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The classical theorem of Lucas states that binomial polynomials, which form a
basis for integer-valud polynomials, satisfy a congruence relation, modulo a prime,
related to their digits in the base prime representation. In this thesis, we define the
Lucas property in the setting of discrete-valued structures and investigate when and
where the Lucas property holds. General criteria are derived for bases of integer-
valued polynomials in this setting to satisfy the Lucas property. Examples of bases
including those of Lagrange type and of Carlitz-like polynomials are worked out.

In addition, one of the best known properties of binomial polynomials in the
classical case is the Pascal triangle equality, which equates the sum of two binomial
coefficients to the one in the following line. In the second part of the thesis,
we define a general Pascal property and prove a characterization for polynomials
which satisfy this Pascal property. Examples of bases of integer-valued polynomials

satisfying such a Pascal property, which embrace the classical case, are derived.
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CHAPTER 1
INTRODUCTION

Let D be an integral domain with the quotient field K. An integer-valued
polynomial over D is a polynomial over K that maps D to itself. We denote

the set of all integer-valued polynomials over D by
Int(D) = {f(¢) € K[t} [ (D) € D}.

There has been numerous studies to investigate some properties of Int(D). For
example, it was shown in [4, Chapter I.1] and [12] that the set Int(D) is a subring
of K[t| containing D[t] and is also a D-module.

In the classical case where D = Z, [4, Proposition I.1.1] the Z-module Int(Z) is
free and one best known regular basis of free Z-module Int(Z) is the set of binomial

polynomials {(t) }n Ny’ defined by

n

(t) _1 (;):t(t—1)~--(t—n+1) (nen)

0 n!

One of the famous results concerning binomial polynomials is the Lucas theorem,

[10]: let p be a prime number and let m and n be nonnegative integers. Then
(m) = (mo) (W) (md(")> (mod p), (1.1)
n U ny Nd(n)
where

n=ng+mp+nop’ + -+ nggyp”™ with 0 <n; <p (na) #0),

m = mg+ mip+ mop? + - + md(m)pd(m) with 0 <m; <p (Mamm) #0)



are base p expansions of n and m, respectively.

There is a simple short proof of this theorem in [10], where some results on the
number and conditions for binomial coefficients to be divisible by p are also ob-
tained. Another famous identity related to binomial polynomials is the Pascal

identity, [8, Theorem 26]: for n € N and k € Ny, we have

(kzl) - (nfl) ' (v]z)

which asserts that coefficient of the z™ in the expansion of (1 + z)**! is resulted
from the sum of two neighboring coefficients of (1 + z)*.

For D = V| a discrete-valuation domain of the field K with finite residue field,
the unique principal maximal ideal of V is denoted by m. Let 7" be a generator
of m, and let ¢ be the cardinality of the residue field V' /m. Denote the set of
representatives of V/m by U = {ug = 0,uy,...,u,—1}. The running index of the
sequence {uy, }nen, is enlarged from ¢ — 1 to the entire Ny := N U {0} by the
following construction. For n € N.n > g, if the base g-representation of n is

n=ng+nq+---+ nd(n)qd(”) (0 < m; < q), define

Up, = Upy + uan SR | und(n)Td(n)
Using the sequence {uy, }nen,, a regular basis {Cy,(t) }nen, of the V-module Int(V)
is defined along the same line as that of Lagrange interpolating polynomials,

namely,

(t —up)(t —w) - (t —up1)
(un - UO)(Un - U1) s (Un — un_l)

Cot) =1,  Cu(t) = (n € N).

In 2001, Boulanger and Chabert [3] generalized Lucas’s theorem from Z to V
by showing that {C,,(¢)},en, satisfies the congruence relation analogous to Lucas

theorem: if

n:n0+n1q+...+nd(n)qd(n) and A:AO+A1T+...



are the g-adic expansion of a positive integer n, and the T-adic expansion of an
element A of V| respectively, then

C(A) = Cry (A)Ci, (Ay) -+ C

Md(n)

(Ad(n)) (mod m) (1.2)

In particular, if we replace V' by Z, v by v, (the p-adic order), and m by pZ, by
taking

u, =n (n € Np),

the basis element C,,(k) becomes the binomial polynomial (z), which shows that

the congruence relation () does indeed imply ()
In the case of K = F (), the field of rational functions over the finite field F,

of ¢ elements, with the z-adic valuation whose discrete valuation domain is V', and
whose maximal ideal is m = (z) := zV. In [p], [6], and [[7], Carlitz introduced the

following set of polynomials over F,[x]:

bo)=t, @)= [] (t=M) (meN),

deg M<n

where the last product extends over all polynomials M € F,[z] of degree < n,
including the zero polynomial. Carlitz defined the following elements in F,[z]

which play the role analogous to the factorials in 7Z,
Fo=1, F,={n)n-17 (1) (neN),

where (n) := 27" — x. The polynomials v,(t) is generalized to the polynomials

Gn(t) defined by
Go(t) =1, Gult) ="V (1) Uy (1) (n€N),

where n = ng +ni1q+- -+ ngm) q™™ is its base g-representation. Correspondingly,



the factorial-like elements generalizing the F),’s are defined by

go=1, gn=F"F"---F" (neN).
Carlitz proved that {G,(t)/g,} is a regular basis of the F,[z]-module Int(F,[x]).
Our thesis is organized as follows. Chapter II consists of some notations, defini-
tions and related results using the entire thesis without proofs. In Chapter III, the
shapes of Lagrange type interpolation polynomials similar to {C,(¢)} which con-
stitute bases for Int(V') and satisfy Lucas property are presented. Our results give
an extension to a result of Boulanger and Chabert in 2001. Moreover, we show
that the basis obtained by Carlitz satisfies Lucas property. The generalization
of Carlitz polynomials, namely, Carlitz-like polynomials are introduced. Criteria
guaranteeing that Carlitz-like polynomials which constitute a basis for Int(IF,[z])
enjoy the Lucas Theorem are derived. The necessary and/or sufficient conditions
on arbitrary polynomials over K of degree n which form a basis for Int(V') and
satisfy Lucas property are also investigated. In the final chapter, a generalization
of Pascal property and criteria on polynomials satisfying Pascal property which
form a regular basis for Int(V') are also established. An interesting application,
another horizontal recurrence relation related to Stirling numbers of the first kind,

is also presented.



CHAPTER II
PRELIMINARIES

2.1 Discrete valuation domains

We begin this section by recalling some basic knowledge in valuation theory. For

the general reference, we refer to [9] and [11]. Let K be a field.

Definition 2.1. A valuation of K is a function | - | : K — R U {0} satisfying

these properties: for all a, b € K
1. |a| = 0 if and only if a = 0,
2. Jab| = lal|8,
3. la+b| < |a]+|b]. (Triangle inequality)

There is always at least one valuation on K given by setting |a| = 1 for all a € K*

and |0] = 0. This valuation is called the trivial valuation.

Definition 2.2. A valuation | - | is called non-Archimedean if it satisfies

la + b] < max{|a|, [b|]} foralla, b€ K.

Otherwise, the valuation | - | is called Archimedean.
The previous inequality becomes an equality under the following condition.

Theorem 2.3. Let |- | be a non-Archimedean valuation. If |a| # |b|, then

la + b| = max{|al, |b|}.



Definition 2.4. Let |- |; and |- |2 be two valuations on K. They are equivalent

if and only if there exists a positive real number s such that
lal; = |als  forall a € K.

Some examples of certain fields with their valuations are shown as follows:
Example 2.5.

1. The usual absolute value on the real number R or the complex number C is

an Archimedean valuation.

2. Let K = Q. If we fix a prime number p, any non-zero rational number ¢ can

be written in the form

(¥

e pi

m
DN
n

where v € Z, m € Z, n € N and p t mn. We then put
lclp=p % and |0], =0.

This defines a non-Archimedean valuation on Q, which is called the p-adic

valuation.

3. Let K = k(x), where k is any field, and p(z) an irreducible polynomial in

k[x]. Any non-zero rational function ¢ in = over k can be written as

¢=p’-

J

f
g

where v € Z, f,g € k[z] and p t fg. Then we obtain a non-Archimedean

valuation on the rational function field k(x) defined by
|¢|p(x) =2"" and |0|p(x) =0.

Moreover, the number 2 can be replaced by any real number greater than 1

and a new valuation is equivalent to the old one.



Next, we introduce the symbol oo that oo + co = oo and r + oo = oo for all

r € R and define an exponential valuation on K as follows.

Definition 2.6. An exponential valuation on K is a function v : K —

R U {00} satisfying these properties, for all a, b € K :

1. v(a) = oo if and only if a = 0,
2. v(ab) = v(a) + v(b),

3. v(a+b) > min{r(a), v(b)}.
Note that if we set v(a) = 0 for all @ € K* and v(0) = oo, we have an

exponential valuation corresponding to the trivial valuation on K and we call it

the trivial exponential valuation.

Proposition 2.7. Let v be an exponential valuation on K. For all a,b € K, if
v(a) # v(b), then
v(a + b) = min{v(a), v(b)}.
We continue with two important definitions.

Definition 2.8. An exponential valuation v on K is called discrete if v(K*) = sZ

for some real number s > 0. Moreover, v is normalized if s = 1.

Definition 2.9. Two exponential valuations 14 and v, are equivalent if there

exists a real s > 0 such that v; = svs.

Notice that if v is a discrete valuation on K, then there exists a uniquely de-
termined normalized valuation of K that is equivalent to v. Thus, throughout
this thesis, the term “discrete valuation” means “normalized discrete exponen-
tial valuation”. Next, relations between the non-Archimedean valuations and the

exponential valuations on K are shown.

Theorem 2.10. Let |- | be a non-Archimedean valuation on K and s € R, then

the function vy : K — R U {00} defined by

—slogla| ifa#0,

00 ifa=0

vs(a) =



is an exponential valuation on K. Furthermore, if s, s € R" and s # s, then v,
is equivalent to vy. Conversely, if v is an exponential valuation on K and g > 1,

then the function |- |, : K — R defined by

g if a#0,

0 ifa=0

‘a’q =

is a non-Archimedean valuation on K. Moreover, if ¢, ¢ > 1 and q # ¢, then |-|,

is equivalent to | - |.

From the above relation, we always get the corresponding valuation when a non-
Archimedean valuation on K is given and vice versa. This leads us to consider

three important sets in the following theorems.

Theorem 2.11. Let v be a discrete valuation on K and denote by |- | a corre-

sponding non-Archimedean valuation. Then

1. the set
Vi={ae K|v(a) eNg} ={ae K||a| <1}

is an integral domain, called the discrete wvaluation domain. Moreover

oralla e K*, we havea €V ora ' €V
f J ")

2. the set
m:={a€K|v(a)>0}={aceK|la<l}={acV]a'¢gV}

is the unique principal maximal ideal of V,

3. the set
Vim:={aec K|v(a) =0} ={a€ K||af =1}

is the group of units of V.

Note that each element in the discrete valuation domain can be uniquely rep-

resented in terms of a fixed generator of the maximal ideal m. Some examples of



discrete valuation corresponding to certain valuations are presented as follows.
Example 2.12.

1. Let K = Q. From Example @(2), a discrete p-adic valuation corresponding
to the p-adic valuation | - |, is a function v, : Q — Z U {oo} defined by

V.

»(0) ;=00 and y,(c) := —log, |c|, = v,

for all ¢ = p” - € Q*. Therefore, we have

V:{%E@ a,beZ, (a,b) =1, andpfb},

m:{%e@ a,bGZ, (a7b>:1ap|a? andp)(b}’

V\m:{%e(@ a,beZ, (a,b) =1, andpj(ab}.

2. Let K = k(x), where k is any field. From Example @(3), a discrete valuation
corresponding to the valuation | - |, is a function vy, : k(z) — Z U {oo0}

defined by

Vp)(0) ;=00 and vy (0) := —logy |¢]pm) = v,

for all ¢ = p¥ - § € k(z)*. So, we have

v:{ﬁekm fog € Klal, (frg) = 1. andmg},
m:{;”(—gekm fgekla, (fig) =1, p| f. andmg},
V\m:{%ek(x) f,g€klz], (f,g9) =1, andp{fg}.

Let V be a discrete valuation domain corresponding to a discrete valuation
v, m the unique principal maximal ideal of V' generated by T, and V/m is the
finite residue field of cardinal ¢ > 1. Let U := {ag = 0, ai,...,a,-1} be a set of

representative of V' /m. Each element in V' can be uniquely represented as power



10

series in 1" with coefficients in U.

Theorem 2.13. For each A € V', we can write
A:A0+A1T+A2T2+ (AZEU)
Next, we introduce the notion of very well distributed and well ordered sequence

in V' as defined in [4].

Definition 2.14. Denote by v,(¢) the largest power of ¢ that divides £ € N. A
sequence {a, },>0 C V is said to be a very well distributed and well ordered

(VWDWO) if for all ¢, m € Ny, the sequence elements satisfy
v(ag — Q) = V(€ —m).

According to [4], some examples of VWDWO sequences are presented as follows.
Example 2.15.

1. For each prime number p, the natural sequence of positive integers is a

VWDWO sequence for the p-adic valuation of Q.

2. Let U :={ap =0, ay,...,a,-1} be a set of representative of V/m and T a
generator of maximal ideal m. Taking g as the basis of the numeration, that

is, decomposing n € N as,

n=n.q +---+nqg+ny (0<n;<gq),

and letting
Up = ap, T" + -+ ap, T + ay,,

then {u,} is a VWDWO sequence in V.

Moreover, an important property of VWDWO sequences is also established.
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Proposition 2.16. Let {u,} be a sequence in V. The sequence {u,} is VWDWO
if and only if for all s € N, any choice of ¢° consecutive terms provides a complete

set of residues of m* in V.

2.2 Integer-valued polynomials

In this section, we give some notations, definitions and results concerning inte-
ger valued polynomials. For general references, we refer to [1], [2], [4] and [12].

Throughout, let D be an integral domain with quotient field K.

Definition 2.17. An integer-valued polynomial over D is a polynomial over
K which maps the set D to itself. The set of all integer-valued polynomials over
D is denoted by

Int(D) = {f(t) € K[t] | f(D) C D}.

Example 2.18.
1. Each polynomial over D is an integer-valued polynomial over D.

2. The binomial polynomials, defined by

(t) =T =) (nen)

n n!

are polynomial over QQ and also form a subset of Int(Z).

3. Consider the Lagrange interpolation polynomials: let n be a positive
integer and, for 0 < h < n, let 7, be a polynomial of degree n such that
(k) = 0 (0 < k < n), where d; is a Kroneker symbol. They may be
written

nt) = I ;;_’; _ (—1ynh (;) (t - f_L;L 1>. (2.1)

0<k<n,k#h

These polynomials are integer-valued polynomials over Z.
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4. Let {up}tnen, be a VWDWO sequence of V. The sequence of polynomials
{fn}nen,, constructed as Lagrange-type interpolation polynomial in the same

manner as in (El]), ie.,

n—1

foty=1 and f.(t) =[] (t —uo)(t —ur) -+ (t — Up1)

0 (tn = uo) (tn — u1) -+ (U — Un-1)

(n S N)u

forms a subset of Int(V').
Let B be a domain which D[t] C B C K[t].

Definition 2.19. A basis {f,}nen, of the D-module B is said to be a regular

basis if, for each n, the polynomial f,, has degree n.

The fractional ideal J of D is a D-submodule of K which is fractional subset,
that is, there exists a nonzero element d of D such that d.J is an ideal of D. Then
the set of leading coefficients of polynomials in B forming the fractional ideal is

defined in the following.

Definition 2.20. For every n € Ny, the nth characteristic ideal of B is the
fractional ideal J,(B) which is the set of leading coefficients of polynomials in B

of degree < n (including 0):
Jo(B)={0yU{ac K|3f€B, f=at" +a,t" " +---}.
The relation between regular basis and fractional ideal J,(B) is characterized

in [4, Proposition I1.1.4] as follows.

Proposition 2.21. A sequence {f,(t)}nen, of elements of B is a regular basis of
B if and only if, for each n, f, is a polynomial of degree n whose leading coefficient

generates the nth characteristic ideal of B as a D-module.

Now let V' be a discrete valuation domain with finite residue field of ¢ elements

and K its quotient field. Assume that T is a fixed generator of the unique principal
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maximal ideal of V. Next, we define an arithmetic function w,(n) on the positive
integers by
n
wy(n) = Z {—kJ :
ken L9

Recall Bhargava’s notion of T-ordering on V' [1] and [2]:

Definition 2.22. A sequence {uy }nen, of elements of V' is a T-ordering of V' if,

one has

v (ﬁ(un — uk)> <v (ﬁ(to — uk)> foralln e N, t, € V.

k=0 k=0

Two forms of regular bases for Int(V') are constructed by using t-ordering se-

quence {u,}, see [2, Theorem 9] and [, Propostition7], respectively.

Proposition 2.23. Let {u, }nen, be a T-ordering of V.. The V-module Int(V') has

a reqular basis
n—1
t—u
L0 =1] Y (neNy).

Up — U
kg T k

Conversely, the set of polynomials {f,(t)} forms a regular basis for Int(V') only if
{tn}n>0 be a T-ordering of V.

Proposition 2.24. Let {u,}nen, be a T-ordering of V.. The sequence of polyno-

mials associated to the T-ordering {u, }nen,
n—1
fult) = T [T =)

k=0

is a reqular basis of Int(V').

It is noticed that any two T-ordering {u,} and {u!} of V result in the same

minimum condition:

v (ﬁ(un - uk)> =v (ﬂ(u’n - u%)) (n € N).

k=0 k=0
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By Proposition , Proposition and Proposition , both T~*«(™ and

n—1 1
k=0 Un — Uk

v,

are generators of J,(Int(V')). Therefore, for each T-ordering {u,} of

wy(n) =v ( - (un — uk)> : (2.2)

Moreover, if a sequence {u, } satisfies (@), it becomes a T-ordering by Bhargava

-
The other basis of Int(V) is defined as follows.

Definition 2.25. Let F, be a polynomial

t—t9
Fot)=1, F(t)=t and F,(t) = i

Then, taking g as the basis of the numeration, and writing
n=no+mq+---+nsq’ (0#n; <gq),

we let
S

Fut) = [J(Fa)™ (neN).

=0
where F(t) = F(t) and F'(t) = F(F1(t)). [4, Propositon 11.2.12] We say that
F, is the nth Fermat polynomial of V' and it is an integer-valued polynomial

over V.

Theorem 2.26. The Fermat polynomials F,(t) form a regular basis of V-module
Int(V).

For the case of function field, let F,[x] be the ring of polynomials over F,, a finite
field of ¢ elements, and F,(x) its quotient field. In [5], [6] and [[7], Carlitz defined
the polynomials ¢ (t) for all & € Ny in F,[t], referred to as Carlitz poynomials,

which play the role analogous to the binomial expansions in Z as follows: define
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Yo(t) =t and, for k € N, define

ety = [ - M), (2.3)
deg M <k
where the product extends over all polynomials M (including 0) in an indetermi-
nate x with coefficients in F, of degree less than k. He also defined the following
plays in F,[z] which play the role analogous to the factorials in Z: define Fy = 1
and for £ € N, define

Fy = K[k = 19k =207 - [,
where [r] = 27 — x for all r € N. As mentioned in [6], ¥ (2%) = ¢r(M) = F}, for
each monic polynomial M of degree k, F}, is the product of all monic polynomials
in F,[x] of degree k. In [[7], Carlitz generalized 1, (t) to the polynomial G (t) and
F}, to the polynomial gy defined as follows: define Go(t) = 1 and g9 = 1. For

k € N, if k is expressed with respect to base q as
k=oag+o0ig+asg® + -+ ad(k)qd(k) (0< a; <q),

then define

Gi(t) = U (U (8) - Uy (1)

and

gi = FQOF - Foi

From these polynomials, a basis of Int(F,[z]) is established.
Theorem 2.27. Let k € Ny. For each K € F[z], G(K)/gx is polynomials over

F,[z]. Moreover, the polynomials Gi(t)/gr form a regular basis of F,[x]-module

Int(F,[z]).



CHAPTER I11
LUCAS PROPERTY

From now on, let V be a discrete valuation domain with respect to normalized
discrete valuation v and a finite residue field, and let K be its quotient field. Let
m = (7T') be the unique principal maximal ideal of V' generated by T, and let ¢ be
the cardinality of the residue field V'/m. Denote the set of representatives of V' /m
by

U={up=0,up,..., 01}

By Theorem , each element A € V can be uniquely represented as a base

T-representation (or power series in T over U) of the form
Ag+ AT+ A,T? + - - (A; € U).

The valuation v(A) of A € V* := V ~ {0} is a positive integer, indeed it is the
largest integer n such that A € m”™; in a similar manner, denote by v,(¢) the largest
power of ¢ that divides ¢ € N.

We first define the congruence relation analogous to Lucas theorem, referred to

as Lucas property in the following.

Definition 3.1. Let {B,(t)}nen, € K[t] be a sequence of polynomials forming
a basis for the V-module Int(V'). We say that the sequence {B,(t)} satisfies the

Lucas property modulo m if for n € Ny with base g-representation

n=mng+nq+---+ nd(n)qd(") (0<n; <q, ngm) #0if n € N), (3.1)
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and for A € V with base T-representation

A=Ag+ AT+ --- (A; € U),

the congruence relation

holds.

3.1 Lagrange-type interpolation polynomials

Let the polynomials {B,(t)} be constructed as Lagrange-type interpolation poly-

nomials, i.e., there is a sequence {wy, }nen, of distinct elements in V' such that

(t — wo)(t —wi) -+ (t — wp1)

By(t) =1, Bu(t) = (wn — wo)(wy, = wy) - -+ (wy, — Wy—1)

(n € N).

Definition 3.2. The sequence {w,} is called a g-IVP (generating integer-
valued polynomial) sequence if its associated polynomial sequence {B,(t)} is

a basis for Int(V).

In this section, we determine those g-IVP sequences whose associated poly-
nomials satisfy the Lucas property. The results give an extension to a result of
Boulanger and Chabert [3]. Any ¢g-IVP sequence {w, } is characterized by the next

theorem.

Theorem 3.3. If {w,} is a g-IVP sequence with wy = 0, then wy,...,w,_1 are
units, each of which belonging to a distinct class in V /m.
Moreover, the first q elements of {w,} can be chosen to be all the elements of

the set of representatives U of V /m, i.e., {wy = 0,wq,...,we_1} = U.

Proof. Let {B,(t)} be the polynomial sequence associated with {w,}. To show
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that wy is a unit in V', consider

t— t
Bi(t)= %0 "

w1 — Wo w1

Since Bj(t) is integer-valued, we have Bi(1) = 1/w; € V, so w; is a unit in V, and
we are done in the case ¢ = 2.
If ¢ > 2, we proceed by induction on k, assuming that wq,...,w; (1 < k <

q — 1), are units belonging to different residue classes in V' /m, so that

v(iw, —w;) =0 (1<i<j<k).

Consider
t(t —wy) - (t—wy)

wk—i—l(wk—i-l — wl) N (wk+1 - wk).

Biyi(t) =

Since k+1 < ¢—1 < |V /m|, there exists a unit A € V'~ {0} belonging to a class

in V' /m different from those of wq, wy, ..., wx, and so

v(A—w;)=0 (0<i<k).

Since
A(A —wy) -+ (A—wy)
We 1 (Why1 — W) -+ (Wry1 — W)

(i.e., v(Bgsr1(A)) € Ng) and v(A(A —w;) -+ (A —wy)) = 0, we have

Bk+1<A) - € V

V(e (W1 — w1) - (Weyr — wy)) < 0.

As Wiy (g1 — wy) - -+ (W1 — wy) € V {0}, this forces

V(wk+1(wk+1 - wl) s (wk+1 - wkz)) =0.

Because w; € V', we deduce that

V(wk+1) = V(Wp1 —wy) = -+ = V(W1 —w) = 0,
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which shows w1 is a unit in V' belonging to a class different from wy, ..., w; in
V/m, and the induction is complete. The second assertion follows immediately

from the first. [

The next technical lemma provides more informations about a congruence prop-

erty of the polynomials B, (t).

Lemma 3.4. Let {w,} be a g-IVP sequence whose associated polynomial se-

quence is {B,(t)}. Let the subset of the first q elements of {w,} be {wy =

0,wi,...,w,—1} = U, and denote any other element by
wp=a + T+ +aPTit . (@V el n>q) (3.3)
n = Qg 1 3 3 =) .

(this representation is also applicable for n =0,1,...,q—1). Let

A=A+ AT+ -+ AT +---€V. (3.4)
For a fired m € Ny, if the condition on the digit values

ay’ = Wp,, a” =w,, ..., d™ =uw,_, (3.5)

holds for all n € Ny whose base q-representation is (@), then for each k €
{0,1,...,q — 2}, we have

k (sq™ 1 +rs)

Am+1 —a,,
B(k+1)qm+1 (A) = H e D)+ +1 G ) (mod m),
s=0 Im+1 — Qi

m—+1

where the integers rs € {0,1,...,¢q — 1} are uniquely determined and satisfy the

relation

w,, = Ag+ AT+ -+ A, T™ (mod m™).

Proof. Assume that aén) = Wp,, a§”) = Wny, ---, aly) = Wy,,. For 0 <k < q— 2,
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replacing A and w; by the expressions in (@), respectively, (@), we write

k
Bty (4) = [0

s=0

where
(s—i—l)qerl —1

Q, = H A — w; _ Al(s).

w(k+1)qm+1 — W; AQ(S)

i=sqmt1

The numerator of € is

(s+1)gmT1-1

Mis)= [ (Aot -+ AT — (af) + - +aDT™))

i=sqmt1

+ (Ami1 = @) T

NeU[T]
deg N<m

+ (terms with powers of T' > 2m + 2), (3.6)

where

(s+1)g"+1—1

Yo 1= Z (Ams1 = a;?+1)Tm+17
Z':sq'm+l
Il == 1T (Ag+ -+ A, T™ — M).
MeU[T]
deg M<m

Motal) s T

Since N and M run through all elements in U[T] (including 0) of degree < m
and M # a(()i) 4+ aT™, in the right-hand expression of (@) the first term

vanishes, while the second term reduces to

(Apyr — a1+ 11 (Ag+ -+ ApT™ — M)

MeU[T], deg M<m
MAAg+- ot A T™
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for some uniquely determined r, € {sq¢™*!, ... (s + 1)g™* — 1} satisfying

a™ =4, (0<i<m). (3.7)

)

Thus,

M) = (A —agl) T [T (Ao 4+ AT = M)
deg M<m
M#Ag++ART™

+ (terms with powers of T > 2m + 2). (3.8)

Note that the denominator Ay(s) of €25 takes exactly the same form as A; but with
((s+1)gm*!

the coefficients A; of A being replaced by the coefficients a; ) of W(st1)gm+1,
and so in an expression similar to the right-hand side of (@) for Ay(s), the first

term of expansion vanishes and the second term reduces to

(ag(irll)q’”“) . ay(:L%)TmH H (Z ag(s+1)qm“)Ti o M’)
i=0

M'eU[T], deg M'<m
m—+41 m—+1
M/?éaé(s"rl)q )+_..+a£r(13+1)(1 )Tm

for some uniquely determined 1/, € {sq™"!, ... (s + 1)g™* — 1} satisfying
™ = D g << m). (3.9)

By the assumption (@), we have

B T e N A
and
a(()Sqm+1) _ agsqurl) L aﬁiqmﬂ) — wy = 0’



22

SO (@) shows that 7, = s¢™*!, and the second term of Ay becomes

s+1 m—+1 s m—+1 m
(a0 =l T (0 M),

deg M'<m
M'#0

Thus,

S+1 m—+1 Sm+1 m
Ao(s) = (ap i —aply [T (0= M)
deg M'<m
M0

+ (terms with powers of T' > 2m + 2). (3.10)

We claim now that Hl;:o Ay(s) # 0, i.e., the denominator of By 1)gm+1(A) does
not vanish. To verify this, observe that since k + 1 < ¢ — 1, choosing A,,+1 in
such a way that Hfzo (Am+1 agn +1) # ( yields the non-vanishing numerator of
B1)gmi (A), ie., 15, Ai(s) # 0. This together with the fact that B1)gm1 (A)
is integer-valued, i.e., belongs to V| shows that its denominator H];:o As(s) does

not vanish. Since both the sets
{Ag+ AT+ +AT"—M | M € UT],deg M < m, M # Ag+A T+ - -+A,T™}

and

{-M'| M' e U[T],deg M' < m and M' # 0}

m+1

are identical with the set of all nonzero residue classes modulo m™™" we have

11 Ao+ + AT =M)= J] (0-M) (mod m™). (3.11)

deg M<m deg M’'<m
M#Ap++AnT™ M'#0

By (B.4), (B.10) and (B.11), we get

k k alrs)
S _ m+1 m 1)
B(k:-l—l)qm+1 (A) H S = s+1 mFT) a?;qmﬂ) (mOd m)7
s=0 s=0 m+1 m+1
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for some s¢™* < ry < (s+1)g™™ — 1 and by (@) and (@), we get o) = A,

(0 <i<m),ie.,
wy, = Ag+ AT + -+ + A, T™ (mod m™ ),

as required. [

The explicit shape of a g-IVP sequence {w, } which is VWDWO, stated in Def-
inition , and satisfies the Lucas property is obtained in the following theorem.

Theorem 3.5. Let {w,} := {wy = 0,wi,ws,...} be a g-IVP sequence whose

associated w-polynomial sequence is { By, (t)}nen, - Assume that
1. the sequence {B,(t)} satisfies the Lucas property modulo m, and
2. the sequence {w,} is a VWDWO sequence.

Then the sequence {w,} is uniquely determined in the sense that for each n written

with respect to the base q-representation (@), we have
W = Wng F Wiy T+ F W T (3.12)

( Since the sequence {w,} mentioned above depends on the choice of wy, ..., w,_1
and on the choice of T, its asserted uniqueness is implicitly subjected to this

dependence.)

Proof. Since {w,} is a g-IVP sequence with wy = 0, by Theorem @, we can take

its first ¢ elements to be those of U, i.e.,
{wgzO,wl,...,wq_l}:U. (313)
Using the notation as set out in (@) of Lemma @, the set () shows that

0 (=0), af’, -+, af V€U, (3.14)

O— M= =g V=0 () (3.15)

S
Il
S
Il
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We prove the theorem by establishing () component-wise that ag.") = W,

As the first step, we show that

al” =w,, forall n € N (3.16)

This clearly holds for n € {0,1,...,9 — 1} because of () Since {w,} is a
VWDWO sequence, by Proposition , any ¢ consecutive terms in the sequence

form a complete set of residues modulo m. Thus, for 0 < i < ¢ — 1, we get
Wyt = w; (mod m) (0<i<qg-—1),

and so

ag‘”i) = w; (mod m);

proceeding inductively, we have
Wig+i = W(j—-1)g+i = = = Wyti = W; (mod m) (] S N) (317)

Using the notation (@), we deduce from () for n € Ny that

al” = w, = w,, (mod m).
Being elements of U shows then that () is fulfilled.

As our second (general) step, for e € Ny, we show that

ag)l = w,,,, foralln e Ny (3.18)

We prove by using two induction processes. We proceed by induction on e, assum-
ing that

(n) o)

(n) _ _ _ .
Ay~ = Wpgy, A1 = Wpy, -0, Qg7 = Wy,

with the case e = 0 being just verified above. Taking any A = Ag+ AT +--- €V,
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using Lemma @ with m = e,k = 0 and (), we have

Ae+1 — CLSnO) Ae—l—l — agTO)
qu+1 (A) = ) (+0; = ) +1 (mod m),
ae+1 __ae+1 ae+1

for some g € {0,1,...,¢°™ — 1} satisfying w,, = Ag+ -+ + A.T° (mod m**1).
If a("°) # 0, then a\"%) = wy for some £ € {1,2,...,q¢ — 1}. Putting Aoy = wy, we
get

Be+1(A) =0 (mod m). (3.19)

q

On the other hand, since Bge+1(A) satisfies the Lucas property, we get

Aei1 —
Zett 700 _ 20 (mod m),
w1 — Wo w1

Byesi(A) = By(Aes1) =

contradicting () Thus, agﬂ = 0 = wy; this being true for any such r, implies
then that
al, =0=w,,, (0<n<gt-1). (3.20)

Next, using Lemma @ with £k = 1,m = e, we have

Byye+i(A) = ap - aq (mod m),

where
A (ro) A (¢°T4r1)
9] el U ae—l—l W | Cal p T a6+1 3 21
Qo = 5ot 0) Qy = 2ge+1 et1 ( : )
et _ 0 g2t _ (e
e+1 e+1 e+1 e+1

for some 0 < r; < ¢ —1 (i € {0,1}) satisfying
w,, = Ag+ -+ AT (mod m®™). (3.22)

Using (m) and (M), we see that ag = —a2ti-. We turn now to aq. Since {w,}

LT

is a VWDWO sequence, by Proposition , the set {wg = 0,w1,..., Weet2_1}

constitutes a residue class modulo m®*2. Thus, from (), for larger n in the

next range, i.e., for ¢! < n < ¢*™2 — 1 we must have afﬁr)l # wy (= 0); in
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particular, @g: D .
If agf:flwl) # wi, then ag‘fflwl) = wy for some ¢ € {2,3,...,q¢ — 1}. Putting

Acyr = wy in (), we have

ay = 0. (3.23)

However, the Lucas property implies that

Qp -0 = B2q€+1 (A) = BQ(A6+1)

_ Aer1(Aepr —wy) we(we — wy)

IUQ(U)Q = wl) ’wg(wg — wl)

# 0 (mod m),

e+1
contradicting (), and so a; T = wy. Since 7y satisfies (B.22) and the
elements Ay, Ay, ..., A. can take any values in U, the “for some” restriction on

r1 can be removed, and so
ai’fl =w; =w,, ., (¢ <n<2¢T—1). (3.24)

From the VWDWO property modulo m¢*2?, because of () and (), the
residues wy and w; have already been exhausted by those a(i)l with n € {0,1,...,

e

2¢°™! — 1}. Thus, for larger n in the next range, we have
a’s; & {wo,wi}  for all n € {2¢°T", 2¢°T' +1, ..., ¢*T2 -1} (3.25)

We pause here to remark that the ongoing proof of () for ¢ = 2 is now complete
from (), () and the VWDWO property, while for ¢ = 3, since there are

three residue classes, the proof of () is also complete from (BZd), (|324l), (BZd)
and the VWDWO property. This leaves us to consider henceforth only the case

q > 3. We now proceed by induction on h = 1,2,...,q — 3 to show that

oy =w,,.,, forallne{(h+1)g" ..., (h+2)¢* —1}.
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The induction hypothesis asserts that for each 0 < s < ¢! — 1, we have

() _ (' +s) (hg*tt+s) _ ((h+1)g°+1)
Upiq = Wo, Geirq =W, ..., Geyy =w, and ag, ¢{w0,..., nt

this hypothesis holds when h = 1 as already shown in (), () and ()
Applying Lemma @ with K =h+1,m = e, we get

h+1 A - a(sqe+1+rs)
— e e+1
Byt (A) = H as (mod m), a4 := (CEraaa + o
Aot e+1

for some 7, € {0,1,...,¢°"" — 1} satisfying w,, = Ag + -+ + A.T¢ (mod m¢*1).
Using the induction hypothesis, we get

Ae+1 — Ws
h+2)qet1
ag +2)ge

oy = (0 <s<h).

S
Turning now to ay,11, by arguments similar to those leading to (), we deduce

that agihf V) — w4, which in turn implies that

o)) = whpy (1) <k < (h+2)g — 1),

Invoking upon the VWDWO property, we arrive at ag(ffr g & {wo,

© wh+1}7
which completes the induction on A.

So far we have found that

* ae+1 - — Ye+1 = Wo,
(@) _ et _
* ae+1 = 0oy = Wz,
h 1 e+1 h4+2)get1 -1
T = =l — gy and for 2 < h+ 1< g -2,
(h+2)gett
e+1 ¢ {w07"'7wh+1} .

By the VWDWO property modulo m®*?, we must have

VT = (0<s<gf 1),
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Since {w,} is a VWDWO sequence, considering modulo m**™2, we get
Wyet2; = w; (mod m*?) (0 <i < ¢ —1);
proceeding successively through the VWDWO property, we arrive at

— _ — — e+2
qu5+2+i = w(j—l)q5+2+z' = = wqe+2+i = Ww; (mOd m )7

for each j € Ny and 0 < ¢ < ¢*™2—1. Thus, for any n = ng+mnyq+-- -—}-nd(n)qd(”) >
q“™% (for the case where n < ¢“™2 — 1, the required result has already been found),

we have, from what we have found,

aén) + aﬁ")T 4+ agjr)lTe“ = Wn = Wngtofneqrgot!

_ (no+dner1gcth) (no+--+net1¢°t1)
= af o alot

i a(nol+~~-+ne+1qe“)Te+1
e+

= Wpy + W, T+ w,,_,, T (mod m“™2).

Comparing the coefficients of 7™, we conclude that afjr)l = Wy, ,, which completes

the induction on e and finishes the proof of the theorem. 0

Applying Theorem @ to the case of function field, we immediately obtain

Corollary 3.6. Let F,(z) be the field of rational functions over F, (the finite field
with q elements) equipped with the x-adic valuation. Let {wy = 0,wy,ws,...} be
a g-1VP sequence in the corresponding discrete valuation domain of F,(x) whose

associated w-polynomial sequence is { B, (t)}. Assume that

e the sequence {w,} is a VWDWO sequence;

e the sequence {B,(t)} satisfies the Lucas property modulo the ideal (z)

Then

Wy, = Wy + Wy T+ -+ + wnd(n)xd(”), (3.26)

where the base q-representation of n € Ny is as in (@)
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In passing, it is easily checked that the following converse of Corollary @ is
valid: if the relation () holds and {w,} is a VWDWO sequence, then the
sequence { B, (t)} satisfies the Lucas property modulo ().

Applying Theorem @ to the case of rational number field together with an
extra condition about the representative set U, more precise information can be

obtained as shown next.

Corollary 3.7. Let p be a prime, let V, be the valuation domain of Q with respect
to the p-adic valuation, and let {w,} be a g-IVP sequence in V), whose associated

w-polynomial sequence is {B,(t)}. Assume that
e the sequence {w,} is a VWDWO sequence;

e the sequence B, (t) satisfies Lucas property modulo the principal ideal (p).

Then

Wy, = Wy + Weyp+ -0+ + wnd(n)pd(”), (3.27)

where the base p-representation of n € Ny is as in (@)
Moreover, if

wo=0, wi =1, ..., wp1=p—1,
then w, =n (n € Ny).

Proof. The first part is immediate from Theorem @ To check the last assertion,
we assume that w; =i € {0,1,...,p— 1}. With the base p-representation (@) of

n, we get
Wy, = wno —|— wnlp —|— P + wnd(n)pd(n) =nyg + nip + . + nd(n)pd(n) =n. D

Similar to the remark after the preceding corollary, the following converse of
Corollary @ is true: if the relation () holds and {w,} is a VWDWO sequence,
then the sequence {B,(t)} satisfies the Lucas property modulo (p).
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3.2 Carlitz and Carlitz-like polynomials

From Theorem , Carlitz proved that the sequence {G,(t)/g,} is a basis for
the F,[z]-module Int(F,[z]). This sequence is different from the basis {B,(t)}
in Section @ In this section, we first confirm that {G,.(t)/gn},cy, satisfies the
Lucas property. Then we derive conditions on the sequence {w,} generating a
basis {G,(t)} of Carlitz-like polynomials which satisfies the Lucas property.

We proceed now to verify our first objective.

Theorem 3.8. The sequence of Carlitz polynomials {G,(t)/gn}nen, satisfies the
Lucas property modulo the principal ideal (z).

Proof. Recall that the sequence {G,,(t)/g.}, with Go(t)/go = 1, is a basis for the
F,[z]-module Int(FF,[z]). When n = 0, the Lucas property holds because both sides
of (@) are equal to 1. For n € N with base g-representation as in (@), we have

Gult) | VBB () Vi ()

mn Nd(n)
wEPE

Let A= Ag+ Ajz + -+ € F z]. T deg A < d(n), by (R.3), we get 1y (A) = 0.

Since Agen) = 0, we have

Gy (Aam) _
Gd(n) ’
and so
Gn(A) — 0= Gno (AO) o G”d(n)(Ad(n))
gn gno gnd(n)

Assume henceforth that deg(A) > d(n). If there is an index k& € {1,2,...,d(n)}
such that Ay = 0, then

(A — (A(_) + A]_x + e —|— Akflxkil)) — Ak+1xk+1 + Ak+2xk+2 _|_ e

=0 (mod (z)),

and so

Ye(A) = J[ (A=M)=0 (mod ().

deg M <k
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Note also that 1y(A)/Fy = 0. Thus,

validating the Lucas property in this case. There remains the case where Ay # 0
for all k£ € {1,2,...,d(n)}. Since F}, is the product of all monic polynomial in
F,[z] of degree k, we see that

@Uk(A): H (A—M): H ((Akl’k‘l"'“f‘All‘“f‘Ao—M)+Ak+1xk+1)

deg M <k deg M <k

= H (ApM' + A2 + terms with higher powers of x)

deg M'=k
M’monic

_ AZka + kadeg(Fk)Jrl Z Aka + kadeg(Fk)Jrl’

for some N € F,[z]. From [7, Lemmal], we know that ¢y (¢)/Fj is an integer-
valued polynomial, and so ¢4 (A)/Fy = Ay + Njz for some N, € F,[z]. Using
Yo(A) = A, Fy =1, we have

no d(n) n d(n)
Gn(t) 1/}0(14) ’ ¢k<A) * 0o / ng __ no AN1 nd(n)
On - ( F kl—ll TE =A klzll (A + Nyx)™ = APAT - - Ad(n)

- (%EWAO))% _(%;Al))nl . (M) Md(n)
_ Gm(;;o) G, (Al)o. G (Aaw) O(mOd o

Ino 9na In4(n)

showing finally that the Carlitz polynomials basis satisfies the Lucas property
modulo (). O

To extend Theorem @, we introduce:

Definition 3.9. Let {w, },en, be a given sequence of distinct elements in F[x].
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 Define the interpolating w-polynomial sequence {¢,(t)},en, by

t—’LUo

¢0(t) = , ¢k(t) _ (t—wo)(t—wl)...(t_quiﬁ

wy — W (wgre — wo) (Wgr — wy) -+ (Wgr — Wyr_1)

(ke N)

and define the w-Carlitz like polynomial (w-CLP) sequence {G, (t) } nen,
of Fy(z)[1] by

Go(t) = 1, Gu(t) = 52 (1)dF (1) -+ i (1) (n € N as in (B.1),
o If wy = 0 and if the w-CLP sequence is a basis for Int(F,[z]), then {w,} is
called a g-CLP (generating Carlitz like polynomial) sequence.

Observe from Definition @ that

1. the sequence of Carlitz polynomials {G,(t)/g.} is a special case of w-CLP

sequence with {wy = 0,w; = 1,..., w1} = F, and w, = w,, + w,,x +

d(n).
Wy, 2N

2. though the polynomials G,(t) and B, (t) (in Section 2) are of the same degree
n, they are not the same because all factors of B,,(t) are distinct, while G, ()

contains repeated factors.
Keeping the notation set out in Section 1, we first prove an auxiliary result,

Lemma 3.10. Let

B=DBy+BT+BT*+--- (B;€U)

be two nonzero elements in V. If B is a divisor of A in'V, then v(A) > v(B) and

(mod m). (3.28)
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Proof. Let r = v(A) and s = v(B). If r < s, then

A AT +A T4 A+ALT+--
B BT+ By Tt +..-  Ts7(By+ By T---)

¢V,

which is a contradiction. Thus, r > s, and we see that

é _ ATTT_S + Ar+1TT_S+1 + o _ éTr—s + NlTr—s-H
B BS‘I'BS-HT‘I"" Bs

for some N' € V. If r = s, () is immediate, while if r > s, both sides of ()

are congruent to 0 modulo m. O
Our extension of Theorem @ reads:

Theorem 3.11. Given a g-CLP sequence {w,}, let {G.(t)} be ils associated w-
CLP sequence. If {G,(t)} satisfies the Lucas property modulo (x), then for each

k € N, we have

1. {wo = 0,...,we_1} is the set of all polynomials in Fy[x| of degree < k; in

particular {wy = 0,w1, ..., w1} =Fy;

2. the sequence element wyr is a polynomial in Fy[x] of degree k with leading

coefficient wy.

Proof. We first claim that {wo = 0,wy,- - ,we_1} constitute a complete residue
system modulo (z)* in the ring F [z], or equivalently,

(03) mod ot = 0 + 0w+ +al T (0<i< gt -1,
To verify this claim, consider Gi(t) = ¢o(t) = t/w;. Since Gi(t) € Int(F,[x]), we
get Gi(1) = 1/w; € F,[z] showing that w; is a unit in Fy[z], i.e., w; € F; which
affirms the first assertion when k£ = 0. Next, for the case k = 1, since

bt —wy) - (¢ — wg—1)
wy(wy —w1) -+ (g — Wy-1)’

gq<t) = ¢ (t) =
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by the Lucas property modulo (z), for each A = Ay + Ajz + - -- € Fy[z], we get

é _. A(A —wy) - (A —wyy) = G,(A) = Gi (A1) = do(A;) = é (mod (z)).

B, we(wg —wy) -+ (wg — we—1) wy

The numerator and the denominator are

—_

Q

Al: ((Ao—agl))+(A1_agl)>$_’_(A2_aél)>$2+)
i=0
q—1 q—1 q—1
= (Ao—aé))—}- (Al—al :):HAO_%)
=0 j=0
Z#J
+ (terms with x of powers > 2)
q—1 ‘ q—1 ' g—1 4
) (RS /(I » ()
=0 j=0 i=0
i)

+ (terms with z of powers > 2).

If 120 (Ao — al’) # 0, then

qg—1

H — ao )) ;
io ( af’)
this relation holds for any A; € [F, on the left, while the right-hand side is indepen-
dent of Ay, which is untenable. Thus, [['_ 8 (Ao — a(()i)) = 0, implying that A, € F,.
This being true for any A, € F,, we must have {a(()o), a(()l), ce a[()q_l)} =F,, affirm-
ing the first assertion when k = 1.
Proceeding to general k, consider the set {wy = 0,w1,...,wg 1} of ¢" —1

elements. Since

t(t—wy) - (t —wer_q)
Wk (Wgr — w1) « -+ (Wye — Wek_q)
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satisfies the Lucas property modulo (x), we get

Ak . A(A—wl)---(A—’qu,l)

Ay,
Ly =Gx(A) =G (AL) = — (mod (z)).
B, Wk (Wge — W) -+ - (Wer — We_1) q (A) 1(Ag) o ( (z))
(3.29)
The numerator is
qF-1 | | |
Ay = H {((Ao t A+ 4 A — @ 4P+ ai(ﬁﬂk_l))
i=0

+(Ag — a,(f)):ck + (Ag41 — algij_l)$k+1 + terms with higher powers of a:}

¢ -1

= H ((Ao + Ay - Az L (aéi) + agi)x +- 4 a,(ﬁlxk_l)>
i=0
+ Z (Ay — a,(j))a:k H ((Ao 77 -G Ak—1$k71) — (CL(()I) +oeee afﬁlx’“*l)>
=0

i=0
i#]

+ (terms with higher powers of z),

and the denominator is

gt -1
k k k i i 7 —
Bo= [T ((af" +al"a+ ot by =@ + ol + - + 02" )
=0
+ 3 (0 = et IT (e o o) = (@ + - + a1 2*))
j=0 1=0

+ (terms with higher powers of ).

Let
¢ -1 | | |
N = <(AO + AlSL’ 4+ 4 Akflgjkfl) . (CLE)Z) + agl)x 4ot a](;zlxkfl)) (330>
=0
qk—l i . ) | | |
D= <(a(()q ) + agq )x 4+ al(c‘iixk—l) _ (a(()z) + agz)l, 44 a,@ﬁ’“*)) '
=0

If N # 0, then there is a least positive integer r such that r = v,(N). Lemma
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now ensures that D # 0 and together with (), we deduce that Ay /w; = ay/aq,
where a; and «y are the coefficients of 2" in N and D, respectively. But aq/as is
independent of Ay, which is untenable, implying that N = 0. Appealing to (),
using the fact that Ay, Ai,..., Ay are arbitrary elements in F,, and their total

number is equal to ¢*, the number of elements in the set

{(wﬂ) mod x* (wl) mod zks (qu—l) mod xk}a

we conclude that this last set is identical with the set of all polynomials in F,[z]
of degree < k. This completes the proof of our claim.

Next, we claim that the mod z* can be removed, i.e., the set {wg, w1, ..., w1}
is indeed the set of all polynomials of degree < k. Assume to the contrary that
there exists n < ¢* — 1 such that degw, > k. Writing

Wy, = a(()") +aMz 4+ aWat, s>k, a™ #£ 0,

S

and substituting for ¢ by w,, in G, (1), we get

)
0= Gy (wy) = Gi(a™) = go(a™) =

wq

(mod (x)),

contradicting what we found earlier that al" Jwy € Fy. Thus, the second claim is
verified which in turns affirms the first assertion.

Next, we prove the second assertion. We note from the first assertion that

{wo, w1, ..., wp_1} is the set of all polynomials of degree < k and we have that
{wo, w1, ..., wep+1_1} is the set of all polynomials of degree < k + 1, and so each
element of the set {wgyr, wyriq, ..., wer+1_1} is of degree k, showing that a,(fk) £ 0.

For A= Ay + Ajx + --- € F[z] with Ay # 0, we get

qF—1
A — w; A—M
Gpp(A) =p(A) = || ——— = —

! z‘l_! Wqk — Wi deg];/[[<k wye — M



37

(Ag+ -+ Apgzb ™t + Apa® — M) + Appa®™ 4

don N <k <a(()qk) NENE aéqf{:vk—l i a,(qu)x’f _ M) + al(cfﬂl:ixkﬂ NI

Aquk 4 lel—&-deng Ak
(ay" )9 F), + Noxttdes Fi g

where Ny, Ny € F,[z]. On the other hand, the Lucas property modulo (x) yields

G (A) = Gi(Ak) = do(Ay) = A (mod (z)).

w1y
Thus, aéqk) = w, for all £ € N and the second assertion is established. [

Specializing the value of w;, Theorem yields at once:

Corollary 3.12. If {w,} is a g-CLP sequence with w; = 1, then its associated

w-polynomial sequence {¢,(t)} satisfies

Un(t)

On(t) = E. (n € Ny),

and its associated w-CLP sequence {G,(t)} is identical with the set of Carlitz

polynomials {G,,(t)/gn}

3.3 Polynomials in additive expansion

There are bases of Int(V') that do not satisfy the Lucas property. One such basis
is that of Fermat polynomials F,,(t), defined in Definition , by

ot
T

d(n)
Fa(t) = H(}"qj)"j for n € N as in (@)

J=0

Fo(t) =1, Fat) =t, Fy(t)

s Foenn () = Fo(For),

Note that Fermat polynomials are neither of the same form as the Lagrange-
type interpolation polynomials B, (t), nor of the same form as the Carlitz-type

polynomials. This leads us to ask for necessary condition(s) on general polynomials
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which form a basis for Int(V') and satisfy the Lucas property.
For each i € Ny, let {P™ },en, be a sequence in V with P # 0, and let

be a sequence in V*. Define {#,,(t) }nen, € K[t], a general sequence of polynomials
associated with the sequences {R(")}, {Qn}, by
P4 pMp 44 piyn

Ho(t) =1, Halt) = 0 (n € N).

Observe that deg H,,(t) = n. We shall find it convenient to use the notation

(PO(") +PYAL -+ P,@A")

mod m”

to represent the residue of the expression Pén) +P™MA+ .+ P™ A" modulo the
principal ideal m”.

Our next theorem gives necessary conditions for Int(V).

Theorem 3.13. If {#,(t)} is a basis of the V-module Int(V'), then for each
A=A+ AT+ -+ AT+ --- €V, the following statements hold:

(n) (n) o p() An
1 if Q) #0, then H,(A) = LA At t B P4 (1164 m);

Qo
P O RPN (0 R O N (n)
2 forreN, ifQy =Q1" =---=0Q,2; =0, Q" #0, then
(B +PMA+- 4 BAY) =0,
mod m”

Proof. Since H,,(t) € Int(V'), we have

P+ PMA- 4 P A

HalA) on

eV.
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1. If Q" # 0, by Lemma , we have

P A P (Ag+ AT ) A+ P (A + AT )"

Ha(A)
o)+ QT+
R+ PM A+ + P AR (mod m)
= o .
2. QM =Q" = =Q™, =0, Q' #0, then

P+ PMA- 4 P A
Q,(«n)TT 4+ ng_)ljﬂ%l + . .

Ha(A)
Since the numerator is a multiple of 1", the assertion follows from the fact that
H,(A) e V. O

Using Theorem , we now derive a necessary condition for a basis of Int(V)
to satisfy the Lucas property.

Corollary 3.14. Assume that {H,(t)}nen, s a basis of the V-module Int(V'). If
{H.(t)} satisfies the Lucas property modulo m, then for each n > q with its base q
representation as in (@) and A= Ao+ A1qg+--+ Aj¢7 +--- €V, we have

(P§”+ P4+ 4 P ar)

mod ms+1
QT
d(n) (ny;) (ny) (i) Am;
P PA -+ P YA
S i Q+ T A (mod m), (3.31)
=0 i

where s = v(Q).

Proof. 1f s = 0, by Theorem part 1 and Lemma , we get

Py + P Ag + -+ PV Ay
@
0

Ha(A) =

(P + PP AL+ P an)

(n)
0

mod m

(mod m).
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If s € N, by Theorem part 2, we can write
P4 PMA+ . 4 PMAY = RT* + Ry T + -+ (R, € U),

and invoking upon Lemma , we get

RSTS + R8+1TS+1 4+ ..

Ha(A) =
QT+ QT 1
Qv
(PO(") +PPA4. 4 Pé”)A")

mod m*™% - (1mod m). (3.32)

QT

Since {#,(t)} satisfies the Lucas property modulo m, we have

Hn(A) = Ho(Ao)Hny (A1) - - Huy,, (Aaim))

d(n) 15(ns) (nq) (ns) pm;
P L P A .y P g
=1]-° 77 s A L (mod m). (3.33)
i=0 Qn,
The desired result follows at once from (M) and (@) o

As an application of Corollary , we give another proof that the sequence
of Fermat polynomials F,(t) does not satisfy the Lucas property. Taking in this
case, K = Fy(x) equipped with the z-adic valuation so that the discrete valuation
domain is

V{10 cn o)

Consider the Fermat polynomials

-7:0<t) =1, -7:1(75) =1, -Fz(t) = )

.7-"4(75):.7-"2(.7-"2(15)):O+xt_(1+x)t —0-t°—t .

3
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Letn=4=0+0-2+1-2% and

PY 4 pW 4oy pB 04 at—(1+z)t2+0-13 ¢!
0 1 4 = Hy(t) = Fu(t) = ( ) )

Q4 a3

so that
d(4) = 2, Ng = N1 = 0, Ng = ]_,

Qu=0Q:1=1, Qa=2, Qi=2"=0+0-2+0-2°+1-2°
s =v(Q4) = 3, §4):1.
Taking A=x=0+1-z, A; =1,A4; =0 (i # 1), the left-hand expression of ()
Is

O+z - 2—(1+2)2°+0-2° —2*)p 4 ()

123

while the right-hand expression of () is

=1,

2

P™ + P Ayt an tieRa0en | RSV ERR TR + PV 4, _

O “ % o @ 0

=0

These two values contradict the result of Corollary implying that the sequence

of Fermat polynomials does not satisfy the Lucas property.



CHAPTER IV
PASCAL PROPERTY

Throughout this chapter, let K be a field of characteristic 0. The generalization

of Pascal property is defined as follows.

Definition 4.1. Let u = {uy }x>¢ be a sequence of distinct elements in K and P =
{P,(t)}n>0 be a sequence of polynomials in K[t] with Py(¢) = 1 and deg P,(t) =n
for all n. We say that the pair (P,u) satisfies the Pascal property (or the

sequence P satisfies the Pascal property with respect to {uy}) if, for each n € N,

Pn(ukH) = Pn(uk) S Pn_l(uk) (k? € No)

4.1 Pascal property for polynomials

Let {ux}r>0 be a sequence of distinct elements in K. Set the polynomials P,(t)

over K in the following.

n

Py(t)=1 and P,(t) = di Z ap it" (n € N), (4.1)
o

where d,, € K and a,,, = 1 for all n € N. The sequence of polynomials {P,(t)} is
denoted by P. A characterization of the pair (P, u) satisfying Pascal property is

presented in the following theorem.

Theorem 4.2. Let P be a sequence of polynomials over K as in (@) The pair
(P,u) satisfies the Pascal property if and only if all of following conditions are
true: for each k € N and n € N,

1. U = UO+kd1,

2. d, =n!-d},
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3. for0 <m <mn,

1 =~ /m+1+i ;
An,m = n+ 1 ; ( m )an-l-l,m—i-l-l-idl- (4.2)

Proof. Assume that (P, u) satisfies the Pascal property. Then we obtain the fol-
lowing results.

For each k£ € N, we have

1 = PO(“k*l) - Pl(uk) — Pl(”kfl) = Uk + al,O _ Uk—1 + CLLO — U — uk—l’

di di dy
ie.,
Up = Up—1 + di (/{3 € N) (43)
By (@), for each k € N, we obtain
Up = Up—1 +di = Up—p + 2d; = -+ - = ug + kdy;

which completes 1.

Next, let n € N. For each k € Ny, consider

d Z 7% muk = Uk) Pn+1(uk+1) i Pn+1(uk)
1 n+1 n+1
Z 1,5 (U + Cl1 Z oy, (ur )

dn+1 n+1

Then, the right hand side becomes

1 n+1 1 n+1 J-1 P\
y 1Zan+1] (up +dy Y —ul) = Zanﬂﬂ- (Z (r>dﬂl—7’u};>
n+ -
j= =0
1 (& +1 L
= it iag AT
dz(z( ' )amﬂ [y
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n+1 Z
7 m
E Api1i A | w
‘ (m> n+1,0 %1 k
i=m-+1

1 '~ (m+1+i ,
— n m idH_l m‘
m;( ( ! )+ s >u

dn+1

1 n
=
m=0

We then have

& I A S RS : .
D iy = > (Z ( m >an+1,m+1+id1+1> up (k€Np). (4.4)
=0

d
m=0 nt+l o, i=0

We can rewrite (@) in the form
A0+A1Uk++AnUZ:0 (]CGN()),

where

(]

dn ~— (m+14i
m

)an+1,m+1+i dit' (0 <m <n).
=0

Since n is arbitrary, we obtain the system of equations:

A0+A1uo+—|—Anug:0

Ap + Avur + -+ Aguf =0

Ao—i—Alun—l——f—AnuZ:O,

which is equivalent to

1 oug wd -+ uy| | Ao 0
Tow w? - ul| | A 0
Low, w2 - ul| [A, 0

Since {uy} is the sequence of distinct elements in K, the determinant of coeffi-
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cient matrix is not equal to 0 by Vandermonde determinant. This implies that

(Ao, Ai,...,Ay) has the unique solution, and so 0 = Ay = A; = --- = A,,. This

implies that

dy = (m+1+i .
Apm = ZO ( m >Gn+1,m+1+i d1+1 (O <m< n)

Since d,, 11 = (n + 1)did,, by (@), we get

n+1i:0 m

1~ (m+1+i .
(n,m = Z ( )an—i—l,m—i—l—l—i d; (0 <m < n);
this gives 3. Since a,,,, = 1, by (@) again, we also obtain

dy

n+1

Hence,
dn+1 = (TL b ].) ; dldn (n c N)
By iteration,
dy=mn-did, 1 =nn—1) -d*d, o =---=mn!-d} for all n € N.

This implies that 2. is proved.

(4.5)

Conversely, assume that the statements 1.-3. hold. Let n € Ny and k € N.

To show that the pair (P, u) satisfies the Pascal property, we consider

Poir(upy1) — P (ug) = Poyr(ug +di) — Py (u)
1 n+1

= g 2 it )
1 =0

n+1

1
— > anpra(wg)
(n+1)d1§ i

n+1
1

S () —ud)
<n+1>!-d1“; ’ '
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1 L1
= (n+ 1) dn+1 Zan+1 J+1 (Z ( r )d]1+ —T‘u};>

r=0
1 n n+1 i .
o | 2, (o)
= i=m+1

1 n m + 141 ;
= —<n + 1>' . dn+1 (Z )an—l-l,m—i-l—l-i d1+1> qu
: 1

0

1 ~— (m—+1+1
= - n ,M ld
(Hl)!.d?zﬁzo( ! ) e >Uk

m=0
1 - "
= ORI Z(n + 1)an muy, (by 3.)
’ L m=0
1 n > n .
- Pn(“k)a
as desired. O

The next corollary shows that the pair (P, u) satisfying the Pascal property is

a generalization of binomial polynomials.

Corollary 4.3. Let K = Q. Let {u;} be a sequence of distinct elements in K with
up = 0 and P = {P,(t)} a sequence of polynomial over K as in (@) Assume
that the pair (P,u) satisfying the Pascal property. If dy =1 and a,o = 0 for all

n € N, then
t

n

P,(t)= ( ) (n € Np).

Proof. Clearly, the identity holds for n = 0. Since a9 = 0 and d; = 1, we obtain

Put) =t = G)

Note that, by d; = 1, ug = 0 and Theorem @, we get
d,=nland up =k (n €Ny, ke Ny).

Let n > 2. Assume that P,_i(¢t) = (.*,). We will show that P,(t) = (), by



comparing their coefficients. Observe that

( b ) C P (k) = Pu(k+1) = Pu(k) (k€ N).

n—1

Therefore, for k € Ny,

k(k—l)...(k_(n_Q))_l n i . n ,
(n—1)! —mZammm ——!Zaw,k
r=0 =0
1 & o
=12 Gnr((k+1)" = &)

Since a, o = 0, we deduce that

n(k)(k—1)- (k= (n=2))=> an((k+1)" = k) (k€Np).

Substituting £ =0, 1,...,n — 2, we get the system of equations

0=(1"—0")+ 1" =0"Yap, g+ + (1" = 0an,

0=(2"—1")+ 2" = 1" Yapp 1+ -+ (2" = 1an,
0=((n=1"-(-2)")+((n—-1)""~(n~-2)"")ann1
+ -+ ((n — 1)1 — (n — 2)1)(171’1,
which equivalent to

—1" + o Ap 1
_on 4 qn (s

—n—=1"+(n—-2)" Ann—1

47



where

1t -0t
2! — 1t

Consider the matrix

1 —0!
2t — 1!

1 1
2! 22
3! 3?

(n—=1)" (n—1)°

12 — 02
22 — 12

(n=1'=m=2)" (n-1)*—(n—2)’

12_02
22__12

(n—1)%2~ (n —2)?

22
IP8NGE

(=1~ (n= 2"

1
anl
3n—1

(n— 1)1

1n—1 _ On—l

2n—1 . 1n—1

(n—1)"=" = (n—2)"~

1n—1 _ On—l

2n—1 _ 1n—1

(n—=1)""" = (n—2)""

2n71

3n—1 _ 2n—1

(n—1)""1 = (n—2)""

1
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Since B is a Vandermonde matrix, det A = det B # 0. So, the system of equations

has the unique solution, say (a1, an2, .

e 7an7n—1)- Since (nﬁl) = (k:;l) —

(»): by

repeating the same process, all coefficients of ( ) form a solution of the system.

This implies that

t
n

Pu(t) = (2)

O
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The following example shows an interesting application of our results in the

classical case K = Q.
Example 4.4. Recall the notion of Stirling numbers of the first kind. Consider
the falling factorial polynomials of degree n:

() =l - (t> At —1)(t—n+1).

n

Expanding the multiplications and arranging the terms of powers of indeterminate

t, we get

(o =Y stn,m)t"  (n€N). (4.6)

m=0
The coefficients s(n,m) of expression (@) of the falling factorial (t), are called
Stirling numbers of the first kind. Clearly, the definition implies s(n,m) = 0
if m > n and s(n,n) =1 for all n € Ny.

As the result of and Corollary @, if we substitute d; = 1, up = 0 and a, o =
0 (n € Nyp),

By (@) and Theorem , for each n € Ny, we have

1 o m
P(t) = — > nmt™
m=0
Comparing the coefficients of t™, we conclude that
Anm = S(n,m) (0 <m <n).

By (@), we obtain a recurrence relation on the Stirling numbers of the first kind

s(n,m):

1~ (m+1+i ,
s(n,m):n+1 E ( . )s(n+1,m+1+z). (4.7)
—
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By [8, Theorem 8.7], the Stirling numbers of the first kind s(n,m) satisfy the

triangular recurrence relation
s(n+1,m) =s(n,m—1) —n-s(n,m). (4.8)

Combining (@) and (@), we get

n—m

(n+1)- s(n,m) (m+7i+i)s(n+1,m+1+z')

n’if; (mt;”) (s(nym41) — k- s(n,m +1+4))
= (m+1)s(n,m) +7§Z <m ti“)s(n,mﬂ)

=1

_nz (m—i— +Z)s(n,m+1—l—i)

- m
=0

=t s+ 3 (M) (")) sty

=:

Finally, we also obtain another horizontal recurrence relation

s(n,m) = n_lmngj ((mt;”) —n(mnjz)) s(n,m +1).

4.2 Pascal property for bases of integer-valued polynomials

In this section, criteria on polynomials forming a basis of Int(V') having Pascal
property is characterized. By the same setting as in (El!), we immediately obtain

from the definition of Int(V') and Theorem @ that if, for each to € V,

v(ty +t0 ap1 + o+ anp) > v(dy - nl),
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then
I
P,(t) = 7 Z:; anit' € Int(V).

A characterization of P,(t) states as follows.

Theorem 4.5. Let (P,u) be a pair satisfying the Pascal property. Let P =
PNOInt(V) and QQ C P. Then the elements of Q form a reqular basis for V-module
Int(V') if and only if the following three conditions are fulfilled:

1. the set ) contains exactly one polynomial of each degree n € Ny,
2. the element dy (in the first degree polynomial of Q) is a unit in V,
3. the valuation values v(k!) = wy(k) hold for all k € N.

Proof. Assume that @) is a regular basis for VV-module Int(V'). Based on the def-
inition of regular basis, we get 1. By Proposition , for each n, ﬁ generates
Jo(Int(V)). Since T—"«(™) generates J,(Int(V)) and generators of any fractional
ideal are unique up to multiplication by units, we deduce that v(d,,) = wy(n). We

then have v(d;) = wy(1) =0, i.e., d; is a unit in V. This implies that, for each n,
wy(n) = v(d,) = v(d} -nl) =v(dy) + v(n!) = v(n!).
Conversely, assume that 1.-3. hold. From 2. and 3., we have
wy(n) =v(n!-dy) =v(d,).
In view of Proposition , i generates J,(Int(V)). By Proposition and

assumption 1., the set @ is a regular basis for V-module Int(V). O

Next, let {u,}n>0 be a sequence of distinct elements of V' with 4y = 0. Define

polynomials C),(¢) over K in the shape of the Lagrange-type by

Co(t) =1 and On(t):ﬁ

Uy, — Uy
i=0 " !

t—ui

(n € N). (4.9)
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Theorem 4.6. The sequence of Lagrange-type polynomials C,(t) as defined in
(@) satisfy the Pascal property with respect to {uy} if and only if up = kuy for all
n c No.

Proof. Assume that the sequence {C,,(t)} satisfies the Pascal property with respect
to {u}, that is,

Co(ug) + Cp_1(ug) = Cp(ugyq) for all n € N and k € Ny.

Substituting n = 1, we get
C’l(uk) + Oo(uk) = C’l(uk+1) (/{3 € N()),

and so,
Uk

p1= (ke N).
(51 Ui

Thus, ug + u; = ugyq for all £ > 0. By iteration and the assumption uy = 0, we

have
uk:kal‘FUl:Uk—2+2U1:"':U0—|—kU1:k‘U1 (kENO)

To prove the converse, assume that u; = ku, for all £ > 0. We first have

U k+1
Cilu) + Cofun) = 2 1= EEDI _ e _ gy

Uy 51 Uy

For each n > 2, we consider

n—1 n—2

U — U; U — U
C, C,_ = J
(ug) + 1(ug) g — + 1;[0 Ty
n—1 . n—2
_Hkul—zul +H kuy — juq
-5y — 1y o (n—1Duy — juy
n—1
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()-(5) -3
I

i—0 =0

=

= Cn (uk+1>7

as desired. O

Remark that w,, = 0 for all n € Ny, if the domain V' has characteristic p. This
implies that C,,,(¢) are non-defined.

Now, we ready to determine Lagrange type polynomials which satisfy Pascal
property and form a regular basis of Int(V'). Let u € V*. With uy = ku for all
k € Ny, by Theorem @, the Lagrange-type polynomials

(é) =1 and (Z)u AR (;i—g‘u (neN) (4.10)

i=0
satisfy the Pascal property. Next, the characterization of (é)u to be a regular basis

of Int(V') is presented as follows..

Theorem 4.7. The sequence {(ﬁ)u}nzo as defined in () is a reqular basis of
V-module Int(V') if and only if w is a unit in V and v(n!) = wy(n) for all n € N.

t(t—u)(t—2u) - (t—(n—1
u”-n!

module Int(V). By Proposition , the sequence {ku}ren is T-ordering and so

Proof. Assume that polynomials (Z)u o )% form a basis of V-

a g-IVP sequence. Then, by Theorem @, the first ¢ — 1 terms of the sequence
{nu},ey are units in V. This implies that « is a unit in V. It remains to show that
1

v(n!) = wy(n) for all n € N. Since —— is a generator of J,,(Int(V')) and v(u) = 0,

un

by the same argument as in (@), we have
wy(n) =vw" - -n!) =vW") +vn!) =v(n!) (neN).

On the other hand, assume that w is a unit of V' and v(n!) = wy(n) for all

n € Ny. By Proposition , it suffices to show that {0, u, 2u, ...} is a T-ordering
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of V by showing that v([]/—, (n — i)u) = wy(n) for all n € N. For each n € N, we

have

v <H(n - z)u) =v (H(n — z)) +v(u) =v(n!) + 0 = wy(n).

]

Return to the polynomials C,(t) as in (@) From [4, Theorem I1.2.7], the
polynomials C,,(t) form a regular basis for V-module Int(V') if the corresponding
sequence {u} agrees with VWDWO condition defined in () Recall the result
of [B, Theorem 2.2] on C,(t) with the setting of VWDWO sequence {ug}:

Theorem 4.8. If n =ng+niq+---+ nd(n)qd(”) is a q-adic expansion of a positive
integer n, and if A = Ag+ AT + -+ is a T-adic expansion of an element A of V,
then

Cn(A) = Cyy (A0)Cry (A4) -+ - C

Md(n)

(Ad(n)) (mod m)

In the case of K = Q, let V, be a discrete valuation domain of the field of
rational number Q. We have that the number ¢, the cardinal of residue field,
becomes a prime number and v = v,, a g-adic valuation. A unit u in V" is of the

form ¢ where a,b € Z and q { ab. It easy to see that

Vg(nu —mu) = v, (n-%—m-%) :Vq<(n—m)-%> =v,(n—m) (n,m e Ny).

This implies that {0,u,2u,...} is a VWDWO sequence. The final proposition
shows that the polynomials (fl)u satisfy the Lucas property modulo (¢q). Its proof
is immediately from Theorem @

Proposition 4.9. If n = ng + niq+ --- + nd(n)qd(n)

n € N, and if

is the q-adic expansion of

A=Ag+Aiq+ A + - (Ai € {uo =0,u1,--+ ,ug_1})



is the g-adic expansion of an element A of V;, then

() = () () (1) moa an
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