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Chapter 1 Introduction
1.1 Motivations and Rationales

Value-at-Risk (VaR), defined by the expected loss minimum at the worst
scenarios (that are usually counted by some proportion of all possible scenarios called
the level of significance) in a period (called holding period), as illustrated in Figure 1,
is widely used as a risk metrics by the business because of its straightforward concept.
Especially, the financial industry generally acclaims the VaR to be one of well-known
financial risk measurements. Then, the reasonable and practical estimation is needed
to trace historical loss risk, project loss probability in the future, and compare loss risk
by time and across the industry. However, there are two major branches of VaR
estimation methods: parametric and non-parametric.

|
Loss I Gain ;
%
L;’L
|
|
|
The worst I
(let say 0.05) I
of all |
possible
scenarios I

How many loss at this point? — VaR“"

Figure 1 The simple illustration for the concept of VaR

Parametric VaR estimation methods, the more numerical and complicated
branch, utilize time series models to describe behavior of financial returns under the
assumption about their temporal relationship and their distribution of residuals. In
conventional ways, the returns’ conditional volatility is predicted first, and the VaR is
estimated using the prediction and the assumed distribution of residuals. Assumed the
conditional variance has linear relations with square of previous residuals, the
autoregressive conditional heteroskedastic (ARCH) model, first introduced by Engle
(1982), is one of renown models to parametrize the returns’ volatility as a time series.
Analogous to the combination of autoregression and moving averages as
autoregressive moving average (ARMA) model, Bollerslev (1986) added the relation
between present and past conditional volatilities to the ARCH model to form the
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generalized ARCH (GARCH) model that has been influential to practitioners and
academics as discussed below.

Branched from the original simple GARCH model, econometrists have
developed many variations of GARCH model to response specific stylized facts of
volatility as found in financial time series, as the hierarchy illustrated in Figure 2.

IGARCH
FIGARCH HYGARCH
(Engle angBs?"erslew ﬁ{ (Baillie et al., 1996) ’ 91 (Davidson, 2004)

GJR-GARCH
(Glosten et al., 1993)

MSGARCH MSGARCH MSGARCH
(Gray, 1996) (Klaassen, 2002) (Haas et al., 2004)

Figure 2 The hierarchy of GARCH model variants, branched from the ARCH model
of Engle (1982)

GARCH
(Bollerslev, 1986)

ARCH
(Engle, 1982)

I

SWARCH
(Hamilton and Susmel,
1994; Cai, 1994)

One of the stylized facts is the leverage effect: the effect of residuals on the
volatility depends on their signs, minus more than plus, as mentioned by Black (1976)
and Nelson (1991). In order to reflect this fact in GARCH model, Glosten et al.
(1993) proposed the addition of penalty terms for negative residuals, parallel to
ARCH parameters, to modify the GARCH model variation that is commonly known
as Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model.

Also, there is a stylized fact, mentioned by Engle and Mustafa (1992) and
Friedman et al. (1989), about the inversely proportional persistence to shock size: the
larger shock size, the shorter persistence of effect on volatility. Unfortunately, this
fact cannot be covered by the simple GARCH model. Hence, using of Markov chain
process was adapted to ARCH model to cope with inversely proportional persistence
first by Hamilton and Susmel (1994) and Cai (1994) as Markov switching ARCH
(SWARCH) model, which is adapted to the Markov switching GARCH (MSGARCH)
model by Gray (1996). Furthermore, the concept from Gray (1996) MSGARCH
model was also improved to the adjusted model of Klaassen (2002) and the simplified
model of Haas et al. (2004).

The other stylized fact comes from the long memory properties of volatility in
case that autocorrelation decreases hyperbolically by time, afterward, the sum of
autocorrelation is infinite, as mentioned by Dacorogna et al. (1993) and Ding et al.
(1993). Then, the variations of GARCH model with fractional exponent on residuals
were developed. The prominent examples of fractional exponential GARCH models
are the fractionally integrated GARCH (FIGARCH) model by Baillie et al. (1996) and
the hyperbolic GARCH (HYGARCH) by Davidson (2004). Unlike other GARCH
model variants, both FIGARCH and HYGARCH models allow fractional exponents
that can expand to infinite series in the equations. The only difference between
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FIGARCH and HYGARCH models is about the stationarity. The more flexible
HYGARCH model can be stationary in some cases, but the FIGARCH cannot.

In contrast to parametric VaR estimation, non-parametric VaR estimation
methods utilize the characteristics of returns to estimate the VaR directly without the
assumption about returns’ distribution or relationship with other factors. Historical
simulation (HS), proposed by Hendricks (1996), is one of famous non-parametric
estimation, simply assuming that the distribution of returns is always identical to
history. Also, Barone-Adesi and Giannopoulos (1996) introduced the filtered
historical simulation (FHS) that is semi-parametric, the combination between the use
the GARCH model as a parametric way to predict volatility and the traditional
historical simulation for standardized returns as a non-parametric way.

Consider the GJR-GARCH, MSGARCH, and HYGARCH models. As each
model is developed to capture different stylized fact, unfortunately, a model cannot
capture other stylized facts that the model is not designed to cope with. Consider
especially when each model is used solely in the estimation of VaR. The GJR-
GARCH is admired by many literatures from its better response to sensitive change in
data, but fewer number of parameters makes the GJR-GARCH theoretically worse in
fitting in-sample data in comparison to other GARCH model variants. For the
MSGARCH model that emphasizes the better reflection of after-shock effect,
especially in long-term data, the study from Zhang et al. (2019) found the weakness of
MSGARCH model when fitting to daily data: the MSGARCH model is less-fitted to
data than other models like simple GARCH or GJR-GARCH models, but this
problem is not found for weekly data. Unlike other models, the fractional exponential
models like FIGARCH and HYGARCH models have benefit from their flexibility to
fit the data better. However, the study of Degiannakis et al. (2013) showed
indifference between the FIGARCH and GARCH models when estimating the VaR.

Because using each of these GARCH model variants solely for estimation of
VaR has its pros and cons, many literatures (Chen et al., 2012, Messaoud and Aloui,
2015, Zhang et al., 2018, Stavroyiannis, 2018) decided that the only the model is not
enough: it needs more complexity on noise distribution to alternatively improve
model’s power on prediction.

This research, however, tries the direct way to improve these models: focusing
on improvement on equation to be more complex, while remaining simple noise
distribution like the Gaussian or Student’s t distribution. One of interesting choices is
combining between models to introduce a mixed model, following the prominent
example of Hamilton and Susmel (1994) that the combination between the leverage of
GJR-GARCH model and the Markov process was found.
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Consider all possible combinations among the GJR-GARCH, MSGARCH,
and HYGARCH models. If all three models are combined to produce a mixed model,
its equation becomes too complicated in implementation sense. The combination
between the GJR-GARCH and MSGARCH is identical to prior study of Hamilton and
Susmel (1994). Consequently, there are two remaining combinations that is not found
in previous studies, the HYGARCH model with GJR-GARCH model, and the
HYGARCH model with MSGARCH model.

As mentioned before, the HYGARCH model seems to compensate the GJR-
GARCH or MSGARCH model in problem of data fitting. Thus, this research decides
to combine the feature of HYGARCH model with GJR-GARCH or MSGARCH
model regarding two advantages: these model combinations could fit to data better
due to the strength of HYGARCH model, and the problem of data overfitting in
HYGARCH model could be avoided by the strength of other model (GJIR-GARCH or
MSGARCH) in these combinations.

However, the worthiness of combination is important to consider in this
research. Firstly expected, these mixed models should predict the VaR better than
their pair of base models. This expectation confirms the righteousness to combine
these GARCH model variants together. Another expectation is about the competency
versus simulation-based methods. If the model combination cannot advance the
straightforward HS method, it is not economical to implement that mixed model for
poorer prediction than the prediction from the simulation. Thus, the mixed model
should prosper the HS and the semi-parametric FHS methods.

1.2 Research Question

Given three GARCH model variants (GJR-GARCH, Haas et al. (2004)
MSGARCH, and HYGARCH) mentioned above, let two mixed models, proposed in
this research, are formulated using the characteristics of each combinations between
two base models as denoted in the following table:

Table 1 Combination between GARCH model variants formulated in this study

HYGARCH
(Davidson, 2004)
GJR-GARCH Mixed Model 1:
(Glosten et al., 1993) | HY-GJR-GARCH
MSGARCH Mixed Model 2:
(Haas et al., 2004) HY-MS-GARCH

Are these mixed models better in estimation and prediction of 1-day VaR than
their base models, the historical simulation, and the filtered historical simulation?
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Considering prediction accuracy, autoregressive independence, and effect when the
estimated VaR is violated by realized losses, how are these models better?

Consider the fractional exponential feature in HY GARCH model. The studies
from Wu and Shieh (2007) and Charfeddine (2016) showed the superiority of
fractional exponential feature in FIGARCH model that makes the model better than
typical GARCH in prediction of VaR. Thus, it can be inferred that combining GJR-
GARCH or MSGARCH model with HYGARCH model should boost prediction
accuracy, boost autoregressive independence, and reduce excess losses under the VaR
estimation to the mixed models against their own base models and, also, historical
simulations.

Generally compared between GJR-GARCH and MSGARCH models, the
GJR-GARCH model has higher prediction accuracy, higher autoregressive
independence, and less negative difference whether the realized returns penetrate the
VaR estimation, than the MSGARCH model. Thus, while comparing between two
mixed models, the first mixed model with GJIR-GARCH feature could be expected
more effective than the second model.
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Chapter 2 Literature Review

2.1 GJIR-GARCH model in the econometrics world

The GJR-GARCH model is well-known for its ability to capture the
consequence from leverage effects. This benefit was first confirmed by Engle and Ng
(1993) empirical results. In case study of Japanese TOPIX index since 1980 to 1988,
the GJIR-GARCH model was the best fitting model against prior GARCH model
variants, i.e., the standard GARCH and exponential GARCH (EGARCH) model. In
addition, the GJR-GARCH model can surpass the EGARCH model in parametrization
of the impact on negative returns, as the EGARCH model overestimates this impact in
extreme cases, but the GJR-GARCH model does not.

Furthermore, there are several studies on its application to estimate and
forecast the VaR. One way to study is comparison between models. Su et al. (2011)
used the GJR-GARCH model to forecast the VaR of simulated portfolios in
comparison to the standard GARCH. Accompanied with conditional mean models
and periodic updates in estimation, the GJR-GARCH is appropriate to calculate the
VaR.

Also, the GJR-GARCH is also mentioned as a benchmark for further models.
Louzis et al. (2014) chose the GJIR-GARCH as a benchmark against the asymmetric
heterogenous autoregressive (HAR) model to compete in estimation of VaR. After the
study on various financial data represented each asset class, the results showed that
the GJR-GARCH models with skewed Student’s t distribution, extreme value theory
(EVT), and the FHS are accredited for their accuracy but not enough efficient for
applications about capital requirements. Bams et al. (2017) placed the GJIR-GARCH
against the HS and implied volatility in the competition of VaR estimation. Based on
American stock indices data, the VaR using GJR-GARCH model outperformed other
rivals.

There are also the works that focused on the proposal of GJIR-GARCH model
variants or various distributions in use with the GJR-GARCH model. Chen et al.
(2012) worked on the GJR-GARCH model with asymmetric Laplace distribution.
With the empirical tests on data of market indices and exchange rates, the proposed
GJR-GARCH model was suggested better than the GJR-GARCH model with
Student’s t distribution and several conventional ways to estimate the VaR. Messaoud
and Aloui (2015) proposed the GJR-GARCH model with the EVT and copula, along
with empirical results on emerging market indices. Zhang et al. (2018) adapted the
dynamic spatial panel to the GJR-GARCH model that resulted more accurate VaR
prediction for world major market indices than the prediction from its base models.
Stavroyiannis (2018) utilized the GJR-GARCH model with standardized Pearson
type-1V distribution to the application on price of digital currency Bitcoin that proved
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how the GJR-GARCH model can reflect the higher risk of Bitcoin than typical
financial assets.

2.2 Markov switching GARCH in competition with the single-regime one

Like the older GJIR-GARCH model, there are many studies dedicated to the
MSGARCH model, especially the MSGARCH model of Haas et al. (2004). In its
specified application of predicting the VaR, Ardia et al. (2018) and Ardia et al. (2019)
both used the MSGARCH model that is mentioned “the most natural and
straightforward extension” to the GARCH model for the computation of VaR of
different assets: stocks and exchange rates for Ardia et al. (2018), and digital currency
rate of Bitcoin for Ardia et al. (2019). The following conclusion came that the
MSGARCH model is more compatible with the equities, but the application of
MSGARCH model usually benefits even when applied to other assets.

Both works applied the Markov process to the standard GARCH and GJR-
GARCH models. However, some studies focused only on the Markov switching GJR-
GARCH model. Sampid et al. (2018) proposed the specific use of the MSGARCH
model with GJR-GARCH extension, skewed Student’s t distribution, copula
transformation, and EVT, on the VaR calculation based on stock prices. A similar
study came from Liao et al. (2019), but the model with simpler symmetric Student’s t
distribution was preferred instead.

One of the characteristics of the MSGARCH maodel is about fittingness to the
data. Mentioned in Charfeddine (2016), the 3-regime MSGARCH model with
Student’s t distribution is the most fitting model to the commodity future prices in
comparison to other GARCH variants with the same distribution. However, the
drawback of MSGARCH model comes from the highest number of parameters that
compensate the fittingness. In overall, the MSGARCH model is not better than long-
memory GARCH models.

2.3 The FIGARCH models in empirical use cases

Like priorly mentioned GJIR-GARCH and MSGARCH models, the application
of fractional exponential GARCH models for VaR estimation was studied due to the
long memory in financial data. As the oldest fractional exponential GARCH model,
the FIGARCH model is the most mentioned one. Wu and Shieh (2007) used T-bond
interest rate future prices as a case study to prove the difference between the
FIGARCH and GARCH models. Although the in-sample results showed the
indifference, the out-sample results suggested that the FIGARCH model with skewed
Student’s t distribution was the most preferable model in comparison to the
FIGARCH and GARCH models with normal, Student’s t, and skewed Student’s t
distributions. This phenomenon was also confirmed in the study of Charfeddine
(2016) with commaodity future prices. The FIGARCH and the fractionally integrated
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exponential GARCH (FIEGARCH) models were the most preferable models
according to both in-sample and out-sample results. Charfeddine (2016) also
suggested that the weekly frequency is the appropriate one to observe long memory in
commodity future prices.

As many studies preferred the FIGARCH model among other GARCH model
variants, the FIGARCH model itself was used as a risk metric. Sukono et al. (2017)
and Biage (2019) both used the FIGARCH model for VaR calculation to reflect the
market risk in stock prices. Sukono et al. (2017) used the FIGARCH-modeled
conditional variance, together with the ARMA-modeled conditional mean, for the
market risk comparison between Indonesian stocks. In a different perspective, Biage
(2019) used the sole FIGARCH model for the different comparison between
constituents in American DJIA index and those in Brazilian Ibovespa index to
compare the efficiency between markets.

2.4 FIAPARCH model: implication to some gap?

Also, there was much effort to adapt the fractional exponential characteristics
to prior ARCH and GARCH models’ variations after the FIGARCH model. The
HYGARCH model of Davidson (2004), mentioned above, is one of prominent
examples. However, there is the fractionally integrated APARCH (FIAPARCH)
model of Tse (1998) that was proposed before the HYGARCH model. Tse (1998)
applied fractional exponential feature to the asymmetric power ARCH (APARCH)
model of Ding et al. (1993) to introduce the FIAPARCH model. Tse (1998)
demonstrated indifference between prior APARCH and new FIAPARCH models
when estimating the volatility parameter of daily yen-dollar exchange rate from 1978
to 1994 and the daily maintenance margin needed for trading the rate’s future.

As seen from Figure 3, although the APARCH model equation with power
parameter of two is considered equivalent to the GJR-GARCH model, their
formations come from different perspectives: APARCH works on absolute value of
residuals, but GJR-GARCH works on dummy variable on residuals. For the
combination between FIGARCH and APARCH models, they become the
FIAPARCH. If the FIGARCH model is replaced by the more flexible HYGARCH
model, and the APARCH model is substituted by the more specified GJIR-GARCH
model, what will become from this combination? Hence, this research dedicates effort
to adapt the fractional exponential characteristics to the case study of GJIR-GARCH
model, the mixed model 1 in the research question, that is difference from the prior
study on the FIAPARCH model.
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Figure 3 lllustration of the literature gap as seen from the invention of FIAPARCH
model

25 FIGARCH, HYGARCH, and FIAPARCH models: who wins in
comparison?

Afterward, the FIGARCH, HYGARCH, and FIAPARCH models were usually
mentioned together in the comparison of fractional exponential GARCH models. For
the application of VaR calculation, there are Tang and Shieh (2006), Aloui and
Mabrouk (2010), Demiralay and Ulusoy (2014), Mabrouk (2016), and Buberkoku
(2019). The skewed Student’s t distribution was preferred by almost all these works,
excluded Demiralay and Ulusoy (2014) that mentioned only symmetric distributions.
In comparison between models, Aloui and Mabrouk (2010), Demiralay and Ulusoy
(2014), and Mabrouk (2016) unanimously suggested the outperformance of the
FIAPARCH model beyond the FIGARCH and HYGARCH models in various cases.
However, Buberkoku (2019) disagreed with these results. After the test with various
financial data, the HYGARCH model won all other models, the FHS, and the HS in
the estimation of short-positioned VaR. Moreover, all models could not perform
better than the FHS in long-positioned VaR estimation. However, in the pair
comparison between the FIGARCH and HYGARCH models, Tang and Shieh (2006)
did not incline to only one model due to the empirical results on stock index future
prices that each model performed better on some data set.

2.6 When fractional exponential GARCH meets Markov process

Since this research concentrates on the combination between asymmetry
GARCH and fractional exponential GARCH models, the combinations between
models in literature are reviewed. For the combination between Markov switching
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process and fractional exponential GARCH models, Basatini and Rezakhah (2020)
proposed the way to apply the Markov process to the smooth transition HYGARCH
(ST-HYGARCH) model from Basatini and Rezakhah (2019) as the Markov switching
smooth transition HYGARCH (MSST-HYGARCH) model. Basatini and Rezakhah
(2020) also demonstrated how better the MSST-HYGARCH model can do than the
ST-HYGARCH model and HYGARCH model from the case study of daily VaR
prediction on S&P 500 and DJIA indices.

HYGARCH |:> Smooth Transition HYGARCH
i (ST-HYGARCH)
(Davidson, 2004) (Basatini and Rezakhah, 2019)

______________________

! |
1 ' - .
| Markov Switching HYGARCH 1 #7~" ™ Marko‘él\a"s"'stghmélﬁ%ﬁ?ARCH
1 H - _ _ 1 W -
! Mixed Model 2: HY-MS-GXRGH] A 4o S (Basatini and Rezakhah, 2020)
1
1
1
\

______________________

Figure 4 The literature gap as seen from Basatini and Rezakhah (2019) to Basatini
and Rezakhah (2020)

As seen in Figure 4, the way to MSST-HYGARCH model in the literatures
comes in order of smooth transition before the Markov process. However, there is an
alternative way that the Markov process might apply to the HYGARCH model before
smooth transition that Basatini and Rezakhah (2020) did not cover. What will happen
if the Markov switching feature is applied to HYGARCH model? This question will
be concerned in this research with the introduction of mixed model 2 in the research
question.

Different from Basatini and Rezakhah (2020), Bildirici and Ersin (2014) made
use of Markov switching process to the fractional exponential FIAPARCH model
combining with the autoregressive moving average (ARMA) model. However, the
MS-ARMA-FIAPARCH model was not the main player in the research. The MS-
ARMA-FIAPARCH model was used as the noise model under the neural network,
following the previous concept introduced by Spezia and Paroli (2008), to directly
predict stock returns demonstrated by the Istanbul Stock Index ISE 100. This concept
of using GARCH models under the more complicated neural network is interesting.
However, when the neural network with GARCH noises is in use, the perspective is
too close to the accuracy of the model, not the quantitative parameter estimated from
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the model to interpret for business. Hence, this research does not cover this
complicated use of GARCH models and directly uses modified GARCH models as
the main characteristics to predict the VaR.
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Chapter 3 Methodology
3.1 Models

3.1.1 Generalized autoregressive conditional heteroskedastic (GARCH) model

Assumed the returns r; is temporally constant around the mean y;:
Te = Ut €, 1)
and the residual €, is a random variable with the variance o?:
€t = N0y, 2

so that n, is independent and identically distributed (i.i.d.) with zero mean and
unit variance, conditionally on o; and J,_;, the information as of time t — 1, the
generalized ARCH (GARCH) model for the variance, developed by Bollerslev (1986)
on the base of Engle (1982) ARCH model, can be formulated as follows:

0f = W+ arefq + -+ aget_ g + Profy + -+ Boiy (3)

wherep >0, ¢g=0, >0, ¢; =20Vi=1,..,q, p;=0Vvj=1,..,p.

Mark that the terms w, a; and f; are respectively called the constant, ARCH
coefficients, and GARCH coefficients, p is the number of lagged variances in use for
the model, and q is the number of lagged residuals. The numbers p and g are
commonly denoted when referred to the GARCH model as the GARCH(p, g) model,
for example, the GARCH(1,2) model contains two lagged residuals and one lagged
variance in the formulation. However, the equation (3) can be rewritten using the lag
operators:

0f = W+ ar€fq + o+ aget_g + Pr0fg + -+ Bpoiyp, (3)
0f = P10ty — = Bpot, = W+ ar€f g + -+ agety,
(1=BL— = ByLP)of = w + (ayL + -+ a L)€t (4)

Let the coefficient functions be defined:

q

a(x) = Z axt, B = iﬁjxj.

i=1 J

The equation (4) can be rewritten as

[1-BD)]of = w + a(L)ef. (5)
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This formulation with lag operators and coefficient functions is convenient for
further descriptions about GARCH model variations. The stationarity of the GARCH
model occurs if and only if a(1) + B(1) < 1. Note that the i.i.d. n; needs the
assumption about its distribution, commonly normal (Gaussian) or Student’s t
distribution, that define the likelihood function for the estimation step that commonly
uses the maximum likelihood (ML) or quasi-maximum likelihood (QML) estimation
process. Given the number of observations to estimate the model is T, if n, is assumed
normal distributed, the log-likelihood function of the model is

T
Thnh2m 1
Ly = ——— =3 (no? + 7). (6)
t=1

If n; is assumed Student’s t-distributed with the degree of freedom v instead,
the log-likelihood function is (Bollerslev, 1987)

+1 In(v=2)\ 1x 2
LLm,:T(lnF(vT)—lnF(;)—nvz )—Etz[lnat2+(1+1/)ln<1+vn_2)] ()

where v > 2. Note that I'(*) is the Gamma function.

In order to use the GARCH model to forecast the VaR at 1 — a (commonly 95
or 99 percent) confidence level and one-day holding period, denoted the VaRf, for
the long position (that is only concerned in this research), first, the parameters in the
model are estimated using historical data (practically recent return data of some
sufficiently long period, i.e., 100 days). Next, the ahead conditional variance
Elo:|3;-4] is forecasted. For example of the GARCH(1,1) model,

1 _ 1
E[o¢7-1] = (E[0f|9,-1])Z = ((D +ayefq + .31E[‘7t2—1|7t—1])2- (8)

The above assumption about the distribution of n, demands the final formula
to calculate the VaR. If assumed normal, the formula is

VaR{ = u, + @~ (a)E[0:]7,_,] ©))

where &(-) is the cumulative distribution function (CDF) of the normal
distribution. For the assumption of Student’s t-distribution, the formula is

VaR{ = p + t;l(a)E[atl.‘]t_l] (10)

where t, (+) is the CDF of Student’s t-distribution with degree of freedom v.



25

3.1.1.1 Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model

Given the returns r; be defined by the equations (1) and (2) and their
additional assumptions, the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH)
model for the variance is defined by the following formulation:

[1-pW]of = w + [a(l) +y(L)I]ef (11)

where I; is a dummy variable defined as the following function:

_ (1, <0
Ie = {0, otherwise (12)

and the additional coefficient function y(x) is defined as

q
ye) =yl
i=1

Glosten et al. (1993) studied the empirical observation on CRSP value-
weighted index of NYSE stocks, and one of the conclusions was that the variance
increases when the returns decrease below the expectation. Hence, the research
proposed this modification for Bollerslev (1986) GARCH model. This model, named
after the contributors as the GJR-GARCH model, allows difference responses on
conditional volatility for positive and negative residuals.

Glosten et al. (1993) also suggested that the coefficient y; is positive a priori.
However, any a; + y; might be negative, even 2 in some cases. For the specific case
of the GJR-GARCH(1,1) model with a symmetric distribution, the stationarity of the
model exists when a; + 8, + 71 /2 < 1.

3.1.1.2 Markov switching GARCH (MSGARCH) model

After the Markov switching ARCH (SWARCH) model of Hamilton and
Susmel (1994), Gray (1996), Klaassen (2002), and Haas et al. (2004) proposed the
Markov switching GARCH (MSGARCH) models as the extension of SWARCH
model. Although the MSGARCH models of Gray (1996) and Klaassen (2002) are the
basement for further MSGARCH model by Haas et al. (2004), only the last models
are considered to utilize in this research. However, the understanding about
MSGARCH model of Gray (1996) and Klaassen (2002) is needed to describe the
concept of the last MSGARCH model. Hence, the Gray (1996) and Klaassen (2002)
MSGARCH model are explained briefly before.
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3.1.1.2.1 Gray (1996) MSGARCH model

Given the returns r, have behaviors described by the equation (1) and (2) and
the condition like the simple GARCH model’s prerequisites, assumed that the
volatility of return follows a Markov chain process with finite K states, the
conditional variance at time t and state k, E[o7|S, = k], as denoted afterward as o/,
is described as the formulation below:

Utz,k = wy + ay €ty + PirElof117:-5]

K
= wy + ay €t + ﬁ1,kz p(Se—1 = UTe—z)of 4, (13)
=1

As the descendant from SWARCH model, the Gray (1996) MSGARCH model
used the expectation of lagged conditional variance to reduce the issue of path
dependency found when SWARCH model is in use. Consider a Markov chain process
with finite K states and T intervals of observations. According to the SWARCH
model, each of KT possible paths in the overall process have their own conditional
variances that depend on their paths. But for the Gray (1996) MSGARCH model, the
final conditional variance for each path depends on only the final state, not the whole
path.

3.1.1.2.2 Klaassen (2002) MSGARCH model

Given the same preconditions like Gray (1996) MSGARCH model’s, the
Klaassen (2002) formulation for the conditional variance o7, is

Utz,k = wy + ay €ty + PiElof11T-1, Sp = K]

K
= Wy + al,ket_?—l + ﬁl,k Z p(Se—1 = UTe1, St = k)UtZ—Ll- (14)
=1

In comparison to Gray (1996) MSGARCH model equation as shown in the
equation (13), Klaassen (2002) decided to condition the expectation of lagged
variance by the information to timestamp ¢ — 1 and the current state, which is slightly
different from the equation (13) of Gray (1996).

However, to define the stationarity of Klaassen (2002) MSGARCH model is
more complicated in comparison to the stationarity of a single-regime GARCH
model. Consider the 2-regime MSGARCH model. Given the 2-by-2 matrix A with
elements A;; = (ay; + B1,:)p(Se+1 = jlISe = i), and the 2-by-2 identity matrix I,, the
model is concerned stationary if the elements A;; and A,, are less than one, the
determinant of I, — A is positive, the stationarity for the GARCH models from each
regime exists, and the corresponding Markov chain has long-run distribution.
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3.1.1.2.3 Haas et al. (2004) MSGARCH model

Same preconditions as Gray (1996) and Klaassen (2002) MSGARCH models,
the formulation for the conditional variance o/, proposed by Haas et al. (2004) is like
the equation of standard GARCH model:

Utz,k = Wy + a1,k61.?—1 + ,81,k0t2—1,k- (15)

Haas et al. (2004) freed the lagged conditional variance term from its
expectation and conditions to make the model simpler so that the GARCH model
equation can be used independently across regimes.

Although the Haas et al. (2004) GARCH equation is simpler in comparison to
the GARCH equation of Klaassen (2002), the condition for its stationarity is more
complex. Consider the case of 2-regime GARCH model previously mentioned to
describe Klaassen (2002) MSGARCH model’s stationarity. Let the elements in A be
substituted by the 2-by-2 matrix such that A;; = {diag(B11,B12) +
(a1, @12)e{}p(Sey1 = ilS; = j) where e; is the ith 2-by-1 unit vector, i.e., e; =
(1,0) and e, = (0,1). Then, A becomes a 4-by-4 matrix, and the 4-by-4 identity
matrix I, is needed. To meet the stationary condition, all eigenvalues of A are needed
to lie in a unit circle, in the other word, all absolute values of eigenvalues of A must
be less than one.

3.1.1.3 Hyperbolic GARCH (HYGARCH) model

Given the same basements about returns r; as mentioned by equations (1) and
(2), like the standard GARCH model’s, the equation for the hyperbolic GARCH
(HYGARCH) model is

of = w1 = BWIT +{1-[1- BWITPW[1 +al1 - 1) - 1]} (16)

where 0 <a<1, 0<d<1, p(x) =X p;x" is a polynomial function with
degree p, and the exponential term (1 — L)¢ is defined by the sum of infinite lag
operator polynomials:

Note that all solutions for equations ¢(x) = 0 and 1 — S(x) = 0 are needed to lie
outside the unit circle, in the other words, all absolute values of roots of these
equations are more than or equal one.
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Before the HYGARCH model is described on details, the understanding on the
fractionally integrated GARCH (FIGARCH) model is urgent regarding the fact that
the HYGARCH model stems from the base of FIGARCH model. Thus, in this
section, the FIGARCH model is also described to explain the early concept of
fractional exponents on GARCH model variants, although the FIGARCH model has
less role than the HYGARCH model in this research.

Baillie et al. (1996) introduced the FIGARCH model as the “long-memory”
GARCH model after the integrated GARCH (IGARCH) by Engle and Bollerslev
(1986). As prior empirical studies about financial asset price data had shown the long
memory in autocorrelation of their volatility, the fractional exponential characteristic
of autoregressive fractionally integrated moving average (ARFIMA) model of
Granger and Joyeux (1980) was applied to the GARCH model, analogous to Engle
and Bollerslev (1986) adaptation of autoregressive integrated moving average
(ARIMA) model with the concept of GARCH model to introduce the IGARCH
model. As the conditional variance in GARCH model is an analogy for the
conditional mean in the autoregressive integrated moving average (ARMA) model,
the FIGARCH model is also analogous to the ARFIMA model. Given v, = €? — o7,
the GARCH equation (5) can be rewritten as

[1-a() - pW)]ef =+ [1—BL)]v, (17)

that is analogous to the ARMA(m, g) model where m = max{p, q}. In case that the
polynomial 1 — a(L) — B(L) has a unit root, 1 — a(L) — S (L) can be defactorized as

P(L)(A — L)ef = w +[1 = BL)]v, (18)

and the corresponding GARCH model is defined as the IGARCH model. Analogous
to the ARIMA model that the conditional difference of mean plays the role like
conditional mean in the ARMA model, the conditional difference of volatility
(1 —L)e? in the IGARCH model also plays the same role as €? in the standard
GARCH model. As the ARFIMA model replaces (1 — L) in the ARIMA model with
the fractional exponential polynomial (1 — L)¢, providing the opportunity to
formulate the long memory (in sense of autocorrelation) of returns, the equation for
the FIGARCH model also comes by replacing (1 — L) with (1 — L)%:

¢ - L)l =w+[1- L], (19)

that can be rearranged as

of =w[1-BW] ™ +[1-[1-BW]¢L)A - L)%]ef (20)
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By the conditions that all above conditions for HYGARCH model exist,
excepted the existence of «, Baillie et al. (1996) claimed the strict stationarity of the
model due to the characteristics of the IGARCH model that the FIGARCH model
inherits. However, the unconditional variance of the model is infinite. Thus, the
FIGARCH model is not weakly stationary.

Afterward, Davidson (2004) proposed the HYGARCH model like a weighing
model between the FIGARCH model of Baillie et al. (1996) and the standard GARCH
model. Thus, the HYGARCH model is more flexible in case that the decreasing rate
of autocorrelation can vary. Given the GARCH model equation (5) is rearranged:

[1-pWlof = w + a(l)ef, Q)
of = w[1 =B + [aL)[1 - LWL ]e?
w[1-=BMI +[1-[1-BW]I 1 -al)-BL) (21)

and the FIGARCH model equation (20):
of = w[1 - BT+ 1~ [1-pWI L) - L)]ef. (20)

Let 1 —a(L) — B(L) be treated as same as ¢ (L), so the equations (20) and (21) are
equivalent such that the weighing equation between equations (20) and (21) is
simplified. Using the weighing parameter «, defined to be zero when the combined
equation is of GARCH model and one when the equation is of FIGARCH model, the
equation of HYGARCH model is:

02 = (1 - )l - I+ [1 - [1 - B (L)]e?)
+ afo[l = BII™ + [1 = [1 = B pL)(1 — L)}
= w[1 - FUI + {1 - [1- B pWI1 — a + a(1 - L)*]}
=o[l-pWIt+{1-[1-pWI W1+l -1 -1]]} (1)

The main difference between FIGARCH and HYGARCH model is about the
stationarity. As the FIGARCH is not weakly stationary, the HYGARCH model is
weakly stationary if [1 — £(1)]"1¢(1)(1 — ) is positive.

3.1.1.4 Mixed GARCH models

As the GJR-GARCH, Haas et al. (2004) MSGARCH, and HYGARCH models
are introduced above, and two combinations from these models are stated in the
research question. This section is dedicated to the formulation of these two mixed
models. For their simplicity in this research, these mixed models are all concerned
first-ordered, in the other word, all degrees of lagged variables are one.

3.1.1.41 Mixed GARCH model 1: HY-GJR-GARCH model

Let the return r; be assumed by the equation (1), (2), and conditionally i.i.d.
assumption as first mentioned in section about the standard GARCH model.
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Combining the fractional exponents of the HYGARCH model and asymmetry in the
GJR-GARCH model, the equation for the mixed GARCH model 1, the first-ordered
HY-GJR-GARCH model, can be defined as

of = w+ (B + Bl/2)ol s + [(k — L) — (k — 1 L){1 + (1 — L)* — 1]}e?
+ {[(2 — 2k) = BIL] - [(2 - 2K) — iy L1 + ' [(1 = L)' — 1]}} Lt (22)

where w>00<d<1,0<a<1 0<al<1, 0<d <1, -k<p, <k,
—k <Py <k, —|2—2k| < B! <|2—-2kland —|2 — 2k| < K, < |2 — 2k|.

To introduce the combination of equations of HYGARCH and GJR-GARCH
models to formulate the equation (22), the derivations in this section start from the
special case while all alphas equal one, said the combination between FIGARCH and
GJR-GARCH models. Afterward, the equation expands to the general case like the
extension from FIGARCH to HYGARCH model.

From the general GJR-GARCH model equation (11), the GJR-GARCH(1,1)
model equation may be rearranged by using v, = €? — ¢ similarly to the formulation
of equation (17) from equation (5) as

(1—aqL — 1L — V1L1t)5t2 =w+ (1 - pL)v,. (23)

Consider the equation of FIGARCH(1, d, 1) model in the form of equation (19):
(1—¢ L)1 - L)detz =w+ 1= pL)v,. (24)

The term for dummy variable I, in equation (23) is also needed in the left side of
equation (24) to capture the residual’s asymmetry like the GJR-GARCH model. Thus,
let the variable x; be defined like y; in equation (23), and the term k,LI; is added to
the equation (24) as follows:

(1= ¢1L — 1 LI - L)dfg =w+ - pLv,
1- ﬁlL)Utz =w+[1-pL-1A-¢,L)(1 - L)+ ki L(1— L)dlt]ft,?- (25)

However, when the equation (25) expands to its GJR-GARCH (oo, 0) form, and
many constraints are added to ensure the positivity of conditional volatility when
implemented, the coefficients on lagged dummy variables of I,e? has a problem of
sign inversion after several first-ordered lagged I,€2. This problem makes the model
not consistent with the root assumption of GJR-GARCH model about asymmetry. To
solve this problem, let vl = I,e? — 67 /2 be introduced to help rearranging equation
(11). For any symmetric distributed €., E[I.e?] = o72/2, then the expectation of v}
also equals zero like v;. Instead of relying on only one v;, the equation (11) can be
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rearranged like there are two separated components: one for €2 and another one for
I.eZ. Concerning the left side of equation (11) of GJR-GARCH(1,1) model:

1- ﬁ1L)0t2 =w+ 0‘1LEL? + )/IL(ItEtZ)' (26)

the conditional variance ¢ can be substituted as either e? — v, or 2I.e? — 2v}. Thus,
the beta polynomial must be separated for each substitution. Let k be a fraction of one
assigned to v, part, B1/2 be an additional beta coefficient corresponding to v, ¢, =
a; + By, and k; = y; + B1. Rearrangement from equation (26) is demonstrated as
follows.

[1— (B +Bi/2)L]o¢ = w + a;Lef + y, L €f),

(k= p1L)of +[(1 — k) — (B{/2)L]o? = w + ayLef +y, LI €),

(k = BiL)(e? —v) + [ — k) — (Bi/2)LI2I€f — 2v]) = w + a;Lef + v, LI €?),

(k- B1L)(Et2 —ve) +[(2 =2k) — ﬁ{L](ItetZ = Vg) =w+ alLE? + ylL(ItEtZ)'
(k — ¢p,L)e? + [(2 — 2k) — Kk, L)L, e? = w + (k — By L)v, + [(2 — 2k) — BILvL. (27)

Like the equation (25) as the mixture between equation (23) of
GJR-GARCH(1,1) model and equation (24) of FIGARCH(1,d, 1) model, each bundle
on the left side of equation (27) is assigned with its own long-memory term (1 — L)<.
Therefore, this introduced model equation becomes the composite between two
FIGARCH elements:

(k — 1 L)(1 — L)%eZ + [(2 — 2k) — 1, L)(1 — L)¥' I €}
=w+ (k=B L)v, +[(2 = 2k) — BILIV] (28)

that can rearrange as

of = w+ (By + B1/2)0fy + [ = BiL) — (k — ¢1 L) (1 — )] €?
+{[2 - 2k) - BIL] — [(2 — 2k) — i, L](A — L) Y€, (29)

Note that there are two d’s in use, the first d for the FIGARCH element
corresponding to €Z, and the second, denoted differently as d’, for the FIGARCH
element on I.eZ.

However, in the step of implementation to estimate parameters, the problem
might occur that the conditional variance o? becomes negative for some cases. To
prevent this problem, some conditions are added to ensure o7 is always positive that
is preferable. Consider the equation (29) again. The equation (29) can be rewritten in
the form of GJR-GARCH (oo, 0) model as
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0'1:2 =w+[k—pL—-(k—¢ L) — L)d]et.?
+[2 = 2k = BIL — (2 — 2k — 1, L) (1 — L)¥'| 1, €?
+ (B + B/ D{w + [k = BiL — (k — ¢ L)1 — L) el
+[2 =2k = BIL — (2 = 2k — 1, L) (1 — L)V |I,_1 €2}
+ (1 + ﬁ{/z)z{w + [k — 1L — (k — ¢, L)(1 — L)*]eZ,
+[2 =2k = BIL — (2 = 2k — 1, L) (1 — L)Y |I,_p€2 5} + -
=w(@+ B +B1/2)+ B+ B1/2)* + ) + (¢ — P1 + kd)el,
+ (ky — B + (2 — 2k)dD)I_1 €t 4
+[(By+ B1/2)(p1 — By + kd) + kd(1 — d) /2 — p1d]et,
+[(By + B1/2) (ke — B + (2 = 2k)d") + (2 — 2k)d' (1 — d")/2
— K d' |l _p€f_; + -
= w/[1— B+ B1/D] + atefy +vili1€f1 + azely +yoli_s€fy + -

where ai = (By + Bi/2)ai_y + 8k — 8191, vi = By + B1/2)yiq +
8/(2—2k) —6_1k;, 6;=[(i—1—4a)/il6;_y, and &/ = [(i — 1 —a")/i]s]_, for
any integer i >1, a;=¢,—p1+kd, y1 =K, —Bi+ (@2 -2k)d!, § =d, and
6l =d!.

Let the fraction k lie between zero and one, and both g, and B! be only
positive. To confirm the positivity of all a;s first, two constraints corresponding to 8,
and ¢, are defined in association with @f and other «;. For the positivity of aj, ¢; >
B1 — kd. The next constraint to confirm all a;s are positive depends on &;k — §;_1¢;.
Since (B; + B1/2)a}_, is certainly positive as a result from constraints about 3;, 1,
and a;. Then, 8k —8;_1¢1 = 6;—1[k(i—1—d)/i — ¢,] is the main factor to
confirm the positivity, especially k(i — 1 —d)/i — ¢,. As the possible minimum for
(i—1—-d)/iis (1 —d)/2, the second constraint for ¢, is that ¢; < k(1 —d)/2.
The strict range for ¢; also constraint back to ; to ensure that the range (5; —
kd, k(1 — d)/2) exists, in other words, 8; < k(1 — d)/2. This condition restricts the
range of B; without contradiction to prior constraints. In similar way to «;s, the
additional conditions for B1 and x;, according to the confirmed positivity for y;, are
fl—2-2k)d <k, <(2-2k)(1—-dNH/2and B! < (2 —-2k)(1 +dH/2.

From this point, there exists the equation and additional conditions for HY -
GJR-GARCH model in special case of unit alphas. Next, the alphas constraints are
reclined to expand the equation to desired generalization. Like the adaptation from the
FIGARCH model equation (20) to HYGARCH model equation (16), the equation
(29) can be adapted to the equation of first-ordered HY-GJR-GARCH model using
additional variables @ and «! and substitutions of (1 — L)% and (1 — L)% by 1+
a[(1 — L)% = 1] and 1 + a’[(1 — L)@ — 1] respectively, as seen in the equation (22).
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Also, the conditions on its positivity when implemented are needed to adapt.
Remaining the constraints about the value of k between zero and one and the
positivity of g, and B!, the available ranges for ¢, and x, are needed to modify. Note
that when the equation (22) is rearranged to the GJR-GARCH(oo,0) form, the
coefficients a/s and y;s also depend on a and a! such that a/ = (B; + B1/2)aj_, +
a(ks; — ¢18;1) and y{ = (B + Bi/2)yi_y + a'[(2 — 2k)8! — i, 81,1 for any
integer i > 1, where a; = ¢, — By + akd and y; = k; — Bi + a’ (2 — 2k)d’. Hence,
the appropriate ranges for the value of ¢, and x; become (f8; — akd, k(1 —d)/2)
and (Bf —al(2 — 2k)d!, (2 — 2k)(1 — d")/2) respectively, then the maximums of
i and B! shrink to k[(1—-d)/2+ad] and (2-2k)[(1—d")/2+ a'd']
respectively.

3.1.1.4.2 Mixed GARCH model 2: HY-MS-GARCH model

Under the same preconditions as mentioned in section about the mixed
GARCH model 1, this combination between the HYGARCH model and MSGARCH
model of Haas et al. (2004) uses the HYGARCH equation directly with satisfaction of
all HYGARCH conditions for all regimes like the Haas et al. (2004) MSGARCH
model that also utilize the GARCH model equation directly.

3.1.2 Historical simulation (HS)

As known as one of famous non-parametric way to describe the behavior of
financial assets, Hendricks (1996) proposed the historical simulation (HS) as one of
straightforward ways to estimate the VaR without any assumption about time series
characteristics. The only key assumption is that the history repeats itself. Thus, the
distribution of returns of any financial asset can be described by its history. In contrast
to VaR prediction using GARCH models above, the VaR{ is simply predicted using
the ath quantile of historical return data (commonly recent data for long period to
ensure that the estimated VaR appropriately reflects the market risk).

In this research, the HS method is chosen as one of baseline VVaR estimation
models to compare with GARCH models.

3.1.2.1 Filtered historical simulation (FHS)

Unlike Hendricks (1996), Barone-Adesi and Giannopoulos (1996) pioneered
the alternative way to predict financial asset’s VaR: using the historical simulation for
standardized historical return data, and the Engle (1982) GARCH model to forecast
return’s volatility separately. By this method, the ath quantile of standardized
historical return data, denoted by quantile, (z;), is explored first and then replaced in
typical VaR prediction from the estimated GARCH model to finally get the VaR{:

VaR{ = u; + quantile (z,)E[0;|T;_4]- (30)
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Using both historical return distribution to find the standardized percentile at loss non-
parametrically, and assumed return distribution to estimate the volatility
parametrically, the FHS method is called a semi-parametric method to predict VaR
due to its components.

The FHS method is also chosen to be one of baseline VaR estimation models
along with the HS method in this research.

3.2 Measurements

In this research, four measurements are used to compare the efficiency of VaR
estimation from each model mentioned in the last section.

The first two measurements, Kupiec’s proportion of failure coverage test and
dynamic quantile (DQ) test, are based on the frequency of violations when the
realized returns penetrate the estimated line of VVaR. The different between these tests
is, while the Kupiec’s test treats all violations in a specific period without recognition
of temporal sequence between hits, the DQ test considers more on the sequence as the
“conditional” version of the Kupiec’s test itself. The description of quality the satiable
VaR estimation should have by each test could expand this understanding. As the
Kupiec’s test defines the VaR line with closest ratio of violation to the preset as the
best VaR line, many VaR lines can be satiable by this metric because they are set to
the right level at the right time. However, this is not enough for the DQ test
measurement that requires all satiable VVaR lines to set to some dynamic level such
that each violation through the VaR line is significantly random from time to time.
This means the VaR line that tries to catch only one big “fall” once in a period is not
preferable in sense of DQ test.

However, the “good” VaR line in views of both Kupiec’s and DQ test might
be set too optimistic. So, the realized returns penetrating this VVaR line cause too much
damage in real application. For example, when too optimistic VaR line defines the
level of needed bad debt provision, and the bad debt is really default, the “too
optimistic” provision will not be enough for covering the loss. Thus, the third
measurement, loss function, is introduced to weigh the “good” VaR line not to be set
too optimistic as the excess loss under the VaR line should be limited to some
acceptable level.

The last measurement, the conditional predictive ability (CPA) test, is used
only in comparison as its test statistic is derived from the loss function difference of
pair of VaR lines. From the perspective of loss function, the less loss function, the
better VVaR line. The question from this point is whether the VVaR line with less loss
function in a comparison has “really” less loss function that does not come from luck.
Thus, the CPA test comes to directly answer this question like the “conditional”
confirmation on differences.
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The detail in calculations of these four statistics, along with their critical
values at various confidence levels, are provided below.

3.2.1 Kupiec’s proportion of failures coverage test

Kupiec (1995) proposed the statistical test to measure whether the failures
when the returns penetrate the VaR occurs proportionally with the confidence
interval. Since its introduction, it has been widely used for VaR backtesting. By the
null hypothesis of @ = a*, the likelihood ratio (LR) test statistic comes from the ratio
between theoretical and empirical proportion of failure as the respective probability.
Given there are x failures out of N observations, the LR test statistic is

—2log A = —2log[(a*)*(1 — a*)N*] + 2log[(x/N)*(1 — x/N)N"*] ~x2.  (31)

Since the goal of this test is to confirm the indifference between the realized
ratio of failure and a, the null hypothesis is needed to be accepted. To accept null
hypothesis at 0.1 confidence level, the test statistic is needed to be less than 2.7055.
For looser levels of 0.05 and 0.01, the thresholds are 3.8415 and 6.6349 respectively.

3.2.2 Dynamic quantile test

Engle and Manganelli (2004) proposed the dynamic quantile (DQ) test as one
of the ways VaR estimations are backtested. According to the Engle and Manganelli
(2004) conditional autoregressive VaR (CAViaR) model, the VaR is autoregressive
on its own lags and its underlying return lags. However, in using the test, the VaR
time series is converted by the hit function:

1-—a, 1 <VaRM

. 32
—a, otherwise (32)

Hit,(x) =1(r; <VaR"*) —a = {
If VaR®™™ is estimated appropriately, the expectation of Hit,(x) equals zero. Then,
the DQ test is performed to test whether Hit,(x) is independent from its regressors.
For examples, Engle and Manganelli (2004) used its own lags to the fourth order as
the regressors. However, Bams et al. (2017) also used the first-order lag VaR and
squared return as the additional regressors to test its independence from market
regimes. The lagged change in implied volatility was also used to test the
independence from a shock that suddenly affects the volatility. In this research,
Hit.(x) is DQ tested with its own four lags and one lagged VaR.

In this test, like Engle and Manganelli (2004), the typical linear regression
coefficients are also calculated to describe the relationship between Hit,(x) and its
regressors. Under the null hypothesis that all coefficients equal zero, the test statistic
is calculated by the formula:
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Hit; ()X, (0 [X{ ()X, ()] X¢ (x)Hit, (x) ~y2 (33)

DQoos = A(1-2) w

where X, is the T x w matrix of corresponding regressors and w is the number of
regressors.

Like Kupiec’s test in Sub-section 3.2.1, the goal is accepting the null
hypothesis to confirm autoregressive independence, indicated by less DQ test statistic
than the critical values. For said specific case in this research, w is 5. Thus, the critical
values become 9.2364, 11.0705, and 15.0863 for 0.1, 0.05, and 0.01 confidence level
respectively.

3.2.3 Loss function

Chen and Gerlach (2013) developed the loss function from Koenker and
Bassett (1978) quantile regression objective function. It can be defined as

T
LF = Z(rt —VaR,)(a — I(r, < VaR,)). (34)
t=1

However, the sole loss function has no information about its distribution. Thus, Chen
and Gerlach (2013) proposed the estimation of loss function by Politis and Romano
(1994) block bootstrap method to get information so that the loss function can be
tested for statistically significant difference from each other. In this research, 1000
blocks of time with length b, suggested T'/3 by Politis and Romano (1994), are
generated randomly to calculate the loss function differences between each pair of
VaR time series. Then, the distribution of each loss function can be implied by its
block bootstrapped distribution.

In this research, however, the block bootstrapped distribution is not assumed
to each loss function itself. But it is assumed to the differences between loss functions
from a pair of VaR lines for benefit of comparison whether the difference is
significant. Using the Student’s t test with 999 degrees of freedom, the absolute value
of t statistic is needed to be more than 2.5808 to indicate significance at 0.01 level.
For looser levels of 0.05 and 0.1, the critical values are 1.9623 and 1.6464
respectively.

3.2.4 Conditional predictive ability test

Giacomini and White (2006) proposed the conditional predictive ability (CPA)
test as a loss-function-based comparison between two predictive models to test
whether the more accurate model is not more accurate because of luck. This test
concentrates on the loss function difference between the estimation result from two
models. If the time series of loss function difference has no autocorrelation, the
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implication comes that the comparative accuracy of said more accurate model might
be lower in the future because of its uncertainty. Then, the autocorrelation of loss
function difference can be used to confirm the superiority of the more accurate model
against the other model. Based on the null hypothesis that the conditional expectation
of loss function difference from two VaR estimations on the information at time t is
zero, the Wald-type test statistic is

T-1 ! T-1 -1 T—1
CPA=T (T-l Z htALHl) (T‘1 Z Zt+1Z{+1) (T-l Z htALHl) ~X3 (39)
t=1 t=1 t=1

where Z;,1 = hAL:,1, hs 15 @ g X 1 vector of test function, AL, is the loss difference
between models at time t. Like Bams et al. (2017), h; = (1,AL;) is used in this
research as the test function following Giacomini and White (2006), and the test is
based on the loss function of Chen and Gerlach (2013).

Like the loss function in Sub-section 3.2.3, this CPA test focuses on
significance of loss function difference. Thus, the expected result is the rejection of
null hypothesis. Due to the y? statistic with 2 degrees of freedom, the size of h, used
in this research as mentioned in the last paragraph, the test statistic calculated from
equation (35) must be greater than 9.2103 to mention a significant difference at 0.01
significance level. For more relaxing levels of 0.05 and 0.1, the critical values are
respectively 5.9915 and 4.6052.

3.3 Data

In this research, the S&P 500 daily index data from January 12 1956, to
December 31%, 1999, from http://finance.yahoo.com is selected as the sample for VaR
estimations. Since the VaR is based on the returns, the daily index P; is converted to
the daily index logarithmic return:

1. = log Py — log P;_;.

Then, there are data points of r, from the second date, January 13", 1956, to
the last date of 1999. These r; are illustrated in the following diagrams and table of
description:
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Figure 5 S&P 500 daily logarithmic returns, January 13", 1956 — December 31%,
1999
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Figure 6 S&P 500 cumulative daily logarithmic returns, January 13", 1956 —
December 31%, 1999
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900 S&P 500 daily logarithmic returns (Jan 13, 1956 - Dec 31, 1999)
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Figure 7 Distribution of S&P 500 daily logarithmic returns, Gaussian normal
distribution shown by the curved line

Table 2 Numerical characteristics of S&P 500 daily logarithmic returns

Number of data points 11071

Mean 0.000315
Standard deviation 0.008720
Skewness -1.776612
Excess kurtosis 48.550896
Minimum —0.228997
1% percentile —-0.021937
51 percentile -0.013127
1% quartile —0.003976
Median 0.000373
3 quartile 0.004692
95" percentile 0.013561
99'" percentile 0.022581
Maximum 0.087089

Priorly, the data points are divided as many subsamples containing 1,000 first
points as training data and other points as test data to reflect various market
environments that the hypothesis will be tested in this research. Afterward, the
parameters of two mixed GARCH models, three base GARCH models, and GARCH
part for filtered historical simulation, are estimated for each subsample. To predict 1-
day-ahead VaR, historical returns of latest 1,000 days are used to calculate the VaR
by each pre-defined model or simulation. For example, the historical returns
71,79, ..., T1000 are the base for estimation of all models’ parameters and the first 1-
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day-ahead VaR prediction VaR,,,; by all models, then for VaR;,,,, the historical
returns r,,73,...73901 are used as a moving window in prediction using the same
model according to 1,7y, ...,71000- When finished, there are VaR time series
calculated by each model along with the original return series to be tested by above
measurements.

In this research, the estimations of mentioned models are implemented using
MATLAB. As its own Econometrics Toolbox provides the functions only for the
simple GARCH and GJR-GARCH models, third-party code packages by developers
are used. For the estimations of the MSGARCH model, Thomas Chuffart’s
MSGTools, influenced by Kevin Sheppard’s MFE Toolbox, is modified in this
research to make more stable estimations than the random result from the original
codes. The concepts and structures of these two mentioned packages are also used to
develop the tailor-made packages for the estimation of more complex models like the
HYGARCH and all mixed models.

In concentration of computational costs, the cost of estimation for the mixed
models with higher complexity is not significantly more in comparison to the
estimation of less complex models. Although the time optimization of third-party
MATLAB codes is not comparable to the proprietary codes that is more robust. Usage
of these mixed models, estimated by third-party codes, is beneficial with only slightly
more expense.

All models, excluded the historical simulation that has no additional
assumption on return distribution, are estimated using assumption about two
distributions: Gaussian and Student’s t distribution. Hence, there are 13 VaR lines
estimated in this research: one from historical simulation, and six for one distribution
(one from FHS, three from base models, and two from mixed models.) All
comparisons in this research are done among models with same distribution as
described in the table below.

Table 3 The comparison matrix between the mixed GARCH models and other models

Mixed model Base models FHS HS
No. GJR-GARCH MSGARCH HYGARCH

1 (HY-GJR) Yes No Yes Yes Yes

2 (HY-MS) No Yes Yes Yes Yes

Thus, there are eight pairs of comparison for the models in one distribution,
totally sixteen pairs.
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Chapter 4 Empirical Results
4.1 Overview of sub-periods

As mentioned in sub-section about data, the daily S&P 500 indices from 1960
to 1999 are converted to daily logarithmic returns and used as the case study in this
research. However, the whole data set shows various schemes of United States’
securities market when the uptrend was dominated in those four decades, and the use
of whole period as training and test data set to produce one set of test statistics is
inferior such that the result has no comparativeness to indicate which model is better
in which situation.

as S&P 500 cumulative daily logarithmic returns (1960 - 1999)
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Figure 8 Sub-period selections from the whole data set, illustrated in the cumulative
return chart

Fortunately, the whole data set can be portioned to many sub-periods which
their themes can represent distinguish characteristics and schemes. Thus, the whole
period of 40 years is separated, and some sub-periods with obvious characteristics are
selected to produce various sets of test statistics: 1970 — 1979, 1985 — 1989, and 1995
— 1999. These selections are beneficial for the test results to distinguish relative
models’ performance among different market situations. However, there are more
recent periods from 2000 that are not covered by this research. They might be
interesting for further studies to reinforce the delineated results for future usages.

4.1.1 The 1970 — 1979 sub-period: the decade of “sideway”

Consider the daily S&P indices in the 1970’s decade in Figure 8. Although the
indices in whole period of 1960 — 1999 move slightly upward, the indices in the first
two decades, 1960’s and 1970’s, move flatter than the indices in the late two decades.
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S&P 500 cumulative daily logarithmic returns (1970 - 2019)

351 o o
ab 2000 — 2007 W
. v
25 .' w e
ATy
2 o

1.5+ f«
"
1 n
o
o5 1970 — 1979 f‘-\ﬂ
g |
of M m\h f" gl
.L \
f f
-0.5 | | | | | |
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

Figure 9 1970 — 1979 sub-period in comparison with 2000 — 2007 sub-period,
illustrated in the cumulative return chart
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Figure 10 1970 — 1979 sub-period in comparison with 2000 — 2007 sub-period,
illustrated in the return chart

regardless the 1980°s and 1990’s decades, the movement of indices in 1960’s decade

(3

can be considered as an “upward” trend. Consequently, the remaining decade of

1970’s can be seen as a relatively “sideway” period.

However, there is more recent period like 2000 — 2007 that can be decided as
another “sideway” period. As can be seen from Figures 9 and 10, the 1970 — 1979 and
2000 — 2007 sub-periods are very similar since the market trends did not show
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obvious direction like “up” or “down” as clearly seen in other periods, and the
volatilities of returns in both boxes in Figure 10 are slightly different as seen from
naked eyes. Thus, both sub-periods may be considered samples of “sideway” trends in
the market. And the results from 1970 — 1979 sub-period, in comparison to those from
1985 — 1989 and 1995 — 1999 sub-period, is believed to well represent the
performance among models in relatively sideway period. But further tests with the
more recent sideway sub-period can be carried out in future research for robustness
check.

As seen in Figure 11, the story started from consecutively plunging of the
indices from 1969, reaching the annual bottom in the middle 1970, following by the
2.5-year uptrend until 1972, then plunging again to the deeper nadir in late 1974 and
bouncing back in the next year. Finally, the indices in remaining 4 years of 1976 —
1979 moved smoother in a 20-percent-wide range in comparison to the earlier
movements that the range expanded to about 70 percent.
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Figure 11 S&P 500 cumulative daily logarithmic returns, 1970 — 1979, including first
training period (leftmost black line), grey lines for even years’ returns

Consider the complementary Figures 12 — 13, and Table 4. The Figure 12
shows the same data as in Figure 11, but the non-cumulative representation of indices
neglects the movements “up” or “down” as seen from cumulative index returns, then
the volatility is emphasized to observe more easily. The plunge of S&P 500 indices in
1974, as seen in Figure 11, is associated with a cluster with higher volatility shown in
Figure 12. This stylized fact corresponds to the observations of Black (1976) and
Nelson (1991) on the leverage that is parametrized in the equation of GJR-GARCH
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S&P 500 daily logarithmic returns (1970 - 1979)
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Figure 12 S&P 500 daily logarithmic returns, 1970 — 1979, including first training
period (leftmost black line), grey lines for even years’ returns
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Figure 13 Distribution of S&P 500 daily logarithmic returns, 1970 — 1979, including
first training period, and Gaussian normal distribution shown by the curved line

model. Thus, it can be assumed that the GJR-GARCH model should describe the
market in this decade better than any other models. Furthermore, its derivative HY -
GJR-GARCH model is introduced in this research with more flexibility than the old
GJR-GARCH model. Given asymmetric structure from GJR-GARCH model and
flexible hyperbolic decay from HYGARCH model, it can also be assumed that the
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Table 4 Numerical characteristics of S&P 500 daily logarithmic returns, 1970 —
1979, including first training period

Number of data points 3526

Mean 0.000047
Standard deviation 0.007977
Skewness 0.217628
Excess kurtosis 2.406780
Minimum —0.037404
1% percentile -0.020111
51 percentile -0.013135
1% quartile —0.004465
Median 0.000195
3" quartile 0.004486
95" percentile 0.012767
99" percentile 0.021130
Maximum 0.049003

HY-GJR-GARCH model should describe the market in this decade better than the
original GIR-GARCH model can do.

Like the whole period data of 1960 — 1999, the data for this sub-period of
1970’s shows leptokurtosis and fat tails for both sides as seen in Figure 13. But this
comparison is distinguished when the numerical description of this sub-period, shown
in Table 4, is compared to the description of the whole period in Table 2 (see Section
3.3). The degree of leptokurtosis for this selection, 2.406780, is extremely lower than
the excess kurtosis of the whole data, 48.550896. Besides, the symmetry of the
selection, represented by the skewness of 0.217628, is near to zero than the skewness
of the whole data at —1.776612. This fact prefers the assumption of normal
distribution to Student’s t distribution to describe the residuals after GARCH models.

4.1.2 The 1985 — 1989 sub-period: the “big shock™ of 1987

Consider the Figure 8 again. In the whole period of 40 years, the movement of
S&P 500 indices in 1987 looks obviously unigue from an extremely steep plunge near
the end of that year. This phenomenon is well known as the “Black Monday” of
October 19", 1987, the greatest daily loss of S&P 500 index in history. From 282.70
when the market had been closed on Friday, October 16", an index harshly dropped to
224.84 at the close time, or 20.47% down from the close index of previous day.
Therefore, the sub-period with this Black Monday is also valuable for studying the
effect persistence after various sizes of shock as stated by Engle and Mustafa (1992)
and Friedman et al. (1989).

However, the more recent time of subprime crisis in late 2000’s decade might
be concerned a “nearer” and “harsher” event to the S&P 500 index due to a movement
counted in index points. The similarity between these two times is seen from their
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movements of S&P 500 index since the daily return fell more than usual as recorded
in the history. For the late 1980’s decade, there were the Black Monday with —20.47%
return and a week later, October 26™, with —8.28% return that are recorded as top 20
daily losses in the history of S&P 500 index. For the late 2000’s decade, there were 4
daily returns in 2008: —8.79% on September 29", —7.62% on October 9™, —9.04% on
October 15", and —8.93% on December 1%, Although these two sub-periods cannot be
substitutable in the study of crisis in the market, the 1985 — 1989 sub-period is still
chosen in comparison with other two sub-periods with an expectation that the test
results from this sub-period could adequately represent the relative models’
performance in the crisis against normal times that need further affirmation for
robustness by testing with more recent data sets in future research.

Since the bigger size of shock, the lesser persistence of after-shock effect on
volatility, the MSGARCH model should work better to describe the market in this
situation due to its feature to formulate this inversely proportional persistence to
shock size. Same as mentioned in Sub-section 4.1.1 about the HY-GJR-GARCH
model, the HY-MS-GARCH model is introduced in this research with higher degree
of flexibility as the decay rate can be more adjusted. Hence, by the assumption, the
HY-MS-GARCH model, should excel the MSGARCH model in this case too.

In this research, the last half of 1980’s decade from 1985 to 1989, which
covers the Black Monday event, is selected as a sub-period to test all models in this
study like the 1970’s decade. Figures 14 — 16 and Table 5 below provides the
overview of the returns and their characteristics that will be explained in the next
paragraphs.

Like the distribution histogram of the whole data set in Figure 7, the histogram
of this sub-period, as shown in Figure 16, is also leptokurtic. However, only the left-
side tail in Figure 16 is fat. The numerical measurements in Table 5 also emphasize
this fact: when compared to the Table 2 of whole data set (see Section 3.3), this sub-
period comes with higher standard deviation (0.011065 to 0.008720), more negative
skewness (—4.107120 to -1.776612), and more excess kurtosis (86.364856 to
48.550896). Thus, the assumption of Student’s t distribution around the GARCH
models’ estimation should be considered more appropriate than the assumption with
normal distribution.
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S&P 500 cumulative daily logarithmic returns (1985 - 1989)
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Figure 14 S&P 500 cumulative daily logarithmic returns, 1985 — 1989, including first
training period (leftmost black line), grey lines for odd years’ returns
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Figure 15 S&P 500 daily logarithmic returns, 1985 — 1989, including first training
period (leftmost black line), grey lines for odd years’ returns

-0.1



48

S&P 500 daily logarithmic returns (1985 - 1989)
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Figure 16 Distribution of S&P 500 daily logarithmic returns, 1985 — 1989, including
first training period, and Gaussian normal distribution shown by the curved line

Table 5 Numerical characteristics of S&P 500 daily logarithmic returns, 1985 —
1989, including first training period

Number of data points 2263

Mean 0.000427
Standard deviation 0.011065
Skewness —4.107120
Excess kurtosis 86.364856
Minimum —0.228997
1% percentile -0.023760
5t percentile —0.014795
1% quartile —0.004655
Median 0.000468
3" quartile 0.005649
95" percentile 0.016233
99" percentile 0.025678
Maximum 0.087089

4.1.3 The 1995 — 1999 sub-period: the smooth “bull” time

Unlike the 1970’s decade of sideway and the last half of 1980’s decade around
the Black Monday, the remaining whole data of S&P 500 index returns from 1960 to
1999 illustrates the time of “bull” market, or when the market trend ascends
consecutively. However, when seeing the Figure 8 again, the market trend for each
sub-period gives different degrees of ascension along with several declines as the
“average corrections” over the time.
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From the last two sub-sections, there are three sub-periods that are still not
selected: the 1960’s decade, the first half of 1980’s decade (1980 — 1984) and the
1990’s decade. Consider the 1990’s decade. Although the upside trend dominated
most of the time, the whole trend obviously separated by half. The S&P 500 returns of
last half of 1990°s decade, 1995 — 1999, climbed up with a steeper upside trend than
any other prior upside trends from 1960. Besides, there was a little “average
correction” in middle 1998 that bounced to the same old level more quickly than any
other declines from 1960.

S&P 500 cumulative daily logarithmic returns (1970 - 2019)
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Figure 17 1995 — 1999, 2010 — 2014, and 2015 — 2019 sub-periods in comparison,
illustrated in the cumulative return chart

However, the more recent period after 2010 is also considered an another
“bull” time as seen in the S&P 500 index. When comparing these three 5-year sub-
periods of 1995 — 1999, 2010 — 2014, and 2015 — 2019, the same characteristic on the
first glance of Figure 17 when seeing the index chart of these sub-periods is the
uptrend. Although these sub-periods might be considered as examples of “bull”
market situation, the 1995 — 1999 sub-period is chosen in this research to perform the
test and compare to the results from other sub-periods with different characteristics. It
is hoped that the result comparison is worth enough to indicate the trend of relative
model performance in another “bull” trend of the market in general. It remains for
future study to assess the models’ performance in more recent bull periods.

Hence, in this research, this last half of 1990’s decade is also selected as a
representation of “bull” market situation in contrast with the sideway situation of
1970’s decade and the market with big decline in the last half of 1980’s decade.
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S&P 500 cumulative daily logarithmic returns (1995 - 1999)
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Figure 18 S&P 500 cumulative daily logarithmic returns, 1995 — 1999, including first
training period (leftmost black line), grey lines for odd years’ returns
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Figure 19 S&P 500 daily logarithmic returns, 1995 — 1999, including first training
period (leftmost black line), grey lines for odd years’ returns
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S&P 500 daily logarithmic returns (1995 - 1999)
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Figure 20 Distribution of S&P 500 daily logarithmic returns, 1995 — 1999, including
first training period, and Gaussian normal distribution shown by the curved line

Table 6 Numerical characteristics of S&P 500 daily logarithmic returns, 1995 —
1999, including first training period

Number of data points 2263

Mean 0.000663
Standard deviation 0.008710
Skewness —0.392379
Excess kurtosis 6.134029
Minimum —0.071127
1% percentile -0.022584
51 percentile -0.013176
1% quartile -0.003589
Median 0.000481
3" quartile 0.005220
95" percentile 0.014372
99'" percentile 0.022647
Maximum 0.049887

Further information about this sub-period is provided by Figures 18 — 20, Table 6, and
their explanations afterwards.

Both Figures 18 and 19 illustrate S&P 500 logarithmic returns closely in 1995
— 1999 sub-period with different perspective: Figure 15 shows the movement of index
in logarithmic scale like a normal index chart, but Figure 19 separates each daily
return regardless previous cumulative returns.

Consider the “average correction” in later 1998 as seen from Figure 18. In
Figure 19, the returns at the same time exploded like happening in 1974 as mentioned
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in Sub-section 4.1.1, although the level of correction from prior peak to the adjacent
bottom was less than the dropping in 1974. Also, there is a similar burst in the same
Figure 19 near the end of 1997, but it seems like a little sideway when surveying
Figure 18 at the same time with the naked eyes. These two bursts in Figure 19
resemble the Black Monday as shown in Figure 14 in Sub-section 4.1.2. From this
intuition, the MSGARCH model should be considered an appropriate model to
describe the market in this situation due to its regime switching that directly copes
with stylized fact of inverse persistence to shock size.

Also, the “cylinder” form of daily returns in 1999, as seen from Figure 19, can
indicate hyperbolically decrease of autocorrelation as mentioned by Dacorogna et al.
(1993) and Ding et al. (1993). In this case, the HYGARCH model, which its
formulation allows more adjustment in decrease rate of autocorrelation than the
formulation of simple GARCH model, can be considered an appropriate model like
the MSGARCH model. Thus, the proposed HY-MS-GARCH model, as a mixture
between MSGARCH and HYGARCH models, is assumed the better choice to
describe the market in this situation than both base models.

The Figure 20 and Table 6 indicate more about the distribution of returns in
this sub-period. Leptokurtosis and fat tails are also seen in this sub-period like
happening in the whole data. However, the degree of leptokurtosis decreases more
from 48.550896 to 6.134029, and the level of left-skewness decreases too from —
1.776612 to —0.392379. Like the 1970’s decade in Sub-section 4.1.1, the assumption
of normal-distributed residuals around GARCH models’ estimation might be
preferred to the assumption of Student’s t-distributed residuals. Although about one-
and-half-time higher leptokurtosis than the excess kurtosis in Table 4 might prevent
this too quick summarization, the histogram of Figure 20 has a sense of tendency to
the Figure 13 of 1970’s decade, which the normal distribution is assumed, instead the
Figure 16 of the time around the 1987 Black Monday. In conclusion, the residuals
should be assumed normal-distributed.

Furthermore, the comparisons between Table 6 of this sub-period and Table 2
of the whole data (see Section 3.3) are confirmations of the visible uptrend in this sub-
period. As the mean, all quartiles, and 95" and 99" percentiles in Table 6 are more
than those in Table 2, there is a tendency that data from sub-period of 1995 — 1999 is
generally higher than the whole data of 1960 — 1999.

4.2 Descriptive log-likelihood functions

Before describing the predictive test statistics, the log-likelihood function for
each parametric model is calculated by using each model to fit the whole return data
in each sub-period without any model parameter revision. There are 5 parametric
models mentioned in Section 3.1 as selected models: GJR-GARCH, MSGARCH,
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HYGARCH, HY-GJR-GARCH, and HY-MS-GARCH models. Combined with 2
choices of assumed distribution, normal and Student’s t, there are 10 combinations of
parametric models and assumed distribution that are noted in this sub-section and
afterwards by model name and a letter suffix in a parenthesis. The suffix (N) is used
for a model with normal distribution. For a model with Student’s t distribution, its
suffix notation is (t). The calculated log-likelihood functions are shown in Table 7
below.

Table 7 Descriptive log-likelihood functions of base and mixed parametric models

Sub-period 19701979 | 1985-1989 | 1995—1999

- | GIR-GARCH(N) 3731.27 3300.67 3608.69
S | MSGARCH(N) 3719.04 3309.27 3643.50
S | HYGARCH(N) 3714.30 3301.88 3615.72
2 | HY-GJR-GARCH(N) 3737.35 3304.70 3618.81
§ HY-MS-GARCH(N) 3720.67 3311.58 3643.23
£ | GJR-GARCHI(t) 3732.35 3313.86 3638.77
T | MSGARCH(t) 3718.34 3314.38 3644.01
T | HYGARCH(t) 3717.81 3314.05 3644.02
S | HY-GJR-GARCH(t) 3739.17 3315.09 3645.99

HY-MS-GARCH(t) 3722.74 3316.25 3643.70

4.3 Test statistics by sub-period and discussions

The Section 3.2 is all mentioned about four test statistics in use for comparison
of daily 95% VaR lines produced by models: the Kupiec’s proportion of failure test,
dynamic quantile (DQ) test, loss function, and conditional predictive ability (CPA)
test. Both the Kupiec’s and DQ tests are concentrated on frequency when the VaR is
violated by realized returns, but the DQ test measures VaR hits conditionally as a time
sequence, while the Kupiec’s test measures them unconditionally. Differently from
first two test statistics, the loss function and CPA test measures the degree of effects
after the violations of VaR by realized returns, in the other words, “how far” the
violations come beyond the VaR line estimation. Unlike the loss function that is
plainly measured with no more context, the CPA test complements the loss function
whether two loss functions are “really” different temporally.

To calculate all test statistics for each sub-period, each model is used solely to
calculate the daily VaR at 95% confidence interval for each sub-period with quarterly
model parameter revisions. (See Section 3.1 for model descriptions and Section 3.3
for the description of training and test process.) Afterward, all test statistics are
derived for each 95% VaR line as sources for comparisons between proposed mixed
models and their benchmarks as follows.

However, each test statistic has different goal for its null hypothesis. For both
Kupiec’s and DQ tests, it is more satisfiable when the null hypothesis is accepted, or
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the test statistics are close to zero, that means indifference between realized
proportion of failure and pre-defined « in case of Kupiec’s test, or random time of
VaR’s penetration for DQ test. Otherwise, the rejection of null hypothesis, as the test
statistics are away from zero, is preferrable to exhibit the significance of last two test
statistics: loss functions (as derived to the difference between the loss function for a
mixed model and the loss function for each benchmark) and corresponding CPA test
statistic (as the confirmation of sign in a loss function difference). Note that loss
function difference is the only one test statistic in this research with sign, and the
minus sign of loss function difference, in other words, less loss function for a mixed
model than loss function for a benchmark; is preferrable.

4.3.1 The 1970 — 1979 sub-period
4.3.1.1 Overall: accurate proportion of failure but clustered hits

Table 8 Proportions of failure, Kupiec's test statistics, DQ test statistics, and 10ss
function for each model using data set of 1970 — 1979 sub-period

Proportion Kupiec’s Loss
Model of FI?';IiIure1 t(le)st2 DQ test” function®

HS 5.9778% 4.7983* 158.3566 2.3759
FHS(N) 5.1465% 0.1131*** 20.1933 2.0819
GJR-GARCH(N) 5.0277% 0.0041*** 17.0410 2.0347
MSGARCH(N) 5.8987% 4.0707* 31.0080 2.1221
HYGARCH(N) 5.5424% 1.5134%*** 32.3924 2.1032
HY-GJR-GARCH(N) | 5.0673% 0.0240*** 31.4422 2.0500
HY-MS-GARCH(N) 6.1758% 6.8623 37.2622 2.1212
FHS(t) 5.2652% 0.3680*** 32.2767 2.0879
GJR-GARCH(t) 4.2755% 2.9290** 12.3257* 2.0388
MSGARCH(t) 6.0174% 5.1833* 27.7101 2.1393
HYGARCH(t) 4.9881% 0.0008*** 32.7556 2.1041
HY-GJR-GARCH(t) 4.6318% 0.7382*** 29.6697 2.0536
HY-MS-GARCH(t) 6.1362% 6.4218* 39.3540 2.1318

L The closer proportion of failure to the preset (5%), the better VaR estimation.
2The less test statistic, the better VaR estimation.

*** = null hypothesis accepted at 0.1 significance

** = null hypothesis accepted at 0.05 significance

* = null hypothesis accepted at 0.01 significance

Tables 8 — 10 show the performance of proposed mixed models and their
benchmark models in prediction of one-day 95% VaR in situation of 1970’s decades.
As seen from Table 8, the VaR lines from 7 out of 13 models can pass the Kupiec’s
proportion of failure test at strictest confidence level of 0.1, but almost all VaR lines
cannot pass the DQ test even at loosest level of 0.01. The predicted VaR line by the
GJR-GARCH model with Student’s t distribution is only one VaR line that can pass
the DQ test at the loosest confidence level of 0.01 but pass the Kupiec’s test at looser
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Table 10 Loss function differences and CPA test statistics between each mixed model
and its benchmarks using data set of 1970 — 1979 sub-period

HY-GJR- GJR-  HYGARCH
GARCH(N)vs | GARCH(N) N) FHS(N) HS
LF difference’ 0.0154 0.0531 0.0318 0.3259
LF diff. test 1.4428 2.9999%* 17930 _4.5483%*
CPA test? 2.1889 10.8913%*  4.6272 38.4610%*
HY-GJR- GJR-  HYGARCH
GARCH(t)vs | GARCH(t) ) FHS(t) HS
LF difference! 0.0149 ~0.0505 0.0343 0.3223
LF diff. test 1.2890 _3.0860%*  -1.0016%  —4.4096%*
CPA test? 1.9644 105351%* 41605 36.4162%*
HY-MS- MSGARCH HYGARCH
GARCH(N) vs (N) (N) FHS(N) HS
LF difference! —0.0009 0.0181 0.0394 —0.2547
LF diff. test -0.1022 1.2247 1.7919 41705
CPA test? 0.0536 21573 4.2414 32,4857
HY-MS- MSGARCH HYGARCH
GARCH(t) vs (t) ) FHS(1) HS
LF difference! —0.0075 0.0277 0.0439 —0.2441
LF diff. test? -0.6038 12767 22122%  —3.9899%
CPA test? 0.4337 2.6450 5.4044 29.9139%*

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation
from mixed model is better. Otherwise, the VaR estimation from mixed model is worse.

2 The greater magnitude, the higher significance of the corresponding difference.

** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance

level of 0.05 unlike the VaR line from GJR-GARCH model with Gaussian normal
distribution. This phenomenon that the VaR line well pass the Kupiec’s test while
struggling to pass the DQ test is because of the characteristics of the market returns in
this sub-period. See the Figure 11 in Sub-section 4.1.1. The time of big plunges in
1970 and 1974 that has the most chance of violation of VaR line shows consecutive
daily losses for a week at least. This fact is also reflected by the Table 9 that the first
and third lagged hit variables are influential for almost all VaR lines (excluded the
VaR line from GJR-GARCH(t) model that the third lagged hit is not significant).
Descriptively said, when the VaR line is penetrated by the realized daily return, the
VaR line usually adjusts itself completely on the next day. However, in case of a big
plunge, one adjustment is not enough. Then, the VaR line will usually be penetrated
again for two consecutive days after the first adjustment and then adjust again. This
means the parametric VaR lines normally have “double adjustments” for a big plunge
of realized daily return, but this mechanism is not found in the non-parametric VaR
line from historical simulation that is indisputably beaten by all parametric VaR lines
in this sub-period
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4.3.1.2 HY-GJR-GARCH(N) model: winner by the influence of GJR-GARCH model
and normal distribution

Assumed in Sub-section 4.1.1 about properness of GJR-GARCH and HY-GJR-
GARCH models in this sub-period, both models with normal distribution can
undoubtedly pass Kupiec’s test with strictest confidence level of 0.1. Focusing on the
HY-GJR-GARCH(N) model, it seems like the GJIR-GARCH(N) model gets slightly
closer proportion of failure (just 0.0396% nearer or 1 time less out of 2526) to the
preset of 0.05 than the HY-GJR-GARCH(N) model. Inferred from the Kupiec’s test,
however, the proportion of failure given from VaR line from HY-GJR-GARCH(N)
model is closer than the proportion from VaR line of other three benchmark models:
HYGARCH(N) model, filtered historical simulation with normal distribution, and
historical simulation. Considering the loss function difference in Table 10, the
comparison results resemble the comparison results in Table 8 that the VaR line from
HY-GJR-GARCH(N) model gets less loss function than the VaR line from all
benchmark models excepting the GJR-GARCH(N) model that its loss function is
insignificantly less. These results verify the assumption of improvement after mixture
between GJR-GARCH and HYGARCH models. While the asymmetry feature of
GJR-GARCH model is added to the inferior HYGARCH model, the HY-GJR-
GARCH model is improved in prediction of VaR that the sole HYGARCH model
does not excel.

4.3.1.3 HY-GJR-GARCH(t) model: misspecification in distribution

However, this result is not identical when the assumed distribution is Student’s
t instead. The VaR line from GJR-GARCH(t) model has farther proportion of failure
from the preset as seen from itself in the first column and the associate Kupiec’s test
statistics in the second column of Table 8. The clue from intercept terms in Table 9
that the intercept for the GJR-GARCH(t) model is the least suggests that the GJR-
GARCH(t) model predicts “too low” VaR line so that the penetration rate is too low
than the preset as seen 4.2755% in the Table 8. This problem is solved when the
fractional exponential feature of HYGARCH model is applied to the sole GJR-
GARCH(t) model because the proportion of failure is closer to the preset as expected.
But this solution is not enough because its penetration rate is farther in comparison
with the VaR from filtered historical simulation with Student’s t distribution, one of
benchmark models, although the comparison on loss function is indifferent from that
of the HY-GJR-GARCH(N) model. The assumption about normality in Sub-section
4.1.1 might be an accurate diagnosis for this phenomenon since a misspecification in
distribution might diminish the performance of the well-selected model. Hence, both
model and distribution specifications are important to produce an accurate parametric
VaR line prediction.
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4.3.1.4 HY-MS-GARCH model: the right model but the wrong time

In controversy to the success of HY-GJR-GARCH mixed model in this sub-
period, the HY-MS-GARCH model, as the combination between fractional exponents
of HYGARCH model and regime switching of MSGARCH model, does not show any
obvious sign of success in competition with benchmarks. Like the mentioned case of
HY-GJR-GARCH(t) model, this problem comes from a misspecification of model by
using the variant of MSGARCH model, designed for a market situation with market
losses in diverse harshness, in a market situation with no obvious difference among
the plunges of market returns. However, the failure of HY-MS-GARCH model in
comparison to the minor fault of HY-GJR-GARCH(t) model indicates that a
misspecification in model selection is dominant over a misspecification in residuals’
distribution.

4.3.2 The 1985 — 1989 sub-period
4.3.2.1 Overall: more challenging time for GARCH variants

Table 11 Proportions of failure, Kupiec'’s test statistics, DQ test statistics, and loss
function for each model using data set of 1985 — 1989 sub-period

Proportion Kupiec’s Loss
Model of FFz)atiIure1 t(lgst2 DQ test’ function®

HS 6.0966% 2.9975** 37.1449 1.8889
FHS(N) 8.0760% 21.3816 31.2304 1.8731
GJR-GARCH(N) 5.7007% 1.2515*** 10.2536** 1.8096
MSGARCH(N) 6.5717% 6.0026* 22.9064 1.7780
HYGARCH(N) 4.1964% 1.8122*** 24.9944 1.7201
HY-GJR-GARCH(N) 45131% 0.6508*** 13.4593* 1.6897
HY-MS-GARCH(N) 6.4133% 4.8946* 19.6128 1.7719
FHS(t) 6.4133% 4.8946* 18.3523 1.7381
GJR-GARCH(t) 3.2462% 9.2873 22.1101 1.7542
MSGARCH(t) 4.3547% 1.1555*** 26.0664 1.7881
HYGARCH(t) 3.4046% 7.5856 20.5158 1.7832
HY-GJR-GARCH(t) 3.3254% 8.4118 27.8604 1.7542
HY-MS-GARCH(t) 4.6714% 0.2932%** 31.9210 1.7837

1 The closer proportion of failure to the preset (5%), the better VaR estimation.

2The less test statistic, the better VaR estimation.
*** = null hypothesis accepted at 0.1 significance
** = null hypothesis accepted at 0.05 significance
* = null hypothesis accepted at 0.01 significance

Tables 11 — 13, same format as Tables 8 — 10 in Sub-section 4.3.1, show test
results of VaR lines from all mentioned models with different data set of S&P 500
index return in 1985 — 1989 sub-period. A different situation makes a different result,
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Table 13 Loss function differences and CPA test statistics between each mixed model
and its benchmarks using data set of 1985 — 1989 sub-period

HY-GJR- GJR- HYGARCH

GARCH(N)vs | GARCH(N) N) FHS(N) HS
LF difference’ 0.1199 ~0.0303 0.1834 0.1992
LF diff. test 16766 20613*  -1.9485 _1.9771*
CPA test? 3.4104 46158 4.2757 5.2398

HY-GJR- GJR-  HYGARCH

GARCH(t)vs | GARCH(t) ) FHS(t) HS
LF difference’ 0.0000 ~0.0289 0.0161 0.1347
LF diff. test 0.0005 _1.4969 0.2138 12196
CPA test? 1.0011 18725 0.6337 2.4282

HY-MS- MSGARCH HYGARCH

GARCH(N) vs (N) (N) FHS(N) HS
LF difference! -0.0061 0.0519 -0.1012 -0.1170
LF diff. test ~0.3988 0.8735 17908 _.6220%
CPA test? 0.2752 1.7500 5.7163 9.0041*

HY-MS- MSGARCH HYGARCH
GARCH(t) vs (t) ) FHS(1) HS
LF difference’ 70,0043 0.0005 0.0456 0.1052
LF diff. test 02829 0.0100 1.4174 _1.9551
CPA test? 0.5409 0.4666 21961 5.7087

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation
from mixed model is better. Otherwise, the VaR estimation from mixed model is worse.

2 The greater magnitude, the higher significance of the corresponding difference.

** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance

especially the dynamic quantile test statistics in Table 11. As the VaR line from GJR-
GARCH(N) model pass the DQ test with stronger confidence level of 0.05, and most
of VaR lines’ DQ test statistics decrease, so the message is the VaR violations come
more scattered in this sub-period unlike 1970’s.

As in 1970’s decade, 7 VaR lines pass the Kupiec’s proportion of failure test
with tightest confidence level of 0.1. The last half of 1980’s decade, with the Black
Monday of 1987, is more challenging for chosen parametric models to produce a VaR
line estimation that can pass the Kupiec’s test with 0.1 significance level because the
number of passing VaR lines reduce to 5 out of 13: GJR-GARCH(N),
HYGARCH(N), HY-GJR-GARCH(N), MSGARCH(t), and HY-MS-GARCH(t)
models. One interesting point in Table 11 is about the historical simulations. As in
Table 8, the VaR line from plain historical simulation is obviously inferior from both
perspectives of Kupiec’s and DQ test. Conversely in Table 11, both estimated VaR
lines from filtered historical simulation (with GARCH model implementation) have
farther penetration rates from preset of 0.05 than the VaR line from historical
simulation. But the loss function of VaR line from historical simulation is also the
greatest like happening in Table 8.
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4.3.2.2 HY-MS-GARCH models: clustering the violations is their strategy

Assumed in Sub-section 4.1.2, the MSGARCH model is preferred to cope
with a time of crisis like this sub-period of 1985 — 1989. Consequently, the first
parametric models concerned in this sub-period are the MSGARCH model and its
derivative, the HY-MS-GARCH model. Consider both models with Gaussian normal
and Student’s t distributions in comparison. According to Table 11, the VaR lines
from both models with Student’s t distribution are outstanding in proximity of
proportion of failure against the VaR lines from same models with normal
distribution, while the loss functions of VaR lines from both models with Student’s t
distribution are a little bit greater by 0.01 that could be concerned unsignificant. From
these facts, the assumption of “fat tails” in Sub-section 4.1.2 is confirmed. However,
the columns of MSGARCH(t) and HY-MS-GARCH(t) models in Table 12 give
insight about the strategy both models use to estimate the VaR lines with close
penetration rate to the preset: clustering the penetration. Because both models’ DQ
regressions emphasize significance of first three lagged hits unlike most DQ
regressions, it could be interpreted that the VaR lines from both models allow a big
fall of returns to penetrate themselves consecutively with slight adjustment. This
strategy is proved useful in this market situation but might be useless in many
“normal” market situations, and the expenditure for this strategy is failing the DQ test
as this test admires the autoregressive independence of VaR hits that directly
contradicts this strategy.

According to the main assumption about mixed model’s superiority to its
based models, the performance of HY-MS-GARCH model in this sub-period is one of
supporting evidence. Although the comparisons of loss functions in the bottom half of
Table 13 do not show significant decrease of loss function of VaR from HY-MS-
GARCH model in comparison with listed benchmarks (excepting the historical
simulation in case of HY-MS-GARCH with normal distribution). The closeness of
proportion of failure as improvement from MSGARCH model’s VaR line is evident
in any cases, as comparisons of Kupiec’s test statistics between HY-MS-GARCH(N)
and MSGARCH(N) models and between HY-MS-GARCH(t) and MSGARCH(t)
models in Table 11 show less test statistic of the mixed model. This means the
MSGARCH model is improved by the addition of fractional exponential feature from
HYGARCH model as the proposed HY-MS-GARCH model.

4.3.2.3 HY-GJR-GARCH(N) model: the surprisingly outstanding model

Contrast to the MSGARCH and HY-MS-GARCH model pair, the GJR-
GARCH and HY-GJR-GARCH model pair can be assumed as a misspecification for
the market situation in this sub-period. Surprisingly, the GJR-GARCH(N) and HY-
GJR-GARCH(N) models are the only two models in this sub-period that their



62

estimated VaR lines can pass both Kupiec’s test with 0.1 significance and DQ test
with 0.01 significance at least. Moreover, the upper part of Table 13 indicates that the
HY-GJR-GARCH(N) model is the only one model to make the least loss function
among the loss functions of VaR line from its own benchmarks. The description of
these surprising results can refer to the details in market situation. See the Figures 14
and 15 in Sub-section 4.1.2. The Figure 14 indicates how the uptrend is dominated
most of the time in this sub-period, excluding the Black Monday that is represented
by almost vertical line in the chart of cumulative returns. But the Figure 15 illustrates
the Black Monday as by the burst in volatility that would be pacified to normal level
in one or two quarters. This burst is contrast to the burst after a downtrend end in
middle 1982 as the smaller “shocks” causes higher volatility that spends about a year
or more to tame down. This evidence well follows the stylized fact stated by Engle
and Mustafa (1992) and Friedman et al. (1989). Thus, the GJR-GARCH model can
also describe this situation well due to its formulation to support this stylized fact that
the downside returns also cause an increase in volatility. As this stylized fact is more
common and frequently observed in any market situations even the time of crisis, the
GJR-GARCH and its derivative, the proposed HY-GJR-GARCH model, should be
generally effective than the HY-MS-GARCH model that appears to be more specified
to some situation, as assumed in Section 1.2. Then, this assumption is confirmed by
the test statistics of HY-GJR-GARCH(N) model in this sub-section. However, this
superiority does not apply to the HY-GJR-GARCH model when the Student’s t
distribution is assumed. Although this sub-period is assumed Student’s t distributed as
mentioned from Sub-section 4.1.2. In this case, the possibility of model
misspecification might be used again as the general description like in Sub-section
4.3.1.

4.3.3 The 1995 — 1999 sub-period
4.3.3.1 Overall: the easy time for all models

The 1995 — 1999 sub-period, unlike the first two mentioned sub-periods
before, comes with smoother “bull” market. Thus, it seems to be easier for any VaR
line estimations to pass the qualification metrics as seen from Tables 14 — 16. Same
format as Tables 8 — 10 in Sub-section 4.3.1 and Tables 11 — 13 in Sub-section 4.3.2,
these tables display the test statistics of corresponding VaR lines estimation to listed
models with the data set of S&P 500 returns in 1995 — 1999. At the first glance of
Table 14, the VaR estimation from historical simulation is unquestionably the
underdog due to the highest Kupiec’s test statistic, DQ test statistic, and loss function.
Then, it is useless to mention the simple historical simulation again in this sub-
section. Another interestingness of Table 14 is the number of passing VaR lines for
the tests. 8 VaR lines pass the Kupiec’s test with strongest confidence level of 0.1,
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Table 14 Proportions of failure, Kupiec'’s test statistics, DQ test statistics, and loss
function for each model using data set of 1995 — 1999 sub-period

Proportion Kupiec’s Loss
Model of Flzlilure1 t([e)st2 DQ test” function®

HS 7.9968% 20.3675 43.1851 1.5224
FHS(N) 5.6215% 0.9892*** 14.0935* 1.4544
GJR-GARCH(N) 5.8591% 1.8641*** 13.4199* 1.4429
MSGARCH(N) 7.6010% 15.6241 33.5391 1.4650
HYGARCH(N) 4.9881% 0.0004*** 21.4102 1.4364
HY-GJR-GARCH(N) | 5.5424% 0.7567*** 10.6629** 1.3878
HY-MS-GARCH(N) 6.3341% 4.3800* 17.5415 1.4414
FHS(t) 5.8591% 1.8641*** 43.1851 1.4505
GJR-GARCH(t) 4.3547% 1.1555*** 27.0107 1.4569
MSGARCH(t) 4.4339% 0.8845*** 10.8955** 1.4576
HYGARCH(t) 3.4838% 6.8076 27.7798 1.4861
HY-GJR-GARCH(t) 3.8005% 4.1566* 18.8343 1.4257
HY-MS-GARCH(t) 4.3547% 1.1555*** 14.3079* 1.4501

! The closer proportion of failure to the preset (5%), the better VVaR estimation.

2 The less test statistic, the better VaR estimation.
*** = null hypothesis accepted at 0.1 significance
** = null hypothesis accepted at 0.05 significance
* = null hypothesis accepted at 0.01 significance

and 5 lines pass the DQ test with confidence level of 0.01 (with 2 lines at stronger
level of 0.05). Unlike two previous sub-sections, The Table 15 indicates indifference
in reaction to penetrations among VaR lines. Since all VaR lines, even the “worst”
VaR line from historical simulation, show the same “double adjustment” after the first
penetration like happening interpreted from Table 9 but in softer situation as only the
second lagged hit variable is emphasized for every VaR lines.

4.3.3.2 Two mixed models: the usefulness of HYGARCH model component

In Sub-section 4.1.3 of 1995 — 1999 sub-period, the HYGARCH model is
directly assumed as the appropriate model to describe the market situation in this sub-
period, unlike in other sub-periods that the HYGARCH is mentioned as a
subdominant feature in accompanied with GJR-GARCH or MSGARCH model. Thus,
the HYGARCH model should be concerned as a main factor for success in VaR
testing for the mixed models. A foolproof for this assumption, and the main
assumption of improvement by HYGARCH component, is also in the first column of
Table 14. Unlike first columns in Tables 8 and 11, VaR lines from all four mixed
models can pass the Kupiec’s test with at least 0.01 confidence level, and two of them
can also pass the DQ test with at least 0.01 confidence level.
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Table 16 Loss function differences and CPA test statistics between each mixed model
and its benchmarks using data set of 1995 — 1999 sub-period

HY-GJR- GJR-  HYGARCH
GARCH(N)vs | GARCH(N) N) FHS(N) HS
LF difference’ 0.0551 ~0.0486 ~0.0666 0.1346
LF diff. test 31353%%  _2.5280%  _3A711%* 27278
CPA test? 8.7417* 6.5179* 8.6886* 8.6493*
HY-GJR- GJR-  HYGARCH
GARCH(t)vs | GARCH(t) ) FHS(t) HS
LF difference! 0.0312 0.0604 0.0248 0.0967
LF diff, test? 24667 —40445** 08986 17089
CPA test? 55627 12.2702%% 76634 3.1497
HY-MS- MSGARCH HYGARCH
GARCH(N) vs (N) (N) FHS(N) HS
LF difference’ 70,0236 0.0050 0.0130 0.0810
LF diff, test? ~1.8800 0.3593 ~0.9100 21723+
CPA test? 5.1794 0.3611 2.0587 5.9909
HY-MS- MSGARCH HYGARCH
GARCH(t) vs (t) ) FHS(1) HS
LF difference! 0.0075 ~0.0360 ~0.0004 00723
LF diff, test? -0.9288 _2.8004%*  -0.0193 _1.4548
CPA test? 41376 8.4467* 4.3545 25492

1 The negativity shows that the mixed model has less loss function than the benchmark i.e. the VaR estimation

from mixed model is better. Otherwise, the VaR estimation from mixed model is worse.

2 The greater magnitude, the higher significance of the corresponding difference.
** = null hypothesis rejected at 0.01 significance; * = null hypothesis rejected at 0.05 significance

4.3.3.3 The comparison among combinations: HY-GJR-GARCH(N) the winner and

the others as misspecification

Although all four mentioned mixed models consist of the HYGARCH model

component, they all need to be compared. Then, the assumed distribution is concerned
next. The Sub-section 4.1.3 prefers the normal to Student’s t distribution to assumed
about residuals’ distribution in this 1995 — 1999 sub-period. Thus, the VaR lines from
two mixed models with normal distribution are examined. The VaR line from HY-
GJR-GARCH(N) model, like in previous two sub-sections, is concerned outstanding
in passing Kupiec’s and DQ tests, as one of two VaR lines that pass both tests with
strictest possible confidence level, and giving the least loss function like happening in
Table 11. The top part of Table 16 also confirms this superiority that the VaR line
from HY-GJR-GARCH(N) model can beat all baselines with all significant loss
function different and CPA test statistics that underline how really the loss function
differences are.

However, the VaR line from HY-MS-GARCH(N) model is not outstanding
although the Sub-section 4.1.3 is assumed about HY-MS-GARCH model as the
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proper model to describe the market in this sub-period. Concern the two “big bursts”
in Figure 18 again. Mentioned as resemblance to the “Black Monday” of 1987 in Sub-
section 4.1.3, they are not harsh like the Black Monday but comparable to the return
swings in 1970°s decade. The market difference before and after late 1997, especially
when the market is extremely peaceful before 1997, might lead understanding about
the market from late 1997 like the outlier. But they are common like the market in
1970’s decade sub-period when excluding odd daily returns showing in Figure 18 like
long single lines. Thus, the MSGARCH model is said not specific to this situation.

Due to more normality of market situation, the results from mixed models
with Student’s t distribution is not satiable like the result when these models
combining with normal distribution as seen in Table 14. However, the VaR line from
HYGARCH(t) model does the tests with poor results. If the HYGARCH(t) model
itself is not good in this situation, it will lower the competency of two mixed models
in the same tests too as the HYGARCH model is concerned dominated in this sub-
period.
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Chapter 5 Conclusion

In attempt to develop two mixed models, HY-GJR-GARCH and HY-MS-
GARCH model, these models can pick advantages from both of their base models that
are specific to different characteristics of the financial market. However, in empirical
tests using the samples from S&P 500 index returns in different period of situations,
there is some mixed model that cannot perform better than its benchmark models,
specifically in some situation that its base models are misused to capture market
features. That means mixing characteristics between two GARCH model variants
cannot boost performance of a new mixed GARCH model variant to satiable level in
every cases. Nevertheless, as seen from the results, market conditions are important in
decision about which GARCH model variants are used for the mixed model and
which probability distribution is assumed to be the distribution of residuals after the
model.

From four combinations of two mixed models by two different probability
distributions, the HY-GJR-GARCH model with normal distribution seems to be the
combination with the best performance among all combinations as measured from
tests in different market situations. Additionally, in the situation of big crisis causing
sudden loss in the market like the Black Monday of 1987, the HY-MS-GARCH
model with Student’s t distribution also works well in such situation.

However, this research studies these two mixed models when working with
only limited number of simple symmetric distributions like normal and Student’s t
distributions, limited number of parameters to the minimum requirement that each
model can keep its identity, and limited test data sets from only one market index in
distant time. Afterwards, these mixed models should be combined with more complex
probability distributions or modified to some extent, i.e. increasing the number of
regimes for MSGARCH and HY-MS-GARCH models, for further studies about their
performance. And the mathematics beneath the mixed models should be developed
more to reduce complexity that might consume resource in modeling and application
both in this specific case of calculation for the VaR and other cases that need the
knowledge about volatility. Also, using various data sets like the prices from different
kinds of assets, with more recent time frame to better reflect the contemporary market
situation, should be considered too for further studies after this research.
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