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CHAPTER I

INTRODUCTION

This chapter starts with the motivation of machine learning and tasks in Section

1.1. Section 1.2 describes supervised learning for machine learning. One of the tasks is

classification. It is the problem to identify the class of instances from historical data.

Then this chapter also introduces class imbalance problems in Section 1.3 and its chal-

lenge. Section 1.4 presents a review of class imbalance approaches to handling imbalanced

datasets. Following another part of the classification process is a review of classification

algorithms. Moreover, Section 1.5 reports the performance metrics for a class imbalance

dataset. It contains an overview of confusion metrics and reporting measures; accuracy,

recall, precision, and F1-Score. Section 1.6 is the motivation of this thesis. Finally, the

last section of this chapter is a summary of this thesis.

1.1 Machine learning

Machine learning can be seen in daily life. It is the task that let a machine learns

from past experience to apply to future situation. A machine learning model is built

using historical data via a machine learning algorithm. This made it possible to adapt

the program via learning. In 1959, Arthur Samuel published the research “Some Studies

in Machine Learning Using the Game of Checkers”. This paper demonstrates how machine

can learn to play a checker by Robert Nealey who is a self-proclaimed checkers master.

He played the game on an IBM 7094 computer in 1962 and he lost to the computer.

This exhibits the good performance of the machine on playing game. Moreover, machine

learning is an important component of the growing field of data science. It basically uses

statistical methods and computer science algorithms to generate a model or a classifier.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

There are many applications of machine learning used in daily life, for example, speech

recognition, computer vision, customer service, etc. There are three general topics in

machine learning which are categorised by the different types of training data and learning

process of a program, supervised machine learning, unsupervised machine learning and

reinforcement machine learning. Figure 1.1 shows the categories of Machine learning

Figure 1.1: Categories of Machine learning
Source: https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle

1.2 Supervised learning

Supervised learning is a type of machine learning in which machines learn from

“labelled” data to classify data and predict outcomes accurately. The labelled data means

that input data is already tagged with the target output. In supervised learning, a label

or a class or a category of training data is often referred to as a target. The training

data provided to the machine works as the supervisor that teaches the machine to learn

and then predict the future instance correctly. It applies the same concept as a student
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learning under the supervision of the teacher. The process of supervised learning is shown

in Figure 1.2. A model is trained using a given labelled dataset where the model learns

how target is associated with input data. Once the training process is completed, the

model is evaluated based on the test data which guarantees to be difference from training

data.

Figure 1.2: Illustrate the process of supervised learning
Source: https://www.crayondata.com/machine-learning-explained-understanding-

supervised-unsupervised-and-reinforcement-learning/

Classification and regression are two additional subcategories of supervised learning

problems that predict discrete and continuous target outputs, respectively. Figure 1.3

illustrates the difference between classification and regression algorithms. Instances in

the input dataset may include demographic data such as marital status, gender, age, etc.

In contrast with classification, regression can be predicted real values of output such as

weather forecasting, market trends, etc. Regression is also suitable to learn a relationship

between the input variable and the output variable.

1.3 Classification

Classification is a process of categorising a given data into classes. It is performed

on both structured and unstructured data. The difference between these two is that
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Figure 1.3: Illustrates classification versus regression
Source: https://www.javatpoint.com/regression-vs-classification-in-machine-learning

structured data is highly-organised and formatted as relational databases and unstruc-

tured data has no predefined format, making it much more difficult to collect, process,

and analyse. The main goal of classification is to identify the target of the new data.

To achieve the goal, it needs a classification model to predict a target of new data. Fur-

thermore, classification also applies to many technologies in daily life such as speech

recognition, face detection, handwriting recognition, document classification, etc. The

process of classification is shown in Figure 1.4. It starts with the learning phase that

a classification algorithm builds a classification model or a classifier from training data.

The generated classifier must be evaluated for efficiency before use. The remaining given

data which does not include the training data is used to evaluate the performance of a

built classifier.

There are three types of classification which are categorised by the distinction of

the target variable. First, a binary classification refers to classification problems having

only two class labels. Generally, one is considered the normal instance and the other is

considered to be the abnormal instance. Second, a multi-class classification, this type of

classification deals with more than two labels of a target. There can also be a huge number

of labels like predicting a picture as to how closely it might belong to one out of the tens of

thousands of the faces of the recognition system. Third, a multi-label classification refers
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Figure 1.4: Components in the classification process

to those specific classification tasks where two or more specific class labels are assigned to

a single instance. A basic example can be photo classification where a single photo can

have multiple objects in it like a dog or an apple etc. The main difference is the ability

to predict multiple labels and not just one. For more clarity, Table 1.1 shows examples of

binary classification, multi-class classification and multi-label classification using a circle,

a rectangular, a triangle to represent different class labels.

Instances Binary targets Multi-class targets Multi-label targets

X1 ◦ ◦ ◦□

X2 □ □ ◦□△

X3 □ △ ◦

Table 1.1: Examples of binary classification output, multi-class classification output,
and multi-label classification output

There is one special problem in a classification of machine learning which differs

from the above. It is the classification having different portions of the number of each

class and can be either binary or multi-class. This classification is called an imbalanced

classification. It refers to this task where the number of instances in each class is unequally
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distributed. An imbalanced classification task is a problem in that the majority class of

the training data is a normal class type and the rest belongs to the abnormal class. The

minority class is the class which has the lowest portion of instances in the dataset which

is more important to predict correctly. The imbalanced classification will be discussed in

the next section.

1.3.1 Classification algorithms

In classifying a dataset it can be done by finding patterns or general forms of the

dataset. The way to find these patterns is to use an algorithm which is called the classi-

fication algorithm. There are many types of classification algorithms and each algorithm

has a different mechanism to build a classifier. The purpose of the classification algo-

rithm is to build a classifier that predicts correct labels for all instances in the dataset.

The process of the classification algorithm is to build a model to capture a pattern from

historical data or training data. Each classification algorithm has different ways to use

the information from data and they also have their advantages and disadvantages. The

following subsections discuss four popular classification algorithms.

1.3.1.1 Decision Tree induction

A decision tree induction is a supervised learning algorithm to build a tree-like

structure called a decision tree that can solve regression and classification. The structure

of a decision tree is organised from the root to leaves connecting via branches. At the

top node of the tree which is called the root node is labelled by the attribute connected

to children nodes via branches as the conditions of attribute values. Each leaf node is

labelled by the target class. The decision tree induction builds a root node by computing

an impurity measure of all attributes from training data and select the attribute with the

best impurity measure. Then training data is split to different subsets by the selected

attribute using condition assigned to each branch. Each subset data is recursively passed
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to the decision tree induction to build a subtree. The stopping criteria is used to stop this

tree building process, see an example of a decision tree in Figure 1.5. All of the above

processes are called the decision tree induction. Therefore, the training model from the

decision tree induction is in the form of a tree-like structure. Then to make predictions,

every new instance starts in the root node and moves along the branches until it reaches

a leaf node where no further branching is possible.

Figure 1.5: Decision tree
Source: https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

1.3.1.2 Random Forest algorithm

A random forest classifier was invented by Leo Breiman in 2001 [1]. The algorithm

to build a random forest is a supervised learning algorithm which builds a collection of

various decision trees. Instead of relying on one decision tree, a random forest collects

votes from different trees. Each tree in a forest is independently trained on different

training data with different attribute subsets. Different training data for building each

tree come from bootstrap subsets of the training data.

Using different decision trees to perform prediction is known as the bagging method

which was invented by Breiman in 1996 [2]. The bagging method is designed as the

bootstrap aggregation method. It is the method that performs bootstrapping on training

data to generate representative for the original data distribution. While bootstrapping
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is a random sampling with replacement from data, instances that are not selected from

the bootstrapping step can be referred to as out-of-bag (OOB) instances. They can be

used as test instances for evaluating the prediction error of each tree in a forest yielding

the so-called out-of-bag error [3]. Out-of-bag error is frequently used to evaluate random

forest prediction performance. One advantage of the out-of-bag error is that the entire

original sample is used for building decision trees and error estimation. The use of the

out-of-bag error saves memory and computation time, especially when dealing with large

data. These factors may explain why the out-of-bag error is frequently used in random

forest error estimation.

Another feature in a random forest algorithm is called feature selection. It is the

method that can be used to rank the importance of variables which means each tree in

a random forest can calculate the importance of a variable according to its ability to

increase the pureness of subsets from a dataset.

Figure 1.6 shows the diagram of the random forest classifier. It starts with two

partitions of data into the training data and test data and then applies random forest

into the training data. Now the random forest creates multiple decision trees based on

the training data and to get the accuracy on testing data by taking the majority vote

from all decision tree output.

1.3.1.3 Support Vector Machine algorithm

Support vector machine (SVM) is a classifier which is widely used in pattern recog-

nition, classification and regression. It frequently used in classification and particularly

used in noisy and complex domains. SVM was invented by Vladimir Vapnik and Alexey

Chervonenkis in 1963. It is a binary classification model that uses a hyperplane to divide

input space into two regions. The objective of the SVM algorithm is to find the optimal

hyperplane in N -dimensional space that distinctly classifies instances in a dataset. Note
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Figure 1.6: Random forest algorithm
Source: https://www.javatpoint.com/machine-learning-random-forest-algorithm

that N is the number of features. A hyperplane is a decision boundary that split a space

into two regions. An instance falling on either side of the hyperplane is labelled to differ-

ent classes. Also, the dimension of the hyperplane depends upon the number of features.

If the number of input features is 2, then the hyperplane is just a line. If the number

of input features is 3, then the hyperplane becomes a two-dimensional plane. It becomes

difficult to imagine when the number of features exceeds 3. Two examples of hyperplanes

in 2-dimensional and 3-dimensional are shown in Figure 1.7.

Figure 1.7: 2-dimensional and 3-dimensional hyperplanes
Source: https://www.ques10.com/p/41200/support-vector-machine-1/
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In separating two classes of instances, there are many possible hyperplanes that can

be chosen. For example in Figure 1.8(a), the green lines are valid splitting hyperplanes

of the dataset. To find the optimal hyperplane, a buffer zone, called a margin, around

the hyperplane was defined and formulated as an optimization problem to maximise this

margin. The larger margin of the hyperplane, the better separation of two classes. The

points that define the margin are called support vectors. As in Figure 1.8(b), two filled-red

instances and a filled-blue instance are the support vectors for this model. In addition,

deleting these support vectors will change the position of the optimal hyperplane.

(a) A possible hyperplanes (b) The optimal hyperplane and maximum margin

Figure 1.8: Example of support vectors
Source: https://www.ques10.com/p/41200/support-vector-machine-1/

Generally, high-dimensional or real-world datasets are not perfectly separable by

any hyperplane in the space. Rarely all instances from one class will be on one side and

those from the other class be on the other side. An SVM algorithm constructs the best

separating hyperplane by introducing a penalty for instances that fall on the wrong side

of its class. Note that the margin size governs a trade-off between correctly classifying

training data and generalising to future data. A wide margin means more misclassified

training instances while SVM will be more suitable to split future instances. Moreover, if

instances in the dataset can not be separated by any linear hyperplane from the current

dimensions then the remedy is to add another dimension. This technique is called kernel

trick.
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The objective of SVM kernel trick is to use a predetermined nonlinear mapping

method to map the input vectors x into a high-dimensional feature space Z. In this

space, an optimal separating hyperplane is constructed. Figure 1.9 shows the example

of the mapping input vector into high-dimensional feature space. A kernel usually uses

a set of mathematical functions. The function of the kernel is to take data as input and

transform it into the required form. Different SVM algorithms use different types of kernel

functions. These functions can be of different types such as linear, nonlinear, polynomial,

radial basis function (RBF), and sigmoid.

Figure 1.9: The mapping input vector into high-dimensional feature space
Source:https://learnopencv.com/wp-content/uploads/2020/10/svm_kernel_trick.png

1.3.1.4 A neural network algorithm

A neural network (NN) is sometime referred as an artificial neural network (ANN).

It is a classifier in machine learning which is a sub-field of artificial intelligence (AI). It is

a computer system that has been inspired by the biological neuron system which occurs

in a human brain. A neural network is used in almost every machine learning application

because of its reliability and mathematical power such as an image recognition. The

learning process in human brains consists of many separate neurons, each neuron in the

brain receiving its chemical input and communicating to each other by sending signals

through its dendrites. Figure 1.10(a) shows the visual of biological neurons and Figure

1.10(b) shows the visuals of artificial neurons. In the same way, the learning process

of a neural network is composed of many processing components or neurons which are
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commonly called nodes. It is organised as a directed graph which contains nodes and

edges connecting each node.

(a) Biological neuron (b) Artificial neuron

Figure 1.10: Two visualizations of a neuron
Source(a): https://scx1.b-cdn.net/csz/news/800a/2018/2-whyareneuron.jpg

Source(b): https://miro.medium.com/max/786/1*-JtN9TWuoZMz7z9QKbT85A.png

In addition, a neural network is defined by its weights treating as parameters. These

weights will be fine-tune via incoming data. The weight on each arc will multiply with

the input value. All inputs with weight multiplication will be sum and passing to the

activation function to generate an output. This output is then passed to the next layer

of neurons which use them as inputs and so it continues until every layer of neurons has

been considered and the terminal neurons have received their inputs. Then the terminal

neurons output the final result for the model.

There are several kinds of neural network models. A multilayer perceptron (MLP)

classifier is one kind of neural networks. It is designed to fully connecting all nodes from

the lower layer to the ones from the higher layer. MLP consists of at least three layers of

nodes: an input layer, a hidden layer and an output layer. Except for the input nodes,

each node is a neuron that uses a nonlinear activation function. The visual of MLP

with three layers is shown in Figure 1.11. Moreover, MLP utilises a supervised learning

technique called backpropagation for weight adjustment. The backpropagation technique

is an important method of neural networks. It is a key trigger for renewed interest in

neural networks from Werbos’s (1975). Backpropagation distributes the error term back
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up through the layers, by modifying the weights at each node. Through backpropagation,

each time the output is labelled as an error during the supervised training phase, the

information is sent backwards. Each weight is updated proportionally according to their

contributions to the output. Hence, the error is used to recalibrate the weight of the

neural network’s unit connections to take into account the difference between the desired

outcome and the actual one. After finish training, the neural network will “learn” by

minimizing the chance of errors and unwanted results.

Figure 1.11: A visualise of a simple neural network
Source: https://impicode.com/wp-content/uploads/sites/2/2020/12/neural_network_layers_diagram..png

1.4 Class imbalance problem

In the last few years, there have been major changes and evolution in data collec-

tion. Many systems and devices are now supplied data to the system. This leads to an

increase in the size of data. The classification of data is also affected by this problem.

It becomes more difficult to classify enormous data and imbalance of data. An imbal-

anced classification is an example of a classification where the distribution of examples

across the known classes is biased or skewed. It becomes one of the important topics

in classification from machine learning. A class imbalanced problem [4] is a problem of

building a classifier in the presence of underrepresented class instances or highly skewed

class distributions. This occurs when the number of instances representing an important

class is much smaller than those from other classes. In general, the class with the smallest
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number of instances is referred to as the minority class or the positive class while another

class is referred to as the majority class or the negative class. In addition, Figure 1.12

shows a graphical representation of an imbalanced dataset in which the blue points are

instances from the majority class and the orange points are instances from the minority

class. The minority class is important than the majority one. It is always labelled as “+”

or positive and another class or the majority class always labelled as “-” or negative.

Figure 1.12: A graphical representation of an imbalanced binary data
Source: https://machinelearningmastery.com/wp-content/uploads/2019/10/

Scatter-Plot-of-Binary-Classification-Dataset-With-1-to-100-Class-Distribution.png

The main purpose of classification on this problem is to identify minority instances

as accurately as possible. However, most of the machine learning algorithms currently

in use were designed around the assumption of a uniform distribution over all classes.

The accuracy can not be used as the effective measure for the model performance since

the proportion of minorities is too small. Some models will treat minorities as noise and

ignore instances from this class. This presents a challenging algorithm to build a classifier

to recognize minority class. The problem is more sensitive to classification errors for the

minority class than the majority class.

In real world applications such as fraud transactions in the fraud detection [5], the

fraud transaction is seldom appeared but it is more important than the regular trans-

action. For ailing patients in the medical diagnosis [6], patients with disease are more

serious to be detected than patients without disease and the number of disease patients is
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smaller than the number of normal patients. For default loans in the credit approval [7],

applicants who cannot make payment in time are more significant than applications who

make payments on time. In addition, a class imbalance problem in the medical diagnosis

is to detect and diagnose the patterns of certain diseases within patient electronic health-

care records. It is normal that some life threatening diseases are rare among patients.

The misclassification of these cases can lead to the patient’s death so the ailing patients

that identify as healthy should not occur, i.e. the number of false negative patients should

be small. However, when a standard classifier was applied on an imbalanced dataset, a

minority instance tends to be misclassified because a classifier is more focused on classifi-

cation of majority instances while ignoring or misclassifying minority instances due to its

tiny portion.

As previously stated, there are two components in the learning phase of the classi-

fication process which can be changed to deal with class imbalance. The first component

is the data component, the method may change the distribution of the data from im-

balanced to balanced. Then the standard classifier should be able to predict the target

class. The second component is the classification algorithm, the process inside the clas-

sification algorithm should be changed to generate a model that recognizes the minority

class. These two approaches will be reviewed next.

1.4.1 Techniques to solve a class imbalance problem

There are three main methodologies to deal with an imbalance problem. Each

of these methodologies has their own advantages and disadvantages. First, a data-level

methodology[8, 9, 10, 11] balances the distribution of class instances by resampling the

distribution. It allows a user to apply his/her preferred classifier because this method

concentrates on modifying the training data, which removes or adds data within classes

to balance the data. Data can be balanced via two techniques, undersampling or oversam-

pling techniques. There are many techniques in this approach such as an oversampling
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technique[12, 13, 14] which synthesises instances randomly from the minority class while

ignore those from majority class, or an undersampling technique[15, 16] which randomly

removed instances from the majority class to expand the minority region of instances

in the minority class or the combines of both an oversampling and undersampling tech-

nique[17]. Second, an algorithmic-level methodology enhances or reimplements the clas-

sification algorithms to be more resilient to noise while successfully handling minority

instances[18, 19, 20, 21, 22]. An algorithmic-level methodology efficiently deals with the

class imbalanced problem using the original data that is available without any modifica-

tion. Unlike data level techniques, the working area of these approaches is the algorithm’s

internal structure. However, algorithmic-level approaches have the disadvantage of be-

ing less efficient when applied to a high ratio of an imbalanced class dataset. Third, a

hybrid methodology combines both the data-level methodology and the algorithmic-level

methodology such as Adaboost[23], Boosting[24], Bagging[2], etc.

This thesis proposes the data level technique to deal with an imbalanced class in the

classification. The idea is to remove some majority instances which are placed near the

minority region and synthesises more minority instances near minority that is placed far

away from other minority instances to make the dataset “relatively balanced”. There are

different situations that require the use of undersampling or oversampling techniques. An

undersampling technique is very effective when dealing with datasets with a low propor-

tion of class imbalance, whereas an oversampling technique is very effective when dealing

with datasets with a high proportion of data imbalance. An oversampling technique also

increases the size of the training data due to new synthesised instance, which causes over-

fitting and a long learning time. In the opposite way, an undersampling technique is more

useful in cases when the less calculation time is needed because this technique reduces the

size of the dataset. Additionally, the hybrid approach combines both undersampling and

oversampling techniques, and it is used when there is no pattern to directly increase or

decrease the dataset. Figure 1.13 shows the concept of undersampling and oversampling
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techniques.

Figure 1.13: An overview of resampling techniques
Source: https://raw.githubusercontent.com/rafjaa/machine_learning_fecib/master/src/static/img/

resampling.png

An undersampling algorithm reduces the amount of data that the model must learn

by focusing on removing instances from the majority class. Currently, there are many

undersampling strategies including DBMUTE 2017 and MUTE 2011, but the random

undersampling algorithm (RUS) is the most straightforward approach that remove mi-

nority instances arbitrarily and without any constraints. One of intelligent approaches

toward undersampling is tomek-link[25]. It groups the borderline minority instance with

the closest majority instance before eliminating those majority instances using 1-nearest-

neighbor which clears border instances from the majority class and makes a classifier to

partition class regions easily.

In contrast to undersampling, an oversampling algorithm increases the number

of minority instances. The most basic method is the random oversampling algorithm

(ROS), which duplicates instances from the minority class at random. The synthetic

minority oversampling technique (SMOTE)[8] is a popular oversampling technique for

expanding the region of the minority class. SMOTE operates within the current feature

space to produce synthetic instances. The new synthetic instances are extracted from

interpolation, so the original dataset still has significance. This makes SMOTE also avoid

the issue of overfitting when increasing minority class instances.
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1.5 Performance measures

In classification, each classifier must evaluate its performance to ensure that it

will perform better on future data. Accuracy is the most common benchmark in the

classification problem without imbalanced issue. Accuracy is computed by the number of

true predicted instances both positive and negative divided by the number of all instances

in the dataset. The formula of accuracy is also shown in Equation 1.1 below. However, it

is not appropriate when the dataset is imbalanced. Because a classifier can achieve high

accuracy by just predicting entire instances as the majority class which misclassifies all

instances from the minority class. Moreover, the imbalanced ratio (IR) used to indicates

the proportion of minority instances represent in the dataset. The imbalanced ratio is the

division of the number of minorities by the total number of instances, see Equation 1.2.

A low IR value indicates that there are few minority instances in the data which mean it

is highly imbalanced, whereas a high IR value indicates that the data is more balanced.

Accuracy =
True positive

number of all instances (1.1)

IR =
the number of minorities

the total number of instances (1.2)

The confusion matrix defines the base for binary classification performance measures

from a classifier. Most of the performance measures are derived from the confusion matrix,

i.e. accuracy, misclassification rate, precision, recall and so on. The confusion matrix

shows how many accurate and inaccurate predictions a classifier made by counting the

number of true and false instances from each class prediction. The confusion matrix

consists of 4 quadrants in which each row in the confusion matrix represents the instances

in an actual class while each column represents the instances predicted by a classifier.

The visualisation of the confusion matrix is shown in Table 1.2. The true positive (TP)
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is the count of true positive instances: the actual class is positive and the predicted class

is also positive. The true negative(TN) is the count of true negative instances: the actual

class is negative and the predicted class is negative. The false positive(FP) is the count

of false positive instances: the actual class is negative but the predicted class is positive.

The false negative(FN) is the count of false negative instances: the actual class is positive

but the predicted class is negative.

Confusion matrix Actual Positive Actual Negative

Predicted Positive TP: True Positive FP: False Positive

Predicted Negative FN: False Negative TN: True Negative

Table 1.2: Confusion matrix

An importance of each measures is not equal for a class imbalanced problem. TP

is the most importance which stand for the number of correct predicted instances of the

positive class, FP is the number of negative instances that are predicted as positive and

FN is the number of positive instances that are predicted as negative which should be

very low for a class imbalance problem. These three measures are more importance than

TN due to the portion of the majority class. So recall, see Equation 1.4, will be more

emphasised than precision, see Equation 1.3. Nevertheless, to incorporate both measures,

F1-score is used as the harmonic mean of precision and recall, see Equation 1.5.
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Precision =
True positive

True positive+False positive (1.3)

Recall =
True positive

True positive+False negative (1.4)

F1− score = 2× Precision
Precision+Recall (1.5)

1.6 Our thesis

Our thesis motivation is to improve the performance of any classifier by reducing

a number of misclassified instances. Typically, a minority instance that has been incor-

rectly classified is located farther away from normal minority instances or other minority

instances. Additionally, it should synthesise a few minority instances that are close to

these minority instances. Moreover, a classifier should be assisted in identifying them

by an algorithm that removes some neighboring majority instances from the overlapped

region. This can be done automatically via the use of MOF or the Mass-ratio variance

based outlier factor[26]. The MOF algorithm generates an MOF score for each instance

based on its density. It gives a very high score to an outlier. Therefore, the mass ratio

variances from majority instances can be used to cleanse majority instances and the mass

ratio variances from minority instances will be used for oversampling.

In this thesis, the MOF algorithm was used in this thesis to identify abnormal

instances in both majority and minority classes. An abnormal instance from the major-

ity class is treated as noise and is removed to clear the decision boundary of a dataset,

whereas abnormal instances from the minority class are packed with synthesised minority

instances. Performance of the proposed method was evaluate using four standard clas-

sifiers which are SVM, decision tree, random forest, neural network. They will be run
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on synthesised and UCI datasets producing precision, recall and F1-score. Finally, the

Wilcoxon signed-rank test will be used to demonstrate the effectiveness of the proposed

method for unseen instances.

1.7 Summary of remain chapters

This thesis is divided into five chapters. Chapter 2 contains the background knowl-

edge about the thesis. Chapter 3 is the proposed method and explains the mass-ratio

variance majority cleansing and minority oversampling technique or the MCOT algo-

rithm. There also contains process flow and time complexity analysis. Chapter 4 shows

the experiment and results of MCOT. Finally, Chapter 5 is presented a summary of this

thesis and conclusions of the results and future work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

This chapter covers background knowledge related to the proposed method; a new

resampling technique for dealing with a class imbalance problem. It begins with an

overview of the mass-ratio-variance based outlier factor (MOF) which is an outlier score

for a finite dataset in the Euclidean space. The definition that is used to compute MOF

is also included. Moreover, this section also includes the MOF flowchart, the MOF algo-

rithm analysis and the MOF pseudocode. The algorithm from this thesis applies the data

cleansing step on majority instances and applies the oversampling techniques to minority

instances concentrating on ones with high MOF scores. In addition, an overview of the

oversampling techniques SMOTE and how to generate synthesised instances are also ex-

plained in this chapter. The last section of this chapter is a summary of the nonparametric

test; the Wilcoxon-signed rank test which is used to confirm the finding.

2.1 Mass-ratio-variance based Outlier Factor (MOF)

Mass-ratio-variance based outlier factor[26] (MOF) is one of the parameter-free out-

lier scores for the outlier detection. The outlier detection identifies instances which appear

to be different from other instances in a dataset[27]. An outlier may cause by a change

in a system, a human error, or simply through natural deviations in populations[28]. An

outlier is defined as an instance that significant differs from others. It is normally located

far from others or surrounded by a few instances from another class in the Euclidean

space. Many popular unsupervised outlier scoring algorithms[29, 30, 31] assign scores to

instances in a dataset called factors and requires some parameters. With an improper

setting of these parameters, the detection may not be reliable. For density-based algo-
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rithms, k-nearest neighbours is globally used requiring the setting of parameter k. It is

normally assigned as the average distance of the k-nearest neighbours as proposed in the

fast outlier detection in the high dimensional space[32]. The change of the value of k

leads to change in rank of all instances. Hence, a parameter is very sensitive to instances

ranking.

In contrast, MOF is a parameter-free density-based outlier score which is defined

as the variance of the mass-ratio distribution from other instances. Note that the density

is defined as the ratio of mass to volume. With the fixed volume, the ratio of the density

between two instances is the same as the ratio of the mass for both. The MOF algorithm

assigns a single score to each instance by the variance of the mass-ratio distribution

generated from all other instances in the dataset. According to the experiment, the

variance of the mass-ratio distribution of outliers is greater than any normal instance

which makes the score of an outlier very high and low when it is a normal instance.

2.1.1 Definition

This section states the definitions of MOF.

Definition 2.1 (Distance between x and y). Given a dataset D ⊆ Rd, the Euclidean

distance between instance x = (x1,...,xd) ∈ D and instance y = (y1,...,yd) ∈ D denoted

as d(x, y) is defined as

d(x, y) =

√
d∑

i=1
(xi − yi)2

Definition 2.2 (Neighbours of x with respect to radius r). Given a dataset D ⊆ Rd, the

set of all instances within neighbourhood of instances x ∈ D with respect to the radius r

is defined as the set of instances that lies within the ball centred at instance x with the

radius r:

N(x, r) = {z ∈ D|d(x, z) ≤ r}
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Definition 2.3 (The mass-ratio of instance y with respect to instance x). Given a dataset

D ⊆ Rd and instance y ∈ D, for any instance x ̸=∈ D. The mass-ratio of instance y with

respect to instance x is defined as

mrx(y) =
|N(y, d(x, y))|
|N(x, d(x, y))|

Definition 2.3 shows the computation of the mass ratio of each instance in the

dataset. Assume that instance x is an outlier, the denominator will be a small number,

causing the high mass-ratio values except the one closest to x. This mass-ratio will be

close to one if this instance x is among other instances in a dataset.

Definition 2.4 (MOF of instance x). Given a dataset D ⊆ Rd and for instance x ∈ D,

m̄rx is defined as mean of the mass-ratio distribution of instance x and MOF of instance

x is defined as the variance of the mass-ratio distribution of instance x:

m̄rx =

n∑
i=1,yi ̸=x

mrx(yi)

n− 1

MOF (x) =

n∑
i=1,yi ̸=x

(mrx(yi)− m̄rx)
2

n− 1

The proposed method used MOF to distinguish between abnormal and normal

instances. In the following section, the threshold used to distinguish between abnormal

and normal instances will be selected and explained in details.

2.1.2 The MOF algorithm

Figure 2.1 shows the flowchart of the MOF algorithm containing five processes.

The first process starts with reading input dataset D. Then the second process is com-

puting distances using Definition 2.1 between pairs of instances having computational
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complexity of O(n2). The third process uses Definition 2.2 to calculate the number of

neighbours N(y, d(x, y)) and N(x, d(x, y)) by counting the number of instances lie in the

sphere of the ball between instances x and y in D, So the computational complexity for

determining whether instances lie within the neighbourhood of x or y is O(n2 log(n)).

The fourth process uses Definition 2.3 to compute the mass ratio or mrx(y) which is the

ratio of N(y, d(x, y)) and N(x, d(x, y)) having time complexity of O(n2). The last process

calculates MOFs of all instances which are variances of mrx(y) from other instances in

D using Definition 2.4 which has computational complexity of O(n2). Therefore, time

complexity of the MOF algorithm is O(n2 log(n)).

Figure 2.1: Flowchart of MOF algorithm
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The following algorithm is the pseudocode which demonstrates the step-by-step of

the MOF algorithm.

Algorithm 1 Compute_MOF(X,y)
Input: Array of data X vector of target y
Note:
1. # is used for a line comment
2. pairwise_distances(X) returns the Euclidean distance matrix from a vector
array X
3. len(X) returns the number of items in an object X.
4. range(n) returns a series of numbers from 0 to n-1
5. sum(*conditions*) returns the number of instances which match the condition
6. var(X) returns the variance along the specified axis.
7. Variable_name[*conditions* or *index*] is a numpy array represent a group of
selected instances
Output: MOF of dataset D

1: # Calculate distance between each instance in dataset D
2: DistanceMatrix = pairwise_distances(X)
3: # Calculate N(y,d(x,y)) and N(x,d(x,y)) step
4: for x in range(len(X)) do
5: for y in range(len(X)) do
6: #Count the number of neighbours of each instance
7: nNeighbour[x,y] = the number of neighbors that is close to x than the

distance from x to y
8: # Calculate mrx(y) step
9: for x in range(len(X)) do

10: for y in range(len(X)) do
11: if y ̸= x then
12: mr[x,y] = nNeighbour[y][x]/nNeighbour[x][y]
13: #Calculate MOF(X) step
14: MOF = var(mr)
15: return MOF

End Compute_MOF

2.2 Data cleansing process

In machine learning, data cleansing step is a part of data preprocessing step. It

is used to weed out irrelevant or incorrect information. Data cleansing not only refers

to removing chunks of unnecessary data but it is also often associated with fixing incor-

rect information within the train-validation-test dataset and reducing duplicates. Data
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cleansing step is an important part of any machine learning pipeline. Cleansing data can

help algorithm generate the appropriate model.

A cleansing process normally removes noises from a dataset. Noises are defined

as instances that are disturbing the decision boundary or appearing in the overlapping

regions between two classes. Removing these noises help the classifier to easily determine

the decision boundary. The outliers from the majority class should be removed since

they interfere with the decision boundary of the classifier for the minority cluster. Most

machine learning algorithms, predominantly linear regression models, need to be dealt

with outliers, or else the variance of the model would be very high, which further leads

to false conclusions by the model.

2.3 Oversampling technique, ROS and SMOTE

An oversampling technique is a technique that will be applied to instances in the

minority class. It is the technique that replicates instances to balance the dataset and

keeping original information. Furthermore, an oversampling technique can create minority

instances using a pre-determined criterion. However, the disadvantage of this technique

is that the number of instances can increase significantly which causes the long learning

time.

Most basic oversampling technique is the random oversampling technique (ROS)

which balances the dataset by selecting minority instances at random and duplicate them.

ROS also referred to as the naive sampling technique because this technique randomly

selects an instance from the minority class and duplicates it without assuming any con-

straint about the dataset. Each instance can be selected with a replacement which means

that instances from the minority class can be chosen and added to the new balanced

dataset multiple times. This method is simple to implement.

Alternatively, an oversampling technique in the Euclidean space create synthetic



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

instances nearby minorities. In other words, it enlarges the decision region of the minority

class by producing artificial data, as opposed to replicating instances. The synthetic

minority oversampling technique (SMOTE) is a popular technique for creating synthetic

instances. Based on the feature space similarities from minority instances, the SMOTE

algorithm generates artificial data that make a classifier recognize instances in favour of

the minority class.

SMOTE generates artificial instances primarily between that instance and its near-

est neighbour by interpolates values from k-nearest neighbours. In generating synthetic

minority instances, SMOTE calculates distances between each minority instance and then

finds its nearest neighbour. After multiplying these distances by a random number be-

tween 0 and 1, this generates a random line segment between every existing pair of

features. As a result, a new instance is consequently created close to the original instance

in the dataset. The process was repeated for every minority in the dataset. Figure 2.2 il-

lustrates the process of generating synthetic minority instances using SMOTE. The green

instances are the synthetic instances which generate between two minority instances.

Furthermore, there are many algorithms which enhanced from SMOTE, and deal with

some majority instances during the synthetic process such as borderline-SMOTE[9] and

safe-Level-SMOTE[10]

Figure 2.2: Synthesis operation of SMOTE
Source: https://raw.githubusercontent.com/rafjaa/machine_learning_fecib/master/src/static/img/smote.png
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2.4 Non-parametric test

A non-parametric test is a statistical method for statistical hypothesis testing that

does not require assumptions regarding the underlying population. It does depend on

any particular distribution from the population which does not require any parameter.

Moreover, non-parametric tests are also known as distribution-free tests because they do

not rely on the underlying population. Furthermore, the non-parametric test has the

advantage of being simple to understand, having short calculations, and applying to all

types of data. However, it still has drawbacks because it uses a distribution-free method,

which means that the results may or may not give an accurate response and is less effective

than the parametric one.

2.4.1 Wilcoxon sign-rank test

The Wilcoxon signed-rank test was proposed by Frank Wilcoxon in “Individual

comparisons by ranking methods”[33]. Wilcoxon signed-rank test is a non-parametric test

used to compare two related samples, matched samples, or to conduct a paired difference

test of repeated measurements on a single sample to assess whether their population mean

ranks differ. In statistics, the term “non-parametric” usually means that the population

data does not have a normal distribution. Wilcoxon signed-rank test is the non-parametric

analogue to the paired t-test. If the distribution of differences between pairs is severely

non-normally distributed, the Wilcoxon signed rank test should be used.

Wilcoxon signed-rank tests come in two different types. First, the Wilcoxon signed

rank test compares a sample’s median to a hypothetical median. Second, the Wilcoxon

matched-pairs signed rank test calculates the difference between each set of matched pairs

and then compares the sample against a median using the same steps as the signed-rank

test.

The null hypothesis for this test is the difference in the median between pairs of
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samples is zero. The Wilcoxon signed-rank test is referred to as the W -statistic which if

the paired observations n is greater than 10 then the W -statistic approximates a normal

distribution. This test is working by ranking the absolute value of the differences between

observations from smallest to largest by giving the rank of one to the smallest difference

value, then the next larger difference gets the next rank till the last difference pair. In

case of a tie, the average rank is assigned to both. Next, add the ranks of all positive

differences in one direction, and then add the ranks of all negative differences in the other

direction. The smaller of these two sums is the test statistic W .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

MASS RATIO VARIANCE MAJORITY

CLEANSING AND MINORITY

OVERSAMPLING TECHNIQUE (MCOT)

This chapter covers the proposed work and explains its motivation. The proposed

method is the mass ratio variance majority cleansing and minority oversampling technique

(MCOT), it is the resampling technique which uses MOFs to detect abnormal instances

and then apply resampling techniques to them. The motivation for each component

of MCOT is explained in the first section. The overall process is demonstrated in the

flowchart and the pseudocode. Moreover, they also include some examples to demonstrate

the computation of each component. Furthermore, the algorithm analysis is performed.

3.1 MCOT

This thesis proposed the mass ratio variance majority cleansing and minority over-

sampling technique (MCOT). It uses MOFs to detect abnormal instances which are high

for anormaly and low for other instances. Abnormal instances normally lies further away

from other instances that cause a classifier to misclassify them. MCOT is an algorithm

to help a classifier to recognize abnormal instances and remove some surrounding major-

ity instances within the overlapping region. In addition, MCOT also synthesise a small

number of minority instances near given minority instances. It separately computes MOF

for each class. An abnormal instance from the majority class is treated as noise which

will be removed while abnormal instances from the minority class will be packed with

synthesised minority instances.
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3.1.1 Mass-ratio-variance score (MOF)

Mass-ratio-variance score is computed from the MOF algorithm. It was originally

designed to identify outliers of a static dataset by assigning a high MOF score to an

outlier and a low MOF score to a normal instance. In this thesis, The MCOT algorithm

use MOF to identify abnormal instances from normal ones. An abnormal instance is an

instance which lies further away from other instances in a class. It can be described as

an instance which has low density. In other words, it contains a few instances within

neighbourhood. The criterion to separate an abnormal instance from a normal one is

using a threshold for MOFs.

The criteria to separate abnormal instances from normal instances is called an

abnormal threshold. IQR rule which is Q3 + 1.5IQR is suggested to identify outliers for

univariate data distribution. Note that IQR = Q3 −Q1 where Q1 is the 25th percentile

and Q3 is the 75th percentile. Nevertheless, to find an appropriate abnormal threshold for

MCOT, this thesis uses the decision tree with 50th, 60th, 70th, 80th and 90th percentiles

and Q3+1.5IQR. Ignoring Q1−1.5IQR since MOFs are always positive. The experiment

used ten combinations of synthesised datasets and two real world datasets see Table 3.1

for additional details. The synthesised datasets generates using combination of following

setting; (IR, c, d, N) where IR is the imbalanced ratio ∈ {0.1, 0.2, 0.5}, c is the number

of clusters ∈ {2, 3, 5}, d is the number of features ∈ {2, 3, 5}, and N is the number

of instances ∈ {100, 300}. Each combination will be synthesised for 30 datasets. Two

real world datasets which are “Ecoli” and “Wine” dataset from UCI repository are also

included. This experiment used the datasets after applying the resampling technique

with different thresholds and compare the performance using the ranking method. Each

set of synthesised dataset performance will be averaged before ranking. F1-scores was

used to give the rank to the best threshold from the results, a threshold with the highest

F1-score will receive the low rank value. The number reported is just the average rank
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for all datasets. Hence, the best threshold is the one with the lowest average rank,

see Figure 3.1. The best threshold based on these experiments is the 90th percentile.

Therefore, 10% of majority instances will be removed in the data cleansing step and 10%

of minority instances will be used in the oversampling step to make sure that there are

enough minority instances for a classifier to recognize them.

Datasets #instances #features IR #clusters

synthesised 1 100 5 0.1 5

synthesised 2 100 2 0.1 2

synthesised 3 100 3 0.1 3

synthesised 4 100 3 0.2 3

synthesised 5 100 2 0.2 2

synthesised 6 300 3 0.2 3

synthesised 7 300 2 0.2 2

synthesised 8 300 2 0.5 2

synthesised 9 300 5 0.5 5

synthesised 10 300 5 0.1 5

Ecoli 178 13 0.2687 -

Wine 336 7 0.1041 -

Table 3.1: Information of datasets used in the experiment to find threshold values

3.1.2 Data cleansing method

One component of the proposed method is the data cleansing step which is per-

formed on abnormal instances from the majority class. The idea is to remove abnormal

majority instances or border majority instances which lies in the border of the decision

boundary of the majority class region. Hence, after this step, all abnormal instances from

the majority class are removed and some majority instances in the overlapping region



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

Figure 3.1: Average rank of each threshold compared

of the minority class will be removed which make the dataset clean and make the area

between decision boundaries more clear. In the next section, the oversampling technique

will be applied to the minority class so it will be balanced by this step.

3.1.3 Oversampling method

The proposed oversampling method was only performed on abnormal instances

from the minority class, hence it will focus on the abnormal minority instances. The

main idea of this method is to synthesise the minority instances that are far away from

other minority instances. In this work, the Euclidean distance is used to measure the

distance from an abnormal minority instance to the nearest majority instance which is

defined as the synthesised radius. The radius was used as the maximum distance of the

synthesis region in each direction to avoid the overlapping with other classes.

This oversampling method used abnormal minority instances as the centres of syn-

thesise region. The process of this oversampling method started with computing MOF
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and selecting abnormal instances from the minority class for synthesising. The next step

is computed the number of synthesised minorities. The number of synthesis is defined

as a proportion of the different number of instances between two classes according to

its MOF see Definition 3.1. Abnormal instances having high MOF will receive a large

number of synthesised instances with the reason of that an instance having high MOF

is an instance having low density. For an instance with lower MOF, it does not need

more minorities surrounding it. So few numbers of neighbours are needed. The next step

is to find the radius of each abnormal minority instance which is the distance from an

abnormal minority instance to the nearest majority instance. These radiuses guarantee

that the region to be generated will not be overlap with other classes. Then, the last step

is the synthesising step, minority instances will be synthesised into the synthesised region

according to the number of synthesised instances. The input dataset distribution will be

altered and become balance.

Definition 3.1 (The number of synthesised instances). Given dataset D ⊆ Rd and a set

of abnormal instances A ∈ D, N− is the number of instances in the majority class, N+

is the number of instances in the minority class. For abnormal instance x ∈ A, MOF (x)

is a mass-ratio-variance score of instance x. The number of synthesised instances for x is

defined as

Nsyn(x) = (N− −N+)×
MOF (x)∑

y∈A
MOF (y)

3.2 The MCOT process flow

In this section, the MCOT process flow is shown. The details of each process will

be explained in this section. Also, some examples will be given to demonstrate how each

process is performed.
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Figure 3.2: The MCOT process flow

3.2.1 Data processing methods and the MCOT algorithm

Figure 3.2 is the MCOT process flow. It starts with a dataset as input. The

input dataset can be both an imbalanced or balanced dataset. Then it computes MOFs

for instances from the majority class. After this process, top 10% of majority instances

sorted by their MOFs are removed. This helps cleaning up abnormal majority instances

and overlapping majority instances. Then MOFs for instances from the minority class are

computed and top 10% of minority instances are selected to be used for synthesising, call

abnormal minority instances. The number of synthesised minority instances is computed

for each abnormal minority instance. The last process is the synthesising step, this process

will generate artificial minority instances randomly into each hyper-ball according to the

number of synthesised minority instances. After all processes are done, the balance dataset

for both the majority class and the minority class will be returned..

3.2.2 Demonstrated MCOT examples

This part shows the computation of the MCOT process flow based on a given exam-

ple. It includes the input of dataset, selected abnormal minority instances, oversampling

method and the result dataset.
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Figure 3.3: Example imbalanced dataset

Figure 3.4: Majority instances to be removed

Figure 3.5: Cleaned dataset
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Figure 3.6: Abnormal minority instance

Figure 3.7: The radius of minority abnormal instance to the nearest majority instance

Figure 3.8: Open ball to be synthesised
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Figure 3.9: Synthesise minority instances into the ball according to the ratio of MOF

Figure 3.10: Balanced dataset

3.3 Pseudo code of the MCOT algorithm

The following pseudocode demonstrates the step-by-step of the MCOT algorithm.
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Algorithm 2 MCOT(X, y, p) part1
Input: Array of data X; vector of target y; percentile threshold p (default = 90)
nFeat = number of features, nPos = number of minority instances,
nNeg = number of majority instances.
Note:
1. yi is 0 for a majority instance and 1 for a minority instance
2. # is used for a line comment
3. compute_MOF(S) returns MOF scores of each instance in S
4. percentile(S, p) returns the pth percentile value from S
5. Selected instances is represented in a numpy array as Vari-
able_name[*conditions* or *index*]
6. ball(x, nFeat, r, n) returns n synthesised instances within a ball centred at x
and radius r
7. enumerate(S) returns a sequence of (i, s) where i is the index of s in S
8. concatenate(S, T) returns the new set that concatenate T to S
Output: the balanced dataset X and y

1: XNeg is the subset of X having target y = 0
2: MOFNeg = compute_MOF(XNeg)
3: NegThreshold = percentile(MOFNeg, p)
4: NegAbnormal is the set of instances from XNeg having MOFNeg > NegTh-

reshold
5: nNegAbnormal = the number of instances from NegAbnormal
6: X = is the subset of X removing NegAbnormal
7: nNegNormal = nNeg - nNegAbnormal
8: nSyn = nNegNormal - nPos # nSyn will be the number of synthesised instance
9: if nSyn > 0 then

10: # Do the oversampling step
11: XPos is the subset of X having target y = 1
12: MOFPos = compute_MOF(XPos)
13: PosThreshold = percentile(MOFPos, p)
14: PosAbnormal is the set of instances from XPos having MOFPos >

PosThreshold
15: nPosAbnormal = the number of instances from PosAbnormal
16: nSynPos=nSyn*(MOFPos[PosAbnormal]/ Sum(MOFPos[PosAbnormal]))
17: NegIndex = index of nearest majority instance from instances in PosAb-

normal
18: radius = distance[NegIndex] # radius is set as the distance from the mi-

nority instance to its nearest majority instance
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Algorithm 3 part2
19: for i, abnormal in enumerate(PosAbnormal) do
20: SynPos = ball(abnormal, nFeat, radius[i], nSynPos[i])
21: X = concatenate(X, SynPos)
22: Y = concatenate(Y, 1)
23: return X,y

End MCOT

3.4 Computational complexity

This section shows the algorithm analysis of the MCOT algorithm. Time complexity

will be computed using the worst case analysis. Given a dataset D having n instances

since the MCOT algorithm is used for an imbalanced dataset with m as the number

of majority instances. The time complexity will depend mostly on m which has the

highest proportion of instances in the dataset. The MCOT algorithm contains 4 steps.

The first step is to compute MOFs of instances from the majority class. This has the

time complexity of O(m2 log(m)). The second step is the cleansing step which removes

abnormal majority instances which takes O(m). The third step is to compute MOFs

of instances from the minority class that will be dominated by O(m2 log(m)) from the

majority class. The next step is the oversampling step which composes from two parts.

The first part of the oversampling step is to select an abnormal minority instances and

compute the number of synthesis which take time significantly less than O(m). The

second part of the oversampling step is the synthesised step, this step generates minority

instances for each minority abnormal instance then it takes the time complexity of O(m)

to make it balance. Hence, the summary of the time complexity of the MCOT algorithm

is O(m2 log(m)).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

EXPERIMENTS AND RESULTS

This chapter discusses about the experiments and results of the MCOT algorithm.

It contains four sections. The first section shows the setting of the parameters, datasets

and classification algorithms used in the experiments. The datasets for this experiment

are both synthesis and real world datasets. The parameters of synthesised datasets and

details of real world datasets are also shown in this section. The number of selected

classification algorithms is four along with the reasons for choosing them. The second

section reports the classification metrics of the experiments performed by four classifiers

and compares them. The third section covers the result of the nonparametric test using

Wilcoxson signed-rank test to confirm findings. Finally, the analysis of the experimental

results and conclusion are then described.

4.1 Experimental setting

This section demonstrates the experimental configurations of the MCOT algorithm

using four classifiers. Datasets from the real world and synthesised datasets are both

included in the experiments. Three collections of synthesised datasets have an imbalance

ratio (IR) of 0.1, 0.2, and 0.3.

4.1.1 Synthesised datasets used in this experiment

The experiment has 36 types that can be grouped by the subcollection and by the

collection. There are three collections of synthesised datasets based on their IR values.

Each collection contains three subcollections based on the number of clusters (2, 3, or

4). Each subcollection will be generated four types based on the number of features (3,

5) × the number of instances (100, 300), see Table 4.1. The datasets are then generated

at random 30 times for each type, and the average performance for each collection and
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subcollection from these 120 datasets. There are 1080 synthesised datasets in total. The

results are average performance measures based on various classifiers and measures for

each subcollection.

Synthesised datasets

Collection (IR) Subcollection (#Clusters) #features #instances

1 (IR = 0.1) 1.1 (2) 3,5 100,300

1.2 (3) 3,5 100,300

1.3 (4) 3,5 100,300

2 (IR = 0.2) 2.1 (2) 3,5 100,300

2.2 (3) 3,5 100,300

2.3 (4) 3,5 100,300

3 (IR = 0.3) 3.1 (2) 3,5 100,300

3.2 (3) 3,5 100,300

3.3 (4) 3,5 100,300

Table 4.1: Information of synthesised datasets used in the experiment

4.1.2 Real world datasets used in this experiment

In the experiment, five UCI datasets are used. The minority class in the experiment

is chosen as in Table 4.2. Five UCI datasets are briefly described, along with their

characteristics. The process of converting multiclass datasets to binary datasets involves

choosing one class as the minority class and the rest as the majority class. The target

class in Table 4.2 is designated as the minority class in the “minority target” column,

while the other classes are designated as the majority class. These five datasets together

have an average IR value of 0.2467.
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Real world datasets

Datasets #instances #features minority target #minority IR

Wine 178 13 “3” 48 0.2687

Parkinsons 195 22 “0” 48 0.2461

Haberman 306 3 “2” 81 0.2647

Ecoli 336 7 “imU” 35 0.1041

Pima 768 9 “1” 268 0.3489

Average 0.2467

Table 4.2: Information of UCI datasets used in the experiments

4.1.3 Classification algorithms and performance metric used in this experi-

ment

In this experiment, four classifiers are used: a decision tree, a random forest, a

linear support vector machine, and a multi layer perceptron. These four classifiers were

previously discussed in Chapter 1. Chapter 1 also provides a description of the perfor-

mance metrics that were employed in this experiment. Figure 4.1 compares the average

precision, recall, and F1-score performances of four classifiers when using the original

datasets and datasets after applying the MCOT algorithm.

4.2 Results

4.2.1 Result 1: Synthesised datasets

The results of the experiments of synthesised datasets are shown in Table 4.3 and

Figure 4.1. Each cell in Table 4.3 reports mean±sd from each setting, where mean is the

average performance and sd is the standard deviation. To visualize the performance in

Figure 4.1, the barplots are used for each measurement compared between the original
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and MCOT. It has a 3 × 3 barplots by the collections and the subcollections.

Collection Subcollection Mean±sd

IR #cluster Processed Precision Recall F1-score

IR = 0.1 2 None 0.6030 ± 0.1670 0.3974 ± 0.1077 0.4474±0.1118

MCOT 0.5035 ± 0.1200 0.5110 ± 0.1175 0.4767 ± 0.1063

3 None 0.4403 ± 0.1972 0.2399 ± 0.1054 0.2810 ± 0.1144

MCOT 0.3774 ± 0.1463 0.3904 ± 0.1330 0.3499 ± 0.1268

4 None 0.4591 ± 0.0398 0.3446 ± 0.1746 0.3571 ± 0.1740

MCOT 0.4368 ± 0.1296 0.5068 ± 0.1740 0.4344 ± 0.1367

IR = 0.2 2 None 0.7699 ± 0.0949 0.6147 ± 0.0877 0.6608 ± 0.0871

MCOT 0.6656 ± 0.0917 0.7139 ± 0.0700 0.6675 ± 0.0734

3 None 0.6577 ± 0.1086 0.4536 ± 0.0979 0.5046 ± 0.0948

MCOT 0.5653 ± 0.0975 0.6003 ± 0.0655 0.5562 ± 0.0728

4 None 0.6780 ± 0.1435 0.5069 ± 0.1356 0.5485 ± 0.1371

MCOT 0.5685 ± 0.1200 0.6265 ± 0.1224 0.5743 ± 0.1187

IR = 0.3 2 None 0.8023 ± 0.0693 0.7254 ± 0.0721 0.7461 ± 0.0670

MCOT 0.7194 ± 0.0671 0.7942 ± 0.0447 0.7450 ± 0.0556

3 None 0.7441 ± 0.0889 0.5938 ± 0.1072 0.6401 ± 0.1024

MCOT 0.6537 ± 0.0806 0.6963 ± 0.0734 0.6614 ± 0.0761

4 None 0.7366 ± 0.0995 0.6277 ± 0.1322 0.6606 ± 0.1191

MCOT 0.6618 ± 0.0806 0.7052 ± 0.1014 0.6730 ± 0.0905

UCI None 0.5750 ± 0.2381 0.4774 ± 0.2453 0.4843 ± 0.2559

MCOT 0.5646 ± 0.1903 0.6087 ± 0.1939 0.5551 ± 0.2054

Table 4.3: Information of UCI datasets used in the experiment

According to Table 4.3, all experiments show a decrease in precision and an in-

crease in recall. All experiments indicate an improvement in F1-scores. Notice that the

improvement in recalls and F1-scores for the number of clusters = 2 is small compared

to the larger number of clusters for all collections. The cause of this behaviour is that by

eliminating majority abnormal instances, the minority region will be expanded, allowing

a classifier to correctly classify more minority instances, increasing recall. However, this
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behaviour will reduce precision because the likelihood that some majority instances will be

predicted as minority instances increases as the number of minority predictions increases.

As a result, F1-score should be used to assess MCOT performance. This demonstrates

how the MCOT algorithm can assist classifiers in providing a better improvement for

original datasets with IR of less than or equal to 0.2.

Figure 4.1: Average precision, recall and F1-score of each collection

4.2.2 Result 2: Real world datasets

Based on previous observations, the MCOT algorithm can assist classifiers in achiev-

ing better recall and F1-score for IR less than 0.3, so improved performance for these five

UCI datasets with an average IR of 0.2467 is expected. The average performances of the

UCI datasets are displayed in Figure 4.2. It demonstrates that recall and F1-score have

improved. From this, it can be inferred that the MCOT algorithm can aid in classifiers’

improvement of F1-score and recall.
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Figure 4.2: Average precision, recall and F1-score of five UCI dataset

4.3 Nonparametric test (Wilcoxson signed-rank test)

The statistical significance of datasets generated by the MCOT algorithm compared

to the original datasets is assessed using the Wilcoxon signed-rank tests. Four common

classifiers will perform on the original datasets in each test, and they will be compared to

the datasets produced by the MCOT algorithm using the same classifier. The Wilcoxon

signed-rank test’s p values were displayed in Table 4.4. The p-value must be less than

0.05 in order for it to be deemed significantly different.
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Collection Subcollection P-value

IR #cluster Precision Recall F1-score

IR = 0.1 2 0.004181 3.05E-05 0.015503

3 3.35E-02 6.10E-05 0.000214

4 4.04E-01 3.05E-05 0.000305

IR = 0.2 2 6.10E-05 3.05E-05 4.04E-01

3 4.27E-04 3.05E-05 9.16E-05

4 6.10E-05 3.05E-05 6.29E-03

IR = 0.3 2 3.05E-05 3.05E-05 0.175354

3 9.16E-05 3.05E-05 0.028992

4 3.05E-05 3.05E-05 0.433197

UCI 4.75E-01 3.62E-05 7.30E-03

Table 4.4: p values of synthesised and UCI datasets used in the experiment

Collection 3 with IR = 0.3 and cluster sizes of 2 and 4 displays no significantly

different F1-score performances because their p-values are higher than 0.05. Since the

p-values for all other collections are less than 0.05, the MCOT algorithm help achieve a

significant improvement. It can be said that MCOT is more effective on datasets with

imbalances and an IR value of less than or equal to 0.2.

4.4 Results analysis

The MCOT algorithm generates a new dataset that increases recall for a classifier

because more positive instances can be easily identified, but it decreases precision due

to the enlarged minority regions, so the F1-score is the preferred measure that combines

recall and precision. All results indicate decrease in precision and increase in recall and

F1-score. Recalls and F1-scores increase from three collections with varying IR values.

The more evenly distributed the datasets are, the less improvement MCOT will have.
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When the number of clusters is equal to 4, MCOT shows the highest F1-score among

the results of various clustering densities. This could result from the minority instances

spreading across all clusters. Therefore, MOF can be very effective at detecting abnor-

mal instances when the dataset contains a greater number of minority instances. MCOT

increases recall and F1-score while decreasing precision for UCI datasets. F1-scores be-

tween the original datasets and the datasets from the MCOT algorithm with respect to

four classifiers statistically improves.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This is the conclusion chapter. It summarizes the MCOT algorithm and the find-

ings. It also provides the future work for this thesis.

5.1 Conclusions

Our thesis proposed the resampling techniques to deal with a class imbalance prob-

lem, called the mass ratio variance majority cleansing and minority oversampling tech-

nique (MCOT). The parameter-free technique for anomaly scoring algorithm MOF is used

to select instances from both the majority class (for cleansing) and the minority class (for

synthesising). The top 10% MOF are determined by the experiment on the decision tree.

The MCOT algorithm is composed of two main steps. The first step is to cleanse ma-

jority noises and majority border instances. The second step performs the oversampling

technique to abnormal minority instances by generating minority instances inside the ball

that does not include any majority instance. This expands the minority regions and helps

classifiers identify more minority instances which increases recall and F1-score.

Experiments with synthesised datasets performs on three collection of IR values

and three subcollections according to the number of clusters. The show that the MCOT

algorithm provides the dataset that improve recall and F1-score. Furthermore, the results

from the Wilcoxon signed-rank test show the significant improvement for the datasets with

IR less than 0.3. As a result, when a dataset is imbalanced, the MCOT algorithm can

handle it very effectively.
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5.2 Future work

More datasets should be tested and investigated further via MCOT. In this thesis

the oversampling method applied only on abnormal minority instances but it will be

interesting to apply it to all minority instances. By partitioning the number of syntheses

to all minority instances to give the different opportunities to increase density of the whole

region. An instance having high MOFs still receives a high number of synthesis. This idea

will make the area of minority class evenly distributed more evenly than the proposed

method.

Since MCOT uses both data cleansing and oversampling methods then the threshold

values for data cleansing and oversampling should be investigated. The threshold value

to decide abnormal instances from each class can be changed, it can set to different values

for each class.

Moreover, the time complexity of the MCOT algorithm depends only on the number

of majority instances during the computation of MOF. To improve the time complexity

of the MCOT, the MOF step should be updated by improving the ways of storage and

collecting the number of neighbours.

Due to the MCOT process framework, the binary class imbalance problem is per-

formed for each class. So it should be easily to extend this concept to the multiclass

imbalance problem by determining whether to perform cleansing for some classes or to

perform the oversampling technique for other classes.

In addition, the MCOT algorithm is not designed to work with discrete variables.

It will be more useful if this method could extend to work with any type of variable.
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