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CHAPTER 1

INTRODUCTION

This thesis is concerned about a system of interval linear equations Ax = b
whose coefficients A and right hand side b are defined as interval terms. By
reviewing the literatures, there are many researches in this field. The uncertainty
is one that can be solved by applying interval linear equations. For instance, Fan
et al. [1] developed a robust interval linear programming (RILP) method over the
conventional interval linear programming method for dealing with environmental
decision making under uncertainties in 2012. Simic et al. [2] formulated a model
for optimal long-term planning of vehicle recycling in the Republic of Serbia under
uncertainty by using interval linear programming approach. In addition, finding
the exact solution of interval linear equations has gotten much attention from
researchers such as Gay [3] and Hansen [4]. Moreover, Lodwick et al. [5] proposed
extended version of interval linear systems where coefficients are fuzzy intervals.
The interval extended zero method solving upon interval linear equations was

proposed by Sevastjanov et al. [6] in 2007.

The literature [7, 8, 9] said that there are many types of solutions to the sys-
tem proposed such as weak, strong, tolerance, control, L-localized and R-localized
solutions. Oettli and Prager [10] gave conditions that result in the exact solution
of linear system whose coefficients and right hand side are interval. Next, Hlad1
et al. [11] extended Oettli and Prager work in more general. In the same fashion,
the general strong solvability was proposed by Hladi et al. as well. Shary [12]
established a solvability theory for the linear tolerance problem which is evolved

from tolerance solution. Moreover, the sufficient criteria for the existence con-



trollable solution set was proposed by Shary [13] in 1997 as well. Next, Li et
al. [8] introduced L-localized and R-localized solutions and gave the basic nu-
merical examples to find L and R-localized solutions. By the way, in real world
problems, the solution might not be specified by only one characteristic but it
could merge with several characteristics. For example, Tian et al. [14] proposed
new type of solution that merges between tolerance and control solutions called
tolerance-control solution. Li et al. [8] proposed a localized solution by mixing
the concept of L-localized and R-localized solutions together. In addition, the
new characterization of weak solution set to the system considered in magnitude
sense was proposed by Shary [15] in 2015. In the similar idea, tolerance—control

and localized solution set can be found by Leela—apiradee [16].

In this thesis, we study two types of solutions called tolerance-localized
and control-localized solutions. Tolerance—localized solutions are solutions that
merge together between tolerance, L-localized and R-localized concepts. Simi-
larly, control-localized solutions can be defined in the same fashion. By following
the idea of Leela—apiradee [16], we propose the characterization of these two so-
lutions. By reviewing the research studies of Thipwiwatpotjana et al. [17, 18],
we found that the concept of interval linear equations can applied to course as-
signment problem with uncertainty. Therefore, we apply the proposed results,
specified Theorem 3.2, to deal with a course assignment problem as an appli-
cation example. Basic knowledge about a system of interval linear equations is
provided in Chapter 2. Any important definitions that are used throughout this
thesis are also stated in this chapter. In Chapters 3 and 4, the proposed theorems
of tolerance—localized and control-localized solutions are presented, respectively.
The applied application is stated in Chapter 5. The conclusion of this thesis is

given in the last chapter.



CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we introduce the basic knowledge and some useful theorems
that use throughout this thesis. We separate the details into two sections. Starting
with introduction to interval linear equations, we describe the basic understanding
and give new notations that use to find the solutions in Chapters 3 and 4. The
important theorem which is the main equipment to solve our proposed theorems
is stated in this section also. The definitions and their properties of the solutions

to the system are provided in the last section.

2.1 System of interval linear equations

Firstly, let us introduce the general system of interval linear equations which
is the main topic of this thesis. Let m and n be positive integers. The set of
all m x n (interval) matrices over R and the set of all column (interval) vectors
of size n over R are denoted by R™*™ (IR™*") and R"™ (IR"), respectively. Let

A € IR™"™ and b € TR™ such that

[ayy, @] agg, @] - [ay,, G
A—[AA = g1, To1] a9y, T22] -+ [y, Gy
L [le,aml] [Qm27am2] U [ana amn] ]
and
b = [b,0] = ([by,b1], [bs, b2, - - -, (b b)) = (b1,..., b)) "

Remark 2.1. The matrices of left and right boundaries of each interval component



of A denoted by A and A, respectively, are written as real matrices

ay; Qo 0 Ay a1 a2 -+ G
Qo1 Aoy~ Qop — a1 Go2 [
A= and A =

The boundaries b and b can be explained in similar fashion as above.

Remark 2.2. An interval matrix A and an interval vector b can also be repre-

sented as sets

A:{A:[CLU]GRmX”QUSCLWSEZ]7 i:1,...,m,j:1,...,n}

and

The interval system of m linear equations with vector of variables z = (1, ..., 2,)T €

R" is written in the following form:

@y, @)z + [ayy, Gioas + + -+ @y, Qin)z, = (b, 0] < (Az); =b,
(a1, Go1]z1 + [Ags, Aol + - -+ + (Ao, WonTn = [by, 0] <= (Az)y = by
[leaaml]xl + [QmmamQ]xQ +--+ [anaamn]xn = [l_)mugm] — (Ax)m == bm

or, briefly,
Az =b.

Also, A and b can be written in terms of their center and radius matrix and vector



as

A=[A.— A, A, +A] and b= [b. — 6,b. + 4],

where the centers are A. = (A + A) and b. = (b + b) and the radii are A =
1(A—A) and 6 = (b — b). Normally, the set Az cannot be written as [Az, Az],

but it can be represented by an explicit interval as shown in the theorem below.

Theorem 2.3 (Sce [7]). Let A = [A, A] € IR™" and x € R™. Then

Az = [Axx — Alx|, Acx + Alx]].

Next, we introduce the notations ||, [*] and (x), which will show up in
the main results in Chapters 3 and 4. Let us define |b|, [b] and (b) for a given

interval vector b as follows:

max{ b |, [b:[}

_ max{|b,|, [bs
] = max{l iy = |

ma’X{|[—)m|7 |l_)m|}

mln{ |l21 | ) |51 |}

- min{ |b,|, by
o) = minfel iy = | D

min{|b,,|, [bm]}
and

0, otherwise.



The example of finding |b/|, [b]| and (b) of b in IR are shown in Figure 2.1.

[b] - - [b]
D LR R > D LR R >
{4 L i i @ @
b p 0 0 b b

D LR T >----p D bl e L >
L @ L @
b (b)=0 0 b b 0  (b)=0

Figure 2.1: The |b|, [b] and (b) of b in IR.

2.2 Basic properties of solutions to system of interval linear equations

The definitions and properties of each solution to system of interval linear
equations are presented in this section. To recognize each solution clearly, we
illustrate them as figures as well. The concepts of new solutions are defined in this

section also.

Definition 2.4. (See [7]) A vector € R" is called

(i) a weak solution of Ax = b if it satisfies Ax = b for some A € Ajb€ b

(ii) a strong solution of Ax = b if it satisfies Az = b for each A € A,b € b.

In 1964, Oettli and Prager [10] focused on the interval linear system Az = b
and gave a characterization of weak solution.

Theorem 2.5. (See [10]) A vector x € R" is a weak solution of Az = b if and

only if x satisfies

|Acx — be| < Alx| + 4.



A characterization of strong solution was represented by Rohn [7] in the same way

with weak solution shown in Theorem 2.6.

Theorem 2.6. (See [7]) A vector x € R" is a strong solution of Az = b if and

only if x satisfies

A.x =b,,

Alx| =6 =0.

A tolerance solution of the interval linear system Ax = b was motivated
by the studies of a crane construction problem in [19] and the problem of input—
output planning with inexact data in [20]. Its characterization was first provided

by Rohn [21] in 1986.

Definition 2.7. (See [7]) A vector x € R™ is called a tolerance solution of Ax =

b if for each A € A there exists b € b such that Az = b.

Lemma 2.8. (See [22]) The set of all tolerance solutions of Az = b, denoted by

> ws(A,b) can be written as follows:

Y (Ab)={z €R": Az C b}.

After the new version to the characterization of a tolerance solution described by

using the center and radius matrices.

Theorem 2.9. (See [7]) A vector x € R™ is called a tolerance solution of Az =b

if and only if = satisfies

|Acx — be| < —Alz| + 9.

In 1992, a control solution was proposed by Shary in [23]. The character-



ization of control solution can be seen in [7] in the forms of center and radius

matrices.

Definition 2.10. (See [7]) A vector x € R" is called a control solution of Ax =

b if for each b € b there exists A € A such that Az = b.

Lemma 2.11. (See [13]) The set of all control solutions of Az = b, denoted by

> - ay(A,b) can be written as follows:
> (Ab)={zeR": Az D b}.
v

Theorem 2.12. (See [7]) A vector x € R” is called a control solution of Ax =b

if and only if = satisfies

|Acx — b < Alz| = 4.

By Lemmas 2.8 and 2.11, we can depict the set of tolerance and control solutions

of Ax = b where z € R in Figures 2.2 and 2.3, respectively.

Az

Figure 2.2: Ax C b, where x € R.

Figure 2.3: Ax DO b, where x € R.

Based on the definitions of tolerance and control solutions, a new type solution



called tolerance-control solution was presented by Tian et al. [14] described in

Definition 2.13.

Definition 2.13. (See [14]) A vector x € R" is called a tolerance-control solution

of Az = b if (Ax); = b; is either tolerance or control, for each i = 1,...,m.

Theorem 2.14. (See [14]) For Az = b, let T' = {i|(Ax;) C b;}, C = {i|(Az;) D
b;} and U = {1,...,m}. A vector x € R" is a tolerance-control solution of Az =

b if and only if it satisfies

(Aew)i = (be)i| < —=(Alz])i +6i i €T

|(Ac)s = (be)il < (Alz])i = 0;, 1 € C,

where TUC = U.

Alternatively, Leela-apiradee [16] proposed the new characterization of a

tolerance-control solution to the system considered in magnitude sense.

Theorem 2.15. (See [16]) A vector z € R™ is a tolerance-control solution of

Az = b if and only if it satisfies

[(Az); — (be)i] < 0; or [(Ax); — (be)i] > 6,

for each i € M where M is the sets of indices {1,2,...,m}.

Moreover, Li et al. [8] introduced L-localized and R-localized solutions
and proposed the characterization of them as shown in Theorems 2.20 and 2.21,
respectively. Next, let us introduce the important relations <, and <, between
two interval vectors in Definition 2.16 which will be used to define L-localized and

R-localized solutions of Ax = b in Definitions 2.17 and 2.18, respectively.



10

Definition 2.16. (See [8]) Let x = [z,7] and y = [y,7y] be any two interval

vectors.
(i) fz <y <7 <7, then x is strictly less than or equal to y, denoted by
X Sst y
X
e o *—eo

Figure 2.4: x <, y, where x,y € IR.

(ii) If T <y, then x is strongly less than or equal to y, denoted by x < y.

Figure 2.5: x <;y, where x,y € IR.

Definition 2.17. (See [8]) A vector x € R" is called an L-localized solution of
Az = b if there is at least one A € A such that Ar € b. For the other A € A,

Az <, b.

Definition 2.18. (See [8]) A vector x € R” is called an R-localized solution of
Az = b if there is at least one A € A such that Az € b. For the other A € A,

—Az <, —b.

Lemma 2.19. (See [8]) The set of all L-localized and R-localized solution of

Az = Db, denoted by Y, 4(A,b) and ) ,4(A,b) respectively, are written as

> (Ab)={zxeR": Az <, b} and > (A,b)={zeR": —Az <, —b}.
LS RS
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Theorem 2.20. (See [8]) A vector z € R" is an L-localized solution of Az = b

if and only if it satisfies

—Alz| —d < Acx —b. < —|Alx| = 4.

Theorem 2.21. (See [8]) A vector z € R™ is an R-localized solution of Az = b

if and only if it satisfies

|Alz| — 6] < Az — b, < Alx| + 4.

According to Lemma 2.19, the set of L-localized and R-localized solutions of

Az = b where z € R are illustrated as Figures 2.6 and 2.7.

....................................

....................................

Figure 2.7: —Ax <, —b, where z € R.

By mixing the concepts of L-localized and R-localized solutions together,
Li et al. [8] proposed a new solution called a localized solution that is defined in

Definition 2.22.

Definition 2.22. (See [8]) A vector x € R" is called a localized solution of Az =b

if (Ax); = b; is either L-localized or R-localized, for each i =1, ..., m.



12

Theorem 2.23. (See [8]) Let e; be a m-dimensional column vector which has 1
at row j and 0 elsewhere and E;; be a m x m matrix which has 1 at the position
(7,7) and 0 elsewhere. A vector x € R" is a localized solution of Az = b if and

only if it satisfies

—Alz| =6 < Ax — b, < —|6 — Alz],

where Ac = (Tnxm — 23 jenr Bij)Acy be = (Inxm — 23 jeps Bjj)be and M =

{]|bj <st (Ax)j7 1 S] < m}

In Theorem 2.24, Leela-apiradee [16] offered the new characterization of lo-

calized solution to the system instead of Theorem 2.23.

Theorem 2.24. (See [16]) A vector z € R" is a localized solution of Az = b if
and only if it satisfies

LAx—ch _<_5§ I_Ax_bc]

Based on the definitions of tolerance, control, L-localized and R-localized
solutions, we develop the concepts of a tolerance—localized and a control-localized

solution as shown in the following definition.

Definition 2.25. A vector x € R"™ is called a tolerance—localized solution of Ax =
b if x in (Az); = b; is either one of tolerance, L-localized or R-localized solution,

foreachi=1,...,m.

Remark 2.26. The set of all tolerance-localized solution of Ax = b, denoted by

> (A, b), can be written as follows:

> (Ab)={zeR": (Az); C (b);, Vi€ S, (Az); <ubj, Vj€Q
TL

and — (Ax), <g —by, Yk € R},



13

where S, @ and R be disjoint index subsets of {1,...,m} such that SUQ U R =
{1,...,m}. That is, the rows i € S, j € @ and k € R of the system are tolerance,

L-localized and R-localized, respectively.

Definition 2.27. A vector x € R" is called a control-localized solution of Ax =b
if z in (Ax); = b; is either one of control, L-localized or R-localized solution, for

eachi=1,...,m.

Remark 2.28. The set of all control-localized solution of Ax = b, defined by

> cr(A,b), is written as

> (Ab)={zeR": (Az); D (b);, Vi€ P, (Ax); <ub;, Vj€Q
CL

and — (Ax)y <4 —by, Yk € R},

where P, @ and R be disjoint index subsets of {1,...,m} such that PUQU R =
{1,...,m}. That is, the rows i € P,j € @ and k € R of the system are control,

L-localized and R—localized, respectively.

By these definitions of solutions to system of interval linear equations, we

provide a diagram of their relationship in Figure 2.8.

Weak

{Tolerance—control} {toleraneeflocalized} {controlflocalized}

Tolerance
L—localized R-localized

Figure 2.8: The relationship to solutions of an interval linear equations system,
where A — B means A is a superset of B.

Localized
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To show the characterization of each solution type clearly, we give a simple
example about a daily energy requirement of human. The daily energy require-
ment of each person might be different depend on gender, ages, weight or physical
structure. In addition, type of activities can determine the daily energy require-
ment as well. Thus, we found that the daily energy requirement can present as
interval form. For example, a 25-year-old woman with 50 kilograms weight and
160 centimeters tall requires 1457 kcal/day for light activity lifestyle and 2307
keal/day for vigorously active lifestyle [24], then her daily energy requirement can
be rewritten as b = [1457,2307] kcal/day. In order to maintain weight and har-
ness remaining energy, her actual daily energy receiving Ax should be between
1457 and 2307 where A refers to the amount of kcal/1 gram of the nutrients and
x is the number of grams of receiving nutrients. Thus, Az C b for this case
which refers that the relation of her actual daily energy receiving and daily energy
requirement is tolerance. However, not everyone can reach their daily energy re-
quirement by some reasons such as their increasing work, personal errand or the
after work party. So, their actual daily energy receiving might be less or more
than usual that is Az O b. This situation leads control relation of the actual
daily energy receiving and daily energy requirement. In addition, some people
who want to gain weight or pregnant women have to receive energy not less than
daily energy requirement and it would be better if he/she is able to receive energy
more than usual. By this case, the relation of the actual daily energy receiving
and daily energy requirement is described as R—localized or b <, Ax. For people
who want to lose weight, we can describe in the same way as the previous case.
So, in this case, the actual daily energy receiving and daily energy requirement

refer to L-localized relation or Ax <, b.

Now, we have enough information to understand the system of interval lin-

ear equations. Particularly, the definitions of the two new solutions, tolerance—
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localized and control-localized solutions are clearly described. In the two next
chapter, we proposed a set of theorems that related to these two new solutions.

The proofs are also completely shown.



CHAPTER III

TOLERANCE-LOCALIZED SOLUTION

This chapter provides a series of theorems related to the set of all tolerance—
localized solutions of the system Ax = b. Throughout Chapters 3 and 4, we denote
M for convenience as the index set {1,...,m}. Let I, x, be an identity matrix
of size m and Ej; be a m x m matrix which has 1 at the position (i,7) and 0

elsewhere.

Theorem 3.1. A vector x is a tolerance-localized solution of Ax = b if and only

if it satisfies

—Alz| =6 < At — b, < é7)6 — Alz]|.

The terms A, = (Lnsm — 2 Y Ea)Ae, be = (Lnxm — 2 Ei)be, A = (Ism —
i€R i€R
23 " E;i)A where S = {i € M;(Az); Cb;} and R = {k € M; —(Ax); <, —by}.
ics
The m-dimensional vector é has 1 at row ¢ € S and —1 elsewhere.

Proof. Assume that z is a tolerance—localized solution of Ax = b. Let S, @ and
R be disjoint subsets of M such that rows i € S,j7 € @ and k € R of the system

are tolerance, L—localized and R-localized, respectively. This means
(Az); Cb;, Vie S, (Ax); <4 b;, Vj € Q and — (Ax), <y —bg, Vk € R. (3.1)
Let us focus on the first relation of (3.1) for each i € S. From Theorem 2.3,

[(Acx)i = (Alz])i; (Ac)i + (Alz])i] = (Az)i € by = [(be)i — i, (be): + dil,
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which implies

(be)i — 6 < (Acx)i — (Alz]); < (Aez)i + (Alx|)i < (be)i + 0.

That is, (Alz|); — §; < (Acx); — (be); and (Acx); — (be)s < —(Alz|); + ;. Thus

(Alz])i = 6 < (Acx)i = (be)i < —(Alz]); + b

Since (ALU)Z Q bi7 then (51 Z (A|I‘DZ, i.e., 0 S (51—(A|I|)1 = |51—(A|LL’|)Z| Therefore

Let j € Q. The second relation of (3.1) becomes

[(Acz); — (Alz]);, (Acx); + (Alz]);] = (Az); <o bj = [(be); — 65, (be); + 5],

which implies

(Acx); — (Alz]); < (be); — 65 < (Aex); + (Alz]); < (be)j + 95

that is,

—(Alz]); = 65 < (Acw); — (be); < (Alx]); — J; and
(3.3)
(Aew)j — (be); < —(Alz]); + 0.

Therefore

~(Alal); ~ 8 < (Ax); — (b); < ~16; — (Ala]),| foreachj€ Q. (3.4)
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Let k € R. We first derive the terms —(Ax), and —(b); as follows:

—(Az) = =[(Acw)r — (Alz])x, (Act)r + (Al2])]

= [=(Acx)r = (Afz)r, =(Ac)r + (Alz])i] (3.5)

and

—bi = —[(be)k — Sk, (be)k + O]

= [=(be)r — Ok, —(be)r. + 4] (3.6)

By using (3.5) and (3.6), the third relation of (3.1) turns into

—[(Acr)r— (Alz )k, (Acx)r+ (Alz|)i] = —(Az)y <o —br = —[(be)k — Ok, (be)x+0%],

which means

—(Acx)i — (Alz))e £ =(be)e — 0k < —(Acz) + (Alz])e < —(be)r + g,

ie.,
Then

| = (Alz])x + 6] < (Acx)r — (be)r < (Alz|)x + O
Therefore

—(Alz))g — 0k < —(Acx)i + (be)r < —|0k — (A]z])x| for each k € R. (3.8)



19

Let e; be a m-dimensional column vector which has 1 at row ¢ and 0 elsewhere.

By putting (3.2), (3.4) and (3.8) together, the left, the middle and the right terms

are
—Alz[+2) (Alz])ie; —
€S
A = b — 2 (A — be)ie; = A — b — 2 (Acx)ie; +2) (be)
1€ER i€ER i€ER
and
1, if 7€ 5,
1o — Alzl] =D éi(|0 = Alzll); where & =
ieM -1, fi€eQUR=

respectively. As a result of

> (Alxl)e (Z E) Alz,

€S €S
Z(A T (Z Eu> A.x, and
1ER 1ER
Z(bc)iei =1 (Z Eu) be,
i€R i€R

the terms (3.9) and (3.10) are
~(Imxm — 2 Y Eii)Alz| =6 = =Alz| - 6
ies
and

m><m —2 ZEH o m><m —2 ZE’L’L b - Acw - bca

1ER iER

A

(3.9)
e; (3.10)
M\ S,

respectively. Hence —Alz| —§ < Ax — b, < éT|6 — Alz||. Reverse this proof to

complete the proof of the theorem.

]
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In the next theorem, we propose an alternative characterization of tolerance—
localized solution generated in magnitude sense. By rewriting the result of Theo-
rem 3.2 as T'L function, we obtain the solution set ) ,; (A, b) in a level set form

shown in Theorem 3.3.

Theorem 3.2. z is a tolerance—localized solution of Ax = b if and only if it

satisfies

|Az —b.] <. (3.11)

Proof. Assume that x is a tolerance—localized solution of Ax = b. Let S, () and
R be disjoint subsets of M such that rows 7 € S,7 € Q and k € R of the system

are tolerance, L—localized and R-localized, respectively. Then

(Az); Cb;, Vie S, (Ax); <q bj, Vj € Q and — (Az), <i —by, Vk € R.
(3.12)
Let tolerance row ¢ € S. By the proof of Theorem 3.1, we find that the first

relation of (3.1) and (3.12) are identical. Then we have

(be)i—6; < (Acx)i— (Alz])i < (be)i+0; and (be)i —0; < (Acx)i+(Alx]); < (be)i+6;

ie.,

[(Acz)i = (Alz|)i = (be)i| < 6; and [(Acz); + (Afx])i — (be)i < s,

which implies

0; = max{[(Acx)i — (Alz[)i — (be)il, [(Acx)i + (Alz])i — (be)il}-

As the fact that the maximum value between |(A.z); — (Alz|); — (b.);| and |(A.x); +

(Alx]); — (be);| is greater than or equal to the minimum value between them, we
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obtain

§; > min{|(Acx); — (Alz]); — (be)il, [(Acx)s + (Alz])i — (be)il}
= [[(Aez); — (Alz])i — (be)i, (Aex)i + (Alz)i — (be)i]]
= [[(Acz); — (Alz])i, (Aez)i + (Alz])i] — (be):)

= [(Az); — (be)i- (3.13)

Therefore, (3.11) holds for each i € S.

For each L-localized row j € Q. By the derivation of the second relation of (3.1),

the second relation of (3.12) turns into

=05 < (Acx); + (Blz]); — (be); < 95

that is,
[(Aew)j + (Alz]); — (be);] <6 (3.14)

By the rule of disjunctive amplification, (3.14) implies to the following statement:

[(Aez); + (Alz]); — (be);] < 65 or [(Aew); — (Alxl]); — (be)s] < 65

According to the same derivation of (3.13), it implies that (3.11) also holds for

each j € Q).

Next, let us consider each R-localized row k£ € R. In the same manner as (3.1),

the third relation of (3.12) becomes

—0 < —(Acx)k + (Alz])k + (be)r < O,
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that can be rewritten as

O = | = (At + (Alz)k + (be)i] = [(Acw)r — (Alz])r = (be)kl-

Therefore, we now have

[(Acx) — (Alz])r — (be)k] < O (3.15)

By the same fashion as executing to (3.14), finally we obtain (3.11) for each k € R.

Hence, if x is a tolerance—localized solution of Az = b, then (3.11) holds as desired.

Conversely, assume that a given x satisfies the condition (3.11). Then |Az—

b.] < 0. Let : € M. By reversing the proof of (3.13), we have

6; > min{|(Acz); — (Alz]); — (b)il, [(Acx)i + (Alx])i — (be)il},

that is, §; > |(Acz); — (Alz|); = (be)i] or 6; > |(Acx); + (Alx]); — (be)i]. To prove

the theorem, we have to separate the proof into two parts:

1. The first part assumes §; > |[(A.z); — (Alx]); — (be);]

2. The second part assumes d; > |(A.z); + (Alz]); — (be)il-

The first part assumption can be distinguished into the following two cases below.

Case 1.1: 0; > [(Acz); — (Alx]); — (be);] and §; < |(Aex); + (Alz|); — (be)s|, which
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8 > |(Aex); — (Alz])i — (be)i] & — 8 < (A)i — (Alz]); — (be)i < 0
& — (be)i + 6 > —(Acx); + (Alz]);

and — (A.z); + (Alz]); > —(be)i — 6

and

i < [(Aew)i + (Alx])i — (be)il & — (Acx)i — (Alx|)i + (be)i > 0
or (Acz); + (Alz|)i — (be)i = 6
& = (be)i+0; < —(Acx); — (Alz));

or (b.); + 0 < (Acz); + (Alx|);.

By putting (3.16) and (3.17) together, we get

_(bc)i —0; < —(Acﬂf)i 2 (A\ZEDz = _(bc)i +9; < —(Acﬂf)i - (A’-??Du

which contradicts Theorem 2.3. We next combine (3.16) and (3.18), then

—(Acz)i — (Alz|)i < =(be)i — 0 < —(Acx)i + (Alz])i < —(be)i + 6

23

(3.16)

(3.17)

(3.18)

which means —(Az); <4 —b;. Hence the row i of the system satisfying Case 1.1

is R-localized.

Case 1.2: (5, Z ‘(Adl’)z - (A‘IDZ - (bc>z| and 51 Z |(AC$)1 + (A|LL’DZ — (bc)zla where

i > [(Aew)i — (Alz])i = (be)il & (be)i — 0 < (Aew)i — (Alz])i < (be)i + 0

(3.19)
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and

i > [(Aew)i + (Alz])i — (be)il & — i < (Aex)i + (Alx|)i — (be)i < 0

< (be); — 0; < (Acx); + (Alz));
(3.20)

By getting (3.19) and (3.20) together, we have

(be)i — 0; < (Acx)i — (Alz]); < (Ac); + (Alz]); < (be)i + 6,

which implies (Ax); C b;. Therefore, the row i of the system satisfying Case 1.2
is tolerance. Now, the first part is finished. Let us continue to prove the second
part. Similar to the first part, the second part can be separated into two cases

below.

Case 2.1: 0; > [(Acz); + (Alz]); — (be)i] and §; < |(Acx); — (Alz|); — (be)i|, which

can be rewritten as

i > |(Aew)i + (Alz])i — (be)il & (be)i — i < (Acx)i + (Alz]);

(3.21)
and (Acx); + (Alz]); < (be): + 0;
and
i < [(Acx)i — (Alz])i — (be)i| & 6 < —(Acx)i + (Alz])i + (be)s
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By putting (3.21) and (3.22) together, we get
(Acx)i — (Ala])i < (be)s — 0i < (Acw)i + (Alz])i < (be)i + 0s,

which implies (Az); <4 b;. On the other hand, putting (3.21) and (3.23) together

returns
(be)i — 0 < (Acx)i + (Alz])i < (be)i + 05 < (Aex)s — (Alz])s,

which contradicts Theorem 2.3. Then we can summarize that the row ¢ of the

system satisfying Case 2.1 is L-localized.

Case 2.2: 0; > [(Acz); + (Alz]); — (be)i] and §; > |(Acx); — (Alz|); — (be)s|, which
is the same as Case 1.2 of the first part assumption. Therefore, the row 7 of the
system satisfying Case 2.2 is tolerance. By the two parts of the proof, = that
satisfies (3.11) is a tolerance-localized solution of Ax = b. Hence, we complete

the proof of Theorem 3.2. 0

Theorem 3.3. Let T'L be a function from R" to R defined by

TL(z | A,b) =6 — {Z ;L — (bc)iJ  Vie M,

j=1
where A = [a;;] € IR™*" and b = [b. — 9§, b. +d] € IR™ are given. A vector z € R"
is a tolerance—localized solution of Ax = b if it satisfies

TL(z|A,b)>0.

That is Y (A,b) ={z € R": TL(z | A,b) > 0}.

TL

Proof. Recall from Theorem 3.2 that z is a tolerance-localized solution of Az = b
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if it satisfies

|Az —b.] <d<=d—[Ax—Db.] >0
<~ 52 — \‘Z ;T — (bC)ZJ > 0, Vie M
j=1

< TL(x | Ab) >0.
By reversing this proof, the proof of the theorem is completed. O

The three theorems related to tolerance-localized solution are released in
this section. First two theorems refer to the characterizations that one presents
in center and radius matrices and the other one presents as geometric sense. In
the last theorem of this section, closed form of the set of all tolerance-localized
solution is represented. In the next section, the theorems related to control-
localized solution are mentioned. The concepts of them are similar to the proposed

theorems of tolerance—localized solution.



CHAPTER IV

CONTROL-LOCALIZED SOLUTION

In this chapter, the provided theorems are involved with the set of all
control-localized solutions of the system Ax = b. In the same fashion as the
previous chapter, we obtain two theorems that are related to a characterization of
control-localized solution and provide a theorem described the control-localized

solution set in terms of a level set as well.

Theorem 4.1. Let I,,.., be an identity matrix of size m and Ej;; be a m xm matrix
which has 1 at the position (¢,7) and 0 elsewhere. A vector x is a control-localized

solution of Ax = b if and only if it satisfies
—Alz| =6 < Az — b, < é7)6 — Alz]|.

The terms A, = (Inum — 2 Eq)Ae, be = (Insm — 2> Eii)be, 0 = (Ipsm —
i€R i€R
2 " E;;)d where P = {i € M;b; C (Az);} and R = {k € M; —(Ax); <., —by}.
icP
The m-dimensional vector é has 1 at row ¢ € P and —1 elsewhere.

Proof. Assume that x is a control-localized solution of Ax = b. Let P,Q and R
be disjoint subsets of M such that rows ¢ € P,j € () and k € R of the system are

control, L—localized and R-localized, respectively. This means
b; C (Ax);, Vi€ P, (Az); <u b;, Vj € Q and — (Ax), <4 —by, Vk € R. (4.1)

We begin the proof by considering the first relation of (4.1) for each ¢ € P. From

Theorem 2.3,

[(be)i = 0is (be)i + 03] = by € (Ax); = [(Acx)i — (Alx|)i, (Ae)i + (Alx])i],
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which implies
(Acx)i — (Al])i < (be)i — 0i < (be)i + 6 < (Acw)i + (Alz])s.
That is, (Acx); — (be); < (Alz]); — §; and —(Alz|); + 6; < (Acx); — (be)i- Thus
—(Alz])i + 0 < (Aew)i — (be)i < (Alz)i — ds.
Since b; C (Axz);, then (Alz]); > §;, i.e., 0 < (Alz|);—0; = |0;—(Alx]);]. Therefore,

—(Alz|); + 6 < (Acz);i — (be)i < |0; — (Alx|;)| for each i € P. (4.2)

Next, let us focus on j € @ and k € R. By the same derivation as (3.1), the

second and the last relations of (4.1) becomes
—(Alz|); = 6; < (Aex); — (be); < —10; — (Alz];)| for each j € Q (4.3)
and
—(Alz))g — 0 < —(Acx)r + (be)r < —|0r — (Alz|x)| for each k € R, (4.4)

respectively. Let e; be a m-dimensional column vector which has 1 at row 7 and 0
elsewhere. By putting (4.2), (4.3) and (4.4) together, the left, the middle and the

right terms are

—Alz[ = 5+2) die;  (45)

i€P

A —be—2) (Aw —bo)ie; = A — b — 2> (Aex)ie; +2Y (bo)ie;  (4.6)

1ER 1ER i€ER
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and

1, it 1€ P;

o — Alzl] =D éi(16 — Alz|); where é; =
i€M —1, f iEQUR=M\P,

respectively. As a result of
Z(Acx)iei = (Z Ezz) A, Z(bc>iei = (Z Ezz) be
i€R i€R i€R i€R
the terms (4.5) and (4.6) are
—Alz| = (Inxm =2 ) Ei)6 = —Ala| — 6
ieP
and

([mxm -2 ZEM)Acx 2N (Imxm =2 ZEu)bc = Ac$ - Bca

i€ER 1€ER

respectively. Hence —Alz| — 0 < A,z — b, < é7|6 — Alz||. Reverse this proof to

complete the proof of the theorem. O

Theorem 4.2. A vector x is a control-localized solution of Az = b if and only if
it satisfies

(Az —b.) <6<JAzx—b.]. (4.7)

Proof. Assume that x is a control-localized solution of Ax = b. Let P,Q and R
be disjoint subsets of M such that rows i € P,j € @) and k € R of the system are

control, L-localized and R-localized, respectively. Then

Let ¢ € P. In accordance with the proof of Theorem 4.1, the first relation of (4.8)
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is equivalent to (4.2), which means

(Au); — (Alz])i — (b)i < —6; and (Aw)i + (Alz])i — (be)s = 6. (4.9)

By using the fact that §; > 0, (4.9) can be written as

0 <0 < —(Acx)i + (Alz])i + (be)i = [(Aew)i — (Alz])i — (be)il (4.10)

and

0 <0 < (Aex)i + (Alz])i = (be)i = [(Acw)i + (Alx])i — (be)il. (4.11)

From (4.10) and (4.11), it implies that

0; < min{|(Aew); — (Ala])i — (be)il, [(Aew)i + (Ala])i — (be)il}-

As the fact that the minimum value between |[(A.x); — (Alz|); — (b.);| and |(Aqx); +

(Alx]); — (be)s| is less than or equal to the maximum value between them, we get

6; < max{|(Acx); — (Alz])i — ()il [(Aez): + (Alz])i — (be)i]}
= [[(Acz); — (Alz])i = (be)i, (Aez)i + (Alz]); — (be)i] ]
= [[(Acz); — (Alz])i, (Aex)i + (Alz])i] — (be)i]

Moreover, since b; C (Ax);, 0 = (b.); — (be)i € b; — (be); C (Ax); — (be); for each
i € P. By the definition of (x) and 0 € (Az); — (b.);, it provides ((Az); — (b.);) =

0 < §; and therefore (4.7) satisfies for each i € P.

Next, let us consider L-localized row j belongs to ). The second relation of
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(4.8) is directly derived from (3.1) as

(Acw); — (Alz|); — (be); < =05 and —d; < (Aex); + (Alz]); — (be); < 6;. (4.13)

As a result of §; > 0, (4.13) becomes

0 <d; < —(Aex); + (Alz]); + (be); = [(Aew); — (Alx]); — (be)s]

and

|(Acz); + (Afz]); = (be);| <05,

that is,

[(Acx); — (Alz]); = (be);| = 65 and [(Acx); + (Alz]); — (be);] < 95,

which imply

0 = min{|(Acz); = (Alzl); = (be)sl, [(Aew); + (Afz]); = (be);]}
> ([(Aew); = (Alz]); = (be);, (Acz); + (Alz]); = (be)sl)
= ([(Aex); = (Alz]);, (Aew); + (Afa]);] = (be);)

= ((Ax); — (be);)- (4.14)

In the same simplification as (4.12), it gives 0; < [(Ax); — (b.);] and hence (4.7)
holds for each j € Q.

For each R-localized row k belongs to R, (3.1) implies that the last relation of
(4.8) is simplified as
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Since 6 > 0, (4.15) turns into

0 <0 < =(=(Aew)r — (Alz[)k + (b)) = [(Act)i + (Al2])k = (be)i]

and

O = | = (Ac)i + (Alz])k + (be)r| = [(Acw)r — (Alz])r — (be)k|

that is,

|(Act)i + (Alz)k = (be)i] = 0x and |(Acw)r — (Afz])r — (be)k| < 0. (4.16)

In similar derivations to (4.12) and (4.14), we finally obtain (4.7) for each k € R.

Conversely, assume that a given x satisfies the condition (4.7). This means
(Az —b.) < and § < [Az — b.|. Let i € M. By Reversing the proof of (4.12),

we have

6; < max{|(Acx); — (Alx])i = (b)il, |(Act); + (Alx])i — (be)il},

that is, §; < |[(Acx); — (Alx])i — (be)i| or § < |(Acx); + (Alx]); — (be)s|. Let us
consider the condition (Az — b.) < §. For the case 0 ¢ (Ax); — (b.);, we reverse

the proof of (4.14) to complete the inequality

0; = min{|(Acw); — (Alx])i — (be)il, [(Acw)i + (Ala])i — (be)il},

(Azx); — (b.)i, then §; > ((Az); — (be);) = 0. To prove the theorem, we need to

distinguish the assumption into two parts:

1. Assume that § < [Az — b.] and (Ax —b.) < 0 where 0 ¢ (Az); — (b.);
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2. Assume that 06 < [Ax —b.| and (Az — b.) < § where 0 € (Ax); — (be);-

Let us begin with the first part assumption that can be separated into the following

three cases below.

Case 1.1: §; < |(Acx); — (Alx]); — (be)i] and 6; > [(Acx); + (Alz|); — (be);| are the
same as Case 2.1 in Theorem 3.2. Then we can conclude that the row ¢ of the

system satisfying Case 1.1 is L—localized.

Case 1.2: §; > |(Acx); — (Alz|); — (be)i| and §; < |(Acx); + (Alz|); — (be)i| are
identical to Case 1.1 in Theorem 3.2. This supports that the row i of the system

satisfying Case 1.2 is R-localized.

Case 1.3: 0; = |(Acx); — (Alx|); — (be):| and §; = |(Acz); + (Alz]); — (be):| where

0i = [(Acx)i — (Alz])i — (be)il & di = (Acz)i — (Alz])i — (be)i
or 0; = —(Acx); + (Alx]); + (be)s
& (Aer); = (Alz|); = (be)i + 6 (4.17)

or (Acx); — (Alz|); = (be); — 6; (4.18)

and

i = |(Aex)i + (Alx])i — (be)il & (Acz)i + (Alz]); = (be)i + 6 (4.19)

or (Acx); + (Alx]); = (be); — 0;. (4.20)

By putting (4.17) and (4.19) together, we get

(Acx)i — (Alz])i = (be)i + 6 = (Ac)i + (Alz])s,

it gives —(Ax); <y —b;. However, putting (4.17) and (4.20) together contradict
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with Theorem 2.3. For another case, a combine of (4.18) and (4.19) recurs

(be)i — 6i = (Acx)i — (Alz]); < (Aex)i + (Alz|)i = (be)i + i,

it provides (Ax); = b,. For the rest one, including (4.18) and (4.20) each other is

turned

(Acx)i — (Alz]); = (be)i — 6 = (Acx)i + (Alz])s,

it means (Ax); <y b;. Therefore, we can summarize that the row i of the system

satisfying Case 1.3 is control-localized.

Now, the first part is done. We begin the second part by assuming that
d < [Az —b.] and (Az —b.) <0 where 0 € (Ax); — (b.);. These assumptions are

separated into the following three cases below.

Case 2.1: §; < |(Acx); — (Alx]); — (be)i] and 6; > [(Acx); + (Alz|); — (b);| are the
same as the assumption of Case 2.1 in Theorem 3.2. It can be concluded that the

row ¢ of the system satisfying Case 2.1 is L-localized.

Case 2.2: §; > |(Acx); — (Alx])i — (be)i] and 6; < [(Acx); + (Alz|); — (b);] are the
same as the assumption of Case 1.1 in Theorem 3.2. This is verified that the row

1 of the system satisfying Case 2.2 is R-localized.

Case 2.3: 0; < |(Acx); — (Alz|); — (be)i| and 6; < |(Acx); + (Alx]); — (be);| where

0i < [(Acz)i — (Alz])i — (be)i| & (Acw)i — (Alx])i > (be)i + 0 (4.21)

or (Auz)i — (Alx])i < (b)s — 6 (4.22)
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and

0 < |(Aex); + (Alz]); — (be)i] < (Acx); + (Alz|)i > (be)i + 6 (4.23)

or (Acx); + (Alx]); < (be); — 6. (4.24)

There is a contradiction with Theorem 2.3 for the case when combine (4.21) and

(4.24) together. Another case is combined (4.21) and (4.23). This gives
(be)i +0i < (Acw)i — (Alz])i < (Aex)i + (Alz))i,

which refers to —(Ax); <g —b,. By putting next (4.22) and (4.23) together, we

obtain
(Aex); — (Alz])i < (be)i = 0i < (be)i + 05 < (Acx)s + (Alz])s,

it verifies that (b, C Ax);. For the last case, putting (4.22) and (4.24) together
return

(Ac)i = (Alz])s < (Ae)i + (Alz])i < (be)i — 0,

which implies (Ax); <4 b;. Therefore, the row i of the system satisfying Case 2.3

is control-localized and this complete the proof of the theorem. O

Theorem 4.3. Let C'L be a function from R" to R defined by

CL(z | A,b) = min {@ - <Zaijxj - (bc)i> : {Z a;; — (bc)lw — 5z} ,

where A = [a;;] € IR™*" and b = [b. — 9§, b. + d] € IR™ are given. A vector z € R

is a control-localized solution of Az = b if and only if it satisfies

CL(z | A,b) > 0.
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That is, Y (A,b) ={z € R": CL(z | A,b) > 0}.
cL
Proof. Recall from Theorem 4.2 that x is a control-localized solution of Ax = b

if and only if it satisfies (Ax — b.) <0 < [Ax — b.|. That is,
d—(Az—0b.) >0 and [Ax —b.] —d >0,

which implies

min{J — (Az —b.), [Ax —b.] — 6} > 0. (4.25)

For each i = {1,...,m} and j = {1,...,n}, (4.25) can be simplified as

?El}\? {5@ - <Zl AT — (bc)z> ) |Vzl ;T — (bc)z“ — 62} > O7
J= j=

which refers to

CL(z | A,b) > 0.

By reversing this proof, the proof of the theorem is completed. [

This section, two proposed theorems mention the characterizations of control—
localized solution of interval linear equation system. One theorem is shown in
terms of center and radius matrices. The other is described as magnitude sense.
Based on the magnitude sense characterization, the closed form of the set of all
control-localized solution of interval linear equation system is proposed in the third
theorem. Now, we show all of proposed theorems related to tolerance-localized
and control-localized solutions. To show that the proposed theorems are practical,
we present an application that applies concept of tolerance—localized solution to

deal with the problem in the next section.



CHAPTER V

COURSE ASSIGNMENT PROBLEM WITH

UNCERTAINTY

This chapter presents a problem that can be handled by applying the pro-
posed theorems. By researching, we specifically take an interest to deal with course
assignment problem because we found some conditions of course assignment prob-
lem that can apply the result of Theorem 3.2. The details of the problem and the

results are described in the next sections.
5.1 Introduction to course assignment problem

Course assignment problem is the problem of matching subjects and instruc-
tors under some constraints. Creating a course assignment by hand may achieve
bias result. To solve this problem more efficiently, there are many approaches to
deal with such as integer programming, linear network optimization, graph the-
ory coloring and other metaheuristic methods. We focus on using a linear integer
programming model to deal with this problem. By studying the information in
the second semesters of 2018 academic year of the Department of Mathematics
and Computer Science, Faculty of Science, Chulalongkorn University, we would
like to assign subjects to instructors that lead to the overall maximum assignment
preferences and minimum over/under workload of the instructors. However, the
instructors might want to change their requested workload for some reasons such
as their own or family illness, or any other accidents. By these situations, the
instructors might have uncertain requested workload. In addition, the variation

of a number of students can affect the workload of subjects. By these reasons,
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course assignment problem with uncertainty is generated. Thus, in this thesis, we

can use the concept of interval linear equations system to deal with the problem.

The concept of applying tolerance—localized characterization or Theorem 3.2
to course assignment problem with interval requested workload and interval work-

load of subjects is revealed in the next section.

5.2 Tolerance—localized to course assignment problem with uncertainty

In this section, the reason that tolerance—localized solution can exist to the
course assignment problem is described. Normally, the department might have an
observed data mentioned to the requested workload of each instructor. However,
some instructors maybe unsure with the process of giving the requested workload
because of their uncertain assigned workload in the past. For example, instructor
A requested 21 workload for this semester but his/her real assigned workload
maybe less than or greater than 21 workload. There are many reasons for the
uncertain workload such as annual leave, research leave, increment and retirement
of instructors in that semester. The enrollment termination of some subjects
because of lacking enrolled students might be one of the reasons. Then, instructor
A may determine his/her requested workload as the interval [21,24] and does
not expect or depress, even though his/her assigned workload is not as planned.
According to this description, the total assigned workload of instructors might
be in L-localized, R-localized or tolerance solution terms. Thus, the concept of
tolerance—localized to course assignment problem is already declared. The data,

descriptions and notation of the problem is stated in the next section.

5.3 Descriptions and notation of course assignment problem

In this section, we give the information used for performing the problem.

The basic restrictions and declared variables are also shown in this section also.
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The mentioned information in this section and the model study in the next section
have cited from [18, 17]. Firstly, we divide the teaching preference value into 6
ranks with different fuzzy values of ranks as presented in [18]. The provided ranks
of instructors represent the expertise or interest in each subject. In this context,
we assume that the decisions of all instructors to clarify their rank of subjects are

the same way.

Rank Description Rank | Value of rank
The most preferable subject to teach 1 1

A preferable subject to teach 2 0.95

A subject is able to teach 3 0.9

A non-preferable subject but is able to teach 4 0.85

A non-preferable subject and needless to teach 5 0.8

A subject is unable to teach 6 0

Table 5.1: Teaching preference rank descriptions.

By considering the data collected from the Department of Mathematics and
Computer Science, Faculty of Science, Chulalongkorn University, there are 61
instructors with 84 subjects. Subjects in this context include of subjects with only
one section and subjects with multiple sections, then a total number of sections
of 84 subjects is 121 sections. The workload of each subject depends on class
level, the number of students, the number of credits of subject, hour and a type of
class (lecture or lab). Next, we will present the standard restrictions of the course

assignment problem, more details can be seen in [18].

1. No more than 3 sections that each instructor can be assigned.
2. One section is required for only one instructor.

3. Multiple teaching sections of the same subject do not allow to assign to
one instructor. To avoid the unfair teaching preparation, this restriction is

generated.
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4. Each instructor should reach the amount of his/her own requested workload.

Let us next define variables that used to formulate the model in Section
5.4. For n = 61 instructors and m = 121 sections, we denote I = {1,2,...,n}
and J = {1,2,...,m} as sets of indices of the " instructor and the ;™ section,

respectively. Let v = (z;;) e R™™ foralli=1,...,nand j=1,...,m.

e x;; : Decision variable

1, the i instructor teaches the j* section;
Iij =

0, otherwise.
e c;j ¢ a value of rank of the j section that related to the ' instructor.
o a; : the workload of the j™ section.
 b; : the requested workload of the " instructor.

o d; : the known workload of the i instructor such as seminar, project and
thesis duties. Then b; — d; refers to the number of teaching workload of the

ith instructor.
e «; : the extra workload (overload) of the i** instructor and «; > 0.

e f3; : the residual workload (underload) of the i’ instructor and 3; > 0.

The tools for generating the model are completely defined. Thus, in the next

section, the formulation of course assignment model is presented.
5.4 Formulation the course assignment model

By the variables defined in the previous section, we can formulate a mathe-

matical model in this section. Let us begin with the formulation of the standard
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restrictions.

1. No more than 3 subjects that each instructor can be assigned.

ixij S?),VZE 1.

=1

2. One subject is required for only one instructor.

in]’ 7 1,V] e J
i=1
3. Multiple teaching sections of the same subject do not allow to assign to one

instructor.

Yoz <LViel

J€Jk
where J;, is the index set of multiple sections of the k" subject for all k =

1,2,...,84.

4. Each instructor should reach the amount of his/her own requested workload.

m
> ajmi—oai+fi=b—d,Viel (5.1)
j=1

Next, we formulate the objective function of the course assignment problem
model related to the objective of this work that is maximizing the assignment
preferences and minimizing over/under workload of the instructors. Let M; and

M be large positive penalty constants of extra and residual workload, respectively.

The objective function is presented in the following.

n. m n n
max E E CijTij — M1 E a; — M2 E Bz
i=1 i=1

i=1 j=1
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Normally, the value of M, should be greater than M; because having positive
residual workload may refer that an instructor cannot keep his or her promise to
complete work. By literature [18], we choose (M, Ms) = (0.0015,10) which was

experimented for a reasonable result.

However, we found that the workload of the subjects can be changed by the
number of enrolled students. Therefore, we can consider the workload of the j*
section as interval term. Similarly, if the instructors have faced some problems
such as the illness or other accidents, the requested workload of the instructors is
changeable as well. Thus, the requested workload of the i instructor also states

in the interval. Then we can rewrite (5.1) as interval term as follows.

m

> lay, @lay — i + By = [bi,bi] — di, Vi € . (5.2)

j=1
By the description in Section 5.2, we can modify Constraint (5.2) as tolerance—
localized constraint or (3.11). By directly deriving (3.11), we get the new con-
straint as follows. Let A = ([a;,a;]),Vj = 1,2,...,m, where 0 < a; < @; be
an interval vector of the workload of the j!* section. Let b = ([b;,b;], where
0<b <bandd=(d;),¥i = 1,2,...,n be an interval vector of the requested
workload and the workload of known duties of the i** instructor, respectively. For
alli=1,...,nand j = 1,...,m, the solution set x = (z;;) that satisfies (3.11)

can be rewrite as follows.

{z | [Az — (b — d)] <}
= {(zyy) | min{|a;zi; — ((be)s — di)l, [a5ms; — ((be)i — di)|} < 6, Vie I, j € J}
= {(zij) | lajzi; — ((be)i — di)| < 0

or |ajxij — ((bc)z — dz)| S 5Z,VZ S I,] S J}

(5.3)
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Since 0 < g; < @; and xy; = {0, 1} foralli=1,...,nand j =1,...,m, it implies

a;jTij = a;T; and @;7;; = a;x;;. Therefore, (5.3) is simplified as

{z | [Az — (b — d)] < 6}
= {(ij) | lajzy — ((be)i — di)| < 6 or [g5zy — ((be)i — di)] < 6, Vi€ 1,5 € J}
={(7y5) | —0: < ;jTij — ((be); — d;) <6

(5.4)
or — 51 S @.TU — ((bc)z — dl) S (Sl,V’l < I,j c J}

However, (5.4) is stated as a logical constraint which cannot apply to linear in-
teger programming model. We have to reformulate this constraint into integer
programming formulation by using Big M method. Let binary variable (0 or 1)

y = (y;),Vi € I. For a large positive penalty constant M, (5.4) becomes

{z | [Az — (be — d)] < 0} ={(zj) | ajws; — ((be); — di) < 0; + My,
—a;Ti; + ((be)i — d;) < 0; + My;,
ajzi; — ((be)i — di) < 0+ M(1—y;),

— @i+ ((be)i —di) < 6+ M(1 —y;),Viel,je J}.

Therefore, Constraint (5.2) can be rewritten as tolerance-localized constraint as

follows.

Z;‘nfl ;T — ((be)i —di) < 0+ My;, Yiel
27—1 a;Tij + ((be); —di) < 0;+ My;, Viel

Yo Gy — ((be)i —di) < &+ M(1—y;), Viel 655
S =i+ ((be)i —di) < 6+ M(1—y,), Viel

Tij € {0,1}, Vi € I and VJ eJ
yie {0,1}, Viel.
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By the above derivation, if y; = 0 for some ¢ € I,

{z | [Az — (b — d)] < 6} ={(zy) | ajzi5 — ((be)i — di) < 0,
— ;T + ((be)i — d;) < 0,
@z — ((be)i — di) < 0i + M,

— @i+ ((be)i — di) < 0; + M.
Since M is a large positive constant,

{z | Az — (b —d)] <0} ={(2y) | qjwij = ((be)i — di) < 03, —a;mij + ((be)i — i) < 0i}

={(zi;) | — & < ;Tij — ((be); — d;) < 0;}.
On the other hand, if y; = 1 for some ¢ € I,

{z | [Az — (be = d)] <6} = {(2ij) | — 0 < @zij — ((be)i — di) < di}

Before combining all constraints together to formulate the model, we have
added a new assumption since the data of all instructors probably not set as
interval form. For formulating the extended model, assume that there are two

groups of instructors:

1. the instructors who provide their requested workload as interval and do not
concern about the number of enrolled students that lead to the changeable

workload of each subject and

2. the instructors who give a precise requested workload and also know the
number of enrolled students by some reasons such as the enrolled students
are usually same number in that subject or the specific subjects that design

for some group of students, then the workload of the subjects is exact.
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This means there are some instructors that can apply (5.5) as a constraint. Thus,
the new generated model is performed by mixing the concept of the original model
(See Appendix C) and Constraint (5.5). To create the new model, let us define
new two index sets. Let I,.in, and Iy, be the index sets of instructors who give a
precise and an interval data, respectively. Although some instructors give interval
requested workload, the actual assigned workload might not come as expected.
The difference terms that occur by this reason are defined as v; and w;, Vi € I;,,

shown in the figures below.

Figure 5.1: Difference terms v and w related to interval teaching workload.

The constraints for the instructors who provide their interval requested workload

are added to complete the modified model. The added constraints state as follows.
Za_jl'ij — (b — d;) < i, Vi € L,
j=1
(Z e dl) ~y Zaja:ij S Wi, \4) & [inv
=1
v, wi > 0, Vi € Lip,.

Now, we have fully useful constraints for generating the new model. The

extended model is presented as the following.



n.m
max E E CijTij — M1

=1 .7:1 ie[notinv

subject to

Z;n:1 Lij

> i Tij

Zjer Lij

D e 4T = o+ B

> e 4 = ((be)i — di)

(b
> iy —axy +((be)i — di)
> i Gy = ((be)s — di)
> o — iz A+ ((be)i — di)
S ey — (b~ d;)
(bi — di) — D202, a;w
@i, B

mij

Yi
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5 aﬁzw)_MQ( 3 mzwi)

7:617,’7“; ie[’notinv ie]’inv

<3 Viel

=1, VjelJ
<1Lviel

=b; — d;, Vi € Lotine
< 0; + My;, Vi € Iy,
< 0 + My;, Vi € L,

(5.6)
<&+ M(1

Vi), Vi € Liny
< v, Vi € L,

< wy, Vi € L,

>0, Vi € Liotine

>0, Vi € Lin,

€{0,1}, Vie I and Vj € J

€{0,1}, Vie I

We achieve to formulate our new extended model for the course assignment prob-

lem with uncertainty. By running the model (5.6) with CPLEX version 12.10,

we can match the instructors and the subjects under considered constraints. In

the next section, we will test the teaching preference rank of the obtained course

assignment by using Python 3.9.1.
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5.5 Results and discussion

In this section, the teaching preference rank result of Problem (5.6) or modi-

fied problem is stated. The obtained result is shown in Table 5.2. By the obtained

Rank | Number of subjects
1 84

18

2

0

3

10

OO = W N

Table 5.2: Teaching preference rank of modified problem.

result, most number of subjects lie on rank 1 and 2 because of the objective func-
tion of the model. Moreover, we found that the number of subjects in rank 6 is
greater than the number in rank 3,4 and 5 since most of instructors just score

preferable and the most non preferable subjects.

In order to recheck the efficiency of the modified model, we have compared
the obtained result and result of the original model as shown in Table 5.3. The
original model for course assignment problem in this thesis referred to the model

without interval data is stated as follows.

max Dlim1 2 Cigig— My i — My}l Bi
.t ST ey < 3, Viel
Yomry= 1, ¥elJ
ZjEijijg LViel
Do ar — i+ B = bi—d;, Viel
o, B, > 0, Viel
zi; € {0,1}, Vie ITand Vj € J.
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Rank | Number of subjects
1 85

17

2

0

3

10

O O = | | DO

Table 5.3: Teaching preference rank of original problem.

We found that the results of them are slightly different at the number of
subjects in rank 1 and 2. Although the number of subjects in rank 1 of modi-
fied problem is less than the number of the original problem result, the number
of subjects in rank 3, 4, 5 and 6 remain the same. By studying the data of the
Department of Mathematics and Computer Science, Faculty of Science, Chula-
longkorn University, we can conclude that the results of them are not significantly
different and the modified model can guarantee the maximized preference and

minimized over/under workload of the instructors.

In addition, we have compared the result from modified problem and actual
course assignment in the 2" semester of 2018 as shown in Table 5.4. The actual
course assignment has less number of subjects in rank 1 and more number of
subjects in rank 6 comparing with the modified result. Then, we can confirm that

the modified model is effectiveness. = To maximize the overall preferences and

Rank | Number of subjects
1 7
2 17
3 1
4
5 2
6 21

Table 5.4: Actual data of teaching preference rank in the 2°d semester of 2018.



49

minimized over/under workload of the instructors, the department can use the
modified model to assign the subjects to the instructors. This modified model may
help the department to save time and have an alternative model that comprehends

the precise and uncertain data.



CHAPTER VI

CONCLUSION

In this thesis, we pay attention to a system of interval linear equations where
the coefficients A and right hand side b are stated as interval. By literature
reviews, we found that there are many researches in this field. The details can be
found in Chapter 1. In Chapter 2, the description about interval linear equations
is mentioned. However, the part that we indeed focus is types of solutions to the
system of interval linear equations. For more details, Chapter 2 is the place to

find out also.

Since the aim of this work is to study the two new solutions called tolerance—
localized and control-localized solutions, the main theorems of this thesis are di-
vided in two parts. First part or Chapter 3 includes of three theorems related
to tolerance—localized solution. Two of them refer to the characterizations that
state in form of center and radius matrices and magnitude notation form. The
second theorem or Theorem 3.2 is an alternative characterization represented to
necessary and sufficient conditions or Theorem 3.1. In addition, based on concept
of Theorem 3.2, we obtain the closed form of the all solutions set of tolerance—
localized solution stated as Theorem 3.3. In Chapter 4, the three theorems re-
lated to control-localized solution are mentioned. The concepts of them can be
described by following Chapter 3. The summarization of the characterizations of

each solution types is shown as Table 6.1 below.

After, we formulate the course assignment problem with uncertainty which

applies the concept of tolerance—localized solution to deal with the problem in
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Chapter 5. To optimize the preference and over/under workload of the instruc-
tors, we formulate an integer linear programming model. The obtained results by
running the modified and original model with CPLEX version 12.10 and Python
3.9.1, we found that the results of them are not significantly different. However, by
comparing the results of modified model and actual assignment in the 2" semester
of 2018, the results of modified model give more number of subjects in rank 1 and
less number of subjects in rank 6 than actual assignment in the 2" semester of
2018. This means assigning the subjects to instructors by modified model give
better teaching preference rank result by comparing with actual assigning in the
274 semester of 2018. Therefore, the department may save time and have an alter-
native model that comprehends the precise and uncertain data for assigning the

subjects to the instructors and can give maximized preferences to the instructors.

Types of solutions Pleggssgry 4z d Efiicient Characterizations
conditions
Weak |Acx — be| < Alz| + 0, [7] (Az —b.) <9, [
Tolerance |Acx = b| < — Alz| +0, [7] [(Az); — (be)i] < ds, [16]
Control |Acx — be| < Alz| =6, [7] [(Ax); — (be):] > (52, [16]
Tolerance-control |Acz — b < Alz| + 6 — 24, [16] L[(Ai)) a (él‘))ﬂjéi [(l)é]
L-localized — Az =0 <Ax—b < —|Alz| =9, [8] | |[Az —b.]) <0 < [Az —b.], [16
R-localized | A x| = 6| < Aew — be < Alz| + 6, [§] |Az —b.] <d <Az —1b.], [16
Localized —Alz| -0 < A —b. < —|0 — Alz||, [8] | |Az —b.] <6 < [Az —b.], [16]
tolerance—localized Alg| =0 < A —b, < —|6 — Alz||é |[Az —b.] <§
control-localized —Alz| =6 < A — b, < =6 — Alz]e (Az —b.) <0<[Az—0.]

Table 6.1: Characterizations of each type of solutions.
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This appendix includes of the raw data and source codes which relate to the
computational results of teaching preference rank of Problem (5.6) and Original

problem.

APPENDIX A : Timetabling a course assignment source code

Figure 2: The CPLEX source code for course assignment problem with uncertainty.

APPENDIX B : Finding the preference ranks source code by Python

Figure 3: The python source code for finding the preference ranks.
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