster of
ergochrome xanthone dimers within Claviceps purpurea [54]. Despite being related
to xanthone dimers being formerly reported to occur throughout literature, the
newly described compounds display rather uncommon structural features. At first,
eumitrin C stands among the rare tetrahydroxanthone/hexahydroxanthone dimers, a
scaffold only being sustained so far by ercochromes AD and BD [42], and eumitrins

A2 and B [19]. Xanthone monomers were already related to 2,2-disubstituted

chroman-d-ones, particularly in fungi [23, 55]. The Y-butyrolactone ring of such

chromanones results from a retro-Dieckmann cyclization, sometimes being

accompanied by further ring cleavage intermediates such as the related Y-
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hydroxybutyric acid derivatives and their corresponding methyl esters [41, 48].
Although being biogenetically related, xanthone/chromanone heterodimers are rare,
being so far represented by related cases comprising blennolide G [39, 56],
blennolides | and J [48, 57], gonytolides D and E [48], phomolactonexanthones [58],
and versixanthones A-F [41]. Eumitrin D represents the first occurrence of xanthone
dimer comprising a hexahydroxanthone and a chromanone. Lactone-comprising
xanthone dimers were scarcely reported throughout literature with 5 such
compounds being reported so far within this structural class, initially being reported
as ergot pigments: the lactone/lactone ergoflavin [59] and the lactone/ester-based
ergochrysins A and B [42], ergochrome CD [60], and ergoxanthin [61, 62] (Scheme
2.3). A suite of lactone/ester bisxanthones, viz. usneaxanthones A-C from Usnea
aciculifera, very recently extended the number of compounds from this structural
class, the structure elucidation of which was g¢reatly aided by their having all
crystallized [49]. The lactonic monomer of US3 is unique due to C-8 hydroxylation
that introduces an unprecedented hemiketalic function. Although unprecedented,
the 8-OH group of the lactonic monomer of eumitrin E is also in line with the
canonical substitution pattern of ravenelin-derived xanthones [63]. The 2-4' biaryl
linkage is shared with usneaxanthones but not with lactone/ester xanthone
heterodimers which was not reported so far within lactone/ester based xanthone

dimers.
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Figure 2. 11 Comparison of the experimental ECD spectrum of US3 and
usneaxanthone A [64]

2.3.3.4 Compound US4

Compound US4 was isolated as white amorphous solid and was assigned the
molecular formula CigH140g (12 indices of hydrogen deficiency) based on its negative-
ion HRESIMS data which showed an [M-H] peak at m/z 357.0614 (calcd. for CigH;50s,
357.0616). The 'H NMR data revealed typical resonances of an aromatic methyl at &
2.52 (3H, s), a methoxy group at &, 3.94 (3H, s), two oxygenated methylene [(8 4.81,
2H, s) and (84 5.69, 2H, s)], and two aromatic protons at &, 6.68 (1H, s) and 6.81 (1H,
s). The small amount of US4 precluded the acquisition of the >C NMR spectrum of
convenient quality, but all of the chemical shifts could be deduced from inverse-

detection heteronuclear NMR spectra (Table 2.3). The B-orcinol depsidone scaffold



was deduced by the near-identical
cryptostictinolide, as reported by Lohézic-Le Dévéhat et al. from Usnea articulata
[14], and further backed up by 2D NMR correlations (Figure 2.12). The chemical shift
value of C-3' (8¢ 108 ppm) is diagnostic of its being ortho-oriented to two oxygen
functions, identifying US4 as 3'-O-demethylcryptostictinolide, also evidenced by the

HMBC correlations from the aromatic proton at & 6.81 to C-1' (&¢ 109), C-2' (6¢ 151),

C-4' (8¢ 151 ppm), and C-5" (8¢ 137).

1D NMR data of US4 to those of

Table 2.3 Tentative 'H (500 MHz) and °C (125 MHz) NMR chemical shift assignment

for US4 (CDCls)

\ 5H, mult. U in 5 N 6H, mult. (U in 5
0. c 0. c
Hz) Hz)
1 113.7 4-OMe 3.94, 3H, s 56.4
2 158.5 1! 107.5
3 117.2 0! 151.6
il 160.8 3! 6.81, 1H, s 108.8
5 6.68, 1H, s 111.1 q 151.6
6 145.6 5/ 138.3
7 nd 6' 138.3
8 4.81, 2H, s 53.8 7' 171.9
9 2.52, 3H, s 21.7 g’ 5.69, 2H, s 68.7
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Figure 2. 12 Key HMBC correlations of US4

2.3.3.5 Compound US5

US5 was obtained as yellow powder. The HRESIMS of US5 showed a sodiated
ion peak at m/z 633.1942, consistent with a molecular formula of Cs,H3,04, verifying
the presence of 18 double-bond equivalents. Owing to molecular formula
requirements and 16 protons being evident from 'H NMR analysis, one proton was
deduced to occur as aliphatic hydroxy group. Altogether, the molecular formula and
NMR of US1 confirmed its homodimeric xanthone. The 'H NMR spectrum of US5
shows the presence of one chelated hydroxy group (64 12.21), two ortho aromatic
protons at & 7.48 and 6.58 with the coupling constant of 8.4 Hz, one oxymethine
proton (6, 3.89, 1H, d, J = 6.8 Hz), one methoxy proton (8y 3.84, 3H, s), one doublet
methyl proton (&4 1.11, 1H, d, J = 6.4 Hz) and six protons in the high-field range of
1.23-2.98 ppm. The >C NMR in accordance with the HSQC spectra of US5 revealed
the existence of 16 carbon signals, comprising of one conjugated ketone carbon (8¢
198.7), one ester carbonyl carbon (8¢ 170.1), two aromatic methine carbons (& 141.1

and 107.6), one methoxy group (8¢ 53.3), three methine carbons (8¢ 36.0, 46.4, and
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74.0), two methylene carbons (8¢ 27.3 and 21.5), one methyl group (8¢ 17.7), and
five quaternary carbons (& 159.5, 157.3, 117.8, 106.8 and 85.6).

The first spin system was determined as a hexahydroxanthone based on the
COSY spectrum which certified the development of a spin system identified as H-
5/H-6/(H3-11)/H2-7/H2-8/H-8a. The chemical shift of C-5 (8¢ 74.0) was suggestive of
the jpso location of an aliphatic hydroxy sroup. The oxygenated carbon C-10a
location of the methyl ester group could be strong-minded from chemical shift value
as well as the long-range correlation from both the oxymethine proton at &, 3.89 (H-
5), the methine proton at 6y 3.40 (H-8a), and methoxy proton at &y 3.70 (H3-13) to
C-12 (&¢ 170.2). The HMBC correlations from H-8a to C-9 (8¢ 198.7) defined a
chromenone system. The second spin system in this monomer involved two ortho-
oriented aromatic protons and the connection of this phenyl ring to the y-pyrone
nucleus of hexahydroxanthone could be indicated from long-range heteronuclear
correlations from the aromatic protons at & 7.48 (H-3) and at &y 6.58 (H-4) to C-4a
(&¢ 157.3) and C-9a (&¢ 106.8). A phenol group could be allocated at C-1 as
evidenced by HMBC correlations from the phenolic proton at &, 11.73 to C-1 (8¢
159.5), C-2 (6¢ 117.8) and C-9. Due to C-2 being a quaternary carbon, it can be
supposed that this specific site is linked to another part of the compound.

The relative configuration of US5 was recognized by extensive analysis of 'H
NMR (Table 2.4) and NOESY correlations (Figure 2.13). The coupling constant of H-5

(64 3.89, d, J = 6.8 Hz) was inconsistent with the corresponding one reported in
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secalonic acid A (J = 11.3 Hz) [20] or ergochrome BD (J = 11.3 Hz) [23] or
bailexanthone (J = 10.8 Hz) [17]. In addition, the NOESY correlation of H-5 and H3-
11 (Figure 2.15) designated the diaxial positions of H-5 and H-6 and further defining
the trans configuration of 5-OH and H3-11 further sustained by NOESY correlations
between the oxymethine proton at 8y 3.89 (H-5) and the methyl group at &y 1.12
(H3-11).

The absolute assignment of C-5, C-6 was further proposed by the comparison
of the NMR data of tetrahydroxanthone hemisecanolic acid monomers, blennolide G,
dimeric secalonic B and its C-5 epimer, further supported the assigned 5S, 6R
configuration [39]. The antifacial orientation of ester group at 8y 3.84 (H3-13) and the
methine proton at &, 3.40 (H-8a) with H-5 and H3-11 was supported by the
disappearance of NOESY correlation of H-5 or H3-11 to H-8a or H3-13. Moreover, the
coupling constants of H-8a (8 2.98, t, J = 4.8 Hz) in US1 were inconsistent with those
of bailexanthone [17] led to define the equatorial position of H-8a. Furthermore, a
negative n-Tt* ECD band (315 nm, Ag = -2.6) (Figure 2.14) determined C-10a S, C-10a’
S configuration and also endorsed the assisnment of the other chiral centers based
on the relative stereochemistry, consistent with literature data [39]. Thus, the (55, 6R,
8aS, 10aS)-absolute configuration of US5, namely eumitrin F, was determined as

displayed in Figure 2.13.
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Table 2.4 Tentative 'H (400 MHz) NMR chemical shift assignment for US5-6 (CDCls)

us5 us6
Oy, J (H2) Oy, J (H2)
3 7.48, 1H, d, 8.4 7.47,1H,d, 7.6
q 6.58, 1H, d, 8.4 6.58, 1H, d, 8.4
5 3.89, 1H, d, 6.8 3.89, 1H, d, 6.8
6 2.06, 1H, m 2.07, 1H, m
1.83, 1H, m 1.80, 1H m
! 1.29, 1H, m 1.29, 1H, m
2.24, 1H, m 2.20, 1H, m
° 1.75, 1H, m 1.73, 1H, m
8a 3.40, 1H, s 3.39, 1H, m
11 1.11, 3H, d, 6.8 1.11, 3H, d, 6.6
13 3.84, 3H, s 3.83, 3H, s
1-OH 12.21, 1H, s 12.19, 1H, s
3 7.48, 1H, d, 8.4 7.49, 1H, d, 8.0
g 6.58, 1H, d, 8.4 6.62, 1H, d, 8.8
5 3.89, 1H, d, 6.8 3.73, 1H, d, 10.4
6 2.06, 1H, m 1.84, 1H, m
| 1.83, 1H, m 1.96, 1H, m
! 1.29, 1H, m 1.23, 1H, m
2.24, 1H, m
8 2.17, 2H, m
1.75, 1H, m
8al 3.40, 1H, s 2.99, 1H, dd, 11.6, 4.4
11 1.11, 3H, d, 6.8 1.11, 3H, d, 6.6
13 3.84, 3H, s 3.68, 3H, s
1'-OH 12.21, 1H, s 11.88, 1H, s




a9

2.3.3.6 Compound USé6

US6 was obtained as yellow powder. The HRESIMS of US6 showed a sodiated
molecular ion peak at m/z 633.1922, consistent with a molecular formula of
Cs,H34015. The 'H NMR spectrum showed 30 protons, revealing the occurrence of two
supplementary aliphatic hydroxyl groups. The exhaustive analysis of the 2D NMR
spectra determined a similar hexahydroxanthone monomeric building unit as in US5
with the C-2" as a quaternary carbon, a specific site is linked to the other monomeric
of compound. As to the other monomeric, the occurrence of the chelated hydroxy
group (64 11.88), two ortho aromatic protons at 6y 7.48 and 6.58 with the coupling
constant of 8.4 Hz, one oxymethine (8, 3.89, 1H, d, J = 6.8 Hz), one methoxy (&4
3.83, 3H, s), one doublet methyl (&4 1.11, 1H, d, J = 6.6 Hz) and six protons in the
high-field range of 1.23-2.98 ppm, determined the unchanged constitution of rings A,
B and C, as further supported by the key correlations outlined in Figure 2.15 with C-2
is a quaternary carbon for linking. Nonetheless, both methine, methoxy ester, and
oxymethine protons were upfield shifted to & 3.39 (H-8a), 3.83 (H3-13), and 3.89 (H-
5), respectively, demonstrating the inconsistence of chirality stereochemistry of C-5,
C-6, C-8a, and C-10a with those of US5.

The magnitude of the vicinal coupling constant of the oxymethine proton H-5
(64 3.89, 1H, d, J = 6.8 Hz) determined its axial orientation and thus defined 5R
configuration identical to that of blennolide B to define the structure of this second

subunit. Moreover, the synfacial orientation of the methyl group, methine proton,
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and oxymethine proton was supported by the NOE correlation between H-5' to both
of H3-11', and H-8a". In addition, the coupling constants of H-8a' (6, 2.98, dd, J =
11.6, 4.4 Hz) in US6 led to define the axial position of H-8a' identical with those of
baileyxanthone [17], further supported by the positive n-Tt* ECD band (325 nm, Ag =
+4.5) (Figure 2.14). Thus, the (55, 6R, 8aS, 10aS, 5'S, 6'R, 8a'R, 10a'R)-absolute
configuration of US6, namely eumitrin G, was determined as displayed in Figure 2.15.

'H and °C NMR data of US6 is presented in Tables 2.4 and 2.5.
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Figure 2. 15 Selected COSY, HMBC, and NOESY correlations of US6
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Table 2.5 Tentative >C NMR (400 MHz) NMR chemical shift assignment for US5-6

us5 usé us5 usé
No. No.
Oc Oc ¢ bc
1 159.5 159.6 1’ 159.5 159.0
2 117.8 117.8 2 117.8 117.6
3 141.1 141.0 3 141.1 140.4
4 107.6 107.5 g’ 107.6 107.4
da 157.3 157.3 43’ 157.3 159.0
5 74.0 74.0 5' 74.0 80.3
6 36.0 36.0 6 36.0 34.3
7 273 272 7' 273 31.2
8 215 214 8 215 20.4
8a 46.4 46.3 8a’ 46.4 51.2
9 198.7 198.7 9 198.7 197.4
9a 106.8 106.8 9a"  106.8 107.6
10 85.6 85.6 10’ 85.6 87.6
11 17.7 17.7 11’ 17.7 18.4
12 170.1 170.2 12" 1701 169.3

13 53.3 53.3 13’ 53.3 53.0
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2.3.3.7 Compound US7

US7 was isolated as light yellow gum. Its molecular formula was determined
to be CsH30.5 based on the sodiated ion peak at m/z 647.1740 (calcd for
CsoH3013Na, 647.1741). In spite of the closely related molecular formula, the
examination of the 'H and >C NMR spectra revealed some important structural
differences with US6 including the lack of the methine signals at &y 3.40 and the
occurrence of a carbonyl carbon &¢ 175.0 (C-8') and a methylene group at &y 3.27
(1H, d, J = 17.5 Hz) and 3.22 (1H, d, J = 17.0 Hz) that could be C-8a’ based on the
HMBC correlations from the methylene protons at &y 3.27 and 3.20 (H2-8a’) to C-9'
(6c 194.1), C-12" (&4 169.1), C-10a" (O 84.2) and C-5' (&6¢ 82.7), indicated the
formation of a B-methyl-y-lactone moiety as deduced from HMBC correlations of the
oxymethine proton at &y 4.81 (H-5'), the methine proton at &y 2.97 (H-6'), and the
diastereotopic methylene protons at &, 2.71 and 2.48 (H2-7') to C-8' (6¢ 175.0). The
key HMBC correlations from the methylene protons H2-8" to C-5', C-10a" and C-12'
also well-defined the connection between the chromone core and both y-
butyrolactone moiety and ester group, as showed in Figure 2.16. The planar
structure of US7 was obtained by connecting the two monomeric units via the
linkage of hexahydroxanthone C-2" and chromanone C-2, supported by the HMBC
correlation of the aromatic proton at 6, 7.53 (H-3) to C-2' (8¢ 117.3) and 7.48 (H-3')

to C-2 (8¢ 118.0).
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The relative configuration of US7 was recognized by extensive analysis of 'H NMR
(Table 2.6) and NOESY correlations (Figure 2.16) .In the hexahydroxanthone
monomer, the diaxial configuration of H-5 and H-6 was established by the NOE
correlation of H-5 (8 ;4 3.73) to both of H3-11 (6 1.12), H-8a (8 ,; 3.00), (Figure 2.16)
designated the diaxial positions of H-5 and H-6 as well as the synfacial orientation of
these substituents while the lack of ROE correlation with the contiguous methyl ester
groups ascribed this latter functionality to the other face of the nucleus .Moreover, in
the B-methyl-y -lactone moiety, the oxymethine proton H-5' and the tertiary
methine proton H-6', with a coupling constant of 6.5 Hz, specific of trans-oriented
protons in such ring system [46], as further confirmed by ROE correlation between H-
5" and H3-11". The comparison of the NMR data with those of eumitrin D (US2) or
versixanthone [41] led to the absolute assisnment of C-5', C-6', and C-10a', further
supported the assigned C-5'R, C-6'R, and C-10a'R configuration while the absolute
assignment of C-5, C-6, C-8a and C-10a were further reinforced by the comparison of
the NMR data as well as ECD spectroscopy of eumitrin C-D that further supported the
assigned 55, 6R, 8aS, and 10aR configuration .Thus, the (5S, 6R, 8aS, 10aR, 5'R, 6'R,
10a’'R)-absolute configuration of US7, namely eumitrin H, was determined as
displayed in Figure 2.16 ."H and °C NMR data of US7 is presented in Tables 2.6 and

2.7.
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Table 2. 6 Tentative 'H (400 MHz) NMR chemical shift assignement for US7-9 (CDCls)

us7 us8 us9
O, J (Hz) O, J (Hz) Oy, J (Hz)
3 7.48, 1H, d, 8.5 7.48, 1H, d, 8.4 7.65, 1H, d, 8.5
q 6.61, 1H, d, 8.5 6.58, 1H, d, 8.4 6.64, 1H, d, 8.5
5 3.73, 1H, d, 10.5 3.88, 1H, d, 13.2 3.74, 1H, d, 11.0
6 1.82, 1H, m 1.81, 1H, m 1.86, 1H, m
1.95, 1H, m 2.05, 1H, m 1.95, 1H, m
! 1.19, 1H, m 1.29, 1H, M 1.28, 1H, m
2.20, 1H, m 2.26, 1H, m
8 2.19, 2H, m
2.14, 1H, m 2.18, 1H, m
8a  3.00, 1H, dd, 11.5, 5.0 3.41, 1H, dd, 7.2, 4.8 3.05, 1H, dd, 11.0, 5.5
11 1.12, 3H, d, 6.5 1.12,3H, d, 7.2 1.12, 3H, d, 6.5
13 3.77, 3H, s 3.77,3H, s 3.76, 3H, s
1-OH 11.91, 1H, s 12.21, 1H, s 11.79, 1H, s
3' 7.53, 1H, d, 8.5 7.53.1H, d, 8.4 7.55, 1H, d, 8.5
g 6.63, 1H, d, 8.5 6.63, 1H, d, 8.4 6.64, 1H, d, 8.5
5' 4.81, 1H, d, 6.5 4.81, 1H, d, 7.2 4.66, 1H, d, 7.5
6' 2.96, 1H, m 2.98, 1H, m 2.88, 1H, m
' 2.70, 1H, dd, 8.5, 17.0 2.71, 1H, dd, 8.4, 17.4 2.20, 1H, dd, 8.5, 17.0
! 2.48, 1H, dd, 11.5, 17.0 2.48, 1H, dd, 7.8, 17.4 2.28, 1H, dd, 11.5, 17.5
' 3.27,1H, d, 17.5 3.28,1H,d, 17.4 3.27,1H, d, 17.5
s 3.22,1H, d, 17.0 3.21,1H,d, 17.4 3.16, 1H, d, 17.5
11 1.33,3H, d, 7.0 1.34, 3H, d, 7.2 1.23,3H,d, 7.0
13' 3.68, 3H, s 3.84, 3H, s 3.69, 3H, s
1'-OH 11.89, 1H, s 11.92, 1H, s 11.62, 1H, s
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Figure 2. 16 Chemical structure and selected COSY, HMBC, and NOESY correlations
of UST.
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Figure 2. 17 The ECD spectra of US7-9
2.3.3.8 Compound US8

US8 was isolated as light yellow gum. Its molecular formula was determined

to be CsH3013 based on the sodiated ion peak at m/z 647.1766 (calcd for
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CaoH3,013Na, 647.1741). The creased resonances in the 1D NMR spectra, especially in
the >C NMR spectrum, suggested that it be dimeric xanthone the same as UST.
Similarly to US7, US8 was also formed from hexahydroxanthone and chromanone
monomers, with the same linkage patterns. The 2-2' linkage of two monomers was
established by the HMBC correlation of the aromatic proton at &y 7.53 (H-3) to C-2'
(8¢ 117.3) and 7.48 (H-3") to C-2 (&¢ 118.0). The examination of the 'H and *C NMR
spectra revealed some important structural differences from US7 including the lack
of the methine signals at 8y 3.00 and the occurrence of a methine signal at &y 3.40,
belonging to H-8a implied the opposite stereochemistry at C-8a. Thus, (55, 6R, 8aR,
10asS, 5'R, 6'R, 10a'R)-absolute configuration of US8, namely eumitrin | was

determined as shown in Figure 2.18.
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Figure 2. 18 Chemical structure and selected COSY, HMBC, and NOESY correlation of
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2.3.3.9 Compound US9

Similar to US7, US9 was also constructed from hexahydroxanthone and
chromanone monomers, with different linkage parttern. In US9, namely eumitrin |,
the linkage C2-C4" of two monomers was established by HMBC correlations of H-3 to
C-4" and of H-3' to C-2, alone with 1'-OH to C-2'. However, the negative n-Tt* ECD
band (338 nm, Ag = -1.5) (Figure 2.17) incontract with those of US7 suggested 10a’S
configuration as shown in Figure 2.19. 'H and *C NMR data of US9, namely eumitrin

J are displayed in Tables 2.6 and 2.7.

COOMe

—COSY ~——~HMBC »~—ROESY

Figure 2. 19 Selected COSY, HMBC, and NOESY correlations of US9.
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Table 2.7 Tentative *C NMR chemical shift assignement for US7-9 (CDCls)

No UST® uss® Us9* us7? Uss® us9*
No.
O O O Oc Oc Oc
1 1591 159.5 159.4 1" 1593 159.3 159.1
2 1174 117.5 117.2 2" 1181 118.1 110.5
3 1603 141.0 141.7 3’ 1414 1414 140.7
a4 1074 107.6 108.1 a'" 1074 107.7 115.5
da 1585 158.5 158.7 4a’  159.0 157.4 158.7
5 803 74.1 82.5 5! 82.9 82.8 80.1
6 342 27.3 34.1 6' 33.6 36.1 34.1
7 312 33.7 35.6 7' 36.9 36.9 31.2
8 204 21.5 20.4 8" 1750 175.0 174.8
8a 512 46.4 40.1 g8a' 299 39.9 51.2
9 1974 198.7 194.1 9" 1942 194.2 197.7
9a 107.6 106.8 108.0 93’ 107.6 107.5 107.7
10 875 85.6 86.0 10" 846 84.6 87.7
11 185 17.8 14.8 11" 15.0 15.0 18.5
12 169.2 170.1 169.3 12" 169.2 169.2 168.9

13 5338 53.4 53.0 13’ 53.0 53.9 53.8
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2.3.3.10 Compound US10

US10 was isolated as light yellow amorphous solid. Its molecular formula
was determined to be CsH340,5 based on the sodiated ion peak at m/z 689.1824
(calcd for C3qH34014Na, 689.1846). In spite of their closely related molecular formulas,
the 'H and C NMR spectra displayed some important structural differences from

US5 and US6 including the occurrence of an acetoxycarbonyl group that could be
located at C-5" based on the HMBC correlations from both the methyl at O, 1.98
(H3-15") and oxygenated methine proton at Oy 5.02 (H-5") and to C-14" (&¢ 169.0).
Moreover, one of the methyl groups was downfield shifted to Oy 2.16 (H3-11")
indicating its aromatic nature, placed at C-3', based on the long-range heteronuclear

correlations from these protons to c-2" (O¢ 111.4), c-3' (6¢ 151.2), and C-4" (&¢

115.9), consistently with the disappearance of an aromatic proton signal and with the
singlet status of the aromatic proton at Oy, 6.50 (H-2"). The COSY spectrum as well as
the full set of 2J and 3J correlations in the HMBC spectrum revealed the H-5/H2-

6'/H2-7' /H2-8" /H-8a proton spin system, established the hexahydroxanthone

scaffold of the first monomer. The synfacial orientation of the methyl ester groups
and of the acetoxycarbonyl was designed from the H3-13'/H3-15" ROE crosspeak
while the key ROE effect between the oxymethine proton at Oy 5.02 (H-5") and the

methine proton at O, 2.98 (H-8") shown these protons to the other face of the

structure. As formerly observed for US7, the magnitude of the vicinal coupling
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constant of the oxymethine proton H-5" (U = 11.2, 4.2 Hz) determined its axial

orientation and thus defined 5'R configuration identical to that of blennolide B to
define the structure of this first subunit as displayed in Figure 2.20. The second
monomer, subunit Il, was highly reminiscent of those of US5 and US6. The most
noticeable spectroscopic difference being the intense downfield shift of C-8 and C-8a
compared to their homologous positions in the second sub-unit of US5 (with
respective Oc values of 179.8 and 100.2 vs 21.5 and 46.4 ppm, respectively) that
indicated the occurrence of an enolic moiety at these positions. The NMR signal
patterns related to this monomer, including COSY and HMBC data, confirmed a

similar gross structure of the rest of this subunit, compared to that of US5. The HMBC
correlations from both of H-2" and H-3 (with respective Oy, value of 6.50 and 7.68) to
C-4', the monomeric units linkage was a bone tethering C-2 with ca'.

The axial orientation of H-5', determined a space arrangement identical to
that of eumitrin A2 rather than that of eumitrin Al/eumitrin B [19]. Howerver, the
ROE correlations between the oxymethine proton at & 4.14 (H-5) and the methyl
group at Oy 1.12 (H3-11") led to the determination of synfacial orientation of these
substituents, strong-suggested for a (5R, 65, 10aR, 5'R, 8a'S, 10a’R)-absolute
configuration. Moreover, the anticlockwise manner of the two benzoyl
chromophores of US10 as aS could be deduced from the negative exciton couplet

centered at around 240 nm; consistently with earlier reports on related structures
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[47, 48]. Thus, the structure of US10, namely eumitrin K, was established as shown in

Figure 2.20. 'H and °C NMR data of US10 is presented in Tables 2.8 and 2.9.

—COSY ~—~HMBC »~—~ROESY
Figure 2. 20 Selected COSY, HMBC, and NOESY correlations of US10

= = = US10

Us11

Figure 2. 21 The ECD spectra of US10-11



Table 2.8 Tentative 'H (400 MHz) NMR chemical shift assignment for US10-11

(CDCly)
US10 us11
Oy, J (Hz) O, J (Hz)
3 7.68, 1H, d, 8.4 7.27, 1H, d, 8.0
q 6.58, 1H, d, 8.4 6.61, 1H, d, 8.0
5 4.14, 1H, brs 4.18, 1H, brs
6 2.13, 1H, m 2.18, 1H, m
2.55, 1H, dd, 22.8, 11.2 2.54, 1H, dd, 18.4, 11.2
! 2.41, 1H, dd, 22.8, 6.0 2.40, 1H, dd, 16.4, 4.0
11 1.19, 3H, d, 6.4 1.19, 3H, d, 6.4
13 3.65, 3H, s 3.70, 3H, s
1-OH 11.62, 1H, s 11.60, 1H, s
8-OH 13.97, 1H, s -
2 6.50, 1H, s 6.50, 1H, s
5 5.02 1H,dd, 11.2,4.2 5.44, 1H, brs
6 1.68, 2H, m 2.01, 2H, m
| 1.87, 1H, m 2,54, 1H, m
! 1.52, 1H, m 2.40, 1H, m
1.87, 1H, m
8 7.30, 1H, brs
1.52, 1H, m
8a'  2.98, 1H, dd, 11.6, 3.6
11" 2.16, 3H, s 2.08, 3H, s
13' 3.66, 3H, s 3.78, 3H, s
15' 1.98, 3H, s 1.82, 3H, s
1'-OH 11.45, 1H, s 12.01, 1H, s
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Table 2.9 Tentative °C (100 MHz) NMR chemical shift assignment for US10-11

(CDCls)

Us10 Us11 US10 UsS11

No. No.

Oc Oc Oc Oc

1 159.4 159.5 1 161.7 162.3
2 117.9 117.9 2 111.4 111.4
3 141.5 140.3 3! 151.2 150.5
il 107.6 108.0 q' 115.9 115.8
da 157.4 157.5 43’ 156.5 156.2
5 71.5 715 5 72.7 66.3
6 28.8 28.7 6’ 26.2 23.6
7 32.7 32.8 7' 22.4 22.0
8 179.0 179.7 8’ 25.3 141.7
8a 100.2 100.4 8a’ 48.7 129.1
9 188.0 188.1 9’ 197.5 184.9
9a 107.1 107.2 9a’ 104.9 105.8
10 83.4 85.0 10’ 85.1 81.0
11 17.6 17.7 11’ 21.3 21.3
12 170.1 169.9 12" 1714 171.4
13 53.2 53.7 13’ 53.4 53.8

14’ 169.0 169.2

15! 20.8 20.5
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2.3.3.11 Compound US11

US11 was isolated as yellow oil. The molecular formular CzH3,044 was
established by the sodiated ion peak at m/z 687.1716 (calcd for CsqHs40O14Na,
687.1690). The the examination of the 'H and >C NMR spectra discovered some
important structural differences from US10 including the lack of the methine proton
H-8a and the occurrence of aromatic proton at Oy 7.30 that indicated the
appearance of a A8(9) double bond, that further supported by COSY correlation spin
H-5//H2-6'/H2-7'/H-8'. Moreover, the appearance of the methine proton H-5' at Oy
5.44 suggested the similar of C-5" with eumitrin Al [19]. Additionally, 10aS
configuration was identified by the negative n-Tt* ECD band (327 nm, Ag = -4.9)
further supported from the comparison with those of US10. Moreover, the a$ axial
chirality of US11 could be determined based on the negative Exciton couplet at 240
nm similar to US10. Thus, the structure of US11, eumitrin L, was established as

shown in Figure 2.22.

—COSY ~—~HMBC »~—~NOESY

Figure 2.22 Selected COSY, HMBC, and NOESY correlations of US11
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X These newly reported structures of bixanthones may correspond to the
sought-after eumitrins A3 and B2, reported from U. baileyi as well, that were named
but not yet structurally elucidated, or also to either eumitrin U, X or Y. Nevertheless,
since the authors cannot prove that these metabolites match of any of these former
descriptions, it was rather decided to name the new dimer xanthones with

unprecedented designations.

2.4 Biological activities
2.4.1 Cytotoxicity and antiparasitic activity

The purified xanthone dimers US1-3 were evaluated in vitro for their
antiparasitic activity against the chloroquine-resistant strain of Plasmodium
falciparum FcB1 and for cytotoxic activity against a panel of 7 representative cell

lines. The results are presented in Table 2.10.

Table 2.10 ICs values (UM) of US1-3 for antiplasmodial and cytotoxic activities tests

P. MDA MDA
HuH HCT11 Fibroblas
compound  falciparum Caco-2  -MB- PC3 -MB- MCF7
7 6 ts

FcB1 231 468
us1 965+35 >50 >50 >50 >50 >50 >50 >50 > 50
us2 73.0+ 1.0 35 a4 >50 >50 42 > 50 12 > 50
us3 >100 >50 >50 >50 >50 >50 >50 >50 > 50

Chloroquine  0.05 + 0.02 - - - - - - - ;

Roscovitine - 12.5 17 17 9 11 16 10 > 50
Paclitaxel - 0.01 0.04 0.02 0.01 0.01 0.01 001 > 50
Doxorubicin - 0.06 0.05 0.03 0.08 0.04 0.04 0.08 > 50
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Bisxanthones US1-3 revealed weak (US1-2) or no (US3) antiparasitic activity.
For cytotoxicity assays, only US2 exerted a moderate effect against the tested cell
lines. MCF-7 cell line resulted slightly more susceptible with ICsy value of 12 pM.
Even though some bisxanthones, such as the well-known phomoxanthone A [26],
were associated with extensive cytotoxicity against a variety of cell lines,
bisxanthones comprising a Y-butyrolactone-related chromanone and a xanthone
subunit tethered with either a 2,4'- or 4,2'-linkage were reported to exhibit quite

selective potent cytotoxicity with low-micromolar ICs, values [41] or even none [58].

2.4.2. Anti-bacterial

Seven isolated bisxanthones were investigated on antibacterial activity against
five bacterial pathogens including E. coli, P. aeruginosa, S. aureus, B. subtilis, C.
albicans.

E. coli can cause serious food poisoning when having contaminated food or
drinking fouled water [65]. P. aeruginosa is a gram-negative pathogen on human [66,
67] as a multidrug resistant pathogen [68-70]. S. aureus is a pathogen found on the
skin and in the nose. It is a causative agent of food poisoning, skin infections and
hospital-acquired infections [71]. C. albicans is the most frequently met pathogenic
human fungal species and normally colonizes swarm mucosal and soaking skin

surfaces [72], but under conditions of immune dysfunction, it can rapidly conversion
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from commensal to pathogen, affecting an group of infections ranging from localized

mucosal to severe systemic infections with high morbidity and mortality rates [73-75].

The results of antibacterial activity of seven new isolated compounds were

reported as collected in Table 2.11.

Table 2.11 MIC values (ug/mL) of US5-11 against £. coli, P. aeruginosa, S. aureus, B.

subtilis, and C. albicans

MIC ([lg/mL)
Sample C
E. coli P. aeruginosa  S. aureus  B. subtilis
albicans

ATCC25922 ~ ATCC27853  ATCC25923 ATCC6633
TISTR
us5 62.5 250 500 62.5 250
usé 125 250 500 62.5 125
us7 450 450 900 450 450
uss N.i N.i N.i N.i 250
us9 350 350 700 250 250
uUs10 125 250 500 N.i 250
Us11 250 250 125 N.i 250
*Chloramphenicol 9.76 31.25 19.53 4.88 250

N.i: No inhibition
All new bisxanthones exhibited antibacterial activity, especially US5 could

possibly good activity against £. coli and B. subtilis (62.5 pg/mL for each bacteria). In

addition, US6, the same co-structure as US5 also expressed good activity against B.
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subtilis (62.5 png/mL), but displayed weaker activity against E. coli than those of US5,
relating to the opposite stereochemistry of C-8a.
This result embarks the interesting point to develop these bioactive

compounds as anti-infectious agents.

2.4.3 Enzyme inhibitory
Seven new bixanthones (US5-11) were further studied on Ol-glucosidase
inhibitory and on tyrosinase inhibitory assay. The results are presented in Table 2.12.

Table 2.12 ICs, values (UM) of a-glucosidase and tyrosinase of US5-11

ICsq (UM)
No. Compound
Ol-glucosidase tyrosinase
1 uUs5 >200 200
2 usé >200 >200
3 us7 >200 148.5 + 0.75
4 US8 >200 >200
5 us9 >200 >200
6 US10 83.4 + 094 >200
7 US11 64.2 + 0.51 >200
8 Acabose 93.6 + 0.49 >200
36.1 = 1.07

9 Kojic acid
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All tested compounds exhibited enzyme inhibitory including a-glucosidase
and tyrosinase inhibitory. Especially US10 and US11 not only showed good activity
on a-glucosidase but also better activity than arcabose with IC5, values 83.4, 64.2,
and 93.6 UM, respectively. About tyrosinase enzyme, only UST exerted a moderate
effect with 1Cs 148 UM.

2.5 Conclusion
2.5.1 Chemical constituents of lichen usnea baileyi

The chemical investigation of U. baileyi collected in Lam Dong, Vietnam led
to the isolation of eleven new compounds including ten new bisxanthones US1-3,
US5-11 and a new depsidone US4 as shown in Figure 2.23. The chemical structures
of isolated compounds were elucidated by 1D, 2D NMR, ECD spectroscopy, ECD/DP4

calculation as well as compared to NMR data from the literatures.



Figure 2. 23 Chemical structures of eleven new compounds US1-11
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2.5.2 Biological activities

Ten new bisxanthones were submitted to test for biological activity including
cytotoxicity (only for US1-3), antibacterial, and enzyme inhibitory including tyrosinase
and a-glucosidase (US5-11). In the enzyme inhibitory assays, US10 and US11 showed
good activity on a~glucosidase with ICsq values 83.4 and 64.2, respectively, while US7
revealed moderate effect on tyrosinase. US5 and US6 displayed good activity against
E. coli with MIC 62.5 ng/mL. In addition, US5 also exhibited good activity against B.
subtilis (62.5 pg/mL). For cytotoxicity, US2 showed good selectivity against tested

cell lines with the highest activity against MCF7 of 12 pM.



Chapter 3
SYNTHESIS OF USNIC ACID DERIVATIVES AND THEIR ENZYME INHIBITORY ACTIVITY
3.1 Introduction
Usnic acid (CigH1407), a natural dibenzofuran which is a major constituent in
U. baileyi exhibited anti-Gram positive bacteria [9], antiviral, anti-protozoal, anti-
proliferative, anti-inflammatory, analgesic activity [76], and strong cytotoxicity on
human cell lines [6, 9] (Table 3.1).

Table 3.1 Biological activities of usnic acid [6, 8, 9, 76]

Gram positive | Enterococcus faecalis, Enterococcus faecium,
bacteria Staphylococcus aureus, Streptococcus mutans,

Streptococcus pyogenes.

Bacteroides fragilis, Bacteroides ruminicola ssp.
Anaerobic

Antimicrobial brevis, Bacteroides thetaiotaomicron,
bacteria

activity Bacterioides vulgatus, Clostridium perfringens,

Propionibacterium acnes.

M. aurum, M. avium, M. smegmatis,
Mycobacteria | M. tuberculosis var. bovis, M. tuberculosis var.

hominis.

Antiviral activity | (+)-usnic acid: inhibit herpes simplex type 1 and polio type 1

viruses, and Epstein-Barr virus.

Antiproliferative | (-)-usnic acid: exhibit P388 leukaemia, L1210 cells.
activity (+)-usnic acid: inhibit K-562 leukemic, endometrial carcinoma cell

lines, against HaCaT.

Cytotoxicity Cytotoxic activity on cancer cell lines: 3LL, L1210, DU145, MCF7,
K-562, U251, MDA-MB-231, H1299.
Significant cytotoxicity against MM98 malignant mesothelioma.

cells, Ad31 vulvar carcinoma cells.
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However, the use of usnic acid in cytotoxicity treatment was limited because
of its water insolubility. Thus, the synthesis of usnic acid derivatives to enhance their

utilization is an interesting research.

3.1.1 Usnic acid, usnic acid derivatives and biological activities

Lately, many pharmacological aspects of usnic derivatives have been
explored (Figure 3.1). Usnic acid derivatives showed a wide range of biological
activities such as cytotoxicity against cancer cell lines (A1-9) [77] against L1210
(leukemia), CEM-13 (human T-cell leukemia), U-937 (human monocyte tumor), MT-4
(human T-cell leukemia) (E1-11) [78], anti-inflammatory activity (N2a, N2b, N3a, N3b,
Naf, Ndg, Ndh, N5f, N5g, and N5h) [79], Anti HINT virus [(-)-L1, (+)-L3, (+)-L4, (+)-L5a, (-
)-L6, (+)-L7, (+)-L8, (-)-L11, (+),(-)-L12, (+)-L13] [80] and antiproliferative activities (2D-

53D) [811.



R = C,Hs-CH(CH3)-CH-COOH Na
R = CgH5-CHy-CH-COOC,H5 N4f,N5f N4h,N5h
A9 R = (CHj),CH-CHy-CH-COOC,Hs N3b n=2
(+)-L4 R= CH,CF,CF,H
_R (H)-L5a R= CH,CF,NEt,
(+)-L6 R= CH,COOH

(+)-L7 R= CH,CH,COOH

R' (+)-L8 R'=p-
2 (+)-L8 R'= p-F

|| (#-L11 R=m-F
N

(+)-L12 R'=m-Br

RRi
®N—R
N/\Mn o
2
w0 T J=o

(0)

(0]
E7:R=R;=Me, X=I,n=1
E8,E9:R=Et,Rj=Me, X=LE8:n=1,E9:n=2

O R
EREY

E10: R = 1=Me, X=Ln=2

E3:R=Me, n=1;E4:R=Et, n=1 EIl:R=Me, R, =Et, X=Br,n=1

E5:R=Et, n=2;E6:R = O,n=2

LN

Figure 3. 1 Reported usnic derivatives
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2D: R1= H, R2= H, R3=H, R4= H, R5= H

4D: R1= H, R2= H, R3=C|, R4= H, R5= H
5D: Ry= H, Ry= Cl, R3=H, R4= H, Rg= H
7D: Ry= Cl, Ry= H, Ry=Cl, Ry= H, Rs= H
9D: Ry= Cl, Rp= H, Ry=H, R,= H, Rs= Cl

11D:
13D:
15D:
16D:

17D

19D

29D:

R1= H, R2= CI, R3=H, R4= Cl, R5= H
R1= H, R2= H, R3=F, R4= H, R5= H
R1= F, R2= H, R3=H, R4= H, R5= H
R1= H, R2= F, R3=H, R4= H, R5= H

. R1= F, R2= H, R3=H, R4= H, R5= F
18D:

R1= H, R2= F, R3=H, R4= F, R5= H

. R1= H, R2= H, R3=Br, R4= H, R5= H
20D:
22D:
24D:
26D:
28D:

R4=H, R,=H, R3= COOH, R4=H, Rs= H
R1= H, R2= H, R3= CH3, R4= H, R5= H
R¢= H, Rp= H, Ry= tBU, Ry= H, Rg=H
R1= H, R2= H, R3: OMe, R4= H, R5: H

Rs= H, Ry= OMe, R3= OMe, R,= OMe, Rs= H

R1= H, R2= OMe, R3= OMe, R4= H, R5= H

. R1= H, R2= H, R3= OEt, R4= H, R5= H
:R4= OEt, R,=H, R3= H, R4=H, R5= H
: R1: H, R2= H, R3= OBU, R4: H, R5= H
:Ry=H, Ry= H, Rg= Pent, R;=H, Rg=H
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37D: Ry= H, Ry= H, R3= SMe, R4= H, Rs= H
38D: Ry= H, R,= H, Ry= SEt, Ry= H, Rs= H

39D: R;= H, Ry= H, R3= Ph, Ry= H, Rs= H

40D: Ry= H, Ry= H, Ry= 4-F-Ph, R4= H, Rg= H
41D: Ry= H, R,= H, Ry= OPh, R4= H, Rs= H
43D: R;= H, R,= H, Ry= 0-4-F-Ph, R;= H, Rs= H
45D: Ry= H, Ry= H, Ry= 0-2-CI-5-F-Ph, R,= H, Rs= H
47D: Ry= H, R,= CF3, Ry= H, Ry= H, Rs= H
48D: R= H, R,= H, Ry= CF3, Ry= H, Rs= H

50D: R;= H, Ry= CF3, R3= H, Ry= CF5, Rs= H
52D: R;= H, Ry= H, R3= OCF3, Ry= H, Rs= H

3D: Ry= H, Ry= H, Ry=H, R,= H, Rs= H
6D: R4= H, Ry= Cl, Ry=H, R4= H, Rs= H
8D: R;= Cl, Ry= H, R3=Cl, R,;= H, Rs= H

10D:
14D:
21D:
23D:
25D:
27D:

R1= C|, R2= H, R3=H, R4= H, R5= Cl

R1= H, R2= H, R3=F, R4= H, R5= H

R¢= H, Ry= H, Rg= COOH, Ry= H, Rg= H
R1= H, R2= H, R3= CH3, R4= H, R5= H
R1= H, R2= H, R3= tBU, R4= H, R5= H
R1= H, R2= OMe, R3= H, R4= H, R5= H

31D:
33D:
35D:
42D:
44D:
46D:
49D
53D:

R1: H, R2= H, R3: OEt, R4: H, R5: H
R1= OEt, R2= H, R3= H, R4= H, R5= H
R1= H, R2= H, R3= OBU, R4= H, R5= H

R1= H, R2= H, R3= OPh, R4= H, R5= H
Ry=H, R,= H, Ry= O-4-F-Ph, Ry= H, Rg= H

R¢=H, Ry= H, R3= 0-2-Cl-5-F-Ph, R4= H, Rs= H
. R1= H, R2= H, R3= CF3, R4= H, R5= H

R1: H, R2: H, R3: OCF3, R4: H, R5: H

Figure 3.1 Reported usnic derivatives (continued)
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EA1: R= COCH, EA4; R= COCgHs EAT7: R1=R;= COCgHs
EA2: R= COCH,ClI EA5: R= COCgH,OCH3p EA8: Ry=COMe, R,= COCgHs
EA3: R= COC,Hs EA6: R= COCgH,Clp

Figure 3.1 Reported usnic derivatives (continued)

Moreover, the esterification between usnic acid and acyl chlorides including
acetyl, chloroacetyl, proionyl, benzoyl, 4-methoxybenzoyl, and 4-chlorobenzoyl
chlorides to yield ester/vinyl ester derivatives (EA1-8) [82] was reported only for
chemical transformation without biological activity evaluation. Thus, these derivatives

are interesting to be re-synthesized for evaluating biological activities.

3.1.2 Objectives

Usnic acid derivatives were synthesized from esterification and oxidation
reaction with full structural characterization through spectroscopic means. The
evaluation on enzyme inhibitory including o-glucosidase and tyrosinase inhibition of

those synthesized compounds was carried out.

3.2 Experimental
3.2.1 Instrument and equipment
All solvents used in this research were distilled prior to use except those

which were reagent grades. 1D and 2D NMR spectra were acquired using a Bruker
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Advance 400 MHz, a Bruker AM-500 MHz or a JNM-ECA 600 MHz (JEOL, Tokyo, Japan)
spectrometer. Chemical shifts are referenced to the residual solvent signal (CDCls: &
= 7.26, &¢ = 77.1). HRESIMS data were recorded using a Bruker MicroTOF Q-ll mass or
MALDI-TOF-MS ~ (SHIMADZU  AXIMA-Resonance)  spectrometer.  Open-column
chromatography separations were performed on silica gel (40-63 Um, Himedia). TLC
analyses were carried out on precoated silica gel 60 F254 or silica gel 60 RP-18 F254S
plates (Merck), and spots were visualized by spraying with 10% H,SO, solution

followed by heating.

3.2.2 General procedure
3.2.2.1 Dakin Oxidation of usnic acid

(+)-Usnic acid [[Q]*; + 487.4 (c 0.02, CHCL,)], (1.0 g, 1.9 mmol) and K,CO5 (1.6
g, 11.6 mmol) were dissolved in MeOH (200 pL). 890 pL of H,O, 30% (8.7 mmol) was
added while stirring at room temperature for 10 h. The reaction was quenched by
adding acidic solution, HCl 1 M followed by extraction with EtOAc:H,O (1:1) (v/v) 3
times and evaporated under vacuum. The purification using chromatography was

proceeded using CH,Cl,:EtOH:H,0 (8:0.2:0.01) to obtain the desired derivatives, UD1-
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ubD2 uUD4

UD1 Light yellow powder, yield: 25.2%; 'H NMR (acetone-ds, 500 MHz) &, 13.52 (1H,
s), 5.82 (1H, s), 3.57 (3H, s), 2.63 (3H, s), 1.95 (3H, s), 1.74 (3H, s). *C NMR (acetone-d,
125 MHz) O¢ 200.9, 174.7, 169.0, 166.7, 162.4, 157.9, 154.7, 108.3, 105.9, 99.8, 96.7,
54.1, 52.2, 30.9, 19.9, 7.9. HRESIMS m/z [M-H] calcd for Cy¢H;sOg 335.0767; found
335.0797.

UD2: Light yellow powder, yield: 2.4%; 'H NMR (CDCls, 500 MHz) &,; 13.33 (1H, s), 5.89
(1H, ), 3.76 (3H, s), 3.73 (3H, s), 2.69 (3H, s), 2.05 (3H, s), 1.93 (3H, 5). >C NMR (CDCls,
125 MHz) Oc 201.4, 179.8, 172.1, 165.2, 163.5, 156.8, 151.1, 109.2, 103.6, 100.1, 96.8,
61.8, 53.9, 51.7, 31.4, 21.6, 7.4. HRESIMS m/z [M-H] calcd for C;7H-Og: 349.0923;
found 349.0945.

UD3: Light yellow powder, yield: 15.0%; 'H NMR (CDCls, 500 MHz) &, 13.33 (1H, s),
3.80 (2H, s), 2.72 (3H, ), 2.32 (3H, s), 2.14 (3H, 5). °C NMR (CDCls, 125 MHz) &¢ 201.3,

170.6, 163.2, 157.5, 154.3, 145.4, 113.4, 112.3, 105.8, 102.2, 32.3, 30.9, 9.8. 7.8.
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UD4 : Light yellow powder, yield: 1.0%; 'H NMR (CDCls, 500 MHz) Oy 13.78 (1H, s),
3.77 (2H, ), 3.77 (3H, s), 2.79 (3H, s), 2.36 (3H, s), 2.15 (3H, s). >C NMR (CDCls, 125
MHz) &¢ 201.1, 169.8, 162.3, 154.8, 153.8, 143.3, 112.9, 110.6, 104.4, 102.2, 52.6, 32.2,
31.1,9.58, 7.1.

UD5 : Light yellow powder, yield: 1.2%; 'H NMR (CDCls, 500 MHz) &, 2.72 (6H, s,
2XCH3), 2.06 (3H, s). HRESIMS m/z [M-H] calcd for CyqH,30:0: 223.0606; found

223.0627.

3.2.2.2 Acetylation and benzoylation of usnic acid

A mixture of (+)-usnic acid (0.25 g, 0.725 mmol) in CHCl; (5 mL) was stirred at
room temperature for 5 minutes. Acetyl chloride (4.35 mmol) was added, followed
by pyridine (4.35 mmol) and stirred at room temperature for 6 h. Then, the organic
layer was extracted with water and saturated aqueous NaHCO;, respectively, and
dried over anhydrous Na,SQO,, filtered, and evaporated using rotatory vacuum
evaporator. The products, UE1-4 were purified by subjecting to silica gel column.
Moreover, benzoyl chloride was also used for esterification with usnic acid and UE3

to yield UE5 and UE6, respectively.
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UE1: Light yellow powder, yield: 10.4%; 'H NMR (CDCls, 400 MHz) &y 6.38 (1H, s), 2.65
(3H, s), 2.40 (3H, s), 2.35 (3H, s), 2.23 (3H, ), 2.22 (3H, s), 2.19 (3H, s), 2.02 (3H, s). **C
NMR (CDCl;, 100 MHz) &¢ 203.0, 202.9, 195.0, 169.1x2, 168.4, 151.2, 147.8, 145.7,
145.5, 1445, 121.5, 120.3, 115.5, 113.7, 108.5, 47.0, 31.8, 29.5, 21.1, 20.7, 20.5, 9.7,
9.1. HRESIMS m/z [M+H] calcd for CyqH»304¢: 471.1291; found 471.1297

UE2: Light yellow powder, vyield: 15.2%; "H NMR (CDCls, 400 MHz) &, 13.22 (1H, s),
591 (1H, s), 2.74 (3H, s), 2.54 (3H, s), 2.45 (3H, s), 2.03 (3H, s), 1.78 (3H, s). °C NMR
(CDCls, 100 MHz) 8¢ 201.9, 198.4, 193.3, 190.9, 178.1, 168.6, 163.3, 155.7, 151.5, 117.7,
111.1, 106.3, 105.4, 98.8, 59.4, 32.0, 31.2, 26.0, 21.4, 9.3.

UE3: Light yellow powder, yield: 34.0%; 'H NMR (CDCls, 400 MHz) Oy 5.90 (1H, s), 2.60
(3H, ), 2.54 (3H, s), 2.46 (3H, s), 2.33 (3H, 3), 1.99 (3H, s), 1.82 (3H, 5). >C NMR (CDCls,
100 MHz) &¢ 198.6, 195.0, 192.8, 190.9, 177.8, 168.9, 168.8, 153.7, 149.0, 148.5, 123.6,

118.9, 116.1, 106.2, 98.8, 59.5, 32.1, 31.1, 26.2, 21.4, 20.8, 10.4.
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UE4: Light yellow powder, yield: 17.5%; 'H NMR (CDCls, 400 MHz) &, 11.97 (1H, s),
5.97 (1H, s), 2.66 (3H, s), 2.57 (3H, s), 2.35 (3H, ), 2.06 (3H, s), 1.80 (3H, s). °C NMR
(CDCls, 100 MHz) 8¢ 202.0, 197.8, 194.0, 191.8, 179.3, 169.2, 155.5, 154.2, 149.7, 117.4,
110.0, 105.4, 98.5, 59.1, 32.4, 32.0, 28.0, 20.9, 9.0.

UE5: Light yellow powder, yield: 80.6%; 'H NMR (CDCls, 400 MHz) & 13.32 (1H, s),
10.52 (1H, s), 8.50-7.00 (10H, m), 6.04 (1H, s), 5.43 (1H, d, 1.2), 5.24 (1H, d, 1.2), 2.65
(3H, s), 2.12 (3H, s), 1.88 (3H, s). *C NMR (CDCls, 100MHz) & 201.0, 200.5, 174.0,
165.1, 164.5, 164.0, 163.0, 157.5, 156.4, 143.5, 134.6, 133.7, 133.6, 130.7, 130.3, 130.1,
129.1, 128.9, 128.6, 128.5, 128.0, 114.6, 109.8, 109.2, 104.0, 101.9, 96.6, 60.7, 31.3,
31.1, 7.7.

UE6: Light yellow powder, yield: 70.9%; 'H NMR (CDCl;, 600 MHz) Oy 8.18 (2H, m),
7.66 (1H, m), 7.53 (2H, m), 5.92 (1H, s), 2.60 (3H, s), 2.56 (3H, s), 2.49 (3H, s) 2.04 (3H,
s), 1.85 (3H, s). °C NMR (CDCls, 150 MHz) O¢ 202.6, 198.7, 195.0, 190.9, 177.9, 168.9,
164.6, 153.5, 148.9, 148.5, 134.2, 130.6, 128.9, 128.7, 119.1, 116.7, 114.5, 114.0, 98.9,
59.6, 32.0, 29.9, 26.2, 21.5, 10.6. HRESIMS m/z [M+Na] calcd for Cy7H,,00Na: 513.1162;

found 513.1122.

3.3 Results and discussion
3.3.1 Isolation and elucidation usnic acid derivatives via Dakin oxidation
The Dakin oxidation of usnic acid yielded 5 products, namely UD1-5. Among

them, novel structures of UD1-2 were elucidated by 1D, 2D NMR, and HRESIMS
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spectroscopy, while the known products UD3-5 were readily confirmed on the basis

of 'H and *C NMR spectra or HRESIMS (UD5).

OMe

K2C03, MeOH
10h, rt

Figure 3. 2 Dakin oxidation of usnic acid
After purification by silica gel column, the desired products were obtained as

shown in Table 3.2.

Table 3.2 The yields and characteristics of oxidation analogues of usnic acid (UD1-5)

oxidation analogues Appearance % Yield Remarks
uD1 White powder 25.2 Novel
uD2 White powder 2.4 Novel
uD3 Brown powder 15.0 Known
uD4 Brown powder 1.0 Known
uD5 White powder 1.2 Known
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3.3.2 Characterization of the products from Dakin oxidation of usnic acid
3.3.2.1 Compound UD1

The 'H NMR spectrum of UD1 showed a singlet of hydroxy chelated signal at
Oy 13.52, an olefin proton at 6y 5.82, one methoxy group at &y 3.57, and three
methyl groups at & 2.63, 1.95 and 1.74 ppm. The *C NMR spectrum of UD1 showed
sixteen carbon signals, including one ketone carbon at &: 200.9 ppm, two carboxyl
carbons at 8¢ 174.7 and 169.0, eight olefin carbons in the range of 8¢ 165.0-99.0, one
methoxy carbon at & 52.2 representing -COOMe, one tertiary carbon at 8¢ 54.1 and
three methyl groups at Oc 30.8, 19.9, and 7.9. According to HSQC and HMBC
spectroscopy, signals at O, 13.52,5.82, 1.95,and 7.9 ppm representing 6-OH, H-2, H3-
14, and H3-11 respectively, indicated the maintaining of starting material benzofuran
which was further supported by comparison with those of usnic acid [17]. 1H and

13C NMR of UD1 were distributed In Table 3.3.
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Table 3.3 Tentative 1D NMR (400 MHz) chemical shift assignment for UD1-2 (CDCl,)

uD1 ubD2
S, (o of ¢
1 166.7 165.2
2 582, 1H, s 96.7 5.89, 1H, s 96.8
3 174.7 179.8
4 154.7 1511
5 99.8 100.1
6 162.4 163.5
7 105.9 103.6
8 157.9 156.8
9 108.3 109.2
10 54.1 53.9
11 1.74,3H, s 19.9 1.93,3H, s 21.6
12 169.0 172.1
13 3.57,3H,s LORY 3.76, 3H, s 51.7
14 1.95,3H, s 7.86 2.05, 3H, s 7.4
15 200.9 201.4
16 2.63,3H, s 30.9 2.69, 3H, s 314
1-OMe 3.73,3H, s 61.8
6-OH 1352, 1H, s 13.33, 1H, s

The lack of 10-OH and H3-15 in usnic acid indicated the oxidation reaction
occurred at C-1 and C-4, further supported by the correlation from both H3-11 and
H3-13 (&, 3.57) to C-1 (¢ 169.0) and from H-4 to C-1 (8¢ 174.7). Thus, the structure

of UD1 is elucidated as shown in Figure 3.2.
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3.3.2.2 Compound UD2

The examination of the 'H and *C NMR spectra revealed some important
structural differences from UD1 including the occurrence of a methoxy group that
could be located at C-1 based on the HMBC correlations from the methoxy protons

at 6, 3.73 to C-1 (8¢ 166.2). Thus, the structure of UD2 is a methyl ester of UD1.

3.3.2.3 Compound UD3

The 'H NMR spectrum of UD3 showed a singlet hydroxy chelated signal at &
13.85, one methylene group at 6 3.80, and three methyl groups at &, 2.72, 2.33 and
2.14 ppm. The >C NMR spectrum of UD4 exhibited sixteen carbon signals, including
one ketone carbon at &¢ 201.3, one carboxyl carbon at 6¢ 170.6, eight olefin carbons
in the range of &¢ 165.0-102.0, one methylene carbon at &¢ 32.3, and three methyl
groups at &¢ 30.9, 9.8, and 7.8. Compared UD3 with those of usnetic acid [83], the

structure of UD3 is elucidated as shown in Figure 3.2.

3.3.2.4 Compound UD4

The examination of the 'H and >C NMR spectra revealed some important
structural differences from UD3 including the occurrence of a methoxy group at Oy
3.77 that could be located at C-1 based on the HMBC correlations from the methoxy
protons at 8 3.77 to C-1 (8¢ 169.8). Thus, the structure of UD4 is a methyl ester of

UD3.
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3.3.2.5 Compound UD5

The 'H and *C NMR spectra exhibited the presence of three methyl groups
with symmetric type of aromatic ring at 8y 2.72 (6H, s, 2x-COCHj;), and 2.06 (3H, Ar-
CH3). Furthermore, the molecular formula of UD5 was determined to be C;,H;505
based on the deprotonated ion peak at m/z 223.0627 (calcd for Cy,H;,0s, 223.0606).
The stuctrure of UD5 was confirmed as presented in Figure 3.2. The tentative 'H

NMR chemical shift assignment for UD5 is displayed in Table 3.4.
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Table 3.4 Tentative 1D NMR (400 MHz) chemical shift assignment for UD3-5 (CDCl,)

uD3 ub4a UD5
o8 o o & of
1 170.6 169.8
2 3.8(2H,s) 323 3.77(2H,s) 322
3 145 143.3
4 154.3 153.8
5 102 102.2
6 163 162.3
7 105 104.4
8 157 154.7 2.72 (3H, s)
9 1134 112.9
10 112.3 110.6 2.72 (3H, s)
11 23(3H,s) 9.8 2.35(3H,s) 9.8 2.06 (3H, s)
12 21(3H,s) 7.8 2.15(3H,s) 7.1
13 201.3 201.1
14 2.7(3H,s) 309 2.79 (3H,s) 31.1
1-
3.77 (3H,s) 526
OMe
6-OH 13.8(1H, s) 13.8 (1H, s)

3.3.2.6 Mechanism aspect of the formation of UD1-5 from the usnic acid.

With various conditions investigated, a mechanism for the formation UD1-5

from the oxidation of usnic acid is proposed as presented in Figure 3.3.
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Figure 3. 3 Proposed Dakin reaction mechanism of usnic acid

The mechanism was believed to involve initial oxidation of usnic acid (1) at
the ketone of the diketone (C-14) to give a hydroxyl at C-2 that was further oxidized
to yield the corresponding triketone 1a. The oxidation of ketone C-1 and C-3 led to
the construction of a diacid 1b. the methoxylation of 1b led to the formation of
UD1, that was further methoxylated to yield UD2. On the other hand,
decarboxylation of 1b led to the formation of UD3 that was further methoxylated to

obtain UD4. Finally, the oxidation of furan ring in UD4 led to the creation of UD5.
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3.3.3 Characterization of the products from esterification of usnic acid
3.3.3.1 The reaction of usnic acid with acetyl chloride

Four products, UE1-4 were obtained from the esterification of usnic acid and
acetyl chloride. A new chemical structure of UE1 was elucidated by 'H and °C NMR,
along with HRESIMS spectroscopy, while the known products UE2-4 were readily

elucidated on the basis of their 'H and ?C NMR spectra.

UE1: R1=R2=R3=-OAc

UE2: R1=H; R2=R3= -OAc
UE3: R1=R2=H; R3= -OAc
UE4: R1=H; R2= -OAc; R3=H
Figure 3. 4 Acetylation of usnic acid with acetyl chlorides

After purification by silica gel column, the desired products were obtained as

shown in Table 3.5.

Table 3.5 The yields and characteristics of ester analogues (UE1-4) of usnic acid with

acetyl chloride

Ester analogues Appearance % Yield Remarks
UE1 Yellow powder 10.4 New
UE2 Yellow powder 15.2 Known
UE3 Yellow powder 34.0 Known
UE4 Yellow powder 17.5 Known
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3.3.3.1.1 Compound UE1

The 'H NMR spectrum of UE1 showed an olefin proton at &, 6.38, and seven
methyl groups at & 2.65, 2.40, 2.35, 2.24, 2.22, 2.19 and 2.02. The *C NMR spectrum
of UE1 displayed twenty-three carbon signals, including three ketone carbons at ¢
203.0, 202.9 and 195.0, three carboxyl carbons at 8¢ 169.1x2 and 168.4, ten olefin
carbons in the range of 8¢ 155.0-100.0, one tertiary carbon at &c 47.0 and seven
methyl carbons at 8¢ 31.8, 29.5, 21.1, 20.7, 20.5, 9.7 and 9.2. The lack of 8- and 10-
OH in usnic acid [17] along with the appearance of seven methyl groups indicated
the esterification reaction occurred on 3-, 8-, and 10-OH of usnic acid. Thus, UE1 is

established as 3,8,10-triacetoxyusnic acid.

3.3.3.1.2 Compound UE2

The 'H NMR spectrum of UE2 showed a singlet of hydroxy chelated signal at
Oy 13.22, an olefin proton at 8y 5.81, and five methyl groups at &, 2.74, 2.54, 2.45,
2.03, and 1.78. The "C NMR spectrum of UE2 displayed sixteen carbon signals
including four ketone carbons at &: 201.9, 198.4, 193.3, and 190.9, two carboxyl
carbons at &¢ 178.1, ten olefin carbons in the range of &¢ 170.0-95.0, one tertiary
carbon at &¢ 59.4 and five methyl carbons at & 32.0, 31.2, 26.0, 21.4, and 9.2. The
lack of 10-OH in usnic acid [17] along with the appearance of one acetoxycarbonyl

group (8, 2.03, ¢ 178.1 and 21.4) indicated the esterification reaction occurred on
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10-OH of usnic acid. Thus, the structure of UE2, 10-O-acetylusnic acid [82, 84], is

elucidated as shown in Figure 3.4.

3.3.3.1.3 Compound UE3

The 'M NMR spectrum of UE3 showed an olefin proton at 8y 5.90, and six
methyl groups at &y 2.60, 2.54, 2.46, 2.33, 2.03 and 1.78. The lack of both of 10-OH
and 13-OH in usnic acid [17] along with the appearance of two acetoxycarbonyl
groups (84 2.33 and 2.03) indicated the esterification reaction occurred on both of
10-OH and 13-OH of usnic acid. Thus, the structure of UE3, 8,10-O-diacetylusnic acid

[82, 84], is elucidated as shown in Figure 3.4.

3.3.3.1.4 Compound UE4

The examination of the *H and >C NMR spectra revealed the similar spectra
to those of UE3, excepted for the lack of 8-OH and the occurrence of 10-OH that
indicated the reaction occurred at 8-OH. UE4, 8-O-acetylusnic acid [82, 84], is

established as shown in Figure 3.4.

3.3.3.2 The reaction of usnic acid and UE2 with benzoyl chloride
UE5 and UE6 were yielded from the esterification of benzoyl chloride with
usnic acid and UE3, respectively. The elucidation of chemical structure was based on

'H and "°C NMR spectroscopy, further supported by HREISMS for new product (UE6).



Figure 3. 5 Esterification of usnic acid with acetyl and benzoyl chlorides

Table 3.6 The yields and characteristics of UD5-6
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Ester analogues Appearance % Yield Remarks
UE5 Yellow powder 80.6 Known
UE6 Yellow powder 70.9 New

3.3.3.2.1 Compou

nd UE5

The 'H NMR of UES5 displayed the presence of two chelated hydroxyl groups

at 84 13.32 and 10.52, ten aromatic protons at 8y, 7.00-8.50, three olefin protons at

Oy 6.03, 5.43, and 5.24, and three methyl groups at &, 2.65, 2.12, 1.88. Comparison

with those of usnic acid indicated the hydroxyl groups at &, 13.32 and 10.52

belonging to 8-OH and 10-OH, respectively. Moreover, the appearance of ten

aromatic protons at 6, 7.00-8.50 ppm along with a couple gem olefin proton at &y

5.43 (1H, d, J = 1.2 Hz) and 5.24 (1H, d, J = 1.2 Hz) implied the disubstitution on C-14
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and C-3. Finally, UE5 is established as benzoic acid 1-(6-acetyl-3-benzoyloxy-7,9-

dihydroxy-8,9b-dimethyl-1-oxo-1,9b-dihydro-dibenzofuran-2-yl)-6inyl ester [84].

3.3.3.2.2 Compound UE6

The 'H NMR spectrum of UE6 showed five aromatic protons at & 8.5-7.5, that
implied mono benzoyl chloride reacted with UE2. A singlet signal at &y 5.86 (1H, s),
belonging to H-4 in starting material, and five methyl groups at 8y 2.60, 2.56, 2.48,
2.04 and 1.85. The examination of the *C NMR spectrum revealed some important
structural differences from UE2 including the occurrence of five aromatic carbons at
Oc 134.2, 130.6 x2 and 128.9x2 confirmed the addition of mono benzoyl chloride.
Moreover, the lack of chelated hydroxyl proton 8-OH at &y 13.22 (UE2) identificated
that the reaction occurred at 8-OH. Finally, the structure of UE6 is established as

shown in Figure 3.5.

3.4 Biological activities of usnic acid derivatives

Eleven usnic acid derivatives including 5 products from Dakin reaction (UD1-5)
and 6 esterification products (UE1-6) were further tested with o-glucosidase and
tyrosinase inhibitory activities. From the results, all derivatives exhibited the same or
higher activity comparing with starting material (usnic acid: >200 UM and no activity
(NA) for a-glucosidase and tyrosinase, respectively). Especially, UD2, UD5, UE5, and
UE6 showed excellent a-glucosidase activity with 1Csq 42.6+1.30, 90.8+0.32,

26.7+0.57, and 68.8+0.15 pM, respectively. These compounds not only displayed
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higher activity than that of usnic acid, but also with that of a positive control,
acarbose (ICsq: 93.6+0.49 uM) as shown in Table 3.3. In this case, UE5 displayed the

strongest activity (ICso: 26.7+0.57 uM).

Table 3. 7 a-glucosidase and tyrosinase inhibitory of usnic acid derivatives

Compounds Ol-glucosidase ICso (uM)  Tyrosinase ICsg (uM)

1 uD1 >200 NA

2 ubD2 42.6 + 1.30 NA

3 uD3 >200 >200
4 uD4 >200 >200
5 uD5 90.8 + 0.32 NA

6 UE1 >200 NA

7 UE2 >200 >200
8 UE3 >200 NA

9 UE4 >200 >200
10 UE5 26.7 + 0.57 >200
11 UE6 68.8 + 0.15 NA

12 Usnic acid >200 NA

13 Acarbose 93.6+0.49

14 Kojic acid 36.1+ 1.07
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3.5 Conclusion

From usnic acid, eleven derivatives were synthesized from Dakin oxidation
(UD1-5) and esterification reactions (UE1-6). Their chemical structures were
elucidated by 1D, 2D, and HRESIMS as well as comparison with those from literature.
Among them, UD1-2 was reported as novel compounds and UE1 and UE6 as new
compounds. Interestingly, all products displayed the same or higher biological
activity than the starting material, usnic acid when evaluated against a-glucosidase
and tyrosinase. In the oa-glucosidase assay, UD2, UD5, UE5, and UE6 showed
excellent activity (ICsy 42.6+1.30, 90.8+0.32, 26.7+0.57, and 68.8+0.15 pM,
respectively). On the other hand, all tested compounds revealed weak or no

inhibitory activity in the tyrosinase assay.



Chapter 4
CONCLUSIONS
4.2 Chemical constituents of lichen Usnea baileyi

In conclusion, eleven new compounds including ten new bisxanthones (US1-
3, US5-11), along with a new depsidone US4 as shown in Figure 2.21 were
successfully isolated from DC fraction. The chemical structures of isolated
compounds were elucidated by NMR, and also compared to the NMR data of those
in literatures. In addition, antiparasitic, cytotoxicity (only for US1-3), antibacterial, and
enzyme inhibitory including tyrosinase and a-glucosidase (US5-11) were performed.

The results revealed weak (US1-2) or no (US3) antiparasitic activity, and only
US2 exerted a moderate effect against MCF-7 cell line resulted slightly more
susceptible with an ICsy value of 12 uM.

On the other hand, the antibacterial activity of seven compounds (US5-11)
resulted good activity against £. coli with MIC 62.5 pg/mL for US5-6 and B. subtilis
with MIC 62.5 pg/mL for US5, while all seven bisxathones (US5-11) displayed weak
activity against tyrosinase and a-glucosidase.

The possible future research would be connected to the chemical
constituents from the remaining dichloromethane fraction of U. baileyi. Furthermore,
the synthesis of some derivatives from other major compounds as stictic acid,
protocetraric acid or diffractaic and babartic acid should be studied. Other biological

activities such as anticancer and some inhibitory activities such as a-glucosidase
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(molecular docking, orthogonal assay, SAR for potential compounds),

acetylcholinesterase should be examined on isolated compounds or derivatives.

4.2 Synthesis of usnic acid derivatives via oxidation and esterification
reactions

Further structural modification of the parent compound, usnic acid isolated
from U. baileyi, employed Dakin oxidation and esterification as key methods to
accomplish eleven derivatives including five oxidation products, UD1-5 and six ester
analogues, UE1-6. Three compounds, UD1-2, UE1, and UE6 were identified as new
compounds. All derivatives were subsequently evaluated for Ol-glucosidase inhibitory
activity. Interestingly, some candidates exhibited better activity than the parent
compound or the control. In Dakin oxidation series, UD2 displayed the most potent
inhibition with ICsy value of 42.6+1.30 and UE5 showed the most potent in ester
series with 1Csg 26.7+0.57 AM.

Further experiments should also be planned to investigate the influence of
pH as well as different oxidants to clarify the oxidation mechanism. In esterification
reaction, the products formed from usnic acid and benzoyl chloride revealed the
strongest activity. Further experiments should study on other benzoyl chloride
derivatives with different substituents on the aromatic ring.

In addition, study on the mode of inhibition in perspective of structure

activity relationship should be focused.
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Figure A. 31 The 'H NMR (CDCls, 500 MHz) spectrum of US4
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Figure A. 52 The ">C NMR (CDCls, 125 MHz) spectrum of US7
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Figure A. 53 The HSQC (CDCl;, 500 MHz) spectrum of US7
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Figure A. 54 The HMBC (CDCls, 500 MHz) spectrum of US7
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Figure A. 56 The HRESIMS spectrum of US8
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Figure A. 58 The >C NMR (CDCls, 150 MHz) spectrum of US8
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Figure A. 61 The HMBC (CDCls, 600 MHz) spectrum of US8
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Figure A. 62 The NOESY (CDCls, 600 MHz) spectrum of US8

169

2.0 1.5 1.0

2.5

T
2 fnnm)

3.0

3.5

4.0

4.5




170

Generic Display Report

Analysis Info Acquisition Date  3/25/2019 4:54:17 PM
Analysis Name  D:\Data\Data Service\190325\XKGX7_RB1_01_2363.d

Method nv_pos_5min_profile_190214.m Operator Cu.

Sample Name  XKGX7 Instrument micrOTOF-Q Il
Comment

Intens. +MS, 0.09-0.20min #(5-12)
x104

647.1748

6

732.1505

298.2739

0 L il Lo Wl gt Ll o J ‘ ' . ' i
200 400 600 800 1000 1200 1400 miz
Intens. +MS, 0.09-0.20min #(5-12)

4
XWUB_ 647.1748

625.1912 633.]1 568

0 AT , , . —r .
625 630 635 640 645 650 mz

Bruker Compass DataAnalysis 4.0 printed: 3/25/2019 6:03:07 PM Page 1 of 1

Figure A. 63 The HRESIMS spectrum of US9
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Figure A. 64 The 'H NMR (CDCls, 500 MHz) spectrum of US9
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Figure A. 65 The >C NMR (CDCls, 125 MHz) spectrum of US9
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Figure A. 66 The HSQC (CDCls, 500 MHz) spectrum of US9
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Figure A. 67 The HMBC (CDCls, 500 MHz) spectrum of US9
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Figure A. 69 The HRESIMS spectrum of US10
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Figure A. 71 The ">C NMR (CDCls, 100 MHz) spectrum of US10
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Figure A. 74 The HMBC (CDCls, 400 MHz) spectrum of US10
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Figure A. 75 The NOESY (CDCls, 400 MHz) spectrum of US10

182

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0



183

Data: AB_0001.B3[c] 22 Aug 2019 18:38 Cal: naka 8 Aug 2019 19:32
Shimadzu Bictech Axima Resonance 2.9.1.20100121: Mode positive, Low 300+, Power: 110

%lnt. 1743 mV Profiles 1-21: Thresheold Gradient

687.1716
100

90
a0
70
o 688.1776
a0

40

30

20 689.1826

G670 675 gen 685 690 895 700

Figure A. 76 The HRESIMS spectrum of US11
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Figure A. 77 The NMR (CDCls, 400 MHz) spectrum of US11
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Figure A. 78 The >C NMR (CDCls, 100 MHz) spectrum of US11
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Figure A. 79 The HSQC (CDCls, 400 MHz) spectrum of US11
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Figure A. 80 The HMBC (CDCls, 400 MHz) spectrum of US11
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Figure A. 81 The NOESY (CDCls, 400 MHz) spectrum of US11
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Figure A. 82 The HRESIMS spectrum of UD1
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Figure A. 83 The 'H NMR (CDCls, 500 MHz) spectrum of UD1

1.0

T
2.0 1.5

T
2.5

3.0

3.5

4.0

T T
4.5

5.0

T T T
6.0 5.5

6.5

T T T T T T T T T T T
85 80 75 7.0
f1 (opom)

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5



6G8°L—
106'6L—

€88°0€—

69125~
GLL'¥S

699°96~
8166
€¢98'G0L~
¥rE 801

90/ 5L~
¥68°LGL—
66291 —
169991 —
8006917
AR A%

¢e6'00¢—

Figure A.
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Figure A. 85 The HSQC (CDCls, 500 MHz) spectrum of UD1
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Figure A. 86 The HMBC (CDCls, 500 MHz) spectrum of UD1
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Figure A. 87 The HRESIMS spectrum of UD2
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