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Building an effective classifier that could classify classes of instances in a dataset

from historical data played an important role in machine learning for the past several

years. However, a standard classification algorithm has difficulty generating an appropri-

ate classifier when faced with imbalanced datasets. This research develops an algorith-

mic approach for handling a binary-class imbalanced problem directly from the original

dataset by building a random forest using a mixture of standard decision trees and minor-

ity condensation decision trees (MCDT). The algorithm constructs MCDT from a boot-

strapped dataset and a decision tree from a balanced bootstrapped dataset. Furthermore,

the experimental results on synthetic datasets and ten real-world datasets from the UCI

repository show that the proposed algorithm yields average Precision, Recall, F-measure,

and G-measure as 0.6105, 0.7784, 0.6694, and 0.6814, respectively. Thus, the constructed

algorithm outperforms the standard random forest and other algorithms. Therefore, the

developed algorithm is useful in building a classifier for class imbalanced with higher

performance without considering the distribution of the data and this technique can be

adaptable to various datasets.
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CHAPTER I

INTRODUCTION

This chapter covers machine learning, classification, and research objectives. The

first section is an introduction to machine learning. The second section covers classifica-

tion in machine learning and the motivation of a class-imbalance problem and currently

related works. The third section is the research objectives and the overview of this thesis.

1.1 Introduction and literature surveys

In 1956, the keyword “Artificial Intelligence (AI)” was mentioned for the first time

in the Dartmouth summer research project [1] which was organized by Marvin Minsky,

John McCarthy, Claude Shannon, and Nathan Rochester. The conference is the workshop

for researchers interested in this field and related fields such as automata theory, neural

networks, and intelligence studies. The definitions of AI are broadly defined. Later, it

involves a human-led thinking and the reasoning process which are extended into several

branches such as natural language processing, expert system, computer vision, robotics.

Moreover, at present, the popular name, Machine Learning (ML), is used to identify this

field. Later, deep learning is developed and is used to learn digital data from its binary

representation. Figure 1.1 shows the relationship between AI, ML, and DL.

Figure 1.1: Relationship between AI and ML

Machine learning [2] is one of AI tasks focusing on using samples or experiences to
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2

learn a well-defined task, where human involvement is only in the design of the system.

The system will extract the essence of the task from training samples by itself. After

learning is completed with training samples, this machine can be effectively applied to

new samples that have never been seen before. The accuracy of this machine can be

improved using more examples or experiences. Learning design can be applied to a wide

variety of tasks. For example, in Playing chess [3], the task is to play chess to win where a

performance value is calculated by the ratio of the number of wins and the total number

of times played. The experience to be practiced is a record of human chess or obtained

by the system played.

“Machine learning incorporates several hundred statistical-based algorithms and

choosing the right algorithm(s) for the job is a constant challenge of working in this field.

Before examining specific algorithms, it’s important to consolidate one’s understanding

of the three overarching categories of machine learning and their treatment of input and

output variables .”

- Machine Learning For Absolute Beginners (2017)[4] -

Moreover, ML is divided into categories based on the output results. It can be

separated into three main categories:

Supervised Learning

Supervised learning is the task in machine learning to decode the relationship between

input factors (independent variables) and their known outputs (dependent variables) using

a labeled dataset. Variables that apparently influence the dependent variable (written as

a lowercase “y”) are known as independent variables represented by the vector “x”. For

example, the temperature variable impacts the output of going for a run (y = “yes”).

We can predict the decision of going outside for running by analyzing the relationship

between the factor attributes such as Outlook, Temperature, Humidity, and the decision

of the runner (y = “yes” or y = “no”). Given that the supervised learning algorithm

knows the final decision, it can work backward to determine the relationship between a

runner’s decision (output) and its characteristics (input).
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3

Figure 1.2: Runner predictive model

The machine builds a model that produces an outcome with new data based on

the underlying patterns and rules learned from the training data when it deciphers the

rules and patterns between X and y where matrix X contains a row of instances. After

the model is developed and tested, it can be applied to test data and being evaluated

for accuracy. Also, supervised learning is commonly solved (1) classification, such as

image classification, identity fraud detection, customer retention, and diagnostics, and

(2) regression, for example, population growth prediction, market forecasting, weather

forecasting, advertising popularity prediction, and estimating life expectancy.

Unsupervised Learning

On the other hand, in unsupervised learning, there is no known output variable. Work fo-

cuses on finding the relationships between input variables and uncovering hidden patterns

that can be extracted to build new outputs or new labels which are in line with those in-

put variables. Unsupervised learning is commonly used in the clustering task such as the

customer segmentation, the recommender system and the targeted marketing. Another

use is to study relationships between buying items from customers’ transaction data such

as association rule analysis [5]. In addition, the dimensionality reduction is also commonly

used, for example, a feature selection which is useful method for selecting the input data’s

optimal, relevant feature and removing irrelevant features in machine learning algorithm.
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Reinforcement Learning

The third of machine learning is reinforcement learning, which works by gathering in-

formation during a sequence of interactions and gaining feedback from random trial and

error. The concept can be best described through the use of a video game analogy. As a

player goes through a game’s virtual area, they learn the significance of various actions

in various situations and get more familiar with the playing field. Thus, reinforcement

learning is used in the field of game AI, real-time decision, robot navigation, learning

tasks, and skill acquisition.

1.2 Classification

This research deals with the classification of an imbalanced dataset in super-

vised learning. It aims to build a classifier that could classify a target class in a dataset

from historical data. There are many well-known classification models along with their

algorithms that have been presented using various concepts. For example, the k-nearest

neighbors classifier (KNN) [6] employs the concept of similarity, the Naïve Bayes model

[7] and the logistic regression [8] rely on the knowledge of probability and statistics, a

decision tree [9] and decision rules [10] employ the recursive partitioning method based

on properties of a single attribute, a random forest [11] is a collection of small decision

trees with sampling features that could be used to categorize instances, a support vector

machine (SVM) [12] is related to linear separation, and an artificial neural network (ANN)

[13] and deep learning [14] imitate the human brain’s function.

Generating an appropriate classifier when they are faced with the complex informa-

tion of imbalanced datasets or a dataset that has an extremely unequal class distribution

is hard. Class imbalanced problems can be encountered in a variety of real-world situa-

tions, where minority classes are usually more concerned about correctly classifying than

majority classes. For example, there are a tiny number of patients in disease diagnosis

[15][16][17] compared to normal persons, but they are significant and must be detected

as Figure 1.3 shows an imbalanced medical database, the tiny number of cancer patients

(red color) compared with the number of normal persons (blue color) leads to a classifier
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5

facing an extremely unequal dataset. Furthermore, the prediction of fraudulent transac-

tions is more concentrated than non-fraudulent situations in fraud detection [18][19]. An

e-mail spam filtering [20], protein/DNA identification [21], target detection [22], and text

mining [23] are all examples of the class imbalanced problem. As a consequence, it is

necessary to approach this problem carefully.

However, there are many methods developed for handling a binary-class imbalanced

problem. They can be categorized into four different approaches [24] that are (1) a data-

level approach such as SMOTE [25] algorithm carries out an oversampling approach to

rebalance the original training set, or RFWs [26] (2) an algorithmic-level approach, many

of popular machine learning algorithms have been subject to direct modifications of learn-

ers, including SVMs [27], decision trees [28], OMCT [29], NN approaches [30], Bayesian

classifiers [31], or kernel machines [32] (3) a cost-sensitive approach such as ANNs [33], and

(4) AdaBoost [34] and Boosting [35] are commonly considered in an ensemble approach for

imbalanced problems. The research of an algorithm-level approach is of particular interest

because it does not create any changes in the data distribution and is more flexible to var-

ied characteristics of imbalanced datasets. Recently, in 2019, a self-balancing recursive

partitioning algorithm for classification, the new splitting measure called the

Figure 1.3 Example of an imbalanced cancer medical database

minority condensation entropy (MCE) [36] is also presented to handle an imbalanced

dataset during the construction of a decision tree. The origin idea of it came from the

splitting measure named the minority entropy(ME) [37], the condition that discards the

majority instances that do not affect the partition from the minority class, and the in-

terquartile range (IQR) rule to scope the range of minority values. The entropy computed

with the set of instances within the minority range is assigned as MCE, and a decision
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tree built based on MCE is called the minority condensation decision tree (MCDT).

Furthermore, random forest, one of the classifiers has received wide attention for

adopting the imbalanced concept. It is the combination of the decision trees. the random

forest algorithm contains two important steps that are (1) a bootstrap on a training set

and (2) a randomization of attributes to build different trees. Nevertheless, when the

bootstrap is used on an imbalanced dataset, there is a chance that most minorities will

not be picked during the bootstrapping step. These reasons make the random forest face

the hassle of constructing a non-bias model from an imbalanced dataset and are sensible to

bootstrap only negative instances (majorities) and keep all positive instances (minorities).

These lead to the research that will augment decision trees built from MCDT on

training with imbalance training datasets and the standard random forest on balance ones.

The workflow of an algorithm in this research consists of 2 parts: (1) In a bootstrapping

step of a training set, it will bootstrap only majorities and keep all minorities ignoring

the balance of these two classes. Next, it will use MCE as the splitting condition to find

the best attribute to split in each tree, (2) Additional bootstrap keeping all minorities

and bootstrap only majorities until the number of majorities and minorities are the same.

Next, it will use the entropy to construct the decision tree. Moreover, the efficiency of a

classifier in a class imbalanced problem is evaluated quantitatively based on the precision,

the recall, the F-measure, and the Geometric mean which are derived from the confusion

matrix.

1.3 Research Objective

The objective of this research is to construct a random forest to be able to

classify binary-class imbalanced datasets dealing with numeric attributes, called

Random forest of mixed minority Condensation and Decision tree (RMCD) which

extends from minority condensation decision trees. The algorithm is implemented,

and experimented on the real world datasets and synthetic datasets, then it com-

pares with other methods using the precision, the recall, the F1-measure and the

2033145165



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
U
 
i
T
h
e
s
i
s
 
6
3
7
0
0
3
7
8
2
3
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
7
0
4
2
5
6
6
 
1
4
:
1
6
:
3
9
 
/
 
s
e
q
:
 
7

7

Geometric measure as their performance measures.

The remainder of this thesis is organized as follows. In Chapter II, some
necessary background knowledge is explained. The formal definition of RMCD,
as well as its algorithm and thresholds, are presented in Chapter III. Next, the
experimental results show the accuracy performance of RMCD and Chapter IV
provides the discussion and conclusion of this work.
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CHAPTER II

BACKGROUND KNOWLEDGE

This chapter covers a classification process overview, the structure of a dataset that is

used in the research, a decision tree induction, a classifier that extends using a collection of

decision trees named as a random forest, an explanation of a class imbalanced problem,

and random forest for an imbalanced dataset, as well as other background knowledge

required to understand this dissertation. In addition, this chapter also contains a review

of other related works.

2.1 Classification Process Overview

Classification is a systematic process of designing a model which is accurate

enough to be believed [38][39][40]. As Figure 2.1 shows, the classification process

required two data types: Training Data and Test Data. A training dataset is a

collection of all the records that describe the past where these records contain

information, including the categorical attributes for which a classifier is being

designed. A test dataset is made up of all records that describe the present and

for which we want to forecast the future, in which there are no values for category

fields in these records. Each type of data is used for different purposes, first for

training phase and second for testing phase.

Figure 2.1: Classification process
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Training/Learning phase

A training dataset, the set of labeled instances, is provided to the classification

algorithm to train the classifier. Classification algorithms analyze the training

data and use statistical methods and machine learning methods to discover hidden

relationships between different features and the outcome that will be captured by

model parameters. The output of the classification algorithm is a model called a

classifier (a classification model).

Testing phase

The classification model predicts test instances for their class labels. The outcomes

will be determined based on an analysis of the available features. They are in the

form of values assigned to one or more categorical labels. Finally, the output is

called classification results.

The performance of a classification model can be assessed by measuring the

difference between the predicted class (classification results) with the actual class

(actual results). Nevertheless, because the model is generally overfitted with the

training dataset, it tends to accurately predict most instances in that dataset

while misclassifying unseen instances from the testing dataset. As a result, the

set of instances used in the training and testing processes should not be the same.

The hold-out validation and the K-fold cross-validation are two extensively used

methods for splitting a dataset [41] and evaluating the performance of a classifier.

• Hold-out validation

Generally, the hold-out validation divides data into two non-overlapping

parts and these two parts are used for the training and testing datasets,

respectively. The testing part is the “hold-out” part. Its name comes from

we hold-out this part for testing and learn the model using the remainder

part of the data. So, the hold-out validation can have different percentages
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of the data being held out for testing, and note that the time using hold-

out validation is relatively lesser than the time taken for learning by using

k-fold cross validation. However, the hold-out validation sometimes divides

data into three parts where the third part is the validation dataset to use

for parameter tuning that is commonly applied before evaluating the model

with the testing dataset.

Figure 2.2: Dividing labeled data into two and

three parts of hold-out validation

• K-fold cross-validation

The data is equally partitioned into k equal partitioned folds as in Figure

2.3. Training and testing on these partitioned folds are done in k iterations,

with each iteration leaving one fold for testing and training the model on

the remaining k − 1 folds. The model accuracy is calculated by averaging

the accuracy obtained in each iteration.

Figure 2.3: K-fold cross-validation
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2.2 Training Dataset Used For Classification

The structure of the data set used in the research is presented in Figure 2.4. The

number of instances, attributes, and classes in a training dataset is denoted by m, n,

and k which are indexed by i and j, respectively. Let A = {Aj |j = 1, 2, ..., n} be a set

of attributes and Aj represent the selected attribute. Define dataset D = {(xi, yi)|i =

1, 2, ..,m}, and D = D1 ∪D2 ∪ ...∪Dk where Dt = {(xi, yi) ∈ D | yi = ct}. When k = 2,

a training dataset is called a binary-class dataset while a training dataset has more than

2 classes (k > 2) will called a multi-class dataset.

Figure 2.4 A dataset structure

2.3 Decision tree

A decision tree, one of the classification models used in machine learning, con-

sists of root node, internal nodes, and leaf nodes like a normal tree structure. The

root node having no incoming edges and one or more outgoing edges. Internal

nodes, each of which has exactly one incoming edge and two or more outgoing

edges and leafs or terminal nodes, each of which has exactly one incoming edge

and no outgoing edge. An attribute is on every internal node, the outcome is on

branch and the class label, as a result, is on a leaf node [42][43].
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Figure 2.5: Example of a decision tree on the mammal classification problem [44]

For example, as Figure 2.5 shows the decision tree for the mammal classifica-

tion where the tree consists of a root node having no incoming edges and one or

more outgoing edges, internal nodes, each of which has exactly one incoming edge

and two or more outgoing edges and leaves or terminal nodes, each of which has

exactly one incoming edge and no outgoing edge. The root node shown in Fig-

ure 2.5 uses the attribute “Body Temperature” to separate warm-blooded from

cold-blooded vertebrates. Since all cold-blooded vertebrates are non-mammals,

a leaf labeled “Non-mammals” is marked as the right child of the root node. If

the vertebrate is warm-blooded, a subsequent attribute, “Gives Birth”, is used to

distinguish mammals from other warm-blooded creatures, which are mostly birds.

Finally, classifying an instance from a test dataset is straightforward once a

decision tree has been constructed. Starting from the root node, an instance is

checked with the test condition at the root node and moves to the appropriate

branch based on the outcome of the test. This will lead either to another internal

node, for which a new test condition is applied or to a leaf where the class label

associated with it is then assigned to an instance.
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Figure 2.6: (a) predicts the class lebeled example, and (b) the case that all input

attributes are continuous values

Two unlabeled instance classification examples are shown in Figure 2.6(a)

and Figure 2.6(b). The decision tree evaluates this instance at the root node

and moves through the internal nodes until the leaf node is encountered. The first

example, predicts the class label of an animal named “A”, in which each leaf node,

represents the class, either “A” is (“Mammals”) or is not (“Non-Mammals”). See

Figure 2.6(a), the table above shows the training data animal named “A” having

a warm body temperature and gives birth, the decision tree path terminates at

leaf node labeled “Mammals”. In the case that all input attributes are continuous

values, it gives the result as dividing the input space, as shown in the second

example. The space R2 is divided into three parts for each class, i.e.people who
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are tall less than 1.85 m. and weighing less than 90 kg. class (red color), people

who are tall less than 1.85 m., and weighing more than or equal to 90 kg. class

(green color), and people taller or equal to 1.85 m. class (yellow color). The graph

shows the unlabeled instance which is represented by the human head locating at

(1.6, 95) is classified to be the second class.

2.3.1 Decision Tree Induction Algorithm

The algorithm works by recursively selecting to find the best attribute for split-

ting the data and expanding the leaf nodes of the tree until the stopping criterion

is met. Commonly, a single attribute is used to select the criteria for splitting a

set of instances in each non-leaf node. All possible scenarios for partitioning the

dataset called candidates are discovered for each attribute, which varies depending

on the type of attribute. There are numerical attribute and categorical attribute.

• Categorical / Discrete attribute

The data is divided into subsets based on the number of possible values

of attributes. Figure 2.7(a), body temperature is the categorical attribute

of training dataset D having two distinct values, warm-blooded and cold-

blooded. Hence, the training data is divided into two subsets and in Figure

2.7(b), the data is divided into three subsets based on income categorical

attributes Low, Medium, and High.

Figure 2.7: Example for partitioning the set of instances

from the categorical attributes

.
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• Numerical / Continuous attribute

Numerical attribute or continuous attribute has infinite possible values, e.g.

a price of the house, annual company income, and etc. The numerical at-

tribute could not divide into all values as the outcomes of the splitting con-

dition. Thus, it frequently uses a particular value called the splitting values

to be “split point” to partition the data into two subsets which depend on

attribute Aj as Figure 2.8(a). Moreover, Figure 2.8(b) shows the income

attribute having 20,000 to be split point for dividing data into two subsets.

The first data is branched for the value less than 20,000 and the second is

greater than or equal to 20,000. The condition to choose splitting value is

computed from “the middle between each pair adjacent sequential value”,

i.e. Xi,j+Xi+1,j

2 for i = 1, 2, ...,m− 1, are all considered. The value that offers

the “best splitting” measure is chosen to be the splitting value of attribute

Aj.

Figure 2.8: Example for partitioning the set of instances

from the numerical attributes

See the details of the decision tree induction algorithm in Algorithm 2.1 gen-

erating decision tree, the inputs are training dataset D and set of attributes A. It

begins with creating the root node for the entire training dataset. If all instances

come from the same class, the leaf node is created corresponding to that class.

Then, line 4 is the processing for finding the best attribute to be used for splitting

in the tree, the detail of measure for selecting the best attribute demonstrated

in section 2.3.2 after the algorithm. All possible values in the best attribute (A)
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are used to branch the root below. Next, if the values within an internal node

(Example(vi)) are not empty, the algorithm is recursively called itself until remains

only the root node.

Algorithm 1 GenerateDecisionTree (D, attributes)
1: Create a root node for the tree
2: If all instances are in the same class then return the node labeled as that class
3: Otherwise Begin
4: A ←− The attribute that best classifies examples(Attribute Selection Method)
5: Decision Tree attribute for Root = A
6: for each possible value, vi, of A do
7: Add a new tree branch below Root, corresponding to the test A = vi
8: Let Examples(vi) be the subset of examples that have the value vi for A
9: if Examples(vi) is empty then
10: below this new branch add a leaf node with a label (most target value)
11: else
12: below this new branch add the subtree
13: GenerateDecisionTree (Examples(vi), attributes – A)
14: End
15: Return root

2.3.2 Attribute Selection Measures

There are many measures for selecting “the best split” at each non-leaf node.

Mostly, they are presented under the approach of measuring the impurity of

dataset D, such as Shannon Entropy [45] and Gini index which are used in the

classification like a regression tree (CART) [46]. Moreover, there are classification

error, minority entropy, and minority condensation entropy which come to mea-

sure the criteria to split. Let Pt(D) stand for the proportion of instances from

class Dt, i.e. Pt(D) = |Dt|
|D| . The highest value of the measurement means the

dataset contains a similar number of instances from all classes, and the lowest

value is when all instances belong to the same class. See Figure 2.9, the compari-

son among the impurity measures, Entropy, Gini index, and the misclassification
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error.

Entropy(D) = −
k!

t=1

Pt(D)log2Pt(D) (2.1)

Gini(D) = 1−
k!

t=1

(Pt(D))2 (2.2)

CMError(D) = 1− max
t=1,2,...,k

Pt(D) (2.3)

Figure 2.9: Comparison among the impurity measures for binary class-class

dataset.

In 1986, the decision tree algorithm called the Iterative Dichotomiser 3 (ID3)

algorithm [9] that applies the information gain (Equation (2.4)) to determine

the splitting condition at each non-leaf node. It is the subtraction between the

entropy of the entire dataset before splitting and the weighted average of the

entropy of each partition after splitting, in which a candidate of the splitting

condition a represents the partition of dataset D into r subsets. The candidate

providing the highest information gain is chosen to be the splitting condition.

Nonetheless, using the information gain tends to favor the attribute having many

distinct values. To remedy this situation, the decision algorithm known as the
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C4.5 algorithm is introduced. It uses the gain ratio, shown in Equation (2.6), as

the splitting measure that normalizes the information gain by dividing it with the

split information defined by (2.5). Let P (l)(D) = |D(l)|
|D| where P (l) demonstrates

the proportion of instances in D(l) compared to the entire dataset D.

InforGainc(D) = Entropy(D)− Entropyc(D) (2.4)

SplitInforc(D) = −
r!

l=1

P (l)(D)log2P
(l)(D) (2.5)

GainRatio =
InforGainc(D)

SplitInforc(D)
(2.6)

2.4 Random forests

In 2001, Breiman constructed a unified algorithm, supervised machine learning

algorithm, called random forests [47]. The decision tree forms the base classifier

in a random forest. This classifier combines the predictions made by multiple

decision trees. As the named randomization is done in two ways in constructing

random forests. One is bootstrapping for drawing subsamples (Xi) and the second

is randomly selecting attributes (Aj) or features for generating decision trees. A

general random forest algorithm for a tree-based model can be implemented as

shown in Algorithm 2.3 [48].

2.4.1 Bootstrap Aggregation (Bagging)

Bootstrap Aggregation or Bagging [49] is a simple and all-powerful ensemble

method, in which an ensemble method is a technique that combines the predic-

tions from multiple machine learning algorithms together to make more accurate

predictions than any individual model. Bagging can be used to decrease the vari-
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ance for those algorithms that have high variance and is the application of the

bootstrap procedure. Decision trees are highly dependent on the data they are

trained on. If any of the training data is changed., e.g. a tree is trained on sub-

samples of the training data, the resulting decision tree can be different and the

predictions can be absolutely different.

Bootstrap (Efron, 1983) is an alternative to cross-validation that relies on ran-

dom subsampling with replacement (see Figure 2.12 for an example). It is based

on the assumption that samples are independently and identically distributed and

it is especially recommended when the sample size is small [50]. After n extrac-

tions, the probability that a given object has not been extracted yet is equal to

(1− 1
n)

n. When n is sufficiently large, the probability asymptotically approaches

1− e−1 ≈ 0.632. There are several variations to the bootstrap sampling approach

in terms of how the overall accuracy of the classifier is computed. One of the

more widely used approaches is the .632 bootstrap, The .632 bootstrap estimate

of accuracy, introduced in Efron and Tibshirani (1997), is defined as:

Accboot =
1

b

b!

i=1

(0.632acci + 0.368acctrain) (2.7)

where b is the number of generating a bootstrap sample, acci is the accuracy

obtained with a model train on simple i and tested on the remaining instances,

and acctrain is the accuracy of the model trained on the full training set.

Figure 2.12: An example of bootstrap sampling.
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Since objects are subsampled with replacement, some classes might be

over-represented blue marbles in bootstrap samples 3 or even missing,

green marbles in bootstrap sample 3.

2.4.2 Random Forest Model

See Figure 2.13 for the random forest model, the bagging approach is used

in the steps in constructing the decision tree in the forest. Several decision tree

classifiers are trained on bootstrap samples of the training data D then let m

be the number of attributes in the input dataset, and mi represents the number

of attributes to choose at each tree node where choose m attributes at random.

The optimal split is computed based on the mi input attributes of the subsam-

pled dataset. Then, each tree is allowed to grow without being pruned. Finally,

predictions on test data are obtained by combining the predictions of the trained

classifiers with a majority voting scheme.

Algorithm 2 BasicRandomForests
1: input: Select the number of models to build, n
2: for iteration = 1, 2, . . .,n do
3: Generate a bootstrap sample of the training data
4: Train a tree on this sample
5: for each split do
6: Randomly select k(≤ P ) of the trainer predictors
7: Select the best predictor among the k predictions
8: and partition the data
9: end
10: Use typical tree model stopping criteria to determine
11: when a tree is complete
12: end
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Figure 2.13: Random forest classification model

2.5 Class imbalanced Problem

Despite the fact that the problem of class imbalance has received a lot of

attention in recent years, there is no precise way to define an imbalanced dataset.

Technically, a dataset having unequal class distribution should be imbalanced.

However, it is considered imbalanced when the number of instances in each class

is significantly different [24].

2.5.1 Class Imbalance Classification Challenging

Class imbalance happens when there are significantly lesser training examples

in one class compared to other classes. The nature of class imbalance distribution

could occur in two situations [51]. First, when class imbalance is an intrinsic prob-

lem or it happens naturally. A naturally imbalanced class distribution happens in

the case of credit card fraud or in rare disease detection. Second, when the data

is not naturally imbalanced, instead it is too expensive to acquire such data for

minority class learning due to cost, confidentiality, and tremendous effort to find
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a well-represented data set, like a very rare occurrence of the failure of a space

shuttle. Class imbalance involves a number of difficulties in learning, including

imbalanced class distribution, training sample size, class overlapping, and small

disjuncts. All these factors are explained in detail in the following sections.

2.5.2 Binary-Class Imbalanced Problem

Traditionally, the class imbalanced problem is often related to a binary-class

dataset that one class containing significantly more instances than another class,

called the binary-class imbalanced dataset. The majority class is normally repre-

sented by the negative class, while the minority class, will be focused for a classifier

indicated by the positive class shown in Figure 2.17.

Figure 2.9: Binary-class imbalanced dataset

Mathematically, binary-class datasetD containingm− instances from the majority

class, and m+ instances from the minority class is said to be imbalanced when m−

is much greater than m+. To measure the degree of imbalanced for each binary-

class dataset, the imbalanced ratio (I.R.) is used, which is defined by the ratio

between the number of instances in the majority class and the minority class. For

the problem of building the model to classify the binary-class imbalanced dataset,

it is called the binary-class imbalanced problem. It is intended to predict the

minority instances, while maintaining the correct classification of the majority
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instances. Define as equation below:

I.R. =
m−

m+
(2.8)

A binary-class imbalanced problem consists of four approaches[24]: there are

(1) a data-level approach, (2) an algorithmic-level approach, (3) a cost-sensitive

approach, and (4) an ensemble approach. The research is interested in using an

algorithm-level approach for handling the problems by extending the idea of suc-

cessful entropy that we will demonstrate in the section below and the research

methodology will be described in the next chapter.

Figure 2.10: A difference of the minority range with the imbalanced data.

In 2019, an interesting splitting measure Minority Condensation Entropy (MCE),

the entropy that is modified from minority entropy (ME), is also used to find the

best attribute for constructing a decision tree and is designed to handle a binary-

class imbalanced dataset. When the algorithm is faced with the biased class of

the dataset, ME diminishing majority instances outside the range for all minority

instances, called the minority range. See in Figure 2.10(a), the minority range is

the size of the middle box, which provides sufficient information to construct a

decision tree as illustrated at the top of the figure. All instances outside the range

that would not affect the ability to predict minority class instances are excluded.
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Hence, ME considers only instances in the minority range to construct a decision

tree. Sometimes, if the imbalance dataset has the outliner as Figure 2.10(b), the

minority range covers majority instances.

Figure 2.11: Applying the IQR rule to detect outliers before determining

the minority instances.

The computation of MCE is based on the interquartile range (IQR) rule that

is employed to the set of minority instance values for detecting the outliers. It

defines the boundary that represents the range of acceptable values for the minority

instances based on Tukey’s boxplot [52]. The lower inner fence is defined by the

first quartile minus 1.5 times of IQR, while the upper inner fence is defined by the

third quartile plus 1.5 times of IQR. For example, Figure 2.11 demonstrates the

use of the IQR rule. The set of instances within that range is considered, in which

the minority class is more condensed. Let f be a function that maps each instance

xi in dataset D to set of real numbers. For example with a two-dimensional,

define function as f(xi) = f(x1,i, x2,i) = x1,i + x2,i. Then, set of instance values

f(D) = {f(xi) ∈ R | (xi, f(xi)) ∈ D for i = 1, 2, .., m} corresponds to D, define

F (D) be the subset of f(D) that ignores the outliers shown in (2.7) as equation

below:

F (D) = {f(xi) ∈ f(D) | Q1− 1.5 ∗ IQR ≤ f(xi) ≤ Q3 + 1.5 ∗ IQR} (2.9)

2033145165



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
U
 
i
T
h
e
s
i
s
 
6
3
7
0
0
3
7
8
2
3
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
2
7
0
4
2
5
6
6
 
1
4
:
1
6
:
3
9
 
/
 
s
e
q
:
 
7

25

where Q1 is the first quartile of f(D), Q3 is the third quartile of f(D), and

IQR is the interquartile range of f(D) which is equal to Q3 − Q1. Thus, the

minority range that ignores the outliers of f(D) is determined by the range be-

tween the minimum value and the maximum value of F (D+), i.e. M+(f(D)) =

[minF (D+),maxF (D+)]. Then, M+(f(D)) implies the subset of instances within

the minority range that ignores the outliers. Thus, the definition of the minority

condensation entropy according to f(D) is determined by (3.2) as follows:

MCEf(D) = Entropy(M+(f(D))) (2.10)

Algorithm 3 MCE(D, f)
1: Input: dataset D, a function to obtain the instance values f
2: Output: the minority condensation entropy of D with respect to f
3: Generate the set of instance values corresponding to the minority class without
outliers: F (D+)

4: Create the minority range that ignores the outliers: M+(f(D))
5: Compute the subset of instances within the minority range that ignores the
outliers: M+(f(D))

6: Return Entropy(M+(f(D)))

Pseudocode to compute MCE of dataset D with respect to a function to obtain

the set of instance values f is displayed in Algorithm 3. The minority range that

ignores the outliers is generated to limit the set of instances before calculating

the entropy. Finally, the decision tree built based on MCE is called Minority

Condensation Decision Tree (MCDT). An extension of the MCE to the random

forest and the experiment of the enhanced algorithm will be detailed in the next

chapter.
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CHAPTER III

RESEARCH METHODOLOGY

In this chapter, an enhanced random forest for the classification of imbalanced

data is proposed. It is called Random Forest of mixed Minority condensation

Decision Tree or RMDT. The motivation of the proposed algorithm is presented

along with the methodology and its algorithm. The last section demonstrates an

example of a training tree in the proposed random forest classification which it

describes the process and shows the structure of a tree having two different trees.

First is the standard decision tree and second is the decision tree that builds based

on the minority condensation entropy.

3.1 Random forest of mixed Minority condensation Decision Tree

Building the decision tree classifier based on MCE to handle the class imbal-

anced problem, fixed the problem of ME that sometimes it unnecessarily widens

the minority range, which covers more majority instances because of having minor-

ity instance values extremely deviate from others within datasets. These reasons

make MCDT highly successful in handling the class imbalanced problem and this

performance can be improved with the ensemble learning method, in which mul-

tiple decision trees are combined as a random forest classifier.

Nonetheless, in the bootstrap of the random forest, when the algorithm is

faced with the imbalanced distribution of the data, it has a chance to make mi-

nority instances disappear. For example, Figure 3.1(a) shows imbalanced dataset

before bootstrapped and Figure 3.1(b) shows the dataset after bootstrapped. The

prediction performances of the classifier are decreasing. As a result, the idea of

keeping all minorities for bootstrapping comes from these reasons. However, the

standard decision tree still outperforms for prediction when classifying a balanced
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dataset. Therefore, the forest that has a mix of MCTD and standard decision

trees should be used to develop for minority instances classification.

Figure 3.1: Imbalanced dataset before (a) and after bootstrapped (b)

3.2 Proposed Algorithm

As we mentioned above, this research proposes a random forest that uses a

mixed standard decision tree and MCDT, and then we will call this enhanced

random forest is RMDT, which has 2 construction parts in the training phase as

follow:

1. It will bootstrap only majority instances and keep all minority instances in

a training dataset’s bootstrapping phase, ignoring the balance of these two classes,

therefore subsamples from this part are imbalanced datasets, and MCE should be

used to discover the best attribute to split in each decision tree. Visualization

representation of the part is explained in Figure 3.1, red number 1 and 2 show the

framework of first and second parts, respectively.

2. Bootstrapping also maintains all minority instances and bootstraps just

majority instances, however in this part, we bootstrap until the number of majority

instances and minority instances are equal, resulting in a dataset with balanced

subsamples. The decision tree will then be built using SE.
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Figure 3.2: Framework of RMDT algorithm

The algorithm construction is described in Algorithm 4. The following parameters

are required by the algorithm: N (number of standard trees trained in the forest)

and n (number of minority condensation decision trees trained in the forest).

Subsample computing is performed in Line 3 of Algorithm 4 for use in Line 5 and

Line 7 which are balanced subsamples, and imbalanced subsamples, respectively.

Algorithm 4 RMDT
1: input: Learning data D, N and n
2: for t = 1, 2, . . . , N + n do
3: Computing balanced/imbalanced subsamples for each tree
4: if t ≤ n then
5: DT = Built forest based on subsamples for standard decision trees
6: else
7: MCDT = Built forest based on subsamples for MCDT
8: end
9: RMDT = Combine two forests together
10: end of learning phase

For example, we synthesize 500 instances, and 85% of all instances are minority

instances. The data distribution is in the graph on top of Figure 3.3. The number

of training data is set to 70% of all instances. Illustrating the distribution of
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training data and testing data are on the left and right sides below of Figure 3.3,

Red dot denotes the minority class and Blue dot refers to the majority class. We

can notice that minorities also disappear from separating to training data.

Next, the Training dataset is used by the bagging method. In our algorithm,

we will set the size of the subsample equal to 2 in 3 of the number of training data.

Users can determine the number of decision trees and standard decision trees by

inputting the parameters n and N in the algorithm. In this example, we use two

decision trees and two MCDTs for showing the structure of the tree. First, we

will show tree structure by the example of the decision tree that is already trained

with the training data as in Figure 3.4, and tree structure by the example of the

MCDT that already fits with the training data seen in Figure 3.5. We can see

that the decision tree and MCDT begin with the same feature which is the first

feature. The algorithm will fit the data until the algorithm is done with the 4

trees. Then, the trained algorithm is used to prediction into the next step.

Figure 3.3: 2D imbalanced dataset, on top is the original dataset

Finally, our model has trained and then the trained model is used to predict
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testing data and found the efficiency of the prediction which are the performance

measures as Precision, Recall, and F-measure. In Chapter IV, computing the

efficiency of RMDT, we will classify based on 2 datasets first from a synthetic

dataset but more attributes or use in the high dimension and second by using the

real-world datasets from UCI. Then, three performance measures are used for the

classifier efficiency: precision, recall, F-measure, and G-measure. We will discuss

the information on performance measures and each classifier model for comparison

in the next chapter.

Figure 3.4: Example of a decision tree fitted structure
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Figure 3.5: Example of the MCDT fitted structure
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CHAPTER IV

EXPERIMENTS AND RESULTS

The RMCD algorithm is implemented via the Python programming language.

All experiments in classifying on imbalanced data are presented in this section.

The experiments are divided into two parts. The first part is an implementation

for computation of the accuracy performance of RMDT compared with standard

random forest based on a synthetic dataset having 500 instances. In the second

part, the efficiency of the RMDT algorithm is compared with five algorithms, i.e

standard random forest, MCDT, Random forest with class weighting, Random

forest with bootstrap class weighting, and AdaBoost, based on ten real-world

datasets.

4.1 Accuracy Performance

The datasets that will be used in this section are first described. The measures

for evaluating each method’s accuracy performance are then introduced. The se-

lection of each parameter is then explained. Finally, the experiments and their

results are shown, which is the most important part of this section.

Dataset

The experiments were performed on 20 imbalanced binary datasets. Ten of these

datasets are from synthetic binary-class imbalanced numeric datasets and ten

real-world application datasets from the UCI repository. Concisely, Table 4.1

summarizes the datasets utilized in this thesis.

Measurements

Four performance measures: Precision, Recall, F1-Measure, and Geometric mean

are used for comparing the performance [53]. Those measures can be derived from

the values in the confusion matrix (Table 4.1).
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Actual positive Actual negative
Predicted
positive True positive (TP) False positive (FP)

Predicted
negative False negative (FN) True negative (TN)

Table 4.1: Confusion matrix

The entries in the confusion matrix are TP, FP, FN, and TP:

• True Positive (TP) is the number of positive instances that are correctly

predicted as positive instances.

• True Negative (TN) is the number of negative instances that are cor-

rectly predicted as negative instances.

• False Positive (FP) is the number of negative instances that are incor-

rectly predicted as positive instances.

• False Negative (FN) is the number of positive instances that are incor-

rectly predicted as negative instances.

The following are four performance measures:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F −Measure = (β + 1)× Precision×Recall

β × (Precision+Recall)
(4.3)

G−Measure =
√
Precision×Recall (4.4)
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The precision is the percentage of the correctly predicted minority (positive)

class from the model. For the recall, it shows the proportion of the number of

minority classes that are detected from the model. For example, if almost all

predicted minorities are correct, but there are many other minorities that are not

detected, then the precision is high and the recall is low. On the other hand,

if almost all minorities are detected, but there are many incorrectly predicted

minorities, then the precision is low and the recall is high. The G-measure is the

geometric mean of Precision and Recall. Finally, the F-Measure is the harmonic

mean of precision and recall in which we used beta is 1 which means Precision

and Recall are equally important. Then, the bigger F-Measure value has greater

overall precision and recall than the smaller F-Measure.

Actual positive Actual negative
Predicted
positive TP = 20 FP = 5

Predicted
negative FN = 10 TN = 50

Table 4.2: Example of the confusion matrix.

For example, the results of classifying the binary-class dataset are presented

by the confusion matrix in Table 4.1. Therefore, precision, recall, F-measure, and

Geometric mean are computed by (4.1), (4.2), (4.3), and (4.4), respectively. For

precision which equals 0.8, it means that the instances that are predicted as the

positive class have an 80% chance that they are actually positive. For recall which

equals 0.67, it means that the instances that are actually positive have a 67%

chance that they are predicted as the positive class. Then, the harmonic mean

between these two measures is represented by the F-measure which equals 0.73,

the same as the geometric mean value.
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Precision =
20

20 + 5
= 0.80 (4.5)

Recall =
20

20 + 10
= 0.67 (4.6)

F −Measure = 2× 0.8× 0.67

0.8 + 0.67
= 0.73 (4.7)

G−Measure =
√
0.8 ∗ 0.67 = 0.73 (4.8)

4.2 Experiment Results and discussion

An enhancement of the standard random forest (RF) to classify minority in-

stances in the binary-class imbalanced datasets dealing with numeric attributes

using SE and MCE are exhibited in the experiments on collections of synthetics

dataset according to Section 4.2.1. Accordingly, the average results of RF and

RMDT are compared via the F-measure (4.3) and the G-measure (4.4) with re-

spect to the minority class and the majority class displayed in Figures 4(a) and

4(b), respectively.

4.2.1 Synthetic dataset

The synthetic datasets used in this section are generated by Sklearn’s function

[54] which is a synthetic binary-class imbalance numeric dataset consisting of 500

instances having 50 attributes. There are ten groups of experiments having dif-

ferent percentages of the minority from 5% to 50%. The description of the results

is presented in Figure 4.1 below.
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(a)

(b)

Figure 4.1: The experimental results on synthetic datasets varying percentage of

minority instances comparing with Standard random forest (RF)

via F-measure (a) and Geometric mean (b)

For the results, F-measure and Geometric mean values of both RMDT (red

line) and RF (green line) increase when the percentage of minority instances in-

creases. Evidently, RMDT significantly outperforms RF when the number of

minority instances is tiny, while their values will approach 1 when a dataset is

more balanced. It is because RF tends to focus on the class having a large number

of instances, while RMDT tries to make them balanced before considering them.

Therefore, these results confirm that RF is ineffective in dealing with binary-class

imbalanced problems.
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4.2.2 Real-world dataset

The real-world binary-class datasets which are used in this thesis are provided

from the UCI repository [55]. In Table 4.3, they are sorted in descending order by

the percentage of instances in the minority class (%Min.). The first two columns

indicate the number and the name of each dataset. For the number of instances

(#Inst.) and the number of attributes (#Att.), they are shown in the third col-

umn and the fourth column, respectively. Particularly, the minority class and the

majority class are presented in the fifth column. In order to evaluate the perfor-

mance of each method, the experiments are repeated 50 times. See Table 4.3 for

their descriptions, including the number of instances, the number of features, the

percentage of minorities, and the imbalanced ratio.

No. Datasets #Inst #Att Min/Maj %Min I.R.
1 Pima 768 8 ‘1’/ ‘0’ 34.9 1.87
2 StakotlogVehicle 846 18 ‘bus’/The rest 25.77 2.88
3 BeastTissue 106 9 ‘fad’/The rest 14.15 6.07
4 NewThyroid 215 5 ‘3’/The rest 13.95 6.17
5 Fertility 100 9 ‘O’/ ‘N’ 12 7.33
6 Ecoli 336 7 ‘imU’/The rest 10.42 8.6
7 OpticDigits 1108 641 ‘8’/ The rest 9.86 9.14
8 Glass 214 9 ‘5’/The rest 6.07 15.46
9 Wine quality-red 1599 11 ‘3’/The rest 3.94 24.38
10 Yeast 1484 8 ‘VAC’/The rest 2.02 48.47
Table 4.3: The characteristics of real-world binary-class datasets used in the

experiments.

Moreover, to demonstrate the effectiveness of RMDT on a general dataset, the

random forest built based on MCE and SE is evaluated with experiments on real-

world datasets. The results are compared to those of five other classifiers. The

first is a standard random forest. Additionally, the decision tree built based on

MCE called MCDT is used as well. Then, random forest with class weighting, and
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random forest with bootstrap class weighting [56] are the algorithm that works

by weighting the instances and is used for comparison also. Lastly, the popular

boosting algorithm, like AdaBoost [57][58] is also used in the comparison. It works

by first fitting a decision tree on the dataset, then determining the errors made

by the tree and weighing the examples in the dataset by those errors so that more

attention is paid to the misclassified examples and less to the correctly classified

examples. A subsequent tree is then fit on the weighted dataset intended to cor-

rect the errors. The process is then repeated for a given number of decision trees.

Figure 4.2: The experimental results on real-world datasets comparing

by the average performance

In order to evaluate the dataset into the training set and the testing set, they

are repeated 10 times. Accordingly, the average results of each classifier are com-

pared via precision, recall, F-measure, and Geometric mean. Graphically, the

bar chart representing the comparison of the average performance corresponding

to each performance measure is shown in Figure 4, in which the higher value

indicates the better performance, the black bar denotes RMDT performance val-
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ues, the green bar denotes MCDT performances values, blue bar denotes Random

Forest using Adaboost (RF+Adaboost)’s values, pink bar denotes Random For-

est using bootstrap class weighting (RF+Bootstrap Class Weighting), orange bar

and red bar denote Random forest using Class weight (RF+Class Weighting) and

standard Random Forest (RF) performance values, respectively. Comparing the

precision of all classifiers, RMDT yields similar performance at 0.611 to RF, RF

+Weighting, and RF+Bootstrap Class Weighting but higher than RF+AdaBoost,

and MCDT. It means that the number of RMDT predicted minority instances to

be the majority class is lower than RF+AdaBoost and MCDT but similar to RF,

RF+Weighting, and RF+Bootstrap Class Weighting.

Furthermore, for comparison by recall, RMDT yields the highest average per-

formance at 0.778, which is much different from MCDT, RF, RF+Class Weight-

ing, RF+Boostrap Class Weighting, and RF+Adaboost. They yield the second-

highest, the third-highest, the fourth-highest, the fifth-highest, and the sixth-

highest average performance at 0.471, 0.446, 0.414, 0.408, and 0.389, respectively.

This means that the number of they predicted majority instances to be the mi-

nority class has more than RMDT. For comparison by F-measure and Geometric

mean, they are not exhibiting the different results. RMDT yields the highest

average performance at 0.670 and 0.681, which is better than other classifiers,

respectively.
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CHAPTER V

CONCLUSION

This research proposed an enhanced random forest called RMDT which is a

random forest that uses both the standard decision trees and the Minority Con-

densation Decision Tree that successfully handles the class imbalanced problem,

which arises from extending the minority entropy concept. The improved perfor-

mance to classify an imbalanced dataset of the research proposed, RMDT, is shown

by two collections of experiments which are on synthetic datasets of binary-class

imbalanced numerics and real-world binary-class datasets from UCI, respectively.

In the first experiment, the synthetic datasets are used for classification. The

results show that RMDT outperforms the standard random forest when the num-

ber of minority instances decreases, and then their values approach the same values

when the dataset is more balanced. These apparently confirm the standard ran-

dom forest is not suitable for dealing with the binary-class imbalanced problem.

Additionally, in the second experiment, RMDT performs the results better than

standard random forest, Minority Condensation Decision Tree, Random forest

with class weighting, Random forest having bootstrap class weighting, and Ran-

dom forest mixed Adaboost on recall measure, F-measure, and Geometric mean.

Especially recall, the enhanced random forest, RMDT shows the highest value

which indicates that the number of the majority instances that are predicted to

be the minority class has less than other comparing classifiers.

Future Works

Although RMDT is successful in handling the class imbalanced problem, there

is considerable room for future work. The proposed algorithm still has to be ex-

tended in order to function on more complex datasets, such as multi-class imbal-
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anced datasets, and multi-class with categorical attributes imbalanced datasets.

Additionally, researching a new multi-criteria decision-making method that is in-

triguing to be applied in the decision tree is interesting for improving the con-

struction of RMDT.
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