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Nataphut Boonvisuth : Development of an Artificial Intelligence Model for Prediction of Dry Weight in Chronic
Hemodialysis Patients and Assessment of its Accuracy Compared to Standard Bioelectrical Impedance Analysis. Advisor:

Prof. KHAJOHN TIRANATHANAGUL, M.D. Co-advisor: SIRA SRISWASDI, Ph.D.

Proper determination of dry weight (DW) is crucial for achieving positive outcomes in hemodialysis (HD) patients.
However, the traditional clinical assessment of DW (C-DW) is often inaccurate. Recently, bioimpedance spectroscopy (BIS) analysis
using a Body Composition Monitor (BCM) device has emerged as a gold standard method for determining DW (BCM-DW). Despite its
accuracy, the high cost of the BCM device limits its accessibility. To overcome this challenge, the current study proposes a machine

learning (ML) model, which is a part of artificial intelligence (Al), to assess DW using available clinical and laboratory parameters.

Objective: To develop an ML model for predicting DW (ML-DW) and compare it with BCM-DW.

Methods: The study consisted of a model development phase and a performance assessment phase. Retrospective
data from chronic HD patients between 2017 and 2022 from two dialysis centers in Bangkok were retrieved. The parameters for this
ML model included demographic, dialysis prescription, laboratory, and intradialytic time-varying data. The data utilized during the ML
model development phase consisted of a training group for optimizing the parameters of the models and a validation group for
determining when to stop the optimization. The final output of the model was ML-DW. The primary outcome of the study was the

agreement comparison between ML-DW and BCM-DW.

Results: All 56,000 time-varying data from 1,151 HD sessions were included in the ML model. The mean BCM-DW was
58.8+11.7 kgs, while the mean predicted ML-DW from the model was 59.5+11.3 kgs. The Bland-Altman plot showed the bias

estimated by the mean difference was 0.78 kg, and the limit of agreement was -3.7 to 2.2 ke.

Conclusion: This was the first study that developed a machine learning model aimed at predicting BCM-DW. Compared
to other models, this one tried to explore the utilization of time-series data in the input variables. It also demonstrated external
validation across different institutions. This study served as a proof-of-concept that machine learning can be a useful tool for DW

prediction, but it is not yet a replacement tool for BCM. This warrants further model development that can be widely used in real

practice.
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CHAPTER 1
INTRODUCTION

1.1 Background and Rationale

Chronic kidney disease (CKD) is one of the most common non-communicable
diseases in Thailand, with an estimated prevalence of 11.6 million cases, accounting
for 17.5% of the Thai population. Approximately 130,000 patients develop End-stage
renal disease (ESRD) and require renal replacement therapy. The incidence of
patients on hemodialysis has persistently increased from 74 to 233 per million

patients from 2008 to 2016".

The dry weight (DW) of each patient indicates the ultrafiltration volume in
each hemodialysis session, and it is a crucial parameter linked to various adverse
outcomes. Correct DW assessment can lead to better patient care, but targeting the
proper DW can be troublesome. The conventional method of DW prediction is
clinical assessment (C-DW), but this method is inaccurate. Physical examination, such
as blood pressure measurement, jugular venous pulse, and peripheral edema, is an
insensitive method for detecting underweight patients. This traditional clinical-based
method not only varies between assessors but also comes with intra-rater variability,
leading to the development of various tools to provide more objective data to assist

physicians in setting DW.

The Body Composition Monitor (BCM; Fresenius Medical Care, Bad Homburg,
Germany) is one of the most reliable tools for assessing dry weight. It uses an
electrical principle based on measuring the resistance caused by an electric current
passing through living tissues. In many institutions in Thailand, dry weight from BCM
(BCM-DW) has been used as the best available gold standard. However, there are
issues with its cost and generalizability, making a new tool necessary for proper dry

weight assessment.

Machine learning, a subset of artificial intelligence, is a potential solution to

this problem. However, there is a lack of studies that use BCM-DW as an output for



their model's learning and consider the hidden associations between time-series data
and BCM-DW. With the increasing amount of hemodialysis in Thailand, there is a
need for an accurate, operator-independent, emotionally-irrelevant, inexpensive,

user-friendly, less time-consuming, and widely accessible tool for proper patient care.

Our purpose is to develop a model for dry weight prediction using machine
learning, which would be the first to use BCM-DW as an output, known for its
robustness and accuracy. For generalizability, the performance of this model will be
tested with another institute. Additionally, this study would be the first to use time-

series data as an input for the model's dry weight prediction.

1.2 Research question

Primary research question

Can machine learning which is a part of artificial intelligence accurately
predict dry weight (ML-DW) in patient with ESRD on HD, with a high level of
agreement compared to BCM (BCM-DW), which is considered the gold standard for

dry weight assessment?

1.3 Objective
To develop the machine learning model and determine its agreement of DW

by machine learning (ML-DW) and DW measured by BCM (BCM-DW).

1.4 Hypothesis

Machine learning which is a part of artificial intelligence can accurately predict
dry weight (ML-DW) in patient with ESRD on HD, with a high level of agreement
compared to BCM (BCM-DW) which is considered the gold standard.



1.5 Conceptual framework

‘ HR H UFR H SBP H DBP ‘
N

‘ Laboratory data ‘ ‘ Time series data R
Demographic data
Dialysis prescription data

Machine learning | BCM ‘

\. /

Proper Dry weight

Figure 1: Conceptual framework of the study.
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart

rate; UFR, ultrafiltration rate; BCM, Body Composition Monitor.

1.6 Assumption

None

1.7 Operational definitions
A chronic hemodialysis session is defined as a dialysis session from a patient
with end-stage kidney disease who has been on renal replacement therapy via

hemodialysis for at least 3 months.

A stable chronic hemodialysis session is defined as a dialysis session from
either prevalent or incident hemodialysis patients who have been using dialysis for at
least 6 months, without infection, heart failure, cardiac arrhythmia, or sudden cardiac
arrest. Patients should also meet the dialysis adequacy criteria set by KDOQI, which
includes a weekly standard Kt/V of at least 2.1 or a single pool Kt/v of at least 1.2%



1.8 Limitation
This study is retrospective and do not include physical examination or patient
symptoms, which are factors used by physicians in both institutes to adjust the

patient's DW.

1.9 Expected benefit and application

The accurate results with good agreement between this model and BCM will
make DW assessment more generalizable, leading to proper care of hemodialysis

patients in the future.

1.10 Challenges

Since this study is utilizing machine learning for the development of the
model, it requires a large amount of data, specifically dialysis session data on the
same day as BCM measurement, hence, the number of available data may be
limited. Additionally, developing a machine learning model requires expertise from a

data scientist who can properly tune the model and set up a suitable pipeline.

1.11 Key words

Dry weight, Bioelectrical Impedance Analysis, Body composition monitor, Artificial

intellisence, Neural network, Chronic Hemodialysis



CHAPTER 2

LITERATURE REVIEW

2.1 Dry weight for hemodialysis patient

DW in the context of hemodialysis refers to a patient's target weight that
accounts for the residual fluid in their body after dialysis has removed excess fluid,
but not to the extent of causing dehydration®. Knowing a patient's DW is essential for
proper patient care because it is not just a number but also linked to many adverse
outcomes. Overhydration status is linked to various problems, including increased
blood pressure and a higher risk of cardiovascular issues, which are linked to
mortality®. Conversely, being underhydrated can result in negative consequences,
such as intradialytic hypotension, ischemic organs, increased recovery time following

dialysis, and decreased residual renal function® ®.

2.2 Method for dry weight assessment

The conventional method of determining DW through clinical assessment (C-
DW) combines many skills, such as history taking, symptom evaluation, physical
examination, blood pressure monitoring, jugular venous pulse evaluation, and
peripheral limb edema assessment. However, many of these parameters are subject
to variability, both between different assessors and within a single assessor over time.
Despite the development of clinical scores, vagueness still remains’. The use of
blood pressure as a surrogate measure is unreliable due to volume-independent
hypertension caused by age and comorbidities®. On the other hand, intradialytic
hypotension, which may indicate underhydration, can be influenced by various
factors that disrupt plasma volume refilling, such as serum sodium, calcium,
hemoglobin, or albumin® '°. Another promising parameter that reflects volume status
is the variation of heart rate during dialysis. It has been suggested as a compensatory
mechanism for the body's homeostatic balance in response to fluid status. A small

study found that heart rate followed a sigmoid curve as volume status became more



depleted, but further research is needed to confirm these findings''. Cramping and

faticue are unreliable and not specific to underhydration, while clinical scores for

determining overhydration require the accumulation of at least 2-3 liters of fluid'% As

a result, efforts have been made to incorporate additional tools to provide more

objective data to aid healthcare providers in setting an accurate DW. While many

tools have been developed for DW assessments, accuracy and availability remain

problematic’®. The best accuracy method for volume assessment is Extracellular

fluid and total body water measurement via Sodium bromide (NaBr) and deuterium

(D20). Nevertheless, this method has limitations due to its invasiveness and limited

availability.

Assessment method Accuracy Other limitations

Clinical assessment Low Lack standardization, high
variability

Chest radiography Low Minute radiation exposure

(hypervolemic)

Serum NT-proBNP

Low

(hypervolemic)

Variable cost, Not available at

dialysis unit

Echocardiogram Good Effect by valvular heart disease,
Operator dependent, Not available
at dialysis unit, High cost, Time
burden

Inferior vena cava Low Operator dependent, Low

diameter repeatability, Time burden

Lung water ultrasound Good Operator dependent, Not available

(hypervolemic)

at dialysis unit, Time burden

Bioelectrical Impedance Good High reproducibility, Not available
Analysis at dialysis unit, Costly
Relative blood-volume Good High reproducibility, Not available

monitoring

at dialysis unit, Costly




Extracellular volume (NaBr) | Good Invasive, High cost, Time burden,

Not available at dialysis unit

Total body water (D20) Good Invasive, High cost, Time burden,

Not available at dialysis unit

Table 1: Comparison of dry weight assessment by each method.
Abbreviations: N-terminal (NT)-pro hormone B-type natriuretic peptide, NT-proBNP;
Sodium Bromide, NaBr; Deuterium, D20; Adapted from Jennifer E Flythe, et al"’.

2.3 Body composition monitor

In 1963, Thomassett introduced a new technique called Bioelectrical
Impedance Analysis (BIA)!*. BIA uses two electrodes attached to the human body to
conduct electrical current through the tissue. The low frequency alternating current
causes conduction almost exclusively through the extracellular spaces of the tissues,
while the high frequency range allows current to pass through both the intracellular
and extracellular spaces. Thus, it can measure the resistance and reactance of both
intracellular and extracellular water. Combined with the body compartment model,
which includes tissue mass normohydrated lean, normohydrated adipose tissue
mass, and overhydration, it can determine the patient's DW. BCM is a tool that uses
the BIA method for measurement. It retrieves the electrical response of 50 different
types of frequencies between 5 and 1,000 kHz. BCM assumes a division of TBW into
extracellular water (ECW) and intracellular water (ICW), which are estimated using
specific software provided by the manufacturer from the equation by Moissl et al ™.
Excess fluid is calculated as the difference between the measured and expected

ECW in a normal situation®® 6.
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hydrated
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tissue mass
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hydrated
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Figure 2: Distribution of water in different hydration status.

~fluid
Underhydrated .
Adipose

Depleted fluid

“a

Depleted fluid

tissue mass

Underhydrated weight

Abbreviations: BCM, Body composition monitor; ECF, extracellular fluid; ICF,

intracellular fluid (adapted from Chamney, et al'®).

® A person who has a normally hydrated weight has water in their ECF

distributed in two compartments: normally hydrated lean tissue (comprising

muscle, bone, and other organs) and normally hydrated adipose tissue. These

two compartments will be the same as a reference population at the same

age and sex, and this is called the dry weight (DW).

® A person who has an overhydrated weight has excessive ECF from the two

compartments mentioned above. This excess fluid is equal to present weight

subtracted by DW.

® |n contrast, a person who has an underhydrated weight has ECF lower than

the two compartments mentioned above. This depleted fluid is equal to DW

subtracted from the present weight.

Therefore, the BCM demonstrates the DW of each patient and the excess or

depleted fluid in that stage. The BCM uses bioelectrical impedance analysis (BIA) to



measure the water distribution in the body, and this can provide an objective

measurement of a patient's hydration status.

2.4 Body composition monitor: Its clinical implementation and limitation

The performance of BCM has been validated by measuring extracellular fluid
and total body water through Sodium bromide (NaBr) and deuterium (D20 in both
healthy populations and dialysis patients'> !”. The tool has other strong points such
as high repeatability and ease of use. Since then, it has been widely accepted as the
best available gold standard, with much higher accuracy than C-DW. Several studies
have demonstrated that BCM-DW can identify overhydrated patients, around 23-26%
of those diagnosed as euvolemic by clinical assessment'® '*. Additionally, various
studies have found that using BCM-DW has benefits over C-DW in several clinical

outcomes, such as:

® Blood pressure
An RCT from Romania found that using BCM-predicted DW leads to better
blood pressure control in dialysis patients. After 2.5 years of follow-up, the
systolic blood pressure was 2.43 mmHg lower (95% Cl, -7.70 to 2.84)
(P=0.40)"°. Another RCT from China, BOCOMO, found that BCM-guided DW for
3 months can lead to a decrease in systolic blood pressure of around 6
mmHg?. A recent systematic review and meta-analysis from the UK, which
included five randomized controlled trials in HD patients, found that
bioimpedance-based DW assessment was significantly associated with an
improvement in systolic blood pressure of -2.73 mmHg (-5.00 to -0.46
mmHg)?.

® Mortality
Studies found that overhydration identified by BCM-DW, defined by ECV>15%
or approximately 2.5 kg, increased the hazard ratio of mortality by 2.1 times
after 3.5 years of follow-up®. A cohort from Poland also found that BCM,

which identified overhydrated status, was one of the significant factors
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associated with higher mortality in the long-dialysis vintage (>2 years)
subgroups®®. While the use of BCM-guided DW was related to proper DW
targets and a decrease in blood pressure, which had a positive effect on
survival. Nevertheless, studies proving the benefit of BCM-DW on mortality
were still lacking. One meta-analysis found that the use of BIA had no
significant effects on mortality (HR 0.69, 95% Cl 0.23 to 2.08; p = 0.51,12 =
549%)%. The latest RCT from China also found that BCM-DW showed no
difference in survival by the Kaplan-Meier curve (HR = 0.51, 95% confidence
interval: 0.24-1.08, log-rank test p-value = 0.07). However, the follow-up
period was only 13 months. Interestingly, this curve showed an increasing
trend of survival improvement in the BCM group compared to the control

group over time”".

® (Cardiac parameters
Left ventricular mass index (LVMI) is one of the factors that strongly linked to
mortality?. An RCT found that after 12 months of applying BCM-DW, LVMI
decreased from a baseline of 131 (SD 36) to 116 (SD 29) (p < 0.001), while C-
DW remained the same at 120 (SD 20) (p = 0.9). However, changes in
parameters such as left ventricular hypertrophy (LVH) were not significant?’.
® |ntradialytic adverse events
An RCT from Taiwan showed benefit of BCM-DW over C-DW in decrease
incidence of intradialytic hypotension (6.10 vs. 6.62 %, p < 0.05). Probing
toward BCM-DW was done at pace of 0.2-0.5 kg change per week.
Additionally, there were no statistically significant differences in the incidence
of other adverse events during dialysis, such as cramping, fatisue, and other

patient-reported symptoms, between BCM-DW and C-DW?.

Although BCM has been shown to accurately determine DW and provide
several benefits, it is important to note that the tool has some limitations. For
instance, BCM may not be suitable for patients with certain medical conditions, such

as those with implanted electronic devices or amputated limbs, as it may provide



11

inaccurate measurements. Additionally, there are a few things that need to be

mentioned.

® Body mass index (BMI)
The study indicated that BCM measurements can cause excessive variation in
the ECW compartment in individuals with extremely high or low BMIZ.
Accordingly, guidelines recommended applying this method to study
populations with a BMI between 16-34 kg/m2*°. Therefore, only patients with
BMI within the acceptable range were included in this study.

® Age of population
Since dialysis patients tend to be elderly, while the accuracy of BCM for DW
determination has only been validated in populations with a limited age

range, typically around 86 years old. To address this limitation, we only

included patients who were 86 years old or younger in our study.

® Timing for measurement
BIA measures the body's resistance and reactance to electricity, and there are
a few things to consider regarding the timing of measurements. Firstly, water
fluid in body compartments can shift between compartments, so BCM
measurement after a dialysis session may be more appropriate than pre-
dialysis measurements®. However, post-dialysis BCM measurements may
have drawbacks due to interference from changes in electrolyte composition,
although its clinical impact is unknown® In 2004, a study found that BIA
variability would be stable for at least 120 minutes after a dialysis session’>.
Later, guidelines recommended post-dialysis measurements for at least 30
minutes. If pre-dialysis measurements are to be taken, this parameter should
be used as a trend by serial measurements, rather than a static value. Despite
these considerations, some studies have found good agreement between
body water composition in pre-dialysis measurements and extracellular water
measurements by Bromide, with a mean difference of 0.8 kng. In real clinical
practice, it may not be feasible for dialysis centers to ask patients to stay for

another two hours after a session. Therefore, all institutes in Thailand that
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use BCM measure DW before dialysis, along with other clinical parameters.
This retrospective study also retrieved BCM data from pre-dialysis
measurements.

® (Cost and Generalizability
The major limitation of BCM is its cost, with the machine costing around
150,000 baht and each measurement requiring a specific electrode costing
around 300 baht. This limits its use in Thailand mostly to university hospitals,
and only nine provinces have BCM machines, with most having only one
machine per province. A cost-effective analysis from the United Kingdom in
2021 found the ICER for bioimpedance-guided fluid management versus
standard management to be £16,536 per QALY gained, which was acceptable
for the United Kingdom's threshold for ICER capped at £20,000 per QALY
However, in Thailand, the ICER threshold for health policy is 160,000 baht per
QALY, so the cost of £16,536 (690,000 baht) per QALY is too high to apply this

tool to all patients.

Number of HD center with
BCM

Number of HD center

Figure 3: Demonstrated amount of hemodialysis centers (Left) and number of HD

centers with BCM (Right) in Thailand.
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Abbreviations: HD, hemodialysis; BCM, Body composition monitor. Adapted from
“Annual Report Thailand Renal Replacement Therapy 2020” By The Nephrology
Society of Thailand and detailed record of BCM’s sale performance between 2018-

2022.

In conclusion, there is a significant gap between the number of good tools
and the demands for DW assessment in Thailand. Therefore, a new tool that concern
about these limitations while preserve the same performance as BCM is needed to

be developed for good care of dialysis patients.

2.5 Machine learning model and dry weight prediction

Machine learning (ML) is a subset of artificial intelligence that allows
computers to learn from data and improve without explicit programming. These
algorithms process input and output data to develop models®. By the way, deep
learning, a type of machine learning, uses multiple layers of non-linear modules to
create more complex functions. This substructure is beyond human ability, leading to
previously unimaginable solutions for complex tasks and the discovery of hidden
associations®®. These cutting-edge technologies result in an assistive tool for

physicians to make decisions with more cost-saving and less time-consuming.

Few studies have used machine learning for the prediction of dry weight (ML-
DW). However, most of them compare their results to clinical assessments (C-DW),
which are subjective and prone to errors. Additionally, some studies have used
unacceptable rationale. For instance, a study by Olivier Niel et al. used BCM-DW as
an input variable, which is considered the gold standard for predicting DW, and then
predicted the result of C-DW. The study showed good agreement, but it did not bring
any benefit to clinical implementation®’. Another study by Hae Ri Kim et al. used
BCM-DW as an input variable and predicted the final result in the form of an
absolute gap between BCM-DW and C-DW. As a result, the effect of the input

variable of BCM was again contaminated in the prediction process. The interpretation
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was also difficult to do, since absolute gap did not tell the direction whether it was

overhydrated or underhydrated?.

Furthermore, comparing the performance of different machine learning
models that predict the same thing can be challenging. The proper way to compare
a new model with an existing one is to see if they agree with each other. However,
some studies used tests like accuracy or correlation®, which cannot determine if
the models are truly similar due to their inability to account for bias or the range of

possible results. Such tests are not good for comparing with a "gold standard" test™.

Few studies have used correct statistical methods. However, it compared
machine learning-based dry weight prediction (ML-DW) with clinical dry weight
assessments (C-DW). Olivier Niel et al. found that their ML model was able to predict
C-DW with good agreement, with a mean difference of 0.09% of C-DW. Although,
there was a wide limit of agreement at -4.27 to +4.44% of C-DW (absolute kilogram
was not reported), and the number out of agreement was 20 out of 476 samples*’.
The input parameters in this study included demographic data, and time-variable
data as a time stamp of pre-dialysis blood pressure and heart rate was used as an

input.

In another study by the same author, the same input and output were used
with a different ML model. The mean difference was nearly the same (-0.04% of C-
DW), and the number out of agreement was lower at 17 out of 476 samples.
However, the limit of agreement was still wide (-4.41 to +4.33% of BW, absolute

kilogram not reported)*.

In conclusion, none of these studies used ML to predict the more objective
and reliable method of DW assessment, such as BCM-DW. Additionally, none of them
used time-series variables, which are the most abundant data in each dialysis session
for prediction. As mentioned earlier, intradialytic changes of vital signs may have a

complex relationship with the patient's volume status, so these variables may be an
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essential factor for DW prediction. Moreover, the agreement test results sometimes
did not provide an absolute weight number, which could be difficult to use in real
clinical implementation. Lastly, none of these models were externally validated with

data outside their institute. Table 2 provides the details of each study.

Study Input output Patient model Result
Hae Ri Kim, et al. Demographic Absolute 1672 XGBoost Accuracy 28.54 %
2021 Dialysis difference Mean absolute
Laboratory between error 1.29 kg
Time variable (Time stamp) BCM-DW and
BCM-DW C-Dw
C-DW
Jainn-Shiun Chiu, et al. Demographic BIA-Total 54 ANN Pearson’s
2005 body water correlation
(not DW) coefficient
(-0.911)
RMSE 2.48 kg
Olivier Niel, et al. Demographic C-DW 14 Multilayer Mean difference
2018 Dialysis perception +0.497 kg (LOA -
Time variable (Time stamp) neural network 1.33 to +1.29 kg)
BCM-DW
Xiaoyi Guo, et al. Demographic C-DW 476 Sparse Laplacian Mean difference
2021 Time variable (Time stamp) regularized 0.09% of C-DW,
Random Vector (LOA
Functional Link -4.27 to +4.44 %)
Number out of
agreement: 4.25%
Xiaoyi Guo, et al. Demographic C-DW 476 Multiple Mean difference:
2021 Time variable(time stamp) Laplacian- -0.04% of C-DW
regularized radial | (LOA -4.4 to
basis function +4.33%)
networks Number out of
agreement 3.57%

Table 2: Descriptive data of available trial about machine learning model and dry

weight prediction.

Abbreviations: BCM-DW, Body composition monitor adjusted dry weight; C-DW,

Clinical adjustment dry weight; BCM, Body composition monitor; XGBoost, Extreme

Gradient Boosting; ANN, artificial neural network; RMSE, Root mean squared error;

LOA, limit of agreement
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2.6 Machine learning model for time-series data and its structure

Dealing with time-series data can be troublesome. Conventional statistical
models such as ARIMA (Autoregressive Integrated Moving Average) or SARIMA
(Seasonal Autoregressive Integrated Moving Average) are commonly used for time-
series data, but these are primarily used for forecasting or predicting. They are
designed to model the underlying patterns in time-series data and make predictions
of the same parameter in the future based on those patterns. Thus, they are not
suited for classification tasks or prediction of value of different parameter. To

approach this problem, a recurrent neural network is needed.

Recurrent Neural Networks (RNNs) are a type of neural network designed for
processing sequential data, such as time-series data or natural language text. The key
characteristic of RNNs is their ability to retain information from past inputs, which
allows them to model temporal dependencies and contextual information in
sequential data®. The basic structure of an RNN involves a recurrent hidden layer
that is connected to itself through time. The inputs are processed in parallel at each
time step and are fed through the hidden layer, which generates an output and
updates its internal state. The internal state of the RNN can be thought of as a
memory that allows it to capture information from past inputs and use that
information to generate the current output. The output of this could be either a
prediction or a classification. This makes RNNs well-suited for a wide range of tasks,
including language modeling, graph prediction, and speech recognition. There are
several variants of RNNs, such as GRU (Gated Recurrent Unit) and LSTM (Long Short-

Term Memory).

GRUs have been designed to be a simple and fast type of RNN, with fewer
parameters to train, which makes them more efficient for some tasks. However, there
are drawbacks such as poor preservation of long-term dependencies in sequential
data, which can cause the model to forget these dependencies over time or result in

vanishing gradients from backpropagation of errors through time™.
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LSTM is an improved RNN architecture that can construct a long-term
sequence relationship and has dominant memory units, which can solve the
problem of gradient disappearance or explosion in GRU**. Thus, it will be chosen as

one of the core models for this study.

Structure of LSTM

The memory cells in LSTM enable the transmission of gradient information
over long distances during training. In addition, three gates (input cate, forget gate,

and output gate) are established. The detailed structure of LSTM is shown in figure 4.

/ Forget gate Input gate State candidate gate Qutput gate

®
[ r )
t t
b—{ + h—» b—> b

. w w w

Legend
. Input . Output .

c.4 = previous cell state c, = next cell state w = coefficient

.

3

[

ht , = previous hidden state h, = next hidden state b = bias
= input data
O Vector operation . Nonlinearities activation function
= scaling of information a = sigmoid layer
= adding of information t = tanh layer

Figure 4: Structure of LSTM model. Adapted from Hochreiter, et al*,
The forget gate, presented in Equation 1, decides the retention or discard of
information. The sigmoid function is applied to the previous hidden state and the

current input simultaneously. The output value, f, is between 0 and 1, with values

close to 1 retained and values close to 0 discarded.

f.= o(W¢ [hyy, Xl + by)
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Equation 1: f; is the forget gate output. X; and hy, are the previous hidden state and
current input, respectively. W and by are the coefficient and bias values for the forget

gate, respectively.

The input gate updates the cell state, determining how many network inputs
are retained in the current cell state. The function of the input gate is shown
in Equation 2. The previous hidden state and the current input are the input data
transferred to the sigmoid function for adjusting the values. The output value zero
means unimportant, while one means essential. In addition, the tanh function is used
for the previous hidden state and the current input to generate a candidate vector,
c’y, as shown in Equation 3. Finally, the cell state, c;, presented in Equation 4, is the

output value from the sigmoid and candidate vectors.
ir= (Wi [hey, X + by)
¢’ = tanh(W, [h.q, X,] + b.)

¢, = (frcpq) + (i C’y)

Equation 2-4: i; is the input gate output. ¢’y and ¢; are candidate vector and cell state
values, respectively. Wi and bi are coefficient and offset values for the input

gate. Wc and bc are coefficient and offset values for the candidate vector.

The output gate, as shown in Equation 5, determines the next hidden state
value. The previous hidden state is passed to the sigmoid function together with the
current input, and the new cell state is passed to the tanh function. The current
hidden state is the product of the output of the tanh function and output gate
value, as shown in Equation 6. The new cell state and current hidden state are

transferred to the next step.

0.= (W, [hey, X{] + b,)

h.= o, tanh (c;)
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Equation 5-6 oy is the output gate output. h; is the current hidden state value. w,

and b, are the coefficient and bias values for the output gate, respectively.

LSTM is commonly used for regression analysis. However, it is also widely
used for classification tasks. This is done by adding a dense layer on top of the LSTM
layers, which takes the output of the last LSTM layer and maps it to the desired
number of output classes. For instance, final layer of the LSTM for regression model
uses linear activation function, which produce continuous numerical output value,
such as a temperature or stock price. Meanwhile, LSTM for classification tasks
commonly uses sigmoid activation function for binary classification. If it is a single

label, multiple classes classification, the cross-entropy loss function is selected.

LSTM has become a popular choice for sequence modeling tasks due to its
ability to handle long-term dependencies and its ability to learn and remember
patterns from the input data. It has been successfully applied in various fields such
as speech recognition, natural language processing, and time-series prediction.
Additionally, LSTM models can be adapted to handle different types of input data,
including images and graphs. LSTM can also be combined with other types of neural
networks, or attention-based models, to improve performance on specific tasks.
Overall, LSTM has proven to be a powerful and versatile tool for a wide range of

applications.

2.7 Machine learning model and neural network model for prediction and its
structure

The conventional method for dealing with prediction model between many
dependent variables and one independent variable can be basically done by linear
regression. It is a good starting point for many problems and works well when the
relationship is linear, and the model's complexity is not too high. However, for more

complex relationships, several other ML models are employed for regression
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analysis, such as Least Absolute Shrinkage and Selection Operator (Lasso)®, Elastic
Net (ENet)*®, Kernel Ridge Regression (KRR)", Extreme Gradient Boosting (XG Boost)®
and Light Gradient Boosting Machine (Light GBM)®.

Lasso is @ modification of linear regression model that can be used for feature
selection and regularization to prevent overfitting. It has better strengths in feature
selection and handling high-dimensional data. It can also help with overfitting by
adding a penalty term. However, it is sensitive to outliers and can be unstable when

there is high collinearity between features.

ENet is another modification of linear regression model that combines the
Lasso and ridge regression techniques. It can handle the issue of multicollinearity
between features but requires higher computation and may not be suitable for large

datasets.

KRR is a kernel-based linear regression method that can capture nonlinear
patterns in the data. It can handle both linear and nonlinear relationships. Its

weakness depends on its sensitivity to the choice of kernel function.

XGBoost is tree-based ensemble models that can handle nonlinear
relationships and interactions between features and can improve performance
through boosting techniques. It can handle missing values and reduce overfitting very
well. However, it can be computationally expensive and may require careful tuning

of hyperparameters.

LigshtGBM is another tree-based ensemble models. Its fast and efficient
gradient boosting method that can handle large datasets. Contrary, it may not

perform well with small datasets and may require careful tuning of hyperparameters.

Stacked regression, also known as stacked generalization, is an ensemble
method that combines the predictions of several models to improve the
performance®. It involves training several base models on the same training data and

then using their predictions as input features for a higher-level model, which makes
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the final predictions. Stacked regression can be used to combine different types of
models and can be a good choice when the relationship between the variables is
more complex or when the base models have different strengths and weaknesses.

However, it requires more data, more computing resources, and more time to train.

Neural network models are also commonly used for prediction tasks. These
models are built using multiple layers of interconnected nodes, with each node
performing a mathematical operation on its inputs and passing the result to the next
layer. The nodes in each layer are typically connected to all nodes in the previous
and next layers, creating a dense network of connections. The output of the final
layer is the predicted value. Neural networks can handle complex relationships
between variables and can capture nonlinear patterns in the data. However, they
may require more data and more computation resources to train than other models.
Additionally, choosing the appropriate architecture and hyperparameters for the

network can be challenging.

2.8 Rationale for choosing institute for study population

This study needs data of dialysis session together with data of BCM
measurement. Collection of time-series data from dialysis sessions is a laborious task.
Since each dialysis session will contain around 50-60 numbers of interdialytic time-
series variable which usually be recorded by HD nurse manually. Retrieving these
variables manually is both laborious and prone to human error. Therefore, to collect
the required data, we needed an institute that records these parameters via
electronic methods, such as the Therapy Support Suite (TSS) from Fresenius Co. We
also required an institute that provides BCM measurement for labeling the outcome
of interest, which few hospitals had this. Only King Chulalongkorn Memorial Hospital
(KCMH) and Bhumirajanagarindra Kidney Institute Hospital (BKIH) met these criteria,

but they differ in several ways that may affect the results and analysis.
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KCMH is a tertiary-care and university hospital that typically handles
complicated cases, and currently has around 50 active patients. As BCM
measurements are performed more frequently than in general hospitals, the number
of dialysis sessions with BCM measurement is high despite the relatively small

number of patients.

BKIH is a private hospital that specializes in hemodialysis care and has over
500 active patients. However, BCM measurement is costly, resulting in only 2-3
measurements being performed in each patient. Therefore, the number of dialysis

sessions with BCM measurement is high due to the large number of patients.

The aim of this study is to develop a new model and evaluate its
performance through an external test. Additionally, a comparison between the
characteristics of two institutes, with similar numbers of dialysis sessions but different
patient populations, will be conducted. The study will test whether a model trained
on the larger patient population can accurately predict outcomes for the smaller
patient population, and vice versa. This analysis will serve as a robustness test of the

model before generalization to real-world practice.

CHAPTER 3
METHOD

3.1 Research design

Diagnostic Retrospective study

3.2 Research methodology
3.2.1 Target population
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This study focused on the number of dialysis sessions, as we use each session
for the model’s learning separately. Thus, it requires dialysis sessions with BCM

measurement on the same day from ESRD patients.
Study population

Dialysis session from ESRD patients at two institutions, King Chulalongkorn
Memorial Hospital (KCMH) from January 1, 2017, to December 31, 2021, and
Bhumirajanagarindra Kidney Institute Hospital (BKIH) from January 1, 2018, to
December 31, 2022.

3.2.2 Inclusion criteria
(a) Dialysis sessions from patients aged 18-86 years
(b) Dialysis sessions from patients who had done 2-3 sessions per week

(c) Stable dialysis, defined as prevalence cases or incidence cases with a

duration of dialysis for more than 6 months

(d) BCM measurement was done on the same date as the dialysis session.

Exclusion criteria
patients were excluded if they had:

(a) Recently active and uncorrected heart disease (ischemic heart disease
within 6 months, heart failure within 6 months, moderate to severe valvular

disease)
(b) Atrial fibrillation
(c) An amputated limb

(d) Cirrhosis
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(e) Been pregnant or breastfeeding
(f) A BMI <16 kg/m2 or >34 kg/m2.
For those eligible patients, we also exclude dialysis sessions that had:

(¢) Intradialytic adjustment of dialysate concentration, including dialysate

profiling or

(h) Corrupted data without a complete record.

3.3 Sample size calculation

_ (Zl—afz tZip
[(P) (1-P)B%]

type | error (QL) = 0.05

type Il error (B) = 0.20

Py = 0.9 from Moissl, et al*
Dropout rate 10%

N = 130

The conventional method for predicting dry weight (DW) using logistic
regression, as described by Hsieh et al.,, found that the new tool can be comparable
to BCM in a study of 130 patients. However, in this study, a machine learning model
was proposed for prediction and each dialysis session was utilized separately for
model learning. The focus was on the number of dialysis sessions, as a large amount
of data was crucial for the learning process. The expected amount of 1000 dialysis
sessions was deemed sufficient for ML learning to answer the clinical question.
Although a neural network model may have benefited from a higher number of

dialysis sessions, it was acknowledged that obtaining more than 1000 BCM
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measurements may be unrealistic and inconvenient. Nonetheless, the potential of a
neural network was explored and its performance was assessed while keeping this
limitation in mind. The team appreciated the understanding and did their best to

ensure that the approach yielded meaningful results.

3.4 Data collection

The data collected for this study includes demographic data (age, sex, height,
pre-dialysis weight, post-dialysis weight, and underlying diseases (hypertension,
diabetes, stroke, chronic lung disease, and gout), laboratory data (hemoglobin,
sodium, calcium, and albumin), dialysis prescription data (composition of sodium,
potassium, calcium, bicarbonate, and temperature), time-series data during dialysis
sessions (including timestamps for systolic and diastolic blood pressure, heart rate,

and ultrafiltration rate), and DW data from BCM.

Demographic data were collected based on physician reports and ICD-10
codes, while laboratory data for each dialysis session were selected based on the
closest sampling prior to that session, but not more than one month prior. Dialysis
prescription and time-series data were collected from the TSS. In both institutes,
timestamp data were monitored before the start of dialysis, for the next 30 minutes,
and then every hour. However, if vital signs were unstable or the physician required,
monitoring was done more frequently. BCM data in this study was pre-dialysis
measurement, collected from the TSS record. Quality of measurement and Cole-
Cole plot of BCM were not available for this retrospective review. After measurement
was done, physicians would prescribe the target weight for that dialysis session based
on a combination of both BCM-guided data and clinical assessment. So Post-dialysis
BW does not equal to BCM-DW. Probing of weight was done in order to avoid rapidly
change in weight that may cause consequences. Adverse events during a dialysis

session, were not reported in the record and not present in this study. Intervention
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required for a patient during a dialysis session was also not included as a parameter.

The diagram of data retrieval is shown in Figure 5.

Dialysis session with BCM [ TS5 & electronic ||

BCM-DW

measurement record
I
Tss TSS Manual Tsearch & Manual .search &
electronic record electronic record

Age, Sex, Height
Hb, Na, Ca, Alb Underlying diseases,
pre/post BW

Dialysate composition &
temperature, mode

| | |

Time series data Dialysis data Laboratory data Demographic data

SBP, DBP, MAP, HR, UFR

Figure 5: Flow for retrieving data.

Abbreviations: BCM, Body composition monitor; TSS, Therapy support suite; BCM-DW,
dry weight from BCM; SBP, systolic blood pressure; DBP, diastolic blood pressure;
MAP, mean arterial pressure; HR, heart rate; UFR, ultrafiltration rate; Hb, hemoglobin;
Na, sodium; Ca, calcium; Alb, albumin; pre/postBW, pre-dialysis and post-dialysis

body weight

3.5 Data analysis
Data from four domains, including demographic, laboratory, dialysis
prescription, and BCM data, were combined into a single sheet. While data from

time-series data was stored in another sheet.

3.5.1 Data preprocessing

The raw data of the dialysis sessions were cleaned by removing null values.
As different magnitudes of data can cause larger variables to dominate over smaller
ones, all ratio and interval data such as height, weight, and dialysate sodium were

normalized by the StandardScaler command in TensorFlow. All features were
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transformed to fall within the range of 0 (lower bound) and 1 (upper bound).
Parameters that were not normally distributed were transformed using log N or Box-
Cox transform. Categorical data were marked and encoded as numerical labels using
LabelEncoder from the 'sklearn.preprocessing' module, and then encoded into a set
of binary variables (0 or 1) for each category using the 'eset dummies' function from
the pandas module. This helped the regression model deal with categorical
variables. Time-series data was scaled in the same way as above. Due to the unequal
time frame between each dialysis session, zero padding was used prior to each time
frame to create a matrix of the same size without affecting the model's performance

>! The output was labeled for BCM-derived DW.

3.5.2 Training, Validation and Testing set

All data from dialysis sessions were randomized and split using a command in
Tensorflow into a training set (80%) to optimize the parameters of artificial neural
network models, a validation set (20%) to determine when to stop the optimization
process. During the splitting process, we ensured that dialysis sessions from the same
patient were placed in the same set to prevent the learning model from being
exposed to input, such as demographic data, that would be the same for patients
who had multiple dialysis sessions and BCM measurements. A testing set was used to
evaluate the performance of the final model. As mentioned earlier, we conducted

two external validation configurations for testing the robustness of our model.

® Configuration A, we used the KCMH database as the training and validation
set and applied the model on the BKIH database for testing.
® (Configuration B, we used the BKIH patient database to train our model and

then applied our algorithms on the KCMH database.

The flowchart of the study was shown in Figure 6, and it should be noted that the

train, validate, and test sets were altered based on each configuration.
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Data collection
from KCMH & BKIH

O
Data cleansing
O
Labelling
O
Scaling
Training set G Valiﬁon set G Test set
S
Leaming and tuning
4
Predictive model
4 N
Evaluation
O
Conclusion

Figure 6: Flow chart of this study
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,

Bhumirajanagarindra Kidney Institute Hospital

3.5.3 Statistics and Model development phase

Descriptive analysis of input data was conducted. Data with a normal
distribution was presented as mean + standard deviation (SD). For skewed
distributions, data was presented as median + interquartile range (IQR). Associations
with p values less than 0.05 were considered statistically significant. Time-series data
was displayed in a descriptive manner and scatter plots were used to provide an
overview of the relationship between parameters. Additionally, a histogram of BCM

data was also included.

Our algorithm was built by Python v3.6.9 (https://www.python.org/) with
Tensorflow backend v1.15.4 (https://www.tensorflow.org/), an open-source machine

learning library. We deployed our application with this deep learning library based on
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the NVIDIA container image of TensorFlow, Release 20.11 (Nvidia Corporate, Santa

Clara, CA, USA) as a virtual environment.

In the model development phase, we needed to build a model that best
suits our problem. Due to the difference in the type of data, the idea for model
selection will be different. For example, general data (including demographic data,
laboratory data, and dialysis data) contain both categorical and numerical data and
can be managed by diverse models. On the other hand, time-series data requires a
special model, which we have applied for LSTM. Initially, we will try to build a model
by utilizing both types of data for the most efficient use. Later on, if one type of data
was unsuitable for this task, we opted for only one type of data for our final model.

The scheme for model selection based on the type of data is shown in Figure 7.

Demographic data Laboratory data Dialysis data
Time-series data General data
| N\ =
Lasso
LSTM LightGBM
ENet
KRR XGBoost

Neural Network

Figure 7: Type of base model for different type of data
Abbreviations: LSTM, Long Short-Term Memory; ENet, Elastic net; KRR, Kernel Ridge
Regression; XGBoost, Extreme Gradient Boosting; LigshtGBM, Light Gradient Boosting

Machine; LR, Linear regression

3.5.3.1 Processing for time-series data
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As mentioned above, the bidirectional Long Short-Term Memory (LSTM)
model was designed as a recurrent neural network (RNN) to capture dynamic
variations in time-series data. It had capability to handle a diverse range of problems.
The aim of this model is to utilize changes in vital signs and ultrafiltration rate to

achieve one of the following goals:

® Directly predict or Regress BCM-DW.

® (lassification dialysis sessions into different groups based on alteration of

time-series data toward differences in net ultrafiltration volume.

® Reduction of high-dimensional data and transform time-series data into an

embedding layer then combining with result from non-time-series data.

To develop the most efficient model, we used all of the three approaches
and select the best one, if possible. The LSTM class was defined as a subclass of
PyTorch's nn.Module. This class defined the architecture of the LSTM-based model
that would be trained. The number of neurons in LSTM layers was varied by
approach between 16-128. The learning rate was set at 0.0001. To mitigate overfitting
in small dataset, drop-out at 0.1 and L2 regularization method was used with a value
set to 0.001. The adaptive moment estimation (ADAM) algorithm was used for
optimization with the number of iterations set to 300. The training and validation
datasets were loaded into PyTorch Datal.oader objects, which allowed the data to
be easily fed in batches to the model during training. At the end of training, the

model with the highest validation accuracy was saved.

In the first approach, called the "LSTM regression model (LSTMreg)," we
trained the LSTM model to output as a predictive model. We evaluated the results
in terms of mean squared error (MSE) and agreement. A smaller MSE indicates better
model performance, while agreement would be shown by Bland-Altman plot. It was
a graphical representation of the differences between the two methods, with 1.96 SD

set as the upper and lower boundaries of the limit of agreement. A smaller mean
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difference and a narrow limit of agreement indicate a good model. If the results were
promising, we planned to combine this with any regression model for non-time-series

data.

In the second approach, “LSTM classification model (LSTMclass)”, the LSTM
model was used to classify patients into three groups based on the net UF status.
Since it was known that excess UF was important factor that led to a sudden change
in vital signs during dialysis, the purpose of this approach was to group dialysis
sessions by the amount of net UF before sending data from each session into the
specific regression model that suited each group, thereby maximizing the prediction
value. Initially, the LSTMclass was responsible for screening dialysis sessions and
assigning them to the appropriate groups. Since the output was a classification, the
results were evaluated in terms of accuracy, F1 score (the harmonic mean of
sensitivity and positive predictive value), and the confusion matrix. The confusion
matrix displayed the percentage of dialysis sessions predicted in each group, with

color tones indicating the accuracy of the prediction.

In the third approach, “combined time-series data and non-time-
series/general data in neural network model (gtNN)”, Time-series data could be used
by passing the last layer of the LSTM or the embedding layer, which provided less-
dimensional data, and concatenating it with the embedding layer from non-time-
series data (demographic, laboratory, and dialysis data). All of the information would
pass through same optimization and dense layer. Although neural networks worked
well with large amounts of data, using this approach for this small dataset may have
uncovered some additional insights or trends. The result of this was continuous data

of predicted weight, which was evaluated in terms of MSE and agreement.

The schematic representation of the pipeline for each approach was

illustrated in Figure 8.
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Figure 8: Different approach related to time-series data
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Abbreviations: LSTMreg, LSTM regression model; LSTMclass, LSTM classification
model; gtNN, combined time-series data and non-time-series/general data in neural

network model; ML-DW, machine learning dry weight

3.5.3.2 Processing for non-time-series data or general data

The process for modeling of non-time-series data which aim for regression
analysis was performed by three methods: conventional multiple linear regression,
machine learning with stacked regression models, and neural network models. The
input for these models was a combination of parameters from demographic data,

laboratory data, and dialysate profile data.

For multiple linear regression (LR), the LinearRegression class in the scikit-
learn library was used, and MSE was used to evaluate how far the predictions were

from the actual values.

Several machine learning regression models were evaluated, including Lasso,
ENet, KRR, XGBoost, Light GBM, were evaluated. Finally, a stacked regression model
(STACK) was created using these base models. As the dataset was small,

hyperparameters for each model were fine-tuned using the GridSearchCV() function.

« The Lasso model was created using the scikit-learn library, and normalization
was performed using RobustScaler(). The strength of regularization, or alpha
value, was determined using the GridSearchCV() function from scikit-learn,
with values ranging from 0.001 to 0.1.

+ ENet model: RobustScaler() was also applied to the data for normalization,
and the alpha value was fine-tuned between 0.001 and 0.1 using the
GridSearchCW() function. The 1 _ratio, which determines the balance between
L1 and L2 regularization, was set to range from 0.1 to 1.0.

« KRR model: This model employed a polynomial kernel function with a degree

of 2, resulting in the input features being transformed to a space where each
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feature is squared and multiplied by all possible pairs of features. The alpha
value was determined using the GridSearchC\V() function between 0.01 and
100. The constant term in the polynomial function, known as coef0, was also
set using the GridSearchCV() function between 1 and 8.

« XGBoost model: To prevent overfitting due to the small datasets,
hyperparameters in the XGBoost model were selected carefully.
GridSearchCV() was used to select hyperparameters such as of, learning rate
(at a lower value between 0.01-0.1), max_depth (set at 3-7 to avoid
overfitting), reg_alpha, and reg lambda (both set at 0.1 to balance bias and
variance). Additionally, a fraction of observations and features were randomly
sampled for each tree, with values set at 0.3-0.8

« Light GBM model: To further prevent overfitting in the Light GBM model, the
following hyperparameters were tuned: The learning rate between 0.01-0.1,
num_leaves between 4 to 32, n_estimators between 300-1000,
min_samples_split between 10-50, max features between 0.3-0.5,
feature_fraction between 0.3-0.9, min_data_in_leaf between 10-20, and

min_sum_hessian_in_leaf between 0.01 to 1.

The Group shuffle K-Fold technique was utilized for cross-validation, in which
the data was partitioned into 5 parts, and the model was trained and tested on each
partition. The data was randomized prior to partitioning, and a fixed random state
was employed to ensure test repeatability. Each evaluation metric included MSE and
SD, with lower values indicating a superior model. Finally, stacking was performed
from a diverse range of base models, as their strengths and weaknesses may

complement each other.

The neural network model (gNN), which used TensorFlow and Keras to
predict BCM-DW based on a set of input features of non-time-series or general data,
was developed. The model architecture was defined using the Keras API from

TensorFlow and consisted of three hidden layers, each with 512 nodes. These layers



35

used different activation functions, namely sigmoid, relu, and relu. The final layer
produced a single output value. The optimizer used was Adam, and the learning rate
was set to 0.00001. The loss function used was mean squared error (MSE), and the
model was trained for 250 epochs with a batch size of 32. The model was evaluated

using MSE on the validation set.

Please note that the success of each approach in this project cannot be
guaranteed, despite a rationale-driven process. Therefore, all models, including those
combining time-series and non-time-series data (gtNN), those using solely non-time-
series data (LR, STACK, and gNN), and those using only time-series data (LSTMreg and
LSTMclass), were compared. The robustness of each model was evaluated using
both configuration A and B. Mean squared error (MSE) was calculated for each
model, and a Bland-Altman plot was used to compare the agreement of predictions
to BCM-DW. To visualize and compare the results of each model, a Folded Empirical
Distribution Function Curve (Folded EDFC) was plotted. The x-axis of the graph
represents the mean difference between the predicted DW and the BCM-DW, while
the y-axis defines the probability of samples with those values. The center of the
graph features a vertical line that represents the reference line of zero difference,
and the distance from this line and the peak indicates the estimated bias of each
tool. The shape of the graph is typically mountain-like, with the base representing
the entire possible range of difference between the new tool’s prediction and BCM,
which is linked to the limit of agreement. A steep rise in the graph indicates a higher
probability of the folded variable being small, while a small hill indicates a more
spread-out distribution®?. Ultimately, the final model was chosen based on various
factors including the smallest MSE, lowest mean difference, and smallest limit of

agreement.
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3.6 Model evaluation phase

The present study evaluated the performance of ML-DW, a continuous
variable, against the established gold standard BCM-DW. Further analysis of Bland-
Altman plot was conducted, as the number of samples that fell out of the limit of
agreement were presented. The importance of feature was reviewed using SHapley
Additive exPlanations (SHAP) values, which demonstrate the contribution of each
feature to the predicted outcome. In case there were outliers beyond the limit of

agreement, a sub-analysis of the data was conducted by:

® (Comparing SHAP values, a summary plot of the SHAP values for samples

within the range and for outliers was created.

® \We reviewed the baseline characteristics of each dialysis session to determine

if raw data could have led to outliers in the results.

After excluding some variables, the model was be run again to demonstrate
the Bland-Altman plot. The computational efficiency of the model was also
evaluated by reporting the time taken (in minutes) to execute the algorithm. The
figures were generated using the Matplotlib v3.1.2[15] and Seaborn v0.11.1 Python

libraries, which are renowned for their visualization capabilities in data analysis.

The full code is available at

https://drive.google.com/drive/folders/1 hKIGJ9IpjtOQQIii58zhV8vT cAmZ7QV?usp=sh.

3.7 Research ethics

The protocol was approved by the institutional review board of King
Chulalongkorn Memorial Hospital and adhered with the principles of the Declaration
of Helsinki. It used retrospective data from medical record, hence it will not be any
direct contact toward patients. All of the personal data will be stored in code that
cannot be traced back. The presentation of research results will be general

information. No individual information is presented.


https://drive.google.com/drive/folders/1_hKIGJ9IpjtOQQii58zhV8vT_c4mZ7QV?usp=share_link
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The risk of this research is no greater than the minimal risk.

3.8 Administration and time schedule

Activities 2021 2022 2023

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

1.Preparation

2.Data collection

3.Data analysis

4.Conclusion

Table 3: Time schedule of this study

3.9 Budget
List Budget
Revenue data scientist 50,000
Paperwork and hardware 50,000
Table 4: Budget of this study
CHAPTER 4
RESULT

4.1 Baseline characteristics

4.1.1 Baseline characteristics of non-time-series data

A total of 581 dialysis sessions from KCMH and 570 dialysis sessions from BKIH
were included. Characteristics of dialysis sessions were categorized in two ways for
baseline comparisons: by institute (KCMH and BKIH) and by model development
process (training, validation, and test sets). Table 5 presents the relevant clinical data
for subjects from KCMH and BKIH. While the two groups had comparable ages (64.9

vs. 67.7 years), patients from KCMH were more likely to be female (62.7% vs. 52.6%),
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and had higher proportions of cerebrovascular disease, gout, and chronic lung

disease. In contrast, BKIH had higher proportions of hypertension and diabetes (93.3%

vs. 91.2% and 41.4% vs. 34.1%, respectively). Hemodiafiltration was the dominant

mode of dialysis in KCMH, whereas hemodialysis was more prevalent in BKIH. Average

DW from BCM was slightly lower in KCMH (54.9 kg vs. 5881 kg), while average of net

ultrafiltration volume and average ultrafiltration rate was comparable in both groups

(2.1 Lvs 2.2 L) and (9.1 mL/kg/hr vs 9.7 L/kg/hr) respectively. Mean values of

dialysate and laboratory data were comparable in both groups. Baseline

characteristics of dialysis sessions by model development process was shown in

table 6 and table 7. Figure 9 showed snippet of data in this domain.

KCMH

(n = 581 sessions)

BKIH

(n = 570 sessions)

Number of patients a2 244

Age, mean (+SD) years 64.9 (9.6) 67.7(12.3)
Female, number (%) 364 (62.7%) 300 (52.6%)
BCM-DW, mean (+SD) kg 54.9 (10.5) 58.8 (11.7)
Average Pre-dialysis BW, mean (+SD) kg 56.9 (10.6) 61.5(11.7)
Average Post-dialysis BW, mean (+SD) kg | 54.7 (10.3) 59.3(11.6)
Average Height, mean (+SD) cm 159.0 (8.5) 160.8 (8.3)
Average BMI, mean (+SD) kg/m2 21.7(3.8) 22.7(4.0)
Net UF, mean (+SD) L 2.1(0.9) 2.2(0.8)
Average UFR, mean (+SD) mL/kg/hr 9.1 (4.9) 9.7 (4.0)

Comorbidities, number (%)

Hypertension

530 (91.2%)

532 (93.3%)

Diabetes 198 (34.1%) 236 (41.4%)
Cerebrovascular disease 67 (11.5%) 29 (5.1%)
Gout 57 (9.8%) 47 (8.2%)
Chronic lung disease 28 (4.8%) 3 (0.5%)




39

Mode of dialysis, number (%)

Hemodialysis 35 (6.0%) 570 (100%)
Hemodiafiltration 546 (94.0%) 0 (0%)
Dialysate profile data
Dialysate Sodium, mean (+SD) mg/dL 137.4 (1.4) 137.7 (1.1)
Median (+IQR) 138.0 (136.0 - 138.0 (138.0 -
138.0) 138.0)
Dialysate Bicarbonate, mean (+SD) mg/dL | 32.0 (1.0) 32.1(0.8)
Median (+IQR) 32.0(32.0 - 32.0) 32.0 (32.0 - 32.0)
Dialysate Potassium, mean (+SD) mg/dL 2.1 (0.3) 2.6 (0.5)
Median (+IQR) 2.0(2.0-2.0) 3.0 (2.0 - 3.0)
Dialysate Calcium, mean (+SD) mg/dL 3.0 (0.3) 2.8(0.3)
Median (+IQR) 3.0(2.5-3.0) 3.0 (2.5 -3.0)
Dialysate Temperature, mean (+SD) 36.8 (0.5) 36.5 (0.5)

Celsius

Median (xIQR)

37.0 (37.0 - 37.0)

36.5 (36.3 - 36.8)

Laboratory data

Hemoglobin, mean (+SD) mg/dL 11.0 (1.4) 10.7 (1.5)
Calcium, mean (+SD) mg/dL 8.7 (0.7) 8.8 (0.8)
Sodium, mean (+SD) mg/dL 138.7 (2.7) 136.5 (4.2)
Albumin, mean (+SD) mg/dL 3.8(0.3) 3.9 (0.4)

Table 5: Baseline characteristics of dialysis sessions from each institute.

Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,

Bhumirajanagarindra Kidney Institute Hospital; BCM-DW, dry weight from BCM; BW,

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range

KCMH

(n = 581 sessions)

BKIH

(n = 570 sessions)

Training set

Validation set

Testing set
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Number of sessions (%) 463 (79.7%) | 118 (20.3%) 570
Number of patients 35 7 244
Age, mean (+SD) years 63.8 (9.9) 62.3 (6.5) 67.7(12.3)

Female, number (%)

255 (55.1%)

109 (92.8%)

300 (52.6%)

BCM-DW, mean (xSD) kg 54.3 (10.9) | 56.9 (10.2) 58.8 (11.7)
Average Pre-dialysis BW, mean 56.4 (10.8) | 58.9(11.3) 61.5(11.7)
(£SD) kg

Average Post-dialysis BW, mean 54.1(10.6) |56.8(11.1) 59.3 (11.6)
(+SD) kg

Average Height, mean (+SD) cm 160.5(8.3) | 153.5(7.1) 160.8 (8.3)
Average BMI, mean (+SD) kg/m2 21.0(3.6) 24.1 (3.7) 22.7(4.0)
Net UF, mean (£SD) L 2.1 (1.0) 2.0 (1.0) 2.2 (0.8)
Average UFR, mean (+SD) mL/kg/hr | 9.0 (4.6) 9.3 (4.2) 9.7 (4.0)

Comorbidities, number (%)

Hypertension

412 (89.0%)

118 (100%)

532 (93.3%)

Diabetes 115 (24.8%) | 83 (70.3%) 236 (41.4%)
Cerebrovascular disease 16 (3.5%) 51 (43.2%) 29 (5.1%)
Gout 38 (8.2%) | 19 (16.1%) 47 (8.2%)
Chronic lung disease 28 (6.0%) 0 (0%) 3 (0.5%)
Mode of dialysis, number (%)

Hemodialysis 0 (0%) 35 (29.7%) 570 (100%)
Hemodiafiltration 463 (100%) | 83 (70.3%) 0 (0%)
Dialysate profile data

Dialysate Sodium, mean (+SD) 137.2(1.4) | 138.3(0.7) 137.7 (1.1)
mg/dL

Dialysate Bicarbonate, mean (+SD) 31.9 (1.0) 32.2(1.2) 32.1(0.8)
mg/dL

Dialysate Potassium, mean (+SD) 2.2 (0.4) 2.0 (0) 2.6 (0.5)
me/dL

Dialysate Calcium, mean (+SD) 2.9 (0.3) 3.1(0.2) 2.8 (0.3)
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mg/dL

Dialysate Temperature, mean (+SD) | 36.8 (0.4) 36.6 (0.5) 36.5 (0.5)
Celsius

Laboratory data

Hemoglobin, mean (+SD) mg/dL 10.9 (1.4) 11.2(1.2) 10.7 (1.5)
Calcium, mean (+SD) mg/dL 8.8 (0.7) 8.5(0.7) 8.8 (0.8)
Sodium, mean (+SD) mg/dL 138.5(2.7) | 139.3(2.2) 136.5 (4.2)
Albumin, mean (+SD) mg/dL 3.9(0.3) 3.8(0.3) 3.9(0.49)

Table 6: Baseline characteristics of dialysis session by training and testing process

(Configuration A).

Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,

Bhumirajanagarindra Kidney Institute Hospital, BCM-DW, dry weight from BCM; BW,

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range

BKIH

(n = 570 sessions)

KCMH

(n = 581 sessions)

Training set | Validation set | Testing set
Number of sessions (%) 455 (79.8%) | 115 (20.1%) 581
Number of patients 200 aaq a2
Age, mean (+SD) years 63.8 (14.1) | 70.1(10.2) 64.9 (9.60)

Female, number (%)

221 (48.6%)

79 (68.7%)

364 (62.7%)

BCM-DW, mean (+SD) kg 61.3(11.1) | 59.1(12.9) 54.9 (10.5)
Average Pre-dialysis BW, mean 64.5(10.9) | 61.8(12.9) 56.9 (10.6)
(+£SD) kg

Average Post-dialysis BW, mean 62.0 (10.9) | 59.6 (12.7) 54.7 (10.3)
(£SD) kg

Average Height, mean (+SD) cm 165.6 (7.8) | 159.7 (7.6) 159.0 (8.5)
Average BMI, mean (+SD) kg/m2 22.3 (3.6) 23.1(4.5) 21.7 (3.8)
Net UF, mean (+SD) L 2.2(0.9) 2.1(0.9) 2.1(0.9)
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Average UFR, mean (+SD) mL/keg/hr

9.8 (4.1)

9.6 (4.1)

9.1(4.4)

Comorbidities, number (%)

Hypertension

420 (92.3%)

112 (97.4%)

530 (91.2%)

Diabetes 177 (38.9%) | 59 (51.3%) 198 (34.1%)
Cerebrovascular disease 22 (4.8%) 7(6.1%) 67 (11.5%)
Gout 31 (6.8%) 16 (13.9%) 57 (9.8%)
Chronic lung disease 1 (0.2%) 2 (1.7%) 28 (4.8%)
Mode of dialysis, number (%)

Hemodialysis 455 (100%) | 115 (100%) 35 (6.0%)

Hemodiafiltration 0 (0%) 0 (0%) 546 (94.0%)
Dialysate profile data

Dialysate Sodium, mean (+SD) 137.8 (1.0) | 137.4 (1.6) 137.4 (1.4)
mg/dL

Dialysate Bicarbonate, mean (+SD) | 32.1 (1.1) 32.2(1.4) 32.0(1.0)
me/dL

Dialysate Potassium, mean (+SD) 2.9 (0.4) 2.2 (0.5) 2.1(0.3)
mg/dL

Dialysate Calcium, mean (£SD) 2.9 (0.2) 2.7(0.4) 3.0 (0.3)
me/dL

Dialysate Temperature, mean 36.5(0.4) 36.3 (0.6) 36.8 (0.5)
(+SD) Celsius

Laboratory data

Hemoglobin, mean (+SD) mg/dL 10.5 (1.3) 10.8 (1.4) 11.0 (1.4)
Calcium, mean (£SD) mg/dL 8.9 (0.7) 8.8 (0.9) 8.7 (0.7)
Sodium, mean (£SD) mg/dL 135.7 (4.4) | 1379 (3.1) 138.7 (2.7)
Albumin, mean (+SD) mg/dL 3.9 (0.5) 3.9 (0.3) 3.8 (0.3)

Table 7: Baseline characteristics of dialysis session by training and testing process

(Configuration B)




a3

Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,
Bhumirajanagarindra Kidney Institute Hospital; BCM-DW, dry weight from BCM; BW,

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range

Id PREBW POSTBW HB A ALB NA HEIGHT AGE SEX BMIPOST HT oM CvA GouT Clu DNA DHCO DK DCA oT HDF
0 399 378 108 8.4 39 134 138 55 1 1985 1 1 0 0 0 138 32 2 35 37 1
1 39 37 86 8.1 36 138 138 60 1 1943 1 1 0 0 0 138 32 2 35 37 1
2 384 376 123 85 42 136 138 &0 1 1874 1 1 0 0 0 138 32 2 35 37 1
3 39.9 387 103 78 38 138 138 60 1 w032 1 1 0 0 0 138 32 2 35 37 1
4 398 385 122 89 38 137 138 60 1 w1 1 1 0 0 0 138 32 2 35 37 1
5 39.7 39.2 122 85 41 134 138 61 1 2058 1 1 0 0 0 138 32 2 35 37 1
3 403 39.2 10 85 a 137 138 61 1 2058 1 1 0 0 0 138 32 2 35 37 1
7 388 387 113 86 38 137 138 61 1 w032 1 1 0 0 0 138 32 2 35 37 1
H 392 383 119 83 38 136 138 61 1 201 1 1 0 0 0 138 32 2 35 37 1
] 389 382 123 83 38 136 138 61 1 2006 1 1 0 0 0 138 32 2 35 37 1
10 396 39 2.4 81 38 137 138 62 1 2048 1 1 0 0 0 138 32 2 35 37 1
1 401 39.4 117 8 38 136 138 62 1 2069 1 1 0 0 0 138 32 2 35 37 1
12 405 395 117 83 38 136 138 62 1 w7 1 1 0 0 0 138 32 2 35 37 1
13 624 62.3 9.8 85 35 139 165 35 0 2288 1 0 1 0 0 138 32 3 3 37 1

Figure 9: A snippet of the laboratory, demographic, and dialysis data.
Abbreviations: Id, identification number of patient; PREBW, pre, systolic blood
pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HR, heart rate;

UFR, ultrafiltration rate

4.1.2 Baseline characteristics of time-series data

Descriptive statistics of time-series data from overall dialysis session in each
institute was shown in table 6. The values of each parameter were quite similar,
although BKIH group had a little higher mean of systolic blood pressure and
ultrafiltration rate. For easier visualization, the relationship between each feature of
time-series data was shown in Figure 10. Specifically, change of heart rate during
dialysis session was shown in the spaghetti plot of Figure 11. A part of data was

shown in snippet in Figure 12.

KCMH BKIH
(n = 581 sessions) (n = 570 sessions)
Max Min Mean (SD) Max Min Mean (SD)

SBP (mmHg) 238 52 145.00 (25.85) | 240 61 149.75 (23.04)
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DBP (mmHg) 154 22 68.65 (13.55) 162 33 69.75 (14.42)
MAP (mmHg) 159 aaq 94.43 (15.42) 169 a9 96.11 (14.88)
HR (bpm) 180 30 71.24 (13.17) 145 37 69.50 (11.89)
UFR (m/min) 1650 0 450.71 (313.07) | 3000 0 541.90 (270.18)

Table 8: Descriptive statistics of time-series data.

Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,

Bhumirajanagarindra Kidney Institute Hospital; maximum, Max; minimum, Min;

standard deviation, SD; SBP, systolic blood pressure; DBP, diastolic blood pressure;

MAP, mean arterial pressure; HR, heart rate; UFR, ultrafiltration rate

DBP

MAP

KCMH

150 0 500 1000 1500
R
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UFR
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Figure 10: A scatter plot showed the relationship between each feature of the time-
series data was displayed. KCMH (upper) and BKIH (lower)
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean

arterial pressure; HR, heart rate; UFR, ultrafiltration rate
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Figure 11: Spaghetti plot showed HR variation over time in each dialysis session.
patient | Dialysis Number of SBP DBP MaAP HR UFR
code | session | Time timestamp | (mmHg) | tmmHg) | (mmHg) | (bpm) | tml/min)
1 1 05.02 0 162 57 92 75 725
1 1 05.31 1 150 58 89 3 797
1 1 06.03 2 134 52 80 77 725
1 1 07.02 3 135 61 86 76 725
1 1 08.02 4 138 57 84 71 532
1 1 09.10 5 99 82 88 65 5
1 1 09.32 & 113 46 69 65 5
Figure 12: A snippet of the time-series data in one session was shown.

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean

arterial pressure; HR, heart rate; UFR, ultrafiltration rate

4.1.3 Distribution of output (BCM-DW)
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The target for model’s learning in this project is BCM-DW. The histogram of
BKIH showed normal distribution, while KCMH database showed a minute right-

skewed distribution.
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Figure 13: Histogram of the BCM-DW (kg) of each dialysis session. KCMH (left) and
BKIH (right).

Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH,
Bhumirajanagarindra Kidney Institute Hospital; BCM, Body composition monitor; BCM-

DW, Dry weight from Body composition monitor

4.2 Result from model development phase

4.2.1 Processing of time-series data
4.2.1.1 LSTM as regression model for DW prediction (LSTMreg)

In this approach, the LSTMreg was not able to effectively predict DW based
on the time-series data, as evidenced by the high MSE values of 151.3991 (SD 4.3234)
and 125.8074 (SD 2.3913) for configurations A and B, respectively. Additionally, poor
agreement was observed, as shown in figure 14, indicating that the model did not
accurately capture the patterns and trends in the data. Therefore, the LSTM model is

not a suitable regression model for DW prediction in this case.
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Figure 14: Training and validation graph loss (upper), Bland-Altman plot of prediction
from LSTM and BCM-DW (lower). Image showed result of LSTM regression on both

configuration A (left) and configuration B (right).

4.2.1.2 LSTM as classification model for grouping dialysis session (LSTMclass)

In the classification task, the LSTMclass was able to categorize dialysis
sessions into groups of 0, 1, and 2 based on different net UF values from small to
large, respectively. However, the accuracy of the classification was poor, with only
48.07% in configuration A and 61.45% in configuration B. The precision was 59.79%
and 46.25%, respectively, and the F1 score showed 46.96% and 52.75%, respectively.
Although the confusion matrix had a diagonal shape, it was not perfectly aligned.
The overall accuracy rate of 50% was also not sufficient to use this as an initial
model, even though a few subgroups were correctly classified. To determine the
potential of the model in separating these groups, unsupervised learning of the last
embedding layers was conducted. The Haversine plot in Figure 16 demonstrated that
the model had the capability to separate samples of each subgroup into distinct

zones, even without explicit supervision.
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Figure 15: Training and validation graph loss (upper). Confusion matrix of grouping of
dialysis session categorized by net UF. Image showed result of LSTM on both

configuration A (left) and configuration B (right)
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Figure 16: UMAP with Haversine plot showed unsupervised dimension reduction, with

the input data being the embedding layers from LSTM classification.

4.2.2 Processing of non-time-series data
4.2.2.1 multiple linear regression (ML)

In this approach, MSE in configuration A was 5.7497, meanwhile configuration
B showed 3.1051. In Bland-Altman plot between this model and BCM-DW showed
mean of different at -1.47 kg in configuration A and +0.27 kg in configuration B. While

limit of agreement was up to 5.2 ke.
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Figure 17: Bland-Altman plot of multiple linear regression model and BCM-DW.

configuration A (left) and configuration B (right).

4.2.2.2 Machine learning models (STACK)

The machine learning approach showed lower MSE in every base model, as

shown in Table 7. The Bland-Altman plot between this method and BCM-DW (figure

17) showed that the mean difference was -0.78 kg in configuration A and +0.02 kg in

configuration B. The stacked model was comprised of Lasso, ENet, KRR and LightGBM

models.

MSE

Configuration A Configuration B
Lasso model 1.6187 1.7609
ENet model 1.6187 1.7609
KRR model 2.3424 1.5338
XGBoost model 4.8185 3.0601
LightGBM model 2.8381 1.8436
Stacked model 1.6898 1.7867
Table 9: MSE of each ML model in both configuration
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Figure 18: Bland-Altman plot between STACK ML model and BCM-DW. Configuration
A (left) and configuration B (right).

4.2.2.3 Neural network model (gNN)

Approach by neural network for general data, the model showed an MSE of
5.7527 (SD 2.0695) in configuration A and 5.1071 (SD 4.0361) in configuration B. Bland-

Altman plots between this method and BCM-DW in both configurations are shown in

Figure 18.
Model Loss Model Loss
3500 - training loss 3500 - training loss
validation loss validation loss
3000 3000
2500 2500
«w 2000 2000
L
1500 1500
1000 1000
500 500
0 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Epoch Epoch

+1.96 SD: 4.1 +1.96 SD: 4.1

- (ML-DW)

‘:%;'{ 0.46

33 v"

Difference(BCM-DW) - (ML-DW)
°

Difference(BCM-DW)

-1.96 SD: -3.5

-1.96 SD: -3.2

a0 50 60 70 80 90 40 50 60 70 80 %
Mean

Figure 19: Bland-Altman plot between non-time-series NN model and BCM-DW.
Configuration A (left) and configuration B (right).

4.2.3 Combined result of time-series data and non-time-series data (gtNN)

In this approach, LSTM was used as a base model, and non-time-series data

embedding was combined before sending data through the last dense layer. The
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optimization was done for both types of data simultaneously. However, the model
showed a high MSE of 15.3955 (SD 11.3553) in configuration A and 7.8782 (SD 3.9838)
in configuration B. The results of the Bland-Altman plot in Figure 19 showed that the
mean difference was -1.24 kg and +0.49 kg in configuration A and configuration B,
respectively. The limit of agreement was up to 7.7 kg in configuration A and 5.6 kg in

configuration B, indicating a wide range of error.
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Figure 20: Bland-Altman plot between NN model of combined embedding layer from
both time-series data and non-time-series data and BCM-DW. Configuration A (left)

and configuration B (right).

Based on the results of all approaches, it appears that using time-series data
alone was not a good input for predicting BCM-DW. On the other hand, the model
for non-time-series data was able to predict BCM-DW with better accuracy. However,
when time-series data was combined with it, the performance decreased. The

comparison of the Bland-Altman plot between the different approaches showed
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slight differences, with the limit of agreement being wider for the time-series data

models.

The folded EDFC was also plotted to evaluate the results from the prediction
of each model (figure 20). In both configurations, the graph from the LSTMreg model
showed the lowest peak and the widest range of sway from the actual value. On the
other hand, the graph from the STACK model gave the nearest peak to the zero line
and was the steepest among the other graphs. Therefore, the STACK model was

chosen as the final model for this study.
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Figure 21: Folded Empirical Distribution Function Curves of each model. Configuration

A (upper) and Configuration B (lower).

4.3 Result from further analysis of final model

Based on the presented results, the final model for predicting dry weight (DW)
showed a mean difference of -0.78 kg and +0.02 kg when tested in configuration A
and configuration B, respectively. The absolute mean difference was 1.25 kg and 1.32
ke for configuration A and configuration B, respectively. The limits of agreement were
wider for configuration A (-3.7 to +2.2 kg) compared to configuration B (-3.5 kg to +3.5
kg). The subgroup above the limit contained 11 samples in configuration A and 16
samples in configuration B, while the subgroup below the limit contained 20 samples
in configuration A and 13 samples in configuration B. In summary, the number of
samples out of agreement was 31 out of 570 samples (5.44%) and 29 out of 581
samples (4.99%) for configurations A and B, respectively. It is worth noting that these
sessions that caused an outlier in prediction did not come from a single specific
patient but were spread across 15 patients in the KCMH database and 25 patients in
the BKIH database. These results suggest that while the final model may have some
degree of predictive accuracy, there is still room for improvement in terms of

reducing variability and increasing agreement between predicted and actual values.

This was done by dividing the samples into three subgroups based on the
range of agreement, as shown in Figure 21. Two sub-analyses were then performed

to determine the cause of poor performance in some samples.
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Figure 22: Divided dialysis group of final model based on limit of agreement.

Configuration A (left) and Configuration B (right).

The sub-analysis using SHAP values to determine the effect of each
parameter on the model's prediction was shown in Figure 22. This can be particularly
useful in cases where the model has a large number of features, as it can help to
reduce the computational resources required for training and inference by
eliminating unnecessary features. However, in this study, we aimed whether certain

features were driving the results into different subgroups.

The second thing that assist this sub-analysis was reviewing the descriptive
data of outliers to see whether interested feature with abnormal SHAP value did
have an abnormal distribution between the subgroups (Table 10 and Table 11). This,
combined with the study of SHAP values, can help identify at risk features that may
be contributing to the poor performance of the model. If such features were
identified, we would evaluate whether removing them could lead to fewer instances

of disagreement.
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Figure 23: SHAP value of each subgroup in each configuration. Subgroup above limit
(upper), Subgroup within limit (middle), Subgroup below limit (lower). Configuration A
(left) and Configuration B (right)

above LOA Within LOA Below LOA

Mean Max Min Mean Max Min Mean Max Min
PREBW 75.3 100 59.5 61 106.3 357 65.4 93.5 40.8
POSTBW 73.5 97.1 59.3 58.8 102.7 33.1 62.9 91.9 38.3
NUF 1.7 29 0.2 22 4.2 0 2.5 39 1.4
UFRH 59 11.3 0.8 9.7 24.9 0 10.7 16.7 4.1
HB 9.9 12.3 8.4 10.7 16.7 6.5 10.8 13.3 8.9
CA 8.8 9.5 7.7 8.8 14.2 5.4 9.1 10.9 7.8
ALB 3.6 4.2 1.5 3.9 4.9 1.5 3.9 a7 32
NA 136.7 141 129 136.6 146 114 135 143 120
HEIGHT 168.4 176 156 160.6 183 141 162 176 148
AGE 67.2 86 37 67.8 89 31 62.7 7 a6
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SEX 0.1 1 0 0.5 1 0 0.5 1 0
BMIPOST 26.4 34 223 22.6 34 15 219 32.6 15.7
HT 1 1 1 0.9 1 0 0.7 1 0
DM 0.3 1 0 0.4 1 0 0.5 1 0
CVA 0 0 0 0 1 0 0 0 0
GOUT 0 1 0 0 1 0 0.1 1 0
Clu 0 0 0 0 1 0 0 0 0
DNA 138 138 138 137.6 140 130 138.1 140 138
DHCO 32 32 32 32 38 26 32 32 32
DK 2.8 3 2 25 4 2 2.7 3 2
DCA 2.8 35 2 2.7 3.5 2 2.8 3 2.5
DT 36.3 37.2 359 36.4 37.8 34.3 36.5 37.3 35
HDF 0 0 0 0 0 0 0 0 0

Table 10: Review of descriptive data between subgroups (configuration A)

Abbreviations: LOA, limit of agreement; PREBW, pre-dialytic body weight; POSTBW,

post-dialytic body weight; NUF, net ultrafiltration volume; UFRH, ultrafiltration rate

per hour; HB, hemoglobin; CA, calcium; ALB, albumin; NA, sodium; HT, hypertension;

DM, diabetes; CVA, cerebrovascular accident; Clu, chronic lung disease; DNA,

dialysate sodium; DHCO, dialysate bicarbonate; DK, dialysate potassium; DCA,

dialysate calcium; DT, dialysate temperature; HDF, hemodiafiltration

Above LOA Within LOA Below LOA

mean max min mean max Min Mean Max min
PREBW 72 96.7 424 56.4 91.5 38.4 57.1 75.5 46.9
POSTBW 69.4 93.3 40.4 54.3 89.7 36.7 55.3 73.8 457
NUF 2.5 3.6 0.6 2 4.5 0 1.8 3.9 -0.6
UFRH 9.7 13.6 1.6 9.7 24.4 0 8.3 21.3 -3.1
HB 10.9 13.9 7.8 10.9 15.6 6.2 10.7 12.7 8.7
CA 8.7 9.4 7.8 8.7 11.8 7 8.7 10.1 7
ALB 37 4.2 29 3.8 4.8 2.5 35 a5 2.3
NA 138.4 144 132 138.7 145 129 136 140 133
HEIGHT 164.5 176 155 158.6 183 138 166.7 176 141
AGE 60.3 67 50 65.1 83 39 58 76 52
SEX 0.5 1 0 0.6 1 0 0.1 1 0
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BMIPOST 25.7 35.1 16.5 215 33.7 15.2 19.9 24.3 16.7
HT 0.8 1 0 0.9 1 0 0.9 1 0
DM 0 1 0 0.3 1 0 0.3 1 0
CVA 0 1 0 0.1 1 0 0 0 0
GOUT 0 1 0 0 1 0 0 1 0
Clu 0 1 0 0 1 0 0 0 0
DNA 137.6 138 136 137.3 140 134 136.6 138 134
DHCO 32 32 32 31.9 34 28 323 34 32
DK 2 2 2 2.1 3 2 22 3 2
DCA 3.1 3.5 3 29 3.5 2.5 3 35 25
DT 36.9 37 36 36.7 37 35 36.9 37 36.5
HDF 1 1 1 0.9 1 0 1 1 1

Table 11: Review of descriptive data between subgroups (configuration B)
Abbreviations: LOA, limit of agreement; PREBW, pre-dialytic body weight; POSTBW,
post-dialytic body weight; NUF, net ultrafiltration volume; UFRH, ultrafiltration rate
per hour; HB, hemoglobin; CA, calcium; ALB, albumin; NA, sodium; HT, hypertension;
DM, diabetes; CVA, cerebrovascular accident; Clu, chronic lung disease; DNA,
dialysate sodium; DHCO, dialysate bicarbonate; DK, dialysate potassium; DCA,

dialysate calcium; DT, dialysate temperature; HDF, hemodiafiltration

In configuration A, SHAP values were calculated for each subgroup. However,
the top four SHAP values were found to be the same across all subgroups, namely
"Pre-dialytic BW," "Post-dialytic BW," "BMI," and "Height," respectively. This suggests
that searching for a culprit feature that drives the results to be outliers may not be
successful since there was no striking feature between the subgroups. Although there
was a difference in the 5th rank of SHAP value between the subgroups, the effect of
this rank was quite small. The subgroup within the limit had "HDF status" as their 5th
rank, while the subgroup above the limit had "serum sodium," and the subgroup
below the limit had "serum albumin," respectively. A review of the demographic data
showed that these outliers did not come from the same patient. Further description

in Table 8 showed that the average values of “serum sodium” between each
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subgroup were not much different, while “serum albumin” varied at a greater
amount. Therefore, the removal of this feature was expected to show more effect.
Unfortunately, the result of the sensitivity analysis (figure 23) did not show much
difference in the number of outliers (27 out of 570 samples, number out of
agreement 4.74%). In conclusion, the results that cause outliers in configuration A
may not be due to any single parameter, but rather due to the variation of raw data

itself.

In configuration B, the top 4 SHAP values for each subgroup were the same,
which were "Height," "BMI," "Pre-dialytic BW," and "Post-dialytic BW," but the order was
different for each subgroup. The subgroup above the limit had "Height" as the first
rank of SHAP value, while it was the second and third rank in the subgroup within the
limit and subgroup below the limit, respectively. Removing this parameter was
expected to decrease the number of outliers that come from the subgroup above
the limit. However, the sensitivity analysis (Figure 24) showed that while the
subgroup above the limit contained fewer outliers, decreasing from 16 to 12
samples, the subgroup below the limit contained more outliers, increasing from 13 to
18 samples. In summary, removing a single parameter could not simply decrease an

outlier as it also affects other subgroups.

We were also concerned about the parameter "Post-dialytic BW," as it may be
dependent on the output value, so we conducted a sub-analysis to see if the model
relied solely on this parameter or not. The sub-analysis (Figure 25) showed that the
mean difference changed slightly from +0.02 kg to -0.03 kg. The limit of agreement
also increased slightly from a lower limit of -3.5 kg to -3.7 kg and a lower limit of +3.5

kg to +3.7 kg.
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Figure 24: Bland-Altman plot of sub-analysis (exclude “serum albumin”) between

ML-DW from STACK model and BCM-DW in Configuration A
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Figure 25: Bland-Altman plot of sub-analysis (exclude “Height”) between ML-DW
from STACK model and BCM-DW in Configuration B
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Time latency for running this final model was 160 milliseconds. Size of the code was

420 KB.
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CHATER 5
DISCUSSION

The present study aimed to predict BCM-DW using machine learning. The final
model incorporated input variables mainly from demographic data, laboratory data,
and dialysis data. The model of interest was a stacking of machine learning base
models. The resulting model, ML-DW, was compared to BCM-DW using a test of
agreement. Further sub-analysis was conducted to mitigate the effect of outliers. The
robustness of the model was confirmed by testing it in a different database from

another institute.

5.1 Descriptive analysis

The baseline characteristics of the dialysis sessions between the institutes
were shown as described. Although this study focused on each individual dialysis
session and the total number of dialysis sessions between the institutes was similar,
the number of patients in the KCMH database was quite different from that in the
BKIH database. This difference in number may imply that there were many dialysis
sessions that contained demographic data from the same patients. This issue could
have affected the model's development process. Therefore, we used the group
shuffle split function to ensure that the sampling from the training and validation

processes would not be contaminated by each other.

A concern about post-dialytic body weight in the KCMH database was also
noted, as it was found to be quite close to BCM-DW. Therefore, any model that
weighted the post-dialytic body weight parameter too heavily would make it easier
for the model to roughly predict BCM-DW on KCMH data. However, this issue could
be addressed by testing a model in both configuration A and B. Furthermore we aim
for conducting a sub-analysis with the exclusion of the post-dialytic body weight

parameter. Furthermore, this study aimed to test agreement, meaning that any small
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variation between post-dialytic body weight and BCM-DW in each session would be
taken into account during the assessment. Since post-dialytic body weight and BCM-
DW have different standard deviations, a model that simply rounds the post-dialysis

body weight to BCM-DW would not achieve good agreement.

Another important consideration in this study is the variation in time-series
data. As shown in the scatter plot, there was no relationship between blood pressure
and heart rate at all. Similarly, the trend of change in heart rate upon change in
spaghetti plot was not observed, as shown in Figure 11. This is a concerning sign that
these parameters may not provide much insight into the problem at hand, as there

could be various factors that explain the lack of relationship.

Firstly, it should be noted that the vital sign and ultrafiltration rate trends in
this study were adjusted preemptively. One of the institutes was a university hospital
and the other a private hospital, and both had physicians rounding on patients in
every dialysis session, even on holidays. They tended to make preemptive
adjustments to prescriptions during dialysis in response to changes in intradialytic
parameters aiming for minimize the adverse events, such as lowering the
ultrafiltration rate when there was an alarm of blood volume monitoring to avoid
consequences of intradialytic hypotension. Preemptive adjustments to prescriptions
during dialysis likely mitigated changes in vital signs and reduced the influence of
positive signals from vital signs and ultrafiltration rate on the determination of proper

weight.

Secondly, despite preemptive efforts to minimize adverse events, they still
occurred during dialysis sessions, such as hoarseness, cramping, and lightheadedness,
which led to a reduction in the ultrafiltration rate. Thus, interruptions or changes in
the ultrafiltration rate during dialysis could be a clue toward under dry weight. It is
important to note that changes in ultrafiltration rate can also occur due to reasons
other than adverse events. So, it needs to be clarify whether change in ultrafiltration

were planned or unplanned and related to fluid status or not. However, records of
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these events were not available and were not included in this study, thus limiting
the ability to fully understand the impact of adverse events and ultrafiltration rate

towards proper weight.

Thirdly, it should be noted that heart rate variability in this study might be
compromised by beta blockers or sinus node dysfunction, which commonly found in
senile adults. This factor would limit the potential usefulness of the designed system

as it is based on tracking the HR change.

Finally, it should be mentioned that most patients in the university hospital
used the hemodiafiltration technique, which is known to reduce the incidence of
intradialytic hypotension. This could have weakened the effect of vital sign changes
and reduced the accuracy of classification, even in patients who had high net UF.
Although many approaches and models were tried in this study to figure out the
usefulness of this time-series data, these factors should be taken into consideration

when interpreting the results.

5.2 Model’s development phase

Despite various attempts using different approaches, such as LSTMreg and
LSTMclass, the LSTM modelling consistently produced high mean squared error
(MSE) and unsatisfactory agreement test results. This study provided two important

things more than other previous trials.

Firstly, the study suggested that time-series data alone was not sufficient to
predict the real value of BCM-DW. This is understandable considering that patients
with different body weights could have similar vital sign patterns during a dialysis
session. However, the dry weight of a patient should depend on parameters such as
weight, height, or sex, and not just vital signs. We also felt that if the model could
predict dry weight accurately without the need of other parameters, its reliability

would be questionable.
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Secondly, the study found that time-series data had some potential in
classifying dialysis sessions based on the gap between pre and post weight. However,
this result was limited to certain subpopulations. For example, in configuration A,
classifying the subgroup with a high gap was the easiest task. To explore why this was
the case, we conducted unsupervised learning of the embedding layer of the LSTM
classification model (as shown in Figure 16). We discovered that the embedding
layers of this model had the potential to separate these subgroups, as evidenced by
the distinct areas of color in the UMAP plot. However, the model failed to do so,
possibly due to the lack of some other parameters. Since adverse events were
related to the change of vital signs and were not accounted for in the model's
learning, further studies are needed to ensure their inclusion in order to maximize

the potential of the LSTM model for classification.

Even combining time-series data with non-time-series data, it failed to yield
positive outcomes. These findings emphasize that the vital signs parameter alone
may not be the sole contributor to body weight. As previously mentioned, they may
be potential for predicting gap of weight. However, there were data defects, and

many other factors were also at play.

While the study was unable to find a relationship between time-series
variables and DW, the findings regarding non-time-series data or general data suggest
that it may be worthwhile to further explore this approach. The study was able to
develop several models, including gNN, LR, and STACK. Among these models, the
STACK model was ultimately selected as it showed the best performance with a
small bias from BCM-DW and the narrowest limit of agreement, as also shown in the

Folded EDFC.

It should be noted that a more complex neural network model does not
always result in better performance. The performance of a model depends on the

task at hand, which may be easily captured by a straightforward linear regression or
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machine learning model. Additionally, the number of samples required is typically

much higher for neural network models.

Although this machine learning model showed generalizability across
configuration A and B, it is important to note that there were differences in
performance between the two configurations in other models. Configuration B, a
model that trained and validated on dialysis sessions in an institute with more
dialysis patients, led to easier prediction of dialysis sessions with fewer patients.
Therefore, in addition to the number of dialysis samples that affect the model, the
number of patients also results in better prediction performance. Thus, while STACK
was chosen as the final model for this study, the results may change if applied these

models to other datasets with more samples and patients.

5.3 Model’s evaluation phase

5.3.1 Graphic analysis

In this section, we focus on assessing each parameter of the Bland-Altman
plot of our final model. First and foremost, the mean difference or systemic bias is
quite small. This parameter indicates the average difference between the new tool's
prediction and the gold standard. From a statistical standpoint, some studies suggest
that this number should not exceed 25% of the reference value, as it can result in a
number out of limit higher than 5%, However, in clinical practice, this number must
be interpreted with caution, as the degree of error in each measurement differs

between clinical problems.

As an RCT?® found that gradual probing of DW can decrease both blood
pressure and left ventricular mass index reduction, which are strongly linked to
mortality, it is important to have a DW assessment tool with an average difference in
mean lower than 1.0 kg. Furthermore, when compared to C-DW performance, the

largest trial that compared C-DW and BCM-DW, without testing for agreement, found
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that the average euvolemic status by C-DW can be overweighted by BCM-DW by an
average gap of 2.0 kg". Our study showed that the final model can accurately
predict DW with a small bias from BCM-DW, -0.78 ke in configuration A and +0.02 kg
in configuration B. Therefore, the use of ML-DW can provide better prediction

performance than C-DW, potentially delivering better clinical outcomes for patients.

The limit of agreement tells us how far the predicted result could deviate
from the actual value, and it is usually represented by the upper and lower borders
of 1.96 standard deviations for better clinical use. A narrower range of agreement
indicates greater confidence in the tool. However, one must keep in mind that this
parameter can only be appreciated if the standard tool has consistent results. If the
reference tool is good but has volatile results, this will always show a wide range of

agreement, even when compared to a good, highly accurate tool.

Since our model was assessed on BCM-DW, which has less variability than C-
DW, we can use the result with confidence that it is meaningful. The model showed
that the limits of agreement were quite wide, ranging from -3.7 to +2.2 kg in
configuration A and -3.5 to +3.5 kg in configuration B. However, compared to studies
that use C-DW, which had limits of agreement ranging from 3.79 kg to 7.20 kg, our
model's limits of agreement were narrower. Therefore, although this ML model
cannot completely replace BCM, it has the potential to be a useful tool that

provides a narrower limit of agreement than C-DW.

Number out of agreement is another parameter that indicates a tool's
consistency compared to the reference tool. It shows the percentage of samples that
fall outside the limit of agreement. A lower percentage indicates a higher probability
that the new tool can predict results near the mean difference. This is similar to the
area under the curve in the folded EDFC, which expects the majority of samples to
fall within the prediction zone, with a minority on each tail. Although there is no
42 41

consensus on the cut point, below 5% is an accepted value in previous studies

on DW prediction and is also mentioned in some statistics textbooks™. In this study,
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our final model's results showed borderline numbers of 5.4% (31/570) and 4.9%
(29/581) for configurations A and B, respectively. In other words, the predictions from
this model had a chance of falling within the acceptable limit as high as 94.6% and
95.1%, which is moderate. This again showed better performance of the model on
configuration B, which may be explained by the generalizability of the input data, as

already mentioned.

After performing sensitivity analysis and removing the most influential feature
towards outliers, in configuration A, a single parameter could not directly result in an
outlier. Instead, we suspected that the raw data itself had some variance. Physician
decision-making was another factor that influenced the prescription of parameters for
each dialysis session but was not included in this study. For instance, if a healthy
patient underwent a dialysis process and the physician saw that this patient was
doing well, they might try to adjust the net ultrafiltration volume for that session as a
trial. Patients might also request their physician to remove more fluid, so they could
eat more during the following interdialytic days. Therefore, the parameters that we
collected in this study may be affected by the decisions of patients and doctors on a
case-by-case basis, which could impact the hidden associations we were seeking to

identify.

In configuration B, first sub-analysis showed that parameter removal did
decreased number out of agreement in one subgroup but increase in another
subgroup instead. So, this model might be at its optimum state and could not be
tuning more by this technique. Interestingly, in the other sub-analysis, the removal of
Post-dialytic BW and Post-BMI did not result in a significant worsening of the
prediction. This could imply that the dependency between this parameter and BCM-
DW was not as strong as initially suspected or that the model did a good job of
capturing the association based on various parameters, not just a single one. This is a
positive result as it suggests that the model is robust and can generalize well to new

data.
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In summary from graph analysis alone our model was good for low mean
difference, which may detect the difference in weight that led to clinical benefit. It
showed low number out of limit, but still had wide limit of agreement. Thus, it

cannot be a replacement for BCM yet.

5.3.2 Other potentials

To evaluate the model beyond the graph, it is important to consider factors
such as time consumption, cost consumption, operator expertise, and
generalizability. A new tool may have a lower mean of difference compared to the
reference tool, but it may also be more time-consuming or expensive to use,
requiring a highly skilled operator. In addition, a tool with a lower mean of difference
may not be generalizable to different populations or settings, making it less useful in
clinical practice. Therefore, the performance of a new tool must be evaluated not
only in terms of its accuracy but also in terms of its practicality and usability in real-

world scenarios.

Besides the time required for inputting all the necessary data for the model,
the time latency for obtaining the results from the model is around 160 milliseconds,
which is less than one minute. This is significantly faster compared to the BCM
measurement, which requires the creation of a chip card and takes around 5 minutes
from attaching the electrodes to the patient to obtaining the results. Moreover, the
patient does not need to be physically present during the test, making it a more
convenient option for both patients and physicians. Thus, this tool has the potential

to save both time and resources in clinical settings.

Cost is a major limitation of the BCM, especially in developing countries. We
have already discussed the cost-effectiveness analysis of the BCM and its
impracticality for use in all of our patients, as costs continue to increase. However, a

machine learning model can provide a prediction at much lower cost, with a
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development process cost of less than five thousand baht, making it a more practical

option for our country.

The machine learning model is operator-independent, as it only requires the
input of the necessary parameters. In contrast, with the BCM measurement, there are
concerns regarding tissue reactance and resistance, which require the assessor to
have knowledge of how to maximize electrode conduction, adjust patient position
with large body contour to avoid short circuit, and deal with patients with limitations,
such as amputees or patients using electrodes not included in the validation study
for the BCM. With the ML model, other healthcare workers with less training can use
it. Furthermore, if the ML model were trained with a wider range of population using
the reference tool, it could be used as a DW assessment tool for a greater number of

patients.

Generalizability is a crucial factor when evaluating the effectiveness of a new
tool. This cloud-based machine learning model is accessible remotely, eliminating
the need for physical equipment or special storage requirements. It is also
lishtweight, with a size of less than 1MB, making it compatible with mobile devices.
This level of accessibility increases its usefulness in a wider range of settings,

potentially making it easier for the general population to use the tool.

In addition, despite the lower number of BCM measurements with dialysis
sessions per patient in BKIH institute compared to KCMH, the model performed
similarly in both Configuration A and B. Therefore, it is possible that the model could
be applied to areas with a lower number of BCM measurements per patient. With

proper adjustment, this tool could be useful in a wide range of settings.

Furthermore, the ML model has several benefits, including non-invasiveness
and high repeatability. The wide limit of agreement may be corrected by repeating
the measurement, which is not costly. At this point, we believe that the benefits of

the ML model outweigh those of the BCM for various reasons. Although the limit of
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agreement may be wide, the mean of agreement is acceptable. While the accuracy
may be lower, the model has the potential to be a good replacement if studied with
a larger database. Additionally, compared to conventional assessment without any
tool, the ML-DW is a complement that can assist physicians in adjusting a patient's
DW with more confidence. Its high repeatability could serve as one of the screening

tools.

This study has a number of strengths: it was the first machine learning model
that aimed to predict BCM-DW. Compared to other models, this one tried to explore
the utilization of time-series data in the input variables. It also demonstrated external

validation across different institutions. Nevertheless, some limitations remain.

5.4 Limitations and suggestion

Firstly, the retrospective nature of the study made it challenging to
demonstrate the effects of all clinical variables on intradialytic changes. Additionally,
the lack of data on interventions and consequences during dialysis limited the
accuracy of the time-series data in predicting DW. Further studies should focus on

collecting more comprehensive data on these factors in a prospective manner.

Another limitation is that the neural network model's performance was poor
due to the small number of dialysis sessions in this study. A database from

multicenter studies in other countries may be needed to improve this model.

Lastly, it's important to note that the model used in this study may not have
included all the relevant parameters that could affect blood pressure and heart rate
variation. For example, cardiac function, electrocardiogram, and use of beta-blocker
are not incorporated into the model. Therefore, it may be premature to conclude
that time-series data is not useful for developing a model for DW prediction.

Moreover, collaboration with experts from other subspecialties is necessary to
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incorporate a more comprehensive set of features into the model and to determine

the feasibility of developing an accurate DW prediction model using time-series data.

5.5 Conclusion
A model from machine learning could assist physicians in DW prediction with
a comparable correlation to BCM-DW. However, many factors were needed for its

fine-tuning before being implemented in real clinical practice.

This study served as a proof-of-concept that machine learning can be a useful
tool for DW prediction but not yet a replacement tool for BCM. With its potential, it
may be served as a good screening tool that assist clinical adjustment for DW. This

lays the foundation for the development of clinical tests in the future.
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