

Y-X-Y Encoding for Identifying Types of Sentence Similarity

Miss Thanaporn Jinnovart

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computer Science and

Information Technology

Department of Mathematics and Computer Science

FACULTY OF SCIENCE

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

การเขา้รหสัวายเอก็ซ์วายส าหรับการระบุชนิดความคลา้ยของประโยค

น.ส.ธนภรณ์ จิณโณวาท

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยสีารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2565

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title Y-X-Y Encoding for Identifying Types of

Sentence Similarity

By Miss Thanaporn Jinnovart

Field of Study Computer Science and Information Technology

Thesis Advisor Professor CHIDCHANOK LURSINSAP, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn

University in Partial Fulfillment of the Requirement for the Master of

Science

Dean of the FACULTY OF

SCIENCE

 (Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

Chairman

 (Associate Professor SUPHAKANT

PHIMOLTARES, Ph.D.)

Thesis Advisor

 (Professor CHIDCHANOK LURSINSAP,

Ph.D.)

External Examiner

 (Dr. Prem Junsawang, Ph.D.)

 iii

ABST RACT (THAI) ธนภรณ์ จิณโณวาท : การเขา้รหสัวายเอก็ซ์วายส าหรับการระบุชนิดความคลา้ยของประโยค. (Y-X-Y

Encoding for Identifying Types of Sentence Similarity) อ.ท่ีปรึกษาหลกั : ศ. ดร.ชิด
ชนก เหลือสินทรัพย ์

การหาความคลา้ยคลึงระหว่างสองประโยคใดๆประกอบดว้ยสองขั้นตอนหลกัคือ การเขา้รหัสให้กบัประโยคทั้ง
สองประโยคเพ่ือสร้างเวกเตอร์ของคุณลกัษณะท่ีมีความยาวเท่ากัน และการวดัความคลา้ยคลึงระหว่างสองประโยคตามล าดับ

คุณภาพของวิธีการเขา้รหัสสามารถก าหนดระดับของความส าเร็จของโมเดลในการวดัความคลา้ยคลึงระหว่างสองประโยคได้
ทั้งน้ีก็เพราะการสร้างตวัแทนท่ีดีขึ้นอยูก่บัความละเอียดในการนิยามการแยกความคลา้ยคลึง ย่ิงการนิยามความคลา้ยคลึงชดัเจน
มากเท่าใด การสร้างตวัแทนก็จะย่ิงดีขึ้นเท่านั้น ซ่ึงจะช่วยในการแยกประเภทของความคลา้ยคลึง โดยทัว่ไปแลว้ ทุกวิธีท่ีมีอยู่
ส าหรับการวดัความคลา้ยคลึงถูกออกแบบให้ขอ้มูลในรูปแบบเวกเตอร์อยู่ในพ้ืนท่ีคุณลกัษณะท่ีมีมิติตายตวั เพราะฉะนั้นการ
แปลงชุดประโยคท่ีมีความยาวต่างกนัให้กลายเป็นชุดเวกเตอร์ของคุณลกัษณะท่ีอยูใ่นมิติเดียวกนัเป็นเร่ืองท่ีส าคญัมาก ชุดขอ้มูลท่ี
ใชใ้นวิทยานิพนธ์น้ีจดัเตรียมให้ทั้งค่าความเก่ียวขอ้งเป็นตวัเลขและประเภทของความเก่ียวขอ้ง ประเภทของความเก่ียวขอ้งมีสาม
ประเภท กล่าวคือ เป็นกลาง เก่ียวขอ้ง และ ขดัแยง้ การแยกประเภทความเก่ียวขอ้งบ่งบอกชนิดของความคลา้ยคลึง นอกจากน้ี
โมเดลเขา้รหัสท่ีมีประสิทธิภาพสูงมกัเรียนรู้ก่อนหน้าโดยใชพ้ารามิเตอร์จ านวนเป็นลา้น หรือแมก้ระทั้งพนัลา้น น่ีคืออุปสรรค
หน่ึงในการเทรนโมเดลเขา้รหสัดว้ยตวัเองเน่ืองจากจ าเป็นตอ้งใชท้รัพยากรท่ีมีความสามารถทางดา้นการค านวณมหาศาล

ในวิทยานิพนธ์น้ี เราน าเสนอวิธีการแปลงรหัสค าด้วยตนเองเพ่ือจ าแนกประเภทความเก่ียวข้องออกเป็นสาม
ประเภท ความเก่ียวขอ้งของแต่ละค าในประโยคถูกจบัไดอ้ยา่งพร้อมกนัโดยโครงสร้างการเขา้รหสัดว้ยตนเองน้ี นอกจากน้ียงัต่าง
จากโมเดลการเขา้รหัสอ่ืนๆท่ีขึ้นอยู่กบัการเรียนรู้แบบตามล าดบั เพราะโมเดลท่ีน าเสนอน้ีไม่ถูกรบกวนจากการสูญเสียความทรง
จ าท่ีเกิดจากความยาวของประโยค โครงสร้างของงานมีการคดักรองคู่ประโยคท่ีขดัแยง้ออกจากชุดขอ้มูลในขั้นตอนเบ้ืองตน้และ
ใชโ้มเดลเขา้รหัสจ านวนหน่ึงในขั้นตอนหลงั ซ่ึงตวัเขา้รหสัแต่ละตวัจะอยู่ในรูปแบบ y-x-y โดยท่ี y คือความยาวท่ีไดจ้ากการ
ต่อสองประโยคเขา้ดว้ยกนั และ x คือความยาวท่ีเหมาะสมท่ีสุดส าหรับขอ้มูลท่ีมีความยาว y นอกจากน้ีโมเดลคดัแยกประเภท
จ านวนหน่ึงยงัถูกน ามาใชแ้ยกขอ้มูลระหว่าง กลุ่มเป็นกลาง กบั กลุ่มเก่ียวขอ้ง โดยให้ค่าออกมาเป็นความน่าจะเป็น ดว้ยความ
แม่นย ากว่า 90% ส าหรับการคดัแยกแต่ละประเภททั้งสามประเภท วิธีท่ีน าเสนอได้พิสูจน์แล้วว่าเราสามารถท าการแยก
ประเภทความเก่ียวขอ้งไดอ้ยา่งมีประสิทธิภาพโดยไม่ตอ้งใชชุ้ดขอ้มูลท่ีมีขนาดใหญ่และทรัพยากรท่ีมีความสามารถทางดา้นการ
ค านวณอยา่งมหาศาล

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ลายมือช่ือนิสิต ..

ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษาหลกั

 iv

ABST RACT (ENGLISH) # # 6278010123 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

KEYWORD: Sentence Similarity

 Thanaporn Jinnovart : Y-X-Y Encoding for Identifying Types of Sentence Similarity.

Advisor: Prof. CHIDCHANOK LURSINSAP, Ph.D.

The task of finding semantic similarity of any two arbitrary sentences consists of two

main steps, which are encoding sentences to produce feature vectors of equal length and measuring

the similarity, respectively. The quality of an encoding technique can determine the degree of

success a model can achieve in measuring the similarity. This is because a good representation is

subjected to how finely established the spectrum of similarities is. The clearer the definition of

similarity is, the better the representations can be constructed. This, in turn, helps distinguish

between types of sentences. Generally, all existing methods for measuring similarity were designed

for vectorized data in a feature space of fixed dimensions. Thus, transforming a set of various-

length sentences into a set of feature vectors in the same dimension is very essential. The dataset

used in this thesis provides both relatedness score and textual entailment. Textual entailment

distinguishes sentence pair relations among three classes: namely, neutral, entailment and

contradiction. The task indicates the types of entailments, which is interpreted as relatedness in this

thesis. Additionally, powerful pretrained encoding models are usually of millions of parameters, or

even billions. This is one obstacle in training one’s own embedding model due to the need of

resources with heavy computing capabilities.

In this thesis, we propose a self-encoding scheme to classify among the three classes of

textual entailment. The relevancy of all words in a sentence is simultaneously captured by this self-

encoding structure. Unlike the other encoding methods based on sequential learning, no interference

of memory loss due to the length of sentence occurs in this approach. The framework involves

filtering contradiction pairs at an early stage and employing a set of y-x-y encoders, where y is the

length after two sentences are concatenated and x is the optimal encoding size for samples of length

y, and classifiers to output neutral and entailment probabilities. With over 90% accuracy for all

classes, our method has proven that this task is possible to be carried out effectively without the need

of large-scale datasets and heavy computational resources.

Field of Study: Computer Science and

Information Technology

Student's Signature

Academic Year: 2022 Advisor's Signature

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Chidchanok

Lursinsap for his continuous support throughout the journey of this thesis. The

completion of this project is made possible owing to his patience and devotion on

cultivating the best out of his student and raising her standard to the next level. His

expert guidance extends over his academic experiences to his philosophy in other

aspects of life. It has been an honour to work under his supervision.

Besides my advisor, I would like to extend my appreciation to my thesis

examination committees, Professor Suphakant Phimoltares and Professor Prem

Junsawang, for investing their valuable time in considering this prolonged work with

great care and kind comments.

Finally, I would like to thank my family for their never-ending encouragement.

They had been through all ups and downs with me as if they were walking the path

themselves. This accomplishment is undoubtedly also theirs. I am sincerely blessed by

their genuine positive energy. I would also like to add my friends to my gratitude list,

for their moral support.

Thanaporn Jinnovart

TABLE OF CONTENTS

 Page

.. iii

ABSTRACT (THAI) ... iii

... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

Chapter 1 .. 1

1.1 Aims and Objectives .. 5

1.2 Scope of Work ... 5

1.3 Contributions ... 5

Chapter 2 .. 7

2.1 Word Similarity Methods .. 7

2.2 Sentence Similarity Methods ... 9

2.3 Word Embeddings ... 12

Chapter 3 .. 19

3.1 Input Sentences .. 20

3.2 Pre-processing .. 21

3.3 Filtering Contradiction Class ... 22

3.4 Encoding Procedure ... 23

3.5 Classification ... 26

Chapter 4 .. 28

4.1 Results .. 28

4.3 Benchmarks and Other Models ... 31

4.4 Our System .. 33

4.5 Dataset Controversy ... 34

 vii

4.51 Synonymity ... 36

4.52 Hypernyms and Hyponyms ... 37

4.53 Indefinite Pronouns ... 38

4.54 Active and Passive Voices .. 38

4.55 False Logic .. 39

4.56 Rearranging words .. 39

4.57 Knowledge Assumption .. 39

4.6 Semantic Relatedness vs. Textual Entailment ... 40

Chapter 5 .. 43

Chapter 6 .. 50

REFERENCES .. 51

VITA .. 55

Chapter 1

INTRODUCTION

Communication between humans and machines has been in the trend for decades.

That is because we have yet to find convenient ways to send and receive requests such that

average users without knowledge in fields of Computer Science and Artificial Intelligence

can interact, control, and operate a machine in order to complete a task. While there is a

plenty of room for other tasks in artificial intelligence and machine learning to be explored

and developed, it is undeniably important for machines to understand what they are needed to

accomplish given human commands. Hence, natural language processing (NLP) tasks can be

seen as a frontline, or a gateway, to accessing numerous possibilities a machine is capable of

doing.

Although the history of NLP has been introduced on the advent of machine

translation in the seventeenth century, there remains several challenges that are still

unresolved. These challenges mostly owe their existence to the properties of language.

Generally speaking, a language inherits ambiguity owing to demographic and cultural

influences, and specific events. The use of language evolves over time. Well-constructed

phrases and sentences are usually loosely considered in conversations; however, the context is

not lost because a common background knowledge is shared among the people. This reflects

how ill-structured groups of words can still make perfect sense among groups of people. Even

well-structured phrases and sentences have imprecise rules. Therefore, it is important for an

NLP system to understand some world knowledge. To elaborate, “this” may implicitly be

established by a group of people in the same conversation as referring to the same object,

while a newcomer without any knowledge on the subject is likely to have very few, to none,

knowledge on which object is being referred. Suppose this newcomer is an NLP system,

“this” may never have been learnt to refer to the true object in the same conversation at all.

This is an example of unmodeled variables where one is assumed to have known the context

of an unmodeled representation. Ambiguity may happen at different levels. At word senses

level, “bank” may refer to a financial institution or a land alongside a river. At part-of-speech

level, “look” may be a noun or a verb. At syntactic structure level, “A boy can see a man with

 2

a telescope” may refer to “a boy with a telescope” or “a man with a telescope”. It is not only

words and groups of words that accumulates multiple level challenges, but also acronyms that

a specific group of people has established and can only understand. For example, Figure 1.1

shows a supposed sentence which contains intentional misspelled words and acronyms. In

order to interpret the sentence, a system is required to contain some knowledge on the

established acronyms, specific spellings, and world knowledge. The last is particularly for

interpreting “Facebook” since this is a proper noun.

Even if a system is capable of supporting one language fully, it is not as easy to

transfer its knowledge and capability to another language and hope that things will work

exactly as well. A language exhibits multiple variations and expressivity. That is because each

and every individual has one’s own opinion and character. Such hindering factors occur in

both popular languages, such as English and some other European languages, and thousands

of moderate-to-poor-resourced languages which scales over 6,000 languages. According to

Zipf’s law, Figure 1.2a and 1.2b, the frequency of different words in a large text corpus

illustrates an inverse proportion when drawn against rank. That is there are numerous

infrequent, and probably important, words regardless of how large a corpus is. The challenge

lies in a mean to estimate probabilities for unseen, and rarely seen, information. We may sum

up the challenges into seven parts: namely, ambiguity, variation, expressivity, scale, sparsity,

unmodeled variables and unmodeled representations.

Figure 1.1 Example of misspelled words and acronyms

Figure 1.2a Zipf’s law Figure 1.2b Zipf’s law

 3

Several core technologies, such as language modeling, part-of-speech tagging,

syntactic parsing, named-entity recognition, word sense disambiguation and semantic role

labeling, have been proposed and continually studied with one ultimate goal. That is to create

a seamless natural human-to-computer communication for a machine to perform further

advanced operations. Such applications may include machine translation, information

retrieval, question answering, dialogue systems, information extraction, text summarization

and sentiment analysis.

A conversational agent is made up of multiple capabilities; namely, speech

recognition, language analysis, dialogue processing, information retrieval and text-to-speech.

A typical conversational flow begins with an automated speech recognition (ASR) which

detects and converts an utterance into text. The information is then passed along a natural

language understanding engine where an intent is extracted, classified, and interpreted in

order to be solved or fulfilled by a logical unit. This could be a business logic such as

deducting or adding a certain amount of money out of or into an account. At this stage, the

goal is to summon useful semantic information as much as possible. This is known as slot

values. It is believed that more information will lead to more accurate responses. NLP

researchers and developers are generally interested in developing language technologies that

reside inside the engine. At the end of the journey, a response is generated and passed through

a text-to-speech unit.

Information retrieval, text summarization, question-answering systems, and

paraphrase detection are NLP tasks that require measuring the degree of similarity between

texts, in particular, short sentences. For instance, in a question-answering system, a machine

aims to find the most similar existing query in a database to the input query under an

assumption that every existing query in the database contains at least one answer to it. Once a

query is interpreted and a match with the database is found, a system can then respond with

an appropriate answer. Pairing questions to answers, and vice versa, is also another part in

which may require matching phrases, and sentences, based on similarity.

Determining sentence similarity usually consists of two essential steps. These are

sentence encoding and similarity measure. A simple yet popular classical encoding scheme is

 4

to reserve each bit for each word at each location as shown in Figure 1.3. The resulting matrix

consists of bits set to 1 for words appearing in the sentence in one dimension and the location,

or position, of the words in another dimension. In this example, the dictionary used for

encoding the sentence only contains six words. In practice, there could be billions of possible

words which would potentially result in a tremendously sparse and huge encoding matrix.

This is considered inefficient as it would waste memory usage without giving much

information and could easily cause memory leak due to its inability to scale over different

lengths of sentences. In other words, the encoding matrix wholly depends on the size of the

dictionary. This could lead to overfitting problem. Therefore, statistical-based direct encoding

and pretrained encoding methods are two typical approaches in performing sentence

encoding. Statistical-based encoding generally involves measuring the frequency of word

occurrence in forms of n-grams [1], while pretrained encoding applies long short-term

memory (LSTM) [2] and BERT [3], for instance.

The advent of the Transformers model [4] has raised the bar for many downstream

NLP tasks, despite being originally designed as a Neural Machine Translation (NMT). This is

also one of the fundamental elements used in BERT models which is designed to predict the

next word. Its variants of pretrained models can be found prevalently in public for the

community. However, many, if not all, are of hundreds and thousands of embedding

dimensions. Perhaps, using powerful computational resources is the key to producing rich text

representations.

Figure 1.3 A classical encoding scheme

 5

1.1 Aims and Objectives

In this thesis, we are interested in finding the similarity between sentences. Our aim is to

diverge from using huge computational resources to train complex models. A machine with

ordinary computing capability should be able to replicate all stages associated with preparing

and performing sentence similarity task presented in this work. Therefore, the objectives of

this thesis can be summarised as follows.

1. To measure the degree of similarity between two short sentences into three classes,

namely, contradiction, entailment, and neutral

2. To compare between two short sentences of different length with no maximum length

limit using a proposed embedding technique

3. To evaluate the proposed model on existing benchmarks and widely known dataset

SICK-2014 [5]

The reason for choosing to evaluate on entailment relation is that we believe the performance

should better reflect a system’s understanding of computational semantics at a more general

level. Instead of semantic relatedness, a system would be able to classify whether high

relatedness means contradiction or entailment while low relatedness would naturally fall into

neutral.

1.2 Scope of Work

1. Sentences are taken from SICK-2014 [5]. These sentences are generally short and

complete.

2. Sentences are embedded into vector representations. Regardless of sentence length,

vector representation must result in fixed size.

3. All sentences being accounted for are in English due to data availability.

1.3 Contributions

In Chapter 3, we demonstrated our methodology in extracting features from input

sentences and constructing vector representations. Here, we have solved the issue on how to

handle variable-sized sentence pairs by manipulating them at input. This means that sentences

do not have to be truncated or padded. They are accounted for their real lengths. In Chapter 4,

we evaluated our proposed method against some baselines.

 6

The approach proposed in this work avoids heavy pre-training of millions of

parameters and of which to be trained on large scale datasets. The constraints imposed by

unequal lengths of input sentence pairs are compensated such that the system does not require

truncating sentences that are too long and padding those that are too short.

 7

Chapter 2

LITERATURE REVIEW

According to [6], we may examine methods of measuring word similarity and

sentence similarity separately. Word similarity methods include corpus-based, knowledge-

based and string-based. Sentence similarity methods include word-based, structure-based and

vector-based. The literature claims that finding similarity between words lies in the core of

finding similarity between sentences. Therefore we consider methods at both levels in this

chapter.

2.1 Word Similarity Methods

Corpus-based approach relies on big corpus analysis. It believes that semantically

similar words would appear in similar manner; there is not much different in structure, or

pattern, which similar words appear in. Word co-occurrence is also another key aspect which

is used to indicate word similarity [7]. Two techniques used in analysing this approach are

normal statistical analysis and deep learning techniques. The aim is to extract word semantic

representation. For normal statistical analysis, this can be seen in Latent Semantic Analysis,

or LSA. LSA’s main objective is to calculate term frequency inverse document frequency and

uses this as weights to the corresponding words. This is under an assumption that words that

co-occur in the same context usually have similar meaning. In LSA, a word matrix is

constructed where vectors of words and paragraphs are the rows and the columns

respectively. Singular Value Decomposition is used to reduce the dimensionality. Words can

be extracted and used in calculating their cosine similarity.

Deep learning techniques aim at producing word embeddings in a semantic space.

Again, the word representation is based on co-occurrence of words in a corpus. In other

words, a deep learning model is either trained to guess a word given its surrounding words, or

vice versa. This is known as a Continuous Bag of Word model (CBOW) and Skip-gram

model, respectively. Word vector representations generated from these two types of models

are generally of size 200 to 400 based on the parameters set at training. These deep learning

 8

techniques have shown promising results. The semantics of words can be captured in the

vectors as their relations can be found via arithmetic summation and subtraction. The famous

vector(“King”) – vector(“Man”) + vector(“Woman”) is closest to vector(“Queen”) example

has successfully shown the semantic relations between the generated vector representations in

Word2Vec model. Furthermore, this vector representation can be used in calculating

similarity between words using cosine similarity as their semantic space coincides with our

mathematical intuition. This had led to several attempts in employing high-quality word

representation at sentence-level directly. However, a mere level transfer may not be an

appropriate choice as sentences cannot be seen as just a group of words but their relations and

structure should be accounted for as to interpret the true meanings. This may lead to a wider

spectrum of NLP challenges, such as, syntactic structure, dependency parsing and semantic

analysis.

Knowledge-based approach depends heavily on handcrafted knowledge semantic

network. The network, ideally, contains both semantics of words and relations between

words. The famous external resource WordNet is usually employed. This is a semantic

network which consists of grouped synsets where each group shares a single meaning. This is

also known as a group of synonyms. Hyponyms and hypernyms add a hierarchical structure to

the network. With a well-documented API, word senses and relations can be conveniently

extracted. One idea of measuring similarity of this network is to count the number of hops

from one word to another. However, hops between words of different part-of-speeches may

not be recognised, and therefore not possible, as synsets and other relations are usually of

same part-of-speeches.

ab

bc

cd

de

ac

eb

1

1

1

1

0

0

0

0

1

1

1

1

P q (s1) P q (s2) q = 2

s1: acdeb s2: abcde

Figure 2.1 q-gram distance

distq-gram(s1,s2) = Σ|Pq(s1)[i] – Pq(s2)[i]|

distq-gram(s1,s2) = 1 + 1 + 0 + 0 + 1 + 1 = 4

 9

String-based approach, or terminological approach, considers a word as a sequence of

characters. Some methods include Levenshtein distance, q-gram and Jaccard distance. For

Levenshtein distance, the aim is to transform one string to another with minimal operations.

The operations are insert, delete and replace. The Levenshtein distance is the number of edit

operations. In [8], the similarity measure is the ratio between the edit distance and the length

of the longer word. Levenshtein distance algorithm can be seen very similar to sequence

alignment algorithms such as Needleman Wunch algorithm and Smith Waterman algorithm.

The aims for the edit distance algorithm and sequence alignment algorithm distinguish

between the two. While the former minimises the number of transform operations, the latter

maximises the similarity by assigning different weights to different types of operations. For q-

gram distance in Figure 2.1, q signifies the length of substring to be compared. This is

typically much smaller than the strings of the words. Each string is truncated into all possible

combinations of length q. The occurrence count of each substring of length q is recorded. The

q-gram distance is the sum of absolute difference between the occurrence counts of the two

strings. While Levenshtein distance has O(n2) time complexity, q-gram only has O(n) time

complexity.

Some combined methods have shown improved results. [9] employs both corpus-

based and knowledge-based methods. The final similarity measure is an average of the two

methods. In [10], Word Sense Disambiguation (WSD) first attaches every word in a corpus to

a word sense. The word senses follow the assignments in WordNet and therefore shortest path

distance is conveniently determined. The semantic relations in the corpus can even be found

when exploiting the depth of words as WordNet holds information on the level of specificity.

This is another cooperation between corpus analysis and a knowledge network.

2.2 Sentence Similarity Methods

Word-based similarity employs word-to-word similarity methods on words in

sentences to calculate sentence similarity. This method treats a sentence as a set of words.

One idea is that the similarity values between each word in sentence 1 and every word in

sentence 2 are measured one at a time. For each word in sentence 1, it is compared against all

words in sentence 2 and the average similarity is taken. This average similarity value denotes

the word in sentence 1. Once all words in sentence 1 are measured, the sentence similarity is

 10

taken by selecting the maximum average similarity value. This is known as max similarity. If

all words in sentence 2 are also measured in the same manner, a similarity matrix can be

constructed. With a sentence binary vector, sentence similarity can also be calculated as

mentioned in [11]. Moreover, a semantic matching function is proposed to construct semantic

matching vector for each word which can be used with the similarity matrix instead of a

sentence binary vector. An example of a semantic matching function is the max similarity

where the maximum similarity is the measure between each word in sentence 1 and every

word in sentence 2. A modification of this semantic matching function is to consider only a

window of words in sentence 2 when compared with each word in sentence 1. Each word is

represented as a weighted average between the word and the window. Another matching

function performs decomposition on generated match vectors to obtain similar and dissimilar

parts for each vector to construct a similar matrix and a dissimilar matrix. From these two

matrices, a sentence similarity can be computed, [12]. Using Word Sense Disambiguation

(WSD) is another approach in measuring sentence similarity. [13] argues that, in small-sized

text fragments such as sentences, word cooccurrence may not be the case for detecting two

semantically similar sentences. This is because same keywords may not appear in both

sentences; therefore, this approach employs word senses to identify synonyms by expanding

WordNet synsets. A vector representation is formed for each sentence using word-to-word

semantic similarity. This is done by either finding shortest path distance in WordNet or using

Jiang and Conrath method in which the set of expanded words is considered in the formula.

The sentence similarity is simply the cosine similarity between the two vectors. Some

methods, [14], employ both WordNet and word embedding which produce better results than

those using either stream. Despite the ease of implementation, word-based sentence similarity

methods typically fail to capture structural information of given sentences. Some believe this

could have been the key to interpreting the core semantic information. On the other hand,

such approaches that see a sentence as a bag of words are appropriate for social media texts as

they are usually poorly structured.

Structure-based similarity exploits sentence syntactic information. Many approaches

believe that similar sentences are those that share similar structures. This is particularly for

short texts. Examples of such methods utilise grammar, part-of-speech and order of words.

[15] extracts grammar links between words in sentences to construct a grammar matrix in

which the rows represent the links of the shorter sentence and the columns are the links of the

longer sentence. Semantic similarity values between words with links of type are measured

 11

based on WordNet ontology. The weighting strategy in [16] is done by assigning weights to

words based on their part-of-speech (POS) and the relations between POS. This method gives

unequal importance to the words in a sentence as it believes that certain POS and their

relations are more important. Word order is usually used along with other syntactic

information or other methods. The benefit of adding word order information is to prevent

similar structures being falsely classified as having similar meanings at the first place. In

other words, having similar structures may not convey similar meanings. For example, “a

woman kills a boy” and “a boy kills a woman” share the same set of words but have different

meanings. This is detected using word order. Nevertheless, it is reported in the survey that

people usually use similar structures for sentences of similar semantics.

Vector-based similarity calculates similarity between sentence vectors. The key for

this kind of approach is to come up with efficient and powerful sentence representations in

which the features are concatenated into one vector. Obtaining such vector representations

may be through statistical-based or learning-based methods. In a distributional method, a

matrix of feature counts is constructed. Each row represents a sentence in a corpus and each

column represents a feature in the sentences. Features could be n-grams or dependency pairs.

A weighting schema is proposed to give weights to more important features. This is done by

using the probability of existence of the feature in paraphrased and non-paraphrased

sentences. After that, a sentence vector is extracted from matrix factorisation, and sentence

similarity is measured, [17]. Another vector-based approach is to use an average of pre-

trained word vectors in a sentence to obtain the vector representation of the sentence. Popular

pre-trained word vectors are GloVe, [1], and Word2Vec [18]. Cosine similarity is, again,

usually the choice for sentence similarity measure. This method does not account for word

relations or structure of the sentence, despite manipulating vectors in a properly defined

semantic space for word embeddings. [19] proposed a learning-based method in which

regarding to the word embedding techniques used, a training model, which is a modified

Long Short-Term Memory (LSTM) model, adjusts itself to learn to find sentence similarity.

The model is known as Manhattan LSTM (MaLSTM). The last hidden layer is used as the

representation for the input sentence. This representation is then used to learn the semantical

similarity measure.

 12

Skip-Thought vectors are obtained from training an encoder-decoder model. This is

essentially an unsupervised learning. The recurrent neural network (RNN) encoder aims at

mapping words to sentence vectors and the RNN decoder aims at generating surrounding

sentences. This is similar to training for Word2Vec, in particular, the skip-gram model. A

linear mapping solves the difficulty in setting up unseen words in the encoder’s vocabulary

space. This is because any word in Word2Vec can be mapped to the encoder’s vocabulary

space. The training phase requires a large collection of text from books. One reason for doing

so is to reassure that the model is unbiased towards any domain. This vector representation is

said to accurately capture both semantics and syntax. A similarity learning task is then carried

out.

Although deep learning methods have shown good results, there is still room for

improvement. Hybrid methods for measuring sentence similarity may show more promising

results in many cases as each method treats the problems from different perspectives.

2.3 Word Embeddings

In [20], the survey explores methods of word embeddings which are of fixed-length,

dense and distributed representations for words. This work acknowledges the importance of

word embeddings as it mentions representations for words and documents prevail in, if not

all, most NLP tasks. These include chunking, question answering, parsing and sentiment

analysis.

Vector representations are useful as they enable intuitive interpretation and useful

arithmetic operations, such as, addition, subtraction and distance measures which are suited in

manipulating machine learning strategies. An embedding layer was first introduced as a key

feature in developing a neural network language model to mitigate the curse of dimensionality

on language models and help generalisation. It was realised that this layer implicitly contains

syntactic and semantic word relationships, [21]. This is shown through the work of

Word2Vec model [22]. Another influential embedding technique emerged in [1] which

leverages word-context matrices. This is the GloVe model. Nevertheless, both models are

based on the assumption that words in similar contexts have the same meaning. This is the

distributional hypothesis, which dates back to literature works including [23]. Hence word

 13

embeddings can be said to be built upon word co-occurrence statistics based on the

distributional hypothesis. Embedding models can be divided into prediction-based models and

count-based models. Prediction-based models are those derived from neural network language

models as they predict the next word given its context. Count-based models are matrix-based

models which account for co-occurrence counts in global context. In order to study word

embeddings, this survey suggests navigating through two utmost important topics, namely the

vector space model and statistical language modelling. The former clearly aids in complex

interpreting mathematical theories such as linear algebra and statistics and incorporating them

into a range of machine learning methods regarding NLP tasks. The latter interestingly

originates word embeddings as by-products upon attempts in producing more efficient and

more accurate language modelling. It arguably has not been long since the topics in word

embeddings are decoupled from the task of language models [24].

The Vector Space Model (VSM) can be seen back in the field of Information

Retrieval in [25]. The encoding procedure represents each document in a collection as a t-

dimensional vector. Each element in a vector can be binary or real number. It is a distinct

term in the document which may be normalised by a weighting scheme such as TF-IDF. The

aim is to accentuate the difference in information of each term. Calculation of similarity

between document vectors can be done at this point. More information of leveraging the VSM

and its suitable applications can be read in the survey of [26].

Statistical Language Modelling is a development of probabilistic models of

distribution of words in the language. In the early days, it aimed at recognising words and

phrases in noisy and fault channels. A language model is intended to predict the next word

given the words consecutively preceding it, which is also known as context. Hence a full

probabilistic model contains the likelihood of every word in the vocabulary.

Equation 1 shows a mathematical formulation of an n-gram model with window size

T, where wt is the t-th word, wt
T is a sequence from w1 to wT. Hence P(wt|w1

t-1) is the

(1)

 14

probability of wt appearing after a sequence from w1 to wt-1. The next word prediction is done

via maximum likelihood estimation over all words in the vocabulary.

Prediction-based models began with projecting a raw word vector into the first layer

of a neural language model. This by-product is simply called the embedding layer. [24] is

claimed to be the first to design a model with an intent of learning embeddings only. The

training strategy is similar to that of a language model. The objective is to predict a center

word given both preceding and following words around the predicted word. They also trained

the model with false and negative examples, in which the center word is replaced by a random

word in the vocabulary, for the model to distinguish positive answers from false ones. In

2013, [18] introduced two models for learning word embeddings, namely, CBOW and skip-

gram (SG) models. These models are log-linear models and use the two-step procedure for

training. The two-step procedure was introduced in [27]; the first step is to train using a single

word as a preceding context word, and the second step is to train using larger context word

and embeddings found in the first step as initial embeddings. CBOW and SG models differ by

loss functions. As mentioned earlier, CBOW model aims to predict a word given context

words, whereas SG model aims to predict the surrounding context words given a center word.

Two variants of CBOW and SG models are [18] where it uses hierarchical softmax layers and

[28] where it uses negative sampling. A more recent prediction-based model is an

improvement over the skip-gram model [28], also known as FastText, [29, 30]. Instead of

word embeddings, FastText learns to model n-gram embeddings which can be used to form

words. This is introduced under the belief that word parts may contain information in which

can help generalise unseen words for languages that heavily rely on compositional word-

building especially highly inflectional languages.

Count-based models leverage global co-occurrence of word-context in a corpus and

are usually represented as word-context matrices [26]. In LSA [31], which is one of the

earliest examples, the word-context matrix is a term-document matrix. This matrix is

decomposed by singular value decomposition. Although in information retrieval, one would

be more interested in document vectors, the rows of the factorised matrix can give word

vectors. [32] proposed Hyperspace Analogue to Language (HAL). The idea is to calculate all

word co-occurrences between target words and context words where each context word has a

distance inversely proportional to the target word. The context window size is optimal at 8.

 15

As there is no normalisation to the word co-occurrence counts, a disproportionate amount of

very common words, such as, the, tends to bring about erroneous results. Therefore, [33]

suggests using conditional co-occurrence. This rather induces a question of how much more

likely word 1 is to occur with word 2 than another word, instead of only how much likely

word 1 is to occur with word 2. The results show positive improvements. Additionally,

another interesting method [34] proposes a Hellinger PCA transformation on the word-

context matrix. The well-known GloVe by [1] prompts the use of ratios of co-occurrences

instead of raw word counts. They suggest this method is able to capture the true semantic

information between pairs of words when trained to maximise the similarity of every pair on a

log-linear model.

The word embeddings that have been mentioned so far are either traditional or static

word embeddings. This means that regardless of the semantic meanings or the context of a

text surrounding the target word, the word’s embedding will always remain the same. They

essentially aim at representing global word embeddings. However, we know that a word can

have different meanings in different scenarios. Hence contextualised word embeddings have

been introduced. This type of word embedding aims to grasp context-dependent

representations of words. It is crucial that the models learn from a large-scale dataset so that

they have as much information as possible in inferring different vector representations of

different words. We may formulate contextualised embeddings as associated to a function of

an entire input sequence instead of a direct one-to-one mapping. In other words, a one-to-one

mapping may still occur to obtain a non-contextualised embedding in prior to applying an

aggregation function to obtain a contextualised embedding. [3, 35] have shown state-of-the-

art contextual embeddings pretrained on large-scale unlabelled corpora. Their performances

are evident in many NLP tasks, such as, text classification, text summarization, and question-

answering. Contextualised embeddings have shown more promising results as their methods

are able to better capture sequence-level semantics than non-contextualised embeddings. The

key feature in creating contextualised embeddings is choosing suitable aggregation functions.

In general, pretraining methods for contextual embeddings can be done by either

unsupervised learning via language modeling or supervised learning in machine translation or

natural language inference.

 16

Like on the previous survey [20], this survey [36] also stated that a typical method in

learning distributed token embeddings is to learn via language modeling. It models a

probability distribution where it learns to factorise the probability of sequence given a specific

number of tokens. A traditional language model learns to predict a token given a sequence of

contexts on the left of the target word. This is usually trained on large-scale unlabelled

corpora using neural networks.

ELMO [35] is a bidirectional language model consisting of L-layer LSTM both

forward and backward. This is to encode both left and right contexts, respectively. There are

N hidden LSTM states at each layer j which, in turn, denote N representations given contexts

from both directions (h1,j, h2,j, …, hN,j). When applied to downstream tasks, in prior to

advancing to higher layers, a common practice is to concatenate global word representations

found in the lowest layers of the supervised models to ELMo’s context-dependent

representations ELMok
task,

where γtask is a task-specific constant and sj
task is a layer-wise weight normalized by softmax at

layer j. One observation from this combination of bidirectional LSTMs is that the overall

model does not consider the interactions between the left and right contexts.

The GPT family [37] learns universal representations through unsupervised pre-

training using a language model and then supervised fine-tuning. The language model is built

on a Transformer architecture [4]. GPT is trained on over 7,000 books from various genres

while GPT2 [38] creates a new dataset of millions of web pages. The Transformer

architecture has shown its superiority over the precursor recurrent networks on capturing

global dependencies on a range of sequence learning tasks such as machine translation and

document generation. It is an encoder-decoder model with multiple self-attention heads. The

decoder reads from left to right and therefore can only attend to the left context.

(2)

 17

BERT [3] is trained on a masked language model. This means that some, typically 15

per cent, of the tokens in the input sentence are masked with random tokens. The objective is

to predict the correct tokens given these masked tokens. The bidirectional training strategy

also uses a Next Sentence Prediction (NSP) objective. This means that when a language

model is given two input sentences, it is trained to predict whether the second sentence is the

true following sentence of the first sentence. The purpose is to improve tasks such as question

answering and natural language inference. BERT is trained on 3,300M words and it is critical

that a document-level corpus is used in order to extract long contiguous sequences.

Both GPT and BERT use special tokens to obtain a single contiguous sequence for an

input sentence. In BERT, the first token of an input sequence is always a special classification

token, [CLS] token. This token holds information on the input sentence. It is a vector of size n

where n is also the vector size of each of the remaining tokens in the input sequence. This

[CLS] token can be extracted at the last layer of a BERT model via mean-pooling. This is one

of the common practices in obtaining an embedding for an input sentence. Cosine similarity

can be applied on vectors from [CLS] tokens between two sentences in order to find the

sentence similarity. However, like GPT2, the pretrained language models do not provide any

information on how they are able to improve on downstream tasks. Therefore, despite having

performance improvement on several downstream tasks as per training on a huge amount of

data, developers might still seek alternative methods that are interpretable in order to make

their model sustainable in terms of maintenance and development.

In this work, we aim at seeking methods that can bypass the need of training on large-

scale dataset and still able to capture information on given input sentence in our proposed

word embeddings. The objective is to measure the similarity between sentences that are

encoded using our proposed method. We acknowledge how powerful and useful the

aforementioned models have contributed to the NLP community upon declaring

improvements in several tasks, and we do not intend to question their supremacy. Instead, we

are determined in pursuing an improvement in one simple task. That is to find an appropriate

embedding for sentence similarity task. We believe that for one simple task, it is unnecessary

to employ such huge amount of data in constructing a model. We also seek to mitigate the

constraint such that two input sentences must be of equal length. In other words, we do not

 18

wish to truncate sentences that are too long and pad sentences that are too short in order to fit

them into the model.

SICK-2014 dataset was introduced during SemEval 2014 workshop [5]. It contains

sentence pairs with scores on semantic relatedness and textual entailment. Semantic

relatedness is a score rating between 0 and 5, where 0 indicates no relationship between two

sentences and 5 indicates strong relatedness between two sentences. Textual entailment

consists of three classes, namely, entailment, neutral and contradiction. In this work, we chose

to work on SICK-2014 dataset with textual entailment labels as they can be used in

classification task. Our proposed method aims to classify the type of relatedness between two

given sentences into one of the textual entailment classes; rather than calculating the degree

of relatedness without knowing whether it is entailment or contradiction.

 19

Chapter 3

METHODOLOGY

The proposed method builds a system that can determine whether two input sentences

are relevant or not by measuring their semantic similarity. We classify the types

of similarity into ENTAILMENT, CONTRADICTION and NEUTRAL. There are

two main consecutive procedures, which are (1) word and sentence encoding, and (2)

classification, to determine the similarity. In this work, the classification problem is addressed

in two steps. First, the set of words and their meanings are directly extracted without any

complex computation, such as, neural learning. This is for separating contradiction types and

non-contradiction types. To elaborate, if there exists a phrase containing a negative cue in one

sentence but not in the other, given a pair of sentences, then this pair is identified as a

contradiction type. Negative cues, or negative markers, imply potential opposition between

two sentence inputs. This is further explained in section 3.3. Second, appropriate feature

vectors are extracted and passed into a classifier. No contradiction cases should appear in an

ideal scenario at this stage. This is where unequal length sentence pairs must be addressed.

Although several powerful encoding schemes have been proposed, such as Word2Vec [18],

bag-of-word [23], and mixture of BERT [3] and LSTM [2], their space and time complexities

are rather high. This work proposes a shallow network encoding scheme in order to achieve

lower space and time complexities.

Figure 3.1 illustrates the framework of the proposed method. The framework consists

of five main stages. First, synonymous verbs and phrasal verbs are detected in both input

sentences. This is to prepare for further detection and word translation in later stages. Second,

any opposite words and negative markers are detected. If opposite words appear in both

sentences and they refer to same entity, the sentence pair will be considered as a contradiction

type and the process terminates. Otherwise, the sentences could be either neutral or entailment

types. This proceeds to the next stage. The third stage translates all useful words into their

corresponding numeric word codes. Useful words are those that remain from pre-processing.

This stage is described in section 3.2. Once translated, the word vectors from both sentences

are concatenated sequentially and become an input to the fourth stage. Here, a set of encoders

is trained to obtain the vectors from the intermediate layers. These vectors are the encoded

 20

vector representations with predefined lengths. This leads to the last stage which classifies

these fixed length vectors into either neutral or entailment classes. More details are in the

following sections.

3.1 Input Sentences

Ideally, the input to the system is a complete sentence. A complete sentence consists

of a subject, a predicate which is a verb, and an optional object or subject complement. In

general, SICK-2014 dataset contains simple sentences. However, there are occasional

compound, complex and compound-complex sentences too. Moreover, a complete sentence

may be an existential sentence which begins with an expletive there or it. Some examples of

simple, compound, complex, compound-complex, and existential sentences are the

followings. The sentences are taken from https://style.mla.org/types-of-sentences/.

Simple sentence: Only a single independent clause appears.

The girl bought an ice cream cone.

The girl went to the park.

Figure 3.1 Proposed framework. This consists of databases of synonyms, phrasal verbs

and opposite words, and a set of encoders and classifiers. A set of k encoders are mapped

onto a set of corresponding classifiers. A set of z encoders are mapped to a dedicated

classifier. The input comprises two sentences. Contradiction samples are filtered out at

early detection. Neutral and entailment samples are encoded and classified using simple

network architecture.

https://style.mla.org/types-of-sentences/

 21

Compound sentence: Two or more independent clauses are joined by a coordinating

conjunction (and, but, yet, for, or, nor, so), a conjunctive adverb (e.g. however,

furthermore, likewise, rather, therefore), or a semicolon.

The girl bought an ice cream cone, but she dropped it in the park.

Complex sentence: One or more dependent clauses are connected to an independent clause

by a subordinating conjunction (e.g. because, after, when) or relative pronouns (who, which,

that).

After she bought an ice cream cone, the girl went to the park.

The girl, who had a freckled face and wore a striped shirt, was knocked over

by a large dog, which ate her ice cream cone.

Compound-complex sentence: One or more dependent clauses are attached to one

or more independent clauses.

After she bought an ice cream cone, the girl, who had a freckled face and wore

a striped shirt, went to the park, but she was knocked over by a large dog, which ate

her treat, so she ran home to her mother, who made her an ice cream sundae.

Existential sentence:

There is a girl buying an ice cream cone.

It is important to note that SICK-2014 dataset generally contains simple sentences.

This means that any opposite words or synonymous verbs detected between any sentence

pairs usually refer to the same entity. This fact enables our system to avoid containing a

complex logic unit. In such scenario, the need of a sophisticated mechanism would be

inevitable in pairing adjectival modifiers and verbal predicates to their nominal entities to

ensure the counterparts are comparable. This would also apply to opposite nouns where the

whole sentence would be required to be parsed in order to ensure the nouns are comparable.

3.2 Pre-processing

Before proceeding to the encoding procedure, a sentence is lemmatized by Stanford

CoreNLP tool [39] and stop words are removed. Non-alphabetical characters and numerical

characters are included in the set of stop words. Punctuations are also removed from the

 22

sentence. The stop words play no roles in semantic encoding since they do not contain truly

relevant information. Furthermore, all contractions such as isn’t, weren’t are transformed into

their original full forms to enable encoding. Phrasal verbs are also generalised to single

words. A corresponding word code will be assigned to one of the words in the compound

while the other will be discarded after the translation. Transforming multi-words into single

ones enables simple word encoding to take place which also increases the chance of finding

synonymous words between sentence pairs. This is because synonymous words will be

mapped to same word codes during word code translation in later stage. Once pre-processed,

the remaining words are generally content words; those that give meanings and appear as

single individuals.

3.3 Filtering Contradiction Class

According to the nature of SICK-2014 dataset, we observed that sentence pairs of

contradiction type generally contain either antonym pairs or negative markers. In the first

scenario, this requires each of the two sentences to contain a word, or a phrase, that is

opposite to another. In example 2 of Antonym pairs below, the opposite words, are near and

far from. The system recognises that both entries refer to the distance of the brown horse

from red barrel. This demonstrates that the proposed method considers the surrounding

context in prior to deducing. Once an antonym pair is detected and confirmed to be referring

to the same entity, the sample is then categorised as contradiction. If, for instance, an antonym

pair exists but are seen to refer to different objects, the sample would not be deduced as

contradiction. This is because the opposite words are likely to be in different context and

hence the sentences would be irrelevant, which means a neutral type. As mentioned in section

3.1, SICK-2014 dataset mostly contains simple sentences. This fact allows the system to stop

investigating for further complex relations that could change the decision of the system.

The second scenario is when there exists a negative marker in one sentence but not in

the other. Negative markers include no, none, no one, nobody, there is no, there are not, and

there have no. Again, the system assumes that if only one out of the two sentences contains a

negative marker and that it refers to an entity that also appears in the other sentence, the

sample is contradiction. For example, in example 1 of Negative markers, the negative marker

no in the first sentence refers to biker. The second sentence also contains biker but does not

have a negative marker attached to it. Therefore, the two sentences must be in contradiction.

 23

Negative markers.

Example 1

- There is no biker jumping in the air.

- A lone biker is jumping in the air.

Example 2

- A deer is jumping over a fence.

- A deer isn’t jumping over a fence.

Example 3

- Several people are in front of a colourful building.

- Nobody is in front of the colourful building.

Example 4

- Two people are kickboxing and spectators are not watching.

- Two people are kickboxing and spectators are watching.

Antonym pairs.

Example 1

- A man is jumping into an empty pool.

- A man is jumping into a full pool.

Example 2

- The brown horse is near a red barrel at the rodeo.

- The brown horse is far from a red barrel at the rodeo.

For each input sample, the system terminates if the sample is considered

contradiction. After filtering the contradiction cases, the rest of the samples must be either

entailment or neutral types.

3.4 Encoding Procedure

All words must be converted into their corresponding numerical values in order to

proceed to the encoding procedure. Words with same meanings, or synonymous words, are

assigned to the same values.

 24

The main issue being addressed in the encoding procedure is handling two sentences

of unequal lengths. A set of encoders is employed. All encoder models have the same

structure which consists of an input layer, an intermediate layer and an output layer. The input

layer and the output layer have the same size. Hence, an encoder model exhibits a network

such as y-x-y where y is the size of the input sentences combined and x is the size of the

intermediate layer. The goal is to construct a set of encoders whereby the intermediate layers

can be used for binary classification; the classes are neutral and entailment. The purpose of

having multiple encoders is to handle different lengths of input samples once they are

concatenated. The whole encoding and classification stages, in turn, could be seen as creating

a multiplexer-like model. The length of a concatenated input sample selects which encoder

model the data should flow into in order to achieve the output signal indicating either a

neutral or an entailment class. The one difference this proposed workflow has with a

multiplexer is the two output signals instead of one. This is because the classifiers return a set

of two values each corresponding to the probability of being neutral and entailment. The one

with higher probability wins and sets the sample to that type.

Let sentence 𝑖, 𝐒(𝑖) = {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

}, consist of a set of words 𝑤𝑎
(𝑖). Each word is

translated into its corresponding numerical word code 𝑐𝑎
(𝑖). Hence the sentence is converted

into 𝐒(𝑖) = {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

}. Each encoder accepts a certain size of input. The input to the encoder

model is obtained by concatenating the vector representations of both sentences. Hence an

input is represented as 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } = {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

} where 𝑚 denotes the length of

the sentence 𝑖 and 𝑛 denotes the length of the sentence 𝑗. At the end of an encoder, the original

input vector is expected. This is the goal of all the encoders used in this work; to make the

output identical to the input, although not perfectly so in practice. The intermediate layer is

then extracted and used for classification.

 25

The x in the y-x-y configuration of the encoders is the size of the intermediate layer,

or an encoding size. As shown in Figure 3.1, each encoder is adjusted to find the optimal

encoding size for its input length y. The optimal encoding size is the size that gives the

highest accuracy from mapping inputs to themselves. As shown in Figure 3.2, x may be

greater than y, and vice versa. In an ideal situation, the input lengths, ys, should cover a wide

range of possibilities. However, this is limited to the unique concatenated lengths of the

preprocessed sentences in the dataset. The overall encoding and classification processes are

summarised in Algorithm 1. The system is further constrained by the fact that the total unique

lengths available in the dataset do not contain equal number of data entry. In other words,

some ys may contain more samples than others. For those ys that contain too few samples,

training a separate classifier for them is not feasible as the number of data entries is too low.

Instead, the system has a dedicated classifier to accept samples whose concatenations result in

the same length x. These samples are separately encoded to same length and accumulated. To

simplify, xd1 to xdz all have the same length. The common optimal encoding length is found to

be 750. This is derived from majority voting among all corresponding ys. In Figure 3.1, this is

Figure 3.2 y-x-y encoder model.The input size y, and hence output size, depends on the

length of the two sentences after preprocessing. The intermediate layer size x can be

greater than or less than the input size y.

 26

the yd-xd-yd model. This model, in fact, is a group of encoders, with different yds, whose

intermediate layers, xd, are of the same size.

3.5 Classification

All classifiers used in the work are identical. Each classifier consists of a 100d and

300d fully connected layers, accordingly, and a Softmax layer. Both first and second layers

use sigmoid activation functions. All classifiers are optimised using stochastic gradient

descent with learning rate of 0.001. The input size of a classifier is the size of the intermediate

layer of its corresponding encoder. The final output gives two values of which sum up to 1.

These are the probabilities of being neutral and entailment. The one with higher probability

wins and the sample input is predicted as that class. The chance of having equal probability,

which is 0.5 each, has never happened. Although presumably a very rare case, such

ALGORITHM 1: TRAINING ENCODING AND CLASSIFYING ALGORITHM

 Input: a set of preprocessed sentence pairs 𝐒(𝑖) = {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

}, 𝐒(𝑗) = {𝑤1
(𝑗)

, ⋯ , 𝑤𝑛
(𝑗)

}.

 Output: a set of encoders and classifiers

1
Assign word code to each 𝑤𝑎

(𝑖)
and 𝑤𝑏

(𝑗)
 to obtain 𝐒(𝑖) = {𝑐1

(𝑖)
, ⋯ , 𝑐𝑚

(𝑖)
} and 𝐒(𝑗) =

 {𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

} .

2 Concatenate 𝐒(𝑖)and 𝐒(𝑗) to obtain 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } = {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

}.

3
For each 𝑦 from 𝐈s with sufficient samples, vary 𝑥 on training 𝑦 − 𝑥 − 𝑦 model to obtain

separate optimal encoding sizes.

4
For each 𝑦 from 𝐈s with few samples, vary 𝑥 on training 𝑦 − 𝑥 − 𝑦 model to obtain one

common optimal encoding size.

5 For each separate optimal encoding size, train separate classifiers.

6 For common optimal encoding size, train one classifier.

Figure 3.3 All classifiers are identical.

 27

occurrence would result in a random assignment between neutral and entailment. After all,

this is essentially simplified as a binary classification with an early removal of contradiction

class. The classification stage is summarised in Algorithm 2.

As a continuation of the encoding procedure, another ideal situation is that for all ys,

the optimal encoding size is the same. This would enable the classification stage to be

simplified to be using only one classifier. This could increase the accuracy of the

classification problem as the system would be able to focus on training one classifier with

more useful data. In practice, this is not the case, as mentioned in section 5, which led the

system to have one classifier per encoder as many as possible.

 The purpose of using different encoders is believed to unveil characteristics of

different lengths of concatenated sentence pairs. For example, a sentence pair concatenated to

length 12 could give an optimal encoding size at 25 whereas length 11 could give size 250.

This could be interpreted that the combined length 11 generally contains overlapping words

that the encoding dimension is 10 times higher since a more complex set of weights is needed

to distinguish between the classes.

The reason for having different classifiers instead of one after encoding is that

different encoder inputs have different optimal encoding lengths. The proposed method uses

these optimal encoding lengths to decide on the input lengths to the classifiers.

ALGORITHM 2: SENTENCE PAIR CLASSIFICATION ALGORITHM

 Input: preprocessed sentences 𝐒(𝑖) = {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

}, 𝐒(𝑗) = {𝑤1
(𝑗)

, ⋯ , 𝑤𝑛
(𝑗)

}.

 Output: sentence pair type (neutral, contradiction, or entailment)

1 If found opposite words and/or one-sided negative marker, return contradiction.

2
Assign word code to each 𝑤𝑎

(𝑖)
and 𝑤𝑏

(𝑗)
 to obtain 𝐒(𝑖) = {𝑐1

(𝑖)
, ⋯ , 𝑐𝑚

(𝑖)
} and 𝐒(𝑗) =

 {𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

} .

3 Concatenate 𝐒(𝑖)and 𝐒(𝑗) to obtain 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } = {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

}.

4 Encode 𝐈 using optimal encoding size.

5 Calculate probability of being neutral and contradiction using corresponding classifier.

6
Select class whose probability is greater than the other; randomly select one upon equal

probability, return neutral or entailment.

 28

Chapter 4

RESULTS AND DISCUSSION

4.1 Results

In this chapter, we observe and report the results of our experiments. We evaluate the

performance of our proposed methods using accuracy as complied with the existing models’

evaluation in SemEval 2014 Task 1 [5]. We executed our model on three different sets as

divided in the manner of SICK-2014 dataset, namely, training set, trial set and test set. The

reason for doing so is solely to make our results comparable to other methods as proposed in

SemEval 2014 Task 1.

We have successfully classified sentence pairs into three classes with 95.2% accuracy

in two steps. The first step is separating contradiction sentence pairs from those of neutral and

entailment. Our proposed model was able to recognize contradiction samples correctly by

92% when run on training set. In addition, there are 666 samples of contradiction out of 4501

samples in the training data. Further experiment was done on the test data which contains 720

contradiction samples. The results validate the initial accuracy of the training data by gaining

0.8% increase in the test data. The model was able to do so by first attempting to detect

negative markers and antonym pairs between sentences. Then, to ensure that both cues were

referring to the same subject, or object, in both sentences, the model looks at adjacency words

that follow the cues within one to two tokens. If same entity is found to be described by either

the negative markers or antonym pairs, a contradictory pair is confirmed.

The second step in our experiment setup is to classify between neutral and entailment

sentence pairs. A set of encoders and classifiers were trained to perform such task. The

accuracy for the trial set is 97.14% for neutral and 91.09% for entailment. All encoders and

classifiers are identical in terms of network layers. An encoder model comprises three layers

where the input and output layers are of same size y and the intermediate layer is dependent

on the desired encoding size x; each encoder has its own set of y and x. A classifier comprises

 29

100d and 300d fully connected layers accordingly. The final layer is a Softmax layer which

outputs two probabilities. For samples of certain length ys whose amount did not exceed 100,

they are considered too few to be trained on a classifier on their own; otherwise, the models

would be fed with insufficient examples. There are 15 lengths of which contain under 100

samples. We only considered the first 10, the middle column of Table 4.1. The other five

lengths, the right column, are extremely few that encoders cannot be trained on. An important

point here is that we reluctantly allowed each encoder to be dedicated to each of these lengths

because we need encoded representations of the samples of size x. The purpose for

accumulating these representations is to serve them as training samples to one dedicated

classifier, classifierd in Figure 3.1.

Note that an optimal encoding size means the encoding size of which gives the

highest accuracy among the others for a certain length y. An example of finding an optimal

Length of samples, y Total Length of samples, y Total Length of samples, y Total

8 765 7 91 27 2

10 558 19 78 30 2

9 447 6 78 28 1

12 425 20 74 29 1

11 363 22 52 32 1

14 355 21 39

13 312 23 23

16 238 25 17

15 235 24 17

17 174 26 4

18 148

Table 4.1 Total number of samples based on length after two sentences are concatenated.

Figure 4.1 Determining accuracy and loss for y-x-y model where y = 8

 30

encoding size for sentence pair of length 8 is shown in Figure 4.1. When accuracy is at its

peak, the corresponding loss is not necessarily at its minimum.

As shown in Table 4.2, there is no obvious correlation between sentence pair length y

and optimal encoding size x. The optimal encoding size for sentence pair of length 12 is 1000,

whereas that of length 11 and 13 is 750 and 250, respectively. The randomness goes as low as

25 at length 8 and as high as 1000 at length 12 and 18. Despite encoding size of 1000, none of

the encoders, and classifiers, contain up to 1M parameters. The training time for all models is

of seconds and therefore proves that our system does not require heavy computational

resources. With the accuracy achieved, our system has also proven not to be dependent on

large-scale dataset.

y x

8 25

9 250

10 75

11 750

12 1000

13 250

14 750

15 250

16 250

17 50

18 1000

In experiment setup, we first set aside all contradiction sentence pairs and fed the

remaining samples through the encoders and eventually the classifiers. The models were

trained and tested using TensorFlow v2.8.0. As compared to other state-of-the-art methods

submitted in SemEval 2014 Task 1 track, our method exceeded the top performing models

when run on both trial and test sets. We may also claim that our model has other advantages

worth taking attention. That is our method does not require pretraining a heavy model. We

instead employ a set of simple encoders and classifiers. The overall model is more lightweight

and can easily be used across multiple platforms and environments. In fact, there is no need to

train any model on a large-scale dataset and the number of parameters is not as high as 1M in

Table 4.2 Sentence pair length y vs. Optimal encoding size x

 31

any of the encoders and classifiers. This meets one of our aims which is to be independent of

high resources in training.

4.3 Benchmarks and Other Models

Benchmarks were chosen according to SemEval 2014 Task 1. Chance, Majority,

Probability and Overlap baselines [5] are included in Task 1 and hence should be included in

our evaluation too. Illinois-LH [40] ranked top of the category in Task 1 and is also chosen

for comparison. A state-of-the-art method, to the best of our knowledge, incorporates a BERT

variant which is popular, as of the time this study is conducted, and therefore should

undeniably be included for comparison.

Regarding to dimensionality, we may compare our model to that of [41]. [41]

attempts to classify among the three types of sentence pairs, namely, contradiction, entailment

and neutral. It uses pretrained word embeddings, which is from a GloVe model, of 300d. Each

sentence is represented as the sum of all word embeddings. This is a usual practice that has

been prevalent across several methods. Our method only assigns one unique value, also

known as word code, for each word in a sentence. Upon word representation construction, we

only assign an array, or 1d tensor, of word codes, as opposed to 300d. In [41], both premise

and hypothesis are fed through 100d layers in parallel before concatenating the outputs to a

tanh layer. In our opinion, this 100d layer can be viewed as an embedding layer of the

sentence model. Although our method may vary dramatically between 25 to 1000 encoding

sizes, we may argue that our encoders consume much lower resources at training time. The

total number of our training data was approximately 5000 for training the encoders which are

divided unevenly for each of the encoder depending on the length of the concatenated

sentence pairs. This also applies to the classifiers.

Chance, Majority and Probability baselines, [5], are derived from randomness that

they do not account for sentence semantics. The Chance baseline is presumably obtained by

randomly assigning one of the three entailment labels to each sentence pair under a uniform

distribution. The Probability baseline follows the same assignment procedure but its

distribution acts accordingly to the relative frequency of the training set. The Majority

baseline sets all labels to the most occurring entailment type which is neutral. Our system, on

 32

the other hand, seeks clarity on semantics relating to given sentence pairs. This is specially

demonstrated by using the encoders to demystify the relations within the concatenation

between sentence pairs. Therefore, it is no surprise that our system performs better than the

three baselines. Moreover, the Overlap baseline finds common word occurrences in sentences

but it also includes stop words. We viewed stop words as non-content words, which are words

that do not give useful meanings on its own, that must not be accounted for; otherwise, this

could lead to incorrect results especially for sentences that contain several entities which

require preceding articles. Hypothetically, frequent appearances of non-content words, such

as a, and, and the, could infer completely different patterns that could be misleading for the

encoders to unravel the relations between the actual content words that matter.

We observe that the number of contradictory sentence pairs are relatively low as

compared to the other two types in training set, trial set and test set, despite the success rate of

90% accuracy in identifying contradictions. Contradictory sentence pairs also mostly contain

negative markers in one of the two sentences, [40]. The results in Table 4.3 support the

observation. Illinois-LH model performs up to 86.4% accuracy when only use its negation

 Accuracy

 Neutral Entailment Contradiction

Overlap baseline 77.3 44.8 0.0

Illinois-LH [40] 86.5 83.3 77.0

- negation 85.4 0.0 86.4

Our results 97.1 91.1 94.6

 Accuracy

Chance baseline 33.3

Majority baseline 56.7

Probability baseline 41.8

Overlap baseline 56.2

Illinois-LH [40] 84.5

NeuralLog [42] 90.3

- without neural-based 71.4

- without logic-based 74.7

Our results 95.2

Table 4.3 Performance on the SICK trial set

Table 4.4 Performance on the SICK test set

 33

feature. When all features are combined, the model only reaches 77% accuracy. In addition,

only a few samples contradict by matching antonym pairs. This makes detection relatively

easy but at the same time might be misleading. This is because not all negations imply

contradiction. The dataset might just happen to contain negations in most contradictory pairs.

Therefore, along with potential mislabeled sentence pair entries, these issues could be further

investigated and confirmed by running the program on more samples that have more diverse

styles of contradiction.

In NeuralLog [42], a joint logic-based and neural-based method is used to perform

natural language inference on SICK-2014 dataset. When the method is performed

individually, the performance drops to 71.4% for logic-based method and 74.7% for neural-

based method, Table 4.4, in which both are lower than that of our program. The paper also

emphasizes the importance of handcrafting knowledge relations. This is seen in our proposed

method where our program contains a list of opposite words and that altering the list would

affect the decision on classifying relation types.

4.4 Our System

We handle multiword expressions by detecting phrasal verb expressions and

converting them into single verbs. We gathered possible phrasal verbs and their

corresponding single verbs into one file. Each pair is collected into one line. When a phrasal

verb is recognised, the system will change the occurrence in the sentence to its single verb

correspondence. This increases the chance of matching synonyms between sentence pairs.

When matching an entity to a descriptive word or a modifier, especially adjectives,

the model is designed to approach by looking at the nearest noun that follows the adjective.

This imposes a problem in one scenario. An example of this is shown between “a blond child

…” and “a child with dark hair …”. As a human reading this, there is no doubt we can infer

that both refer to a child having particular hair colours. According to the rule of our model,

the first, “a blond child”, can correctly infer that “blond” belongs to a “child”, but the second,

“a child with dark hair”, is seen that “dark” belongs to “hair” and is not related to the

preceding “child” unless we specially mark an entity on the right of “with” to always belong

to an entity to the left of “with”; in other words, “hair” on the right of “with” will belong to

 34

“child” on the left of “with”. As for our current program, this is not yet implemented. If

implemented, the program would be able to view that the two sentences are referring to a

child with different hair colours and this could lead to contradiction prediction if the rest of

the two sentences are relevant and convey similar messages. Another common example is

“red rose” from [42]. Our program identifies a modifier of an entity only when the modifier is

to the left of the entity. If a modifier is to the right of an entity, such as, “a rose which is red”,

our system would ignore the modifier. This kind of phrase is prevalent in the dataset.

However, it might not be a primary concern because although the synonymity might be

overlooked during detection, the encoders are likely to counteract by inferring the relations

between the words themselves. The resulting encoding models may consider entities and

modifiers according to proximity. Additionally, extracting relations between entities and

modifiers could be a choice of future work.

For our interest, we set up an experiment to reverse the order of concatenation

between sentences; all leading sentences became ending sentences, and ending sentences

became leading sentences. The purpose of this experiment is to prove that our method still

works the same way as its initial setup (i.e. before the switch). The results showed that the

encoding vectors might differ in value but they exhibited consistent patterns. For example, if

the first four elements and the following two elements in the encoding vector of a

concatenation are of values a and b respectively, then the first four elements and the following

two elements in the encoding vector of the reversed concatenation are also of values c and d

respectively. Nevertheless, the results on the test and trial sets showed that pairs that are

correctly classified in the initial setup are also correctly classified in the reverse setup.

4.5 Dataset Controversy

There are places in the dataset where we disagree with the labels. Mostly, these are

neutral-labelled sentence pair entries. For example, “a group of children is playing in the

house and there is no man standing in the background” and “a group of kids is playing in a

yard and an old man is standing in the background” are labelled as neutral, but we argue

that this should have been labelled as contradiction because one shows a presence of a man

standing in the background, whereas another explicitly does not. Hence the meaning implies

opposition rather than irrelevance. Perhaps, this could explain why neutral-labelled entries

 35

outnumber the other two classes. This is a very important aspect when evaluating the results

because this could be the main cause for having unsatisfactory accuracy. If our conjecture on

this is true, we might never figure out the main cause of poor results, whether it is from a

proposed model, or from poorly labelled dataset. We might even need to make an assumption

on the former and never improve the performance no matter how well a model might perform.

Additionally, we also agree with [42] in opposite cases. Samples of such include “the turtle is

following the fish” and “the fish is following the turtle”. These sentences are originally

labelled as contradiction and we could see why swapping subjects and objects could lead

annotators to such decision. However, [42] suggests this as a neutral pair. To be a

contradiction pair, it should either be that the second sentence keeps the turtle as the subject

and the fish as the object and explicitly convey that the “turtle” is not following the “fish”, or

the first sentence makes the “fish” the subject and the “turtle” the object and explicitly shows

that the “fish” is not following the “turtle”.

Table 4.5 and 4.6 show some examples that we view should have been labeled

differently from what were given in the dataset.

ID Sentence A Sentence B Proposed Label Remarks

ENTAILMENT-labelled samples

2272
The woman is adding

sugar to the meat.

A woman is adding spices

to some meat.
Contradiction

Antonymy exists between

“sugar” and “spices”.

2715
The man kicking a

boxing trainer.

The man is kick boxing

with a trainer.
Neutral

“Kicking” someone and

“kick boxing” with someone

are different

2868
Two people are stopping

on a motorcycle.

Two people are riding a

bike.
Contradiction

“Stopping” and “riding”

have opposite meanings.

3580 A man is playing a flute.
The man is not playing

the guitar.
Neutral

Both refers to different kinds

of musical instruments

which causes irrelevancy.

4152 A woman is cutting meat.
There is no woman

cutting an onion.
Neutral

Although could be

contradiction, “meat” and

“onion” are not relevant.

6819

There is no man on a

bicycle riding on the

beach.

A person is riding a

bicycle in the sand beside

the ocean.

Contradiction

One implies presence of

human entity while another

implies absence.

Table 4.5 Entailment samples

 36

Note that many cases are taken from entailment and neutral samples as this type of

sentence pairs are more challenging to determine, both manually and automatically, with high

level of confidence. There are rarely doubtful contradiction-labelled samples. This could be

the reason for having such a small portion of contradiction samples while a load of uncertain

neutral samples.

4.51 Synonymity

To elaborate on the degree of similarity, synonym pairs between sentences could be

and were used as part of the equation for determining the degree of similarity in the form of

numerical values. For example, “the man is playing the piano with his nose” and “a man is

playing the keyboard with his nose” are labelled as entailment. “Piano” and “keyboard”

could further be considered by measuring the pair’s similarity, or simply be given the same

word code. The two words could be interpreted in two ways. One is that “keyboard” is a

musical instrument which consists of black and white keys but could differ from “piano” by

its appearance and tone. Here, both are musically related. Alternatively, “keyboard” could be

a device which consists of a panel of keys used in typing to operate a computer. When a high

level of confidence in entailment means total relevancy, the second difference would deviate

the sample pair from obtaining a high score, because of low similarity or different word code.

This is because the different possible meanings of “keyboard” would leave some room for

uncertainty. Another example where ambiguity between two words causes level of

ID Sentence A Sentence B Proposed Label Remarks

NEUTRAL-labelled samples

1649
The girl is recklessly

jumping onto a vehicle.

One girl is jumping on the

car.
Entailment

In both sentences, a “girl” is

jumping on a vehicle which

can be a car.

4002
A man is climbing a

rope.

A man is coming down a

rope.
Contradiction

Opposite meanings exist

between “climbing” and

“coming down”.

4007
A man is climbing a

rope.

The man is not climbing

up a rope.
Contradiction

One comprises a “man”

climbing but another

explicitly indicates a “man”

not climbing.

5391
A man is removing some

food from a box.

A man is putting some

food in a box.
Contradiction

“Removing” and “putting”

some food have opposite

meanings.

Table 4.6 Neutral samples

 37

uncertainty in relevancy is between “an animated airplane is landing” and “a plane is

landing”. In general, “plane” can mean “airplane”. This depends on the context which

requires looking back and forth in the sentence. This example is more obvious that “plane”

means “airplane” than “piano” to “keyboard” because only one meaning of “plane” can be

landing, out of all the possible meanings of “plane”. In the proposed program, it is not certain

whether same word codes are always assigned to potential synonym pairs as there is a room

for uncertainty.

For “a man is squatting in brush and taking a photo” and “a man is crouching and

holding a camera”, “photo” and “camera” are associated to each other. The current program

has yet to include a feature for such association. It simply finds that both words are

synonymous and therefore shares the same word code which supports the level of confidence

for having high similarity. One possible upgrade is to use a knowledge graph, such as,

WordNet’s connections. If there exists a connection between two entities, or words, there is

likely some level of relevance, either similarity or dissimilarity. The possibility of being

classified as neutral would be lowered.

A challenging synonymy occurs between “a rabbit is playing with a toy rabbit” and

“a rabbit is playing with a stuffed bunny”. First, the program must distinguish between two

kinds of “rabbit”, namely, an animal and a toy. Second, the program must recognize that a

“toy rabbit” is closely related to a “stuffed bunny”, and that “bunny” is a toy. In our proposed

method, we handcrafted the synonym list such that a “toy rabbit” is equal to a “stuffed

bunny” and therefore entailment is deduced. This is an example where handcrafting

synonyms could be the best option as these words are specific and do not appear often.

4.52 Hypernyms and Hyponyms

Hypernyms and hyponyms are interesting features worth taking into consideration

when measuring the degree of similarity between two words. We speculate that this would

have the most effect on entailment pairs among the three types. This is because in our

proposed method, many synonyms can be further specified as hypernyms and hyponyms. For

example, “vegetable” is a hypernym of “tomato”. In the proposed method, “tomato” is seen

as synonymous with “vegetable”. The reason was mainly to prove that the two words are in

 38

the same domain and therefore provide relevancy which leads to entailment. However, we can

see that, in general, synonymy is bidirectional meaning x1 is x2 and x2 is x1. This is an

assumption taken in the proposed method that is not always true because although a “tomato”

is a “vegetable”, a “vegetable” is not always a “tomato”. In order to be more precise in

determining similar sentence pairs, directional relation could navigate the level of specificity.

For instance, “someone is slicing a tomato” and “the person is slicing a vegetable”

entailment samples could be more precisely scored numerically when the program knows that

there exists hypernymy/hyponymy instead of synonymy. Another simple example is “a dog is

looking around” and “an animal is looking around”.

4.53 Indefinite Pronouns

Generalising entities to indefinite pronouns, such as, someone, somebody, somewhere

and something, could promote the level of confidence in determining an entailment pair. For

example, “the woman is cooking eggs” and “the woman is cooking something” could be

relevant, or similar, if “something” is related to “eggs”. The truth is we would never know,

given only such limited context. One suggestion is to make a program treat “something” as a

wildcard and enable it to be relevant, or synonymous, to any entity in another sentence. In

plain language, this means that “the woman is cooking” whatever is possible, and this

includes “eggs”. In short, “something” could be “eggs”. A more prevailing case is the use of

“person”. A “person” can refer to male and female. “Person” has multiple hyponyms that it

could be treated as a wildcard for a single human entity.

4.54 Active and Passive Voices

An error that might have happened in our proposed program is when one sentence is

in the active voice while the other is in the passive voice. An example of this is “a woman is

slicing an onion” and “an onion is being sliced by a woman”. Both sentences use exact same

content words but in reverse order. Although our program might allow this kind of situation

to be correctly determined as an end result, the logic behind it might not align with the way

the program works. One possible cure is to convert either voice into another, preferably

passive voice into active voice because we are generally more familiar with the sequence

subject followed by a verb predicate and a subject complement, respectively, and that there

are more active voice sentences in overall. Another example is between “a bee is clinging to

 39

a yellow flower” and “a yellow flower is being clung to by a bee”. These two examples show

a complete reverse order between subjects and objects.

4.55 False Logic

An example that requires careful attention and might prove our proposed method to

fully work, or not, is “a man is talking to the woman who is seated beside him and is driving

a car” and “a woman is driving a car and is talking to the man who is seated beside her”.

When extracted what each subject is doing, we would get “a man is talking and is seated

beside a woman” and “a woman is driving a car and is talking and is seated beside a man”.

This is an entailment type sample. However, the proposed method does not see this. This is a

circumstance that could have given a prediction from a false logic. This is because the

proposed method might see these sentences as neutral as the appearance between “man” and

“woman” are in reverse order; hence the subjects of the sentences are different, and so, no

matter what the subjects do, they are considered irrelevant.

4.56 Rearranging words

The proposed program requires simplifying groups of words in many sentences. This

is seen in a sentence like “a man is participating a race for bmxs”. “A race for bmxs” can be

simplified into “a bmx race”. This would promote higher level of confidence in determining

entailment samples. For example, with a counter sentence of “a man is participating in a

bmx race”, the similarity would gain top score because this would result in exact match after

the simplification. This kind of situation exists throughout the dataset and therefore could be

worth handling with a converting mechanism.

4.57 Knowledge Assumption

A not-so-rare case occurs between sentences “a child in a red outfit is jumping on a

trampoline” and “a little boy in red clothes is jumping into the air”. Despite having a

common action such as “jumping”, this kind of sentence pairs may require special knowledge

to infer with higher level of confidence. “Jumping on a trampoline” implies “jumping into

the air” because when we jump on a trampoline, we are jumping into the air. However,

“jumping on a trampoline” does not contain any information about air directly. This shows

 40

that there are cases that must depend solely on context. There exists an ambiguous sample

between “some cheerleaders are taking a break” and “some cheerleaders are dancing”. This

is labeled as neutral. However, as we know that dancing is the main activity for cheerleading,

or in other words, they can be synonymous, “taking a break” could mean taking a break from

dancing. If the context was explored at a deeper level, “dancing” and “taking a break” could

convey opposite meanings, as for cheerleading. This would eventually lead to contradiction.

4.6 Semantic Relatedness vs. Textual Entailment

SICK-2014 dataset focuses on generic semantic knowledge and semantic

compositionality as described in [5]. This is the reason for choosing this dataset despite all the

aforementioned doubtful cases. Generic semantic knowledge is captured in the process of

finding similar and opposite words. Although we handcrafted a list of synonyms and

antonyms, we did not specify any domains. Generality is also seen where we set up a list of

common negative markers so that any detection would reverse the polarity of the context.

Semantic compositionality is reflected through handling multiword scenarios such as phrasal

verbs. This is when a group of words is recognised as one constituent of a sentence. We

explicitly turn them into single words for ease in handling. The main benefit for this is to

compare the words to that of the other sentence so that the program could recognise

synonyms, antonyms and possibly negative markers. Moreover, we believe that choosing to

evaluate on entailment relation over semantic relatedness, which is also a value given by the

dataset [5], should be a better indication on how well a system understands computational

semantics at a more general level. The program is only required to identify the type of

relatedness instead of a specific value of relatedness. Numerical semantic relatedness values

between zero and five may give a more specific insight to the degree of similarity but textual

entailment classes identify relevancy between entailment and contradiction. This is the

difference that made us go with using the latter.

There is a subtle difference between how relatedness score and textual entailment

classification are deduced. At first glance, relatedness score might seem to only be a

numerical range for the discrete entailment classes. This means higher relatedness scores

imply higher level of confidence for a sentence pair being contextually related. Conveniently,

the other end of the spectrum would imply neutral as this is where sentences are irrelevant.

 41

We can see that relatedness scores do not differentiate between entailment and contradiction

because both would imply relevance and hence we cannot use relatedness scores as our

primary indicators of similarity. Whether this is clearly defined and widely accepted in

general, we observed that relatedness scores work this way in the dataset; scores of 4 to 5 are

usually of either entailment or contradiction classes, otherwise neutral. Simple examples of

neutral with low relatedness score include “a dog is barking noisily” and “a jet is flying”.

However, there exists samples that are less obvious. “There is no man playing a guitar” and

“a man is playing a piano” are originally labelled as neutral and gain a relatedness score of

3.2 which is considered high for a neutral type. One may view these sentences as

contradiction as the main difference is that one implies a presence of a man while another

implies an absence. There is still relevancy as both sentences are referring to a “man” playing

a musical instrument, just only different types. On the other hand, the sentences could be

considered as neutral when one views “guitar” and “piano” are completely unrelated.

However, with the relatedness score of 3.2, there must be some relevancy between the two

sentences. This is an example of label controversy and, possibly inconsistency, which

illustrates that when we agree with relatedness score, we might not agree with the labelled

textual entailment class as given by the dataset. Our program would have predicted this as

contradiction for the reason mentioned and this would only result in incorrect prediction.

ID Sentence A Sentence B Relatedness Score Class

5618 A man is severing the toe of an

empty leather boot with a sword.

A woman is severing the toe of

an empty leather boot with a

sword.

4 Neutral

6781 A black dog in the snow is jumping

off the ground and catching a stick.

There is no dog jumping for a

Frisbee in the snow.

2.65 Neutral

8130 Several young people are posing

for a photo and holding beers.

Several old people are posing

for a photo and holding beers.

3.265 Neutral

8199 A bride with a white dress is

looking down.

A bride with a white veil is

looking down.

4.435 Neutral

8206 A bride with a black veil is looking

down.

A woman is looking down and

is wearing a wedding veil.

3.8 Entailment

8742 Three people are walking across a

rope and wood bridge over a river.

Three people are walking across

a rope and steel bridge over a

river.

4 Neutral

9576 A dog is fetching a stick out of

very clear water.

A dog is fetching a stick out of

very dirty water.

4 Neutral

Table 4.7 Sentence pair samples

 42

Consider Table 4.7., the question seems to be what level of similarity we are

focusing. Is stick not related to Frisbee (id 6781), as for wood to steel (id 8742), clear water

to dirty water (id 9576), and young to old (id 8130) that these sentences made neutral? Does a

bride with a white dress (id 8199) not imply a bride in white veil that the label is neutral,

while black veil (id 8206) and wedding veil are basically interchangeable that the label is

entailment? It is interesting to note that white dress and white veil in sentence pair id 8199 is

of neutral type with a relatedness score of 4.435, whereas black veil and wedding veil in

sentence pair id 8206 is of entailment type with lower relatedness score. Another doubtful

label exists between a man and a woman in sentence pair id 5618. The sentences only differ

by the gender of the subject. The relatedness score is at the high end but is also classified as

neutral.

 43

Chapter 5

FUTURE WORK

Our proposed encoding method converts a sentence into one-dimensional vector

space. This represents word code for each pre-processed word. This feature may not suffice in

many cases. Therefore, adding more features could be a possible improvement to the

program. For example, the second dimension could be a row of binary values indicating

action or stative verbs, or other types of verb, and the third dimension could indicate subject,

abstract, or collective nouns, or other types of noun. Such features could make a sentence

representation more unique and hence strengthens the level of confidence of being classified

as such classes.

New features could be identified by using the results of constituency parsing,

specifically, a parsing tree. A parsing tree reveals relations between parent and child. Our

program could benefit from this by grouping words under the same parent. There would be

multiple forms extracted depending on the parent and its tree depth. The parent could be a

clause-level or a phrase-level syntactic tag, as seen in Table 5.1. Like the POS tag set from

Penn Treebank, the syntactic tag set is derived from the Penn Treebank [43]. In this section,

we investigate the usefulness of Penn Treebank syntactic tag set and address any challenges

that must be handled for the tags to be used.

Table 5.1 The Penn Treebank syntactic tag set

 44

Phrases such as a flock of birds in Figure 5.1 would be identified under a noun phrase

and we can further derive that flock is the main entity instead of birds, or vice versa, if this is

informative. A modifier-entity pairing problem stated in the discussion section would be

solved, as a noun phrase would conveniently distinguish and group them under the same

hood. A subordinate clause would be identified, as well as, the main clause. For example, his

flight was delayed, in Figure 5.2, is ultimately under SBAR which tells that this is not the

main message of the sentence. The main message is in the form of noun phrase followed by

verb phrase which is typical of a complete independent sentence. Once these are known, the

main verb-predicate could be extracted and indicated in one of the additional dimensions of

the vector space. There are several possibilities to benefit from such tree. Different types of

verbs, such as, infinitives and gerunds, could be filtered and marked as different descriptive

features such as reasoning. For example, to migrate and to live in a new habitat, in Figure

5.1, give reasons, or purposes, to the main verb-predicate gathered.

Figure 5.1 NP VP under S tag

Figure 5.2 Subordinate clause SBAR

 45

Another benefit of using a constituency parsing tree is the ability to identify whether

a given clause is a complete sentence, or not, by looking at the syntactic direct child tag of

ROOT. Typically, a complete sentence would have S as the top of the tree under ROOT, or

SQ if the sentence is in a question form; otherwise, the whole clause would descend from

SBAR or SBARQ. There are occasional fragment tags that precede all the other constituent

tags but we are only concerned with whether the ancestor is S, or SQ. If that is not the case,

our program could immediately discard the given clause and refuse to proceed with the

classification task. This is because our primary assumption in this work is that given samples

must be complete sentences.

Nouns that are considered secondary to the main entities, such as, subject and object,

can be extracted by those under prepositional phrases, PP. For example, habitat in Figure 5.1

and library in Figure 5.3. Prepositional phrase implies locational or temporal information and

can be used to describe main entities, on the stage in Figure 5.5. It can also be used as a

subject complement, Figure 5.3 and 5.4, when resides on the right of the main verb-predicate.

For example, this applies to in a good mood but not on the stage in Figure 5.5. When acting

as a subject complement and there is no object in the sentence, the entities in the prepositional

Figure 5.3 Locational PP tag

Figure 5.5 Different PP functions Figure 5.6 An adjective as entity

Figure 5.4 Temporal PP tag

 46

phrase may be included as one of the main entities of the sentence as applied to library in

Figure 5.3. Note that entities are commonly but not limited to nouns as seen awesome in

Figure 5.6.

Another useful tag is coordinating conjunction, or CC. When two independent

sentences are joined by a coordinating conjunction, a CC tag can be used to recognize that

there will be two sets of main subjects, or expletive there, and two main verb-predicates, as

shown in Figure 5.7.

Figure 5.8 SBAR as subject

Figure 5.7 Balanced CC between Ss

Figure 5.9 Co-level SBAR and NP

Figure 2

 47

Constituency parsing trees may not be deduced the way we expect them to be. In

order to derive main subjects and main verb-predicates, we ought to look for noun phrases

and verb phrases at lower depths. However, main subjects may not explicitly be in the form of

noun which could lead to a false extraction of main entities. A main subject could be in the

form of SBAR, such as, What needs to be done will be done in time in Figure 5.8. Here, the

main subject is the phrase what needs to be done. It is under SBAR and to make matter

worse, there is no noun phrase residing in any branches. Although there is a WHNP, which is

a noun phrase for an interrogative word, what, the whole phrase must be considered as the

subject as what alone is not enough to give a meaning. The same kind of example which

contains a co-level noun phrase is what he has given us was way beyond imagination in

Figure 5.9. Here, us can be used as the main entity as the parent NP is right under S which is

the head of the tree, but that would not give much context without the co-level SBAR.

Figure 5.11 Unbalanced constituents around CC

Figure 5.10 Balanced constituents around CC

 48

Another inconsistency lies in the presence of a CC tag. There are two situations

where a CC tag may occur. This is when a CC is delivering a set of balanced constituents

such as two noun words are separated by and to indicate multiple items, or entities, such as

coals and fire in Figure 5.10, and two Ss are separated by and to indicate a compound

sentence, such as that in Figure 5.7. The constituents on both sides are balanced because they

are at the same depth level. Another situation is when a CC tag is under SBAR, such as but in

Figure 5.11. Although S resides both on the left and right of CC, the two Ss are not at the

same depth level as in the first situation. This case normally results in tree branches cascading

down from left to right. From observation, this is due to the fact that the word under the CC

tag is a subordinate conjunction. To add more of this type of POS tag, a situation, where a

complete sentence is falsely found, is by having a head S tag with the leftmost child being a

CC tag, Figure 5.13. In English, a sentence must not start with a conjunction, also shown in

Figure 5.12. From our observations, we conjecture the rule is broken as there exists an NP and

VP pair, and the constituency parser just ignores the fact that a CC tag occurs on the leftmost

side. We can see that having an ancestor S still requires an extra verification in order to

deduce that a sentence is complete.

Apart from constituency parser, a dependency parser would also benefit in adding

more features and could be a faster and better way to obtain subjects and verb-predicates.

Figure 5.16 Dependency parsing with CC tag

Figure 5.15 Gerund as subject Figure 5.14 Expletive there at head of sentence

Figure 5.12 Conjunction at head of sentence Figure 5.13 CC at head of sentence

 49

Again, there are inconsistencies and exceptions in the parser that require careful handling for

extracting useful information. Examples of dependency parsing are shown in Figure 5.14,

5.15 and 5.16. Hypothetically, if any of these features are useful, the proposed method could

be having plausible indicators in interpreting the results and explaining such classifications.

The idea of using a constituency parser to aid in adding features to the vector space

could be very problematic for low-resource languages. This is because it is unlikely to find at

least one substantial constituency parser for those languages. Nevertheless, we believe that

our proposed method is worth testing on different languages, by creating a word code table

and handcrafted resources.

Furthermore, training all encoders and classifiers to output all three types instead of

two types could be a possible improvement. This would bypass the stage for detecting

antonym pairs. By using trained models to classify contradiction samples, this could lessen

any false predictions. In our proposed method, words in proximity to antonym pairs and

negative cues are determined as entities being modified. This is not always true. In the case of

red roses, the rule can be applied since roses is in proximity to red, especially that it is on the

immediate right of the modifier. However, for roses which are not red, roses is not

considered as the entity being referred if proximity means within two tokens to the right of

red. In fact, preliminary results on performing a 3-class classification confirmed that filtering

contradiction samples would produce better accuracies. We speculate that this might be due to

the fact that the given contradiction samples mostly contain explicit negative markers or

antonym pairs which are presumably more important attributes than relations between

modifiers and entities. Also, contradiction samples without explicit cues can be very similar

in structure to that of entailment samples. Further investigation could be made.

Finding an ultimate common optimal encoding size could be another possible work.

In doing so, all encoders would have the same x, where x is the optimal encoding size for each

encoder. When x is the same for all encoders, a set of classifiers can be simplified to one

classifier. The input to the classifier is the same. This promotes in training the model since the

classifying module will have much more samples to one classifier and hence could lead to

higher accuracy.

 50

Chapter 6

CONCLUSION

In this work, a method for textual entailment is proposed to classify among

entailment, neutral and contradiction classes. The input to the framework is a pair of

sentences and the three output signals can be found in either the early stage for contradiction

pairs or the final stage for the other two types. At the early stage, a database is used to detect

synonyms and phrasal verbs. Phrasal verbs were generalised into single words in order to

promote finding synonyms between sentence pairs. A database of opposite words is also used

to find antonym pairs between sentence pairs. Any antonym pair detection with same entity

reference will trigger a signal for contradiction type and the process will be terminated. This

is also true if a negative marker is found in one sentence but not the other. Otherwise,

subsequent processes will be executed. These include a set of encoders and classifiers. All

encoders are configured in an y-x-y manner where y is the length after two input sentences are

concatenated and x is the optimal encoding size. All classifiers follow the same network

architecture and output the probabilities of being entailment and neutral types.

The proposed encoding scheme gives over 90% accuracy for all types when evaluated

on SICK-2014 dataset [5]. This indicates that it is possible to train and run samples on a

lightweight framework such as the proposed method. By lightweight, we mean that no layers

in any model of size over 1000 are involved and training on large-scale datasets is omitted. In

fact, no complex neural structure was employed. We may say that our proposed model has

low dimensionality in overall.

Moreover, one possible improvement to the encoding scheme could be to associate

more features to each word. Features such as types of verb (action, stative, etc.) and types of

noun (abstract, collective, etc.) could be added as a new dimension to the input of the

encoders. This could lessen any predictions with false logic, regardless of correctness. The

inference could be deduced with more specific reasonings making the classification more

interpretable.

REFE REN CES

REFERENCES

1. Pennington, J., R. Socher, and C.D. Manning. Glove: Global vectors for word

representation. in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP). 2014.

2. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural

computation, 1997. 9(8): p. 1735-1780.

3. Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805, 2018.

4. Vaswani, A., et al., Attention is all you need. Advances in neural information

processing systems, 2017. 30.

5. Marelli, M., et al. SemEval-2014 Task 1: Evaluation of Compositional

Distributional Semantic Models on Full Sentences through Semantic Relatedness

and Textual Entailment. 2014. Dublin, Ireland: Association for Computational

Linguistics.

6. Farouk, M., Measuring sentences similarity: a survey. arXiv preprint

arXiv:1910.03940, 2019.

7. Martinez-Gil, J. and M. Pichler. Analysis of word co-occurrence in human

literature for supporting semantic correspondence discovery. in Proceedings of

the 14th International Conference on Knowledge Technologies and Data-driven

Business. 2014.

8. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and

reversals. in Soviet physics doklady. 1966. Soviet Union.

9. Mihalcea, R., C. Corley, and C. Strapparava. Corpus-based and knowledge-

based measures of text semantic similarity. in Aaai. 2006.

10. Pawar, A. and V. Mago, Calculating the similarity between words and sentences

using a lexical database and corpus statistics. arXiv preprint arXiv:1802.05667,

2018.

11. Fernando, S. and M. Stevenson. A semantic similarity approach to paraphrase

detection. in Proceedings of the 11th annual research colloquium of the UK

special interest group for computational linguistics. 2008. Citeseer.

12. Wang, Z., H. Mi, and A. Ittycheriah, Sentence similarity learning by lexical

decomposition and composition. arXiv preprint arXiv:1602.07019, 2016.

13. Abdalgader, K. and A. Skabar. Short-text similarity measurement using word

sense disambiguation and synonym expansion. in Australasian joint conference

on artificial intelligence. 2010. Springer.

14. Farouk, M. Sentence semantic similarity based on word embedding and

WordNet. in 2018 13th International Conference on Computer Engineering and

Systems (ICCES). 2018. IEEE.

15. Lee, M.C., J.W. Chang, and T.C. Hsieh, A grammar-based semantic similarity

algorithm for natural language sentences. The Scientific World Journal, 2014.

2014.

16. Batanović, V. and D. Bojić, Using part-of-speech tags as deep-syntax indicators

in determining short-text semantic similarity. Computer Science and Information

Systems, 2015. 12(1): p. 1-31.

17. Ji, Y. and J. Eisenstein. Discriminative improvements to distributional sentence

similarity. in Proceedings of the 2013 conference on empirical methods in

 52

natural language processing. 2013.

18. Mikolov, T., et al., Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

19. Mueller, J. and A. Thyagarajan. Siamese recurrent architectures for learning

sentence similarity. in Proceedings of the AAAI conference on artificial

intelligence. 2016.

20. Almeida, F. and G. Xexéo, Word embeddings: A survey. arXiv preprint

arXiv:1901.09069, 2019.

21. Turian, J., L. Ratinov, and Y. Bengio. Word representations: a simple and

general method for semi-supervised learning. in Proceedings of the 48th annual

meeting of the association for computational linguistics. 2010.

22. Mikolov, T., W.-t. Yih, and G. Zweig. Linguistic regularities in continuous

space word representations. in Proceedings of the 2013 conference of the north

american chapter of the association for computational linguistics: Human

language technologies. 2013.

23. Harris, Z.S., Distributional structure. Word, 1954. 10(2-3): p. 146-162.

24. Collobert, R. and J. Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. in Proceedings of the

25th international conference on Machine learning. 2008.

25. Salton, G., A. Wong, and C.-S. Yang, A vector space model for automatic

indexing. Communications of the ACM, 1975. 18(11): p. 613-620.

26. Turney, P.D. and P. Pantel, From frequency to meaning: Vector space models of

semantics. Journal of artificial intelligence research, 2010. 37: p. 141-188.

27. Mikolov, T., et al. Neural network based language models for highly inflective

languages. in 2009 IEEE international conference on acoustics, speech and

signal processing. 2009. IEEE.

28. Mikolov, T., et al., Distributed representations of words and phrases and their

compositionality. Advances in neural information processing systems, 2013. 26.

29. Bojanowski, P., et al., Enriching word vectors with subword information.

Transactions of the association for computational linguistics, 2017. 5: p. 135-

146.

30. Joulin, A., et al., Bag of tricks for efficient text classification. arXiv preprint

arXiv:1607.01759, 2016.

31. Deerwester, S., et al., Indexing by latent semantic analysis. Journal of the

American society for information science, 1990. 41(6): p. 391-407.

32. Lund, K. and C. Burgess, Producing high-dimensional semantic spaces from

lexical co-occurrence. Behavior research methods, instruments, & computers,

1996. 28(2): p. 203-208.

33. Rohde, D.L., L.M. Gonnerman, and D.C. Plaut, An improved model of semantic

similarity based on lexical co-occurrence. Communications of the ACM, 2006.

8(627-633): p. 116.

34. Lebret, R. and R. Collobert, Word emdeddings through hellinger pca. arXiv

preprint arXiv:1312.5542, 2013.

35. Peters, M.E., et al. Deep Contextualized Word Representations. 2018. New

Orleans, Louisiana: Association for Computational Linguistics.

36. Liu, Q., M.J. Kusner, and P. Blunsom, A survey on contextual embeddings.

arXiv preprint arXiv:2003.07278, 2020.

 53

37. Radford, A., et al., Improving language understanding by generative pre-

training. 2018.

38. Radford, A., et al., Language models are unsupervised multitask learners.

OpenAI blog, 2019. 1(8): p. 9.

39. Manning, C.D., et al. The Stanford CoreNLP natural language processing

toolkit. in Proceedings of 52nd annual meeting of the association for

computational linguistics: system demonstrations. 2014.

40. Lai, A. and J. Hockenmaier. Illinois-LH: A Denotational and Distributional

Approach to Semantics. 2014. Dublin, Ireland: Association for Computational

Linguistics.

41. Bowman, S.R., et al. A large annotated corpus for learning natural language

inference. 2015. Lisbon, Portugal: Association for Computational Linguistics.

42. Chen, Z., Q. Gao, and L.S. Moss, Neurallog: Natural language inference with

joint neural and logical reasoning. arXiv preprint arXiv:2105.14167, 2021.

43. Marcinkiewicz, M.A., Building a large annotated corpus of English: The Penn

Treebank. Using Large Corpora, 1994. 273.

VITA

VITA

NAME Thanaporn Jinnovart

INSTITUTIONS

ATTENDED

University of New South Wales

PUBLICATION Jinnovart, T., Lursinsap, C. (2023). Y-X-Y Encoding for

Identifying Types of Sentence Similarity. In: Wah, Y.B.,

Berry, M.W., Mohamed, A., Al-Jumeily, D. (eds) Data

Science and Emerging Technologies. DaSET 2022.

Lecture Notes on Data Engineering and Communications

Technologies, vol 165. Springer, Singapore.

https://doi.org/10.1007/978-981-99-0741-0_37

AWARD RECEIVED Best Paper Award and Best Presentation Award at

International Conference on Data Science and Emerging

Technologies (DaSET 2022)

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Chapter 1
	1.1 Aims and Objectives
	1.2 Scope of Work
	1.3 Contributions

	Chapter 2
	2.1 Word Similarity Methods
	2.2 Sentence Similarity Methods
	2.3 Word Embeddings

	Chapter 3
	3.1 Input Sentences
	3.2 Pre-processing
	3.3 Filtering Contradiction Class
	3.4 Encoding Procedure
	3.5 Classification

	Chapter 4
	4.1 Results
	4.3 Benchmarks and Other Models
	4.4 Our System
	4.5 Dataset Controversy
	4.51 Synonymity
	4.52 Hypernyms and Hyponyms
	4.53 Indefinite Pronouns
	4.54 Active and Passive Voices
	4.55 False Logic
	4.56 Rearranging words
	4.57 Knowledge Assumption

	4.6 Semantic Relatedness vs. Textual Entailment

	Chapter 5
	Chapter 6
	REFERENCES
	VITA

