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Chapter 1 Introduction 

1.1 Motivations and Rationales 

Value-at-Risk (VaR), defined by the expected loss minimum at the worst 

scenarios (that are usually counted by some proportion of all possible scenarios called 

the level of significance) in a period (called holding period), as illustrated in Figure 1, 

is widely used as a risk metrics by the business because of its straightforward concept. 

Especially, the financial industry generally acclaims the VaR to be one of well-known 

financial risk measurements. Then, the reasonable and practical estimation is needed 

to trace historical loss risk, project loss probability in the future, and compare loss risk 

by time and across the industry. However, there are two major branches of VaR 

estimation methods: parametric and non-parametric. 

 
Figure 1 The simple illustration for the concept of VaR 

 

Parametric VaR estimation methods, the more numerical and complicated 

branch, utilize time series models to describe behavior of financial returns under the 

assumption about their temporal relationship and their distribution of residuals. In 

conventional ways, the returns’ conditional volatility is predicted first, and the VaR is 

estimated using the prediction and the assumed distribution of residuals. Assumed the 

conditional variance has linear relations with square of previous residuals, the 

autoregressive conditional heteroskedastic (ARCH) model, first introduced by Engle 

(1982), is one of renown models to parametrize the returns’ volatility as a time series. 

Analogous to the combination of autoregression and moving averages as 

autoregressive moving average (ARMA) model, Bollerslev (1986) added the relation 

between present and past conditional volatilities to the ARCH model to form the 

   

Gain Loss 

The worst ⍺ 

(let say 0.05) 

of all 

possible 

scenarios 

How many loss at this point? → 𝑉𝑎𝑅𝛼 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
13 

generalized ARCH (GARCH) model that has been influential to practitioners and 

academics as discussed below. 

Branched from the original simple GARCH model, econometrists have 

developed many variations of GARCH model to response specific stylized facts of 

volatility as found in financial time series, as the hierarchy illustrated in Figure 2. 

 
Figure 2 The hierarchy of GARCH model variants, branched from the ARCH model 

of Engle (1982) 

 

One of the stylized facts is the leverage effect: the effect of residuals on the 

volatility depends on their signs, minus more than plus, as mentioned by Black (1976) 

and Nelson (1991). In order to reflect this fact in GARCH model, Glosten et al. 

(1993) proposed the addition of penalty terms for negative residuals, parallel to 

ARCH parameters, to modify the GARCH model variation that is commonly known 

as Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model. 

Also, there is a stylized fact, mentioned by Engle and Mustafa (1992) and 

Friedman et al. (1989), about the inversely proportional persistence to shock size: the 

larger shock size, the shorter persistence of effect on volatility. Unfortunately, this 

fact cannot be covered by the simple GARCH model. Hence, using of Markov chain 

process was adapted to ARCH model to cope with inversely proportional persistence 

first by Hamilton and Susmel (1994) and Cai (1994) as Markov switching ARCH 

(SWARCH) model, which is adapted to the Markov switching GARCH (MSGARCH) 

model by Gray (1996). Furthermore, the concept from Gray (1996) MSGARCH 

model was also improved to the adjusted model of Klaassen (2002) and the simplified 

model of Haas et al. (2004). 

The other stylized fact comes from the long memory properties of volatility in 

case that autocorrelation decreases hyperbolically by time, afterward, the sum of 

autocorrelation is infinite, as mentioned by Dacorogna et al. (1993) and Ding et al. 

(1993). Then, the variations of GARCH model with fractional exponent on residuals 

were developed. The prominent examples of fractional exponential GARCH models 

are the fractionally integrated GARCH (FIGARCH) model by Baillie et al. (1996) and 

the hyperbolic GARCH (HYGARCH) by Davidson (2004). Unlike other GARCH 

model variants, both FIGARCH and HYGARCH models allow fractional exponents 

that can expand to infinite series in the equations. The only difference between 
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GARCH
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IGARCH
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FIGARCH and HYGARCH models is about the stationarity. The more flexible 

HYGARCH model can be stationary in some cases, but the FIGARCH cannot. 
In contrast to parametric VaR estimation, non-parametric VaR estimation 

methods utilize the characteristics of returns to estimate the VaR directly without the 

assumption about returns’ distribution or relationship with other factors. Historical 

simulation (HS), proposed by Hendricks (1996), is one of famous non-parametric 

estimation, simply assuming that the distribution of returns is always identical to 

history. Also, Barone-Adesi and Giannopoulos (1996) introduced the filtered 

historical simulation (FHS) that is semi-parametric, the combination between the use 

the GARCH model as a parametric way to predict volatility and the traditional 

historical simulation for standardized returns as a non-parametric way. 

Consider the GJR-GARCH, MSGARCH, and HYGARCH models. As each 

model is developed to capture different stylized fact, unfortunately, a model cannot 

capture other stylized facts that the model is not designed to cope with. Consider 

especially when each model is used solely in the estimation of VaR. The GJR-

GARCH is admired by many literatures from its better response to sensitive change in 

data, but fewer number of parameters makes the GJR-GARCH theoretically worse in 

fitting in-sample data in comparison to other GARCH model variants. For the 

MSGARCH model that emphasizes the better reflection of after-shock effect, 

especially in long-term data, the study from Zhang et al. (2019) found the weakness of 

MSGARCH model when fitting to daily data: the MSGARCH model is less-fitted to 

data than other models like simple GARCH or GJR-GARCH models, but this 

problem is not found for weekly data. Unlike other models, the fractional exponential 

models like FIGARCH and HYGARCH models have benefit from their flexibility to 

fit the data better. However, the study of Degiannakis et al. (2013) showed 

indifference between the FIGARCH and GARCH models when estimating the VaR. 

Because using each of these GARCH model variants solely for estimation of 

VaR has its pros and cons, many literatures (Chen et al., 2012, Messaoud and Aloui, 

2015, Zhang et al., 2018, Stavroyiannis, 2018) decided that the only the model is not 

enough: it needs more complexity on noise distribution to alternatively improve 

model’s power on prediction. 

This research, however, tries the direct way to improve these models: focusing 

on improvement on equation to be more complex, while remaining simple noise 

distribution like the Gaussian or Student’s t distribution. One of interesting choices is 

combining between models to introduce a mixed model, following the prominent 

example of Hamilton and Susmel (1994) that the combination between the leverage of 

GJR-GARCH model and the Markov process was found. 
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Consider all possible combinations among the GJR-GARCH, MSGARCH, 

and HYGARCH models. If all three models are combined to produce a mixed model, 

its equation becomes too complicated in implementation sense. The combination 

between the GJR-GARCH and MSGARCH is identical to prior study of Hamilton and 

Susmel (1994). Consequently, there are two remaining combinations that is not found 

in previous studies, the HYGARCH model with GJR-GARCH model, and the 

HYGARCH model with MSGARCH model. 

As mentioned before, the HYGARCH model seems to compensate the GJR-

GARCH or MSGARCH model in problem of data fitting. Thus, this research decides 

to combine the feature of HYGARCH model with GJR-GARCH or MSGARCH 

model regarding two advantages: these model combinations could fit to data better 

due to the strength of HYGARCH model, and the problem of data overfitting in 

HYGARCH model could be avoided by the strength of other model (GJR-GARCH or 

MSGARCH) in these combinations. 

However, the worthiness of combination is important to consider in this 

research. Firstly expected, these mixed models should predict the VaR better than 

their pair of base models. This expectation confirms the righteousness to combine 

these GARCH model variants together. Another expectation is about the competency 

versus simulation-based methods. If the model combination cannot advance the 

straightforward HS method, it is not economical to implement that mixed model for 

poorer prediction than the prediction from the simulation. Thus, the mixed model 

should prosper the HS and the semi-parametric FHS methods. 

 

1.2 Research Question 

Given three GARCH model variants (GJR-GARCH, Haas et al. (2004) 

MSGARCH, and HYGARCH) mentioned above, let two mixed models, proposed in 

this research, are formulated using the characteristics of each combinations between 

two base models as denoted in the following table: 

Table 1 Combination between GARCH model variants formulated in this study 

 HYGARCH 

(Davidson, 2004) 

GJR-GARCH 

(Glosten et al., 1993) 

Mixed Model 1: 

HY-GJR-GARCH 

MSGARCH 

(Haas et al., 2004) 

Mixed Model 2: 

HY-MS-GARCH 

 

Are these mixed models better in estimation and prediction of 1-day VaR than 

their base models, the historical simulation, and the filtered historical simulation? 
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Considering prediction accuracy, autoregressive independence, and effect when the 

estimated VaR is violated by realized losses, how are these models better? 

Consider the fractional exponential feature in HYGARCH model. The studies 

from Wu and Shieh (2007) and Charfeddine (2016) showed the superiority of 

fractional exponential feature in FIGARCH model that makes the model better than 

typical GARCH in prediction of VaR. Thus, it can be inferred that combining GJR-

GARCH or MSGARCH model with HYGARCH model should boost prediction 

accuracy, boost autoregressive independence, and reduce excess losses under the VaR 

estimation to the mixed models against their own base models and, also, historical 

simulations. 

Generally compared between GJR-GARCH and MSGARCH models, the 

GJR-GARCH model has higher prediction accuracy, higher autoregressive 

independence, and less negative difference whether the realized returns penetrate the 

VaR estimation, than the MSGARCH model. Thus, while comparing between two 

mixed models, the first mixed model with GJR-GARCH feature could be expected 

more effective than the second model.  
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Chapter 2 Literature Review 
2.1 GJR-GARCH model in the econometrics world 

The GJR-GARCH model is well-known for its ability to capture the 

consequence from leverage effects. This benefit was first confirmed by Engle and Ng 

(1993) empirical results. In case study of Japanese TOPIX index since 1980 to 1988, 

the GJR-GARCH model was the best fitting model against prior GARCH model 

variants, i.e., the standard GARCH and exponential GARCH (EGARCH) model. In 

addition, the GJR-GARCH model can surpass the EGARCH model in parametrization 

of the impact on negative returns, as the EGARCH model overestimates this impact in 

extreme cases, but the GJR-GARCH model does not. 

Furthermore, there are several studies on its application to estimate and 

forecast the VaR. One way to study is comparison between models. Su et al. (2011) 

used the GJR-GARCH model to forecast the VaR of simulated portfolios in 

comparison to the standard GARCH. Accompanied with conditional mean models 

and periodic updates in estimation, the GJR-GARCH is appropriate to calculate the 

VaR. 

Also, the GJR-GARCH is also mentioned as a benchmark for further models. 

Louzis et al. (2014) chose the GJR-GARCH as a benchmark against the asymmetric 

heterogenous autoregressive (HAR) model to compete in estimation of VaR. After the 

study on various financial data represented each asset class, the results showed that 

the GJR-GARCH models with skewed Student’s t distribution, extreme value theory 

(EVT), and the FHS are accredited for their accuracy but not enough efficient for 

applications about capital requirements. Bams et al. (2017) placed the GJR-GARCH 

against the HS and implied volatility in the competition of VaR estimation. Based on 

American stock indices data, the VaR using GJR-GARCH model outperformed other 

rivals. 

There are also the works that focused on the proposal of GJR-GARCH model 

variants or various distributions in use with the GJR-GARCH model. Chen et al. 

(2012) worked on the GJR-GARCH model with asymmetric Laplace distribution. 

With the empirical tests on data of market indices and exchange rates, the proposed 

GJR-GARCH model was suggested better than the GJR-GARCH model with 

Student’s t distribution and several conventional ways to estimate the VaR. Messaoud 

and Aloui (2015) proposed the GJR-GARCH model with the EVT and copula, along 

with empirical results on emerging market indices. Zhang et al. (2018) adapted the 

dynamic spatial panel to the GJR-GARCH model that resulted more accurate VaR 

prediction for world major market indices than the prediction from its base models. 

Stavroyiannis (2018) utilized the GJR-GARCH model with standardized Pearson 

type-IV distribution to the application on price of digital currency Bitcoin that proved 
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how the GJR-GARCH model can reflect the higher risk of Bitcoin than typical 

financial assets. 

2.2 Markov switching GARCH in competition with the single-regime one 

Like the older GJR-GARCH model, there are many studies dedicated to the 

MSGARCH model, especially the MSGARCH model of Haas et al. (2004). In its 

specified application of predicting the VaR, Ardia et al. (2018) and Ardia et al. (2019) 

both used the MSGARCH model that is mentioned “the most natural and 

straightforward extension” to the GARCH model for the computation of VaR of 

different assets: stocks and exchange rates for Ardia et al. (2018), and digital currency 

rate of Bitcoin for Ardia et al. (2019). The following conclusion came that the 

MSGARCH model is more compatible with the equities, but the application of 

MSGARCH model usually benefits even when applied to other assets. 

Both works applied the Markov process to the standard GARCH and GJR-

GARCH models. However, some studies focused only on the Markov switching GJR-

GARCH model. Sampid et al. (2018) proposed the specific use of the MSGARCH 

model with GJR-GARCH extension, skewed Student’s t distribution, copula 

transformation, and EVT, on the VaR calculation based on stock prices. A similar 

study came from Liao et al. (2019), but the model with simpler symmetric Student’s t 

distribution was preferred instead. 

One of the characteristics of the MSGARCH model is about fittingness to the 

data. Mentioned in Charfeddine (2016), the 3-regime MSGARCH model with 

Student’s t distribution is the most fitting model to the commodity future prices in 

comparison to other GARCH variants with the same distribution. However, the 

drawback of MSGARCH model comes from the highest number of parameters that 

compensate the fittingness. In overall, the MSGARCH model is not better than long-

memory GARCH models. 

2.3 The FIGARCH models in empirical use cases 

Like priorly mentioned GJR-GARCH and MSGARCH models, the application 

of fractional exponential GARCH models for VaR estimation was studied due to the 

long memory in financial data. As the oldest fractional exponential GARCH model, 

the FIGARCH model is the most mentioned one. Wu and Shieh (2007) used T-bond 

interest rate future prices as a case study to prove the difference between the 

FIGARCH and GARCH models. Although the in-sample results showed the 

indifference, the out-sample results suggested that the FIGARCH model with skewed 

Student’s t distribution was the most preferable model in comparison to the 

FIGARCH and GARCH models with normal, Student’s t, and skewed Student’s t 

distributions. This phenomenon was also confirmed in the study of Charfeddine 

(2016) with commodity future prices. The FIGARCH and the fractionally integrated 
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exponential GARCH (FIEGARCH) models were the most preferable models 

according to both in-sample and out-sample results. Charfeddine (2016) also 

suggested that the weekly frequency is the appropriate one to observe long memory in 

commodity future prices. 

As many studies preferred the FIGARCH model among other GARCH model 

variants, the FIGARCH model itself was used as a risk metric. Sukono et al. (2017) 

and Biage (2019) both used the FIGARCH model for VaR calculation to reflect the 

market risk in stock prices. Sukono et al. (2017) used the FIGARCH-modeled 

conditional variance, together with the ARMA-modeled conditional mean, for the 

market risk comparison between Indonesian stocks. In a different perspective, Biage 

(2019) used the sole FIGARCH model for the different comparison between 

constituents in American DJIA index and those in Brazilian Ibovespa index to 

compare the efficiency between markets. 

2.4 FIAPARCH model: implication to some gap? 

Also, there was much effort to adapt the fractional exponential characteristics 

to prior ARCH and GARCH models’ variations after the FIGARCH model. The 

HYGARCH model of Davidson (2004), mentioned above, is one of prominent 

examples. However, there is the fractionally integrated APARCH (FIAPARCH) 

model of Tse (1998) that was proposed before the HYGARCH model. Tse (1998) 

applied fractional exponential feature to the asymmetric power ARCH (APARCH) 

model of Ding et al. (1993) to introduce the FIAPARCH model. Tse (1998) 

demonstrated indifference between prior APARCH and new FIAPARCH models 

when estimating the volatility parameter of daily yen-dollar exchange rate from 1978 

to 1994 and the daily maintenance margin needed for trading the rate’s future. 

As seen from Figure 3, although the APARCH model equation with power 

parameter of two is considered equivalent to the GJR-GARCH model, their 

formations come from different perspectives: APARCH works on absolute value of 

residuals, but GJR-GARCH works on dummy variable on residuals. For the 

combination between FIGARCH and APARCH models, they become the 

FIAPARCH. If the FIGARCH model is replaced by the more flexible HYGARCH 

model, and the APARCH model is substituted by the more specified GJR-GARCH 

model, what will become from this combination? Hence, this research dedicates effort 

to adapt the fractional exponential characteristics to the case study of GJR-GARCH 

model, the mixed model 1 in the research question, that is difference from the prior 

study on the FIAPARCH model. 
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Figure  3 Illustration of the literature gap as seen from the invention of FIAPARCH 

model 

 

2.5 FIGARCH, HYGARCH, and FIAPARCH models: who wins in 

comparison? 

Afterward, the FIGARCH, HYGARCH, and FIAPARCH models were usually 

mentioned together in the comparison of fractional exponential GARCH models. For 

the application of VaR calculation, there are Tang and Shieh (2006), Aloui and 

Mabrouk (2010), Demiralay and Ulusoy (2014), Mabrouk (2016), and Buberkoku 

(2019). The skewed Student’s t distribution was preferred by almost all these works, 

excluded Demiralay and Ulusoy (2014) that mentioned only symmetric distributions. 

In comparison between models, Aloui and Mabrouk (2010), Demiralay and Ulusoy 

(2014), and Mabrouk (2016) unanimously suggested the outperformance of the 

FIAPARCH model beyond the FIGARCH and HYGARCH models in various cases. 

However, Buberkoku (2019) disagreed with these results. After the test with various 

financial data, the HYGARCH model won all other models, the FHS, and the HS in 

the estimation of short-positioned VaR. Moreover, all models could not perform 

better than the FHS in long-positioned VaR estimation. However, in the pair 

comparison between the FIGARCH and HYGARCH models, Tang and Shieh (2006) 

did not incline to only one model due to the empirical results on stock index future 

prices that each model performed better on some data set. 

2.6 When fractional exponential GARCH meets Markov process 

Since this research concentrates on the combination between asymmetry 

GARCH and fractional exponential GARCH models, the combinations between 

models in literature are reviewed. For the combination between Markov switching 
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process and fractional exponential GARCH models, Basatini and Rezakhah (2020) 

proposed the way to apply the Markov process to the smooth transition HYGARCH 

(ST-HYGARCH) model from Basatini and Rezakhah (2019) as the Markov switching 

smooth transition HYGARCH (MSST-HYGARCH) model. Basatini and Rezakhah 

(2020) also demonstrated how better the MSST-HYGARCH model can do than the 

ST-HYGARCH model and HYGARCH model from the case study of daily VaR 

prediction on S&P 500 and DJIA indices. 

 
Figure 4 The literature gap as seen from Basatini and Rezakhah (2019) to Basatini 

and Rezakhah (2020) 

 

As seen in Figure 4, the way to MSST-HYGARCH model in the literatures 

comes in order of smooth transition before the Markov process. However, there is an 

alternative way that the Markov process might apply to the HYGARCH model before 

smooth transition that Basatini and Rezakhah (2020) did not cover. What will happen 

if the Markov switching feature is applied to HYGARCH model? This question will 

be concerned in this research with the introduction of mixed model 2 in the research 

question. 

Different from Basatini and Rezakhah (2020), Bildirici and Ersin (2014) made 

use of Markov switching process to the fractional exponential FIAPARCH model 

combining with the autoregressive moving average (ARMA) model. However, the 

MS-ARMA-FIAPARCH model was not the main player in the research. The MS-

ARMA-FIAPARCH model was used as the noise model under the neural network, 

following the previous concept introduced by Spezia and Paroli (2008), to directly 

predict stock returns demonstrated by the Istanbul Stock Index ISE 100. This concept 

of using GARCH models under the more complicated neural network is interesting. 

However, when the neural network with GARCH noises is in use, the perspective is 

too close to the accuracy of the model, not the quantitative parameter estimated from 

HYGARCH 
(Davidson, 2004) 

Smooth Transition HYGARCH 
(ST-HYGARCH) 

(Basatini and Rezakhah, 2019) 

Markov Switching ST–HYGARCH 
(MSST-HYGARCH) 

(Basatini and Rezakhah, 2020) 
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the model to interpret for business. Hence, this research does not cover this 

complicated use of GARCH models and directly uses modified GARCH models as 

the main characteristics to predict the VaR.  
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Chapter 3 Methodology 

3.1 Models 

3.1.1 Generalized autoregressive conditional heteroskedastic (GARCH) model 

Assumed the returns 𝑟𝑡 is temporally constant around the mean 𝜇𝑡: 

𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡, (1) 

 

and the residual 𝜖𝑡 is a random variable with the variance 𝜎𝑡
2: 

𝜖𝑡 = 𝜂𝑡𝜎𝑡 , (2) 

 

so that 𝜂𝑡 is independent and identically distributed (i.i.d.) with zero mean and 

unit variance, conditionally on 𝜎𝑡 and ℐ𝑡−1, the information as of time 𝑡 − 1, the 

generalized ARCH (GARCH) model for the variance, developed by Bollerslev (1986) 

on the base of Engle (1982) ARCH model, can be formulated as follows: 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2  (3) 

 

where 𝑝 > 0, 𝑞 ≥ 0, 𝜔 > 0, 𝛼𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑞, 𝛽𝑗 ≥ 0 ∀𝑗 = 1, … , 𝑝. 

Mark that the terms 𝜔, 𝛼𝑖 and 𝛽𝑖 are respectively called the constant, ARCH 

coefficients, and GARCH coefficients, 𝑝 is the number of lagged variances in use for 

the model, and 𝑞 is the number of lagged residuals. The numbers 𝑝 and 𝑞 are 

commonly denoted when referred to the GARCH model as the GARCHሺ𝑝, 𝑞ሻ model, 

for example, the GARCHሺ1,2ሻ model contains two lagged residuals and one lagged 

variance in the formulation. However, the equation (3) can be rewritten using the lag 

operators: 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2 , 

𝜎𝑡
2 − 𝛽1𝜎𝑡−1

2 − ⋯ − 𝛽𝑝𝜎𝑡−𝑝
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞
2 , 

(1 − 𝛽1𝐿 − ⋯ − 𝛽𝑝𝐿𝑝)𝜎𝑡
2 = 𝜔 + (𝛼1𝐿 + ⋯ + 𝛼𝑞𝐿𝑞)𝜖𝑡

2. 

(3) 

 

(4) 

 

Let the coefficient functions be defined: 

𝛼ሺ𝑥ሻ = ∑ 𝛼𝑖𝑥
𝑖

𝑞

𝑖=1

, 𝛽ሺ𝑥ሻ = ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑗=1

. 

The equation (4) can be rewritten as 

[1 − 𝛽ሺ𝐿ሻ]𝜎𝑡
2 = 𝜔 + 𝛼ሺ𝐿ሻ𝜖𝑡

2. (5) 
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This formulation with lag operators and coefficient functions is convenient for 

further descriptions about GARCH model variations. The stationarity of the GARCH 

model occurs if and only if 𝛼ሺ1ሻ + 𝛽ሺ1ሻ < 1. Note that the i.i.d. 𝜂𝑡 needs the 

assumption about its distribution, commonly normal (Gaussian) or Student’s t 

distribution, that define the likelihood function for the estimation step that commonly 

uses the maximum likelihood (ML) or quasi-maximum likelihood (QML) estimation 

process. Given the number of observations to estimate the model is 𝑇, if 𝜂𝑡 is assumed 

normal distributed, the log-likelihood function of the model is 

𝐿𝐿𝒩 = −
𝑇 ln 2𝜋

2
−

1

2
∑ሺln 𝜎𝑡

2 + 𝜂𝑡
2ሻ

𝑇

𝑡=1

. (6) 

 

If 𝜂𝑡 is assumed Student’s t-distributed with the degree of freedom 𝜈 instead, 

the log-likelihood function is (Bollerslev, 1987) 

𝐿𝐿𝑡,𝜈 = 𝑇 (ln Γ (
𝜈 + 1

2
) − ln Γ (

𝜈

2
) −

lnሺ𝜈 − 2ሻ

2
) −

1

2
∑ [ln 𝜎𝑡

2 + ሺ1 + 𝜈ሻ ln (1 +
𝜂𝑡

2

𝜈 − 2
)]

𝑇

𝑡=1

 (7) 

 

where 𝜈 > 2. Note that Γሺ∙ሻ is the Gamma function. 

In order to use the GARCH model to forecast the VaR at 1 − 𝛼 (commonly 95 

or 99 percent) confidence level and one-day holding period, denoted the 𝑉𝑎𝑅𝑡
𝛼, for 

the long position (that is only concerned in this research), first, the parameters in the 

model are estimated using historical data (practically recent return data of some 

sufficiently long period, i.e., 100 days). Next, the ahead conditional variance 

𝐸[𝜎𝑡ȁℐ𝑡−1] is forecasted. For example of the GARCHሺ1,1ሻ model, 

E[𝜎𝑡ȁℐ𝑡−1] = ሺE[𝜎𝑡
2ȁℐ𝑡−1]ሻ

1
2 = (𝜔̂ + 𝛼1̂𝜖𝑡−1

2 + 𝛽1̂E[𝜎𝑡−1
2 ȁℐ𝑡−1])

1
2. (8) 

 

The above assumption about the distribution of 𝜂𝑡 demands the final formula 

to calculate the VaR. If assumed normal, the formula is 

𝑉𝑎𝑅𝑡
𝛼 = 𝜇𝑡 + Φ−1ሺ𝛼ሻE[𝜎𝑡ȁℐ𝑡−1] (9) 

 

where Φሺ∙ሻ is the cumulative distribution function (CDF) of the normal 

distribution. For the assumption of Student’s t-distribution, the formula is 

𝑉𝑎𝑅𝑡
𝛼 = 𝜇𝑡 + 𝑡𝜈

−1ሺαሻE[𝜎𝑡ȁℐ𝑡−1] (10) 

 

where 𝑡𝜈ሺ∙ሻ is the CDF of Student’s t-distribution with degree of freedom 𝜈. 
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3.1.1.1 Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model 

Given the returns 𝑟𝑡 be defined by the equations (1) and (2) and their 

additional assumptions, the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) 

model for the variance is defined by the following formulation: 

[1 − 𝛽ሺ𝐿ሻ]𝜎𝑡
2 = 𝜔 + [𝛼ሺ𝐿ሻ + 𝛾ሺ𝐿ሻ𝐼𝑡]𝜖𝑡

2 (11) 

 

where 𝐼𝑡 is a dummy variable defined as the following function: 

𝐼𝑡 = {
1, 𝜖𝑡 < 0
0,  otherwise

 (12) 

 

and the additional coefficient function 𝛾ሺ𝑥ሻ is defined as 

𝛾ሺ𝑥ሻ = ∑ 𝛾𝑖𝑥
𝑖

𝑞

𝑖=1

. 

Glosten et al. (1993) studied the empirical observation on CRSP value-

weighted index of NYSE stocks, and one of the conclusions was that the variance 

increases when the returns decrease below the expectation. Hence, the research 

proposed this modification for Bollerslev (1986) GARCH model. This model, named 

after the contributors as the GJR-GARCH model, allows difference responses on 

conditional volatility for positive and negative residuals. 

Glosten et al. (1993) also suggested that the coefficient 𝛾𝑖 is positive a priori. 

However, any 𝛼𝑖 + 𝛾𝑖 might be negative, even 𝜎𝑡
2 in some cases. For the specific case 

of the GJR-GARCHሺ1,1ሻ model with a symmetric distribution, the stationarity of the 

model exists when 𝛼1 + 𝛽1 + 𝛾1/2 < 1. 

3.1.1.2 Markov switching GARCH (MSGARCH) model 

After the Markov switching ARCH (SWARCH) model of Hamilton and 

Susmel (1994), Gray (1996), Klaassen (2002), and Haas et al. (2004) proposed the 

Markov switching GARCH (MSGARCH) models as the extension of SWARCH 

model. Although the MSGARCH models of Gray (1996) and Klaassen (2002) are the 

basement for further MSGARCH model by Haas et al. (2004), only the last models 

are considered to utilize in this research. However, the understanding about 

MSGARCH model of Gray (1996) and Klaassen (2002) is needed to describe the 

concept of the last MSGARCH model. Hence, the Gray (1996) and Klaassen (2002) 

MSGARCH model are explained briefly before. 
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3.1.1.2.1 Gray (1996) MSGARCH model 

Given the returns 𝑟𝑡 have behaviors described by the equation (1) and (2) and 

the condition like the simple GARCH model’s prerequisites, assumed that the 

volatility of return follows a Markov chain process with finite 𝐾 states, the 

conditional variance at time 𝑡 and state 𝑘, E[𝜎𝑡
2ȁ𝑆𝑡 = 𝑘], as denoted afterward as 𝜎𝑡,𝑘

2 , 

is described as the formulation below: 

𝜎𝑡,𝑘
2 = 𝜔𝑘 + 𝛼1,𝑘𝜖𝑡−1

2 + 𝛽1,𝑘E[𝜎𝑡−1
2 ȁℐ𝑡−2] 

= 𝜔𝑘 + 𝛼1,𝑘𝜖𝑡−1
2 + 𝛽1,𝑘 ∑ pሺ𝑆𝑡−1 = 𝑙ȁℐ𝑡−2ሻ𝜎𝑡−1,𝑙

2

𝐾

𝑙=1

 

 

(13) 

 

As the descendant from SWARCH model, the Gray (1996) MSGARCH model 

used the expectation of lagged conditional variance to reduce the issue of path 

dependency found when SWARCH model is in use. Consider a Markov chain process 

with finite 𝐾 states and 𝑇 intervals of observations. According to the SWARCH 

model, each of 𝐾𝑇 possible paths in the overall process have their own conditional 

variances that depend on their paths. But for the Gray (1996) MSGARCH model, the 

final conditional variance for each path depends on only the final state, not the whole 

path. 

3.1.1.2.2 Klaassen (2002) MSGARCH model 

Given the same preconditions like Gray (1996) MSGARCH model’s, the 

Klaassen (2002) formulation for the conditional variance 𝜎𝑡,𝑘
2  is 

𝜎𝑡,𝑘
2 = 𝜔𝑘 + 𝛼1,𝑘𝜖𝑡−1

2 + 𝛽1,𝑘E[𝜎𝑡−1
2 ȁℐ𝑡−1, 𝑆𝑡 = 𝑘] 

= 𝜔𝑘 + 𝛼1,𝑘𝜖𝑡−1
2 + 𝛽1,𝑘 ∑ pሺ𝑆𝑡−1 = 𝑙ȁℐ𝑡−1, 𝑆𝑡 = 𝑘ሻ𝜎𝑡−1,𝑙

2

𝐾

𝑙=1

. 

 

(14) 

 

In comparison to Gray (1996) MSGARCH model equation as shown in the 

equation (13), Klaassen (2002) decided to condition the expectation of lagged 

variance by the information to timestamp 𝑡 − 1 and the current state, which is slightly 

different from the equation (13) of Gray (1996). 

However, to define the stationarity of Klaassen (2002) MSGARCH model is 

more complicated in comparison to the stationarity of a single-regime GARCH 

model. Consider the 2-regime MSGARCH model. Given the 2-by-2 matrix 𝐴 with 

elements 𝐴𝑖𝑗 = (𝛼1,𝑖 + 𝛽1,𝑖)pሺ𝑆𝑡+1 = 𝑗ȁ𝑆𝑡 = 𝑖ሻ, and the 2-by-2 identity matrix 𝐼2, the 

model is concerned stationary if the elements 𝐴11 and 𝐴22 are less than one, the 

determinant of 𝐼2 − 𝐴 is positive, the stationarity for the GARCH models from each 

regime exists, and the corresponding Markov chain has long-run distribution. 
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3.1.1.2.3 Haas et al. (2004) MSGARCH model 

Same preconditions as Gray (1996) and Klaassen (2002) MSGARCH models, 

the formulation for the conditional variance 𝜎𝑡,𝑘
2  proposed by Haas et al. (2004) is like 

the equation of standard GARCH model: 

𝜎𝑡,𝑘
2 = 𝜔𝑘 + 𝛼1,𝑘𝜖𝑡−1

2 + 𝛽1,𝑘𝜎𝑡−1,𝑘
2 . (15) 

 

Haas et al. (2004) freed the lagged conditional variance term from its 

expectation and conditions to make the model simpler so that the GARCH model 

equation can be used independently across regimes. 

Although the Haas et al. (2004) GARCH equation is simpler in comparison to 

the GARCH equation of Klaassen (2002), the condition for its stationarity is more 

complex. Consider the case of 2-regime GARCH model previously mentioned to 

describe Klaassen (2002) MSGARCH model’s stationarity. Let the elements in 𝐴 be 

substituted by the 2-by-2 matrix such that 𝐴𝑖𝑗 = {diag(𝛽1,1, 𝛽1,2) +

(𝛼1,1, 𝛼1,2)𝑒𝑖
′}pሺ𝑆𝑡+1 = 𝑖ȁ𝑆𝑡 = 𝑗ሻ where 𝑒𝑖 is the 𝑖th 2-by-1 unit vector, i.e., 𝑒1 =

ሺ1,0ሻ and 𝑒2 = ሺ0,1ሻ. Then, 𝐴 becomes a 4-by-4 matrix, and the 4-by-4 identity 

matrix 𝐼4 is needed. To meet the stationary condition, all eigenvalues of 𝐴 are needed 

to lie in a unit circle, in the other word, all absolute values of eigenvalues of 𝐴 must 

be less than one. 

3.1.1.3 Hyperbolic GARCH (HYGARCH) model 

Given the same basements about returns 𝑟𝑡 as mentioned by equations (1) and 

(2), like the standard GARCH model’s, the equation for the hyperbolic GARCH 

(HYGARCH) model is 

𝜎𝑡
2 = 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + {1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻ[1 + 𝛼[ሺ1 − 𝐿ሻ𝑑 − 1]]} 𝜖𝑡

2 (16) 

 

where 0 < 𝛼 < 1, 0 < 𝑑 < 1, 𝜙ሺ𝑥ሻ = ∑ 𝜙𝑖𝑥𝑖𝑝
𝑖=0  is a polynomial function with 

degree 𝑝, and the exponential term ሺ1 − 𝐿ሻ𝑑 is defined by the sum of infinite lag 

operator polynomials: 

ሺ1 − 𝐿ሻ𝑑 = ∑ 𝜋𝑢𝐿𝑢

∞

𝑢=0

= ∑ [∏
𝑣 − 1 − 𝑑

𝑣

𝑢

𝑣=1

] 𝐿𝑢

∞

𝑢=0

. 

Note that all solutions for equations 𝜙ሺ𝑥ሻ = 0 and 1 − 𝛽ሺ𝑥ሻ = 0 are needed to lie 

outside the unit circle, in the other words, all absolute values of roots of these 

equations are more than or equal one. 
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Before the HYGARCH model is described on details, the understanding on the 

fractionally integrated GARCH (FIGARCH) model is urgent regarding the fact that 

the HYGARCH model stems from the base of FIGARCH model. Thus, in this 

section, the FIGARCH model is also described to explain the early concept of 

fractional exponents on GARCH model variants, although the FIGARCH model has 

less role than the HYGARCH model in this research. 

Baillie et al. (1996) introduced the FIGARCH model as the “long-memory” 

GARCH model after the integrated GARCH (IGARCH) by Engle and Bollerslev 

(1986). As prior empirical studies about financial asset price data had shown the long 

memory in autocorrelation of their volatility, the fractional exponential characteristic 

of autoregressive fractionally integrated moving average (ARFIMA) model of 

Granger and Joyeux (1980) was applied to the GARCH model, analogous to Engle 

and Bollerslev (1986) adaptation of autoregressive integrated moving average 

(ARIMA) model with the concept of GARCH model to introduce the IGARCH 

model. As the conditional variance in GARCH model is an analogy for the 

conditional mean in the autoregressive integrated moving average (ARMA) model, 

the FIGARCH model is also analogous to the ARFIMA model. Given 𝜈𝑡 = 𝜖𝑡
2 − 𝜎𝑡

2, 

the GARCH equation (5) can be rewritten as 

[1 − 𝛼ሺ𝐿ሻ − 𝛽ሺ𝐿ሻ]𝜖𝑡
2 = 𝜔 + [1 − 𝛽ሺ𝐿ሻ]𝜈𝑡 (17) 

 

that is analogous to the ARMAሺ𝑚, 𝑞ሻ model where 𝑚 = max{𝑝, 𝑞}. In case that the 

polynomial 1 − 𝛼ሺ𝐿ሻ − 𝛽ሺ𝐿ሻ has a unit root, 1 − 𝛼ሺ𝐿ሻ − 𝛽ሺ𝐿ሻ can be defactorized as 

𝜙ሺ𝐿ሻሺ1 − 𝐿ሻ𝜖𝑡
2 = 𝜔 + [1 − 𝛽ሺ𝐿ሻ]𝜈𝑡 (18) 

 

and the corresponding GARCH model is defined as the IGARCH model. Analogous 

to the ARIMA model that the conditional difference of mean plays the role like 

conditional mean in the ARMA model, the conditional difference of volatility 

ሺ1 − 𝐿ሻ𝜖𝑡
2 in the IGARCH model also plays the same role as 𝜖𝑡

2 in the standard 

GARCH model. As the ARFIMA model replaces ሺ1 − 𝐿ሻ in the ARIMA model with 

the fractional exponential polynomial ሺ1 − 𝐿ሻ𝑑, providing the opportunity to 

formulate the long memory (in sense of autocorrelation) of returns, the equation for 

the FIGARCH model also comes by replacing ሺ1 − 𝐿ሻ with ሺ1 − 𝐿ሻ𝑑: 

𝜙ሺ𝐿ሻሺ1 − 𝐿ሻ𝑑𝜖𝑡
2 = 𝜔 + [1 − 𝛽ሺ𝐿ሻ]𝜈𝑡 (19) 

 

that can be rearranged as 

𝜎𝑡
2 = 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡

2 (20) 
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By the conditions that all above conditions for HYGARCH model exist, 

excepted the existence of 𝛼, Baillie et al. (1996) claimed the strict stationarity of the 

model due to the characteristics of the IGARCH model that the FIGARCH model 

inherits. However, the unconditional variance of the model is infinite. Thus, the 

FIGARCH model is not weakly stationary. 

Afterward, Davidson (2004) proposed the HYGARCH model like a weighing 

model between the FIGARCH model of Baillie et al. (1996) and the standard GARCH 

model. Thus, the HYGARCH model is more flexible in case that the decreasing rate 

of autocorrelation can vary. Given the GARCH model equation (5) is rearranged: 

[1 − 𝛽ሺ𝐿ሻ]𝜎𝑡
2 = 𝜔 + 𝛼ሺ𝐿ሻ𝜖𝑡

2, 
𝜎𝑡

2 = 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [𝛼ሺ𝐿ሻ[1 − 𝛽ሺ𝐿ሻ]−1]𝜖𝑡
2 

= 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [1 − [1 − 𝛽ሺ𝐿ሻ]−1[1 − 𝛼ሺ𝐿ሻ − 𝛽ሺ𝐿ሻ]]𝜖𝑡
2, 

(5) 

 

(21) 

 

and the FIGARCH model equation (20): 

𝜎𝑡
2 = 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡

2. (20) 

 

Let 1 − 𝛼ሺ𝐿ሻ − 𝛽ሺ𝐿ሻ be treated as same as 𝜙ሺ𝐿ሻ, so the equations (20) and (21) are 

equivalent such that the weighing equation between equations (20) and (21) is 

simplified. Using the weighing parameter 𝛼, defined to be zero when the combined 

equation is of GARCH model and one when the equation is of FIGARCH model, the 

equation of HYGARCH model is: 

𝜎𝑡
2 = ሺ1 − 𝛼ሻ{𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻ]𝜖𝑡

2}
+ 𝛼{𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + [1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡

2} 
= 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + {1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻ[1 − 𝛼 + 𝛼ሺ1 − 𝐿ሻ𝑑]} 

= 𝜔[1 − 𝛽ሺ𝐿ሻ]−1 + {1 − [1 − 𝛽ሺ𝐿ሻ]−1𝜙ሺ𝐿ሻ[1 + 𝛼[ሺ1 − 𝐿ሻ𝑑 − 1]]} 

 

 

 

(16) 

 

The main difference between FIGARCH and HYGARCH model is about the 

stationarity. As the FIGARCH is not weakly stationary, the HYGARCH model is 

weakly stationary if [1 − 𝛽ሺ1ሻ]−1𝜙ሺ1ሻሺ1 − 𝛼ሻ is positive. 

3.1.1.4 Mixed GARCH models 

As the GJR-GARCH, Haas et al. (2004) MSGARCH, and HYGARCH models 

are introduced above, and two combinations from these models are stated in the 

research question. This section is dedicated to the formulation of these two mixed 

models. For their simplicity in this research, these mixed models are all concerned 

first-ordered, in the other word, all degrees of lagged variables are one. 

3.1.1.4.1 Mixed GARCH model 1: HY-GJR-GARCH model 

Let the return 𝑟𝑡 be assumed by the equation (1), (2), and conditionally i.i.d. 

assumption as first mentioned in section about the standard GARCH model. 
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Combining the fractional exponents of the HYGARCH model and asymmetry in the 

GJR-GARCH model, the equation for the mixed GARCH model 1, the first-ordered 

HY-GJR-GARCH model, can be defined as 

𝜎𝑡
2 = 𝜔 + ሺ𝛽1 + 𝛽1

𝐼 2⁄ ሻ𝜎𝑡−1
2 + [ሺ𝑘 − 𝛽1𝐿ሻ − ሺ𝑘 − 𝜙1𝐿ሻ{1 + 𝛼[ሺ1 − 𝐿ሻ𝑑 − 1]}]𝜖𝑡

2

+ {[ሺ2 − 2𝑘ሻ − 𝛽1
𝐼𝐿] − [ሺ2 − 2𝑘ሻ − 𝜅1𝐿]{1 + 𝛼𝐼[ሺ1 − 𝐿ሻ𝑑𝐼

− 1]}} 𝐼𝑡𝜖𝑡
2 

 

(22) 

 

where 𝜔 > 0, 0 < 𝑑 < 1 , 0 < 𝛼 < 1, 0 < 𝛼𝐼 < 1, 0 < 𝑑𝐼 < 1, −𝑘 < 𝛽1 < 𝑘,

−𝑘 < 𝜙1 < 𝑘, −ȁ2 − 2𝑘ȁ < 𝛽1
𝐼 < ȁ2 − 2𝑘ȁ and −ȁ2 − 2𝑘ȁ < 𝜅1 < ȁ2 − 2𝑘ȁ. 

To introduce the combination of equations of HYGARCH and GJR-GARCH 

models to formulate the equation (22), the derivations in this section start from the 

special case while all alphas equal one, said the combination between FIGARCH and 

GJR-GARCH models. Afterward, the equation expands to the general case like the 

extension from FIGARCH to HYGARCH model. 

From the general GJR-GARCH model equation (11), the GJR-GARCHሺ1,1ሻ 

model equation may be rearranged by using 𝜈𝑡 = 𝜖𝑡
2 − 𝜎𝑡

2 similarly to the formulation 

of equation (17) from equation (5) as 

ሺ1 − 𝛼1𝐿 − 𝛽1𝐿 − 𝛾1𝐿𝐼𝑡ሻ𝜖𝑡
2 = 𝜔 + ሺ1 − 𝛽1𝐿ሻ𝜈𝑡. (23) 

 

Consider the equation of FIGARCHሺ1, 𝑑, 1ሻ model in the form of equation (19): 

ሺ1 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑𝜖𝑡
2 = 𝜔 + ሺ1 − 𝛽1𝐿ሻ𝜈𝑡. (24) 

 

The term for dummy variable 𝐼𝑡 in equation (23) is also needed in the left side of 

equation (24) to capture the residual’s asymmetry like the GJR-GARCH model. Thus, 

let the variable 𝜅1 be defined like 𝛾1 in equation (23), and the term 𝜅1𝐿𝐼𝑡 is added to 

the equation (24) as follows: 

ሺ1 − 𝜙1𝐿 − 𝜅1𝐿𝐼𝑡ሻሺ1 − 𝐿ሻ𝑑𝜖𝑡
2 = 𝜔 + ሺ1 − 𝛽1𝐿ሻ𝜈𝑡, 

ሺ1 − 𝛽1𝐿ሻ𝜎𝑡
2 = 𝜔 + [1 − 𝛽1𝐿 − ሺ1 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑 + 𝜅1𝐿ሺ1 − 𝐿ሻ𝑑𝐼𝑡]𝜖𝑡

2. 

 

(25) 

 

However, when the equation (25) expands to its GJR-GARCHሺ∞, 0ሻ form, and 

many constraints are added to ensure the positivity of conditional volatility when 

implemented, the coefficients on lagged dummy variables of 𝐼𝑡𝜖𝑡
2 has a problem of 

sign inversion after several first-ordered lagged 𝐼𝑡𝜖𝑡
2. This problem makes the model 

not consistent with the root assumption of GJR-GARCH model about asymmetry. To 

solve this problem, let 𝜈𝑡
𝐼 = 𝐼𝑡𝜖𝑡

2 − 𝜎𝑡
2/2 be introduced to help rearranging equation 

(11). For any symmetric distributed 𝜖𝑡, E[𝐼𝑡𝜖𝑡
2] = 𝜎𝑡

2/2, then the expectation of 𝜈𝑡
𝐼 

also equals zero like 𝜈𝑡. Instead of relying on only one 𝜈𝑡, the equation (11) can be 
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rearranged like there are two separated components: one for 𝜖𝑡
2 and another one for 

𝐼𝑡𝜖𝑡
2. Concerning the left side of equation (11) of GJR-GARCHሺ1,1ሻ model: 

ሺ1 − 𝛽1𝐿ሻ𝜎𝑡
2 = 𝜔 + 𝛼1𝐿𝜖𝑡

2 + 𝛾1𝐿ሺ𝐼𝑡𝜖𝑡
2ሻ, (26) 

 

the conditional variance 𝜎𝑡
2 can be substituted as either 𝜖𝑡

2 − 𝜈𝑡 or 2𝐼𝑡𝜖𝑡
2 − 2𝜈𝑡

𝐼. Thus, 

the beta polynomial must be separated for each substitution. Let 𝑘 be a fraction of one 

assigned to 𝜈𝑡 part, 𝛽1
𝐼/2 be an additional beta coefficient corresponding to 𝜈𝑡

𝐼, 𝜙1 =

𝛼1 + 𝛽1, and 𝜅1 = 𝛾1 + 𝛽1
𝐼. Rearrangement from equation (26) is demonstrated as 

follows. 

[1 − ሺ𝛽1 + 𝛽1
𝐼/2ሻ𝐿]𝜎𝑡

2 = 𝜔 + 𝛼1𝐿𝜖𝑡
2 + 𝛾1𝐿ሺ𝐼𝑡𝜖𝑡

2ሻ, 
ሺ𝑘 − 𝛽1𝐿ሻ𝜎𝑡

2 + [ሺ1 − 𝑘ሻ − ሺ𝛽1
𝐼/2ሻ𝐿]𝜎𝑡

2 = 𝜔 + 𝛼1𝐿𝜖𝑡
2 + 𝛾1𝐿ሺ𝐼𝑡𝜖𝑡

2ሻ, 
ሺ𝑘 − 𝛽1𝐿ሻሺ𝜖𝑡

2 − 𝜈𝑡ሻ + [ሺ1 − 𝑘ሻ − ሺ𝛽1
𝐼/2ሻ𝐿]ሺ2𝐼𝑡𝜖𝑡

2 − 2𝜈𝑡
𝐼ሻ = 𝜔 + 𝛼1𝐿𝜖𝑡

2 + 𝛾1𝐿ሺ𝐼𝑡𝜖𝑡
2ሻ, 

ሺ𝑘 − 𝛽1𝐿ሻሺ𝜖𝑡
2 − 𝜈𝑡ሻ + [ሺ2 − 2𝑘ሻ − 𝛽1

𝐼𝐿]ሺ𝐼𝑡𝜖𝑡
2 − 𝜈𝑡

𝐼ሻ = 𝜔 + 𝛼1𝐿𝜖𝑡
2 + 𝛾1𝐿ሺ𝐼𝑡𝜖𝑡

2ሻ, 
ሺ𝑘 − 𝜙1𝐿ሻ𝜖𝑡

2 + [ሺ2 − 2𝑘ሻ − 𝜅1𝐿]𝐼𝑡𝜖𝑡
2 = 𝜔 + ሺ𝑘 − 𝛽1𝐿ሻ𝜈𝑡 + [ሺ2 − 2𝑘ሻ − 𝛽1

𝐼𝐿]𝜈𝑡
𝐼 . 

 

 

(27) 

 

Like the equation (25) as the mixture between equation (23) of 

GJR-GARCHሺ1,1ሻ model and equation (24) of FIGARCHሺ1, 𝑑, 1ሻ model, each bundle 

on the left side of equation (27) is assigned with its own long-memory term ሺ1 − 𝐿ሻ𝑑. 

Therefore, this introduced model equation becomes the composite between two 

FIGARCH elements: 

ሺ𝑘 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑𝜖𝑡
2 + [ሺ2 − 2𝑘ሻ − 𝜅1𝐿]ሺ1 − 𝐿ሻ𝑑𝐼

𝐼𝑡𝜖𝑡
2

= 𝜔 + ሺ𝑘 − 𝛽1𝐿ሻ𝜈𝑡 + [ሺ2 − 2𝑘ሻ − 𝛽1
𝐼𝐿]𝜈𝑡

𝐼 

 

(28) 

 

that can rearrange as 

𝜎𝑡
2 = 𝜔 + ሺ𝛽1 + 𝛽1

𝐼 2⁄ ሻ𝜎𝑡−1
2 + [ሺ𝑘 − 𝛽1𝐿ሻ − ሺ𝑘 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡

2

+ {[ሺ2 − 2𝑘ሻ − 𝛽1
𝐼𝐿] − [ሺ2 − 2𝑘ሻ − 𝜅1𝐿]ሺ1 − 𝐿ሻ𝑑𝐼

}𝐼𝑡𝜖𝑡
2. 

 

(29) 

 

Note that there are two 𝑑’s in use, the first 𝑑 for the FIGARCH element 

corresponding to 𝜖𝑡
2, and the second, denoted differently as 𝑑𝐼, for the FIGARCH 

element on 𝐼𝑡𝜖𝑡
2. 

However, in the step of implementation to estimate parameters, the problem 

might occur that the conditional variance 𝜎𝑡
2 becomes negative for some cases. To 

prevent this problem, some conditions are added to ensure 𝜎𝑡
2 is always positive that 

is preferable. Consider the equation (29) again. The equation (29) can be rewritten in 

the form of GJR-GARCHሺ∞, 0ሻ model as 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
32 

𝜎𝑡
2 = 𝜔 + [𝑘 − 𝛽1𝐿 − ሺ𝑘 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡

2

+ [2 − 2𝑘 − 𝛽1
𝐼𝐿 − ሺ2 − 2𝑘 − 𝜅1𝐿ሻሺ1 − 𝐿ሻ𝑑𝐼

]𝐼𝑡𝜖𝑡
2

+ ሺ𝛽1 + 𝛽1
𝐼/2ሻ{𝜔 + [𝑘 − 𝛽1𝐿 − ሺ𝑘 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡−1

2

+ [2 − 2𝑘 − 𝛽1
𝐼𝐿 − ሺ2 − 2𝑘 − 𝜅1𝐿ሻሺ1 − 𝐿ሻ𝑑𝐼

]𝐼𝑡−1𝜖𝑡−1
2 }

+ ሺ𝛽1 + 𝛽1
𝐼/2ሻ2{𝜔 + [𝑘 − 𝛽1𝐿 − ሺ𝑘 − 𝜙1𝐿ሻሺ1 − 𝐿ሻ𝑑]𝜖𝑡−2

2

+ [2 − 2𝑘 − 𝛽1
𝐼𝐿 − ሺ2 − 2𝑘 − 𝜅1𝐿ሻሺ1 − 𝐿ሻ𝑑𝐼

]𝐼𝑡−2𝜖𝑡−2
2 } + ⋯ 

= 𝜔ሺ1 + ሺ𝛽1 + 𝛽1
𝐼/2ሻ + ሺ𝛽1 + 𝛽1

𝐼/2ሻ2 + ⋯ ሻ + ሺ𝜙1 − 𝛽1 + 𝑘𝑑ሻ𝜖𝑡−1
2

+ ሺ𝜅1 − 𝛽1
𝐼 + ሺ2 − 2𝑘ሻ𝑑𝐼ሻ𝐼𝑡−1𝜖𝑡−1

2

+ [ሺ𝛽1 + 𝛽1
𝐼/2ሻሺ𝜙1 − 𝛽1 + 𝑘𝑑ሻ + 𝑘𝑑ሺ1 − 𝑑ሻ/2 − 𝜙1𝑑]𝜖𝑡−2

2

+ [ሺ𝛽1 + 𝛽1
𝐼/2ሻሺ𝜅1 − 𝛽1

𝐼 + ሺ2 − 2𝑘ሻ𝑑𝐼ሻ + ሺ2 − 2𝑘ሻ𝑑𝐼ሺ1 − 𝑑𝐼ሻ/2
− 𝜅1𝑑𝐼]𝐼𝑡−2𝜖𝑡−2

2 + ⋯ 
= 𝜔/[1 − ሺ𝛽1 + 𝛽1

𝐼/2ሻ] + 𝛼1
′ 𝜖𝑡−1

2 + 𝛾1
′𝐼𝑡−1𝜖𝑡−1

2 + 𝛼2
′ 𝜖𝑡−2

2 + 𝛾2
′ 𝐼𝑡−2𝜖𝑡−2

2 + ⋯ 
 

where 𝛼𝑖
′ = ሺ𝛽1 + 𝛽1

𝐼/2ሻ𝛼𝑖−1
′ + 𝛿𝑖𝑘 − 𝛿𝑖−1𝜙1, 𝛾𝑖

′ = ሺ𝛽1 + 𝛽1
𝐼/2ሻ𝛾𝑖−1

′ +

𝛿𝑖
𝐼ሺ2 − 2𝑘ሻ − 𝛿𝑖−1

𝐼 𝜅1,  𝛿𝑖 = [ሺ𝑖 − 1 − 𝑑ሻ/𝑖]𝛿𝑖−1, and 𝛿𝑖
𝐼 = [ሺ𝑖 − 1 − 𝑑𝐼ሻ/𝑖]𝛿𝑖−1

𝐼  for 

any integer 𝑖 > 1, 𝛼1
′ = 𝜙1 − 𝛽1 + 𝑘𝑑, 𝛾1

′ = 𝜅1 − 𝛽1
𝐼 + ሺ2 − 2𝑘ሻ𝑑𝐼 , 𝛿1 = 𝑑, and 

𝛿1
𝐼 = 𝑑𝐼 . 

Let the fraction 𝑘 lie between zero and one, and both 𝛽1 and 𝛽1
𝐼 be only 

positive. To confirm the positivity of all 𝛼𝑖
′s first, two constraints corresponding to 𝛽1 

and 𝜙1 are defined in association with 𝛼1
′  and other 𝛼𝑖

′. For the positivity of 𝛼1
′ , 𝜙1 >

𝛽1 − 𝑘𝑑. The next constraint to confirm all 𝛼𝑖
′s are positive depends on 𝛿𝑖𝑘 − 𝛿𝑖−1𝜙1. 

Since ሺ𝛽1 + 𝛽1
𝐼/2ሻ𝛼𝑖−1

′  is certainly positive as a result from constraints about 𝛽1, 𝛽1
𝐼 , 

and 𝛼1
′ . Then, 𝛿𝑖𝑘 − 𝛿𝑖−1𝜙1 = 𝛿𝑖−1[𝑘ሺ𝑖 − 1 − 𝑑ሻ/𝑖 − 𝜙1] is the main factor to 

confirm the positivity, especially 𝑘ሺ𝑖 − 1 − 𝑑ሻ/𝑖 − 𝜙1. As the possible minimum for 

ሺ𝑖 − 1 − 𝑑ሻ/𝑖 is ሺ1 − 𝑑ሻ/2, the second constraint for 𝜙1 is that 𝜙1 < 𝑘ሺ1 − 𝑑ሻ/2. 

The strict range for 𝜙1 also constraint back to 𝛽1 to ensure that the range ሺ𝛽1 −

𝑘𝑑, 𝑘ሺ1 − 𝑑ሻ/2ሻ exists, in other words, 𝛽1 < 𝑘ሺ1 − 𝑑ሻ/2. This condition restricts the 

range of 𝛽1 without contradiction to prior constraints. In similar way to 𝛼𝑖
′s, the 

additional conditions for 𝛽1
𝐼 and 𝜅1, according to the confirmed positivity for 𝛾𝑖

′, are 

𝛽1
𝐼 − ሺ2 − 2𝑘ሻ𝑑𝐼 < 𝜅1 < ሺ2 − 2𝑘ሻሺ1 − 𝑑𝐼ሻ/2 and 𝛽1

𝐼 < ሺ2 − 2𝑘ሻሺ1 + 𝑑𝐼ሻ/2. 

From this point, there exists the equation and additional conditions for HY-

GJR-GARCH model in special case of unit alphas. Next, the alphas constraints are 

reclined to expand the equation to desired generalization. Like the adaptation from the 

FIGARCH model equation (20) to HYGARCH model equation (16), the equation 

(29) can be adapted to the equation of first-ordered HY-GJR-GARCH model using 

additional variables 𝛼 and 𝛼𝐼 and substitutions of ሺ1 − 𝐿ሻ𝑑 and ሺ1 − 𝐿ሻ𝑑𝐼
 by 1 +

𝛼[ሺ1 − 𝐿ሻ𝑑 − 1] and 1 + 𝛼𝐼[ሺ1 − 𝐿ሻ𝑑𝐼
− 1] respectively, as seen in the equation (22). 
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Also, the conditions on its positivity when implemented are needed to adapt. 

Remaining the constraints about the value of 𝑘 between zero and one and the 

positivity of 𝛽1 and 𝛽1
𝐼, the available ranges for 𝜙1 and 𝜅1 are needed to modify. Note 

that when the equation (22) is rearranged to the GJR-GARCHሺ∞, 0ሻ form, the 

coefficients 𝛼𝑖
′s and 𝛾𝑖

′s also depend on 𝛼 and 𝛼𝐼 such that 𝛼𝑖
′ = ሺ𝛽1 + 𝛽1

𝐼/2ሻ𝛼𝑖−1
′ +

𝛼ሺ𝑘𝛿𝑖 − 𝜙1𝛿𝑖−1ሻ and 𝛾𝑖
′ = ሺ𝛽1 + 𝛽1

𝐼/2ሻ𝛾𝑖−1
′ + 𝛼𝐼[ሺ2 − 2𝑘ሻ𝛿𝑖

𝐼 − 𝜅1𝛿𝑖−1
𝐼 ] for any 

integer 𝑖 > 1, where 𝛼1
′ = 𝜙1 − 𝛽1 + 𝛼𝑘𝑑 and 𝛾1

′ = 𝜅1 − 𝛽1
𝐼 + 𝛼𝐼ሺ2 − 2𝑘ሻ𝑑𝐼. Hence, 

the appropriate ranges for the value of 𝜙1 and 𝜅1 become ሺ𝛽1 − 𝛼𝑘𝑑, 𝑘ሺ1 − 𝑑ሻ/2ሻ 

and ሺ𝛽1
𝐼 − 𝛼𝐼ሺ2 − 2𝑘ሻ𝑑𝐼 , ሺ2 − 2𝑘ሻሺ1 − 𝑑𝐼ሻ/2ሻ respectively, then the maximums of 

𝛽1 and 𝛽1
𝐼 shrink to 𝑘[ሺ1 − 𝑑ሻ/2 + 𝛼𝑑] and ሺ2 − 2𝑘ሻ[ሺ1 − 𝑑𝐼ሻ/2 + 𝛼𝐼𝑑𝐼] 

respectively. 

3.1.1.4.2 Mixed GARCH model 2: HY-MS-GARCH model 

Under the same preconditions as mentioned in section about the mixed 

GARCH model 1, this combination between the HYGARCH model and MSGARCH 

model of Haas et al. (2004) uses the HYGARCH equation directly with satisfaction of 

all HYGARCH conditions for all regimes like the Haas et al. (2004) MSGARCH 

model that also utilize the GARCH model equation directly. 

3.1.2 Historical simulation (HS) 

As known as one of famous non-parametric way to describe the behavior of 

financial assets, Hendricks (1996) proposed the historical simulation (HS) as one of 

straightforward ways to estimate the VaR without any assumption about time series 

characteristics. The only key assumption is that the history repeats itself. Thus, the 

distribution of returns of any financial asset can be described by its history. In contrast 

to VaR prediction using GARCH models above, the 𝑉𝑎𝑅𝑡
𝛼 is simply predicted using 

the 𝛼th quantile of historical return data (commonly recent data for long period to 

ensure that the estimated VaR appropriately reflects the market risk). 

In this research, the HS method is chosen as one of baseline VaR estimation 

models to compare with GARCH models. 

3.1.2.1 Filtered historical simulation (FHS) 

Unlike Hendricks (1996), Barone-Adesi and Giannopoulos (1996) pioneered 

the alternative way to predict financial asset’s VaR: using the historical simulation for 

standardized historical return data, and the Engle (1982) GARCH model to forecast 

return’s volatility separately. By this method, the 𝛼th quantile of standardized 

historical return data, denoted by quantile𝛼ሺ𝑧𝑡ሻ, is explored first and then replaced in 

typical VaR prediction from the estimated GARCH model to finally get the 𝑉𝑎𝑅𝑡
𝛼: 

𝑉𝑎𝑅𝑡
𝛼 = 𝜇𝑡 + quantile

𝛼
ሺ𝑧𝑡ሻE[𝜎𝑡ȁℐ𝑡−1]. (30) 
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Using both historical return distribution to find the standardized percentile at loss non-

parametrically, and assumed return distribution to estimate the volatility 

parametrically, the FHS method is called a semi-parametric method to predict VaR 

due to its components. 

The FHS method is also chosen to be one of baseline VaR estimation models 

along with the HS method in this research.  

3.2 Measurements 

In this research, four measurements are used to compare the efficiency of VaR 

estimation from each model mentioned in the last section. 

The first two measurements, Kupiec’s proportion of failure coverage test and 

dynamic quantile (DQ) test, are based on the frequency of violations when the 

realized returns penetrate the estimated line of VaR. The different between these tests 

is, while the Kupiec’s test treats all violations in a specific period without recognition 

of temporal sequence between hits, the DQ test considers more on the sequence as the 

“conditional” version of the Kupiec’s test itself. The description of quality the satiable 

VaR estimation should have by each test could expand this understanding. As the 

Kupiec’s test defines the VaR line with closest ratio of violation to the preset as the 

best VaR line, many VaR lines can be satiable by this metric because they are set to 

the right level at the right time. However, this is not enough for the DQ test 

measurement that requires all satiable VaR lines to set to some dynamic level such 

that each violation through the VaR line is significantly random from time to time. 

This means the VaR line that tries to catch only one big “fall” once in a period is not 

preferable in sense of DQ test. 

However, the “good” VaR line in views of both Kupiec’s and DQ test might 

be set too optimistic. So, the realized returns penetrating this VaR line cause too much 

damage in real application. For example, when too optimistic VaR line defines the 

level of needed bad debt provision, and the bad debt is really default, the “too 

optimistic” provision will not be enough for covering the loss. Thus, the third 

measurement, loss function, is introduced to weigh the “good” VaR line not to be set 

too optimistic as the excess loss under the VaR line should be limited to some 

acceptable level. 

The last measurement, the conditional predictive ability (CPA) test, is used 

only in comparison as its test statistic is derived from the loss function difference of 

pair of VaR lines. From the perspective of loss function, the less loss function, the 

better VaR line. The question from this point is whether the VaR line with less loss 

function in a comparison has “really” less loss function that does not come from luck. 

Thus, the CPA test comes to directly answer this question like the “conditional” 

confirmation on differences. 
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The detail in calculations of these four statistics, along with their critical 

values at various confidence levels, are provided below. 

3.2.1 Kupiec’s proportion of failures coverage test 

Kupiec (1995) proposed the statistical test to measure whether the failures 

when the returns penetrate the VaR occurs proportionally with the confidence 

interval. Since its introduction, it has been widely used for VaR backtesting. By the 

null hypothesis of 𝛼 = 𝛼∗, the likelihood ratio (LR) test statistic comes from the ratio 

between theoretical and empirical proportion of failure as the respective probability. 

Given there are 𝑥 failures out of 𝑁 observations, the LR test statistic is 

−2 log Λ = −2 log[ሺ𝛼∗ሻ𝑥ሺ1 − 𝛼∗ሻ𝑁−𝑥] + 2 log[ሺ𝑥/𝑁ሻ𝑥ሺ1 − 𝑥/𝑁ሻ𝑁−𝑥] ~𝜒1
2. (31) 

 

Since the goal of this test is to confirm the indifference between the realized 

ratio of failure and 𝛼, the null hypothesis is needed to be accepted. To accept null 

hypothesis at 0.1 confidence level, the test statistic is needed to be less than 2.7055. 

For looser levels of 0.05 and 0.01, the thresholds are 3.8415 and 6.6349 respectively. 

3.2.2 Dynamic quantile test 

Engle and Manganelli (2004) proposed the dynamic quantile (DQ) test as one 

of the ways VaR estimations are backtested. According to the Engle and Manganelli 

(2004) conditional autoregressive VaR (CAViaR) model, the VaR is autoregressive 

on its own lags and its underlying return lags. However, in using the test, the VaR 

time series is converted by the hit function: 

𝐻𝑖𝑡𝑡ሺ𝑥ሻ = 𝐼ሺ𝑟𝑡 < 𝑉𝑎𝑅𝑡
𝛼,𝑥ሻ − 𝛼 = {

1 − 𝛼, 𝑟𝑡 < 𝑉𝑎𝑅𝑡
𝛼,𝑥

−𝛼, otherwise
. (32) 

 

If 𝑉𝑎𝑅𝑡
𝛼,𝑥

 is estimated appropriately, the expectation of 𝐻𝑖𝑡𝑡ሺ𝑥ሻ equals zero. Then, 

the DQ test is performed to test whether 𝐻𝑖𝑡𝑡ሺ𝑥ሻ is independent from its regressors. 

For examples, Engle and Manganelli (2004) used its own lags to the fourth order as 

the regressors. However, Bams et al. (2017) also used the first-order lag VaR and 

squared return as the additional regressors to test its independence from market 

regimes. The lagged change in implied volatility was also used to test the 

independence from a shock that suddenly affects the volatility. In this research, 

𝐻𝑖𝑡𝑡ሺ𝑥ሻ is DQ tested with its own four lags and one lagged VaR. 

In this test, like Engle and Manganelli (2004), the typical linear regression 

coefficients are also calculated to describe the relationship between 𝐻𝑖𝑡𝑡ሺ𝑥ሻ and its 

regressors. Under the null hypothesis that all coefficients equal zero, the test statistic 

is calculated by the formula: 
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𝐷𝑄𝑂𝑂𝑆 =
𝐻𝑖𝑡𝑡

′ሺ𝑥ሻ𝑋𝑡ሺ𝑥ሻ[𝑋𝑡
′ሺ𝑥ሻ𝑋𝑡ሺ𝑥ሻ]−1𝑋𝑡

′ሺ𝑥ሻ𝐻𝑖𝑡𝑡ሺ𝑥ሻ

𝜆ሺ1 − 𝜆ሻ
~𝜒𝑤

2  (33) 

 

where 𝑋𝑡 is the 𝑇 × 𝑤 matrix of corresponding regressors and 𝑤 is the number of 

regressors. 

Like Kupiec’s test in Sub-section 3.2.1, the goal is accepting the null 

hypothesis to confirm autoregressive independence, indicated by less DQ test statistic 

than the critical values. For said specific case in this research, 𝑤 is 5. Thus, the critical 

values become 9.2364, 11.0705, and 15.0863 for 0.1, 0.05, and 0.01 confidence level 

respectively. 

3.2.3 Loss function 

Chen and Gerlach (2013) developed the loss function from Koenker and 

Bassett (1978) quantile regression objective function. It can be defined as 

𝐿𝐹 = ∑ሺ𝑟𝑡 − 𝑉𝑎𝑅𝑡ሻ(α − 𝐼ሺ𝑟𝑡 < 𝑉𝑎𝑅𝑡ሻ)

𝑇

𝑡=1

. (34) 

 

However, the sole loss function has no information about its distribution. Thus, Chen 

and Gerlach (2013) proposed the estimation of loss function by Politis and Romano 

(1994) block bootstrap method to get information so that the loss function can be 

tested for statistically significant difference from each other. In this research, 1000 

blocks of time with length 𝑏, suggested 𝑇1/3 by Politis and Romano (1994), are 

generated randomly to calculate the loss function differences between each pair of 

VaR time series. Then, the distribution of each loss function can be implied by its 

block bootstrapped distribution. 

In this research, however, the block bootstrapped distribution is not assumed 

to each loss function itself. But it is assumed to the differences between loss functions 

from a pair of VaR lines for benefit of comparison whether the difference is 

significant. Using the Student’s t test with 999 degrees of freedom, the absolute value 

of t statistic is needed to be more than 2.5808 to indicate significance at 0.01 level. 

For looser levels of 0.05 and 0.1, the critical values are 1.9623 and 1.6464 

respectively. 

3.2.4 Conditional predictive ability test 
Giacomini and White (2006) proposed the conditional predictive ability (CPA) 

test as a loss-function-based comparison between two predictive models to test 

whether the more accurate model is not more accurate because of luck. This test 

concentrates on the loss function difference between the estimation result from two 

models. If the time series of loss function difference has no autocorrelation, the 
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implication comes that the comparative accuracy of said more accurate model might 

be lower in the future because of its uncertainty. Then, the autocorrelation of loss 

function difference can be used to confirm the superiority of the more accurate model 

against the other model. Based on the null hypothesis that the conditional expectation 

of loss function difference from two VaR estimations on the information at time 𝑡 is 

zero, the Wald-type test statistic is 

𝐶𝑃𝐴 = 𝑇 (𝑇−1 ∑ ℎ𝑡Δ𝐿𝑡+1

𝑇−1

𝑡=1

)

′

(𝑇−1 ∑ 𝑍𝑡+1𝑍𝑡+1
′

𝑇−1

𝑡=1

)

−1

(𝑇−1 ∑ ℎ𝑡Δ𝐿𝑡+1

𝑇−1

𝑡=1

) ~χ𝑞
2 (35) 

 

where 𝑍𝑡+1 = ℎ𝑡Δ𝐿𝑡+1, ℎ𝑡 is a 𝑞 × 1 vector of test function, Δ𝐿𝑡 is the loss difference 

between models at time 𝑡. Like Bams et al. (2017), ℎ𝑡 = ሺ1, Δ𝐿𝑡ሻ is used in this 

research as the test function following Giacomini and White (2006), and the test is 

based on the loss function of Chen and Gerlach (2013). 

Like the loss function in Sub-section 3.2.3, this CPA test focuses on 

significance of loss function difference. Thus, the expected result is the rejection of 

null hypothesis. Due to the 𝜒2 statistic with 2 degrees of freedom, the size of ℎ𝑡 used 

in this research as mentioned in the last paragraph, the test statistic calculated from 

equation (35) must be greater than 9.2103 to mention a significant difference at 0.01 

significance level. For more relaxing levels of 0.05 and 0.1, the critical values are 

respectively 5.9915 and 4.6052. 

3.3 Data 

In this research, the S&P 500 daily index data from January 12th, 1956, to 

December 31st, 1999, from http://finance.yahoo.com is selected as the sample for VaR 

estimations. Since the VaR is based on the returns, the daily index 𝑃𝑡 is converted to 

the daily index logarithmic return: 

𝑟𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1. 

Then, there are data points of 𝑟𝑡 from the second date, January 13th, 1956, to 

the last date of 1999. These 𝑟𝑡 are illustrated in the following diagrams and table of 

description: 
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Figure 5 S&P 500 daily logarithmic returns, January 13th, 1956 – December 31st, 

1999 

 

 
Figure 6 S&P 500 cumulative daily logarithmic returns, January 13th, 1956 – 

December 31st, 1999 
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Figure 7 Distribution of S&P 500 daily logarithmic returns, Gaussian normal 

distribution shown by the curved line 

 

Table 2 Numerical characteristics of S&P 500 daily logarithmic returns 

Number of data points   11071 

Mean   0.000315 

Standard deviation   0.008720 

Skewness –1.776612 

Excess kurtosis 48.550896 

Minimum –0.228997 

1st percentile –0.021937 

5th percentile –0.013127 

1st quartile –0.003976 

Median   0.000373 

3rd quartile   0.004692 

95th percentile   0.013561 

99th percentile   0.022581 

Maximum   0.087089 

 

Priorly, the data points are divided as many subsamples containing 1,000 first 

points as training data and other points as test data to reflect various market 

environments that the hypothesis will be tested in this research. Afterward, the 

parameters of two mixed GARCH models, three base GARCH models, and GARCH 

part for filtered historical simulation, are estimated for each subsample. To predict 1-

day-ahead VaR, historical returns of latest 1,000 days are used to calculate the VaR 

by each pre-defined model or simulation. For example, the historical returns 

𝑟1, 𝑟2, … , 𝑟1000 are the base for estimation of all models’ parameters and the first 1-
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day-ahead VaR prediction 𝑉𝑎𝑅1001 by all models, then for 𝑉𝑎𝑅1002, the historical 

returns 𝑟2, 𝑟3, … 𝑟1001 are used as a moving window in prediction using the same 

model according to 𝑟1, 𝑟2, … , 𝑟1000. When finished, there are VaR time series 

calculated by each model along with the original return series to be tested by above 

measurements. 

In this research, the estimations of mentioned models are implemented using 

MATLAB. As its own Econometrics Toolbox provides the functions only for the 

simple GARCH and GJR-GARCH models, third-party code packages by developers 

are used. For the estimations of the MSGARCH model, Thomas Chuffart’s 

MSGTools, influenced by Kevin Sheppard’s MFE Toolbox, is modified in this 

research to make more stable estimations than the random result from the original 

codes. The concepts and structures of these two mentioned packages are also used to 

develop the tailor-made packages for the estimation of more complex models like the 

HYGARCH and all mixed models. 

In concentration of computational costs, the cost of estimation for the mixed 

models with higher complexity is not significantly more in comparison to the 

estimation of less complex models. Although the time optimization of third-party 

MATLAB codes is not comparable to the proprietary codes that is more robust. Usage 

of these mixed models, estimated by third-party codes, is beneficial with only slightly 

more expense. 

All models, excluded the historical simulation that has no additional 

assumption on return distribution, are estimated using assumption about two 

distributions: Gaussian and Student’s t distribution. Hence, there are 13 VaR lines 

estimated in this research: one from historical simulation, and six for one distribution 

(one from FHS, three from base models, and two from mixed models.) All 

comparisons in this research are done among models with same distribution as 

described in the table below. 

Table 3 The comparison matrix between the mixed GARCH models and other models 
Mixed model 

No. 

Base models 
FHS HS 

GJR-GARCH MSGARCH HYGARCH 

1 (HY-GJR) Yes No Yes Yes Yes 

2 (HY-MS) No Yes Yes Yes Yes 

 

Thus, there are eight pairs of comparison for the models in one distribution, 

totally sixteen pairs. 
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Chapter 4 Empirical Results 

4.1 Overview of sub-periods 

As mentioned in sub-section about data, the daily S&P 500 indices from 1960 

to 1999 are converted to daily logarithmic returns and used as the case study in this 

research. However, the whole data set shows various schemes of United States’ 

securities market when the uptrend was dominated in those four decades, and the use 

of whole period as training and test data set to produce one set of test statistics is 

inferior such that the result has no comparativeness to indicate which model is better 

in which situation. 

 
Figure 8 Sub-period selections from the whole data set, illustrated in the cumulative 

return chart 

 

Fortunately, the whole data set can be portioned to many sub-periods which 

their themes can represent distinguish characteristics and schemes. Thus, the whole 

period of 40 years is separated, and some sub-periods with obvious characteristics are 

selected to produce various sets of test statistics: 1970 – 1979, 1985 – 1989, and 1995 

– 1999. These selections are beneficial for the test results to distinguish relative 

models’ performance among different market situations. However, there are more 

recent periods from 2000 that are not covered by this research. They might be 

interesting for further studies to reinforce the delineated results for future usages. 

4.1.1 The 1970 – 1979 sub-period: the decade of “sideway” 

Consider the daily S&P indices in the 1970’s decade in Figure 8. Although the 

indices in whole period of 1960 – 1999 move slightly upward, the indices in the first 

two decades, 1960’s and 1970’s, move flatter than the indices in the late two decades.  

 

1970 – 1979 

1985 – 1989 

1995 – 1999 
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Figure 9 1970 – 1979 sub-period in comparison with 2000 – 2007 sub-period, 

illustrated in the cumulative return chart 

 

 
Figure 10 1970 – 1979 sub-period in comparison with 2000 – 2007 sub-period, 

illustrated in the return chart 

 

regardless the 1980’s and 1990’s decades, the movement of indices in 1960’s decade 

can be considered as an “upward” trend. Consequently, the remaining decade of 

1970’s can be seen as a relatively “sideway” period. 

However, there is more recent period like 2000 – 2007 that can be decided as 

another “sideway” period. As can be seen from Figures 9 and 10, the 1970 – 1979 and 

2000 – 2007 sub-periods are very similar since the market trends did not show 
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obvious direction like “up” or “down” as clearly seen in other periods, and the 

volatilities of returns in both boxes in Figure 10 are slightly different as seen from 

naked eyes. Thus, both sub-periods may be considered samples of “sideway” trends in 

the market. And the results from 1970 – 1979 sub-period, in comparison to those from 

1985 – 1989 and 1995 – 1999 sub-period, is believed to well represent the 

performance among models in relatively sideway period. But further tests with the 

more recent sideway sub-period can be carried out in future research for robustness 

check. 

As seen in Figure 11, the story started from consecutively plunging of the 

indices from 1969, reaching the annual bottom in the middle 1970, following by the 

2.5-year uptrend until 1972, then plunging again to the deeper nadir in late 1974 and 

bouncing back in the next year. Finally, the indices in remaining 4 years of 1976 – 

1979 moved smoother in a 20-percent-wide range in comparison to the earlier 

movements that the range expanded to about 70 percent. 

 
Figure 11 S&P 500 cumulative daily logarithmic returns, 1970 – 1979, including first 

training period (leftmost black line), grey lines for even years’ returns 

 

Consider the complementary Figures 12 – 13, and Table 4. The Figure 12 

shows the same data as in Figure 11, but the non-cumulative representation of indices 

neglects the movements “up” or “down” as seen from cumulative index returns, then 

the volatility is emphasized to observe more easily. The plunge of S&P 500 indices in 

1974, as seen in Figure 11, is associated with a cluster with higher volatility shown in 

Figure 12. This stylized fact corresponds to the observations of Black (1976) and 

Nelson (1991) on the leverage that is parametrized in the equation of GJR-GARCH  
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Figure 12 S&P 500 daily logarithmic returns, 1970 – 1979, including first training 

period (leftmost black line), grey lines for even years’ returns 

 

 
Figure 13 Distribution of S&P 500 daily logarithmic returns, 1970 – 1979, including 

first training period, and Gaussian normal distribution shown by the curved line 

 

model. Thus, it can be assumed that the GJR-GARCH model should describe the 

market in this decade better than any other models. Furthermore, its derivative HY-

GJR-GARCH model is introduced in this research with more flexibility than the old 

GJR-GARCH model. Given asymmetric structure from GJR-GARCH model and 

flexible hyperbolic decay from HYGARCH model, it can also be assumed that the 
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Table 4 Numerical characteristics of S&P 500 daily logarithmic returns, 1970 – 

1979, including first training period 

Number of data points   3526 

Mean   0.000047 

Standard deviation   0.007977 

Skewness   0.217628 

Excess kurtosis   2.406780 

Minimum –0.037404 

1st percentile –0.020111 

5th percentile –0.013135 

1st quartile –0.004465 

Median   0.000195 

3rd quartile   0.004486 

95th percentile   0.012767 

99th percentile   0.021130 

Maximum   0.049003 

 

HY-GJR-GARCH model should describe the market in this decade better than the 

original GJR-GARCH model can do. 

Like the whole period data of 1960 – 1999, the data for this sub-period of 

1970’s shows leptokurtosis and fat tails for both sides as seen in Figure 13. But this 

comparison is distinguished when the numerical description of this sub-period, shown 

in Table 4, is compared to the description of the whole period in Table 2 (see Section 

3.3). The degree of leptokurtosis for this selection, 2.406780, is extremely lower than 

the excess kurtosis of the whole data, 48.550896. Besides, the symmetry of the 

selection, represented by the skewness of 0.217628, is near to zero than the skewness 

of the whole data at –1.776612. This fact prefers the assumption of normal 

distribution to Student’s t distribution to describe the residuals after GARCH models. 

4.1.2 The 1985 – 1989 sub-period: the “big shock” of 1987 

Consider the Figure 8 again. In the whole period of 40 years, the movement of 

S&P 500 indices in 1987 looks obviously unique from an extremely steep plunge near 

the end of that year. This phenomenon is well known as the “Black Monday” of 

October 19th, 1987, the greatest daily loss of S&P 500 index in history. From 282.70 

when the market had been closed on Friday, October 16th, an index harshly dropped to 

224.84 at the close time, or 20.47% down from the close index of previous day. 

Therefore, the sub-period with this Black Monday is also valuable for studying the 

effect persistence after various sizes of shock as stated by Engle and Mustafa (1992) 

and Friedman et al. (1989). 

However, the more recent time of subprime crisis in late 2000’s decade might 

be concerned a “nearer” and “harsher” event to the S&P 500 index due to a movement 

counted in index points. The similarity between these two times is seen from their 
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movements of S&P 500 index since the daily return fell more than usual as recorded 

in the history. For the late 1980’s decade, there were the Black Monday with –20.47% 

return and a week later, October 26th, with –8.28% return that are recorded as top 20 

daily losses in the history of S&P 500 index. For the late 2000’s decade, there were 4 

daily returns in 2008: –8.79% on September 29th, –7.62% on October 9th, –9.04% on 

October 15th, and –8.93% on December 1st. Although these two sub-periods cannot be 

substitutable in the study of crisis in the market, the 1985 – 1989 sub-period is still 

chosen in comparison with other two sub-periods with an expectation that the test 

results from this sub-period could adequately represent the relative models’ 

performance in the crisis against normal times that need further affirmation for 

robustness by testing with more recent data sets in future research. 

Since the bigger size of shock, the lesser persistence of after-shock effect on 

volatility, the MSGARCH model should work better to describe the market in this 

situation due to its feature to formulate this inversely proportional persistence to 

shock size. Same as mentioned in Sub-section 4.1.1 about the HY-GJR-GARCH 

model, the HY-MS-GARCH model is introduced in this research with higher degree 

of flexibility as the decay rate can be more adjusted. Hence, by the assumption, the 

HY-MS-GARCH model, should excel the MSGARCH model in this case too. 

In this research, the last half of 1980’s decade from 1985 to 1989, which 

covers the Black Monday event, is selected as a sub-period to test all models in this 

study like the 1970’s decade. Figures 14 – 16 and Table 5 below provides the 

overview of the returns and their characteristics that will be explained in the next 

paragraphs. 

Like the distribution histogram of the whole data set in Figure 7, the histogram 

of this sub-period, as shown in Figure 16, is also leptokurtic. However, only the left-

side tail in Figure 16 is fat. The numerical measurements in Table 5 also emphasize 

this fact: when compared to the Table 2 of whole data set (see Section 3.3), this sub-

period comes with higher standard deviation (0.011065 to 0.008720), more negative 

skewness (–4.107120 to –1.776612), and more excess kurtosis (86.364856 to 

48.550896). Thus, the assumption of Student’s t distribution around the GARCH 

models’ estimation should be considered more appropriate than the assumption with 

normal distribution. 
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Figure 14 S&P 500 cumulative daily logarithmic returns, 1985 – 1989, including first 

training period (leftmost black line), grey lines for odd years’ returns 

 

 
Figure 15 S&P 500 daily logarithmic returns, 1985 – 1989, including first training 

period (leftmost black line), grey lines for odd years’ returns 
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Figure 16 Distribution of S&P 500 daily logarithmic returns, 1985 – 1989, including 

first training period, and Gaussian normal distribution shown by the curved line 

 

Table 5 Numerical characteristics of S&P 500 daily logarithmic returns, 1985 – 

1989, including first training period 

Number of data points   2263 

Mean   0.000427 

Standard deviation   0.011065 

Skewness –4.107120 

Excess kurtosis 86.364856 

Minimum –0.228997 

1st percentile –0.023760 

5th percentile –0.014795 

1st quartile –0.004655 

Median   0.000468 

3rd quartile   0.005649 

95th percentile   0.016233 

99th percentile   0.025678 

Maximum   0.087089 

 

4.1.3 The 1995 – 1999 sub-period: the smooth “bull” time 

Unlike the 1970’s decade of sideway and the last half of 1980’s decade around 

the Black Monday, the remaining whole data of S&P 500 index returns from 1960 to 

1999 illustrates the time of “bull” market, or when the market trend ascends 

consecutively. However, when seeing the Figure 8 again, the market trend for each 

sub-period gives different degrees of ascension along with several declines as the 

“average corrections” over the time. 
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From the last two sub-sections, there are three sub-periods that are still not 

selected: the 1960’s decade, the first half of 1980’s decade (1980 – 1984) and the 

1990’s decade. Consider the 1990’s decade. Although the upside trend dominated 

most of the time, the whole trend obviously separated by half. The S&P 500 returns of 

last half of 1990’s decade, 1995 – 1999, climbed up with a steeper upside trend than 

any other prior upside trends from 1960. Besides, there was a little “average 

correction” in middle 1998 that bounced to the same old level more quickly than any 

other declines from 1960. 

 
Figure 17 1995 – 1999, 2010 – 2014, and 2015 – 2019 sub-periods in comparison, 

illustrated in the cumulative return chart 

 

However, the more recent period after 2010 is also considered an another 

“bull” time as seen in the S&P 500 index. When comparing these three 5-year sub-

periods of 1995 – 1999, 2010 – 2014, and 2015 – 2019, the same characteristic on the 

first glance of Figure 17 when seeing the index chart of these sub-periods is the 

uptrend. Although these sub-periods might be considered as examples of “bull” 

market situation, the 1995 – 1999 sub-period is chosen in this research to perform the 

test and compare to the results from other sub-periods with different characteristics. It 

is hoped that the result comparison is worth enough to indicate the trend of relative 

model performance in another “bull” trend of the market in general. It remains for 

future study to assess the models’ performance in more recent bull periods. 

Hence, in this research, this last half of 1990’s decade is also selected as a 

representation of “bull” market situation in contrast with the sideway situation of 

1970’s decade and the market with big decline in the last half of 1980’s decade. 
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Figure 18 S&P 500 cumulative daily logarithmic returns, 1995 – 1999, including first 

training period (leftmost black line), grey lines for odd years’ returns 

 

 

Figure 19 S&P 500 daily logarithmic returns, 1995 – 1999, including first training 

period (leftmost black line), grey lines for odd years’ returns 
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Figure 20 Distribution of S&P 500 daily logarithmic returns, 1995 – 1999, including 

first training period, and Gaussian normal distribution shown by the curved line 

 

Table 6 Numerical characteristics of S&P 500 daily logarithmic returns, 1995 – 

1999, including first training period 

Number of data points   2263 

Mean   0.000663 

Standard deviation   0.008710 

Skewness –0.392379 

Excess kurtosis   6.134029 

Minimum –0.071127 

1st percentile –0.022584 

5th percentile –0.013176 

1st quartile –0.003589 

Median   0.000481 

3rd quartile   0.005220 

95th percentile   0.014372 

99th percentile   0.022647 

Maximum   0.049887 

 

Further information about this sub-period is provided by Figures 18 – 20, Table 6, and 

their explanations afterwards. 

Both Figures 18 and 19 illustrate S&P 500 logarithmic returns closely in 1995 

– 1999 sub-period with different perspective: Figure 15 shows the movement of index 

in logarithmic scale like a normal index chart, but Figure 19 separates each daily 

return regardless previous cumulative returns. 

Consider the “average correction” in later 1998 as seen from Figure 18. In 

Figure 19, the returns at the same time exploded like happening in 1974 as mentioned 
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in Sub-section 4.1.1, although the level of correction from prior peak to the adjacent 

bottom was less than the dropping in 1974. Also, there is a similar burst in the same 

Figure 19 near the end of 1997, but it seems like a little sideway when surveying 

Figure 18 at the same time with the naked eyes. These two bursts in Figure 19 

resemble the Black Monday as shown in Figure 14 in Sub-section 4.1.2. From this 

intuition, the MSGARCH model should be considered an appropriate model to 

describe the market in this situation due to its regime switching that directly copes 

with stylized fact of inverse persistence to shock size. 

Also, the “cylinder” form of daily returns in 1999, as seen from Figure 19, can 

indicate hyperbolically decrease of autocorrelation as mentioned by Dacorogna et al. 

(1993) and Ding et al. (1993). In this case, the HYGARCH model, which its 

formulation allows more adjustment in decrease rate of autocorrelation than the 

formulation of simple GARCH model, can be considered an appropriate model like 

the MSGARCH model. Thus, the proposed HY-MS-GARCH model, as a mixture 

between MSGARCH and HYGARCH models, is assumed the better choice to 

describe the market in this situation than both base models. 

The Figure 20 and Table 6 indicate more about the distribution of returns in 

this sub-period. Leptokurtosis and fat tails are also seen in this sub-period like 

happening in the whole data. However, the degree of leptokurtosis decreases more 

from 48.550896 to 6.134029, and the level of left-skewness decreases too from –

1.776612 to –0.392379. Like the 1970’s decade in Sub-section 4.1.1, the assumption 

of normal-distributed residuals around GARCH models’ estimation might be 

preferred to the assumption of Student’s t-distributed residuals. Although about one-

and-half-time higher leptokurtosis than the excess kurtosis in Table 4 might prevent 

this too quick summarization, the histogram of Figure 20 has a sense of tendency to 

the Figure 13 of 1970’s decade, which the normal distribution is assumed, instead the 

Figure 16 of the time around the 1987 Black Monday. In conclusion, the residuals 

should be assumed normal-distributed. 

Furthermore, the comparisons between Table 6 of this sub-period and Table 2 

of the whole data (see Section 3.3) are confirmations of the visible uptrend in this sub-

period. As the mean, all quartiles, and 95th and 99th percentiles in Table 6 are more 

than those in Table 2, there is a tendency that data from sub-period of 1995 – 1999 is 

generally higher than the whole data of 1960 – 1999. 

4.2 Descriptive log-likelihood functions 

Before describing the predictive test statistics, the log-likelihood function for 

each parametric model is calculated by using each model to fit the whole return data 

in each sub-period without any model parameter revision. There are 5 parametric 

models mentioned in Section 3.1 as selected models: GJR-GARCH, MSGARCH, 
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HYGARCH, HY-GJR-GARCH, and HY-MS-GARCH models. Combined with 2 

choices of assumed distribution, normal and Student’s t, there are 10 combinations of 

parametric models and assumed distribution that are noted in this sub-section and 

afterwards by model name and a letter suffix in a parenthesis. The suffix (N) is used 

for a model with normal distribution. For a model with Student’s t distribution, its 

suffix notation is (t). The calculated log-likelihood functions are shown in Table 7 

below. 

Table 7 Descriptive log-likelihood functions of base and mixed parametric models 

Sub-period 1970 – 1979 1985 – 1989 1995 – 1999 

L
o
g

-l
ik

el
ih

o
o
d

 f
u

n
ct

io
n

 GJR-GARCH(N)   3731.27   3300.67   3608.69 

MSGARCH(N)   3719.04   3309.27   3643.50 

HYGARCH(N)   3714.30   3301.88   3615.72 

HY-GJR-GARCH(N)   3737.35   3304.70   3618.81 

HY-MS-GARCH(N)   3720.67   3311.58   3643.23 

GJR-GARCH(t)   3732.35   3313.86   3638.77 

MSGARCH(t)   3718.34   3314.38   3644.01 

HYGARCH(t)   3717.81   3314.05   3644.02 

HY-GJR-GARCH(t)   3739.17   3315.09   3645.99 

HY-MS-GARCH(t)   3722.74   3316.25   3643.70 

 

4.3 Test statistics by sub-period and discussions 

The Section 3.2 is all mentioned about four test statistics in use for comparison 

of daily 95% VaR lines produced by models: the Kupiec’s proportion of failure test, 

dynamic quantile (DQ) test, loss function, and conditional predictive ability (CPA) 

test. Both the Kupiec’s and DQ tests are concentrated on frequency when the VaR is 

violated by realized returns, but the DQ test measures VaR hits conditionally as a time 

sequence, while the Kupiec’s test measures them unconditionally. Differently from 

first two test statistics, the loss function and CPA test measures the degree of effects 

after the violations of VaR by realized returns, in the other words, “how far” the 

violations come beyond the VaR line estimation. Unlike the loss function that is 

plainly measured with no more context, the CPA test complements the loss function 

whether two loss functions are “really” different temporally. 

To calculate all test statistics for each sub-period, each model is used solely to 

calculate the daily VaR at 95% confidence interval for each sub-period with quarterly 

model parameter revisions. (See Section 3.1 for model descriptions and Section 3.3 

for the description of training and test process.) Afterward, all test statistics are 

derived for each 95% VaR line as sources for comparisons between proposed mixed 

models and their benchmarks as follows. 

However, each test statistic has different goal for its null hypothesis. For both 

Kupiec’s and DQ tests, it is more satisfiable when the null hypothesis is accepted, or 
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the test statistics are close to zero, that means indifference between realized 

proportion of failure and pre-defined 𝛼 in case of Kupiec’s test, or random time of 

VaR’s penetration for DQ test. Otherwise, the rejection of null hypothesis, as the test 

statistics are away from zero, is preferrable to exhibit the significance of last two test 

statistics: loss functions (as derived to the difference between the loss function for a 

mixed model and the loss function for each benchmark) and corresponding CPA test 

statistic (as the confirmation of sign in a loss function difference). Note that loss 

function difference is the only one test statistic in this research with sign, and the 

minus sign of loss function difference, in other words, less loss function for a mixed 

model than loss function for a benchmark, is preferrable. 

4.3.1 The 1970 – 1979 sub-period 

4.3.1.1 Overall: accurate proportion of failure but clustered hits 

Table 8 Proportions of failure, Kupiec’s test statistics, DQ test statistics, and loss 

function for each model using data set of 1970 – 1979 sub-period 

Model 
Proportion 

of Failure1 

Kupiec’s 

test2 
DQ test2 

Loss 

function2 

HS   5.9778%   4.7983*     158.3566         2.3759 

FHS(N)   5.1465%   0.1131***    20.1933         2.0819 

GJR-GARCH(N)   5.0277%   0.0041***    17.0410         2.0347 

MSGARCH(N)   5.8987%   4.0707*       31.0080         2.1221 

HYGARCH(N)   5.5424%   1.5134***   32.3924         2.1032 

HY-GJR-GARCH(N)   5.0673%   0.0240***   31.4422         2.0500 

HY-MS-GARCH(N)   6.1758%   6.8623       37.2622         2.1212 

FHS(t)   5.2652%   0.3680***   32.2767         2.0879 

GJR-GARCH(t)   4.2755%   2.9290**     12.3257*       2.0388 

MSGARCH(t)   6.0174%   5.1833*       27.7101         2.1393 

HYGARCH(t)   4.9881%   0.0008***   32.7556         2.1041 

HY-GJR-GARCH(t)   4.6318%   0.7382***   29.6697         2.0536 

HY-MS-GARCH(t)   6.1362%   6.4218*       39.3540         2.1318 
1 The closer proportion of failure to the preset (5%), the better VaR estimation. 
2 The less test statistic, the better VaR estimation. 

*** = null hypothesis accepted at 0.1 significance 

** = null hypothesis accepted at 0.05 significance 

* = null hypothesis accepted at 0.01 significance 

 

Tables 8 – 10 show the performance of proposed mixed models and their 

benchmark models in prediction of one-day 95% VaR in situation of 1970’s decades. 

As seen from Table 8, the VaR lines from 7 out of 13 models can pass the Kupiec’s 

proportion of failure test at strictest confidence level of 0.1, but almost all VaR lines 

cannot pass the DQ test even at loosest level of 0.01. The predicted VaR line by the 

GJR-GARCH model with Student’s t distribution is only one VaR line that can pass 

the DQ test at the loosest confidence level of 0.01 but pass the Kupiec’s test at looser 
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Table 10 Loss function differences and CPA test statistics between each mixed model 

and its benchmarks using data set of 1970 – 1979 sub-period 

HY-GJR-

GARCH(N) vs 

GJR-

GARCH(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1   0.0154     –0.0531     –0.0318     –0.3259     
LF diff. test2   1.4428     –2.9999** –1.7930     –4.5483** 
CPA test2   2.1889     10.8913**   4.6272     38.4610** 

HY-GJR-

GARCH(t) vs 

GJR-

GARCH(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1   0.0149     –0.0505     –0.0343     –0.3223     
LF diff. test2   1.2890     –3.0860** –1.9916*   –4.4096** 
CPA test2   1.9644     10.5351**   4.1605     36.4162** 

HY-MS-

GARCH(N) vs 

MSGARCH 

(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1 –0.0009       0.0181       0.0394     –0.2547     
LF diff. test2 –0.1022       1.2247       1.7919     –4.1705** 
CPA test2   0.0536       2.1573       4.2414     32.4857** 

HY-MS-

GARCH(t) vs 

MSGARCH 

(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1 –0.0075       0.0277       0.0439     –0.2441     
LF diff. test2 –0.6038       1.2767       2.2122*   –3.9899** 
CPA test2   0.4337       2.6450       5.4044     29.9139** 

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation 

from mixed model is better. Otherwise, the VaR estimation from mixed model is worse. 
2 The greater magnitude, the higher significance of the corresponding difference. 

** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance 
 

level of 0.05 unlike the VaR line from GJR-GARCH model with Gaussian normal 

distribution. This phenomenon that the VaR line well pass the Kupiec’s test while 

struggling to pass the DQ test is because of the characteristics of the market returns in 

this sub-period. See the Figure 11 in Sub-section 4.1.1. The time of big plunges in 

1970 and 1974 that has the most chance of violation of VaR line shows consecutive 

daily losses for a week at least. This fact is also reflected by the Table 9 that the first 

and third lagged hit variables are influential for almost all VaR lines (excluded the 

VaR line from GJR-GARCH(t) model that the third lagged hit is not significant). 

Descriptively said, when the VaR line is penetrated by the realized daily return, the 

VaR line usually adjusts itself completely on the next day. However, in case of a big 

plunge, one adjustment is not enough. Then, the VaR line will usually be penetrated 

again for two consecutive days after the first adjustment and then adjust again. This 

means the parametric VaR lines normally have “double adjustments” for a big plunge 

of realized daily return, but this mechanism is not found in the non-parametric VaR 

line from historical simulation that is indisputably beaten by all parametric VaR lines 

in this sub-period 
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4.3.1.2 HY-GJR-GARCH(N) model: winner by the influence of GJR-GARCH model 

and normal distribution 

Assumed in Sub-section 4.1.1 about properness of GJR-GARCH and HY-GJR-

GARCH models in this sub-period, both models with normal distribution can 

undoubtedly pass Kupiec’s test with strictest confidence level of 0.1. Focusing on the 

HY-GJR-GARCH(N) model, it seems like the GJR-GARCH(N) model gets slightly 

closer proportion of failure (just 0.0396% nearer or 1 time less out of 2526) to the 

preset of 0.05 than the HY-GJR-GARCH(N) model. Inferred from the Kupiec’s test, 

however, the proportion of failure given from VaR line from HY-GJR-GARCH(N) 

model is closer than the proportion from VaR line of other three benchmark models: 

HYGARCH(N) model, filtered historical simulation with normal distribution, and 

historical simulation. Considering the loss function difference in Table 10, the 

comparison results resemble the comparison results in Table 8 that the VaR line from 

HY-GJR-GARCH(N) model gets less loss function than the VaR line from all 

benchmark models excepting the GJR-GARCH(N) model that its loss function is 

insignificantly less. These results verify the assumption of improvement after mixture 

between GJR-GARCH and HYGARCH models. While the asymmetry feature of 

GJR-GARCH model is added to the inferior HYGARCH model, the HY-GJR-

GARCH model is improved in prediction of VaR that the sole HYGARCH model 

does not excel. 

4.3.1.3 HY-GJR-GARCH(t) model: misspecification in distribution 

However, this result is not identical when the assumed distribution is Student’s 

t instead. The VaR line from GJR-GARCH(t) model has farther proportion of failure 

from the preset as seen from itself in the first column and the associate Kupiec’s test 

statistics in the second column of Table 8. The clue from intercept terms in Table 9 

that the intercept for the GJR-GARCH(t) model is the least suggests that the GJR-

GARCH(t) model predicts “too low” VaR line so that the penetration rate is too low 

than the preset as seen 4.2755% in the Table 8. This problem is solved when the 

fractional exponential feature of HYGARCH model is applied to the sole GJR-

GARCH(t) model because the proportion of failure is closer to the preset as expected. 

But this solution is not enough because its penetration rate is farther in comparison 

with the VaR from filtered historical simulation with Student’s t distribution, one of 

benchmark models, although the comparison on loss function is indifferent from that 

of the HY-GJR-GARCH(N) model. The assumption about normality in Sub-section 

4.1.1 might be an accurate diagnosis for this phenomenon since a misspecification in 

distribution might diminish the performance of the well-selected model. Hence, both 

model and distribution specifications are important to produce an accurate parametric 

VaR line prediction. 
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4.3.1.4 HY-MS-GARCH model: the right model but the wrong time 

In controversy to the success of HY-GJR-GARCH mixed model in this sub-

period, the HY-MS-GARCH model, as the combination between fractional exponents 

of HYGARCH model and regime switching of MSGARCH model, does not show any 

obvious sign of success in competition with benchmarks. Like the mentioned case of 

HY-GJR-GARCH(t) model, this problem comes from a misspecification of model by 

using the variant of MSGARCH model, designed for a market situation with market 

losses in diverse harshness, in a market situation with no obvious difference among 

the plunges of market returns. However, the failure of HY-MS-GARCH model in 

comparison to the minor fault of HY-GJR-GARCH(t) model indicates that a 

misspecification in model selection is dominant over a misspecification in residuals’ 

distribution. 

4.3.2 The 1985 – 1989 sub-period 

4.3.2.1 Overall: more challenging time for GARCH variants 

Table 11 Proportions of failure, Kupiec’s test statistics, DQ test statistics, and loss 

function for each model using data set of 1985 – 1989 sub-period 

Model 
Proportion 

of Failure1 

Kupiec’s 

test2 
DQ test2 

Loss 

function2 

HS   6.0966%   2.9975**   37.1449         1.8889 

FHS(N)   8.0760% 21.3816   31.2304         1.8731 

GJR-GARCH(N)   5.7007%   1.2515***   10.2536**     1.8096 

MSGARCH(N)   6.5717%   6.0026*   22.9064         1.7780 

HYGARCH(N)   4.1964%   1.8122***   24.9944         1.7201 

HY-GJR-GARCH(N)   4.5131%   0.6508***   13.4593*       1.6897 

HY-MS-GARCH(N)   6.4133%   4.8946*   19.6128         1.7719 

FHS(t)   6.4133%   4.8946*   18.3523         1.7381 

GJR-GARCH(t)   3.2462%   9.2873   22.1101         1.7542 

MSGARCH(t)   4.3547%   1.1555***   26.0664         1.7881 

HYGARCH(t)   3.4046%   7.5856   20.5158         1.7832 

HY-GJR-GARCH(t)   3.3254%   8.4118   27.8604         1.7542 

HY-MS-GARCH(t)   4.6714%   0.2932***   31.9210         1.7837 
1 The closer proportion of failure to the preset (5%), the better VaR estimation. 
2 The less test statistic, the better VaR estimation. 

*** = null hypothesis accepted at 0.1 significance 

** = null hypothesis accepted at 0.05 significance 

* = null hypothesis accepted at 0.01 significance 

 

Tables 11 – 13, same format as Tables 8 – 10 in Sub-section 4.3.1, show test 

results of VaR lines from all mentioned models with different data set of S&P 500 

index return in 1985 – 1989 sub-period. A different situation makes a different result, 
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Table 13 Loss function differences and CPA test statistics between each mixed model 

and its benchmarks using data set of 1985 – 1989 sub-period 

HY-GJR-

GARCH(N) vs 

GJR-

GARCH(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1 –0.1199 –0.0303 –0.1834 –0.1992 
LF diff. test2 –1.6766     –2.0613*   –1.9485     –1.9771*   
CPA test2   3.4104       4.6158       4.2757       5.2398     

HY-GJR-

GARCH(t) vs 

GJR-

GARCH(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1   0.0000     –0.0289       0.0161     –0.1347     
LF diff. test2   0.0005     –1.4969       0.2138     –1.2196     
CPA test2   1.0911       1.8725       0.6337       2.4282     

HY-MS-

GARCH(N) vs 

MSGARCH 

(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1 –0.0061       0.0519     –0.1012     –0.1170     
LF diff. test2 –0.3988       0.8735     –1.7908     –2.6222** 
CPA test2   0.2752       1.7500       5.7163       9.0041*   

HY-MS-

GARCH(t) vs 

MSGARCH 

(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1 –0.0043       0.0005       0.0456     –0.1052     
LF diff. test2 –0.2829       0.0100       1.4174     –1.9551     
CPA test2   0.5409       0.4666       2.1961       5.7087     

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation 

from mixed model is better. Otherwise, the VaR estimation from mixed model is worse. 
2 The greater magnitude, the higher significance of the corresponding difference. 

** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance 
 

especially the dynamic quantile test statistics in Table 11. As the VaR line from GJR-

GARCH(N) model pass the DQ test with stronger confidence level of 0.05, and most 

of VaR lines’ DQ test statistics decrease, so the message is the VaR violations come 

more scattered in this sub-period unlike 1970’s. 

As in 1970’s decade, 7 VaR lines pass the Kupiec’s proportion of failure test 

with tightest confidence level of 0.1. The last half of 1980’s decade, with the Black 

Monday of 1987, is more challenging for chosen parametric models to produce a VaR 

line estimation that can pass the Kupiec’s test with 0.1 significance level because the 

number of passing VaR lines reduce to 5 out of 13: GJR-GARCH(N), 

HYGARCH(N), HY-GJR-GARCH(N), MSGARCH(t), and HY-MS-GARCH(t) 

models. One interesting point in Table 11 is about the historical simulations. As in 

Table 8, the VaR line from plain historical simulation is obviously inferior from both 

perspectives of Kupiec’s and DQ test. Conversely in Table 11, both estimated VaR 

lines from filtered historical simulation (with GARCH model implementation) have 

farther penetration rates from preset of 0.05 than the VaR line from historical 

simulation. But the loss function of VaR line from historical simulation is also the 

greatest like happening in Table 8. 
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4.3.2.2 HY-MS-GARCH models: clustering the violations is their strategy 

Assumed in Sub-section 4.1.2, the MSGARCH model is preferred to cope 

with a time of crisis like this sub-period of 1985 – 1989. Consequently, the first 

parametric models concerned in this sub-period are the MSGARCH model and its 

derivative, the HY-MS-GARCH model. Consider both models with Gaussian normal 

and Student’s t distributions in comparison. According to Table 11, the VaR lines 

from both models with Student’s t distribution are outstanding in proximity of 

proportion of failure against the VaR lines from same models with normal 

distribution, while the loss functions of VaR lines from both models with Student’s t 

distribution are a little bit greater by 0.01 that could be concerned unsignificant. From 

these facts, the assumption of “fat tails” in Sub-section 4.1.2 is confirmed. However, 

the columns of MSGARCH(t) and HY-MS-GARCH(t) models in Table 12 give 

insight about the strategy both models use to estimate the VaR lines with close 

penetration rate to the preset: clustering the penetration. Because both models’ DQ 

regressions emphasize significance of first three lagged hits unlike most DQ 

regressions, it could be interpreted that the VaR lines from both models allow a big 

fall of returns to penetrate themselves consecutively with slight adjustment. This 

strategy is proved useful in this market situation but might be useless in many 

“normal” market situations, and the expenditure for this strategy is failing the DQ test 

as this test admires the autoregressive independence of VaR hits that directly 

contradicts this strategy. 

According to the main assumption about mixed model’s superiority to its 

based models, the performance of HY-MS-GARCH model in this sub-period is one of 

supporting evidence. Although the comparisons of loss functions in the bottom half of 

Table 13 do not show significant decrease of loss function of VaR from HY-MS-

GARCH model in comparison with listed benchmarks (excepting the historical 

simulation in case of HY-MS-GARCH with normal distribution). The closeness of 

proportion of failure as improvement from MSGARCH model’s VaR line is evident 

in any cases, as comparisons of Kupiec’s test statistics between HY-MS-GARCH(N) 

and MSGARCH(N) models and between HY-MS-GARCH(t) and MSGARCH(t) 

models in Table 11 show less test statistic of the mixed model. This means the 

MSGARCH model is improved by the addition of fractional exponential feature from 

HYGARCH model as the proposed HY-MS-GARCH model. 

4.3.2.3 HY-GJR-GARCH(N) model: the surprisingly outstanding model 

Contrast to the MSGARCH and HY-MS-GARCH model pair, the GJR-

GARCH and HY-GJR-GARCH model pair can be assumed as a misspecification for 

the market situation in this sub-period. Surprisingly, the GJR-GARCH(N) and HY-

GJR-GARCH(N) models are the only two models in this sub-period that their 
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estimated VaR lines can pass both Kupiec’s test with 0.1 significance and DQ test 

with 0.01 significance at least. Moreover, the upper part of Table 13 indicates that the 

HY-GJR-GARCH(N) model is the only one model to make the least loss function 

among the loss functions of VaR line from its own benchmarks. The description of 

these surprising results can refer to the details in market situation. See the Figures 14 

and 15 in Sub-section 4.1.2. The Figure 14 indicates how the uptrend is dominated 

most of the time in this sub-period, excluding the Black Monday that is represented 

by almost vertical line in the chart of cumulative returns. But the Figure 15 illustrates 

the Black Monday as by the burst in volatility that would be pacified to normal level 

in one or two quarters. This burst is contrast to the burst after a downtrend end in 

middle 1982 as the smaller “shocks” causes higher volatility that spends about a year 

or more to tame down. This evidence well follows the stylized fact stated by Engle 

and Mustafa (1992) and Friedman et al. (1989). Thus, the GJR-GARCH model can 

also describe this situation well due to its formulation to support this stylized fact that 

the downside returns also cause an increase in volatility. As this stylized fact is more 

common and frequently observed in any market situations even the time of crisis, the 

GJR-GARCH and its derivative, the proposed HY-GJR-GARCH model, should be 

generally effective than the HY-MS-GARCH model that appears to be more specified 

to some situation, as assumed in Section 1.2. Then, this assumption is confirmed by 

the test statistics of HY-GJR-GARCH(N) model in this sub-section. However, this 

superiority does not apply to the HY-GJR-GARCH model when the Student’s t 

distribution is assumed. Although this sub-period is assumed Student’s t distributed as 

mentioned from Sub-section 4.1.2. In this case, the possibility of model 

misspecification might be used again as the general description like in Sub-section 

4.3.1. 

4.3.3 The 1995 – 1999 sub-period 

4.3.3.1 Overall: the easy time for all models 

The 1995 – 1999 sub-period, unlike the first two mentioned sub-periods 

before, comes with smoother “bull” market. Thus, it seems to be easier for any VaR 

line estimations to pass the qualification metrics as seen from Tables 14 – 16. Same 

format as Tables 8 – 10 in Sub-section 4.3.1 and Tables 11 – 13 in Sub-section 4.3.2, 

these tables display the test statistics of corresponding VaR lines estimation to listed 

models with the data set of S&P 500 returns in 1995 – 1999. At the first glance of 

Table 14, the VaR estimation from historical simulation is unquestionably the 

underdog due to the highest Kupiec’s test statistic, DQ test statistic, and loss function. 

Then, it is useless to mention the simple historical simulation again in this sub-

section. Another interestingness of Table 14 is the number of passing VaR lines for 

the tests. 8 VaR lines pass the Kupiec’s test with strongest confidence level of 0.1,  
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Table 14 Proportions of failure, Kupiec’s test statistics, DQ test statistics, and loss 

function for each model using data set of 1995 – 1999 sub-period 

Model 
Proportion 

of Failure1 

Kupiec’s 

test2 
DQ test2 

Loss 

function2 

HS   7.9968% 20.3675   43.1851         1.5224 

FHS(N)   5.6215%   0.9892***   14.0935*       1.4544 

GJR-GARCH(N)   5.8591%   1.8641***   13.4199*       1.4429 

MSGARCH(N)   7.6010% 15.6241   33.5391         1.4650 

HYGARCH(N)   4.9881%   0.0004***   21.4102         1.4364 

HY-GJR-GARCH(N)   5.5424%   0.7567***   10.6629**     1.3878 

HY-MS-GARCH(N)   6.3341%   4.3800*   17.5415         1.4414 

FHS(t)   5.8591%   1.8641***   43.1851         1.4505 

GJR-GARCH(t)   4.3547%   1.1555***   27.0107         1.4569 

MSGARCH(t)   4.4339%   0.8845***   10.8955**     1.4576 

HYGARCH(t)   3.4838%   6.8076   27.7798         1.4861 

HY-GJR-GARCH(t)   3.8005%   4.1566*   18.8343         1.4257 

HY-MS-GARCH(t)   4.3547%   1.1555***   14.3079*       1.4501 
1 The closer proportion of failure to the preset (5%), the better VaR estimation. 
2 The less test statistic, the better VaR estimation. 

*** = null hypothesis accepted at 0.1 significance 

** = null hypothesis accepted at 0.05 significance 

* = null hypothesis accepted at 0.01 significance 

 

and 5 lines pass the DQ test with confidence level of 0.01 (with 2 lines at stronger  

level of 0.05). Unlike two previous sub-sections, The Table 15 indicates indifference 

in reaction to penetrations among VaR lines. Since all VaR lines, even the “worst” 

VaR line from historical simulation, show the same “double adjustment” after the first 

penetration like happening interpreted from Table 9 but in softer situation as only the 

second lagged hit variable is emphasized for every VaR lines. 

4.3.3.2 Two mixed models: the usefulness of HYGARCH model component 

In Sub-section 4.1.3 of 1995 – 1999 sub-period, the HYGARCH model is 

directly assumed as the appropriate model to describe the market situation in this sub-

period, unlike in other sub-periods that the HYGARCH is mentioned as a 

subdominant feature in accompanied with GJR-GARCH or MSGARCH model. Thus, 

the HYGARCH model should be concerned as a main factor for success in VaR 

testing for the mixed models. A foolproof for this assumption, and the main 

assumption of improvement by HYGARCH component, is also in the first column of 

Table 14. Unlike first columns in Tables 8 and 11, VaR lines from all four mixed 

models can pass the Kupiec’s test with at least 0.01 confidence level, and two of them 

can also pass the DQ test with at least 0.01 confidence level. 
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Table 16 Loss function differences and CPA test statistics between each mixed model 

and its benchmarks using data set of 1995 – 1999 sub-period 

HY-GJR-

GARCH(N) vs 

GJR-

GARCH(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1 –0.0551 –0.0486 –0.0666 –0.1346 
LF diff. test2 –3.1353** –2.5289*   –3.1711** –2.7278** 
CPA test2   8.7417*     6.5179*     8.6886*     8.6493*   

HY-GJR-

GARCH(t) vs 

GJR-

GARCH(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1 –0.0312     –0.0604     –0.0248     –0.0967     
LF diff. test2 –2.4667*   –4.0445** –0.8986     –1.7089     
CPA test2   5.5627     12.2702**   7.6634*     3.1497     

HY-MS-

GARCH(N) vs 

MSGARCH 

(N) 

HYGARCH 
(N) 

FHS(N) HS 

LF difference1 –0.0236       0.0050     –0.0130     –0.0810     
LF diff. test2 –1.8800       0.3593     –0.9100     –2.1723*   
CPA test2   5.1794       0.3611       2.0587       5.9909     

HY-MS-

GARCH(t) vs 

MSGARCH 

(t) 

HYGARCH 
(t) 

FHS(t) HS 

LF difference1 –0.0075     –0.0360     –0.0004     –0.0723     
LF diff. test2 –0.9288     –2.8004** –0.0193     –1.4546     
CPA test2   4.1376       8.4467*     4.3545       2.5492     

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation 

from mixed model is better. Otherwise, the VaR estimation from mixed model is worse. 
2 The greater magnitude, the higher significance of the corresponding difference. 

** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance 
 

4.3.3.3 The comparison among combinations: HY-GJR-GARCH(N) the winner and 

the others as misspecification 

Although all four mentioned mixed models consist of the HYGARCH model 

component, they all need to be compared. Then, the assumed distribution is concerned 

next. The Sub-section 4.1.3 prefers the normal to Student’s t distribution to assumed 

about residuals’ distribution in this 1995 – 1999 sub-period. Thus, the VaR lines from 

two mixed models with normal distribution are examined. The VaR line from HY-

GJR-GARCH(N) model, like in previous two sub-sections, is concerned outstanding 

in passing Kupiec’s and DQ tests, as one of two VaR lines that pass both tests with 

strictest possible confidence level, and giving the least loss function like happening in 

Table 11. The top part of Table 16 also confirms this superiority that the VaR line 

from HY-GJR-GARCH(N) model can beat all baselines with all significant loss 

function different and CPA test statistics that underline how really the loss function 

differences are. 

However, the VaR line from HY-MS-GARCH(N) model is not outstanding 

although the Sub-section 4.1.3 is assumed about HY-MS-GARCH model as the 
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proper model to describe the market in this sub-period. Concern the two “big bursts” 

in Figure 18 again. Mentioned as resemblance to the “Black Monday” of 1987 in Sub-

section 4.1.3, they are not harsh like the Black Monday but comparable to the return 

swings in 1970’s decade. The market difference before and after late 1997, especially 

when the market is extremely peaceful before 1997, might lead understanding about 

the market from late 1997 like the outlier. But they are common like the market in 

1970’s decade sub-period when excluding odd daily returns showing in Figure 18 like 

long single lines. Thus, the MSGARCH model is said not specific to this situation. 

Due to more normality of market situation, the results from mixed models 

with Student’s t distribution is not satiable like the result when these models 

combining with normal distribution as seen in Table 14. However, the VaR line from 

HYGARCH(t) model does the tests with poor results. If the HYGARCH(t) model 

itself is not good in this situation, it will lower the competency of two mixed models 

in the same tests too as the HYGARCH model is concerned dominated in this sub-

period. 
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Chapter 5 Conclusion 

In attempt to develop two mixed models, HY-GJR-GARCH and HY-MS-

GARCH model, these models can pick advantages from both of their base models that 

are specific to different characteristics of the financial market. However, in empirical 

tests using the samples from S&P 500 index returns in different period of situations, 

there is some mixed model that cannot perform better than its benchmark models, 

specifically in some situation that its base models are misused to capture market 

features. That means mixing characteristics between two GARCH model variants 

cannot boost performance of a new mixed GARCH model variant to satiable level in 

every cases. Nevertheless, as seen from the results, market conditions are important in 

decision about which GARCH model variants are used for the mixed model and 

which probability distribution is assumed to be the distribution of residuals after the 

model. 

From four combinations of two mixed models by two different probability 

distributions, the HY-GJR-GARCH model with normal distribution seems to be the 

combination with the best performance among all combinations as measured from 

tests in different market situations. Additionally, in the situation of big crisis causing 

sudden loss in the market like the Black Monday of 1987, the HY-MS-GARCH 

model with Student’s t distribution also works well in such situation. 

However, this research studies these two mixed models when working with 

only limited number of simple symmetric distributions like normal and Student’s t 

distributions, limited number of parameters to the minimum requirement that each 

model can keep its identity, and limited test data sets from only one market index in 

distant time. Afterwards, these mixed models should be combined with more complex 

probability distributions or modified to some extent, i.e. increasing the number of 

regimes for MSGARCH and HY-MS-GARCH models, for further studies about their 

performance. And the mathematics beneath the mixed models should be developed 

more to reduce complexity that might consume resource in modeling and application 

both in this specific case of calculation for the VaR and other cases that need the 

knowledge about volatility. Also, using various data sets like the prices from different 

kinds of assets, with more recent time frame to better reflect the contemporary market 

situation, should be considered too for further studies after this research.  
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