

ผลเฉลยเชิงตัวเลขสำหรับสมการน้ำตื้นในหนึ่งและสองมิติบนพื้นฐานของระเบียบวิธี
ปริพันธ์อันตะร่วมกับการกระจายเชบีเชฟ

นางสาวลลิตา อภิสรพาณิชย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา
ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

NUMERICAL SOLUTIONS FOR ONE– AND TWO–DIMENSIONAL SHALLOW

WATER EQUATIONS BASED ON FINITE INTEGRATION METHOD WITH

CHEBYSHEV EXPANSION

Miss Lalita Apisornpanich

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

Thesis Title NUMERICAL SOLUTIONS FOR ONE– AND TWO–DIMENSIONAL

SHALLOW WATER EQUATIONS BASED ON FINITE INTEGRA-

TION METHOD WITH CHEBYSHEV EXPANSION

By Miss Lalita Apisornpanich

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Associate Professor Ratinan Boonklurb, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. Chairman

(Associate Professor Petarpa Boonserm, Ph.D.)

. Thesis Advisor

(Associate Professor Ratinan Boonklurb, Ph.D.)

. Examiner

(Associate Professor Khamron Mekchay, Ph.D.)

. External Examiner

(Associate Professor Tawikan Treeyaprasert, Ph.D.)

iv

ลลิตา อภิสรพาณิชย์ : ผลเฉลยเชิงตัวเลขสำหรับสมการน้ำตื้นในหนึ่งและสองมิติบนพื้น
ฐานของระเบียบวิธีปริพันธ์อันตะร่วมกับการกระจายเชบีเชฟ. (NUMERICAL SOLU-

TIONS FOR ONE– AND TWO–DIMENSIONAL SHALLOW WATER EQUA-

TIONS BASED ON FINITE INTEGRATION METHOD WITH CHEBYSHEV

EXPANSION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.รตินันท์ บุญเคลือบ, 40 หน้า.

มีปัญหาในโลกจริงหลายอย่างที่สามารถอธิบายโดยสมการน้ำตื้น เช่น พฤติกรรมของน้ำ
บริเวณชายหาด พฤติกรรมของน้ำเมื่อเขื่อนแตก หรือการเกิดสึนามิ สมการน้ำตื้นเป็นสมการ
เชิงอนุพันธ์ย่อยไม่เชิงเส้นที่ยากจะหาผลเฉลยแม่นตรง ในงานนี้จะใช้วิธีปริพันธ์อันตะร่วมกับ
การกระจายเชบีเชฟมาหาค่าประมาณผลเฉลยของสมการน้ำตื้น โดยวิธีการนี้มีพื้นฐานมาจาก
การประมาณค่าปริพันธ์ของพจน์นั้นและแทนค่าไปในสมการอินทิกรัลที่เทียบเท่ากับสมการที่
กำลังพิจารณา เนื่องจากสมการน้ำตื้นไม่ได้มีแค่ตัวแปรพื้นที่แต่ยังมีตัวแปรเวลาอีกด้วย ดังนั้น
เราจึงใช้ผลต่างข้างหน้าเพื่อประมาณค่าของพจน์ที่มีอนุพันธ์เทียบเวลา และใช้วิธีปรับให้เป็น
เชิงเส้นเพื่อจัดการกับพจน์ที่ไม่เชิงเส้น เพื่อที่จะตรวจสอบประสิทธิภาพและความแม่นยำของ
ระเบียบวิธีการของเราจึงได้มีการนำตัวอย่างที่หลากหลายมาทดสอบ กล่าวคือ ลำธารนิ่ง เขื่อน
แตก และพื้นนูนแบบเกาส์ในปัญหา 1 มิติ และลำธารนิ่ง และพื้นนูนแบบเกาส์ในปัญหา 2 มิติ

ภาควิชาคณิตศาสตร์และ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก
สาขาวิชา .คณิตศาสตร์ประยุกต.์

. .และวิทยาการคณนา.
ปีการศึกษา2565. .

v

6370023023 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : FINITE INTEGRATION METHOD / CHEBYSHEV EXPANSION / DAM

BREAK / SHALLOW WATER EQUATION

LALITA APISORNPANICH : NUMERICAL SOLUTIONS FOR ONE– AND TWO–

DIMENSIONAL SHALLOW WATER EQUATIONS BASED ON FINITE INTEGRA-

TION METHOD WITH CHEBYSHEV EXPANSION. ADVISOR : ASSOC. PROF. RATI-

NAN BOONKLURB, PH.D., 40 pp.

There are several real-world problems that can be described by their behavior by the

shallow water equations (SWEs) such as shallow beaches, dam break, tsunami, etc. The SWE is

one of the nonlinear partial differential equations (PDEs) which is difficult to solve analytically.

In this work, we apply the finite integration method via Chebyshev polynomial expansion to find

the approximate solution to SWEs. This method is based on approximating the integral term of

the equivalent integral equation which is transformed from the given PDEs. The SWEs do not

only contain the space variables but also consist of the time variables. We should present the

forward difference quotient to estimate the temporal derivative term and employ the linearization

method for manipulating the nonlinear terms. To examine the effectiveness and accuracy of our

obtained algorithm, we provide various examples, including a stationary lake, a dam break and

a Gaussian pulse in one-dimensional problems and a stationary lake and a Gaussian pulse in

two-dimensional problems.

Department :Mathematics.and.. Student’s Signature .

.Computer.Science. Advisor’s Signature .

Field of Study :Applied.Mathematics.and..

. .ComputationalScience. . . .

Academic Year :2022 .. .

vi

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Associate Professor Ratinan

Boonklurb, Ph.D. for his invaluable guidance, encouragement and support throughout the

entire research process. His insightful feedback and expertise was instrumental in shaping

this thesis and helping me to achieve my academic goals. I am also grateful for the trust

and freedom they gave me to pursue my research interests without any undue pressure.

I would also like to thank my senior, Ampol Duangpan, Ph.D. for his unwavering

support and generosity. His vast knowledge and experience in the field was an invaluable

resource for me and his kindness and willingness to share his time and expertise have

been crucial in making this thesis possible.

I would like to express my sincere gratitude to the thesis exam committee members,

Associate Professor Dr. Petarpa Boonserm, Associate Professor Dr. Khamron Mekchay

and Associate Professor Dr. Tawikan Treeyaprasert, for their time and valuable feedback

in evaluating my thesis.

Finally, I want to thank my family for their love, patience, and understanding. Their

unwavering belief in me, their constant encouragement, and their positive attitude have

been an immense source of strength and motivation throughout my academic journey.

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND KNOWLEDGE . 3

2.1 Shallow Water Equation . 3

2.1.1 The One-Dimensional Shallow Water Equation 3

2.1.2 The Two-Dimensional Shallow Water Equation 4

2.2 Chebyshev Expansion . 4

2.3 Kronecker Product . 6

2.4 Developed FIM-CPE . 7

2.4.1 One-Dimensional Chebyshev Integration Matrices 7

2.4.2 Two-Dimensional Chebyshev Integration Matrices 8

3 NUMERICAL ALGORITHM FOR ONE-DIMENSIONAL SWES . . . 11

3.1 Numerical Algorithm . 11

3.2 Numerical Simulations . 16

4 NUMERICAL ALGORITHM FOR TWO-DIMENSIONAL SWES . . 23

4.1 Numerical Algorithm . 23

4.2 Numerical simulations . 32

5 CONCLUSIONS AND FUTURE WORK . 36

5.1 Conclusions . 36

5.2 Future Work . 37

REFERENCES . 38

BIOGRAPHY . 40

viii

LIST OF TABLES

Table Page

3.1 Comparisons of exact and numerical solutions at T = 0.1 19

ix

LIST OF FIGURES

Figure Page

2.1 Physical variables for one-dimensional shallow water model 4

2.2 Physical variables for two-dimensional shallow water model 5

2.3 The indices of the grid points globally and locally 8

3.1 The flowchart for solving one-dimension SWEs 15

3.2 Water height at T = 10 s. 17

3.3 Graphical solutions with M = 200 at time T = 0.1 19

3.4 Graphical solutions with M = 100 at different times T 21

3.5 Water height h(x, t) at various times(s). 22

4.1 The flowchart for solving two-dimension SWEs 32

4.2 Analytical solutions . 34

4.3 Water height h(x, t) at various times(s). 35

CHAPTER I

INTRODUCTION

The shallow water equations (SWEs), also known as Saint-Venant’s equations, are

a mathematical model that helps us understand how water moves in shallow areas, like

rivers and beaches. They are used to simulate the behavior of water during events like

dam breaks, tsunamis, floods and so on, see more details in [4] and [8]. The flows are also

depending on the bottom topography. The study of SWEs allows us to analyze how the

bottom topography affects the behavior of water flow.

The shallow water model is based on the assumption that the horizontal distance

over which water flows is much greater than the depth of the water. This allows us

to simplify the equations that describe the flow of water by averaging the mass and

momentum conservation equations over the depth and disposing of one of the vertical

dimensions. The SWEs are a set of partial differential equations (PDEs) that describe

the behavior of shallow water in terms of its height and velocity. They are derived from

the laws of conservation of mass and momentum.

Since the SWEs are a nonlinear hyperbolic system of conservation equations with a

source term due to topography. The resulting partial differential equations are challeng-

ing to solve analytically, and therefore, numerical methods are commonly used to simulate

water flow. There are many numerical schemes to obtain an approximate solution of the

SWEs such as the adaptive finite difference method (FDM) by Hudson [5], summation-

by-parts operators with simultaneous approximation terms (SBP-SAT) by Lundgren [8],

the forward time centered space by Crowhurst and Li [2], A well-balanced finite volume

method with weighted average flux (WAF) by [6], etc. It can be seen that most methods

actually employ a differential approximation. We have known that it is quite sensitive

to round-off errors with a very small step size. To deal with this issue, in this paper, we

2

present the finite integration method with Chebyshev polynomial expansion (FIM-CPE)

in order to design a genuinely high-order accurate algorithm for finding numerical solu-

tions instead. The FIM-CPE approach is a technique used to approximate the solutions

of partial differential equations (PDEs). In this approach, the PDEs are transformed

into equivalent integral equations. Then, the integral term is approximated using Cheby-

shev expansion, which is a method of representing a function as a sum of Chebyshev

polynomials.

The goal of developing a numerical algorithm for solving the one- and two-dimensional

SWEs using the FIM-CPE is to accurately simulate the behavior of shallow water in differ-

ent situations. The proposed algorithm has been validated by comparing several examples

over different rigid bottoms. These tests have demonstrated that the proposed algorithm

is effective at capturing the resolution for both smooth and discontinuous solutions.

CHAPTER II

BACKGROUND KNOWLEDGE

2.1 Shallow Water Equation

The shallow water equation has two parts. The first part, called the continuity

equation which is derived from the conservation of mass, describes how the water height

changes over time. It takes into account the flow of water in and out of a particular area

and how it affects the water height. The second part, called the momentum equation

which is derived from the conservation of momentum principles, describes how the water

moves horizontally. It takes into account the forces acting on the water, such as gravity

and pressure gradients, that affect its velocity. We assume that the equation is frictionless

when all examples are conducted only on the wet bottom topography. Therefore, similar

to [6] both one- and two-dimensional SWEs are obtained which are expressed in the form

without friction term.

2.1.1 The One-Dimensional Shallow Water Equation

∂h

∂t
+

∂

∂x
(hu) = 0, (2.1)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

gh2

2

)
+ gh

∂z

∂x
= 0, (2.2)

where x denotes the space variable, t denotes the time variable, h is the water height, u

is the horizontal velocity, g is the gravitational constant and z is the topography of the

bottom, see Figure 2.1 for visualizing of the physical variables.

4

Figure 2.1: Physical variables for one-dimensional shallow water model

2.1.2 The Two-Dimensional Shallow Water Equation

The two-dimensional SWEs are expanded from one-dimensional by adding y which

is a space variable along the y-direction and the involved variables.

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2.3)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

gh2

2

)
+

∂

∂y
(huv) + gh

(
∂z

∂x
+ Sfx

)
= 0, (2.4)

∂

∂t
(hv) +

∂

∂x
(huv) +

(
hv2 +

gh2

2

)
+ gh

(
∂z

∂y
+ Sfy

)
= 0, (2.5)

where x and y denote the space variables in the x− and y−directions, respectively, u and

v are the horizontal velocity in the x− and y−directions, respectively, see Figure 2.2 for

visualizing of the physical variables.

2.2 Chebyshev Expansion

Definition 2.2.1 ([3]). The Chebyshev polynomial of degree n ≥ 0 is defined by

Rn(x) = cos
(
n arccos

(
2x− a− b

b− a

))
for x ∈ [a, b].

The followings are properties of Rn(x) which were proved in [3] and we will use these

5

Figure 2.2: Physical variables for two-dimensional shallow water model

properties in this thesis.

Lemma 2.2.1. The followings are properties of the Chebyshev polynomials:

(i) The zeros of the Chebyshev polynomial Rn(x) for x ∈ [a, b] are

xk =
1

2

(
(b− a) cos

(
2k − 1

2n
π

)
+ a+ b

)
, k ∈ {1, 2, 3, . . . , n}. (2.6)

(ii) The single integrations of Chebyshev polynomial Rn(x) for n ≥ 2 are

R̄0(x) =

∫ x

a
R0(ξ)dξ = x− a,

R̄1(x) =

∫ x

a
R1(ξ)dξ =

(x− a)(x− b)

b− a
,

R̄n(x) =

∫ x

a
Rn(ξ)dξ =

b− a

4

(
Rn+1(x)

n+ 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
.

6

(iii) The Chebyshev matrix R at each zero xk defined in (2.6) is defined by

R =



R0(x1) R1(x1) · · · Rn−1(x1)

R0(x2) R1(x2) · · · Rn−1(x2)

...
...

R0(xn) R1(xn) · · · Rn−1(xn)


.

Then, it has the multiplicative inverse R−1 = 1
ndiag{1, 2, 2, . . . , 2}R⊤.

In order to define the Chebyshev integration matrices in two-dimensional space, we

need to introduce the Kronecker product.

2.3 Kronecker Product

Definition 2.3.1 ([13]). Let A = [aij] ∈ Rm×n and B = [bij] ∈ Rp×q. Then, A ⊗ B ∈

Rmp×nq is the Kronecker product defined by a block matrix as follows:

A⊗ B =


a11B . . . a1nB

...

am1B . . . amnB

 .

We state the fact of the Kronecker product without proof as follows.

Theorem 2.3.1 ([13]). The Kronecker product has the following characteristics.

1. Let A ∈ Rm×n,B ∈ Rp×q. Then,

A⊗ B = (A⊗ Ip)(Im ⊗ B) = (Im ⊗ B)(A⊗ Iq).

2. Let A ∈ Rm×n,B ∈ Rp×q,C ∈ Rn×r,D ∈ Rq×s. Then,

(A⊗ B)(C⊗D) = (AC)⊗ (BD).

7

3. Let A ∈ Rm×m,B ∈ Rn×n and P := [In⊗e1, In⊗e2, . . . , In⊗em] be an mn×mn per-

mutation matrix, where In is an n×n identity matrix and ei := [0, . . . , 0, 1, 0, . . . , 0]T

is an m-dimensional column vector which has 1 in the ith positions and 0’s else-

where. Then, P(A⊗ B)PT = B⊗A.

2.4 Developed FIM-CPE

2.4.1 One-Dimensional Chebyshev Integration Matrices

Next, we construct the Chebyshev integration matrix in one-dimensional which is

an instrument for dealing with the integral term. First, let M ∈ N and u be any function

that can be approximated by the Chebyshev polynomial expansion as follows

u(x) =

M−1∑
n=0

cnRn(x) for x ∈ [a, b], (2.7)

where cn are the unknown coefficients to be determined later and a, b ∈ R. Let x1 < x2 <

· · · < xM be nodal points which are discretized by the zeros of Chebyshev polynomial

RM (x) defined in (2.6). Substituting each xk into (2.7), it can be expressed as



u(x1)

u(x2)

...

u(xM)


=



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
...

R0(xM) R1(xM) · · · RM−1(xM)





c0

c1
...

cM−1


,

which is denoted by u = Rc. Thus, c = R−1u, where R−1 is defined in Lemma 2.2.1.

Next, let us consider the single layer integration of u from a to xk which is denoted by

U (1)(xk), we obtain

U (1)(xk) =

∫ xk

a
u(ξ) dξ =

M−1∑
n=0

cn

∫ xk

a
Rn(ξ) dξ =

M−1∑
n=0

cnR̄n(xk), (2.8)

8

for k ∈ {1, 2, 3, . . . ,M} where each R̄n(xk) is defined in Lemma 2.2.1. Or in matrix form



U (1)(x1)

U (1)(x2)

...

U (1)(xM)


=



R̄0(x1) R̄1(x1) · · · R̄M−1(x1)

R̄0(x2) R̄1(x2) · · · R̄M−1(x2)

...
...

R̄0(xM) R̄1(xM) · · · R̄M−1(xM)





c0

c1
...

cM−1


which is denoted by U(1) = Rc = RR−1u := Au, where A = RR−1 := [aki]M×M is called

the Chebyshev integration matrix. For k ∈ {1, 2, 3, . . . ,M}, it has another form,

U (1)(xk) =

∫ xk

a
u(ξ) dξ =

M∑
i=1

akiu(xi).

2.4.2 Two-Dimensional Chebyshev Integration Matrices

For two-dimensional Chebyshev integration matrices, let M,N ∈ N. Let xk and

yk be computation nodes over [a, b] × [a, b] along the horizontal and vertical directions

meshed by the zeros of Chebyshev polynomials RM (x) and RN (y), respectively. Hence,

the total grid numbers in the system are M × N points. For convenience, we index the

numbering of grid points along the x-direction by the global numbering system (Figure

2.3a) and y-direction by the local numbering system (Figure 2.3b).

(a) Global numbering system (b) Local numbering system

Figure 2.3: The indices of the grid points globally and locally

9

First, let us consider the single-layer integration with respect to the variables x and

y that are denoted by U
(1)
x (x, y) and U

(1)
y (x, y), respectively. For each fixed y, we have

U
(1)
x (xk, y) in the global numbering system as

U (1)
x (xk, y) =

∫ xk

a
u(ξ, y) dξ =

M∑
i=1

akiu(xi, y). (2.9)

For k ∈ {1, 2, 3, . . . ,M}, (2.9) can be expressed by U(1)
x (·, y) = AMu(·, y), where AM =

RR−1 is an M ×M matrix. Thus, for each y ∈ {y1, y2, y3, . . . , yN},



U(1)
x (·, y1)

U(1)
x (·, y2)

...

U(1)
x (·, yN)


=



AM 0 · · · 0

0 AM
.

... 0

0 · · · 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN)


,

which is represented by U(1)
x = Axu, where

Ax = IN ⊗AM (2.10)

is the Chebyshev integration matrix with respect to x-axis. Similarly, for each fixed x,

U
(1)
y (x, ys) can be expressed in the local numbering system as

U (1)
y (x, ys) =

∫ ys

a
u(x, η) dη =

N∑
j=1

asju(x, yj). (2.11)

For s ∈ {1, 2, 3, . . . , N}, (2.11) can be expressed as U(1)
y (x, ·) = ANu(x, ·), where AN =

10

RR−1 is an N ×N matrix. So, for each x ∈ {x1, x2, x3, . . . , xM},



U(1)
y (x1, ·)

U(1)
y (x2, ·)

...

U(1)
y (xM , ·)


=



AN 0 · · · 0

0 AN
.

... 0

0 · · · 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

which is depicted by Ũ(1)
y = Ãyũ, where Ãy = IM ⊗ AN . We notice that the elements

of u and ũ are the same, but have differences in the numbering systems. Thus, we can

transform Ũy and ũ in the local to global numbering systems by using the permutation

matrix P = [pij]MN×MN , where each pij is defined by

pij =


1 ; i = (s− 1)M + k and j = (k − 1)N + s,

0 ; otherwise ,

for all k ∈ {1, 2, 3, . . . ,M} and s ∈ {1, 2, 3, . . . , N}. We obtain that U(1)
y = PŨ(1)

y and

u = Pũ. Therefore, U(1)
y = Ayu, where

Ay = PÃyP−1 = P(IM ⊗AN)PT (2.12)

is the Chebyshev integration matrix with respect to y-axis in the global numbering system.

We noted that the integration with respect to both x and y is U(1)
xy = AxAyu = AyAxu.

Now, we have one- and two-dimensional Chebyshev integration matrices which is an

important tool to develop schemes for solving both one- and two-Dimensional shallow

water equations.

CHAPTER III

NUMERICAL ALGORITHM FOR

ONE-DIMENSIONAL SWES

In this chapter, we propose a numerical algorithm for approximating the solutions to

the one-dimensional SWEs (2.1) and (2.2) for various types of initial heights and bottom

topographies, with reflecting boundaries (walls), using the suggested FIM-CPE.

3.1 Numerical Algorithm

Before deriving the algorithm, let the quantity hu be expressed by the discharge q.

Then, (2.1) and (2.2) can be written as

∂h

∂t
+

∂q

∂x
= 0, (3.1)

∂q

∂t
+

∂

∂x

(
q2

h
+

gh2

2

)
+ gh

dz

dx
= 0, (3.2)

for all (x, t) ∈ (a, b) × (0, T], where a, b, T ∈ R in which h is the water depth, q = hu is

the discharge, u is the flow velocity in the x-direction, g is the acceleration due to gravity

and z is the bottom elevation. Assume that h and u are smooth real-valued functions of

the temporal coordinate. This system subjects to the initial conditions

h(x, 0) = ϕ0(x) and u(x, 0) = ϕ1(x) for x ∈ [a, b], (3.3)

and the reflecting boundary conditions [8],

u(a, t) = 0 and u(b, t) = 0 for t ∈ (0, T]. (3.4)

12

The FIM-CPE for one-dimensional SWEs is started by discretizing the computational

spatial domain (a, b) into M nodes generated by the zeros of Chebyshev polynomial

RM (x) as defined in (2.6) in ascending order, that is xk for k ∈ {1, 2, 3, . . . ,M}. Then,

we divide the temporal domain (0, T] by the step-size of time τ which will be defined later

and tm = tm−1 + τ for all m ∈ N, where t0 = 0.

Next, we handle the temporal variable t in both (3.1) and (3.2) by specifying the

time step tm into them which are notated by a superscript of ⟨m⟩. By assumption, since

h and u are smooth functions in time variable t, then q = hu is also smooth. Hence, we

obtain that the functions h and q at any two-consecutive times provide the values most

closely. In other words, let arbitrary two-consecutive times 0 ≤ tm−1 < tm for all m ∈ N.

If |tm−1 − tm| → 0, then |h⟨m⟩ − h⟨m−1⟩| → 0 and |q⟨m⟩ − q⟨m−1⟩| → 0. Therefore, this

assumption is sufficient to employ the linearization for nonlinear terms under the time

variable t and also the approximation of derivatives with respect to time t. Afterward,

we apply the first-order forward difference quotient to deal with the time derivatives in

(3.1) and (3.2) and utilize the linearization method to manipulate the nonlinear terms in

(3.2). Thus, (3.1) and (3.2) become

h⟨m⟩ − h⟨m−1⟩

τ
+

dq⟨m⟩

dx
= 0, (3.5)

q⟨m⟩ − q⟨m−1⟩

τ
+

d

dx

(
q⟨m−1⟩q⟨m⟩

h⟨m−1⟩ +
gh⟨m−1⟩h⟨m⟩

2

)
+ gh⟨m⟩ dz

dx
= 0, (3.6)

where h⟨m⟩ = h⟨m⟩(x) = h(x, tm) and q⟨m⟩ = q⟨m⟩(x) = q(x, tm) are the numerical values

at the mth time step. Next, we multiply (3.5) and (3.6) by τ to preserve the round-off

error caused by division by a small step size. To apply the proposed FIM-CPE, we first

eliminate all derivatives out of (3.5) and (3.6) by taking the single-layer integral on both

13

sides of them from a to the zero xk. Then, we obtain

∫ xk

a
h⟨m⟩(ξ)− h⟨m−1⟩(ξ) dξ + τq⟨m⟩(xk) + r1 = 0, (3.7)∫ xk

a
q⟨m⟩(ξ)− q⟨m−1⟩(ξ) dξ +

τq⟨m−1⟩(xk)q
⟨m⟩(xk)

h⟨m−1⟩(xk)
+

τgh⟨m−1⟩(xk)h
⟨m⟩(xk)

2

+ τg

∫ xk

a

dz(ξ)

dξ
h⟨m⟩(ξ) dξ + r2 = 0, (3.8)

where r1 and r2 are arbitrary constants that emerged from the process of integration for

the functions h⟨m⟩ and q⟨m⟩. Next, we transform (3.7) and (3.8) into the matrix forms by

hiring the Chebyshev integration matrix. When each zero xk for k ∈ {1, 2, 3, . . . ,M} is

plugged into (3.7) and (3.8), we have the following simplified matrix equations

Ah⟨m⟩ + τq⟨m⟩ + r1e = Ah⟨m−1⟩, (3.9)

Aq⟨m⟩ + τB⟨m−1⟩q⟨m⟩ +
τg

2
D⟨m−1⟩h⟨m⟩ + τgAZh⟨m⟩ + r2e = Aq⟨m−1⟩, (3.10)

where A = RR−1 is the Chebyshev integration matrix and e = [1, 1, 1, . . . , 1]⊤ has M

entries. Other parameters contained in both (3.9) and (3.10) are defined by

h⟨m⟩ =
[
h⟨m⟩(x1), h

⟨m⟩(x2), h
⟨m⟩(x3), . . . , h

⟨m⟩(xM)
]⊤

,

q⟨m⟩ =
[
q⟨m⟩(x1), q

⟨m⟩(x2), q
⟨m⟩(x3), . . . , q

⟨m⟩(xM)
]⊤

,

Z = diag
{
z′(x1), z

′(x2), z
′(x3), . . . , z

′(xM)
}
,

B⟨m−1⟩ = diag
{ q⟨m−1⟩(x1)
h⟨m−1⟩(x1)

, q⟨m−1⟩(x2)
h⟨m−1⟩(x2)

, q⟨m−1⟩(x3)
h⟨m−1⟩(x3)

, . . . , q⟨m−1⟩(xM)
h⟨m−1⟩(xM)

}
and

H⟨m−1⟩ = diag
{
h⟨m−1⟩(x1), h

⟨m−1⟩(x2), h
⟨m−1⟩(x3), . . . , h

⟨m−1⟩(xM)
}
.

Now, we note in (3.9) and (3.10) that their numbers of unknown variables have up to

2M + 2 including h⟨m⟩, q⟨m⟩, r1 and r2. However, they have only 2M numbers of equa-

tions. Thus, we need to construct 2 more equations. From the given reflecting boundary

conditions (3.4), they can be written into the vector form by employing the Chebyshev

14

polynomial expansion (2.7) specifying at the mth time step as the following

q⟨m⟩(a) =

M−1∑
n=0

c⟨m⟩
n Rn(a) := p⊤

l c⟨m⟩ = p⊤
l R−1q⟨m⟩ = 0, (3.11)

q⟨m⟩(b) =

M−1∑
n=0

c⟨m⟩
n Rn(b) := p⊤

r c⟨m⟩ = p⊤
r R−1q⟨m⟩ = 0, (3.12)

where pl = [R0(a), R1(a), R2(a), . . . , RM−1(a)]
⊤ and pr = [R0(b), R1(b), R2(b), . . . , RM−1(b)]

⊤.

In fact, the Chebyshev polynomials at end points are Rn(a) = (−1)n and Rn(b) = 1, for

n ∈ N ∪ {0}. Finally, we can construct the system of linear equations from (3.9)–(3.12)

which has a total number of 2M +2 unknowns containing h⟨m⟩, q⟨m⟩, r1 and r2 as follows



A τI e 0
τg
2 H⟨m−1⟩ + τgAZ A + τB⟨m−1⟩ 0 e

0⊤ p⊤
l R−1 0 0

0⊤ p⊤
r R−1 0 0





h⟨m⟩

q⟨m⟩

r1

r2


=



Ah⟨m−1⟩

Aq⟨m−1⟩

0

0


, (3.13)

where I is the M×M identity matrix and 0 is the M zero column vector. Therefore, we can

solve (3.13) to obtain the approximate solutions h⟨m⟩ and q⟨m⟩ by starting with the initial

conditions (3.3) written in the vector forms h⟨0⟩ = [ϕ0(x1), ϕ0(x2), ϕ0(x3), . . . , ϕ0(xM)]⊤

and u⟨0⟩ = [ϕ1(x1), ϕ1(x2), ϕ1(x3), . . . , ϕ1(xM)]⊤. Then, q⟨0⟩ = h⟨0⟩⊙u⟨0⟩, where ⊙ is the

Hadamard product [1] which is a product of two vectors element-wise. Also, the solution

u⟨m⟩ is directly obtained by u⟨m⟩ = q⟨m⟩ ⊘ h⟨m⟩, where ⊘ is the Hadamard division [10]

which means a division of two vectors element-wise. However, the stability of this scheme

should be mentioned. The obtained approximations by the such scheme will only converge

to their analytical solution as the refined grid if the Courant-Friedrichs-Lewy condition is

satisfied based on [9], which we need to set

τ = CFL
min
i

(∆xi)

max
k

(∣∣u⟨m−1⟩(xk)
∣∣+√gh⟨m−1⟩(xk)

) , (3.14)

where CFL is the Courant number. To satisfy the stability, the CFL must be less than one

because the distance traveled by the wave in each time step must not exceed the distance

15

between neighboring nodes or cells in the mesh. To ensures that the water will move in

a controlled manner and prevents it from jumping over other cells. Since τ is varying

throughout the approximation process, we cannot accurately determine the value at the

desired time. Therefore, we choose the time that is closest and less than the desired time.

For computational convenience, we provide the flowchart algorithm as seen in Figure 3.1.

Start

Input: a, b,M, T, z(x), ϕ0(x), ϕ1(x),CFL

Calculate the fixed parameters: A,Z,R−1, pl, pr

Set initial: m = 1, t(0) = 0, h⟨0⟩, u⟨0⟩, q⟨0⟩,B⟨0⟩,H⟨0⟩

Update time: τ ← (3.14) and t(m)← t(m− 1) + τ

t(m) ≤ T

Find h⟨m⟩ and q⟨m⟩ by solving linear system (3.13)

Compute u⟨m⟩,B⟨m⟩,H⟨m⟩ to use in the next iteration

Update step m← m+ 1

Output: the terminal solutions h⟨m⟩ and u⟨m⟩ at time T

Stop

Yes

No

Figure 3.1: The flowchart for solving one-dimension SWEs

16

3.2 Numerical Simulations

In this section, we investigate the efficiency, accuracy and stability of our proposed

numerical algorithm through four examples of one-dimensional SWEs with different types

of bottom topography on a wet bed, including the lake at rest, the dam break flow which

is an important type of disaster and Gaussian pulse. Extensive research efforts have been

made to understand and defend against this disaster using methods ranging from small-

and large-scale experiments to numerical modeling. Therefore, the experimental examples

include dam break problems with flat and non-flat bottoms, as well as a lake at rest to

verify the accuracy of the scheme. In this study, we used an AMD Ryzen 7 4800HS CPU

with 16.0 GB of RAM and Matlab software for all data processing and analysis.

Example 3.2.1 (Lake at rest). The lake at rest problem is a simple and well-defined

scenario where the water surface height and horizontal velocity are both constant over

time and space [8]. Therefore, it serves as a good benchmark for testing the accuracy of

numerical schemes for solving SWEs. The computational domain is [0, 10]. The initial

velocity is zero. The bottom topography is defined by

z(x) = 5e−(
x−5

0.8)
2

(3.15)

and the initial water height is h(x, 0) = 10 − z(x). In this computational, we run the

simulation on M = 100 grids using T = 10s for a long end period. Notice from imple-

menting with values of CFL = 0.1, 0.2, 0.3, . . . , 0.9, we found that CLF = 0.5 provides

the best accuracy for our algorithm. In this example, we employ our proposed algorithm

in Figure 3.1 with CLF = 0.5 to solve the problem. In addition, we also use CLF = 0.5

for the other examples. We can see the result in Figure 3.2 that, it is stable in time with

a run time of 30.0897s. The mean absolute error defined by

MAEv =
1

M

M∑
k=1

|v∗(xk, T)− v(xk, T)| , (3.16)

where v∗ and v are exact and numerical solutions, respectively. At the end time, the

errors in h and u are 6.4485 × 10−12 and 8.491 × 10−13, respectively. To evaluate the

17

conservative of mass, we compute the total volume by using

1

2

[
(x2 − a)h<m>

1 + (b− xM−1)h
<m>
M +

M−2∑
i=1

(xi+2 − xi)h
<m>
i+1

]

where x1, x2, . . . , xM are nodal points, M is the number of nodal points, h<m>
1 , h<m>

2 , . . . , h<m>
M

are the height of water at each time t(m) form the simulation. By the experiment, the

total water varies minimally, not exceeding 10−5 throughout the simulation period. Sim-

ilarly with Example 3.2.2-3.2.4.

Figure 3.2: Water height at T = 10 s.

Example 3.2.2 (Dam break over flat bottom [12]). This dam break problem is one of

the most basic studies based on the SWEs due to the flat topography or z(x) = 0. The

computational domain is [0, 1]. The initial velocity is zero and the initial water height is

h(x, 0) =


1 for 0 ≤ x < 1

2 ,

1
2 for 1

2 ≤ x ≤ 1.

This means that the discontinuity at x = 1
2 represents a barrier that separates the

18

two initial river heights. The exact solution to this problem is given by Stoker [12], i.e.,

h∗(x, t) =



1 for x < 1
2 − t

√
g,

1
9g

(
2
√
g − 2x−1

2t

)2 for 1
2 − t

√
g ≤ x ≤ 1

2 + (v − w)t,

w2

g for 1
2 + (v − w)t < x ≤ 1

2 + St,

1
2 for x > 1

2 + St

and

u∗(x, t) =



0 for x < 1
2 − t

√
g,

1
3t

(
2x− 1 + 2t

√
g
)2 for 1

2 − t
√
g ≤ x ≤ 1

2 + (v − w)t,

v for 1
2 + (v − w)t < x1

2 + St,

0 for x > 1
2 + St,

where v = S− g
8S

(
1 +

√
1 + 16S2

g

)
, w =

√
g
4

(√
1 + 16S2

g − 1
)

and S = 2.9579181201875.

For a more depth analysis of how the value S was obtained, see Stoker [12]. By testing,

we found that the obtained results are well accurate when compared with its exact solu-

tion given in [12]. The comparisons are demonstrated in Table 3.1 measured at the final

interested time T for different values of grid point M by using the mean absolute error

(3.16). The error in Table 3.1 does not differ much as the grid becomes finer, because the

initial height is not smooth (at the shock x = 1
2). This causes the approximate solution

to not capture the area around the shock accurately but we further compare approximate

solutions obtained by our algorithm and by the FDM [5] for various nodal points M as

shown in Table 3.1. We can see that at the same number M , our scheme provides solu-

tions closer to the analytical solutions than the FDM. Additionally, when increasing the

number of nodes M , the obtained solutions are likewise ever-increasing accurate. The

consuming times of computation are also indicated in Table 3.1.

Moreover, we can visualize the solutions for both water height h and velocity u

received by using our algorithm with M = 200 at T = 0.1 as depicted in Figure 3.3.

19

From Figure 3.3, the initial height is broken at x = 1
2 , when time passes. We see that our

scheme can well capture at around the shock break and quite matches the exact solution.

(a) Water height h(x, T)

(b) Water velocity u(x, T)

Figure 3.3: Graphical solutions with M = 200 at time T = 0.1

Table 3.1: Comparisons of exact and numerical solutions at T = 0.1

M
FDM[5] Our algorithm Run time (s.)

MAEh MAEu MAEh MAEu

100 2.02× 10−2 7.53× 10−2 4.73× 10−3 1.65× 10−2 0.4147
200 1.31× 10−2 4.82× 10−2 2.88× 10−3 1.07× 10−2 2.6712
300 9.96× 10−3 3.64× 10−2 2.05× 10−3 7.72× 10−3 8.4295
400 8.15× 10−3 2.98× 10−2 1.63× 10−3 6.19× 10−3 20.0024

Example 3.2.3 (Dam break over a bump). This presented problem discussed by LeVeque

[7]. It is a nonflat bottom of the topography with smoothness. Therefore, z′(x) ̸= 0 for

20

some values of x. This test problem is considered over the smooth bottom topography

shaped as the bump defined by

z(x) =


1
4 (cos(10x− 5)π + 1) for 0.4 ≤ x ≤ 0.6,

0 otherwise.

The computational domain of this problem is [0, 1]. The initial velocity is zero and the

initial water height is defined as the following equations involved the bump z(x),

h(x, 0) =


1− z(x) for x < 0.1,

6
5 − z(x) for 0.1 ≤ x ≤ 0.2,

1− z(x) for x > 0.2.

This problem presents an initial water height shaped like a pulse that breaks up

into two waves moving in opposite directions. The square-wave pulse moving towards

the right side passes through the bump in the riverbed, partially reflecting and causing a

disturbance behind the bump. The other side reflects off the wall.

In the experiment, our presented numerical algorithm is applied to find the approxi-

mate solutions h(x, t) and u(x, t) of the problem. Using the grid number M = 100, we can

simulate the behavior of wave propagation at different times t ∈ {0.01, 0.03, 0.05, 0.1, 0.15, 0.2}

depicted in Figure 3.4 for water height and velocity with run time 11.9876s. We can see

that at starting time, the wave pulse moves right-toward with h+z around 1.1. After the

wave pulse moving to the bump, it is partially reflected and affects to decrease h+z when

moving afterward. Behind the bump, we see that the wave pulse is still ever-decreasing.

The wave pulse also moves left towards h + z around 1.1. After it meets the wall, it in-

creases (T = 0.05) and then returns to the same level as before (T = 0.1). The behavior

of the left wave is the same as the right wave when passing the bump. Furthermore, this

problem is also studied with several methods given in [5]. Our algorithm produces the

same right wave behavior as those methods because the left side meets the wall.

Example 3.2.4 (Gaussian Pulse [8]). By utilizing this example, we aim to demonstrate

21

(a) Water height h(x, T) + z(x) at time T = 0.01, 0.03, 0.05, 0.1, 0.15, 0.2

(b) Water velocity u(x, T) at time T = 0.01, 0.03, 0.05, 0.1, 0.15, 0.2

Figure 3.4: Graphical solutions with M = 100 at different times T

that our method offers an advantage in handling smooth solutions with reflecting bound-

ary conditions due to flat bottom [8]. The initial Gaussian is defined by the following

equation

h(x, 0) = 1 + 0.1e−(
x−0.5

0.1).

We simulate this experiment on M = 60 grids. The result from our method, see in Figure

3.5. The wave consistently appears to be smooth. Initially, it separates into left and right

sides, reflects off the walls, and turns into a hump. This cycle continues over time with

the height decreasing until the velocity approaches zero, leading to a constant wave. This

state can be referred to as a steady state. Therefore, we observe that at time T = 9.5,

22

the experiment has reached a steady state within a tolerance of 10−5 with a run time

8.6104mins.

Figure 3.5: Water height h(x, t) at various times(s).

CHAPTER IV

NUMERICAL ALGORITHM FOR

TWO-DIMENSIONAL SWES

This chapter presents a numerical method that uses the suggested FIM-CPE to find

rough solutions for the two-dimensional SWEs (2.3), (2.4) and (2.5) with the reflecting

boundary conditions (wall).

4.1 Numerical Algorithm

Before deriving the algorithm, let the quantity hu, hv be expressed by the discharge

q1, q2, respectively. Then, (2.3), (2.4) and (2.5) can be written as

∂h

∂t
+

∂q1
∂x

+
∂q2
∂y

= 0, (4.1)

∂q1
∂t

+
∂

∂x

(
q21
h

+
gh2

2

)
+

∂

∂y

(q1q2
h

)
+ gh

∂z

∂x
= 0, (4.2)

∂q2
∂t

+
∂

∂x

(q1q2
h

)
+

(
q22
h

+
gh2

2

)
+ gh

∂z

∂y
= 0, (4.3)

for all (x, y, t) ∈ (a, b) × (c, d) × (0, T], where a, b, c, d, T ∈ R, q1 = hu and q2 = hv are

the discharges. Assume that h, u and v are smooth real-valued functions of the temporal

coordinate. This system subjects to the initial conditions

h(x, y, 0) = ϕ0(x, y), q1(x, y, 0) = ϕ1(x, y) and q2(x, y, 0) = ϕ2(x, y) (4.4)

for (x, y) ∈ [a, b]× [c, d]. The reflecting boundary conditions, described in [8],

q1(x, y, t) = 0 and q2(x, y, t) = 0, (4.5)

for (x, y, t) ∈ ∂([a, b]× [c, d])× (0, T].

24

The FIM-CPE for two-dimensional SWEs uses similar procedures to those in the

one-dimensional SWEs as follows :

1. Discretize the computational domain:

• To partition the domain (a, b) × (c, d) into H = M × N nodes, we use the

zeros of the Chebyshev polynomial RM (x) and RN (x) as defined in (2.6)

within the global numbering system. The nodes are denoted by (xk, yk) where

k ∈ {1, 2, . . . , H}.

• We divide the temporal domain (0, T] by the time step τ , which will be defined

later and set tm = tm−1 + τ for all m ∈ N, where t0 = 0.

2. Approximate the time derivatives using the first-order forward difference quotient

and use the linearization method to manipulate the nonlinear terms:

Thus, (4.1)− (4.3) become

0 =
h⟨m⟩ − h⟨m−1⟩

τ
+

∂q
⟨m⟩
1

∂x
+

∂q
⟨m⟩
2

∂y
, (4.6)

0 =
q
⟨m⟩
1 − q

⟨m−1⟩
1

τ
+

∂

∂x

(
q
⟨m−1⟩
1 q

⟨m⟩
1

h⟨m−1⟩ +
gh⟨m−1⟩h⟨m⟩

2

)
+

∂

∂y

(
q
⟨m−1⟩
1 q

⟨m⟩
2

h⟨m−1⟩

)

+ gh⟨m⟩ ∂z

∂x
, (4.7)

0 =
q
⟨m⟩
2 − q

⟨m−1⟩
2

τ
+

∂

∂x

(
q
⟨m−1⟩
2 q

⟨m⟩
1

h⟨m−1⟩

)
+

∂

∂y

(
q
⟨m−1⟩
2 q

⟨m⟩
2

h⟨m−1⟩ +
gh⟨m−1⟩h⟨m⟩

2

)

+ gh⟨m⟩ ∂z

∂y
, (4.8)

where h⟨m⟩ = h⟨m⟩(x, y) = h(x, y, tm), q
⟨m⟩
1 = q

⟨m⟩
1 (x, y) = q1(x, y, tm) and q

⟨m⟩
2 =

q
⟨m⟩
2 (x, y) = q2(x, y, tm) are the numerical values at the mth time step.

3. Eliminate all derivatives:

We take the double-layer integral on both sides of (4.6)− (4.8) from a to the zero

25

xk and c to the zero yk. Then, we obtain

0 =

∫ yk

c

∫ xk

a
h⟨m⟩(ξ, η)− h⟨m−1⟩(ξ, η) dξdη

+ τ

∫ yk

c
q
⟨m⟩
1 (xk, η) dη + τ

∫ xk

a
q
⟨m⟩
2 (ξ, yk) dξ + r1(x) + s1(y) + r2(x) + s2(y),

(4.9)

0 =

∫ yk

c

∫ xk

a
q
⟨m⟩
1 (ξ, η)− q

⟨m−1⟩
1 (ξ, η) dξdη

+ τ

∫ yk

c

q
⟨m−1⟩
1 (xk, η)q

⟨m⟩
1 (xk, η)

h⟨m−1⟩(xk, η)
+

gh⟨m⟩(xk, η)h
⟨m−1⟩(xk, η)

2
dη

+ τ

∫ xk

a

q
⟨m−1⟩
1 (ξ, yk)q

⟨m⟩
2 (ξ, yk)

h⟨m−1⟩(ξ, yk)
dξ + τg

∫ yk

c

∫ xk

a

∂z(ξ, η)

∂ξ
h⟨m⟩(ξ, η) dξdη

+ r3(x) + s3(y), (4.10)

0 =

∫ yk

c

∫ xk

a
q
⟨m⟩
2 (ξ, η)− q

⟨m−1⟩
2 (ξ, η) dξdη

+ τ

∫ yk

c

q
⟨m−1⟩
2 (xk, η)q

⟨m⟩
1 (xk, η)

h⟨m−1⟩(xk, η)
dη + τ

∫ xk

a

q
⟨m−1⟩
2 (ξ, yk))q

⟨m⟩
2 (ξ, yk))

h⟨m−1⟩(ξ, yk))

+
gh⟨m−1⟩(ξ, yk))h

⟨m⟩(ξ, yk))

2
dξ + τg

∫ yk

c

∫ xk

a

∂z(ξ, η)

∂η
h⟨m⟩(ξ, η) dξdη

+ r4(x) + s4(y), (4.11)

where

rj(x) =

M−1∑
n=0

rj,nRn(x) and sj(y) =

N−1∑
n=0

sj,nRn(y), (4.12)

where j ∈ {1, 2, 3, 4} are arbitrary functions that emerged in the process of inte-

gration.

4. Rearrange each of the equations ((4.9), (4.10), (4.11)) into matrix form using the

Chebyshev integration matrix:

We substitute all zero (xk, yk), k ∈ {1, 2, 3, . . . , H} into (4.9)− (4.11), we have the

26

following simplified matrix equations

AxAyh⟨m−1⟩ = AxAyh⟨m⟩ + τAyq⟨m⟩
1 + τAxq⟨m⟩

2 +Φxr1 +Φys1 +Φxr2 +Φys2,

(4.13)

AxAyq⟨m−1⟩
1 = AxAyq⟨m⟩

1 + τAyB⟨m−1⟩
1 q⟨m⟩

1 +
τg

2
AyH⟨m−1⟩h⟨m⟩

+ τAxB⟨m−1⟩
1 q⟨m⟩

2 + τgAxAyZxh⟨m⟩ +Φxr3 +Φys3, (4.14)

AxAyq⟨m−1⟩
2 = AxAyq⟨m⟩

2 + τAyB⟨m−1⟩
2 q⟨m⟩

1 + τAxB⟨m−1⟩
2 q⟨m⟩

2

+
τg

2
AxH⟨m−1⟩h⟨m⟩ + τgAxAyZyh⟨m⟩ +Φxr4 +Φys4, (4.15)

where Ax and Ay are the Chebyshev integration matrices defined in (2.10) and

(2.12), respectively. Other parameters contained in (4.13), (4.14) and (4.15) are

defined by

h⟨m⟩ =
[
h
⟨m⟩
1 , h

⟨m⟩
2 , h

⟨m⟩
3 , . . . , h

⟨m⟩
H

]⊤ for h
⟨·⟩
i = h⟨·⟩(xi, yi),

q⟨m⟩
1 =

[
q
⟨m⟩
11 , q

⟨m⟩
12 , q

⟨m⟩
13 , . . . , q

⟨m⟩
1H

]⊤ for q
⟨·⟩
1i = q

⟨·⟩
1 (xi, yi),

q⟨m⟩
2 =

[
q
⟨m⟩
21 , q

⟨m⟩
22 , q

⟨m⟩
23 , . . . , q

⟨m⟩
2H

]⊤ for q
⟨·⟩
2i = q

⟨·⟩
2 (xi, yi),

Zx = diag
{
zx,1, zx,2, zx,3, . . . , zx,H

}
for zx,i = zx(xi, yi),

Zy = diag
{
zy,1, zy,2, zy,3, . . . , zy,H

}
for zy,i = zy(xi, yi),

B⟨m−1⟩
1 = diag

{
q
⟨m−1⟩
11

h
⟨m−1⟩
1

, q
⟨m−1⟩
12

h
⟨m−1⟩
2

, q
⟨m−1⟩
13

h
⟨m−1⟩
3

, . . . , q
⟨m−1⟩
1H

h
⟨m−1⟩
H

}
,

B⟨m−1⟩
2 = diag

{
q
⟨m−1⟩
21

h
⟨m−1⟩
1

, q
⟨m−1⟩
22

h
⟨m−1⟩
2

, q
⟨m−1⟩
23

h
⟨m−1⟩
3

, . . . , q
⟨m−1⟩
2H

h
⟨m−1⟩
H

}
,

H⟨m−1⟩ = diag
{
h
⟨m−1⟩
1 , h

⟨m−1⟩
2 , h

⟨m−1⟩
3 , . . . , h

⟨m−1⟩
H

}
,

rj =
[
rj,0, rj,1, rj,2, . . . , rj,M−1

]⊤ for j ∈ {1, 2, 3, 4},

sj =
[
sj,0, sj,1, sj,2, . . . , rj,N−1

]⊤ for j ∈ {1, 2, 3, 4}.

27

From (4.12), we have

Φx =



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

.
.

R0(xH) R1(xH) · · · RM−1(xH)


and

Φy =



R0(y1) R1(y1) · · · RN−1(y1)

R0(y2) R1(y2) · · · RN−1(y2)

.
.

R0(yH) R1(yH) · · · RN−1(yH)


.

5. Transform the given boundary conditions into the matrix form:

We use the linear combination of Chebyshev polynomials (2.7) to convert the

boundary conditions (3.4) into the matrix form, which can be divided into 2 cases:

(a) For the left and right boundary conditions, we fixed the value of x and varied

the value of y, we have

q⟨m⟩(x, y) =

M−1∑
n=0

c⟨m⟩
n Rn(x) := pM (x)R−1

M q⟨m⟩(·, y) = 0, (4.16)

where pM (x) = [R0(x), R1(x), R2(x), . . . , RM−1(x)]
⊤, RM is an M × M

Chebyshev matrix. We substitute y ∈ {y1, y2, y3, . . . , yN} which are the zeros

of the Chebyshev polynomial RN (x) into (4.16) as follows:



pM (x)R−1
M 0 · · · 0

0 pM (x)R−1
M

...
... . . . 0

0 · · · 0 pM (x)R−1
M





q⟨m⟩(·, y1)

q⟨m⟩(·, y2)
...

q⟨m⟩(·, yN)


=



0

0

...

0


.

28

It can be simplified to

(
IN ⊗ pM (x)R−1

M

)
q⟨m⟩ = 0,

for x ∈ {a, b}. Then, the left boundary is

Plq⟨m⟩ :=
(
IN ⊗ pM (a)R−1

M

)
q⟨m⟩ = 0 (4.17)

and the right boundary is

Prq⟨m⟩ :=
(
IN ⊗ pM (b)R−1

M

)
q⟨m⟩ = 0. (4.18)

Remark that the left and the right boundaries are quite similar except that

we evaluate the pM (x) by a and b, respectively.

(b) For the bottom and top boundary conditions, we fixed the value of y and

varied the value of x, we have

q⟨m⟩(x, y) =

N−1∑
n=0

c⟨m⟩
n Rn(x) := pN (x)R−1

N q⟨m⟩(x, ·) = 0, (4.19)

where pN (y) = [R0(y), R1(y), R2(y), . . . , RN−1(x)]
⊤, RN is an N×N Cheby-

shev matrix. We substitute x ∈ {x1, x2, x3, . . . , xM} which are the zeros of

the Chebyshev polynomial RM (x) into (4.19) as follows:



pN (y)R−1
N 0 · · · 0

0 pN (y)R−1
N

...
... . . . 0

0 · · · 0 pN (y)R−1
N





q⟨m⟩(x1, ·)

q⟨m⟩(x2, ·)
...

q⟨m⟩(xN , ·)


=



0

0

...

0


.

29

It can be simplified to

(
IM ⊗ pN (y)R−1

N

)
P−1q⟨m⟩ = 0,

for y ∈ {c, d}. Then, the bottom boundary is

Pbq⟨m⟩ :=
(
IM ⊗ pN (c)R−1

N

)
P−1q⟨m⟩ = 0 (4.20)

and the top boundary is

Ptq⟨m⟩ :=
(
IM ⊗ pN (d)R−1

N

)
P−1q⟨m⟩ = 0. (4.21)

Remark that the bottom and the top boundaries are quite similar except that we

evaluate the pN (y) by c and d, respectively.

6. Construct the system of linear equations:

From (4.13) − (4.15), (4.17), (4.18), (4.20) and (4.21) which have a total number

of 3H + 4M + 4N unknowns containing h⟨m⟩, q⟨m⟩
1 , q⟨m⟩

2 , r1, s1, r2, s2, r3, s3, r4

and s4, we have

30

 Λ1 Λ2

Λ3 04M+4N





h⟨m⟩

q⟨m⟩
1

q⟨m⟩
2

r1

s1

r2

s2

r3

s3

r4

s4



=



Ah⟨m−1⟩

Aq⟨m−1⟩
1

Aq⟨m−1⟩
2

0
...

0


, (4.22)

31

where

Λ1 =


AxAy τAy τAx

τg
2 AyH⟨m−1⟩ + τgAxAyZx AxAy + τAyB⟨m−1⟩

1 τAxB⟨m−1⟩
1

τg
2 AxH⟨m−1⟩ + τgAxAyZy τAyB⟨m−1⟩

2 AxAy + τAxB⟨m−1⟩
2


3H×3H

,

Λ2 =


Φx Φy Φx Φy 0 0 · · · 0

0 0 · · · 0 Φx Φy 0 0

0 0 · · · 0 Φx Φy


3H×(4M+4N)

and

Λ3 =



0 Pl 0

0 Pr 0

Pb
...

Pt 0
... 0 Pl

0 Pr

... Pb

0 0 Pt


(4M+4N)×3H

.

Finally, we have the system of linear equations (4.22), which can be solved to

yield the approximate solutions h⟨m⟩, q⟨m⟩
1 and q⟨m⟩

2 by starting with the initial conditions

(4.4) written in the vector forms h⟨0⟩ = [ϕ0(x1), ϕ0(x2), ϕ0(x3), . . . , ϕ0(xM)]⊤,u⟨0⟩ =

[ϕ1(x1), ϕ1(x2), ϕ1(x3), . . . , ϕ2(xM)]⊤ and v⟨0⟩ = [ϕ2(x1), ϕ2(x2), ϕ2(x3), . . . , ϕ2(xM)]⊤.

Then, q⟨0⟩
1 = h⟨0⟩ ⊙ u⟨0⟩ and q⟨0⟩

2 = h⟨0⟩ ⊙ v⟨0⟩. Also, the solution u⟨m⟩ and v⟨m⟩ are

directly obtained by u⟨m⟩ = q⟨m⟩
1 ⊘ h⟨m⟩ and v⟨m⟩ = q⟨m⟩

2 ⊘ h⟨m⟩, respectively.

Additionally, it is important to note the stability of this scheme similar to Chapter

3. The approximations obtained through this scheme will only converge to their analytical

solution on a refined grid if the Courant-Friedrichs-Lewy condition in [9],

τ = CFL
min
i,j

(∆xi,∆yj)

max
k

(∣∣∣u⟨m−1⟩
k

∣∣∣+√gh
⟨m−1⟩
k ,

∣∣∣v⟨m−1⟩
k

∣∣∣+√gh
⟨m−1⟩
k

) (4.23)

is satisfied where CFL is the Courant number. To satisfy the stability, it is the same as

32

in Chapter 3 that the CFL must be less than one. For computational convenience, we

provide the flowchart algorithm in Figure 4.1.

Start

Input: a, b, c, d,M,N, T, z(x, y), ϕ0(x, y), ϕ1(x, y), ϕ2(x, y),CFL

Calculate the fixed parameters: Ax,Ay,Zx,Zy,Φx,ΦxPl,Pr,Pb,Pt

Set initial: m = 1, t(0) = 0, h⟨0⟩, u⟨0⟩, v⟨0⟩, q⟨0⟩
1 , q⟨0⟩

2 ,B⟨0⟩
1 ,B⟨0⟩

2 ,H⟨0⟩

Update time: τ ← (4.20) and t(m)← t(m− 1) + τ

t(m) ≤ T

Find h⟨m⟩, q⟨m⟩
1 and q⟨m⟩

2 by solving linear system (3.13)

Compute u⟨m⟩, v⟨m⟩,B⟨m⟩
1 ,B⟨m⟩

2 ,H⟨m⟩ to use in the next iteration

Update step m← m+ 1

Output: the terminal solutions h⟨m⟩, u⟨m⟩ and v⟨m⟩ at time T

Stop

Yes

No

Figure 4.1: The flowchart for solving two-dimension SWEs

4.2 Numerical simulations

In this section, our proposed numerical algorithm has been investigated the effi-

ciency and accuracy via two examples of two-dimensional SWEs with different types of

bottom topography only on a wet bed. Thus, the experimental examples are Lake at

33

rest problems with nonflat bottoms and the Gaussian-shaped peak with flat bottoms as

follows. In this study, we used an AMD Ryzen 7 4800HS CPU with 16.0 GB of RAM

and Matlab software for all data processing and analysis.

Example 4.2.1 (Lake at rest [6]). The lake at rest is also usually used as a benchmark to

verify numerical schemes for solving shallow water equations in two dimensions, see Figure

4.2 where the analytic solution is presented. The computational domain is [0, 1]× [0, 1].

The bottom topography is defined by

z(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2)

and the initial water height is h(x, y) = 1− z(x, y) with initial zero velocity. We conduct

the simulation on 30× 30 grids using T = 5s as the end time. The simulation results are

stable over time, and at the end time, the errors in h, u and v are 2.4977×10−6, 7.7669×

10−4 and 7.7669× 10−4, respectively with a run time about 11.4308hrs. To evaluate the

conservative of mass, we compute the total volume by using

1

4

[
(y2 − c)

(
(x2 − a)h<m>

1 +

M−2∑
i=1

(xi+2 − xi)h
<m>
i+1

)

+ (d− yN−1)

(
(b− xM−1)h

<m>
MN +

M−2∑
i=1

(xi+2 − xi)h
<m>
MN−M+i+1

)

+ (b− xM−1)

(y2 − c)h<m>
M +

N−2∑
j=1

(yj+2 − yj)h
<m>
jM+M


+ (x2 − a)

(d− yN−1)h
<m>
MN−M+1 +

N−2∑
j=1

(yj+2 − yj)h
<m>
jM+1


+

N−2∑
j=1

M−2∑
i=1

(xi+2 − xi)(yj+2 − yj)h
<m>
jM+i+1

]

where x1, x2, . . . , xM and y1, y2, . . . , yN are nodal points, M,N are the number of

nodal points along the x-axis and y-axis, respectively. h<m>
1 , h<m>

2 , . . . , h<m>
MN are the

height of water at each time t(m) form the simulation. By the experiment, the total

water varies minimally, not exceeding 10−5 throughout the simulation period. Similarly

34

with Example 4.2.2.

Figure 4.2: Analytical solutions

Example 4.2.2 (Gaussian pulse 2D [8]). We apply a 2D Gaussian-shaped peak as the

initial condition for the water depth with zero velocity due to the flat topography or

z(x, y) = 0 [11] which is defined by

h(x, y) = 1 + 0.1e−100((x−0.5)2+(y−0.5)2).

The computational domain is [0, 1]× [0, 1]. The simulations for the time interval [0,0.25]

are shown in Figure 4.3 with a run time about 32.9167mins. The wave moves out from

the center, and all edges first reflect at the wall, followed by all corners. This causes the

top view to change from a circle to a symmetrical shape with four corners. Furthermore,

the water height decreases on average over time. The behaviors of water depth, denoted

by h(x, y, t), remain consistent with those observed in other schemes, see [8].

35

Figure 4.3: Water height h(x, t) at various times(s).

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This study developed a numerical algorithm using the FIM-CPE for the spatial vari-

able and the forward difference quotient for the temporal variable. The algorithm was

employed to obtain precise solutions for the one- and two-dimensional SWEs over two

bottom types of topography with reflecting boundary conditions (wall). Our proposed

scheme was designed to ensure stability by incorporating the Courant-Friedrichs-Lewy

condition. Additionally, flowcharts of the algorithms are presented in Figures 3.1 and 4.1

for one- and two-dimensional, respectively. In Chapter 3, we illustrate four experimental

examples of the one-dimensional SWEs. Example 3.2.1 provides a measure of the accu-

racy of our method by evaluating how well it approximates the known exact solution for

a static water body. Example 3.2.2 with a flat bottom shows that our algorithm provides

more accurate results than FDM when using the same number of nodes M , as displayed

in Table 3.1. Examples 3.2.3 presents nonflat bottoms that have no analytical solutions.

Our algorithm accurately approximates these solutions at different times T , as compared

to other methods. Example 3.2.4 demonstrates that our algorithm effectively deals with

smooth solutions. Furthermore, in Chapter 4, we present two experimental examples of

the two-dimensional SWEs. Example 4.2.1 also assesses the accuracy of our approach by

comparing the computed results with the exact solution for the static water body. Exam-

ples 4.2.2 provides smooth solutions with flat bottoms for which there are no analytical

solutions. Applying our algorithm to these examples yields solutions at different times

T that display the characteristic features of the wave movement, in comparison to other

methods.

37

5.2 Future Work

It is worth noting that this algorithm has some limitations. For instance, it cannot

be applied to problems with an initial water height of zero due to the parameter B⟨m−1⟩

and cannot simulate large scales for two-dimensional problems. Hence, in future work,

we hopefully expect that:

• Improve our method to simulate on the dry bed.

• Extend the two-dimensional scheme for the large-scale experiment.

• Improve our method to simulate the wave with a non-reflecting boundary.

Note that we choose to linearise our system first so that the nonlinearity disappear

and the system becomes linear system which is easier to solve numerically. However, in

the future, we may consider fully nonlinear system and use another numerical technique,

e.g. Newton’s method, to solve the nonlinear system directly.

REFERENCES

[1] F. J. Caro-Lopera, V. Leiva, and N. Balakrishnan. Connection between the hadamard

and matrix products with an application to matrix-variate birnbaum-saunders dis-

tributions. J. Multivar. Anal., 104(1):126–139, 2012.

[2] P. Crowhurst and Z. Li. Numerical solutions of one-dimensional shallow water equa-

tions. 15th International Conference on Modelling and simulation, 55-60, 2013.

[3] A. Duangpan and R. Boonklurb. Finite integration method using chebyshev expan-

sion for solving nonlinear poisson equations on irregular domains. J. Numer. Ind.

Appl. Math., 14(1–2):7–24, 2020.

[4] H. P. Gunawan. Numerical simulation of shallow water equations and related models.

Doctoral dissertation, Paris Est, 2015.

[5] J. Hudson. Numerical techniques for the shallow water equations. Master’s thesis,

University of Reading, 1999.

[6] K.Mekchay, T. Pongsanguansin, and M. Maleewong. Numerical methods based on

discontinuous galerkin and finite volume methods for shallow water model and ap-

plications. Master’s thesis, Chulalongkorn University, 2016.

[7] R. J. LeVeque. Balancing source terms and flux gradients in high-resolution go-

dunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.,

146(1):346–365, 1998.

[8] L. Lundgren. Efficient numerical methods for the shallow water equations. Master’s

thesis, Uppsala University, 2018.

[9] S. H. Peng. 1D and 2D numerical modeling for solving dam-break flow problems

using finite volume method. J. Appl. Math., 2012:1–14, 2012.

39

[10] R. Reams. Hadamard inverses, square roots and products of almost semidefinite

matrices. Linear Algebra Appl., 288:35–43, 1999.

[11] O. San and K. Kara. High-order acurate spectral difference method for shallow water

equations. Int. j. appl. sci., 6, 01 2011.

[12] J. J. Stoker. The Water Waves: The Mathematical Theory with Applications Book.

John Wiley & Sons, 2011.

[13] H. Zhang and F. Ding. On the kronecker products and their applications. J. Appl.

Math., 2013:1–8, 2013.

40

BIOGRAPHY

Name Miss Lalita Apisornpanich

Date of Birth 4 February 1998

Place of Birth Yala, Thailand

Education B.Sc. (Mathematics)(First Class Honours),

Prince of Songkla University, 2020

Publication

• L. Apisornpanich and R. Boonklurb, Finite integration method with

Chebyshev polynomial for solving one-dimensional shallow water equa-

tions, Proceeding of Annual Meeting in Mathematics and Annual Pure

and Applied Mathematics Conference (2021), 53-67.

