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เบญญานี โกษาพงค : การจัดพอรตการลงทุนออพชันและการปองกันความเสี่ยงของออพ
ชันรูปแบบพิเศษที่ เขียนบนดัชนีมินิ เอสแอนดพีหารอยในตลาดที่มีสภาพไมคลองกับ
มูลคาที่ความเสี่ยงแบบมีเงื่อนไข. (OPTIONS PORTFOLIO OPTIMIZATION AND

HEDGING OF EXOTIC OPTIONS WRITTEN ON MINI S&P 500 INDEX IN

AN ILLIQUID MARKET WITH CVAR) อ.ที่ปรึกษาวิทยานิพนธหลัก : รศ.ดร. เพชร
อาภา บุญเสริม, อ.ที่ปรึกษาวิทยานิพนธรวม : ผศ.ดร.อุดมศักดิ์ รักษวงวาน ?? หนา.

งานวิจัยนี้ไดทำการศึกษาวิธีการหาคาพอรตการลงทุนที่เหมาะสมที่สุดเพื่อเลือกสัญญา
ซื้อขายลวงหนาที่มีผลตอบแทนสูงที่คาดหวังและมีความเสี่ยงต่ำ โดยใชวิธีการวัดความเสี่ยง
ดังนี้ วิธีการวัดความแปรปรวน วิธีการวัดมูลคาความเสี่ยง และวิธีการวัดมูลคาความเสี่ยงแบบ
มี เงื่อนไข อยางไรก็ตามงานวิจัยนี้ เนนการวิ เคราะหพอรตโฟลิโอโดยการใชมูลคาความเสี่ยง
แบบมีเงื่อนไข เนื่องจากเปนการวิธีการวัดความเสี่ยงที่มีคุณสมบัติความเกี่ยวพัน และอัตราการ
เปลี่ยนแปลงของความชันของกราฟความสัมพันธระหวางราคาและการขาดทุนที่จะเกิดขึ้นจาก
การลงทุนของสินทรัพยนี้ ซึ่งใชวิธีการของ Rockafellar และ Uryasev แตนำมาปรับใชกับ
ออพชั่นที่เขียนไวในดัชนีดัชนีเอสแอนดพี 500 และเรากำหนดใหคาดัชนีถูกจำลองโดยการใช
การแจกแจงความแปรปรวนและแกมมาหลังจากนั้นจะมูลคาการขาดทุนที่นอยที่สุดที่จะเกิด
จากการลงทุนในออพชั่นนี้ ภายใตผลตอบแทนที่คาดหวังและเงื่อนไขของราคาเสนอมาพรอม
กับราคาเสนอซื้อและราคาเสนอขาย นอกจากนี้ยังศึกษาการเปลี่ยนแปลงในพอรตโฟลิโอที่
ปรับใหเหมาะสมตามพารามิเตอรตาง ๆ ซึ่งจากผลการทดลองพบวา มูลคาความเสี่ยงแบบมี
เงื่อนไขขึ้นอยูกับสวนเบี่ยงเบนมาตรฐาน อัตราความแปรปรวน อัตราผลตอบแทนที่คาดหวัง
และระดับความเชื่อมั่น นอกจากนี้เรายังคำนวณราคาที่ไมเห็นความแตกตาง สำหรับมูลคาการ
ขายและการซื้อ มูลคาบัญชี และกลยุทธการปองกันความเสี่ยง จากการทดลองพบวา ราคาขาย
จะมากกวาราคาซื้อสำหรับทุก ๆ คาเบี่ยงเบนมาตรฐาน และเมื่อผลตอบแทนที่คาดหวังเทากับ
1,400% ราคาที่ไมเห็นความแตกตางจะอยูระหวางราคาปองกันความเสี่ยง
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KEYWORDS : PORTFOLIO OPTIMIZATION / CONDITIONAL VALUE-AT-RISK (CVAR)

/ VARIANCE GAMMA DISTRIBUTION / INDIFFERENCE PRICE / ACCOUNTING VALUE

/ HEDGING PRICE

BENYANEE KOSAPONG : OPTIONS PORTFOLIO OPTIMIZATION AND HEDG-

ING OF EXOTIC OPTIONS WRITTEN ON MINI S&P 500 INDEX IN AN ILLIQUID

MARKET WITH CVAR. ADVISOR : ASSOC. PROF. PETARPA BOONSERM, Ph.D.,

CO-ADVISOR : ASST. PROF. UDOMSAK RAKWONGWAN, Ph.D., ?? pp.

This thesis investigates the derivatives for portfolio optimization. Risk measures

such as Mean Variance (MV), Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR)

are minimized. However, we focus primarily on CVaR because it is a coherent and convex

risk measure. We adopt the method of Rockafellar and Uryasev (Journal of Risk 2, 3

(2000)), which minimizes CVaR for shares and convert this method to use with options

written on the S&P500 Mini Index. The distribution is known and the index values are

simulated by using the Variance Gamma (VG) distribution, over CVaR constraints. In

particular, the approach can be used for minimizing the CVaR values under expected

returns, and the conditions of the quotes come with the bid and ask prices as well as the

sizes. We study the changes in optimized portfolios, subject to various modeling parame-

ters. The values of CVaR depend on the standard deviation (σ), the variance rate (ν), the

required return (Q) and the confidence level (β). Moreover, we compute the indifference

prices to obtain the selling and accounting values and the hedging strategy. As a result,

for all sigma values, the selling prices are greater than the buying prices, and when the

expected return equals 1,400%, the indifference prices are between the hedging prices. 
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CHAPTER I

INTRODUCTION

In every field, people face risks, be it in medicine, industry businesses, ecology,

security or finance. It is impossible to avoid risks, however, through certain measures

and strategies, we can reduce the occurrence of these risks. For instance, homeowners are

capable of achieving more attractive risks for future cash flows by buying home insurance

to curb the risk of investments declining in value due to economic developments or other

events that affect the whole market when markets start to fluctuate.

In this thesis, we focus on financial risks, or the likelihood of losing money on an

investment. For example, in daily life, currency risk affects investors who hold foreign

currencies because of rate changes and monetary policy changes. For individual invest-

ments, if your goal is to pursue growth, you will plan to place the maximum amount,

which is about 80% of your assets in stocks and as little as 20% in bonds. As far as

we know, we can choose from a range of trading instruments and markets to diversify

our investments. This is a method that reduces the risk of investments, which involves

the uncertainty of earnings or unexpected outcomes from changes in market conditions

such as asset prices, interest rates, volatility, and market liquidity. Moreover, portfolio

diversification, the process of selecting various investments within each asset, can reduce

investment risks. Therefore, in this thesis, we propose another method that can be used

effectively to reduce the risk of investment, which is “portfolio optimization”.

Portfolio optimization is concerned with the selection of investments, including

financial assets such as shares, bonds, mutual funds, and derivatives (e.g., forwards, op-

tions, and futures), etc. Since there are many assets to select from, all investors try to

manage their money and invest it in various securities to minimize investment risks while

maximizing the return on their investment. In fact, the risk is subjective. This means

that an individual perceives a possible unwanted event based on a person’s opinion, emo-

tions, gut feeling, or intuition. It may not necessarily be the same for everyone. It is

an evaluation based on the individual’s feelings at the time rather than a mathematical



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

analysis of the circumstance. Since it is subjective, the risk acceptance of each investor

is different. Therefore, we will seek the measures that can be preferred for the risk. The

popular and widespread risk measures are variance, Value-at-Risk (VaR), and Conditional

Value-at-Risk (CVaR). Then, we will inspect them for use as the risk measure for opti-

mizing the portfolio selection. In the field of finance, portfolio optimization is one of the

most prevalent and complicated problems [?].

In 1986, the primary method for solving the portfolio selection problem was devised

by Markowitz [?]. In the so-called mean-variance (MV) portfolio optimization model, the

expected return of the portfolio is evaluated, while the associated risk is estimated by

the variance of the portfolio return. Therefore, one of the risk measures is variance.

Moreover, Artzner, et al, [?, ?] has declared that the variance of a random variable lacks

both sub-additive and positive homogeneity. Therefore, it is not a coherent risk measure.

As a result, there are some drawbacks to variance. To replace the variance, alternative

risk measures have been proposed.

The alternative risk measures are VaR and CVaR. Before explaining CVaR, we will

recap about VaR. VaR is the chance of an undesirable event with a certain investment time

horizon and a given confidence level (e.g., 90%, 95%, and 99%). From various literature

reviews, we recognize that VaR is not a coherent risk measure because of the failure of

some properties of the risk measure that is sub-additive. Besides, it is a non-convex

function.  

Another risk measure was recommended by Rockafellar and Uryasev [?] in 2000,

which is CVaR. The mean of the loss values that exceed the VaR value at a specific

significance level is referred to as CVaR. Then, obviously, CVaR value must be greater

than or equal to the VaR value. Additionally, it can provide more information beyond

VaR. As mentioned previously, this is the reason that CVaR is interesting and prevalent

in the financial market. Furthermore, CVaR is a coherent and convex risk measure, so it

has the minimum point. As a result, in this thesis, we will modify the model of CVaR

minimization for the portfolio in our dataset. We would like to decrease the risk of the

options portfolio.
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Moreover, the financial market is important, so we will discuss the distinction be-

tween a liquid market and an illiquid market. The word “liquid market” refers to a market

with numerous buyers and sellers, and low transaction costs. Liquid markets are usually

found in financial assets like forex, futures, bonds, and stocks. Liquidity is the absolute

opposite of illiquidity. In an illiquid market, it is difficult to sell assets due to their ex-

pense, lack of interested buyers, or other reasons. Examples of illiquid markets include

some stocks with low trading volumes or collectibles. In illiquid markets, assets still have

value, and in many circumstances, extremely high value, but they are simply difficult to

sell.

We have interested in the options market, which is an illiquid market because it

can make a sky-high return quicker than the stock market. However, many investors

wrongly believe that options are always riskier investments than stocks because they may

not completely understand what options are and how they work. Options can be used

to hedge holdings and reduce risk and speculate on whether a stock will rise or fall, but

with a lower risk than buying or shorting the underlying stock. As mentioned previously,

these are the reasons why we are interested in studying options.

In this thesis, we adapted the mathematical model for minimization CVaR from

Rockafellar and Uryasev [?]. They optimized the portfolio selection for shares but we

would like to compute the model in option market. The data comes from an exotic option

written on the Mini S&P 500 index in an illiquid market. The mainly objectives of this

thesis are 3 points such as we minimize options portfolio by using CVaR to reduce the

risk of investment, we would like to know what parameters that affect CVaR values and

we consider the minimization portfolio with liability.

We have divided this thesis into five chapters. In chapter II, we study the risk

measures, which are the measures that we use to optimize our portfolio. In chapter III,

we study the portfolio optimization problem. In chapter IV, we study the method for

obtaining the portfolio optimization problem and show all the results of the optimization

problems with other constraints. Finally, in chapter V, we present the conclusion to this

thesis and our future work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

RISK MEASURES

Mostly, a financial advisor suggests you take a risk assessment when you would

like to invest in financial institutions. We will measure the probability of these terrible

outcomes before making an investment. This is called a risk measure. Risk measures are

used to measure a terrible outcome throughout the literature. The risk measure methods

are used to determine the number of assets to be kept in reserve to cover unexpected

losses. It is an excellent concept to reconsider what we expect of our risk measures.

In this chapter, we provide some information about a coherent and a convex risk

measure, and then we will utilize the principle of the coherent risk measures developed

by Artzner, et al. [?, ?] and the properties of the convex risk measure [?, ?] to review

risk measures.

2.1 Coherent and convex risk measures

2.1.1 The coherent risk measure

Definition 1 (Coherent risk measure, [?, ?]). The coherent risk measure is a function

Γ : L∞(Ω, F, P ) → R satisfying the followings for each v1, v2 ∈ L∞(Ω, F, P ).

1. Monotonicity: If v1 ≤ v2, then Γ(v1) ≤ Γ(v2).

This means that if the loss v1 is always less than or equal to the loss v2, the risk

associated with the loss v1 will be no more than the risk associated with the loss

v2.

2. Positive homogeneity: Γ(av1) = aΓ(v1), for any constant a ≥ 0.

This means that the risk of the loss v1 is scaled by the positive value a, which is

equal to a times of the risk of the loss v1.

3. Sub-additivity: Γ(v1 + v2) ≤ Γ(v1) + Γ(v2).

This means that the risk occurring from investments in two portfolios is less than



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

or equal to the risk of investment in each of them separately.

4. Translation invariance: If a ∈ R, then Γ(v1 + a) = Γ(v1) + a.

This means that the addition of a sure amount of capital reduces the risk by the

same amount.

2.1.2 The convex risk measure

In this subsection, we would like to study the definition of the convex risk measure.

Then, let’s start with the definition of a convex set and convex function and then we will

consider the convex risk measure.

Definition 2. (Convex set, [?, ?]). A set C ⊆ Rn is a convex set if for all x1, x2 ∈ C and

all t ∈ [0, 1],

(1− t)x1 + tx2 ∈ C.

This means that every point on a line connecting two points in the set is included

in the set. The examples are shown in Figure ??.

Figure 2.1: A graphic of convex sets and non-convex sets [?].
.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Definition 3. (Convex function, [?, ?, ?]). A real function f : Rn → R is a convex

function if its domain is a convex set and for all x1, x2 in its domain, and all t ∈ [0, 1], we

have

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2).

Figure 2.2: A graphic of a convex function [?].

Figure 2.3: An example of a convex function and a non-convex function [?].

As can be seen in Definition ??, if we take any two points x1, x2, then f(x) evalu-

ated by any convex combination of these two points is no greater than the same convex

combination of f(x1) and f(x2) as shown in Figure ??. The convex function is important

because it can be used to indicate the only minimum point of this function. It is shown

in Figure ?? and Figure ??.

Definition 4 (Convex risk measure, [?, ?]). A convex risk measure is a function γ :

L∞(Ω, F, P ) → R satisfying the followings for each v1, v2 ∈ L∞(Ω, F, P ).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

Figure 2.4: Examples of convex and non-convex functions with different global and
local optimizers [?].

1. Monotonicity: If v1 ≤ v2, then γ(v1) ≤ γ(v2).

2. Translation invariance: If a ∈ R, then γ(v1 + a) = γ(v1) + a.

3. Convexity: γ(λv1 + (1− λ)v2) ≤ λγ(v1) + (1− λ)γ(v2), for 0 ≤ λ ≤ 1.

As mentioned above, the convex risk measure has some same properties, which are

monotonicity and translation invariance, as the coherent risk measure. It can be called

the coherent risk measure if it satisfies positive homogeneity. Moreover, we do not need

to consider sub-additivity because it is equivalent to sub-additivity directly when it is a

convexity, according to the assumption of positive homogeneity.

In the next section, we will discuss the favored risk measures, e.g., variance, VaR,

and CVaR, as to determine which one covers all the properties of the coherent and convex

risk measures.

2.2 Variance

Variance is a familiar statistic used to measure variability. It is determined by

averaging the squared deviations from the mean. We first assume that the expected value

of the random variable X is E(X) and then the variance of the random variable X is

determined as:

σ2(X) = E[(X − E(X))2]. (2.1)

Additionally, it can be shown that the variance of a linear combination of two
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random variables is:

σ2(aX + bY ) = a2σ2(X) + b2σ2(Y ) + 2abCov(X,Y ), (2.2)

where X and Y are random variables, a and b are real numbers, and Cov(X,Y ) is the

covariance of two random variables, which is given as:

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

As previously stated, Markowitz [?] modified Equation (??) to optimize the port-

folio. For instance, in a period of investment, Markowitz reduced the risk as variance of

the portfolio, while providing the maximum expected return of this portfolio.

Let’s start by determining all variables. We consider the number of the assets as n.

The portfolio return of asset i at the end of the period is Ri which is a random variable

due to the unknown nature of the future price. Let wi be the proportion of the asset i

invested in this portfolio. The space of portfolios is given as [?, ?, ?]:

W = {(w1, w2 . . . , wn) |
n∑

i=1

wi = 1, wi ≥ 0, ∀i ∈ {1, 2, . . . , n}}.

We use the asset’s return (Ri) with the distribution functions such as normal,

lognormal, t and variance-gamma distributions to defined the portfolio return (Rw) is

given as:

Rw = w1R1 + w2R2 + . . .+ wnRn.

For one-period market with n assets, the variance of the portfolio selection is de-

termined by [?]:

σ2(Rw) =

n∑
j=1

n∑
i=1

wiwjCov(Ri, Rj), (2.3)

where Cov(Ri, Rj) is the correlation between random variables Ri and Rj .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

The portfolio variance is written as a quadratic function of the required decisions

w1, w2 . . . , wn. By definition, variance includes monotonicity and translation invariance.

Therefore, we would like to confirm that the variance covers both monotonicity and

translation invariance.

Firstly, we present that σ2(Rw) is monotonicity and translation invariance. The

properties of the variance express that it is always monotonicity. For example, if R(1)
w is

riskier than R
(2)
w , in terms of standard deviations when σ(Rw) =

√
σ2(Rw) for a random

variable Rw, then σ(R
(1)
w ) ≥ σ(R

(2)
w ).

Afterwards, we exhibit that the variance covers translation invariance. Let Rw be

a random variable and a be a constant. Then,

σ2(Rw + a) = E[(Rw + a− E[Rw + a])2],

= E[(Rw + a− E[Rw]− a)2],

= E[(Rw − E[Rw]
2)],

= σ2(Rw).

Therefore, variance does have monotonicity and translation invariance properties. How-

ever, it is not a coherent risk measure because it lacks positive homogeneity and sub-

additive. We will prove that σ2(Rw) is not a positive homogeneity by using the properties

of variance of the random variable Rw. As we know, if we multiply its value by a scalar

number, it is given as:

σ2(aRw) = E[(aRw − E[aRw])
2],

= E[(aRw − aE[Rw])
2],

= E[a2(Rw − E[Rw])
2],

= a2E[(Rw − E[Rw])
2],

= a2σ2(Rw).

Since a2σ2(Rw) ̸= aσ2(Rw), variance lacks a positive homogeneity.
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Now we prove that σ2(Rw) is not a sub-additive. As we know, the correlation of

two random variables R
(1)
w and R

(2)
w is defined as:

ρ(R(1)
w , R(2)

w ) =
Cov(R

(1)
w , R

(2)
w )

σ(R
(1)
w )σ(R

(2)
w )

,

where σ(R
(1)
w ) and σ(R

(2)
w ) are the standard deviation of random variables R

(1)
w

and R
(2)
w , respectively. Through Equation (??) and the correlation definition, we have

variance of two random variables, which can be written as:

σ2(R(1)
w +R(2)

w ) = σ2(R(1)
w ) + σ2(R(2)

w ) + 2ρ(R(1)
w , R(2)

w )σ(R(1)
w )σ(R(2)

w ). (2.4)

From Equation (??), the variance has a sub-additive property when ρ(R
(1)
w , R

(2)
w ) < 0, but

not for ρ(R
(1)
w , R

(2)
w ) ≥ 0 cases. If ρ(R(1)

w , R
(2)
w ) = 0 when R

(1)
w and R

(2)
w are not linearly

independent or ρ(R
(1)
w , R

(2)
w ) > 0 then σ2(R

(1)
w + R

(2)
w ) ≥ σ2(R

(1)
w ) + σ2(R

(2)
w ). Hence, it

lacks a sub-additive and it is not a coherent risk measure.

2.3 Value-at-Risk (VaR)

Jorion [?] provided an additional risk measure, VaR, which is the asymptotic risk

measure. VaR has become a popular risk measure in the past decades. For an investment

horizon time T and a given confidence interval β ∈ (0, 1), VaR is the greatest loss that

can occur in the 100β% scenarios. In mathematics, VaR describes a quantitative measure

of loss as shown in Figure ??.

Definition 5. (Jorion, [?]). At significant level β ∈ (0, 1), VaR of a random variable

Rw is determined as the negative profits or positive losses. Then, the β-quantile of Rw is

defined as:

V aRβ(Rw) = min{ r ∈ R | P (Rw ≤ r) ≥ β }.

Since VaR is used widely, there are many definitions of VaR. Rockafellar and Urya-
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sev [?, ?] established VaR in different Jorion’s definition, but they are equivalent. Firstly,

we define all parameters and then explain the definition of VaR for Rockafellar and Urya-

sev. We assume that the loss function of portfolio w = (w1, w2, . . . , wn) is denoted by

f(w, y) then y ∈ Rn exemplifies the uncertainly effect of loss, such as a return of share.

For each w, the loss function f(w, y) is a random variable in Rn as y is a ran-

dom variable, and p(y) indicates the probability density function (PDF) of y in R. The

probability that f(w, y) does not exceed α is defined as:

Ψ(w,α) =

∫
f(w,y)≤α

p(y) dy. (2.5)

Definition 6. (Value-at-Risk (VaR), [?]). The loss random variable associated with w

and probability level β in (0, 1) is called by β-VaR value, denoted by αβ(w).

αβ(w) = min{α ∈ R | Ψ(w,α) ≥ β }. (2.6)

Since many authors argue that VaR is not a convex function [?] and lacks a sub-

additive property [?, ?], we would like to give an example to confirm that VaR is not

a coherent risk measure. For any portfolios R
(1)
w and R

(2)
w , the VaR of the combined

portfolios R
(1)
w and R

(2)
w is not less than the sum of VaR of the portfolio R

(1)
w and VaR

of the portfolio R
(2)
w as shown in the equation below. Therefore, VaR is not the coherent

risk measure.

V aR(R(1)
w +R(2)

w ) ≥ V aR(R(1)
w ) + V aR(R(2)

w ). (2.7)

2.4 Conditional Value-at-Risk (CVaR)

Since VaR is not a coherent risk measure, Rockafellar and Uryasev [?, ?, ?]

suggested another risk measure, CVaR. CVaR is the average percentage of the worst case

loss scenarios, which is also known as mean of loss exceeding the VaR cutoff point or the

tail VaR. It is shown in Figure ??. By Definition ??, for a distribution function of random
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variable Rw, CVaR is defined as:

CV aRβ(Rw) = E[Rw | Rw > V aRβ(Rw)].

Figure 2.5: The graphical representation of VaR, CVaR and max loss (min profit).

This definition is also equivalent with the definition of CVaR that is defined in

Rockafellar and Uryasev [?].

Definition 7. (Conditional Value-at-Risk (CVaR), [?]). The loss function which is a

continuous random variable that is associated with w and probability level β in (0, 1) is

called the β-CVaR value and it can be denoted by ϕβ(w). The ϕβ(w) is defined as follows:

ϕβ(w) = E[f(w, y) | f(w, y) ≤ αβ(x)],

=
E[11f(w,y)≤αβ(w)f(w, y)]

P (f(w, y) ≤ αβ(x))
,

= (1− β)−1

∫
f(w,y)≥αβ(w)

f(w, y)p(y) dy, (2.8)

where f(w, y) is the loss function, αβ(w) is the VaR at a confident level β and p(y) is the

probability density function of y.
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Artzner et al. [?, ?], Rockafellar and Uryasev [?, ?] and Pflug [?] mention that

CVaR is a coherent and convex risk measure.

In this chapter, we studied the properties of coherent and convex risk measures and

then considered whether the risk measures such as Variance, VaR, and CVaR cover all

the properties of a coherent risk measure. Afterwards, we found that CVaR is the only

coherent risk measure from all risk measures as variance is neither positive homogeneity

nor a sub-additivity and VaR lacks a sub-additivity,. Moreover, CVaR is convex, therefore,

it can be mentioned that this continuous function has a minimum point. From this

chapter, we knew that we should used CVaR for minimization because it is the risk

measure that explained all information of distribution while VaR can tell the information

at confident level and variance is not suitable for using in this thesis. In the next chapter,

we will use CVaR to minimize the options portfolio.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

PORTFOLIO OPTIMIZATION MODEL

In this chapter, we explain the illiquid market, options market and datasets. In

addition, we consider the portfolio optimization model with CVaR and adopt the math-

ematical model for options market. We separate portfolio optimization into 2 main sit-

uations: portfolio without liability and portfolio with liability. We will start with the

portfolio without liability. Then, we will examine the portfolio optimization with liability

and will consider the portfolio for indifference pricing and accounting value. Lastly, we

will study a hedging portfolio.

3.1 Illiquid markets

Liquid markets are markets that allow large amounts of assets to be bought and

sold at any time, with minimal transaction costs. In contrast to the illiquid markets, it is

hard to sell assets in the illiquid market because of the costs associated with conducting

business and a shortage of potential buyers [?].

Illiquid asset types have become more popular in recent decades. According to Ang

[?], pension fund holdings of illiquid asset types have increased from 5% in 1995 to 20% in

2011. However, if we add illiquid assets into the portfolio, the portfolio will then involve

substantial risks. Examples of illiquid markets are some small cap stocks, real estate, and

options [?]. In this thesis, we are interested in options, so we will describe the information

associated with options in the next section.

3.2 Options

An option is a contract that gives its owner the right, but not the obligation, to

buy or sell a security at a fixed price on or before a given date. Additionally, the value of

an option is based on or derived from the value of the underlying securities or assets. 

Various words are related to options. For example, exercising options, strike price
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or exercise price, expiration date and exercise style. Before explaining the different types

of options, we will provide brief information about the words relating to options [?].

• Exercising options: This is an act of buying or selling the underlying asset.

• Strike price or exercise price: The fixed price specific to the options contract at

which the holder is able to buy or sell the underlying asset.

• Expiration date: A limited life of an option because the option is said to expire

at the end of its life. The expiration date is the last day that the option can be

exercised.

• Exercise style: The exercise style of options governs the time at which the exercise

can occur. For a research, a European option is recommended because it may be

exercised only on the expiration date. Then, it is easy to calculate.

Options are separated into two types: call options and put options. A call option

allows the owner to purchase an asset at a specified price for a given period of time. A

put option allows the owner to sell an asset at a specified price for a certain period of

time. Note that the popular options that are traded are American options because they

can be bought or sold at any moment until the expiry date. However, in this thesis, we

focus on European options because investors can exercise them only at the expiration

date. Moreover, in the exchange-traded option market, investors must buy or sell in units

of contract. One contract is 100 shares. 

The cash payment upon option expiration is depicted in the payoff graph. In the

case of call options, if the value of the underlying asset is lower than the strike price,

the net payoff will be negative. The gross payment is the difference between the value of

the underlying asset and the strike price, and the net payoff is the difference between the

price of the underlying asset and the strike price. For instance, you should purchase a

call option if you anticipate that the stock price will increase at the expiration date. This

is illustrated in Figure ??.

Additionally, if the value of the underlying asset exceeds the strike price, the net
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(a) Call option.

(b) Put option.

Figure 3.1: The payoff of options for long position [?].

payout of put options will be negative. However, if the asset is below the strike price, the

gross payoff will correspond to the difference between the underlying asset’s value and the

strike price. For instance, if you anticipate that the stock price will decline at expiration

time, you should purchase a put option. This is demonstrated in Figure ??.

Table 3.1: The value of options for each position.

Position Options The value of this option
Long Call max{(ST −K), 0}

Put max{(K − ST ), 0}
Short Call −max{(ST −K), 0} or min{(K − ST , 0)}

Put −max{(K − ST ), 0} or min{(ST −K, 0)}

Mathematically, the value of an option is represented by an option payoff function.

Payoff of options evaluated as a function of the underlying stock price ST at a maturity

time T . The value of the option for each position can consider both put and call options

with a strike price K [?, ?]. The values of options for each position, which are long and

short positions, are represented in Table ??.
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3.3 The dataset

We utilized a quotation for mini S&P500 index options. The payouts are determined

by the underlying asset’s value at maturity time T . Cash payouts are generally determined

by the interest rate (r), whereas option payouts are determined by the value of the

underlying asset at maturity (ST ) and the strike price (K). The quotes were acquired

from Bloomberg on December 26, 2020 at 2:55:00 PM. The value of mini S&P500 index

was 295.42 and the maturity time T was a month (T = 0.0833). Therefore, the payoffs

for holding units w ∈ R of an asset for a long position are shown in Table ??.

Table 3.2: The payoffs as functions of the number of units w held.

Asset Payoff as a function of the long position w
Cash erTw

Call option max{(ST −K), 0}w
Put option max{(K − ST ), 0}w

Since the illiquid market is an incomplete market, in computation, we add the

constraints such as the bid and ask prices representing the greatest possible prices for

buyers and sellers in the market, with the bid and ask sizes. Therefore, for each strike

price, options have a limited quantity to buy or sell. Examples of options are illustrated

in Table ?? and Table ??. Moreover, both tables present that when a call option’s price

goes down, the strike price goes up, whereas a put option’s price increases as the strike

price increases as well. 

Table 3.3: Examples of call options in market quotes on December 26, 2020 at
2:55:00 PM for options.

Strike (K) Bid price Ask price Bid size(×100) Ask size (×100)
295 8.24 8.42 50 128
296 7.65 7.82 50 128
297 7.07 7.25 50 128
298 6.52 6.69 50 128
299 6.00 6.16 50 128
300 5.50 5.65 50 144
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Table 3.4: Examples of put options in market quotes on December 26, 2020 at
2:55:00 PM for options.

Strike (K) Bid price Ask price Bid size(×100) Ask size (×100)
295 8.37 8.61 50 50
296 8.77 9.02 50 50
297 9.18 9.44 142 13
298 9.62 9.90 13 13
299 10.09 10.37 125 13
300 10.59 10.87 112 13

3.4 Simulation of the stock price at time t

Most finance professionals believe that asset values are unpredictable and fluctuate.

People have trouble comprehending exactly what this implies, yet it is crucial to have a

strong understanding of it in order to deal with derivatives. We will construct a few mod-

els, such as the geometric Brownian motion (GBM) and the variance gamma distribution

(VG) in this section to simulate stock prices in the future.

3.4.1 Geometric Brownian motion (GBM)

We will examine a portfolio composed of only the initial stock, which follows the

geometric brownian motion of a random variable S(t), which is a normal distribution with

the drift parameter µ, the volatility σ and the initial value S(0). It can be written as:

dS(t) = µS(t)dt+ σS(t)dB(t), (3.1)

where B(t) is a standard Brownian motion. Then, the solutions of this equation is an Itô

process.

The stochastic differential equation implies

S(t) = µS(t)t+ σS(t)B(t),

where S(t) is a stochastic process, µ is the percentage of drift and σ is the percentage of

volatility.
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Theorem 8. (Itô’s Lemma,[?]). Let S(t) be a stochastic process satisfying Equation

(??), and assume that we have G(S, t), G : R×R+ −→ R. The Itô’s Lemma supposes that

G(S(t), t) follows the generalized Brownian motion as follows:

dG =

(
∂G

∂S
µS +

∂G

∂t
+

1

2
σ2S2∂

2G

∂S2

)
dt+

∂G

∂S
dB(t), (3.2)

where B(t) is a standard Brownian motion.

Rockafellar and Uryasev, [?] used the Monte Carlo method to simulate the number

of prices (n scenarios). Then, we solve Equation (??). We will change the form of the

equation above to G = log(S) and apply Itô’s Lemma to this equation. Then, we have

∂G

∂S
=

1

S
,

∂2G

∂S2
= − 1

S2
,

∂G

∂t
= 0,

so, we get that

d(log(S(t))) = µdt+ σdB(t)− 1

2
σ2dt

=

(
µ− 1

2
σ2

)
t+ σdB(t).

We can rewrite the equation above to the equation below:

log(S(t))− log(S(0)) = (µ− 1

2
σ2)t+ σB(t). (3.3)

Afterwards, we take the exponential of the equation above. We have the stock

price at maturity time T , which corresponds with the initial price S0. It is shown in the

equation below.

S(T ) = S(0) exp (µ− 1

2
σ2)T + σB(T ). (3.4)
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3.4.2 Variance-Gamma (VG) distribution

These days, there are several distributions (e.g., normal distribution, t distribution,

and VG distribution) that may be used to simulate stock market returns. Daily stock

market returns, as we all know, are not normally distributed because stock market return

distributions appear to have tails that are significantly thicker than normal distributions,

making it suited for employing other fat tail distributions. The interesting distributions

which have fat tails are t distribution and VG distribution. However, in this thesis, we

choose VG distribution because VG is derived by the Brownian motion with a constant

drift at the gamma distributed time change [?, ?].

Madan [?] introduced stock prices to the VG distribution, which is defined in the

equation below, and then we will adopt it to the option prices.

S(t) = S(0) exp(mt+X(t;σS , νS , θS) + ωSt), (3.5)

where ωS =
1

νS
ln (1− θSνS − σ2

SνS/2), m is the average rate of return on the stock, and

the subscript S on the parameter VG indicates that these are the statistical parameters.

Next, we will change the average rate of return on the stock under this probability

measure to the compound interest rate r. Let the risk neutral process be given by

S(t) = S(0) exp(rt+X(t;σRN , νRN , θRN ) + ωRN t), (3.6)

where ωRN =
1

νRN
ln (1− θRNνRN − σ2

RNνRN/2) and the subscript RN on the parame-

ter VG indicates that these are the risk neutral parameters.

Theorem 9. (Dilip B. Madan and Eugene Seneta, [?, ?]). The density function for price

z = S(t) at exercise time (t) has a log-VG distribution dynamics of Equation (??), and

is defined as:

fV G(z) =
2 exp (θx/σ2)

ν(t/ν)2̄πσΓ(
t

ν
)

(
x2

2σ2/ν + θ2

) t

2ν
−
1

4
K t

ν
−
1

2

1

σ2

√
x2(2σ2/ν + θ2), (3.7)
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where K is the modified Bessel function of the second kind and

x = ln (z)− ln (S(0))−mt− t

ν
ln (1− θν − σ2ν/2).

Assume that r is the interest rate and this expectation is taken under the risk

neutral process of Equation (??). Then, in the long position, a call option price of strike

K and maturity time T is called as c(S(0);K,T ). It is defined by

c(S(0);K,T ) = e−rTE [max (S(T )−K, 0)] . (3.8)

3.5 Portfolio optimization model using CVaR

With all the above mentioned, in Chapter II, we point to minimizing the CVaR for

a portfolio. Since Rockafellar and Uryasev considered the portfolio optimization in the

stock market, we apply thie model in the options market. The datasets that area used to

optimize the portfolio are the S&P500 Mini Index options.

First of all, we determine all the parameters. The number of assets is n assets. The

loss function associated with the portfolio or the decision vector w = (w1, w2, . . . , wn) ∈

Rn. The underlying price at an expiration date T is a random variable and it is called

ST . Then, the return vector R(ST ), which is the loss vector, is also a random variable

[?].

Table 3.5: The return of portfolio (R(ST )) for each asset.

Assets Position Portfolio return of the position
Cash - (erT − 1)/1
Call Long max{(ST −K), 0}/Ask price

Short max{(ST −K), 0}/Bid price
Put Long max{(K − ST ), 0}/Ask price

Short max{(K − ST ), 0}/Bid price

Although options can be bought and sold in a similar way to stocks, the returns of

the portfolio are completely different. We have displayed the return of portfolio R(ST )
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in Table ??. Afterwards, we use the portfolio return from Table ?? to define the loss

function or the negative of the portfolio return f(w, ST ). It is determined as:

f(w, ST ) = −wTR(ST ) = −
[
w1R1(S

1
T ) + · · ·+ wnRn(S

n
T )
]
. (3.9)

From Equation (??), we have the probability of loss function, not exceeding a thresh-

old α is determined by the cumulative distribution function. It is defined in Equation

(??).

Ψ(w,α) =

∫
f(w,ST )≤α

p(ST ) dST . (3.10)

Moreover, from Definition ?? and Definition ??, we can determine the β-VaR value

(αβ(w)) and the β-CVaR value (ϕβ(w)) as shown in Equation (??) and Equation (??),

respectively.

αβ(w) = min{α ∈ R | Ψ(w,α) ≥ β }, (3.11)

and

ϕβ(w) = (1− β)−1

∫
f(w,ST )≥αβ(w)

f(w,ST )p(ST ) dST . (3.12)

However, Equation (??) is extremely difficult to solve because it has the condition

of the integrable term. So, we need to approximate CVaR by using the auxiliary function.

Next, we will explain about this auxiliary function and minimization CVaR.

Definition 10. (Rockafellar and Uryasev, [?]). The practical method of approach is a

description of ϕβ(w) and αβ(w) in terms of the function Fβ on w×R defined as follows:

Fβ(w,α) = α+ (1− β)−1

∫
ST∈Rn

[f(w,ST )− α]+p(ST ) dST , (3.13)
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where

[f(w, ST )− α]+ =


f(w, ST )− α, f(w,ST )− α > 0,

0, f(w,ST )− α ≤ 0.

Due to a convex property, we will claim that the auxiliary function in Equation

(??) is a convex function. A mathematical proof is shown in Lemma ??.

Assumption 11 (Shapiro and Wardi, [?]). There is a random variable which is a positive

value C = C(ω) where E[C] is finite and

| h(θ1, ω)− h(θ2, ω) | ≤ C(ω)∥θ1 − θ2∥,

for almost all ω ∈ Ω, for all θ1, θ2 ∈ D where D is an open subset in Rn and ∥ · ∥ is the

Euclidean norm .

Assumption 12 (Shapiro and Wardi, [?]). The function H : Rn → R is a directionally

differentiable at a point θ ∈ Rn if the limit

H ′(θ, d) = lim
t→0+

H(θ + td)−H(θ)

t

exists for all d ∈ Rn.

Assumption 13 (Shapiro and Wardi, [?]). The function h(θ) with probability one is direc-

tionally differentiable at θ0 ∈ D.

Proposition 14 (Shapiro and Wardi, [?]). Assume that either assumption ?? or ?? hold,

or the function h(θ) is a convex with probability one. Then, the expected value of function

H(θ) is directionally differentiable at θ0 ∈ D and

H ′(θ0, d) = Eh′(θ0, d). (3.14)

Lemma 15. With w fixed, let G(α) =

∫
ST∈Rn

g(α, ST )p(ST ) dST , where g(α, ST ) =

[f(w, ST )− α]+. Then, G(α) is a convex continuously differentiable function with deriva-
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tive

G′(α) = Ψ(w,α)− 1. (3.15)

Proof. Assume that G(α) =

∫
ST∈Rn

g(α, ST )p(ST ) dST .

By Proposition ??,

G′(α) = E[g′(α, ST )]

= E
[
∂

∂α
[f(w,ST )− α]+

]
= E

[
∂

∂α
[f(w,ST )− α] 11f(w,ST )≥α

]
= E

[
[f(w, ST )− α]

∂

∂α
11f(w,ST )≥α + 11f(w,ST )≥α(−1)

]
= E

[
−11f(w,ST )≥α

]
= −E

[
11f(w,ST )≥α

]
= −

∫
f(w,ST )≥α

p(ST ) dST

= −

(
1−

∫
f(w,ST )≤α

p(ST ) dST

)

=

∫
f(w,ST )≤α

p(ST ) dST − 1

= Ψ(w,α)− 1.

As can be seen from the prove above, G′(α) is a increasing function in α and

G′′(α) > 0 for all α ∈ R. Then, G(α) is a convex function. Thus, Fβ(w,α) in Equation

(??) is a convex function. Therefore, we use it to approximate CVaR or ϕβ(w).

Theorem 16 (Rockafellar and Uryasev, [?]). For a function of α, if Fβ(w,α) is convex

and continuously differentiable, then we can determine the β-CVaR of the loss associated

with any w ∈ W as follows:

ϕβ(w) = min
α∈R

Fβ(w,α) (3.16)

and furthermore,
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αβ(w) ∈ argminα∈R Fβ(w,α) and ϕβ(w) = Fβ(w,αβ(w)).

Proof. By Equation (??) and Lemma (??), Fβ(w,α) is convex and continuously

differentiable with a partial derivative,

∂

∂α
Fβ(w,α) =

∂

∂α

[
α+ (1− β)−1

∫
ST∈Rn

[f(w, ST )− α]+p(ST ) dST

]
=

∂

∂α

[
α+ (1− β)−1

∫
ST∈Rn

[g(α, ST )p(ST ) dST ]

]
=

∂

∂α

[
α+ (1− β)−1G(α)

]
= 1 + (1− β)−1G′(α)

= 1 + (1− β)−1 [Ψ(w,α)− 1] (∵ From lemma ??)

= 1 + (1− β)−1Ψ(w,α)− (1− β)−1

= (1− β)−1Ψ(w,α) +
(1− β − 1)

1− β

= (1− β)−1Ψ(w,α)− (1− β)−1β

= (1− β)−1[Ψ(w,α)− β].

Therefore, the values of α providing the minimum of Fβ(w,α) are accurately those

for which Ψ(w,α) − β = 0. This further yields the validity of the β-VaR. In particular,

we have

min
α∈R

Fβ(w,α) = Fβ(w,αβ(w))

= αβ(w) + (1− β)−1

∫
ST∈Rn

[f(w, ST )− αβ]
+p(ST ) dST .

The equation above is seen as difficulty due to an integrable term. So, we will identify

the integral here as equal to

∫
ST∈Rn

[f(w, ST )− αβ]
+p(ST ) dST

=

∫
f(w,ST )≥αβ(w)

[f(w, ST )− αβ]p(ST ) dST

=

∫
f(w,ST )≥αβ(w)

f(w,ST )p(ST ) dST − αβ(w)

∫
f(w,ST )≥αβ(w)

p(ST ) dST . (3.17)
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By Equation (??),

∫
f(w,ST )≥αβ(w)

f(w,ST )p(ST ) dST = ϕβ(w)(1− β).

And by Equation (??),

β = Ψ(w,αβ(w)) =

∫
f(w,ST )≤αβ(w)

p(ST ) dST = 1−
∫
f(w,ST )≥αβ(w)

p(ST ) dST .

Therefore, we get that

∫
f(w,ST )≥αβ(w)

p(ST ) dST = 1− β.

Afterwards, adding
∫
ST∈Rn [f(w, ST )− αβ]

+p(ST ) dST and
∫
f(w,ST )≥αβ(w) p(ST ) dST into

Equation (??), we get

∫
ST∈Rn

[f(w, ST )− αβ]
+p(ST ) dST = ϕβ(w)(1− β)− αβ(w)(1− β).

Finally, we can conclude that

min
α∈R

Fβ(w,α) = αβ(w) + (1− β)−1

∫
ST∈Rn

[f(w,ST )− αβ]
+p(ST ) dST

= αβ(w) + (1− β)−1 [ϕβ(w)(1− β)− αβ(w)(1− β)]

= αβ(w) + ϕβ(w)− αβ(w)

= ϕβ(w).

Theorem 17. (Rockafellar and Uryasev, [?]) The minimization of β-CVaR of the loss

associated with w across all w ∈ W is equivalent to minimizing Fβ(w,α) across all

(w,α) ∈ W × R, in the sense that

min
w∈W

ϕβ(w) = min
(w,α)∈W×R

Fβ(w,α), (3.18)
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where

Fβ(w,α) = α+ (1− β)−1

∫
ST∈Rn

[f(w,ST )− α]+p(ST ) dST , (3.19)

and

[f(w, ST )− α]+ =


f(w, ST )− α, f(w,ST )− α > 0,

0, f(w,ST )− α ≤ 0.

Proof. We will show that minw∈W minα∈R F β(w,α) = min(w,α)∈W×R Fβ(w,α). For

each w,

min
α∈R

Fβ(w,α) ≥ min
(w,α)∈W×R

Fβ(w,α).

After taking minimum over w,

min
w∈W

min
α∈R

Fβ(w,α) ≥ min
(w,α)∈W×R

Fβ(w,α).

By Theorem ??, Fβ(w,α) is a convex function. We have (w0, α0) that makes Fβ(w,α)

minimum.

Fβ(w0, α0) = min
(w,α)∈W×R

Fβ(w,α).

Then,

min
α∈R

Fβ(w0, α) ≤ Fβ(w0, α0) = min
(w,α)∈W×R

Fβ(w,α).

Similarly,

min
α∈R

Fβ(w,α) ≤ min
α∈R

Fβ(w0, α).
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Therefore,

min
w∈W

min
α∈R

F β(w,α) = min
(w,α)∈W×R

Fβ(w,α).

From Theorem ??,

ϕβ(w) = min
α∈R

Fβ(w,α).

Hence,

min
w∈W

ϕβ(w) = min
(w,α)∈W×R

Fβ(w,α).

Rockafellar and Uryasev [?] claimed that we can use the auxiliary function Fβ(w,α),

which is shown in Equation (??), to minimize the CVaR in place of Equation (??). Since

Equation (??) is a convex function and if W is a convex set, then the CVaR minimization

problem in Theorem ?? is a convex programming problem.

Moreover, the integral term is a multiple integral in Equation (??), since Theorem

?? specifies the auxiliary function used to estimate the CVaR value. This work, however,

simply uses the underlying value (ST ). The current spot price is 295.42. The multiple

integral is then converted to a one-dimensional integral. Then, the auxiliary function

utilized to estimate the CVaR value is given as:

Fβ(w,α) = α+ (1− β)−1

∫
ST∈R

[f(w, ST )− α]+p(ST ) dST , (3.20)

where

[f(w, ST )− α]+ =


f(w, ST )− α, f(w,ST )− α > 0,

0, f(w,ST )− α ≤ 0.
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3.5.1 The auxiliary functions of CVaR function for any mathematical tech-

niques

The integral term in Equation (??) of Fβ(x, α) can be approximated in various

ways. For example, this can be done by sampling using the Monte Carlo integration

technique, the Riemann sum and the Gaussian Legendre quadrature which we know the

probability distribution function of a random variable ST .

3.5.1.1 Monte Carlo integration technique

Assume that S1
T , S

2
T , S

3
T , ..., S

q
T is a sample set. Then, we can adjust the auxiliary

function (??) to the approximate function below and then we can get an approximate

solution to the minimization of Fβ(w,α) over W × R.

F̃β(w,α) = α+
1

q(1− β)

q∑
k=1

[
−wTR(Sk

T )− α
]+

. (3.21)

The mathematical model for minimizing CVaR or Fβ(w,α) without liability over

W × R [?] can be written by

min
(w,α)∈W×R

α+
1

q(1− β)

q∑
k=1

uk, (3.22)

where uk =
[
−wTR(Sk

T )− α
]+,

subject to

f(w, ST ) = −
[
w1R1(S

1
T ) + · · ·+ wnRn(S

n
T )
]
= −wTR(ST ),

uk ≥ 0,

wTR(Sk
T ) + α+ uk ≥ 0, k = 1, 2, ..., q.

We can simulate the stock prices for each asset using the normal distribution,

variance-gamma (VG) distribution, geometric brownian motion (GBM), and lognormal

distribution from the portfolio optimization above, and then plug them into Equation (??)

to solve the linear programming problem. However, the Monte Carlo integration technique
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can take a long time because of the simulation of the stock prices. Furthermore, we would

like to suggest other techniques such as the Riemann integral and the Gaussian Legendre

quadrature.

3.5.1.2 Riemann integration

The Riemann sum is a well-known technique which enables the integration of any

continuous function. As a result, we would recommend the use of this technique so we can

convert the integrable term in Equation (??) to another function that can approximate

the CVaR of this portfolio.

Definition 18. (Riemann sum, [?]). Let [a, b] be the closed and bounded interval. This

interval is partitioned by points into n subintervals where a < x1 < x2 < . . . < xn−1 < b.

Then, Riemann sum of function f(x) over interval [a, b] is equal to

n∑
i=1

f(x∗i )(xi − xi−1),

where x∗i is the point between xi−1 and xi.

By Definition ??, we can create approximate function which is used to solve the

integral function in Equation (??). Firstly, let a and b be the lower bound and the upper

bound of the stock prices S at time T , respectively. Then, the mathematical model for

minimizing the CVaR value using the Riemann sum technique is equal to the model below

under the same constraints that are used in the mathematical model ??.

min
(w,α)∈W×R

α+
1

(1− β)

n∑
k=1

ukp(S
k
T )∆ST , (3.23)

or min
(w,α)∈W×R

α+
p(ST )∆ST

(1− β)

n∑
k=1

uk, (3.24)

where

uk =
[
wTSk

T − α
]+

and ∆ST =
b− a

n
.

Although Riemann integration takes less time than the Monte Carlo technique, the
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stock prices are not just sampled because they are the values between the lowest and

largest stock prices. This means that the stock prices are really specific. Therefore, the

Gaussian Legendre quadrature is advocated.

3.5.1.3 Gaussian Legendre quadrature

The Gaussian Legendre quadrature is one of the many numerical integral techniques.

It is defined by the closed interval [−1, 1] and the corresponding weight mk for each point

xk. The weight is defined as [?]:

mk =
2

(1− (xk)2)[P
′
q(xk)]

2
, for k = 1, · · · , q, (3.25)

where q is the number of the Gaussian quadrature points, and the Legendre polynomial

Pq(x) is the related orthogonal polynomial. If we consider the qth polynomial normalized

by the given Pq(1) = 1, the kth Gaussian node, xk is the kth root of Pq.

Since the assumption of the Gaussian Legendre quadrature is complicated, we will

give examples of weights and points [?] in Table ??.

Table 3.6: Example points and weights of the Gaussian Legendre quadrature [?].

A number of points (k) points (xk) weights (mk)
1 0 2
2 ± 1√

3
1

3 0 8

9

±
√

3

5

5

9

4 ±

√
3

7
− 2

7

√
6

5

18 +
√
30

36

±

√
3

7
+

2

7

√
6

5

18−
√
30

36

Thus, we minimize the CVaR or Fβ over W × R, which is the same as the model

(??), but changing the simulation method to the Gaussian Legendre quadrature. It is
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defined as:

min
(w,α)∈W×R

α+
1

(1− β)

q∑
k=1

ukp(S
k
T )mk, (3.26)

where Sk
T is the kth point corresponding to the weight mk and uk =

[
f(w, Sk

T )− α
]+.

Moreover, we optimize this linear programming by using the same constraints as in the

mathematical model of Equation (??) and Equation (??).

In 2000, Rockafellar and Uryasev [?] used the Monte Carlo method to simulate

values of the underlying price at time T , however, this thesis employs the Gaussian

quadrature method. As a result, the elapsed time spent to estimate expectation value,

simulate option prices and solve an optimization problem is considerably reduced. As we

know, many simulations are needed to accurately estimate the expected value. This is

even more true for derivative portfolios that require more simulated paths. In addition

to the long time required for simulation, the large number of simulated paths improves

optimization. This is because, we should insert a dummy variable to convert Lemma ??

into a linear programming problem to solve the optimization problem.

Another issue in estimating the expected value of the optimization problem using

a simulation approach is that the underlying simulation value is not far enough from the

spot at maturity. This means that some derivatives, such as call options with very high

strike prices, will not expire in cash. The best solution is to sell this option as short as

possible. However, the probability of a call option expiring in money is not zero. 

The expected value is an essential integral and its domain is a non-negative real

number. However, such improper integrals can not be evaluated. Therefore, we only

estimate in the domain where the underlying value ranges from zero to a sufficiently large

number at maturity. We will derive the background of New theorem in Appendix A.

Theorem 19 (New theorem). The minimization of CVaR in the derivatives market where
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the derivatives are written only on a single underlying value, which can be written as:

min
(w,α)∈W×R

F̃β(w,α) = min
(w,α)∈W×R

α+
1

(1− β)

q∑
k=1

[
−

n∑
i=1

[
wiRi(S

k
T )
]
− α

]+
p(Sk

T )mk,

(3.27)

where Sk
T is the solution of the Gaussian polynomial on the interval [0, c], where c is a

large number, p(Sk
T ) is a probability density function of Sk

T and mk is the corresponding

weight of Sk
T that is explained in Equation (??).

3.5.2 An application of portfolio optimization without liability

As can be seen, we have an indicator function in terms of [f(w, ST )− α]+ on the

auxiliary function (F̃β(w,α)) in Equation (??). Since the indicator function in this form

is hard to solve, we then reformed it using a similar technique by Rockafellar and Uryasev,

[?], which will make the function easier to use. Therefore, our minimization portfolio is

now defined as follows:

min
(w,α)∈W×R

F̃β(w,α) = min
(w,α)∈W×R

α+
1

(1− β)

q∑
i=1

u(Si
T )p(S

i
T )mi, (3.28)

where

u(Si
T ) =

[
f(w, Si

T )− α
]+

.

Subject to

u(Si
T ) ≥ 0,

u(Si
T ) +

[
wTR(Si

T ) + α
]
≥ 0, i = 1, 2, ..., n,

wT R̄(ST ) ≥ Q,

n∑
i=1

wi = 1,

wi, α ∈ R, i = 1, 2, ..., n,
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where R̄(ST ) is the average return and Q is the required return.

3.5.3 An application of portfolio optimization with liability

In the previous section, the portfolio optimization model was considered in case of

no liability, but now we will minimize the CVaR of the portfolio while having a liability.

Then, we will explain in more detail about indifference pricing and accounting value.

3.5.3.1 Indifference pricing

Indifference pricing was established by Stewart Hodges and Anthony Neuberger in

1989 and has since become widely used, particularly in academic research. It is frequently

used to price securities in incomplete markets where traditional risk-neutral valuation fails

due to a lack of traded assets to create a replicating portfolio [?].

In the financial and insurance industries, indifference pricing is commonly used.

The fundamental idea behind indifference pricing is that it is a natural way of pricing

and hedging financial instruments with cash flows that cannot be replicated by financial

market activities.  Furthermore, the indifference price of traded cash flows is non-linear

and is influenced by the agent’s existing liabilities, risk preferences, and underlying prob-

ability measure. Now, we focus on the issue of how much risk must be calculated so that

the risk measured in terms of subjective uselessness does not increase in comparison to

the risk at the beginning position [?, ?].

Let φ(W0, C0) be an objective value or the CVaR value from portfolio optimiza-

tion. Assume that for a trader with an initial wealth W0 and an initial liability C0, the

indifference price of the trader with future liability C̄ ∈ L∞(Ω,F ,P) can be defined as:

πs
(
W0, C0, C̄

)
:= inf{W̄ |φ(W0 + W̄ , C0 + C̄) ≤ φ(W0, C0)},

where L∞(Ω,F ,P) is a set of bounded measurable functions from a sample space.
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Then,

πs(0, 0, C̄) := inf{W̄ |φ(W̄ , C̄) ≤ φ(0, 0)},

in case of zero initial wealth and zero liability. Therefore, the minimization model of the

indifference price for selling is

min
(w,α)∈W×R

α+
1

(1− β)

q∑
i=1

u(Si
T )p(S

i
T )mi, (3.29)

where uiT =
[
f(w, Si

T )− α+ CT

]+, CT =
104

W0
[ST −K]+, and W0 = 1.0000× 105,

subject to

f(w,Si) = −[w1S
1
T + ...+ wnS

n
T ] = −wTST ,

ui ≥ 0,

ui +
[
wTST + α− CT

]
≥ 0, i = 1, 2, ..., n.

In addition, if we use the minimization model of the indifference price for buying,

we will change the variable CT from the value of the options that is shown in Table ??

and multiply it by the scalar value −104

W0
.

3.5.3.2 Accounting value

In addition, if the values of φ(0, 0) = 0, then it cannot be true because the indif-

ference prices for selling and the accounting values of the liabilities will be the same.

Moreover, the accounting value is defined as:

π0
s(C̄) := inf{W̄ |φ(W̄ , C̄) ≤ 0}, (3.30)

where C̄ ∈ L∞(Ω,F ,P).

Since a portfolio has a liability, then the CVaR value must be greater than the
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CVaR value of a portfolio without liabilities. Thus, the purpose of indifference pricing

and accounting value is to find the smallest amount of money that can make the CVaR

value the same as that of a portfolio without liabilities for indifference pricing, however,

for the accounting value, the CVaR value should approach zero. The bisection method

then becomes an important technique in solving this problem.

3.5.3.3 The bisection method

Although Newton’s method is a popular way for solving nonlinear equations, there

are other methods that may be useful in some cases. The bisection method is yet another

way for solving the nonlinear problem f(x) = 0, and it may be utilized if the function f

is continuous. For continuous functions, Bolzano’s theorem provides the inspiration for

this technique:

Figure 3.2: Illustration of the bisection method [?].

Definition 20 (Bolzano’s theorem [?, ?]). If the continuous function f : [a, b] ⊂ R → R

and f(a)f(b) < 0, then there exist c ∈ [a, b] such that f(c) = 0.

As you see in Figure ??, by evaluating whether it belongs to either of the two sub-

intervals [a, xm], [xm, b], where xm is the midpoint, the bisection method needs to find

the value c where the graph of f(c) crosses over zero.
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Then, the algorithm of the bisection method follows:

• We have our solution (xm) if f(xm) = 0, and the process ends.

• We will change the mid point if f(xm) has the opposite sign, this means there is

either f(a)f(xm) < 0, or f(xm)f(b) < 0.

Through the above, we will modify this to find the initial wealth added into the

portfolio and then project the same CVaR value before or make the CVaR value equal

to zero in case of accouting value. So f(xm) is the continuous function which shows the

CVaR value after solving for the solution, and makes f(xm) approach the CVaR value

without liability or make it equal to zero for indifference pricing and accounting values.

3.5.3.4 An application to hedging

Due to high investment risks, some investors want to reduce their risks by hedging.

These investors are called hedgers. Hedging is used to insure the risk of investing by

opening the buying or selling transactions in the same currency, simultaneously, while

reducing the uncertainty and limiting losses. It, however, does not mean making a lot of

profit. Although the goal of hedging is to decrease investment risks, there is no assurance

that the outcome will be better than that without it [?]. In a complete financial market,

every risky claim can be hedged perfectly, but in an incomplete market, it is possible to

stay on the safe side by super-hedging [?].

Hedging is commonly used with investment instruments, such as options and fu-

tures. For instance, assume that we own shares of stock A and we are convinced in this

corporation’s long term performance,  however, we may be concerned about the indus-

try’s losses in the short term. Then,  we can buy put options on Stock A in order to

hedge investment risks. To hedge investment risks from the downside of the stock A. This

strategy is called married put.

In this section, we focus on the question of optimal hedging of a given risky position

in an incomplete market. Then, we would introduce the super-hedging strategy. After
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that, we will derive the sub-hedging strategy by adapting the super-hedging strategy, and

we will illustrate how hedgers can reduce their risks with options [?].

Super-hedging is a strategy that uses a self-financing trade plan to insure equities.

In a complete market, it may be similar to the hedging price for the initial portfolio,

but in an incomplete market, it employs the lowest price that can be paid for a hedged

portfolio in order for its value to be greater or equal to that of the initial portfolio at

some time in the future.

At maturity time T , if we have the option price ST with portfolio w, the liability

CT and the initial wealth W0, then super hedging can be described as the mathematical

equation below.

πsup = inf{ST · w ≥ CT , P − a.s.}. (3.31)

We would like to minimize

minS0 · w, (3.32)

subject to

S0 · w ≤ W0,

ST · w − CT ≥ 0,

l ≤ wi ≤ u, i = 1, 2, ..., n.

On the other hand, the sub-hedging price is the highest amount that may be paid

to insure that for any future situation. So the sub-hedging costs with a liability CT is

given by

πinf = sup{ST · w ≤ CT , P − a.s.}. (3.33)

Since it is the opposite of super-hedging, then the minimization can be changed to
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a negative form of the super-hedging. It can be defined as:

min−(S0 · w), (3.34)

subject to

S0 · w ≤ W0,

ST · w + CT ≥ 0,

l ≤ wi ≤ u, i = 1, 2, ..., n.

As we know, the super-hedging price is the least amount of the necessary price that

is used to insure the portfolio, while the sub-hedging price is the greatest earning one can

get by entering the position of super-hedging with the negative liability CT . In general,

the expenses of super-hedging and sub-hedging are to be considered comparable in the

claims quotations.

3.6 Numerical implementation

3.6.1 Linear programming to solve portfolio optimization using CVaR with-

out liability

We have the auxiliary function (F̃β(w,α)) in Equation (??), which is used to ap-

proximate the CVaR value. In 2000, Rockafellar and Uryasev suggested the Monte Carlo

technique to solve the integration function as you can see in Equation (??). Now, we

adapt this technique to the Gaussian quadrature technique. Thus, the minimization of

CVaR for this portfolio as shown in Equation (??) is solved by using Linprog that is a

built-in function in Matlab as this problem is one of the linear problems.

Next, we will explain the Linprog’s syntex to solve the linear programming problem.

To begin with, let zT =
[
w1, w2, · · · , wn, α, u1, u2, · · · , um

]
, then the Linprog’s
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syntex is as follows:

min fT z, (3.35)

subject to

A× z ≤ b,

Aeq × z = beq,

lb ≤ z ≤ ub,

where f, b, beq, lb, ub are vectors and A,Aeq are matrices.

The function called for solving linear problems is linprog(f,A, b, Aeq, beq, lb, ub)

and then the important outputs are the optimal portfolio z and the optimal value of fT z.

After we change the minimization portfolio from model (??) to the linear program-

ming problem in model (??), we have the solutions to the optimal portfolio and optimal

value, which are the selected portfolio and the CVaR value, respectively.

For the maturity time T , our problem can be written as,

min fT z, (3.36)

subject to

A× z ≤ b,

Aeq × z = beq,

lb ≤ z ≤ ub,

where fT =

[
0 0 · · · 0 1

1

1− β
p(S1)w1

1

1− β
p(S2)w2 · · · 1

1− β
p(Sm)wm

]
,
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A = −



R(S1
1) R(S2

1) · · · R(Sn
1 ) 1 1 0 · · · 0

R(S1
2) R(S2

2) · · · R(Sn
2 ) 1 0 1 · · · 0

...
... . . . ...

...
...

... . . . ...

R(S1
m) R(S2

m) · · · R(Sn
m) 1 0 0 · · · 1

R̄(S1) R̄(S2) · · · R̄(Sm) 0 0 0 · · · 0


, b =



0

0
...

0

Q


,

Aeq = −
[
1 1 · · · 1 0 0 0 · · · 0

]
, beq =

[
1

]
,

R(Sj
i ) is a return of the jth asset of the ith scenario and R̄(Sj) is a mean return of the

jth asset.

3.6.2 Linear programming to solve portfolio optimization using CVaR with

asset-liability management

With some liability, the loss value of the investment may go up. Then, we would

like to know how much of the minimum value of the initial wealth we need to add to the

portfolio to attain the same CVaR value as the portfolio with no liability. There are 2

strategies that involve selling and buying.

3.6.2.1 Selling

We can change the minimization portfolio with liability CT =
104

W0
[ST −K]+, where

W0 is the initial wealth from the model (??) to the linear programming problem in the

model (??). For the maturiy time T , our problem can be written as,

min fT z, (3.37)

subject to

A× z ≤ b,

Aeq × z = beq,

lb ≤ z ≤ ub,
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where fT =

[
0 0 · · · 0 1

1

1− β
p(S1)w1

1

1− β
p(S2)w2 · · · 1

1− β
p(Sm)wm

]
,

A = −



R(S1
1) R(S2

1) · · · R(Sn
1 ) 1 1 0 · · · 0

R(S1
2) R(S2

2) · · · R(Sn
2 ) 1 0 1 · · · 0

...
... . . . ...

...
...

... . . . ...

R(S1
m) R(S2

m) · · · R(Sn
m) 1 0 0 · · · 1

R̄(S1) R̄(S2) · · · R̄(Sm) 0 0 0 · · · 0


, b =



−CT

−CT

...

−CT

Q


,

Aeq = −
[
1 1 · · · 1 0 0 0 · · · 0

]
, beq =

[
1

]
,

R(Sj
i ) is a return of the jth asset of the ith scenario and R̄(Sj) is a mean return of the

jth asset.

3.6.2.2 Buying

For buying, the liability is the negative of the liability for a selling situation, so

we can change the minimization portfolio from model (??) to the linear programming

problem in model (??). For the maturity time T , our problem can be written in the same

way as in model (??), but by changing the value of liability CT .

3.6.2.3 Hedging

After we explain about the super-hedging strategy, then we will know the linear pro-

gramming for the sub-hedging as the sub-hedging value is opposite to the super-hedging

value. To begin with, let zT =
[
w1, w2, · · · , wn, α, u1, u2, · · · , um

]
, then the Linprog’s

syntex is as follows:

minW0, (3.38)

subject to

A× z ≤ b,

lb ≤ z ≤ ub,
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where A = −


S0
1 −1

S0
2 −1
...

...

S0
m −1


, b =


0

0
...

0


.

In Chapter III, we studied illiquid markets, options, and datasets. Afterwards, we

adopted the minimization model over portfolio W using CVaR for the options portfolio.

Additionally, portfolio optimization was separated into 2 main sections: portfolio opti-

mization without liability and with liability. Moreover, we described the hedging strategy,

which is an important technique to insure our portfolio. After that, we changed the math-

ematical model to linear programming and showed them in the numerical implementation

for compliance in MATLAB. In the last section, we explained the distributions used in

simulating the options prices. There are 2 common distributions, which are the normal

distribution and the VG distribution. In the next chapter, we will present all the results

from the portfolio minimization using the CVaR value.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

RESULTS AND DISCUSSIONS

This chapter is divided into 2 main sections. There are the results of the options

portfolio optimization with minimizing CVaR, and then we consider the details about the

optimal portfolios with liability; for example, indifference pricing, accounting value, and

hedging situations.

Furthermore, we assume that the time to maturity T = 1
12 year, the investment’s

beginning wealth is $100, 000 and the required return percentage is 1,000, which is a high

amount since the required return of options must be more than the required return of

shares for trading. We selected the portfolio with the lowest CVaR and the given expected

return. A restricted quantity of buying and selling is permitted. This means the amount

of bid sizes, ask sizes, bid prices and ask prices are used as the constraints.

4.1 Portfolio optimization without liability

We will compare the distributions used for simulated options prices in this section.

Let’s begin with the geometric Brownian motion (GBM) and then go on to the variance-

gamma distribution (VG). We will demonstrate the results of minimizing the CVaR value

by using the Monte Carlo technique to simulate the log returns of the mini S&P 500

index and the underlying prices, respectively. After that, we will compare the Monte

Carlo method’s results with the Gaussian Legendre quadrature’s results.

4.1.1 Efficiency of portfolio minimization

4.1.1.1 Results from the Monte Carlo technique

Firstly, we suppose that the options prices are simulated by GBM, then afterwards,

we minimize this linear problem in Equation (??). The assumption of all parameters for

this minimization are assumed in Table ??, but for the VG distribution, the parameters

used in computation are in Table ??. After that, Equation (??) is used to minimize the
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CVaR for options portfolio.

Table 4.1: Base-case parameters including the Black-Scholes model, the compounded
interest rate(r) and the required return (Q) for this minimization.

µ σ r Q
0.0100 0.3500 0 10

Table 4.2: Base-case parameters including VG parameters, the compounded interest
rate(r) and the required return (Q) for this minimization.

µ σ ν θ r Q
0 0.1206 0.0031 0 0 10

We generate the options prices for 100,000 iterations used to minimize the CVaR in

Equation (??). All results are shown in Table ??, which presents the standard deviation,

95%VaR and 95%CVaR of the CVaR minimization portfolio with any distribution. As

we can see, the standard deviation values of the GBM portfolio and the VG portfolio are

unlike. There is about a tenfold difference. The distributions of losses in functions from

GBM and VG are illustrated in Figure ?? and Figure ??, respectively. Then, we observe

that VaR values are also different. They are a positive value and a negative value from

the GBM and the VG distribution, respectively. However, the CVaR values are positive

values, meaning that, we will lose money if we invest in this portfolio.

Table 4.3: The standard deviation, the VaR and CVaR of the CVaR minimization
portfolio with any confidence levels.

Distribution Standard deviation ($) VaR ($) CVaR ($) Cash ($)
Geometric brownian motion 6,871,100.00 224,810.00 226,590.00 822,470.00

Variance Gamma (VG) 567,780.00 -207,920.00 865,370.00 3,994,000.00

On the other hand, the portfolio selections in Figure ?? and Figure ?? are dissimilar.

Further, our data is suitable for the VG distribution more than the GBM because VG

distribution has fat tails with elapsed times of 357.5733 and 179.6685 seconds for GBM

and VG, respectively. Thus, the elapsed time for the simulation of the VG distribution is

less than for GBM by about twofolds. Therefore, we will use VG distribution in the next

experiment.
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Figure 4.1: The net payoff of the portfolio selected by the minimization of CVaR
after 30 days for 100,000 iterations with GBM distribution.

Figure 4.2: The portfolio selected by the minimization of CVaR after 30 days for
100,000 iterations with GBM distribution.

4.1.1.2 Results from the Gaussian Legendre quadrature

Since the elapsed times of simulation of the Monte Carlo technique for the GBM

and VG distribution takes longer, we would like to change the simulation method from the

Monte Carlo to the Gaussian Legendre quadrature. For the Gaussian Legendre quadra-

ture, we require the number of points used to simulate the options prices to be equal to

500 points. As a result, the elaped time for the minimization becomes 5.3631 seconds,
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Figure 4.3: The net payoff of the portfolio selected by the minimization of CVaR
after 30 days for 100,000 iterations with VG distribution.

Figure 4.4: The portfolio selected by the minimization of CVaR after 30 days for
100,000 iterations with VG distribution.

which is less than the elaped time that is used for the Monte Carlo technique, which is

approximately thirty-four folds. Furthermore, in Figure ?? and Figure ??, the VaR values

are nearly equal to the CVaR value in Figure ?? is $80, 555.00.

4.1.2 The main model

From the previous subsection, we know that VG distribution and the Gaussian Leg-

endre quadrature are appropriate for solving the integral term in Equation (??) because
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Figure 4.5: The net payoff of the portfolio selected by the minimization of CVaR after
30 days for 500 points with VG distribution from the Gaussian Legendre quadrature.

it can simulate many options prices in a short time. Then, these become the reasons to

support the use of VG distribution and the Gaussian Legendre quadrature with random

options prices and in approximating the auxiliary function that is used to minimize the

CVaR value. The aim of this experiment is to find the optimization portfolio by using

CVaR and then we get the optimal portfolio from this. Afterwards, we change the param-

eters (i.e., the confident level, σ, ν and the required return Q) to consider the behaviour

of CVaR values.

Table 4.4: The expectation, the standard deviation, the VaR and CVaR of the CVaR
minimization portfolio with any confidence levels.

Confidence levels Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
90 1,098,754.8910 496,263.4816 -500,439.2953 -134,825.5103
95 1,098,684.8730 571,959.8916 -197,953.5713 80,554.9436
99 1,098,400.9050 712,572.5382 292,746.9923 513,764.3919

Table ?? provides information about the expectation, the standard deviation, the

VaR and CVaR of the CVaR minimization for portfolio with any confidence levels. Over-

all, if we compare the expectation and the standard deviation of the payoff for 90%,

95% and 99% confidence levels, we can see that the expected values decrease while the

standard deviation values and the confidence levels are increasing.

In addition, the 90% VaR, 95% VaR and 99% VaR are -500,439.2953, -197,953.5713
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and 292,746.9923, respectively. The 95% VaR is more than 90% VaR and they are negative

values. This means we will make a profit if we invest in assets as follows in Figure ??.

In contrast, the 99% VaR is a positive value, therefore, we can make a loss from this

portfolio at 99% confidence level. Similarly, we consider the 90% CVaR, 95% CVaR and

99% CVaR which are one negative value at 90% confidence level and two positive values

at 95% and 99% confidence levels. The CVaR value at 99% confidence level is the highest

and equal to 513,764.3919. From Figure ??, the expected return and the CVaR values

will also increase if the confidence levels increase. This figure seems like an exponential

function.

Figure 4.6: The graph of the CVaR value with any confidence level.

Moreover, Figure ?? and Figure ?? demonstrate the distribution of the net payoff of

the portfolio after 30 days with 95% and 99% confidence levels and present the points of

the VaR value with 95% and 99% confidence levels as different from one another because

the 95% VaR value is a negative value but 99% VaR value is a positive value. And then,

we can approximate the 95% CVaR and the 99% CVaR by finding the mean of the left

tails that is beyond the 95% VaR and the 99% VaR cut points, respectively.
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Figure 4.7: The net payoff of the portfolio selected by the minimization of CVaR
after 30 days with 95% confidence level.

Figure 4.8: The net payoff of the portfolio selected by the minimization of CVaR
after 30 days with 99% confidence level.

Table 4.5: The expectation, the standard deviation, the 95%VaR and 95%CVaR of
the CVaR minimization portfolio after changing σ.

σ Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
0.0100 2,447,307.2550 6,023.9430 -2,343,309.3110 -2,332,935.6250
0.0600 2,266,687.0430 268,691.2197 -1,633,867.5360 -1,313,287.6290
0.1206 1,098,684.8730 571,959.8916 -197,953.5713 80,554.9436
0.1600 1,096,318.8480 983,849.2708 814,298.3118 1,572,524.8320

Afterwards, we repeat the optimization and alter the settings for simulating the

index values using VG distribution such as σ and ν to examine the impact of the optimal
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Figure 4.9: The proportion of cash and asset j from optimizing the portfolio selected
after 30 days with 95% confidence level.

Figure 4.10: The proportion of cash and asset j from optimizing the portfolio
selected after 30 days with 99% confidence level.

Table 4.6: The expectation, the standard deviation, the 95%VaR and 95%CVaR of
the CVaR minimization portfolio.

ν Expectation ($) Standard deviation ($) VaR ($) CVaR ($)
0.0031 1,098,684.8730 571,959.8916 -197,953.5713 80,554.9436
0.0050 1,098,603.7248 572,760.2695 -197,478.7360 93,702.8259
0.0100 1,098,435.3860 575,311.0251 -196,886.3640 126,445.5404
0.0500 1,098,154.4600 615,367.5069 -105,229.7714 302,184.3148
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Figure 4.11: The graph of the CVaR value with a different σ.

Figure 4.12: The graph of the CVaR value with a different ν.

portfolio. Table ?? and Table ?? illustrate that when σ and ν increase, the CVaR value

increases as well.

Table ?? also shows the effect of adjusting the standard deviation. It is also inter-

esting to note that the CVaR value increases as the standard deviation goes up, and we

can see that if σ = 0.1206, the portfolio can lose money because CVaR is a positive num-

ber. As can be seen, with σ = 0.16, VaR and CVaR are positive values, implying that the

portfolio has a 95% probability of generating more than $814, 298.3118 and the average

amount of the loss function that exceeds the VaR value is $1, 572, 524.8320. Additionally,
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Table 4.7: The expectation, the standard deviation, the 95%VaR and 95%CVaR of
the CVaR minimization portfolio.

Required return Expectation Standard deviation VaR CVaR
(×100%) ($) ($) ($) ($)

4 500,025.9123 173,296.0617 -277,025.8312 -182,627.4672
5 599,853.2901 253,386.0246 -279,989.0965 -165,062.9223
6 699,768.4104 298,425.7639 -317,810.8022 -135,336.4001
7 799,545.7056 372,815.1428 -304,771.7842 -95,465.9161
8 899,212.1172 440,351.6925 -281,516.9284 -48,169.4726
9 998,947.5817 508,836.1415 -247,517.7584 8,816.5003
10 1,098,684.8730 571,959.8916 -197,953.5713 80,554.9436
11 1,198,304.1340 599,717.5156 -236,811.8675 187,709.4893
12 1,297,901.3660 634,393.7524 -164,292.9537 338,779.0353
13 1,397,502.2780 679,316.5099 -87,777.0852 499,900.0343
14 1,497,063.0400 733,950.0379 -8,537.3502 669,934.6554
15 1,596,580.3840 796,464.7948 69,961.1988 847,590.6633

Figure 4.13: The graph of the CVaR value with other required returns.

Figure ?? presents that the CVaR values slightly go up in σ ∈ [0.01, 0.08) and increase

rapidly in σ ∈ [0.08, 0.18). Similarly, the results after changing ν are shown in Table ??.

When ν rises up, our CVaR value increases. It implies that ν has a minor impact on the

CVaR value as shown in Figure ??.

Meanwhile, the expected rate of return has an influence on the expectation, stan-

dard deviation, 95%VaR, and 95%CVaR, as shown in Table ??. This has an impact on

the profit of the selected portfolio. Furthermore, Figure ?? displays that if the required

return is increasing, we may make more losses since the trend of the graph of the CVaR
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value with required returns is a log curve that is increasing. To summarize, high-risk

investments may offer higher returns than other investments, but they also expose your

money to more danger.

As a result of the growth of the CVaR values, our portfolios will be more sensitive

than the base-case if the values of the three factors (e.g., σ, ν and Q) increase. If we

compare the risky optimization portfolios with the base-case, we can see that they grow.

4.2 Asset-liability management for insurance companies

4.2.1 Indifference pricing

For indifference pricing, we solve the initial wealth that we should add in the port-

folio optimization with liability, and then we will attain the same CVaR value when we

consider the portfolio without liability. The mathematical model that are used to solve

these problems are defined in Equation (??). As we can see, the results of the indifference

pricing for buying and selling are shown in Table ??. All selling prices are greater than

all buying prices for each required return. Moreover, the buying prices and the selling

prices decrease, while the required returns and CVaR values rise up.

Furthermore, if we change σ that affects the fluctuations of the options prices, the

indifference prices for selling become more than the indifference prices for buying. We

can see this in Figure ??.

Table 4.8: The 95%CVaR, buying prices and selling prices after minimizing the
CVaR of the liability portfolio (Indifference pricing).

Required return (×100%) CVaR ($) Buying prices ($) Selling prices ($)
10 80,555.00 9.10 11.12
11 171,040.00 6.47 7.10
12 162,970.00 6.09 6.30
13 159,150.00 5.77 5.92
14 156,030.00 5.60 5.64
15 153,580.00 5.30 5.34
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Figure 4.14: The graph of the indifference prices with any sigma value.

4.2.2 Accounting value

For the accounting value, we compute the initial wealth that we should include in

the portfolio optimization with liability, with the CVaR values equal to zero. A similar

equation with indifference pricing is considered, but the liability is changed. The solution

of the accounting value is displayed in Table ??. For each required return, all selling

prices are higher than all buying prices. Additionally, the selling and buying prices rise,

while the expected returns go up.

Table 4.9: The buying prices and selling prices after minimizing the CVaR of the
liability portfolio (Accounting Values).

Required return (×100%) Buying Price ($) Selling prices ($)
10 0.13 25.38
11 9.87 35.38
12 19.87 45.38
13 29.87 55.38
14 39.87 65.38
15 49.87 75.38



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

4.2.3 Hedging strategies

A hedge is a risk minimization strategy that is independent of the expected return.

As a result, if we consider super and sub-hedges, the prices of a hedging portfolio are the

lowest price and the highest price that can be paid in any scenario at a specific time in

the future.

Table ?? illustrates the prices of call options when we hedge a portfolio. In case

of super-hedging, we get that the unit price of the buying price is lower than the unit

price of selling. The prices of super-hedging are different from the prices of sub-hedging.

Moreover, Figure ?? presents the relation between hedging portfolio, liability, super-

hedge, and sub-hedge. This is when the hedging portfolio is the optimal portfolio with

liability minus the optimal portfolio without liability. The graph of the hedging portfolio

is a little bit shifted from strike 300 to strike 305. However, it is just between super-hedge

and sub-hedge and it is greater than the liabilities for all the strike prices.

Table 4.10: The hedge and the amount of money (W ) added after minimizing the
liability portfolio for call options in selling strategy.

Hedge Initial wealth ($) Unit price ($)
Super 5.6600× 104 5.66
Sub 5.3753× 104 5.38

Figure 4.15: The graph of the hedging strategy for selling price.
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In Chapter IV, we began with the optimization portfolio without any liabilities

and then collected the CVaR value for this strategy. Subsequently, we tried to find the

optimal value of the initial wealth that is added to this portfolio to achieve the same

CVaR value as the optimization portfolio without any liabilities or a CVaR value equals

to zero, which are the concepts of indifference pricing and accounting value, respectively.

Lastly, we considered the hedging strategy for call options. From all the results, we have

determined that the CVaR values depend on 3 parameters, which are σ, ν and Q. When

the required return equals to 1,400%, the indifference prices for selling and buying are

between the hedging prices. This means the prices after minimizing the portfolio with

liability are related to the definition. Next, we will conclude all results in Chapter V.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this chapter, we discuss the conclusion of this thesis and provide some possibilities

about future work.

5.1 Conclusions

In Chapter I, we studied the background of portfolio optimization, risk measures

i.e., variance, VaR and CVaR and the illiquid market that we are interested in. Moreover,

this chapter also explains the history of why we use CVaR as a risk measure for portfolio

optimization. In 1986, Markowitz [?] used mean-variance (MV) to measure the risk of

a portfolio. Many years later, the authors suggested other risk measures because it is a

symmetric distribution, so we can acquire the profit and loss with the same probability.

Rockafellar and Uryasev [?] proposed that CVaR is an alternative measure of risk because

CVaR has better properties than VaR, and a lot of the information on the loss can be

acquired from the distribution of loss function.

In Chapter II, we studied the properties of the coherent risk measures i.e., mono-

tonicity, positive homogeneity, sub-additivity, translation invariance and risk measures

such as the Mean-Variance (MV), the Value-at-Risk (VaR), and the Conditional Value-

at-Risk (CVaR) after that, we considered what is the appropriate risk measure that is a

coherent risk measure. We came to learn that CVaR is the only coherent risk measure

from all risk measures.

In Chapter III, we studied the value of options and the market, which are the

datasets that were used for consideration in this thesis. Moreover, we considered the

portfolio optimization by using CVaR, which allowed the portfolio optimization to be

separated into 2 parts. We defined the optimization model without liability. In addi-

tion, we adopted the simulation from the Monte Carlo method to the Gaussian Legendre
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quadrature. Next, we considered the portfolio that has a liability, then we studied more

information about indifference pricing, accounting value and the strategy of hedging. 

In Chapter IV, we demonstrated all the results that were used with the minimization

model in Chapter III. Firstly, we discussed the technique used to approximate the CVaR

value and then compared them. As the results show, the efficiency for solving this problem

of the Gaussian Legendre quadrature is better than the Monte Carlo technique because

it takes less time to compute and can be used to consider big data. Therefore, the

Gaussian Legendre quadrature method is the main tool. Additionally, we simulated the

option values by using the variance-gamma approximations since the daily stock index

has fat tails, then it becomes more suitable for the VG distribution than the normal

distribution. Moreover, we knew that the CVaR value depends on many parameters, such

as the standard deviation the confidence levels, σ, the variance rate ν and the expected

return Q. Lastly, this chapter also considered the portfolio having liabilities in case of

indifference prices and hedging strategies. The indifference prices for selling are higher

than for buying for the standard deviations and when we choose the expected return of

1,400%, the indifference prices become the interval of hedging prices.

In this thesis, CVaR is chosen to measure the risk of options portfolio. We minimize

CVaR of the options portfolio for reducing an investment risk. After optimizing portfolio,

we get the portfolio selection that covers two constraints such as a minimum risk and a

given expected return. From the experiments in Chapter IV, we knew that if we change

parameters (i.e., the standard deviation the confidence levels, σ, the variance rate ν

and the expected return Q), CVaR values change in the same direction. Furthermore,

we compute the new portfolio that include the liability. We consider in 3 parts. For

an indifference pricing and an accounting value, we get that the initial wealth which is

added into the portfolio is different when the required returns change because the required

return is one of effect parameters for CVaR values. However, the selling prices are greater

than the buying prices for all experiments. For hedging strategy, the super-hedge price

and sub-hedge price are upper bound and lower bound of indifference pricing at required

return 1,400%.
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5.2 Future work

We have made suggestions about potential future work that can be developed from

this thesis as follows.

• We are interested in the optimization of portfolio in other markets, i.e., S&P500

Index, Dow jones and Nikkei 225 because they are the large datasets, which draw

global interested in investment. 

• We will minimize the CVaR value for a larger period of times and multiple time

points, since in this thesis, we only considered the options in one period. 

• We would like to minimize the CVaR value and standard deviation at the same

time because the trends of both are similar.
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APPENDIX A : We present the background of Theorem ??. Since we would

like to minimize CVaR function that is represented in Definition ??. For this thesis, we

consider the one-dimension for simulating stock prices (ST ) at maturity time T so, we can

change the dimension of ST from Rn to R. Then, the auxiliary function for approximate

CVaR value is defined as:

Fβ(w,α) = α+
1

(1− β)

∫
ST∈R

[f(w, ST )− α]+p(ST ) dST ,

where

[f(w, ST )− α]+ =


f(w, ST )− α, f(w,ST )− α > 0,

0, f(w,ST )− α ≤ 0,

p(ST ) is the probability density function of ST .

• For Monte Carlo method, we suppose that S1
T , S

2
T , S

3
T , . . . , S

q
T is a sample set and a

number of simulated values is q values. Then, the auxiliary function can be written

as:

Fβ(w,α) = α+
1

(1− β)

(
1

q

) q∑
k=1

[f(w, ST )− α]+ ,

• For Riemann summation, we assume that the number of simulated values Si
T is n

values where the interval of simulation values is [a, b]. Then, the auxiliary function

can be defined as:

Fβ(w,α) = α+
1

(1− β)

n∑
i=1

[f(w, ST )− α]+ p(Si
T )∆ST ,

= α+
1

(1− β)
p(ST )∆ST

n∑
i=1

[
f(w,Si

T )− α
]+

,

where Si
T = a+ i∆ST , ∆ST =

b− a

n
and p(ST ) is the probability density function

of ST .
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• For Gaussian Legendre quadrature, we use the stock prices from the solution of

Gaussian polynomial. We assume that the loss function f(w,ST ) = −
∑n

i=1

[
wiRi(S

k
T )
]

and the asset’s return (Ri(S
k
T )) is determined in Table ??. Then, we can define the

auxiliary function. It can be written as:

Fβ(w,α) = α+
1

(1− β)

q∑
k=1

[f(w, ST )− α]+ p(Sk
T )mk,

= α+
1

(1− β)

q∑
k=1

[
−

n∑
i=1

[
wiRi(S

k
T )
]
− α

]+
p(Sk

T )mk,

where Sk
T is the point from the Gaussian polynomial on the interval [0, c], where

c is a large number, p(Sk
T ) is a probability density function of Sk

T and mk is the

corresponding weight of Sk
T .
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In Appendix B, we show the Mathlab code to optimize the CVaR value of the

portfolio and compare the VaR value and the CVar value for each portfolio after changing

the parameters that effect these values. Next, we will calculate the indifference pricing for

selling and buying. Finally, we will solve the hedging price that is suitable for reducing

the risk of adverse price movements in options.

APPENDIX B1 : The coding of the Monte Carlo technique for the simulation

of the underlying prices using the Black Scholes model.
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APPENDIX B2 : The coding of the computational matrix of all return values.

APPENDIX B3 : The coding of the simulated underlying prices using the vari-

ance gamma distribution.
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APPENDIX B4 : The coding of the probability density function for each simu-

lated underlying prices, which is simulated using the variance gamma distribution.

APPENDIX B5 : The coding of the cvarMinimization function, which is mainly

the function used to find the optimal portfolio with the CVaR risk measure.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68

APPENDIX B6 : The coding of the bisection function for finding the indifference

price and the accounting value.
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