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CHAPTER I

INTRODUCTION

1.1 Motivation and literature surveys

Moving boundary problems, also well-known as the Stefan problems, occur in many

processes of physics and engineering. Especially, the processes regarding phase changes of

materials which are caused by the heat transfer to and from both phases on each side of the

interface. As a result, these yield a freezing process if the net heat is subtracted from the

liquid part of the interface and a melting process when the net heat is added to the solid

part. Actually, the moving boundary problems can be used to understand severally real-

world applications such as renewable energy using latent heat storage systems, crystal

growth of semiconductors and materials, welding and casting technology, freezing and

thawing of foods, production of ice, ice formation on the pipe surface, solidification of

alloys, etc., see [17, 18, 20] for more information and references therein.

There are interesting issues in the form of the heat equation with a one-phase Stefan

problem and a two-sided moving boundary condition. This problem involves transient

heat conduction and a phase change, often referred to as the freezing or melting problem.

Mathematically, the solution to such a problem is inherently difficult because of the

nonlinearity of the interface conditions.

The first interesting issue of the one-phase Stefan problem was introduced in [20].

The interface region between the liquid and solid phases is also moving as the latent heat

is released and absorbed at the interface depicted in Figure 1.1. Therefore, the location of

the interface, that is, the boundary of the domain, is also unknown. This means that the

problem also has to be solved under the unknown domain. We can see that, in practice,

there are many limitations to obtaining analytical solutions to such problems. Hence,

the numerical solution has become the principal tool for studying the moving boundary



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

problem. Furthermore, there are many numerical schemes to obtain an approximate

solution to the moving boundary problem such as the variable space grid method which

was given by Murray and Landis [17], the boundary immobilization method which was

given by Crank [8], perturbation technique which was presented in [6, 25], an integral

iterative formulation which was shown in [22, 23], and so on.

Figure 1.1: Physical configurations for the phase change problem.

Another interesting issue is the two-sided moving boundary conditions where the

problem was introduced in [12]. The equation appeared in [12] has an additional coefficient

term and two moving boundaries depending on time.

However, in this thesis, we will apply the other numerical method to address these

two problems, namely, the finite integration method with Chebyshev polynomial expan-

sion (FIM-CPE), which was proposed by [4] and has been successfully applied to handle

various problems. For specific examples, please refer to [2, 3, 5].

Therefore, in this thesis, we propose numerical algorithms for solving the heat

conduction equation with a one-phase Stefan problem and two-sided moving boundary

conditions. The presented algorithm is designed based on the FIM-CPE to handle the

spatial variable, combined with the use of a difference quotient to address the temporal

variable. The accuracy of this algorithm is verified by comparing the obtained tempera-

ture distributions and locations of the moving interface with results acquired from some

existing methods and analytical solutions via three examples of the one-phase Stefan

problem. One of them involves a heat source or sink, while the second one consists of

an exponentially increasing heat flux at the boundary. The third one consists of a fixed



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

boundary and no forcing term. Together with two examples of two-sided moving bound-

ary conditions, in which the first one involves linear coefficients, whereas the second one

involves nonlinear coefficients. Evidently, our numerical algorithms can efficiently and

accurately predict the evolution of the temperature distribution as well as the position of

each moving front for one phase Stefan problem.

1.2 Research objectives

The goal of this research is to apply the FIM-CPE to construct an accurate numer-

ical solution of the heat equation with a one-phase Stefan problem and two-sided moving

boundary conditions.

1.3 Thesis overview

This thesis is separated into five chapters organized as follows. Chapter I is an

introduction to this work including the motivation and introduction of the problem, the

research objectives and the thesis overview. Chapter II presents the background knowl-

edge used in this thesis, which includes Chebyshev polynomials, and heat equations with

one-phase Stefan problem and two-sided moving boundary conditions. In Chapter III, we

use the FIM-CPE for solving heat equations with moving boundaries. Also, we present

the procedure and some examples for solving one-phase Stefan problems. In Chapter IV,

we present the procedure and some examples for solving two-sided moving boundary con-

ditions. Finally, in Chapter V, a discussion of our results is provided, some conclusions

are drawn and possible future research is suggested.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we introduce the background knowledge about the definition and

properties of the Chebyshev polynomials which play an important role in the FIM-CPE.

We also present a heat equation with moving boundary conditions in the one-dimensional

domain which is the main problem to be solved by the FIM-CPE. First, let us introduce

the Chebyshev polynomials and some useful facts about them.

2.1 Chebyshev polynomials

The Chebyshev polynomials are a set of orthogonal polynomials which play an

important role in the interpolation problem. Their roots are used as nodes to calculate

a polynomial interpolation which provides the best polynomial approximation under the

maximum norm. Normally, the Chebyshev polynomial is defined over [−1, 1]. However,

in this thesis, we use the Chebyshev polynomial which is defined over [a, b] instead.

Definition 2.1 ([1]). The Chebyshev polynomial of degree n ≥ 0 is defined by

Rn(x) = cos
(
n arccos

(
2x− a− b

b− a

))
, for x ∈ [a, b].

The first few Chebyshev polynomials Rn(x) over [−1, 1] are shown in Figure 2.1 for

n ∈ {0, 1, 2, 3, 4, 5}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Figure 2.1: Chebyshev polynomials Rn(x) for n ∈ {0, 1, 2, 3, 4, 5}.

The followings are the key properties of Rn(x) where the proofs can be reproduced

by using a similar idea as shown in Lemma [9].

Lemma 2.1. The Chebyshev polynomial Rn(x) satisfies the following properties:

(i) The zeros of Chebyshev polynomial Rn(x) for n ∈ N and x ∈ [a, b] are

xk =
1

2

(
(b− a) cos

(
2k − 1

2n
π

)
+ a+ b

)
, k ∈ {1, 2, 3, . . . , n}. (2.1)

(ii) The rth order derivatives of Rn(x) at the end points x = a and x = b are

dr

dxr
Rn(x)

∣∣∣
x∈{a,b}

= (2x− 1)r+n
r−1∏
k=0

(
2n2 − 2k2

2k + 1

)
. (2.2)

(iii) The single-layer integrations of Chebyshev polynomial Rn(x) for n ≥ 2 are

R̄0(x) =

∫ x

0
R0(ξ) dξ = x− a,

R̄1(x) =

∫ x

0
R1(ξ) dξ =

(x− a)(x− b)

b− a
,

R̄n(x) =

∫ x

0
Rn(ξ) dξ =

b− a

4

(
Rn+1(x)

n+ 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
. (2.3)
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(iv) The discrete orthogonality relationship of Chebyshev polynomials Ri and Rj is

n∑
k=1

Ri(xk)Rj(xk) =


0 if i ̸= j,

n if i = j = 0,

n
2 if i = j ̸= 0,

where xk be the zeros of Rn(x) defined in (2.1) and i, j ∈ {0, 1, 2, . . . , n}.

(v) The Chebyshev matrix R at each point xk defined by (2.1) is

R =



R0(x1) R1(x1) · · · Rn−1(x1)

R0(x2) R1(x2) · · · Rn−1(x2)

...
... . . . ...

R0(xn) R1(xn) · · · Rn−1(xn)


.

Then, it has the multiplicative inverse

R−1 =
1

n
diag {1, 2, 2, . . . , 2}R⊤. (2.4)

(vi) The recurrence relation of Chebyshev polynomials Rn−1(x), Rn(x) and Rn+1(x) is

Rn+1(x) = 2

(
2x− a− b

b− a

)
Rn(x)−Rn−1(x)

with starting from the values R0(x) = 1 and R1(x) =
2x−a−b
b−a .

2.2 Statement of heat equation with one-phase Stefan problem

In this thesis, we are interested in the temperature distribution u(x, t) and the

position of the moving boundary or moving interface or moving front s(t) for the liquida-

tion or solidification process as shown in Figure 1.1 over a semi-infinite slab 0 ≤ x < ∞

of material and time t > 0. The concerning problem is the one-phase Stefan problem

with a forcing term f(x, t) which was given in [20]. It is governed by the following heat



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

conduction equation in the first phase, namely,

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ f(x, t), 0 < x < s(t), t > 0 (2.5)

with a uniform temperature k, which refers to the traditional temperature of a material,

beyond the melting or freezing point s(t) within the second phase, that is,

u(x, t) = k, x > s(t), t > 0, (2.6)

where x is a spatial variable, t is a temporal variable, k is a constant, u(x, t) is a temper-

ature distribution, f(x, t) is a forcing term acting on the solid or liquid region, which is

sufficiently smooth and nonnegative, and s(t) is a position of moving front at time t.

From (2.5) and (2.6), we can see that this problem involves moving boundary con-

ditions at the interface x = s(t). In this case, we consider two boundary conditions at

x = s(t). The first one provides the temperature at the interface x = s(t) equivalent to

the traditional temperature of the considered material which is

u(x, t) = k at x = s(t) for t > 0. (2.7)

The second one locates the interface itself through a relationship defining the front velocity

v(t). It is actually the heat balance equation known as the Stefan condition [20], i.e.,

v(t) =
ds(t)

dt
= −∂u(x, t)

∂x
at x = s(t) for t > 0. (2.8)

In addition, this problem requires two more conditions for the solution of the second-

order partial differential equation (PDE) in (2.5). First, the initial temperature at t = 0

is defined by

u(x, 0) = g(x), 0 ≤ x ≤ s(0), (2.9)

where g(x) is a prescribed function that is sufficiently smooth and nonnegative. Next, for
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another condition, we need a fixed boundary condition (FBC) at x = 0 with respect to a

function u(x, t). However, this FBC can vary depending on the problem considered.

2.3 Statement of heat equation with two-sided moving boundary con-

dition

Consider the one-dimensional two-sided moving boundary condition given in [12]:

∂u

∂t
= a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(t)u+ f(x, t), (x, t) ∈ ΩT , (2.10)

where the free domain ΩT = {(x, t) : h1(t) < x < h2(t), 0 < t < T}, subject to the initial

condition

u(x, 0) = g(x), x ∈ [h1(0), h2(0)] (2.11)

and the non-homogeneous Dirichlet boundary conditions which are

u(h1(t), t) = µ1(t), u(h2(t), t) = µ2(t), t ∈ [0, T ], (2.12)

where u(x, t) is the temperature distribution, while g(x), µ1(t), and µ2(t) are theoretically

verified as continuous functions by [21], the coefficients a(x, t), b(x, t), c(t), f(x, t), h1(t)

and h2(t) have been reported to exhibit continuity [15].

We will utilize the properties described in Section 2.1 to develop an algorithm based

on Chebyshev polynomial expansion. This algorithm will be used to solve the problems

discussed in Sections 2.2 and 2.3, which are of our interest.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

FIM-CPE FOR ONE-PHASE STEFAN

PROBLEM

In this chapter, we describe the technique of FIM-CPE for one-dimensional and

construct the Chebyshev integration matrix to manipulate the derivative with respect to

the spatial variable in (2.5) and (2.6). Then, based on this FIM-CPE, we can devise a

numerical algorithm for solving the heat equation with moving boundary conditions as

stated in Section 2.2. Finally, our numerical algorithm is also provided.

3.1 The FIM-CPE in one dimension

We construct the Chebyshev integration matrix, which is the main tool for dealing

with the integral term. Let M ∈ N. We would like to approximate the solution of the

problem in Section 2.2 which depends on the spatial variable in terms of a function w(x)

that can be expressed by the Chebyshev polynomial expansion as follows

w(x) =

M−1∑
n=0

cnRn(x), for x ∈ [a, b], (3.1)

where cn is unknown coefficients to be considered. Next, let xk be grid points generated

by the zeros of the Chebyshev polynomial RM defined by (2.1) in ascending order. When

we substitute each xk into (3.1), those equations can be expressed in the matrix form



w(x1)

w(x2)

...

w(xM )


=



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
... . . . ...

R0(xM ) R1(xM ) · · · RM−1(xM )





c0

c1
...

cM−1


,
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which is denoted by w = Rc. Since R is invertible by Lemma 2.1(v), we have c = R−1w.

Next, we consider the single integral of w(x) from a to xk for xk ∈ [a, b], denoted W (1)(xk),

to obtain

W (1)(xk) :=

∫ xk

a
w(ξ) dξ =

M−1∑
n=0

cn

∫ xk

a
Rn(ξ) dξ =

M−1∑
n=0

cnR̄n(xk),

where R̄n is denoted to be a single-layer integration of Rn that can be directly obtained by

(2.3) depending on its degree n. After substituting each node xk into the above equation,

it can be written in the matrix form



W (1)(x1)

W (1)(x2)

...

W (1)(xM )


=



R̄0(x1) R̄1(x1) · · · R̄M−1(x1)

R̄0(x2) R̄1(x2) · · · R̄M−1(x2)

...
... . . . ...

R̄0(xM ) R̄1(xM ) · · · R̄M−1(xM )





c0

c1
...

cM−1


,

which is denoted by W(1) = Rc = RR−1w := Aw, where A = RR−1 := [aki]M×M is the

integral operational matrix that is called the Chebyshev integration matrix. Thus, it can

be also expressed in another form

W (1)(xk) =

∫ xk

a
w(ξ) dξ =

M∑
i=1

akiw(xi). (3.2)

for varying each zero xk, k ∈ {1, 2, 3, . . . ,M} to the above equation, the matrix form can

be written as the following



W (1)(x1)

W (1)(x2)

...

W (1)(xM )


=



a11 a12 · · · a1M

a21 a22 · · · a2M
...

... . . . ...

aM1 aM2 · · · aMM





w(x1)

w(x2)

...

w(xM )


.

After that, we consider the double-layer integration of w(x) from a to xk, denoted by
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W (2)(xk), by using (3.2). Then, we obtain

W (2)(xk) :=

∫ xk

a

∫ ξ2

a
w(ξ1) dξ1dξ2

=

∫ xk

a
W (1)(ξ2)dξ2

=

M∑
i=1

akiW
(1)(xi)

=

M∑
l=1

M∑
i=1

akiailw(xl)

=

M∑
l=1

[A2]klw(xl).

When we vary the zeros xk for k ∈ {1, 2, 3, . . . ,M} in the above W (2)(xk), each equation

can be combined and written in the matrix form W(2) = A2w which represents the integral

matrix for double-layer integration of w(x).

Similarly, by using the mathematical induction, we have the m multiple-layer inte-

gration of w(x) from a to the zero xk, denoted by W (m)(xk), as follows

W (m)(xk) :=

∫ xk

a

∫ ξm

a
· · ·

∫ ξ3

a

∫ ξ2

a
w(ξ1) dξ1dξ2 · · · dξm−1dξm

=

∫ xk

a
W (m−1)(ξm)dξm

=

M∑
i=1

akiW
(m−1)(xi)

=

M∑
l=1

M∑
i=1

aki[Am−1]ilw(xl)

=

M∑
l=1

[Am]klw(xl).

When the zeros xk for k ∈ {1, 2, 3, . . . ,M} are distributed in the above equation, each

equation can be combined and expressed in the matrix form W(m) = Amu which is the

matrix representation for m multiple-layer integration of w(x) in the FIM-CPE.
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3.2 Procedure for solving one-phase Stefan problem

In this part, the numerical algorithm based on the FIM-CPE explained in Section

3.1 is devised for solving the heat equation with one phase moving boundary as stated in

Section 2.2. First, by using the idea of [20], let us use the spatial coordinate transformation

η = x
s(t) . We obtain the new coordinate system (η, t) and the moving front is fixed

at η = 1. Let us define the solution u(x, t) = w(η, t) which corresponds to the new

coordinate. Then, by employing the chain rule of partial derivatives, we get

∂u

∂x
=

1

s

∂w

∂η
,

∂2u

∂x2
=

1

s2
∂2w

∂η2
and ∂u

∂t
=

∂w

∂t
− η

s

ds

dt

∂w

∂η
.

Thus, by using the above partial differential relations, the considered problem in Section

2.2 given by (2.5)–(2.9) with the transformation η = x
s(t) can be rewritten as follows.

∂w

∂t
=

η

s

ds

dt

∂w

∂η
+

1

s2
∂2w

∂η2
+ f(ηs, t), (η, t) ∈ (0, 1)× (0, T ], (3.3)

ds

dt
= −1

s

∂w

∂η
= v(t), (η, t) ∈ {1} × (0, T ], (3.4)

where w = w(η, t), s = s(t) and T ∈ R+ is denoted to be a terminal time. Their initial

condition is w(η, 0) = g(ηs0) for η ∈ [0, 1] where s0 = s(0). The boundary conditions

are w(1, t) = k and the FBC at η = 0 for t ∈ (0, T ]. Next, let us construct a numerical

algorithm. We start from uniformly discretizing the temporal domain (0, T ] by specifying

each time point tm = m∆t for m ∈ N into (3.3) and (3.4), where ∆t is a given time step.

Moreover, in order to find the moving front s(tm), we linearize the nonlinear term of (3.4)

by letting the functions s and w be at the previous time tm−1. Then, we have

∂w⟨m⟩(η)

∂t
=

ηv⟨m⟩

s⟨m⟩
∂w⟨m⟩(η)

∂η
+

1

(s⟨m⟩)2
∂2w⟨m⟩(η)

∂η2
+ f ⟨m⟩(ηs⟨m⟩), (3.5)

ds⟨m⟩

dt
= − 1

s⟨m−1⟩
∂w⟨m−1⟩(η)

∂η

∣∣∣
η=1

= v⟨m⟩, (3.6)

where the functions with superscript ⟨m⟩ mean those functions are indicated at time tm.

After that, we approximate the derivative terms with respect to time t of (3.5) and (3.6)
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by applying the forward difference quotient which provides the time complexity O(∆t).

Then, we have

w⟨m⟩(η)− w⟨m−1⟩(η)

∆t
=

ηv⟨m⟩

s⟨m⟩
∂w⟨m⟩(η)

∂η
+

1

(s⟨m⟩)2
∂2w⟨m⟩(η)

∂η2
+ f ⟨m⟩(ηs⟨m⟩), (3.7)

s⟨m⟩ − s⟨m−1⟩

∆t
= − 1

s⟨m−1⟩
∂w⟨m−1⟩(η)

∂η

∣∣∣
η=1

= v⟨m⟩. (3.8)

Now, we can see that our considered problem depends only on the spatial variable η.

Hence, the FIM-CPE can be applied to the problem which assumes that a problem solution

w⟨m⟩(η) can be approximated by the Chebyshev polynomial expansion (3.1),

w⟨m⟩(η) =

M−1∑
n=0

c⟨m⟩
n Rn(η). (3.9)

Then, by the idea of FIM-CPE, we eliminate all derivatives with respect to the space

variable η out of (3.7) by taking double-layer integrals from 0 to ηk ∈ (0, 1) on both

sides of (3.7), where ηk’s are generated by the zeros of the Chebyshev polynomial RM ,

as defined in (2.1). Thus, we obtain the equivalent integral equation that is used for the

integration by parts as follows

∫ ηk

0

∫ ξ2

0

(
w⟨m⟩(ξ1)− w⟨m−1⟩(ξ1)

∆t

)
dξ1dξ2

=
v⟨m⟩

s⟨m⟩

(∫ ηk

0
ξ2w

⟨m⟩(ξ2) dξ2 −
∫ ηk

0

∫ ξ2

0
w⟨m⟩(ξ1) dξ1dξ2

)

+
w⟨m⟩(ηk)

(s⟨m⟩)2
+

∫ ηk

0

∫ ξ2

0
f ⟨m⟩(ξ1s

⟨m−1⟩) dξ1dξ2 + d1ηk + d2, (3.10)

where d1 and d2 are arbitrary constants that emerged from the process of integrations.

Next, by substituting each zero ηk ∈ {η1, η2, η3, . . . , ηM} into the integral equation (3.10),

we can express them into the matrix form as

A2

∆t

(
w⟨m⟩ − w⟨m−1⟩

)
=

v⟨m⟩

s⟨m⟩

(
A(η ⊙ w⟨m⟩)−A2w⟨m⟩

)
+

w⟨m⟩

(s⟨m⟩)2
+ A2f⟨m⟩ + d1η + d2i
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which can be simplified to

(
A2

∆t
− v⟨m⟩

s⟨m⟩

(
Adiag{η} −A2

)
− I

(s⟨m⟩)2

)
w⟨m⟩ − d1η − d2i =

A2w⟨m−1⟩

∆t
+ A2f⟨m⟩,

(3.11)

where the operator ⊙ is Hadamard product defined in [7], A = RR−1 is the Chebyshev

integration matrix defined in Section 3.1, I is an M ×M identity matrix,

i⊤ = [1, 1, 1, . . . , 1] ,

η⊤ = [η1, η2, η3, . . . , ηM ] ,

w⟨m⟩⊤ = [w(η1, tm), w(η2, tm), w(η3, tm), . . . , w(ηM , tm)] and

f⟨m⟩⊤ =
[
f(η1s

⟨m⟩, tm), f(η2s
⟨m⟩, tm), f(η3s

⟨m⟩, tm), . . . , f(ηMs⟨m⟩, tm)
]
.

Here, we observe that the matrix equation (3.11) does not account for the moving

location s⟨m⟩ and front velocity v⟨m⟩, which can be estimated by utilizing (3.6) in conjunc-

tion with the Chebyshev polynomial expansion (3.9) and the differential relation (2.2).

Therefore, it can be written in the matrix form as follows

v⟨m⟩ = − 1

s⟨m−1⟩
∂w⟨m−1⟩(η)

∂η

∣∣∣
η=1

= − 1

s⟨m−1⟩

M−1∑
n=0

c⟨m−1⟩
n R′

n(1)

= − 2

s⟨m−1⟩

M−1∑
n=0

c⟨m−1⟩
n n2

= −2q⊤c⟨m−1⟩

s⟨m−1⟩ = −2q⊤R−1w⟨m−1⟩

s⟨m−1⟩ , (3.12)

where q⊤ =
[
0, 1, 4, 9, . . . , (M − 1)2

]
and R−1 is defined in Lemma 2.1(v) with size M ×

M . When we substitute the known values s⟨m−1⟩ and w⟨m−1⟩ from previous time tm−1

into (3.12), we can obtain the front velocity v⟨m⟩. As a consequence, the moving location

s⟨m⟩ can be approximated by using (3.8) and (3.12), that is

s⟨m⟩ = s⟨m−1⟩ + v⟨m⟩∆t. (3.13)
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However, we can see that (3.11) has unknown vectors apart from w⟨m⟩, i.e., d1

and d2, which are emerged from the process of integrations. Thus, we require more two

equations that are constructed from the given boundary conditions w(1, t) = k and FBC

at η = 0. At the time tm, we can use (3.9) to change these conditions into the vector

form as follows:

w⟨m⟩(1) =

M−1∑
n=0

c⟨m⟩
n Rn(1) =

M−1∑
n=0

c⟨m⟩
n = i⊤c⟨m⟩ = i⊤R−1w⟨m⟩ = k. (3.14)

Another condition is FBC at η = 0, which depends on the considered problem. In this

case, we provide two examples of the left FBC, namely, u(0, t) = ϕ0(t) and ux(x, t)|x=0 =

ϕ1(t). By using the spatial coordinate transformation η = x
s(t) , these conditions become

w(0, t) = ϕ0(t) and wη(η, t)|η=0 = s(t)ϕ1(t), respectively. Thus, at fixing time tm, we

apply (3.9) and (2.2) for conversing the obtained conditions into the vector forms as

follows:

w⟨m⟩(0) =

M−1∑
n=0

c⟨m⟩
n Rn(0) =

M−1∑
n=0

c⟨m⟩
n (−1)n = ℓ⊤0 c⟨m⟩ = ℓ⊤0 R−1w⟨m⟩ = ϕ0(tm) (3.15)

and

w⟨m⟩
η (0) =

M−1∑
n=0

c⟨m⟩
n R′

n(0) =

M−1∑
n=0

c⟨m⟩
n (−1)n+1(2n2) = ℓ⊤1 c⟨m⟩= ℓ⊤1 R−1w⟨m⟩= s⟨m⟩ϕ1(tm),

(3.16)

where ℓ⊤0 =
[
1,−1, 1,−1, . . . , (−1)M−1

]
and ℓ⊤1 =

[
0, 2,−8, 18, . . . , 2(−1)M (M − 1)2

]
.

Note that, for other FBCs at η = 0, we can transform them into matrix forms similar to

the process of being formed (3.15) and (3.16).

Now, we completely obtain all of the equations for solving w⟨m⟩. Consequently, we

can combine those equations given by (3.11), (3.14) and (3.15) or (3.16), which depend

on the considered problem, into the matrix form of a linear system. Thus, we have two

linear systems depending on the type of the left FBC considered as follows:
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• Case I: The FBC is u(0, t) = ϕ0(t),


K⟨m⟩ −η −i

i⊤R−1 0 0

ℓ⊤0 R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

k

ϕ0(tm)

 ; (3.17)

• Case II: The FBC is ux(x, t)|x=0 = ϕ1(t),


K⟨m⟩ −η −i

i⊤R−1 0 0

ℓ⊤1 R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

k

s⟨m⟩ϕ1(tm)

 ; (3.18)

where K⟨m⟩ := A2

∆t−
v⟨m⟩

s⟨m⟩

(
Adiag{η} −A2

)
− I

(s⟨m⟩)2 . Accordingly, the solution w⟨m⟩ can be

approximated by solving the system (3.17) or (3.18) together with (3.12) and (3.13) that

start from the given initial conditions w⟨0⟩⊤ = [g(η1s0), g(η2s0), g(η3s0), . . . , g(ηMs0)]

and s⟨0⟩ = s0. Note that, upon performing the final iteration, the obtained numerical

solutions s⟨m⟩ = s(T ) and w⟨m⟩ can be expressed as corresponding to the function u(x, T )

that is

w⟨m⟩⊤ =
[
u(η1s

⟨m⟩, T ), u(η2s
⟨m⟩, T ), u(η3s

⟨m⟩, T ), . . . , u(ηMs⟨m⟩, T ),
]
.

For computational convenience, we summarize all the above-mentioned procedures

in terms of the pseudocode algorithm in order to find an approximate solution of the heat

equation with moving boundary in Section 2.2 by using the FIM-CPE.
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Algorithm 1 Numerical algorithm for solving the heat equation with moving boundary

Input: s0, k, T , M , ∆t, g(x), f(x, t) and ϕ0(t) or ϕ1(t);

Output: The approximate solutions s⟨m⟩ and w⟨m⟩;

1: Set ηk ← 1
2

(
1 + cos

(
2k−1
2M

π
))

for k ∈ {1, 2, 3, . . . ,M} in ascending order;

2: Compute η, q, i, I, R, R, R−1, A and ℓ0 or ℓ1;

3: Construct s⟨0⟩ ← s0 and w⟨0⟩ ← [g(η1s0), g(η2s0), g(η3s0), . . . , g(ηMs0)]
⊤;

4: Set m← 1 and t1 ← ∆t;

5: while tm ≤ T do

6: Compute v⟨m⟩ ← −2q⊤R−1w⟨m−1⟩

s⟨m−1⟩ ;

7: Compute s⟨m⟩ ← s⟨m−1⟩ + v⟨m⟩∆t;

8: Compute K⟨m⟩ ← A2

∆t
− v⟨m⟩

s⟨m⟩ (Adiag{η} −A2)− I
(s⟨m⟩)2

;

9: Compute f⟨m⟩ ←
[
f(η1s

⟨m⟩, tm), f(η2s
⟨m⟩, tm), . . . , f(ηMs⟨m⟩, tm)

]⊤;

10: Find w⟨m⟩ by solving the iterative linear system (3.17) or (3.18);

11: Update m← m+ 1;

12: Compute tm ← m∆t;

13: end while

14: return The final iteration of s⟨m⟩ and w⟨m⟩;

3.3 Numerical examples for one-phase Stefan problem

In this section, we apply the proposed Algorithm 1 based on the FIM-CPE for find-

ing numerical results of the heat equation with moving boundary in order to demonstrate

its efficiency and accuracy by measuring with average relative error via three examples.

Examples 3.1, 3.2 and 3.3 are the one-phase Stefan problems with forcing term, time-

dependent heat flux, and fixed boundary and no forcing term, respectively. All the

experiments are carried out by MatLab R2021b on a computer equipped with a CPU

Processor: 11th Gen Intel(R) Core(TM) i7-1165G7 at 2.80 GHz running on Windows 11.
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Example 3.1 (One-phase Stefan problem with forcing term). This problem considers

the one-phase Stefan problem with a forcing term and imposed zero temperature at the

boundaries x = 0 and x = s(t). The solidification process initiation is due to the initial

temperature distribution in the solid region leading mathematically to the following:

s0 = 1, k = 0, f(x, t) = xet + 2, g(x) = x(1− x) and FBC: u(0, t) = 0.

The analytical solution for the temperature distribution and the freezing front location,

given by Fasano and Primicerio [10], was recently obtained by applying the heat balance

integral method [19], as follows: for 0 ≤ x ≤ s(t) and t ≥ 0,

u(x, t) = x(et − x) and s(t) = et.

We can see that the FBC of this problem is u(0, t) = 0 which corresponds to the

linear system (3.17). Thus, by using Algorithm 1, the numerical results of moving location

s(t) and temperature distribution u(x, t) are obtained and measured in their accuracies

via the average relative error as shown in Table 3.1. In this table, we find approximate

solutions s(t) and u(x, t) at the terminal time T = 0.5 by using the discretization nodes

M ∈ {10, 20, 40, 80} and the time step size ∆t = 1
2M2 . We compare the obtained solu-

tions with the existing methods such as the resulting numerical scheme (ResNS) [13], the

modified numerical scheme (ModNS) [14] and the refined numerical scheme (RefNS) [24].

We can see that the average relative errors of s(T ) and u(x, T ), respectively defined by Es

and Eu, from Algorithm 1 are lower than other methods. Moreover, we also depicted the

graphical behavior of temperature u(x, t) at various times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in

Figure 3.1(a) and plot the comparison of moving front s(t) between exact and numerical

solutions as shown in Figure 3.1(b) which are well-performed matching.
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Table 3.1: Predicted moving location s and average relative errors Es and Eu at the
time T = 0.5 in Example 3.1.

M Schemes Location s(0.5)
Average relative errors

Es Eu

10 ResNS 1.646602 1.29× 10−3 4.32× 10−3

ModNS 1.644863 2.34× 10−3 6.82× 10−3

RefNS 1.646613 1.28× 10−3 4.31× 10−3

Algorithm 1 1.647908 8.13× 10−4 5.20× 10−4

20 ResNS 1.648193 3.20× 10−4 1.27× 10−3

ModNS 1.647753 5.87× 10−4 2.07× 10−3

RefNS 1.648194 3.20× 10−4 4.31× 10−3

Algorithm 1 1.648520 2.02× 10−4 1.29× 10−4

40 ResNS 1.648589 8.00× 10−5 3.67× 10−4

ModNS 1.648479 1.47× 10−4 6.10× 10−4

RefNS 1.648589 8.00× 10−5 3.67× 10−4

Algorithm 1 1.648671 5.03× 10−5 3.24× 10−5

80 ResNS 1.648688 2.00× 10−3 1.05× 10−4

ModNS 1.648661 3.67× 10−3 1.77× 10−4

RefNS 1.648688 2.00× 10−3 1.05× 10−4

Algorithm 1 1.648709 1.26× 10−5 8.09× 10−6

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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(a) Temperature distribution u(x, t)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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1.25

(b) Moving front location s(t)

Figure 3.1: Graphical solutions u and s obtained by Algorithm 1 in Example 3.1.
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Example 3.2 (One-phase Stefan problem with time-dependent heat flux at the bound-

ary). The classical one-phase Stefan problem (no forcing term) with time-dependent heat

flux, instead of a fixed temperature, at the boundary x = 0 is considered. The half space

x ≥ 0 is entirely liquid and subjected to an exponential time-decreasing heat flux at its

boundary. Mathematically, that is expressed by the following equations:

s0 = 0, k = 0, f(x, t) = 0, g(x) = 0 and ∂u

∂x

∣∣∣
x=0

= −et.

The analytical solution given by Hoffmann [11] for 0 ≤ x ≤ s(t) and 0 < t < 1 holds:

u(x, t) = et−x − 1 and s(t) = t.

By employing Algorithm 1 with linear system (3.18) for solving this problem, we

notice that its initial moving front is s0 = 0. As a result, our Algorithm 1 cannot be used

because the value of s0 is used as the denominator in the first step to compute velocity

v⟨1⟩, as seen in line 6 of Algorithm 1. To resolve this issue, it is treated by using s0 close

to zero instead. We attempt to vary the values of s0 ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}

with the nodal number M = 20 and time step ∆t = 0.0001. The obtained average relative

errors Es and Eu at the terminal time T = 1 are demonstrated in Table 3.2. We can see

that the errors decrease when s0 → 0.

Thus, in this case, we choose s0 = 0.001. Now, our Algorithm 1 can already handle

this problem, as demonstrated by the results obtained in Table 3.3. The table showcases

the predicted moving location s(T ) and the average relative errors Es and Eu at the

terminal time T = 1, with the discretization nodes M ∈ {10, 20, 40, 80} and a time step

∆t = 0.12

2M2 . Under the same parameters M and ∆t, we found that our solutions s(T )

and u(x, T ) provided significantly higher accuracy compared to other methods, namely,

ResNS, ModNS and RefNS, as displayed in Table 3.3. In addition, the behavior of temper-

ature u(x, t) for different t ∈ {0.2, 0.4, 0.6, 0.8, 1.0} is illustrated in Figure 3.2(a), together

with the comparison of moving interface s(t) is shown in Figure 3.2(b), which are very
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matching.

Table 3.2: Predicted moving location s and average relative errors Es and Eu varied
by s0 in Example 3.2.

Initial moving s0 Location s(1)
Average relative errors

Es Eu

0.5 0.931124 6.89× 10−2 8.24× 10−2

0.1 0.997583 2.42× 10−3 2.72× 10−3

0.05 0.999410 5.90× 10−4 6.58× 10−4

0.01 0.999981 1.94× 10−5 1.56× 10−5

0.005 0.999998 1.93× 10−6 4.81× 10−6

0.001 1.000000 2.36× 10−7 1.04× 10−6

Exact solution 1.000000 − −

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
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0.008
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0.014

(a) Temperature distribution u(x, t)

0.01 0.0105 0.011 0.0115 0.012 0.0125 0.013 0.0135 0.014 0.0145 0.015

0.01

0.0105

0.011

0.0115
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0.0125
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0.0135
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0.015

(b) Moving front location s(t)

Figure 3.2: Graphical solutions u and s obtained by Algorithm 1 in Example 3.2.
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Table 3.3: Predicted moving location s and average relative errors Es and Eu at the
time T = 1 in Example 3.2.

M Schemes Location s(1)
Average relative errors

Es Eu

10 ResNS 0.999047 9.53× 10−4 2.80× 10−3

ModNS 0.999024 9.76× 10−4 2.85× 10−3

RefNS 1.000023 2.30× 10−5 5.26× 10−4

Algorithm 1 1.000000 1.65× 10−6 4.93× 10−6

20 ResNS 0.999766 2.34× 10−4 8.43× 10−4

ModNS 0.999761 2.39× 10−4 8.61× 10−4

RefNS 0.999997 3.05× 10−6 1.41× 10−4

Algorithm 1 1.000000 2.36× 10−7 1.04× 10−6

40 ResNS 0.999942 5.78× 10−5 2.48× 10−4

ModNS 0.999941 5.92× 10−5 2.54× 10−4

RefNS 0.999998 1.80× 10−6 3.90× 10−5

Algorithm 1 1.000000 1.17× 10−7 1.31× 10−7

80 ResNS 0.999963 1.44× 10−5 7.20× 10−5

ModNS 0.999962 1.47× 10−5 7.30× 10−5

RefNS 0.999999 5.70× 10−7 1.10× 10−5

Algorithm 1 1.000000 9.92× 10−8 4.74× 10−8

Example 3.3 (one phase Stefan problem with fixed boundary and no forcing term). The

classical one-phase Stefan problem, instead of a fixed temperature, at the boundary x = 0

is considered. The half space x ≥ 0 is entirely liquid. Mathematically, that is expressed

by the following equations:

s0 = 0, k = 0, f(x, t) = 0, g(x) = 0 and FBC: u(0, t) = et − 1.
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The analytical solution given by Hoffmann [11] for 0 ≤ x ≤ s(t) and 0 < t < 1 holds:

u(x, t) = et−x − 1 and s(t) = t.

By employing Algorithm 1 with linear system (3.17) for solving this problem, we

notice that its initial moving front is s0 = 0. As a result, our Algorithm 1 cannot be

used because the value of s0 is used as the denominator in the first step to compute

velocity v⟨1⟩, as seen in line 6 of Algorithm 1. We use the idea of Example 3.2 to resolve

this issue. We thus let s0 close to zero instead. We attempt to vary the values of

s0 ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} with the nodal number M = 20 and time step

∆t = 0.0001. The obtained average relative errors Es and Eu at the terminal time T = 1

are demonstrated in Table 3.4. We can see that the errors decrease when s0 → 0.

Thus, in this case, we choose s0 = 0.01. Now, our Algorithm 1 can already work

with this problem as shown in the obtained results in Table 3.5. This table demonstrates

the predicted moving location s(T ) and the average relative errors Es and Eu at the

terminal time T = 1 with the discretization nodes M ∈ {10, 20, 40, 80} and time step ∆t =

0.12

2M2 . Under the same parameters M and ∆t, we found that our solutions u(x, T ) provided

much higher accuracy than other methods in [16], namely, Semi-implicit, Keller box and

Crank-Nicolson as displayed in Table 3.5. In addition, the behavior of temperature u(x, t)

for different t ∈ {0.2, 0.4, 0.6, 0.8, 1.0} is illustrated in Figure 3.3(a), together with the

comparison of moving interface s(t) is shown in Figure 3.3(b), which are very matching.
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Table 3.4: Predicted moving location s and average relative errors Es and Eu varied
by s0 in Example 3.3.

Initial moving s0 Location s(1)
Average relative errors

Es Eu

0.5 0.982732 1.73× 10−2 9.94× 10−3

0.1 0.999878 1.22× 10−4 6.84× 10−5

0.05 0.999986 1.41× 10−5 6.72× 10−6

0.01 1.000001 9.80× 10−7 1.89× 10−6

0.005 1.000001 1.08× 10−6 1.95× 10−6

0.001 1.000001 1.10× 10−6 1.96× 10−6

Exact solution 1.000001 − −

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
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0.008

0.01
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(a) Temperature distribution u(x, t)
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(b) Moving front location s(t)

Figure 3.3: Graphical solutions u and s obtained by Algorithm 1 in Example 3.3.
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Table 3.5: Average relative error Eu at the time T = 1 in Example 3.3.

M Schemes Average relative error Eu

10 Semi-implicit 1.05× 10−2

Keller box 1.17× 10−4

Crank-Nicolson 8.95× 10−5

Algorithm 1 9.11× 10−7

20 Semi-implicit 5.16× 10−3

Keller box 2.93× 10−5

Crank-Nicolson 2.25× 10−5

Algorithm 1 1.76× 10−7

40 Semi-implicit 2.56× 10−3

Keller box 7.34× 10−6

Crank-Nicolson 5.63× 10−6

Algorithm 1 4.58× 10−8

80 Semi-implicit 1.28× 10−3

Keller box 1.83× 10−6

Crank-Nicolson 1.41× 10−6

Algorithm 1 4.74× 10−8

In conclusion, it can be seen from the examples we have shown that the numerical

solution of the FIM-CPE is more accurate compared to other methods. Next, we will

consider the issue of two-sided moving boundary conditions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

FIM-CPE FOR TWO-SIDED MOVING

BOUNDARY CONDITION

In this chapter, based on the idea of FIM-CPE in one-dimensional as presented in

Section 3.1, we construct the Chebyshev integration matrix to manipulate the derivative

with respect to spatial variable in (2.10). Then, based on this FIM-CPE, we can devise a

numerical algorithm for solving the heat equation with a two-sided moving boundary as

stated in Section 2.3. Finally, our numerical algorithm is also provided.

4.1 Procedure for solving two-sided moving boundary condition

In this section, the numerical algorithm based on the FIM-CPE explained in Section

3.1 is devised for solving the heat equation with moving boundary as stated in Section

2.1. First, by hiring the idea given in [12] we change the variables y = x−h1(t)
h2(t)−h1(t)

, let

h3(t) = h2(t)− h1(t). We obtain the new coordinate system (y, t) and the area with the

fixed domain is y ∈ (0, 1). Let us define the solution u(x, t) = w(y, t) which corresponds

to the new coordinate. Then, by employing the chain rule of partial derivatives, we get

∂u

∂x
=

1

h3

∂w

∂y
,

∂2u

∂x2
=

1

h23

∂2w

∂y2
and ∂u

∂t
=

∂w

∂t
− 1

h3

∂w

∂y

(
yh′3 + h′1

)
.

Thus, using the above partial differential relations, the considered problem in Section 2.3

given by (2.10)–(2.12) with the transformation y = x−h1(t)
h3(t)

can be rewritten as follows.

∂w

∂t
=

a

h23
· ∂

2w

∂y2
+

b+ yh′3 + h′1
h3

· ∂w
∂y

+ cw + f, (y, t) ∈ (0, 1)× (0, T ], (4.1)

w(y, 0) = g(yh3(0) + h1(0)), y ∈ [0, 1],

w(0, t) = µ1(t), w(1, t) = µ2(t), t ∈ [0, T ], (4.2)
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where w = w(y, t), h1 = h1(t), h3 = h3(t), a = a(yh3(t)+h1(t), t), b = b(yh3(t)+h1(t), t),

c = c(t), f(yh3(t) + h1(t), t) and T ∈ R+ is denoted to be a terminal time. Next,

we construct a numerical algorithm. We start from uniformly discretizing the temporal

domain [0, T ] by specifying each time point tm = m∆t for m ∈ N into (4.1), where ∆t is

a given time step. Then, we have

∂w⟨m⟩(y)

∂t
=

a⟨m⟩(yh3m + h1m)

h23m
· ∂

2w⟨m⟩(y)

∂y2

+
b⟨m⟩(yh3m + h1m) + yh′3m + h′1m

h3m
· ∂w

⟨m⟩(y)

∂y

+ c⟨m⟩w⟨m⟩(y) + f ⟨m⟩(yh3m + h1m), (4.3)

where him = hi(tm) for i ∈ {1, 2, 3} and the functions with superscript ⟨m⟩ mean those

functions are indicated at time tm. After that, we approximate the derivative terms with

respect to time t of (4.3) by applying the forward difference quotient which provides the

time complexity O(∆t). Then, we have

w⟨m⟩(y)− w⟨m−1⟩(y)

∆t
=

1

h23m

(
a⟨m⟩(yh3m + h1m) · ∂

2w⟨m⟩(y)

∂y2

)
+

1

h3m

(
b⟨m⟩(yh3m + h1m) · ∂w

⟨m⟩(y)

∂y

)
+

h′3m
h3m

(
y · ∂w

⟨m⟩(y)

∂y

)
+

h′1m
h3m

· ∂w
⟨m⟩(y)

∂y

+ c⟨m⟩w⟨m⟩(y) + f ⟨m⟩(yh3m + h1m). (4.4)

Now, we can see that our considered problem depends only on the spatial variable y.

Hence, the FIM-CPE can be applied to the problem which assumes that a problem solution

w⟨m⟩(y) can be approximated by the Chebyshev polynomial expansion (3.1)

w⟨m⟩(y) =

M−1∑
n=0

c⟨m⟩
n Rn(y). (4.5)

Then, by the idea of FIM-CPE, we eliminate all derivatives with respect to the space

variable y out of (4.4) by taking double-layer integrals from 0 to yk ∈ (0, 1) on both sides

of (4.4), where yk is generated by the zeros of the Chebyshev polynomial RM defined
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in (2.1). Thus, we obtain the equivalent integral equation with using the integration by

parts as follows

∫ yk

0

∫ ξ2

0

(
w⟨m⟩(ξ1)− w⟨m−1⟩(ξ1)

∆t

)
dξ1dξ2

=
1

h23m

(
a⟨m⟩(ykh3m + h1m)w⟨m⟩(yk)− 2

∫ yk

0

∂a⟨m⟩(ξ2h3m + h1m)

∂ξ2
w⟨m⟩(ξ2)dξ2

+

∫ yk

0

∫ ξ2

0

∂2a⟨m⟩(ξ1h3m + h1m)

∂ξ1∂ξ2
w⟨m⟩(ξ1)dξ1dξ2

)
+

1

h3m

(∫ yk

0
b⟨m⟩(ξ2h3m + h1m)w⟨m⟩(ξ2)dξ2

−
∫ yk

0

∫ ξ2

0

∂2b⟨m⟩(ξ1h3m + h1m)

∂ξ1∂ξ2
w⟨m⟩(ξ1)dξ1dξ2

)
+

h′3m
h3m

(∫ yk

0
ξ2w

⟨m⟩(ξ2)dξ2 −
∫ yk

0

∫ ξ2

0
w⟨m⟩(ξ1)dξ1dξ2

)
+

h′1m
h3m

∫ yk

0
w⟨m⟩(ξ2)dξ2

+ c⟨m⟩
∫ yk

0

∫ ξ2

0
w⟨m⟩(ξ1)dξ1dξ2 +

∫ yk

0

∫ ξ2

0
f ⟨m⟩(ξ1h3m + h1m)dξ1dξ2 + d1yk + d2,

(4.6)

where d1 and d2 are arbitrary constants that emerged from the process of integrations.

Next, by substituting each zero yk ∈ {y1, y2, y3, . . . , yM} into the integral equation (4.6),

we can express them into the matrix form as

A2

∆t

(
w⟨m⟩ − w⟨m−1⟩

)
=

1

h23m

(
diag{a⟨m⟩}w⟨m⟩ − 2Adiag{a⟨m⟩

y }w⟨m⟩ + A2diag{a⟨m⟩
yy }w⟨m⟩

)
+

1

h3m

(
Adiag{b⟨m⟩}w⟨m⟩ −A2diag{b⟨m⟩

y }w⟨m⟩
)

+
h′3m
h3m

(
Adiag{y}w⟨m⟩ −A2w⟨m⟩

)
+

h′1m
h3m

Aw⟨m⟩

+ c⟨m⟩A2w⟨m⟩ + A2f⟨m⟩ + d1y + d2i

which can be simplified to

K⟨m⟩w⟨m⟩ − d1y− d2i =
A2

∆t
w⟨m−1⟩ + A2f⟨m⟩, (4.7)

where K⟨m⟩ := A2

∆t −
D⟨m⟩

1 −2AD⟨m⟩
2 +A2D⟨m⟩

3

h2
3m

− AD⟨m⟩
4 −A2D⟨m⟩

5

h3m
− h′

3m(AY−A2)
h3m

− h′
1mA
h3m
− c⟨m⟩A2,

D1 = diag{a⟨m⟩}, D2 = diag{a⟨m⟩
y }, D3 = diag{a⟨m⟩

yy }, D4 = diag{b⟨m⟩}, D5 = diag{b⟨m⟩}
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and Y = diag{y}. The other parameters contained in (4.7) are as follows: c⟨m⟩ = c(tm),

A = RR−1 is the Chebyshev integration matrix defined in Section 3.1,

i⊤ = [1, 1, 1, . . . , 1] ,

y⊤ = [y1, y2, y3, . . . , yM ] ,

Y = diag{y1, y2, y3, . . . , yM},

w⟨m⟩⊤ = [w(y1h3m + h1m, tm), w(y2h3m + h1m, tm), . . . , w(yMh3m + h1m, tm)] ,

f⟨m⟩⊤ = [f(y1h3m + h1m, tm), f(y2h3m + h1m, tm), . . . , f(yMh3m + h1m, tm)] .

For the M ×M diagonal matrices D⟨m⟩
1 ,D⟨m⟩

2 ,D⟨m⟩
3 ,D⟨m⟩

4 and D⟨m⟩
5 are defined by

D⟨m⟩
1 =



a(y1h3m + h1m, tm) 0 · · · 0

0 a(y2h3m + h1m, tm) · · · 0

...
... . . . ...

0 0
... a(yMh3m + h1m, tm)


,

D⟨m⟩
2 =



∂a
∂y (y1h3m + h1m, tm) 0 · · · 0

0 ∂a
∂y (y2h3m + h1m, tm) · · · 0

...
... . . . ...

0 0 · · · ∂a
∂y (yMh3m + h1m, tm)


,

D⟨m⟩
3 =



∂2a
∂y2 (y1h3m + h1m, tm) 0 · · · 0

0 ∂2a
∂y2 (y2h3m + h1m, tm) · · · 0

...
... . . . ...

0 0 · · · ∂2a
∂y2 (yMh3m + h1m, tm)


,

D⟨m⟩
4 =



b(y1h3m + h1m, tm) 0 · · · 0

0 b(y2h3m + h1m, tm) · · · 0

...
... . . . ...

0 0 · · · b(yMh3m + h1m, tm)


,
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D⟨m⟩
5 =



∂b
∂y (y1h3m + h1m, tm) 0 · · · 0

0 ∂b
∂y (y2h3m + h1m, tm) · · · 0

...
... . . . ...

0 0 · · · ∂b
∂y (yMh3m + h1m, tm)


.

From the given non-homogeneous Dirichlet boundary conditions (4.2), we can convert

them into vector forms by using the linear combination of Chebyshev polynomial expan-

sion (4.5) at the time tm as follows:

w⟨m⟩(0) =

M−1∑
n=0

c⟨m⟩
n Rn(0) =

M−1∑
n=0

c⟨m⟩
n (−1)n = ℓ⊤0 c⟨m⟩ = ℓ⊤0 R−1w⟨m⟩ = µ1(tm), (4.8)

w⟨m⟩(1) =

M−1∑
n=0

c⟨m⟩
n Rn(1) =

M−1∑
n=0

c⟨m⟩
n = i⊤c⟨m⟩ = i⊤R−1w⟨m⟩ = µ2(tm), (4.9)

where ℓ⊤0 =
[
1,−1, 1,−1, . . . , (−1)M−1

]
.

Finally, from (4.7), (4.8) and (4.9), we can combine them to construct the system

of linear equations at the iterative time tm for m ∈ N, which contains M + 2 unknown

variables including w⟨m⟩, d1 and d2, as follows:


K⟨m⟩ −y −i

ℓ⊤0 R−1 0 0

i⊤R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

µ1(tm)

µ2(tm)

 , (4.10)

where K⟨m⟩ := A2

∆t −
D⟨m⟩

1 −2AD⟨m⟩
2 +A2D⟨m⟩

3

h2
3m

− AD⟨m⟩
4 −A2D⟨m⟩

5

h3m
− h′

3m(AY−A2)
h3m

− h′
1mA
h3m
− c⟨m⟩A2.

Accordingly, the solution w⟨m⟩ can be approximated by solving the system (4.10) that

starts from the given initial conditions h1(0) = h10, h2(0) = h20, h3(0) = h30 = h20 − h10

and w⟨0⟩⊤ =
[
g(y1h30+h10), g(y2h03+h10), . . . , g(yMh30+h10)

]
. Note that, performing

of the final iteration, the obtained numerical solutions h1m = h1(T ), h3m = h3(T ) and

w⟨m⟩ can be actually expressed corresponding to the function u(x, T ) that is

w⟨m⟩⊤ = [u(y1h3m + h1m, T ), u(y2h3m + h1m, T ), . . . , u(yMh3m + h1m, T ), ] .
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For computational convenience, we summarize all the above-mentioned procedures

in terms of the pseudocode algorithm in order to find an approximate solution of the heat

equation with moving boundary in Section 2.3 by using the FIM-CPE.

Algorithm 2 Numerical algorithm for solving the heat equation with moving boundary

Input: a(x, t), b(x, t), c(t), T , M , ∆t, g(x), f(x, t), h1(t), h2(t), µ1(t) and µ2(t);

Output: The approximate solutions w⟨m⟩, h⟨m⟩
1 , h⟨m⟩

2 and h
⟨m⟩
3 ;

1: Set yk ← 1
2

(
1 + cos

(
2k−1
2M

π
))

for k ∈ {1, 2, 3, . . . ,M} in ascending order;

2: Compute y, i, R, R, R−1, A and ℓ0;

3: Construct w⟨0⟩ ← [g(y1h30 + h10), g(y2h03 + h10), . . . , g(yMh30 + h10)]
⊤;

4: Set m← 1 and t1 ← ∆t;

5: while tm ≤ T do

6: Compute x⟨m⟩ ← yh
⟨m⟩
3 + h

⟨m⟩
1 ;

7: Compute D⟨m⟩
1 ,D⟨m⟩

2 ,D⟨m⟩
3 ,D⟨m⟩

4 , D⟨m⟩
5 and K⟨m⟩;

8: Compute f⟨m⟩ ←
[
f(x

⟨m⟩
1 , tm), f(x

⟨m⟩
2 , tm), . . . , f(x

⟨m⟩
M , tm)

]⊤
;

9: Find w⟨m⟩ by solving the iterative linear system (4.10);

10: Update m← m+ 1;

11: Compute tm ← m∆t;

12: end while

13: return The final iteration of w⟨m⟩, h⟨m⟩
1 , h⟨m⟩

2 and h
⟨m⟩
3 ;

4.2 Numerical examples for two-sided moving boundary condition

In this section, we apply the proposed Algorithm 2 based on the FIM-CPE for

finding numerical results of the heat equation with a two-sided moving boundary in order

to demonstrate its efficiency and accuracy by measuring with average relative error via

two examples. Examples 4.1 and 4.2 are the two-sided moving boundary conditions with

forcing term and non-homogeneous Dirichlet boundary conditions. All the experiments

are carried out by MatLab R2021b on a computer equipped with a CPU Processor: 11th

Gen Intel(R) Core(TM) i7-1165G7 at 2.80 GHz running on Windows 11.
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Example 4.1. In this example, we consider the case when the coefficients in (2.10) are a

set of polynomials of the first order in x and t. Moreover, the free boundaries are linear

functions in time, as illustrated in the following quantities.

a(x, t) = 1 + xt, b(x, t) = 1 + x, c(t) = 1 + t,

h1(t) = 1 + t, h2(t) = 2 + 2t, h3(t) = h2(t)− h1(t) = 1 + t,

µ1(t) = (1 + t)2 + 2t+ 1, µ2(t) = 4(1 + t)2 + 2t+ 1,

f(x, t) = 2− 2(1 + xt)− 2x(1 + x)− (1 + t)(x2 + 2t+ 1) and u(x, t) = x2 + 2t+ 1.

After performing the transformation, we have

a(y, t) = 1 + (y + 1)(1 + t)t,

b(y, t) = 1 + (y + 1)(1 + t),

w(y, t) = (y + 1)2(1 + t)2 + 1 + 2t and

f(y, t) = 2− 2(1 + t(y + 1)(1 + t))− 2(y + 1)(t+ 1)(1 + (y + 1)(1 + t))

− (1 + t)((y + 1)2(1 + t)2 + 2t+ 1).

By using our Algorithm 2, the numerical results of moving location h1(t), h2(t) and tem-

perature distribution u(x, t) are obtained and measured in their accuracies via the average

relative error as shown in Table 4.1. In this table, we compare the exact solution with

our obtained approximate solution u(x, t) at the terminal time T = 1 by using the dis-

cretization nodes M ∈ {10, 20, 40, 80} and time step size ∆t = T
M . We find the average

relative errors of u(x, T ), defined by Eu, from Algorithm 2 provided are low. More-

over, we also depicted the graphical behavior of temperature u(x, t) at various times

t ∈ {0.2, 0.4, 0.6, 0.8, 1.0} in Figure 4.1 which is a good performance.
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Table 4.1: Average relative error Eu at time T = 1 in Example 4.1.

M Exact Algorithm 2 Average relative error Eu

10 18.9017 18.9049 3.30× 10−3

20 18.9753 18.9761 2.50× 10−3

40 18.9938 18.9940 2.10× 10−3

80 18.9985 18.9985 2.00× 10−3

Location h1(1) = 2 h2(1) = 4 –

1 1.5 2 2.5 3 3.5 4

2

4

6

8

10

12

14

16

18

20

Figure 4.1: Temperature distribution u(x, t) obtained by Algorithm 2 in Example 4.1.
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Example 4.2. In this example, we consider a nonlinear case for the coefficients and a

linear one for the free boundaries h1 and h2.

a(x, t) = (1 + x+ t)2, b(x, t) = x2 + sin(t), c(t) = t+ t2,

h1(t) = 1 + t3, h2(t) = 2 + t2, h3(t) = h2(t)− h1(t) = 1 + t2 − t3,

µ1(t) = 1 + 2t2 + (1 + t3)3, µ2(t) = 1 + 2t2 + (2 + t2)3,

f(x, t) = 4t− 6t(1 + t+ x)2 − (t+ t2)(1 + 2t2 + x3)− 3x2(x2 + sin(t)) and

u(x, t) = x3 + 2t2 + 1.

After performing the transformation, we have

a(y, t) = (2 + t+ t3 + (1 + t2 + x3)y)2,

b(y, t) = (1 + t3 + (1 + t2 − t3)y)2 + sin(t),

w(y, t) = 1 + 2t2 + (1 + t3 + (1 + t2 − t3)y)3 and

f(y, t) = 4t− 6(1 + t3 + (1 + t2 − t3)y)(2 + t+ t3 + (1 + t2 − t3)y)2

− (t+ t2)(1 + 2t2 + (1 + t3 + (1 + t2 − t3)y)3)

− 3(1 + t3 + (1 + t2 − t3)y)2((1 + t3 + (1 + t2 − t3)y)2 + sin(t)).

By using our Algorithm 2, the numerical results of moving location h1(t), h2(t) and tem-

perature distribution u(x, t) are obtained and measured in their accuracies via the average

relative error as shown in Table 4.2. In this table, we compare the exact solution with

our obtained approximate solution u(x, t) at the terminal time T = 1 by using the dis-

cretization nodes M ∈ {10, 20, 40, 80} and time step size ∆t = T
M . We find the average

relative errors of u(x, T ), defined by Eu, from Algorithm 2 provided are low. More-

over, we also depicted the graphical behavior of temperature u(x, t) at various times

t ∈ {0.2, 0.4, 0.6, 0.8, 1.0} in Figure 4.2 which is a good performance.
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Table 4.2: Average relative error Eu at time T = 1 in Example 4.2.

M Exact Algorithm 2 Average relative error Eu

10 29.8341 29.8298 5.00× 10−3

20 29.9584 29.9572 5.60× 10−3

40 29.9896 29.9893 6.00× 10−3

80 29.9974 29.9973 6.10× 10−3

Location h1(1) = 2 h2(1) = 3 –

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

5

10

15

20

25

30

Figure 4.2: Temperature distribution u(x, t) obtained by Algorithm 2 in Example 4.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS

5.1 Conclusions and discussions

In this thesis, the main idea is to construct a numerical algorithm for finding ap-

proximate solutions of the heat equation with moving boundary described in Sections 2.2

and 2.3, we first transform the problem from moving boundary into the fixed boundary

by using the spatial coordinate transformation. Afterward, we manipulate the deriva-

tive with respect to the time variable by using the forward different quotient. Then, the

FIM-CPE is applied to handle the derivative with respect to the space variable.

In Chapter III, we constructed Algorithm 1, expressed in pseudocode form for easy

implementation. Furthermore, this Algorithm 1 remains flexible for the given FBC at x =

0, which can be transformed into a vector form based on the established concepts of (3.15)

and (3.16) as well. In addition, the performance of Algorithm 1 is demonstrated through

numerical experiments in three examples: Example 3.1, Example 3.2, and Example 3.3.

These examples involve one-phase Stefan problems with a forcing term, time-dependent

heat flux at the boundary, and a fixed boundary with no forcing term, respectively. The

results of these examples show that our algorithm accurately predicts the evolution of

the temperature distribution u(x, t) and the moving front location s(t). Furthermore, our

algorithm achieves lower average relative errors compared to other schemes such as ResNS,

ModNS, and RefNS in Examples 3.1 and 3.2, as demonstrated in Tables 3.1 and 3.3.

Additionally, in Example 3.3, our algorithm outperforms other schemes, namely Semi-

implicit, Keller box, and Crank-Nicolson, with lower average relative errors, as shown in

Tables 3.5. However, Algorithm 1 has a limitation: it cannot operate when the initial

position of the moving position interface, s0, is set to zero. This is due to the fact that s0

is used as the denominator in the first step to compute the velocity v⟨1⟩. Therefore, the
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treatment for this issue is by choosing the value of s0 close to zero as obviously illustrated

in Examples 3.2 and 3.3 that we use s0 = 0.001 and s0 = 0.01, respectively. Consequently,

the obtained numerical solutions still exhibit a high level of precision.

In Chapter IV, we use FIM-CPE to devise the numerical Algorithm 2 for solving

two-sided moving boundary conditions (2.10) as demonstrated in Section 2.3. The numer-

ical examples demonstrate that our Algorithm 2 gives a good performance via Examples

4.1 and 4.2. These examples show that our algorithm can accurately predict the evolution

of the temperature distribution u(x, t) with a comparison exact solution and the moving

front location h1(t), h2(t) and h3(t) and also provide the average relative errors, in Exam-

ples 4.1 and 4.2 which can be seen in Tables 4.1 and 4.2, respectively. We further depict

the graphical behaviors of temperature distribution u(x, t) at different times t together

in Figures 4.1 and 4.2.

5.2 Future works

In future work, we really hope that our proposed FIM-CPE can be applied to

interesting problems. The lists of our future plan include the following:

• Improve our FIM-CPE to be more accurate in one-dimensional one-phase Stefan

problem and two-sided moving boundary conditions.

• Extend our FIM-CPE to the multi-dimensional moving boundary problems.
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APPENDIX A : Examples of MatLab code for one-phase Stefan problems

In calculating the approximate solutions of each example in this research, we im-

plement the MatLab code for FIM-CPE to find the result. In this appendix, we would

like to show examples of code, and the command for solving a system of linear equations.

Example A1 (Stefan problem with forcing term). Consider the problem in Example 3.1.

s0 = 1, k = 0, f(x, t) = xet + 2, g(x) = x(1− x) and FBC: u(0, t) = 0.

The analytical solution is u(x, t) = x(et − x) and the freezing front location is s(t) = et.

Thus, we can construct the linear system in case (3.17) as follows:


K⟨m⟩ −η −i

i⊤R−1 0 0

ℓ⊤0 R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

k

ϕ0(tm)

 .

1 % -- Set initial parameters ------------------------------------

2 H = 500:500:2500;

3 J = 250:250:2500;

4 M = 80; % number of node

5 T = 0.5; % terminal time

6 t0 = 0; % initial time

7 dt = 1/(2*M^2); % time step

8 s0 = exp(t0); % initial position moving

9 k = 0; % right boundary

10 phi0 = @(t) 0; % left boundary

11 s = @(t) exp(t); % position moving front

12 g = @(x) x.*(exp(t0)-x); % initial condition

13 f = @(x,t) x*exp(t)+2; % forcing term

14 ue = @(x,t) x.*(exp(t)-x); % exact solution
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15 % -- Construct Chebyshev integration matrix A ----------------

16 eta = flip(1/2*(cos((2*(1:M)'-1)/(2*M)*pi)+1)); % zero of CBS

17 R(:,1) = ones(M,1);

18 R(:,2) = 2*eta-1;

19 for n = 2:M

20 R(:,n+1) = 2*(2*eta-1).*R(:,n)-R(:,n-1);

21 end

22 Rbar(:,1) = eta;

23 Rbar(:,2) = eta.^2-eta;

24 for n = 2:M-1

25 Rbar(:,n+1) = 1/4*(R(:,n+2)/(n+1)-R(:,n)/(n-1)-2*(-1)^n/(n^2-1));

26 end

27 Rinv = 1/M*diag([1 2*ones(1,M-1)])*R(:,1:M)';

28 A = Rbar*Rinv;

29 % -- Construct Block Matrix -----------------------------------

30 W = []; S = []; S1 = [];

31 wm = g(eta*s0);

32 sm = s0;

33 l0 = (-1).^(0:M-1)';

34 q = (0:M-1)'.^2;

35 i = ones(M,1);

36 t = t0+dt:dt:T;

37 for m = 1:length(t)

38 vm = -2*q'*Rinv*wm/sm;

39 sm = sm + vm*dt;

40 Km = A^2/dt-vm/sm*(A*diag(eta)-A^2)-eye(M)/(sm^2);

41 fm = f(eta*sm,t(m));

42 Q = [Km -eta -i; i'*Rinv 0 0; l0'*Rinv 0 0];

43 F = [A^2*wm/dt+A^2*fm; k; phi0(t(m))];

44 w = Rinv(Q)*F;

45 wm = w(1:M);
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46 if find(m==H)

47 t(m)

48 W = [W wm]

49 S = [S sm]

50 end

51 if find(m==J)

52 t(m)

53 S1 = [S1 sm]

54 end

55 end

56 % Approximate solution W and moving front location s ---------

57 x = eta*sm;

58 [x ue(x,T) wm abs((ue(x,T)-wm))]

59 average_error_u = mean(abs((ue(x,T)-wm)))

60 location_s = round(sm,6)

61 average_error_s = abs(sm-s(T))

62 % -- Plot solution --------------------------------------------

63 figure

64 for i = 1:5

65 plot(eta*S(i),W(:,i),'LineWidth',1.5)

66 hold on;

67 end

68 grid on; grid minor;

69 figure

70 plot(t,s(t),'b-','LineWidth',1.5)

71 hold on;

72 plot(t(J),S1','ro','LineWidth',1.5,'MarkerFaceColor','r')

73 grid on; grid minor;

74 hold off;
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Example A2 (Stefan problem with time-dependent heat flux at the boundary). We

consider the problem in Example 3.2.

s0 = 0, k = 0, f(x, t) = 0, g(x) = 0 and ∂u

∂x

∣∣∣
x=0

= −et.

The analytical solution is u(x, t) = et−x − 1 and the freezing front location is s(t) = t.

Thus, we can construct the linear system in case (3.18) as follows:


K⟨m⟩ −η −i

i⊤R−1 0 0

ℓ⊤1 R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

k

s⟨m⟩ϕ1(tm)

 .

1 % -- Set initial parameters ---------------------------------

2 H = 996:1000:4996

3 J = 496:500:4996

4 M = 80; % number of node

5 T = 1; % teminal time

6 dt = 0.1^2/(2*M^2); % time step

7 s0 = 0.001; % initial position moving front

8 k = 0; % right boundary

9 phi1 = @(t) -exp(t); % left boundary

10 s = @(t) t; % position moving front

11 g = @(x) 0*x; % initial condition

12 f = @(x,t) 0*x; % forcing term

13 ue = @(x,t) exp(t-x)-1; % exact solution

14 % -- Construct Chebyshev integration matrix A ---------------

15 eta = flip(1/2*(cos((2*(1:M)'-1)/(2*M)*pi)+1)); % zero of CBS

16 R(:,1) = ones(M,1);

17 R(:,2) = 2*eta-1;
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18 for n = 2:M

19 R(:,n+1) = 2*(2*eta-1).*R(:,n)-R(:,n-1);

20 end

21 Rbar(:,1) = eta;

22 Rbar(:,2) = eta.^2-eta;

23 for n = 2:M-1

24 Rbar(:,n+1) = 1/4*(R(:,n+2)/(n+1)-R(:,n)/(n-1)-2*(-1)^n/(n

^2-1));

25 end

26 Rinv = 1/M*diag([1 2*ones(1,M-1)])*R(:,1:M)';

27 A = Rbar*Rinv;

28 % -- Construct Block Matrix ---------------------------------

29 W = []; S = []; S1 = [];

30 wm = g(eta*s0);

31 sm = s0;

32 l1 = 2*(-1).^(1:M)'.*(0:M-1)'.^2;

33 q = (0:M-1)'.^2;

34 i = ones(M,1);

35 t = s0:dt:T;

36 for m = 1:length(t)

37 vm = -2*q'*Rinv*wm/sm;

38 sm = sm + vm*dt;

39 Km = A^2/dt-vm/sm*(A*diag(eta)-A^2)-eye(M)/(sm^2);

40 fm = f(eta*sm,t(m));

41 Q = [Km -eta -i; i'*Rinv 0 0; l1'*Pinv 0 0];

42 F = [A^2*wm/dt+A^2*fm; k; sm*phi1(t(m))];

43 w = Rinv(Q)*F;

44 wm = w(1:M);

45 [vm t(m) sm]
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46 if find(m==H)

47 t(m)

48 W = [W wm]

49 S = [S sm]

50 end

51 if find(m==J)

52 t(m)

53 S1 = [S1 sm]

54 end

55 end

56 % Approximate solution W and moving front location s -----------

57 x = eta*sm;

58 [x ue(x,T) wm abs((ue(x,T)-wm))]

59 average_error_u = mean(abs((ue(x,T)-wm)))

60 location_s = round(sm,6)

61 average_error_s = abs(sm-s(T))

62 % -- Plot solution ------------------------------------------

63 figure

64 for i = 1:5

65 plot(eta*S(i),W(:,i),'LineWidth',1.5)

66 hold on

67 end

68 grid on; grid minor;

69 figure

70 plot(t,s(t),'b-','LineWidth',1.5)

71 hold on;

72 plot(t(J),S1','ro','LineWidth',1.5,'MarkerFaceColor','r')

73 grid on; grid minor;

74 hold off;
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APPENDIX B : Examples of MatLab code for two-sided moving boundary conditions

Example B1. We consider the problem in Example 4.1.

a(x, t) = 1 + xt, b(x, t) = 1 + x, c(t) = 1 + t,

h1(t) = 1 + t, h2(t) = 2 + 2t, h3(t) = h2(t)− h1(t) = 1 + t,

µ1(t) = (1 + t)2 + 2t+ 1, µ2(t) = 4(1 + t)2 + 2t+ 1,

f(x, t) = 2− 2(1 + xt)− 2x(1 + x)− (1 + t)(x2 + 2t+ 1).

The analytical solution is u(x, t) = x2 +2t+1. Thus, we can construct the linear system

in (4.10) as follows:


K⟨m⟩ −y −i

ℓ⊤0 R−1 0 0

i⊤R−1 0 0




w⟨m⟩

d1

d2

 =


A2w⟨m−1⟩

∆t + A2f⟨m⟩

µ1(tm)

µ2(tm)

 .

1 % -- Set initial -------------------------

2 H = 0:16:80;

3 M = 80; % number of nodes

4 T = 1; % teminal time

5 t0 = 0; % initial time

6 dt = T/M; % time step

7 a = @(x,t) 1+x*t; % coefficient of u_xx

8 b = @(x,t) 1+x; % coefficient of u_x

9 c = @(t) 1+t; % coefficient of u

10 h1 = @(t) 1+t; % position left moving front

11 h2 = @(t) 2+2*t; % position right moving front

12 h3 = @(t) 1+t; % h2-h1

13 mu1 = @(t) (1+t)^2+2*t+1; % left boundary

14 mu2 = @(t) 4*(1+t)^2+2*t+1; % right boundary
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15 g = @(x) x.^2+1; % initial condition

16 f = @(x,t) 2-2*(1+x*t)-2*x.*(1+x)-(1+t)*(x.^2+2*t+1); % forcing

term

17 ue = @(x,t) x.^2+2*t+1; % exact solution

18 % -- Construct matrix A -----------------------------------

19 y = flip(1/2*(cos((2*(1:M)'-1)/(2*M)*pi)+1)); % zero of CBS

20 R(:,1) = ones(M,1);

21 R(:,2) = 2*y-1;

22 for n = 2:M

23 R(:,n+1) = 2*(2*y-1).*R(:,n)-R(:,n-1);

24 end

25 Rbar(:,1) = y;

26 Rbar(:,2) = y.^2-y;

27 for n = 2:M-1

28 Rbar(:,n+1) = 1/4*(R(:,n+2)/(n+1)-R(:,n)/(n-1)-2*(-1)^n/(n

^2-1));

29 end

30 Rinv = 1/M*diag([1 2*ones(1,M-1)])*R(:,1:M)';

31 A = Rbar*Rinv;

32 % -- Derivative of coefficient functions -----------------------

33 h1t = @(t) 1;

34 h3t = @(t) 1;

35 ay = @(x,t) (1+t)*t+0*x;

36 ayy = @(x,t) 0*x;

37 by = @(x,t) 1+t+0*x;

38 % Block Matrix --------------------------------------------------

39 W = []; H1 = []; H2 = []; H3 = [];

40 wm = g(y.*h3(t0)+h1(t0));

41 l0 = (-1).^(0:M-1)';
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42 i = ones(M,1);

43 t = t0:dt:T;

44 for m = 1:length(t)

45 x = y.*h3(t(m))+h1(t(m));

46 Km = A^2/dt-(diag(a(x,t(m)))-2*A*diag(ay(x,t(m))) ...

47 +A^2*diag(ayy(x,t(m))))./(h3(t(m)))^2 ...

48 -(A*diag(b(x,t(m)))-A*diag(by(x,t(m))) ...

49 +h3t(t(m))*(A*diag(y)-A^2)+h1t(t(m))*A)./(h3(t(m))) ...

50 -A^2*c(t(m));

51 fm = f(x,t(m));

52 Q = [Km -y -i; l0'*Rinv 0 0; i'*Rinv 0 0];

53 F = [A^2*wm/dt+A^2*fm; mu1(t(m)); mu2(t(m))];

54 w = pinv(Q)*F;

55 wm = w(1:M);

56 h1m = h1(t(m));

57 h2m = h2(t(m));

58 h3m = h3(t(m));

59 if find(m==H)

60 t(m);

61 W = [W wm];

62 H1 = [H1 h1m];

63 H2 = [H2 h2m];

64 H3 = [H3 h3m];

65 end

66 end

67 % -- Approximate solution W and moving front location h_1,h_2

68 x = y.*h3(T)+h1(T);

69 [x ue(x,T) wm abs((ue(x,T)-wm)./ue(x,T))]

70 average_error_u = mean(abs((ue(x,T)-wm)./ue(x,T)))
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71 location_h1 = h1(T)

72 location_h2 = h2(T)

73 % -- Plot solution --------------------

74 figure

75 for i = 1:5

76 plot(y*H3(i)+H1(i),W(:,i),'LineWidth',1.5)

77 hold on

78 end

79 grid on

80 grid minor

81 xlabel('$x$','Interpreter','latex')

82 ylabel('$u(x,t)$','Interpreter','latex')

83 legend({'$t=0.2$','$t=0.4$','$t=0.6$','$t=0.8$','$t=1.0$'},'

Interpreter','latex','Location', 'northeast')
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