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CHAPTER 1

INTRODUCTION

The risk model is an important tool for insurance company to evaluate the risk
of business. Several risk models have been introduced for different types of insurance
contracts. One type of popular insurance contracts is the classical risk model, defined by

N()
Ut)=utct—>» X; fort>0, (1.1)
=1

where u > 0 is the initial reserve, ¢ > 0 is the premium rate, and {N(¢), ¢ > 0} is
a Poisson process with intensity A > 0, representing the number of claims up to time
t. The individual claim sizes X;, X5, ..., independent of {N(t), ¢ > 0}, are indepen-
dent and identically distributed (i.i.d.) non-negative random variables with the common
distribution function F'x. The classical risk model is a basic model of the total cost of
insurance which is often used for insurance risk management.

The most important quantity in the insurance risk model is the ruin probability
which is the probability that the surplus eventually becomes negative. In particular, the

ruin probability is defined as
Y(u) =Pr[U(t) <0 for some ¢t>0]U(0)=u. (1.2)

However, the ruin probability is usually difficult to calculate in general. Therefore, it is
commonly estimated by an upper bound called as the Lundberg upper bound of the ruin
probability defined as

Y(u) < e B, (1.3)
where R is the unique positive solution of the adjustment equation AMx(r) — A —cr =0

called as the adjustment coefficient and Mx is the moment generating function of the

claim size.



Beside of using the Lundberg upper bound, there is an interest in obtaining a nu-
merical approximation of the ruin probability among researchers. For example, in 1991,
Grandell [4] proposed several numerical approximations of the ruin probability for the
classical risk model. Those numerical approximations are the Laplace transform method,
the De Vylder approximation, and the Cramér-Lundberg approximation. Since then, the
concept, of numerical approximations of the ruin probability has been extended to more
general risk models. For example, in 2003, Boikov [2] proposed a numerical approximation
for risk models with stochastic premium process. In 2010, Seixas and Reis [14] proposed
a numerical approximation for risk models with interference. In 2015, Mishura, Rag-
ulina and Stroyev [9] proposed a numerical approximation for risk models with additional
funds. In 2020, Ragulina [11] proposed a numerical approximation for risk models with
stochastic premiums and a constant dividend strategy.

In this thesis, we investigate suitable numerical approximations to the ruin prob-
ability of a more generalized risk model. Moreover, we perform numerical studies to in-
vestigate the performance of the obtained numerical approximation comparing to Monte
Carlo approximation and the Lundberg upper bound.

The rest of this thesis is organized as follows. Chapter 2 introduces the content,
definitions, and theories that will be encountered in this thesis. Chapter 3 studies nu-
merical approximation of the ruin probability for the risk model with constant premiums
and surrenders subject to dependence thinning involving the Cramér approximation, the
Laplace transform method, the De-Vylder approximation, and the Lundberg inequality.
Chapter 4 studies numerical approximation of the ruin probability for the risk model
with stochastic premiums and surrenders subject to dependence thinning involving the
Cramér approximation, the Laplace transform method, the De-Vylder approximation,
and the Lundberg inequality. Chapter 5 studies numerical approximation of the ruin
probability for the renewal risk model with constant premiums and surrenders involving
the Cramér approximation and the Laplace transform method. Chapter 6 gives discusses

and conclusions of our study.



CHAPTER 11

PRELIMINARY

In this chapter, we will introduce the basics, definitions, and theories of probability

theory to be used in this project.

2.1 Basic real analysis and applied analysis

In this section, we introduce important, definitions and theorems in real analysis

and applied analysis used in this project.

Definition 2.1. A set A C R is bounded above, if there exists a number b € R such
that @ < b for all @ € A. The number b is called an upper bound for A. Similarly, the
set A is bounded below, if there exists a number | € R satisfying [ < a for every a € A.
The number [ is called a lower bound for A. If A have both upper bound and lower

bound, we say that A is a bounded set.

Definition 2.2. Assume g(x) # 0 for all £ # a in some interval containing a.
The Little-oh notation is a notation representing the behavior of a limit of a function

at a given value. The statement

can be intuitively interpreted as saying that g(x) grows much faster than f(x) at a or

mean that

The symbol f(z) = o(g(z)) is read “f(x) is little-oh of g(x)” or “f(x) is of smaller order

than g(z)” as x — a.



Theorem 2.1. [10] Properties of the Little-oh notation are as follows.
1. If ¢ is a nonzero constant and f = o(g), then c- f = o(g).
2. If f=0(F) and g = o(Q), then f-g=o(F - Q).

3. If f =o(g) and g = o(h), then f = o(h).

Theorem 2.2. [18] Vieta’s theorem
Let vy and 7o be the roots of the quadratic equation ax?® + bx + ¢ = 0. Then, the two
identities

b c
rN+r9=—— and TiT9 = —
a a

both hold.
In the same way, let r1, ro and r3 be the roots of the cubic equation ax®+bxr?4cx+d = 0.

Then, we have
b c
ri1+re+rs= 7 rire + Tror3 + rir3 = —, and rirors = ——.
a a

Definition 2.3. [1] The Fundamental Theorem of Calculus
If f is continuous on [0,b], then the function F' defined by F(x) :/ f (&) dt, for all
0

x € [0,b], is continuous on [0, b] and differentiable on (0, b) and
F'(z) = f(z) forallz € (0,b).

Definition 2.4. The Leibniz integral rule

Let f(x,t) be a function such that both f(z,¢) and its partial derivative f;(x,t) are
continuous in ¢ and x in some region of the zt-plane including a(x) <t < b(z), for zy <
x < x1. Also, suppose that the functions a(z) and b(z) are both continuous and both

have continuous derivatives for zg < x < x1. Then, for 2y < z < 1,

d (" d d be)
dw( - f(z,t) dt) = f(z,b(z)) - mb(m)—f(x,a(x)).a(x)+/CL 9 tatyat.



Definition 2.5. Let f be a complex-valued function of a real variable so that it can be

decomposed as

f(z) = g(x) + ih(z),

where g and h are real-valued functions. The complex conjugate of f, denoted by f,

is defined by

f(@) = f(z) = g(x) — ih(x).

Definition 2.6. The cross-correlation of two complex functions f(z) and g(z) of a

real variable z on [0, 00), denoted by f x g, is defined by

[f*g](fc)=/ooof(m+y)g(y)dy-

Definition 2.7. Let f : [0,00) — R be a continuous function such that e=%? f(x) is in

L([0,00)) for some & € R. Its Laplace transform is the function defined by

Zf(@)](s) = f*(s):= /000 e **f(x)dx, forallse C s.t. Re(s) > &.

Here, for the Laplace transform of f/, we assume that f is continuously differentiable on

(0,00) and lim f’(z) is finite.
z—0+

Theorem 2.3. [3] Properties of the Laplace transform are as follows:

ZLlaf(x) +bg(x)](s)

af*(s) + bg*(s),

21(s) IERSITYL/s,
2= (s) — 1(s+a),

L1 @) (s) e () - 100,
.z[ / f(t)dt] ) = )
z[/xfmg(x—t)dt} () =  £s)-g"(s),

k7 [/080 flz+ y)g(y)dy} (s) = [ (s)g*(=9),

where a and b are constant.



2.2 Basic probability theory

In this section, we will use some techniques to find the probabilistic properties of

random variables.

Definition 2.8. A random experiment is any activity or process whose outcome is

subject to uncertainty.

Definition 2.9. The set of all possible outcomes of a random experiment is called a

sample space denoted by 2. Each outcome in a sample space is called a sample point.

Definition 2.10. A collection .# C 2% of subsets of Q is called a o-field (also o-algebra

or event space) on €, if it has the following three properties.

1. Qe 7.
2. If Ae Z, then A® € Z. (closed under complement)
3. If A; € .F for all i € N, then UAi S (closed under countable union)

i=1
Each element in a o-field is referred to as an event.
For a sample space €, let A be a collection of events, and let o(A) represent the

smallest o-field containing A. Thus, o(A) is called the o-field ‘‘generated” by A.

Definition 2.11. Let .# be a o-field on a sample space Q. A set function P : .# — [0, 1]
is called a probability measure, if it has the following two properties.

1. P() =1

2. If A; € F for alli € Nand A; N A; =0 for all i # j, then we have that

P (U Ai> = P(4;). (countably additive, o-additive)
i=1 i=1

The triple (£2,.%#, P) is called a probability space.
Remark 2.1. We can call (£2,.%#) a measurable space and (£2,.%#, P) a measure space.

For a topological space 2, let B(2) represent the o-field generated by all open sets
in Q. Thus, #(Q) is called the Borel o-field. Each set in this o-field is called a Borel

set.



Definition 2.12. If .% is a o-field on 2, then a function X : © — R is said to be

F-measurable or (%, Z(R))-measurable, if
X'B ez

for every Borel set B € Z(R). If (,.%#, P) is a probability space, then such a function

is called a random variable.

Definition 2.13. Let X be a random variable on (€2, %, P). Define a probability measure

Px on R by
Px(A) =P (X }(A)) =P(X € A) forall Ac BR)
and call it the probability distribution of X. The function F : R — [0, 1] defined by
Fx(z) = Px ((—o0,z]) = P(X <z) forallz € R

is called the distribution function or cumulative distribution function (CDF) of

X.

Definition 2.14. The random variable X is called discrete, if it takes values in some
countable subset of R. The discrete random variable X has probability mass function

(PMF) f:R — [0,1] given by

flx)=P(X =2x) for all z € R.

Definition 2.15. The random variable X is called continuous, if its distribution can be

expressed as
FX(J:):/ f(u) du for all z € R

for some integrable function f : R — [0,00) called the probability density function

(PDF) of X.



Remark 2.2. From definition of probability density function and the fundamental the-

orem of calculus in theorem 2.3 | we get
F(z) = f(x) for f is continuous at z.

Definition 2.16. Law of total probability for a discrete random variable
Let (Q2,.%#, P) be a probability space. Suppose X is a discrete random variable with

distribution function Fx, and A an event on (£,.#, P). Then
P(A)=> P(A| X =2)P(X =u).

Definition 2.17. Law of total probability for a continuous random variable
Let (2, %, P) be a probability space. Suppose X is a continuous random variable with

distribution function Fx, and A an event on (§2,.%, P). Then,

P(A) :/ P(A| X = ) dFx(z).
—00
Definition 2.18. If P(B) > 0, then the conditional probability that A occurs given

that B occurs is defined to be

P(ANB)

PATBY="7%

Definition 2.19. Events A and B are independent, if
P(ANB)= P(A)P(B).

More generally, a family of events {4; | ¢ € I} is called independent or mutually

independent, if

P (ﬂ Ai> =[P

ieJ icJ

for any finite subset J of I.



Definition 2.20. We say that random variables X1, Xo, ..., X,, are independent, if the
o-field 0(X1),0(X2),...,0(X,) are independent, i.e., for any A;, A, ..., A, € B(R), we

have that
P(Xl EAl,XQ EAQ,...,Xn EAn) ZP(Xl €A1)P(X2 EAQ)P(XnEAn)

More generally, a family {X;};c; of random variables is said to be independent, if every

finite subfamily is.

Definition 2.21. Let X be a random variable on a probability space (2,.%, P). The

expected value or expectation of X, denoted by F(X), is defined by
E(X) = / X dP.
Q
If X is a discrete or continuous random variable. Then,

> af(x), if X is discrete with PMF f,
E(X) — xe]osz
/ xf(x) dx, if X is continuous with PDF f.

—0Q

Theorem 2.4. [8] Let X be a random variable with finite expected value. Then, for any
constant a and b,

E(aX +b) =aE(X) +b.

Remark 2.3. Let X and Y be random variables with finite expected values. Then,
1. B(X+tY)=E(X)+ E(Y);
2. if X >0, then E(X) > 0;
B X>Y 50X -Y >0, then E(X)-E(Y)=EX-Y)>0,ie.,

E(X) > E(Y).
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Theorem 2.5. [8] If X1, Xa,..., X, are independent random variables and E|X;| < oo
for all i, then
E

n n

Hxi] =[[Exi,

i=1 i=1

i.e., the expectation on the left exists and has the value given on the right.

Theorem 2.6. [8] Random variables X and Y are independent if and only if

for all bounded Borel measurable functions f and g.

Definition 2.22. Let X be a random variable with finite expected value y, the variance

of X, denoted by Var(X), is defined by
Var(X) = B[(X — u)’] = E(X?) - .

The quantity \/Var(X) is called the standard deviation of X, denoted by SD(X).

Remark 2.4. Let Xi,..., X, be independent random variables. Then,

n n
Var (Z%’Xi) 3= Za?Var(Xi) for all constant a;.
i=1

i=1
Definition 2.23. Let X be a random variable. Then, the generating function (GF
of X, denoted by Gy, is defined as

Gx(t) = E[tX] for all t € R for which the expected value exists in R.

Remark 2.5. Let X be a discrete or continuous random variable. Then,

> t°f(x), if X is discrete with PMF f,
GX(t) — zelmX

o0
/ t* f(x)dz, if X is continuous with PDF f.

—00
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Theorem 2.7. [8] If the generating function Gx of a random variable X exists, then
GP(1) = B(X(X =1)--(X — (n—1))) for alln € N,

Theorem 2.8. [8] Let X andY be random variables, and a and b be real numbers. Then,
1. Gx4a(t) = t"Gx (1),
2. Gyx(t) = Gx(t"),
3. Gyxya(t) = t*Gx (1),
4. Gx4v(t) = Gx(t)Gy (t),if X and Y are independent.

Theorem 2.9. [8] Let X andY be random variables. Then, Gx(t) = Gy (t) for allt € R

if and only if X and Y have the same distribution.

Definition 2.24. Let X be a random variable. Then, the moment generating func-

tion (MGF) of X, denoted by My, is defined by

We say that the moment generating function of X exists, if there exists § > 0 such that

Mx (t) is finite for all ¢t € (—6,0). The domain of My is the set {t € R | Mx(t) < oo}.

Remark 2.6. Let X be a discrete or continuous random variable. Then,

Z e f(x), if X is discrete with PMF f,
My (t) = { #€ImX

/ e f(x)dx, if X is continuous with PDF f.

—0o0

Theorem 2.10. [8] If the moment generating function Mx of a random variable X exists,

then M)(?)(O) = E(X™) for alln € N.

Theorem 2.11. [8] Let X and Y be random variables, and a and b be real numbers.
Then,

1. Mxiq(t) = e*Mx (),

2. Myx(t) = Mx(bt),

3. Myxa(t) = e Mx (bt),

4. Mxiy(t) = Mx@)My(t), if X and Y are independent.
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Theorem 2.12. [8] Let X and Y be random variables. Then, Mx(t) = My (t) for all

t € R if and only if X and Y have the same distribution.
Remark 2.7. Gx(t) = E[tX] = E[e""®X] = Mx (In(t)).

Definition 2.25. Let X be a random variable. Then, the cumulant generating func-

tion (CGF) of X, denoted by K, is defined as
Kx(t) = In(E[e"X]) = In(Mx (t)) for all ¢ in the domain of M.

Theorem 2.13. [8] Let X and Y be random variables. Then,
1. Kx4v(t) = Kx(t) + Ky (t), if X and Y are independent,
2. Kx(0) = E(X),
3. K%(0) = E(IX — E(X)]?) = Var(X),
4. KR (0) = B(X = E(X)]%).

Definition 2.26. Let (2,.%#, P) be a probability space and let X : @ — R be a random
variable such that E(|X|) < co. If G C .Z is a o-field on the probability space (2, %, P),
then the conditional expectation of X given G, denoted by E(X | G) is a G-measurable
function such that [ E(X | G)dP = [ X dP for any A € G.

A A

Definition 2.27. A random variable X is said to have a Poisson distribution with
parameter A (for some A > 0), denoted as X ~ Poi()), if
R

P (S A= ' forx=0,1,2,...
x!

Theorem 2.14. [8] Let X ~ Poi()\). Then,
1. BE(X) =\,
2. Var(X) = A,
3. Gx(t) == forteR,
4. Mx(t) = e 1) fort e R.
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Definition 2.28. A random variable X is said to have a generalized exponential
distribution with shape parameter > 0 and scale parameter n > 0, denoted as X ~

GExp(a,n), if its probability density function is defined as

an(l — e mw)atemme ifx>0
flz) =
0, if x < 0.

Theorem 2.15. [5] Let X ~ GExp(a,n). Then,
1. B(X) = oo+ 1) = (1)

2. Var(X) = 1712[¢/(1) — ' (a+1)],

I(a+1P(1-1%
3. Mx(t) = (?(a _)t(+ 1)"), fort <m,
n

4. F(z)=(1—e ™), forx>0,

where I',1), and v’ are gamma, digamma, and trigamma functions, respectively.

Definition 2.29. A random variable X is said to have an exponential distribution
with parameter n (for some 1 > 0), denoted as X ~ Fxp(n), if its probability density

function is defined as

ne ™ ifx>0

0 itz <0.

Theorem 2.16. /8] Let X ~ Exp(n). Then,
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Definition 2.30. A random variable X is said to have a gamma distribution with
parameters 8 (8 > 0) and a (o > 0), denoted as X ~ Gamma(a, §), if its probability

density function is defined as

fe P (Ba)!
fla) = I(a)
0 if x <0,

ifx>0

where the gamma function I": (0,00) — R is defined as

o0
F(a):/ e dx.
0

Theorem 2.17. [8] Let X ~ Gamma(c, B). Then,

e
2. Var(X):%,
3. Mx(t) = <B>a fort < p
p—t 3
w_ L(n+a)
4. E[X ]_75”1“(04) forn € N.

Theorem 2.18. [8] For a probability space (Q,.7,P), let X : Q@ - R andY : Q@ - R
be random wvariables with finite first moment and G is a o-field on the probability space

(Q,.F, P) such that G C F, then the properties of conditional expectation are as follows.

~

E(aX +0bY |G)=aE(X |G)+bE(Y |G) foralla,beRR;
if X >0, then E(X |G) > 0;
if X <Y, then E(X | G) < E(Y | G);

if 71 is a o-field such that %1 C F, Fy is a o-field such that Fo C .F and
F1 C Fo, then E(E(X | %) | F1) = E(X | F1);

5. E(E(X [9)) = E(X);

6. if X is independent of G, then E(X | G) = E(X);

7. if Y is G-measurable, then E(XY |G) =Y (X | G).
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Definition 2.31. Let X : Q — R be a random variable. The conditional variance of

X given o-field G C .%, denoted by Var(X | G), is defined by
Var(X | G) = E((X - E(X|G))* | §) = E(X* | §) - (E(X | §))*.

Theorem 2.19. [8] Assume that X : Q = R, G C .F is a o-field on the probability space
(Q, F,P), . Z is o-field on Q, E(|X]) < 00, and Var(|X|) < co. Then,

Var(X) = E(Var(X | G)) + Var(E(X | G)).

Theorem 2.20. [15] Markov’s Inequality

Let X be a non-negative random variable and a a positive real number. Then,

E(X)

P(X >a)<

Theorem 2.21. [6]/ Hoeffding’s Inequality
Suppose that X1,..., X, are independent random wvariables such that a; < X; < b; and

E[X;] = p. Then, for any t > 0

- 2n2t?
PX=ul>t)<2 exp |~ = |,
Zi:l(bi —a;)?

where X,, = n~! Zz X;. When a < X; < b, this becomes

n2 2
PX—ul>) <2 exp (—(5_%)2) .

2.3 Basic stochastic processes

In this section, we will introduce the definitions, properties and theories of stochastic
processes which consists of stochastic processes, counting processes, poisson processes to

be used in this project.

Definition 2.32. A stochastic process is a collection of random variables X = {X; | t €

T} defined on a common probability space (Q, F, P), i.e., X; is a random variable for
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all t € T. The index set T is called the parameter space, the set S containing all
possible values of X; for t € T is called the state space, and each member in S is called
a state. If T is a countable set, such as N and N U {0}, then X is called a discrete-
time stochastic process. If T is an interval in R, then X is called a continuous-time

stochastic process.

Definition 2.33. Let Xi, Xy, ... be independent and identically distributed (i.i.d.) ran-
dom variables and let N be a random variable taking values in {0,1,2,3,...} which is

independent of {X;}°,. Let

N
5N=X1+X2+~'+XN=ZXi,
i=1
with Sy = 0 if N = 0. The random variable Sy is called a random sum. The

distribution of a random sum is said to be a compound distribution.

Definition 2.34. For a stochastic process X (t) and time s < ¢, the random variable
X (t)— X (s) is called an increment of the process, since it gives the increase (or decrease)
in the value over the period running from time s to t.

We say that the process has independent increments, if the increments over disjoint

time intervals are independent.

Definition 2.35. We say that the process has stationary increments, if the distri-
bution of any increment depends only on the length of the time interval and not the

particular starting point, i.e., given any h > 0 and time s and ¢, we require that

X(s+h)—X(s)~X({t+h)— X(¥).

Definition 2.36. A stochastic process {N(t) : ¢ > 0} is said to be a counting process,
if N(t) represents the total number of “events” that have occurred up to time ¢.
A counting process N (t) must satisfy:

1. N(t) >0Vt >0

2. N(t) is integer-valued;

3. If 0 < s < t, then N(s) < N(t).
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For a counting process {N(¢) : ¢ > 0} and s < t, N(t) — N(s) is the number of

events occurring in the time interval (s, ].

Definition 2.37. A counting process N (t) is called a Poisson process with rate A, if

it has stationary and independent increments and if, for all ¢ > 0,
N(t) ~ Poi(At) .

From the definition, a stochastic process N(t) is a Poisson process with rate A > 0 if]]
1. N(0) =0;
2. the process has independent increments;

3. for t > 0 and s > 0, N(¢t + s) — N(t) has a Poisson distribution with mean As.

Lemma 2.1. [12] If we consider a very short interval of length At, then the number of

arrivals in this interval has the same distribution as N(At). We can write

P(no event occurs in the interval) = P(N(At) =0) = 1 — aAt + o(At),
P(one event occurs in the interval) = P(N(At) = 1) = alAt+ o(At),

P(more than one event occur in the interval) = P(N(At) > 2) = o(At).

Definition 2.38. Let {N(t) };>0 be a Poisson process with parameter A, and let {Y;}>°,
be a sequence of independent and identically distributed random variables, each with
distribution function F, independent of N (t) for all ¢ > 0. We define a process {S(¢)}+>0

by

N(t)
S(t)=>_Y,
=1

with S(t) = 0 when N(t) = 0. The process {S(t) }+>0 is said to be a compound Poisson

process with Poisson parameter \.
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Theorem 2.22. [12] A compound Poisson process S(t) has the following properties.
1. Ezpectation : E(S(t)) = ME(Y).
Variance : Var(S(t)) = AtE(Y?).

Moment generating function : Mg (2) = eM(My (2)=1)

Fort > 0, the random variable S(t) has a compound Poisson distribution
with Poisson parameter \t.

5. The compound Poisson Process have stationary and independent increments.

Definition 2.39. Let M be any non-negative integer-value random variable and X7, Xo, ...

be i.i.d. Bernoulli random variables with parameter o (0 < o < 1). Then,

M
aoM:ZXi
=1

is called the binomial thinning operator of M.

Theorem 2.23. [7] The binomial thinning operator in definition 2.39 has the following
property.
If M is a Poisson random wvariable with parameter X\, then oo M is a Poisson

random variable with parameter aX and co M is called a-thinning.

Definition 2.40. A continuous-time stochastic process X (¢) is a martingale, if
L. E(|X(t)]) <oo forallt>0,
2. E(X(t)| X(uw), 0<u<s)=X(s) foralt>s.

Definition 2.41. A random variable T is a stopping time with respect to the filtration
{.Ft}, if {T < t} € F; forall t > 0.

Theorem 2.24. [13] The Martingale Stopping Time Theorem

Let {Z;} be a martingale and T a stopping time. If any one of the following
conditions holds:

1. T is bounded;

2. E[T) < oo, and there is an M < oo such that

E[|Zn+1 — Zn| | Z(],Zl,ZQ,...,Zn] < M.
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Then,

ElZr] = E[Z].

2.4 Basic risk theory

In this section, we will introduce the definitions, properties and theories of risk

theory which consists of compound sum, risk model to be used in this project.

Definition 2.42. The classical risk model is a model of total capital values, defined

by
U(t) = u + ct — S(t),
when
U(t) is the total capital values at time ¢,
u is the amount of initial reserves,
¢ is a constant rate of premium per unit of time,
S(t) is the aggregated claims up to time ¢,
such that
N()
S(t) =YY,
i=1
when

N(t) is the number of claims up to time ¢, which is a counting process,
{Y;}i>1 is a sequence of the amount of the ith claims which are independent and

identically distributed (i.i.d.) random variables.

Definition 2.43. Ruin Time or Time of Ruin

Time of ruin T is the first time at which the surplus process become negative, defined by

T =inf{t >0 | U(t) < 0}.
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Definition 2.44. Ruin Probability or Probability of Ruin

Let ¥ (u) be a ruin probability when the initial reserves u > 0. It is defined by

P(u) = P[T <oo|U(0)=u]
= P[U(s) <0 forsomes>0]|U(0)=u].

where T is the time of ruin.

Definition 2.45. Let t(u,t) be the probability of ruin at some point in the time interval

(0,¢], given initial reserves u > 0. It is defined by

Y(u,t) = P[T <t|U0)=u]
= P[U(s) <0 for some s € [0,t] | U(0) =u ].

Definition 2.46. Non-Ruin Probability or Probability of Survival
Let ¢(u) be a survival probability when the initial reserves u > 0. It is defined by

¢(u)=P[U(s)>0forall s >0|U(0)=u].

Definition 2.47. Let ¢(u,t) be the probability of survival at some point in the time

interval (0, ¢], given initial reserves w > 0. It is defined by

¢(u,t) = P[U(s) >0 for all s € [0,¢] | U(0) = u ].

Remark 2.8. The ruin probability and the non-ruin probability have the following prop-
erties.

L (u) = 1= ¢(u),

2. Y(u,t) =1 — ¢(u,t).



CHAPTER III

RISK MODEL WITH CONSTANT
PREMIUMS AND SURRENDERS SUBJECT

TO DEPENDENCE THINNING

In this chapter, we study numerical approximations of a risk model with constant
premiums and surrenders subject to dependence thinning. In our study, we first introduce
the risk model and ruin probability and evaluate its properties. Then, we obtain formula
for numerical approximation of the ruin probability by using the Cramér approximation,
the Laplace transforms method, and the De Vylder Approximations. Moreover, perform
numerical studies to see performance of the three methods and compare them with the
Lundberg upper bound and the Monte Carlo approximation.

The organization of this chapter is as follows. Section 3.1 introduces the classical
risk model. Section 3.2 studies some properties of the risk model with constant premi-
ums and surrenders subject to dependence thinning. Section 3.3 derives the analytical
approximation of the ruin probability. Section 3.4 derives the Lundberg’s upper bound

of the ruin probability. Section 3.5 performs experimental simulations.

3.1 Introduction to the classical risk model

In this section, we will introduce the classical risk model and the ruin probability.

Definition 3.1. The classical risk model is the model of total capital values, defined by

N (1)
Ult) = u + ct — Y Y, (3.1)
=1

when
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U(t) is the total capital values at time ¢,
U is the amount of initial reserves,
c is a constant rate of premium per unit of time,
N(t) is the number of claims up to time ¢, which is a Poisson process,
{Y;}i>1 is a sequence of the amount of the ith claims which are independent and

identically distributed (i.i.d.) random variables.

The time to ruin, denoted by T, is defined as

T =inf{t >0 | U (t) <0} (3.2)

The ruin probability with an initial surplus w > 0, 9 (u), is

P (u) = P[T <00 |U(0) =ul,

= P[U(s) <0 for some s >0 | U(0) =u]. (3.3)

The non-ruin probability with an initial surplus v > 0, ¢(u), is

¢(u) =P[U(s) >0forall s >0]|U(0)=u]. (3.4)

From (3.3) and (3.4) we see that ¥ (u) + ¢(u) = 1.

3.2 The risk model with constant premiums and surrenders subject to

dependence thinning (CPST)

In this section, we introduce the risk model with constant premiums and surrenders
subject to dependence thinning, denoted as CPST. The concept of dependence thinning
arises from the fact that, in reality, the variance of the claim number following a Poisson
distribution exceeds the mean of the claim number. This occurs due to certain events
where the policyholder may not to claim for compensation in the event of an accident,
leading to a situation where the number of claims is lower than the actual number of

accidents. Similarly, the number of surrenders is lower than the actual number of contract
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cancellations. Therefore, we are interested in scenarios where the expectation number of
claims and surrenders is lower than the expectation number of premiums, as both values
depend on the number of premiums. This allows us to apply the thinning process.

The risk model consists of the initial capital, premiums, claims, and surrenders,
where premiums are assumed to be equal for all customers and surrenders represent the

amounts lost due to cancellation of the contract. In particular, the model is presented as

N(t.p) N(t,q)

U(t) = u+ cN(t) ZYfZZ“ (3.5)

where u represents the initial capital, ¢ is the constant rate of premium, N(t) is the
Poisson process with intensity A > 0, denoting the number of premiums up to time t.
Particularly, N(t) ~ Poisson(At). N(t,p), where 0 < p < 1, is the p-thinning process of

Qi

where @); are i.i.d. Bernoulli random variables with parameter p and M (¢) is independent

N(t) denoting the number of claims up to time ¢. In particular, it is defined as ZM(t

and identically distributed with N(¢). The individual claim size {Y;}3°; is a sequence of
i.i.d. non-negative random variables with a cumulative distribution function G. N(t,q),
where 0 < ¢ < 1, is the ¢-thinning process of N(t) denoting the number of surrenders
up to time ¢. The sequence of i.i.d. non-negative random variables {Z;}2°; represents the
amount of the i-th payment of insurance policy with a cumulative distribution function H.
In addition, we suppose that {N(t)} 20, {N(t,p)}is0, {N (£, @) hez0, {Yi}32,, and {2},

are mutually independent.

In order to ensure the insurance company’s stable business, we assume that

N(t.p) N(t,q)
E | ¢N(t) — Y; — Zi| >0 (3.6)
i=1 i=1
Since
N(t.p) N(t,q) N(t,p) N(t,q)
E|eN{t)— Y Yi— Y Zi| =E[cN(t) ZY ~E| Y Z
i=1 i=1 i=1

=cAt — Aptpy — Aqtuz,



the assumption becomes

¢ — ppy — quz > 0,

which is called as the “net profit condition”.

Lemma 3.1. Define the profits process by {S(t);t > 0} as

N(t.p)

N(tq)
St)=cN@t)— Y Yi— > Z.
i=1 i=1

Then, the profits process S(t) has the following properties:

2. E[S(t)] = [ cA = Appy — Aquz |t
3. Var[S(t)] = (eA + WE[Y?] + \gE[Z%] ) ¢,
4. Mg (s) = exp{t[A(e* = 1) + Ap (My(—s) — 1) + Aq (Mz(—s) —1)]},

~

5. {S(t);t > 0} has stationary and independent increments.

Proof.

24

(1) Since N(t), N(t,p), N(t,q) are Poisson processes, N(0) = 0, N(0,p) = 0, and

N(0,q) = 0. Then,
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(2) By the property of expectation

N(t,p) N(t,q)
E[SM)]=E[N@®)]-E| > Y| -E| Y Zz}
i=1 i=1

From Theorem 2.22,

E[S(t)] = [ eA = Apuy — Aquz Jt.
(3) By the property of variance and the independence of Y;, Z;, N(t), N(t,p), and N(¢,q),

N(t.p)

Z YZ] + Var
i=1

Var[S(t)] = Var [eN(t)] + Var

N(t,q)

> .
i=1

From Theorem 2.22,

Var[S(t)] = ( cA + ApE[Y?] + \gE[Z%] ) .

(4) We know that
Mgy (s) = E[e*5D].

By the independence property of the three terms of S(¢),
Mgy (s) = E [eSCN(t)} E [e_szjﬁf’l’)x] E [e_szjv:(;@ Zt} :
The three terms are computed as follows

1) FE [eSCN(t)} = My (sc)

_ e -1).

2) B e =] = Moy y (-9)

= GN(t,p) [MY(_S)]

— AptIMy (—s)-1]
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= GN(t,q) [Mz(—5)]

— ratMz(—s)—1]
Therefore,
Mgry(s) = exp {t [A(e* = 1) + Ap (My (=s) — 1) + Aq (Mz(—s) — 1)]}.

(5) Since N (t, p) has stationary increments and {Y;}9°, is a sequence of i.i.d. non-negative

random variables, we get

N(t+h,p) N(t,p) N(t+h,p)—N(t,p)
Z Y, — Z Y; s identically distributed as Z Y;
i=1 i=1 i=1
and
N (t+h,p)—N(t,p) N(s+h,p)—N(s,p)
Z Y; is identically distributed as Z Y;.
i=1 i=1
N(tp)
Therefore, Z Y; has stationary increments.
i=1

To prove that the process has independent increments, let 51 < s9 < s3 < 84.
Since N (t,p) has independent increments and {Y;}22, is a sequence of i.i.d. non-negative

random variables, we get

N (s2,p) N(s4,p)
Z Y, is independent with Z Y;.
i=N(s1,p)+1 i=N(s3,p)+1

N(t,p)
Therefore, Z Y, has independent increments.
i=1
N(t,q)
By the same technique, we can show that Z Z; has stationary and independent
i=1
increments. Thus, {S(t);¢ > 0} has stationary and independent increments. O
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3.3 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for the
CPST model (3.5). We will start by obtaining the integro-differential equation for the ruin
probability. Then we obtain an approximation of the ruin probability using the Cramér
approximation, the Laplace transforms method, and the De Vylder Approximations. To
obtain the three approximations, we first obtain the integro-differential equations stated

in Theorem 3.1 below.

Theorem 3.1. The ruin probability ¥(u) for risk model (3.5) satisfies the integro-

differential equation

V' (u) W)= 11— H@] = £[1 - G(w)]
¢ (3.8)
—/wu— dG()—/ b(u— 2)dH(z), u>0,

where G and H are cumulative distribution functions of the individual claims sizes and

the amount of surrenders with probability density functions g and h, respectively.

Proof. To compute the non-ruin probability ¢(u), we consider five different possible dis-
joint events of the number of premiums, the number of claims, and the number of sur-

renders during an infinitesimal period [0, At] as follows.

Case 1:
There is no premiums, no claims, and no surrenders in the interval when At — 0.

The event occurs with the probability

P (N(At) =0, N(At,p) = 0,N(At,q) =0)
= P (N(At) =0) P (N(At,p) =0) P(N(At,q) =0)
= (1 — AAt + o(At))(1 — ApAt + o(At))(1 — A\gAt + o(At))

=1— AAL — A\pAt — M\gAL + o(At).
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Case 2:
There is no premiums, no claims, and one surrender in the interval when At — 0.

The event occurs with the probability

P (N(At) = 0, N(At,p) = 0, N(At, q) = 1)
= P (N(At) = 0) P (N(At,p) = 0) P (N(At,q) = 1)
= (1 — At + o(A1))(1 — ApAt + o(At))(AgAL + o(At))

= AgAt + o(At).

Case 3:
There is no premiums, one claims, and no surrenders in the interval when At — 0.

The event occurs with the probability

P (N(At) = 0, N(At,p) = 1, N(At, g) = 0)
= P(N(At) = 0) P (N(At,p) = 1) P (N(At, ) = 0)
= (1= AAL + o(A1)) (ApAt + o(At))(1 — AgAt + o(At))

= ApAt + o(At).

Case 4:
There is one premium, no claims, and no surrenders in the interval when At — 0.

The event occurs with the probability

P (N(At) =1, N(At,p) = 0, N(At, g) = 0)
= P(N(At) = 1) P (N(At,p) = 0) P (N(At, ) = 0)
= (AAL+ o(A1))(1 — ApAt + o(At))(1 — AgAt + o(At))

— AAL 4 o(At).
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Case 5:
There are more than one event of premiums, claims, and surrenders combined in

the interval when At — 0. The event occurs with the probability

P (N(At) + N(At,p) + N(At,q) > 1) = o(At).

From the law of total probability for discrete random variable in Definition 2.16, it follows

that
¢(u) = P[N(At) = 0]P[N(At,p) = 0P[N(At, q) = 0]
P[U(t) > 0,¥t > 0[N (At) = 0, N(At,p) = 0, N(At, q) = 0]
+P[N(At) = 0]P[N(At, p) = 0]P[N(At,q) = 1]
P[U(t) > 0,Vt > 0|N(At) = 0, N(At,p) = 0, N(At,q) = 1]
+P[N(At) = 1]PIN(At,p) = 0]P[N(At, q) = 0]
PlU(t) > 0,Vt > 0|N(At) =1, N(At,p) = 0, N(At,q) = 0]
+P[N(At) = 0]P[N(At,p) = 1]P[N(At, q) = 0]
P[U(t) > 0,Vt > 0|N(At) =0, N(At,p) = 1, N(At,q) = 0]
+P[N(At) + N(At, p) + N(At, q) > 1]
P[U(t) > 0,Vt > 0|N(At) + N(At,p) + N(At, q) > 1].
Then

d(u) = [1— AAL + o(At)][1 — ApAt + o(At)][1 — AgAL + o(At)]

- P[U(t) > 0,¥t > 0|N(At) = 0, N(At,p) = 0, N(At, q) = 0]
+[1 = AAL 4 o(AD)][1 — ApAL + o At)][AGAL + o(At)]]

- P[U(t) > 0,V > 0[N(At) = 0, N(At, p) = 0, N(At, ) = 1]
+[AAL + o(At)][1 — ApAt + o(At)][1 — A\gAt + o( At)]

- P[U(t) > 0,¥¢ > 0|N(At) = 1, N(At,p) = 0, N(At, q) = 0]
+[1 — AAt + o( At)][ApAt + o(At)][1 — A\gAt + o( At)]

- PIU(t) > 0,V > 0|N(At) = 0, N(At,p) = 1, N(At, q) = 0]
+o(At) - P[U(t) > 0,Vt > O|N(At) + N(At,p) + N(At, q) > 1].
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By the properties of little-oh in Theorem 2.1 for At — 0 and the law of total probability

for continuous random variable Y; and Z; in Definition 2.17.

d(u) = (1= ANAt— ApAt — A\gAt) P[U(t) > 0,Vt >0 | U(At) = u]
+AgAt /uP[U(t) >0,vt>0| U(At) =u— z]dH(2)
0714
FApAL / PIU() > 0,% > 0 | U(A) = u — 4] dG(y)
0

+AAt PIU(t) > 0,¥t > 0 | U(At) = u + c] + o(At).

According to the concept of stationary, we can treat At as a new start time. Therefore,
we can express U(At) as U(0). This implies that we are starting a new at At and can

use U(0) as the starting point,

b(u) = (1 — AAL— ApAL — AgAE) PIU(t) > 0,¢ > 0 | U(0) =
FAgAL /u PIU() > 0,¥ >0 | U(0) = u— 2| dH(2)
Ou
+ApAt / PlU(t) > 0,Vt >0 | U(0) =u —y] dG(y)

0
+AAt P[U(t) > 0,Vt > 0| U(0) = u+ c] + o(At).

Then, we get

6(u) = (1= AAE—ApAt—AgA®) d(u) + AgAt /0 " bu— ) dH(2)

+ApAt /Ou d(u—1y)dG(y) + NAtd(u + ¢) + o(At).

By the Taylor series expansion in ¢(u + ¢) around xg = w, particularly, ¢(u + ¢) =

d(u) 4+ c¢d'(u) + o(At) for At — 0, we get

At (u)e = —=ApAt ¢(u) — \gAL ¢(u) + A\gAt /Ou ¢(u—z)dH(2)

+ApAt /Ou o(u —y) dG(y) + o( At).

Dividing both sides by At and letting At approach to 0, we have

o =[2+ ot -2 [“otu-pac) -2 [“otu-2)dHE), wzo. (39

c



Using the property that ¢(u)

31

=1 — t(u), we get
¢ = [Z+I] -2+ %]y —p/ouldG’(y) - Z/OuldH(z)
L[ vw—nacm + L [Cot-nane), uzo
Therefore
) = [g+2] - |5+ 2w - St - Tr
o | e— )G + L [ vl 2)dH (), uz0
Thus,
W) = [i; + 2] wlw) - 2~ B = 11— Gl

Corollary 3.1. For risk model (3.5)

»(0) = %’E[Y] + gz

Proof. Integrate the integro-differential equations (3.9) over the interval (0,¢) on w yields

[ dwan= 2+ [san-2 [ [" o=y acwan

C 0
_Z/ot/o ¢(u— z) dH(z) du. (3.10)

Consider - / / ¢(u — z) dH(2) du and the property of CDF H, we can show that
0 Jo

_,//qsu_zdﬂ //qsu—z (L~ H(2)] du,
/<¢ (1 — H(u)) - ()

/0 — H(2)¢ (u— 2) dz> du.
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Then,

—//gbu—de /¢ )(1—H u—/qS
// (1— H(2))¢ (u— 2) dz du. (3.11)

By the same technique, we can show that

—//gbu— ) dG(y /¢ (1-G )du—i/otcb(u)du
+c/0/0 (- Gy)d -y dydu.  (312)

Substituting (3.11) and (3.12) into (3.10), we get

/t ) du =2 _ H(u)) du+3/¢(0)(1—(;( ))d
0 C

s 2 [ oo
// (1 ¢ (u— z)dzdu (3.13)
ke

Consider = / / (1- !(u — 2) dz du, we can show that

// (1— H(z)d (u—2)dzdu = // (1-H — 2)dudz,
i fonnes

— —y) dy du.

Then,

/ / 1- (u—z)dzdu = z/ota — H(2))o(t — 2)dz — z/otu — H(2))(0) dz.

(3.14)
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By the same technique, we can show that

2L [a-cwisu-vdndn=" [0 -Gupet-nas-L [0~ cuooay

(3.15)
Substituting (3.14) and (3.15) into (3.13), we get
q [ p [
o) =00) =2 [—HEo =)=+ 2 [ 1= o -y
Letting ¢ approach to co and using the property that uh—%o o(u) =1, we get,
q [~ p [~
1-60)=L [ 1-HE)d+2 | 1-G)d
00) =L [“0-nEa+L [Ta-cw)a
Since /00(1 — H(z))dz = E[Z] and /00(1 — G(y))dy = E[Y], therefore,
0 0
243 p
1—¢(0) = CE[Z] + CE[Y].
Using the property that ¢(u) =1 — 9 (u), we get
— p
v(0) = Y51z + PEW)
O

3.3.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when
amounts of claims and surrenders follow exponential distributions. In particular, the

probability density functions of the claim sizes and premiums are

g(y) =ae™ ™ and h(z) =be %y, 2z >0, (3.16)
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corresponding to CDF’s are G and H, respectively, in Theorem 3.1.

Theorem 3.2. For the risk model (3.5) where the amounts of claims size and surrenders
follow exponential distributions with parameters a and b, respectively, if the net profit
condition (3.7) is satisfied, then the Cramér approzimation of the ruin probability o (u)

8

Yo(u) = Cre™™ + Cye™"  for all u >0, (3.17)

where C1,Co, 11, and ro are as follows

Cn Co1
Ci=—,0=—"
1 CD ) 2 CD ’
/R S\ (p+9) VD
~la b ach |
= 2 )
ab
X 1 N
b T d (r+9q +vVD
/] TN ach |
Ty = 2 )
ab
which
1.1 (p+qg)* 4 P g
Bea RS e soinl@e P T
|:CL I b ach ab [ ca bc}’
C11 = —abep + bp?® — abeq + apq + bpq + ag® — c(bp + aq)rs,
Co1 = abep — bp? + abeq — apq — bpg — aq? + c(bp + aq)r1,
and
Cp = abc*(ry —r9).
Proof.

Observe that CDF G and PDF g, satisfy dG(u) = g(u)du, as mentioned in Remark 2.2,



including CDF H and PDF h.
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Substituting the density functions of Y; and Z; with CDF’s are G and H, respectively,

into (3.8), we have

v/0) =2+ 2 v = et - Ly -2 (- e dy

C C C

- g/ Y(u — 2)be % dz.
¢Jo

Differentiating the equation with respect to u, we have

o = [+ v+ 2o+ Lper 4 [ -2 - 22) g

Cc C C C Cc C

U b u
2 / Y(u—y)ae” Ydy + £ / Y(u— 2)be % dz.
¢ Jo ¢ Jo
o . 1
Multiplying the equation by —, we have
a

YO 2 A )+ 2 + L+ [ 2 -2 g

a C ca C

a - ca ca
u b u

+8/ Y(u—y)ae” ¥ dy + Vi / Y(u — 2)be % dz.

Cc Jo ca Jo

Adding the terms of each side of (3.19) and (3.18), we have

P (1o 2Ly

a ca ca

q qb qb q —bu qb q “ —bz
- [£- 8] v [2-E e [B 1] [ vt

Differentiating the equation with respect to u, we have

V0 (1= 2 1)

a ca ca

- [q _ qb} W (u) — [qbz - qb} et [qb2 - qb] ¥(u)

C ca ca C ca C

_ qbZ_qb] b — )bt
{ . /Ow(u z)be "% dz.

ca

(3.18)

(3.19)

(3.20)



1
Multiplying the equation by 7 we have

" (w) + (1 _r _ q> b (u)

ab b acb ach
a 91 @ q| |20 g
b~ 2al ¥ >‘La ] +[ca‘c]w<u>
- {qb — q] uw(u—z)be bz 4
ca ¢l Jy

Adding the terms of each side of (3.21) and (3.20), we have

ca be

W;éu)+<1_p_q+1>¢~(u)+[1_p_QW(U)ZO,

The equivalent characteristic equation is

N e I/ AR\ P q
ab+<a_a‘cb_%+b>r+{l_ca_bc}r_0‘

Solving the equation, we obtain the three roots as

Ol acb
T = )
ab
1 1
o 7_‘_7_(P+Q) VD
a b acb
T = 2 )
ab
rg =0,
where
1 1 (p+q]® 4 P q
D=|-+-— — |l - ==
[a+b ach ab[ ca bc}

Therefore, the general solution of ¥(u) is

Y(u) = Cre™" + Cae™" + Cs.

36

(3.21)

(3.22)

(3.23)

(3.24)
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Since )
[t 1 (pt+9) 4[ P q
b= [a * b acb ab ca be
(11 e-9]®, 4pg _
b «a ach a2b2¢c?

Then, 1 and 7y are distinct real roots.

Since

1+1
a b ach

@+@):[;+1;}F p q}+ii+42 > 0, (3.25)

by the Vieta’s theorem in Theorem 2.2 and (3.23), we get

s 4

and

(3.27)

From (3.26) and the net profit condition (3.7), we can see that 71 and ry have the same
sign. From (3.27) and (3.25), we get

r1 < 0and r9 < 0.

Next, once we know the values of r1 and rq, we will then determine the values of C1,
C5 and Cs for (3.24) by using the initial conditions follow as,

1. lim ¢ (u) =0, since r1,79 < 0 which yields C3 = 0.
U—r00

2. Substituting, 1(0) = % + L (3.24), we get
cb  ca
Ci+Cy=L4 2 (3.28)
cb  ca

3. Letting v = 0 in (3.18) and using v (u) from (3.24), we get

an+cﬂfﬂg+a[%+£J—§—% (3.29)
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Solving system of (3.28) and (3.29), we get

Cu Co1
Cy=—and Cy = =
1 CD an 2 CD )
where
Cin = —abep + pr — abeq + apq + bpg + aq2 —c(bp + aq)rs,
Cy1 = abep — bp® + abeq — apq — bpg — aq® + ¢(bp + aq)r1,

Cp = abc®(ry —ro).

To calculate the approximated ruin probability using the Cramér approximation

described in (3.17), we can use the R programming for computation.

3.3.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace
transforms in conjunction with integral equation of ruin probability for the CPST model

(3.5).
Theorem 3.3. The Laplace transform of ruin probability 1 (u) for risk model (3.5) is

*(g) = —pll —g"(s)] = q[l —h*(s)] + esy(0)
P*(s) = ses — p[1 — g*(s)] — q[1 — h*(s)] — q[1 — h*(s)]]’ (3.30)

where ¥ (0) = gE[Z] + EE[Y] and g*, h* are the Laplace transforms of probability density
c c

functions for the amount of claims size g and surrender h, respectively.

Proof. Taking the Laplace transform of (3.8) and formula in Theorem 2.3, we get

C C S S

~Pur(s)g"(s) = Sut ()7 (s).

s (s) — (0) = [lj n Q} W (s) _]g {i B g*(s)] _% E B h*(s)]
q
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Multiplying both sides by —cs, we have

—cs®Y*(s) +esv(0) = —s[p+qlv7(s) +p[l—g"(s)] +q[l—h"(s)]
+ps Y7 (s)g"(s) + qs " (s)h"(s).

Therefore,
—p[L=g"(s)] —q[L = n*(s)] +esp(0) = [es® —s[p+q]+qs h(s) +ps g"(s)] " (s).
Thus,

o (s) = =2 [1 —g*(s)] = q[1 — h*(s)] + cs1(0)
sles —p[l—=g*(s)] — q[1 — h*(s)]]

O

Corollary 3.2. Assume the risk model described in (3.5) where the amount of claims
size and surrender follow exponential distributions according to (3.16), probability density
functions denoted as g and h, respectively, and with parameters a and b. If the net profit
condition given by (3.7) holds, then the Laplace transform of the ruin probability ¥ (u) is
B b2p 4 a’q + (bp + aq)sy Soiu ~b%p — a’q — (bp + aq)s2 g5

abe(sy — $2) n abe(sy — s2)

Yo (u)

(3.31)

where

. —ac—bc+p+q—+8S
1= )
2c

—ac—bc+p+q+VS
2¢ ’

and

S = (ac +bc — p — q)? — 4c(abe — bp — aq).
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Proof.
Substituting the Laplace transforms of the density functions of Y; and Z; with CDF’s are

G and H, respectively, into (3.30), we have

Let R(s) = abc —bp — aq + (ac+ bc — p — q)s + cs? and rearrange the equation for ¢*(s),

we get

AN b’*p + a’q + (bp + aq)s

*(s) = 3.32
9(s) S (332)
Let S = (ac + be — p — q)* — 4c(abe — bp — aq). Then, S > 0.
Factoring R(s), we will obtain that
b’p + a’q + (bp + aq)s
*(s) = 3.33
vs) abe(s — s1)(s — s2) (3:33)
where
— —ac—bc+p+q—+S
1= 2% ’
— —ac—bc+p+q+ VS
2 2c '
Since S > 0, then s; and sy are distinct real roots.
Since
1 1 bp aq
—ac — =—|-+= —bp—aq) — — — 34
ac—bc+p+q |:b+a:| (abc — bp — aq) s <0, (3.34)
by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get
be — bp —
s159 = PP AT (3.35)

C
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and

— be —p—
<a6+z P Q)<

S1+ 89 = 0. (336)

From (3.35) and the net profit condition (3.7), we can see that s; and sy have the same
sign. From (3.36) and (3.34), we get
s1 < 0and sy <0.

Applying partial fraction decomposition to (3.33) with respect to s, we obtain

_ Wp+adPq+ (bp+aq)sy  —bp—a*q— (bp+ aq)ss

*(s) = 3.37
v(s) abe(sy — s2)(s — s1) abe(s1 — s2)(s — s2) (3:37)
Taking the inverse Laplace transform (3.37) with respect to s, we obtain
b? 2 b —b%p —a’q — (b
bo(u) = pt+a q+(p+aq)31eslu_i_ p—a“q (p—l—aq)$2682u.
abe(s1 — s2) abe(s1 — s2)(s — s2)
OJ

It can be observed that the ruin probability of the Cramér approximation in (3.17)
Theorem 3.2 and the Laplace transforms in (3.31) Theorem 3.2 are equal. This can be
proven by showing that the formulas of both approximations yield the same value, as

mentioned in Remark 3.1.

Remark 3.1. For the amount of claims size and surrender follow exponential distributions
according to (3.16), probability density functions denoted as g and h, respectively, and
with parameters a and b. The ruin probability of the Cramér approximation ¢ (u) (3.17)

and the Laplace transforms 9. ¢(u) (3.31) yield the same value, for all w > 0

Yo(u) = Cre™" + Cye™",

_Vptdiat (ptags . —Vp—d’q— (p+ag)s: .,
abe(sy — $2) abe(sy — s2) ’

Yo (u)

where C1,Cs,r1,79,51 and s9 are as follows

—abep + bp? — abeq + apq + bpg + aq® — c(bp + aq)rs

G1= abc®(ry —r3)

)
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abep — bp? + abeq — apq — bpg — ag?® + c(bp + aq)r
abc?(ry — o)

S R 1+1_(p+q)2_4[1_p_q
a b ach a b acb ab ca be
ab

Cy =

r = 2 )

L. 1 (p+a) L1 pta]’ 47, _» 4
[a + b acb + a + b acb ab [1 ca bc}
ab

2 )
b
B —ac —be+p+q—+/(ac+be —p— q)% — 4c(abe — bp — aq)
S 2c ’
—ac —be+p+q++/(ac+be —p — q)% — 4c(abe — bp — aq)
S9 = .

2c

Proof. We want to show that the various coefficients and constants have the same value

demonstrated as follows.

1. 1 (p+a) 1.1 (p+a]” 47, _» 4
_{a+b_ ach | a+b_ ach _ab[l_ca_bc}
2

rn =
ab
_facfbc+p+q~\/(ac+bc-p*q)2f4c(abcfbpfaq)
N 2¢
= S1,
1.1 (p+9q) 11 (p+q]? 4[ P q}
B lam T _ 2t _ 4
{a—i_ b acb 0 a+ b ach ab ca be
ab
_—ac—bc+p+q+\/(ac+bc—p—q)2—4c(abc—bp—aq)
N 2c

= 52,
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and
c - —abep 4 bp? — abeq + apq + bpg + ag® — c(bp 4 aq)ra
abc?(ry —ra)
—abp—i—% — abq + %24 4 P4 4 a—gz — (bp + aq)s2
N abe(sy — $2)
_ Vp+aPq+ (bp+agq)s:
N abe(sy — $2)
o = abep — bp? + abeq — apq — bpq — aq® + c(bp + aq)ry
2 abc?(ry — r3)
abp — %+abq— ®q— b%q—aff+(bp+aq)sl
- abe(s1 — s2)
B —b%p — a’q — (bp + aq)s2
N abc(sy — s2) '
Therefore,

Yo (u) =Yg (u).

To calculate the approximated ruin probability using the Laplace transform for
money amounts which follow exponential distributions described in (3.31), we can use
the MATLAB commands “partfrac” and “ilaplace” for computation.

In the case that the money amounts follow gamma distributions, we also use MAT-
LAB to calculate the approximated ruin probability. We use the general Laplace trans-
forms for the ruin probability (3.30) with gamma distributions instead of exponential

distributions.

3.3.3 The De-Vylder approximation

In this section, we consider the CPST (3.5) where claim sizes and surrenders follow
other distributions rather than exponential distributions. The method used in this topic
is the De-Vylder approximation which is to approximate the risk process by the classical

risk model where the numbers of premiums, claims, and surrenders are exponentially
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distributed. In particular, the model (3.5) is approximated by the risk model:

N N Nty N
Ut)=u+eN(t) — > Yi— Z;, (3.38)
=1 =1

where }71 and Z— have exponential distributions with parameters a and E, respectively.
Also, N(t),ﬁ(t,ﬁ), and ]V(t,[j) are Poisson processes with intensities A, Xﬁ, and X(},
respectively.

Since in this risk model the process {ﬁ(t)}tzo is determined by six parameters

A D, q, a, E, and ¢, six equalities are required to determine these parameters. Therefore,

we need to compute the first six moments of U(t) described in [17].

Theorem 3.4. For the risk model (3.5), let My (s) and Mz(s) be the moment generating
functions of the random variables Y; and Z;, respectively. Then, for any s in the domain

of My ), we have

MU(t)(s) = exp {su + t/\(M(s) —-1=-p— q)} \

—~

M(’J(t) (s) = Myy(s)(u+tAM'(s)),

M//

U (s) = My (s){ (u+ 75)\1\4’(8))2 + tAM"(s)),

M[l],l(t) (s) = My)(s) (u + t)\M'(s))3 +tAM" (s) + 3t)\(u + MM'(S))M”(g)) 7

7 N 7N N

(w4 EAM(5))* + 6tAM” (5) (u + EAM'(s))
FAEAM" (5) (u -+ tAM'(s)) + 3t2A2 [M" (s)]* + t)\M(4)(s)>,

M) (5) = My (s) ((u +IAM(s))” + 10EAM" (s) (u + tAM'(5))°
F10EAM" () (u + tAM(5))* + SEAM @ (s) (u + tAM(s))
+15202 [M"(s)]? (u+t/\M’(s)])+1Ot2)\2M”(s)M”’(s)+t)\M(5)(s)>,

1©)

) (5) = My (s) <(u + tAM(5))8 + 15¢AM" (s) (u + t/\M’(s))4
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F20EAM" () (w 4+ tAM (5))° + 15EAM @) (s) (u + EAM'(s))
FABE2NZ (M ()] (u + tAM(s))? + GEAM ) () (u + EAM(s))
+60t2 N2 (u + tAM'(s)) M" (s)M"(s) + tAM©)(s)
+15202M" (s) MW (s) 4+ 106202 [M"" (s)]* + 1563 X3 [M"(5)]? )

where M(s) = e*¢ + pMy (—s) + gMz(—s).
Proof. By the formula for the moment generating function of S(¢) in Lemma 3.1, we have

MU(t)(S) _ E[es(quS(t))]
=exp {su+tA[(e* = 1) +p(My(—s) — 1) + q(Mz(—s) — 1)]}

=exp{su+tA(M(s)—1=p—q)}.
Differentiating with respect to s on both sides of the equation, we have that

M(/](t)(s) =exp{su+tA(M(s)—1—p—q)}- (u+tAM'(s))

= MU(t)(S) (IL A t)\M/(S)) .
Consequently,

Uy (8) = My (SYEAM" () + My (5) (u + tAM'(5))

= My (s) ((u + t)\M'(s))2 + t/\M”(s)> :

Straightforwardly, we can calculate M, (/}/(t) (s), M((;L()t)(s), M®) (s) and obtain

0 (s) and MO

U(t)

the following results.

MI/JN(t) (s) = My)(s) ((u + tAM’(s))3 +tAM" (s) + 3t)\(u + tAM’(s))M”(s)> 7

() (5) = My (s) <(u + IAM'(s))* + 6tAM" (s) (u + t)\M’(s))2
FAEAM" (5) (u + tAM'(s)) + 36222 [M"(s))* + t)\M(4)(s)) ,

M) (5) = My (s) ((u +EAM(s))” + 1OEAM" (s) (u + tAM'(5))°
F10EAM" () (u + tAM(5))* + SEIAM @ (s) (u + tAM(s))
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+1562X2 [M" (5)]? (u—i—t/\M’(s)])+10t2/\2M”(s)M’”(s)+t)\M(5)(s)>,

b (8) = My (s) <(u +EAM(s))6 + 15EAM" (s) (u + tAM'(5)) "

F200AM" (5) (u + tAM(5))* + 15IAM @ () (u + tAM'(5))”
456202 [M"()]? (w 4+ tAM(5))” + 6tAMG) () (u + tAM(s))
+60t2X2 (u + tAM'(s)) M" (s) M () + tAM 6 (s)
F15E2A2M" () M@ (5) + 106222 [M" (5)]* + 15¢3A3 [ M (5)]? ) . O

For k € {1,2,...,6}, since Mg(t)(s) is in the form of M¥(s), we can find the

equation for M*(s) for k € {1,2,..., 6} from the Remark 3.2.

Remark 3.2. For n € N, the n'? derivative of the function M(s) = e*¢ + pMy (—s) +

qMz(—s) is given by
M (s) = e 4 (~1)"pM (=s) + (—1)"qM 5" (—s)

Corollary 3.3. For the risk model (3.5), we assume that Y; and Z; have finite first siz

moments. Then, for all t > 0, we have

E[U(t)] = u+tA(c — pE[Y] — qE[Z]),

E[U* ()] = (BU@)® + X (¢ + pE[Y?] + ¢E[Z7)) ,

E[U3(t)] = (E[U®)])° + tA (¢ — pE[Y?] - ¢E[Z%)
+ 3tAE[U(t)] (¢® + pE[Y?] + qE[Z?])
E[UY(t)] = (EUM])"* + 6t (¢ + pE[Y?] + qE[Z2%)) (E[U(1)])?

+4tX (¢® — pE[Y®] — qE[Z%]) E[U(t)]
+ 31202 (& + pE[Y?] 4 ¢E[2%)”
+ X (c* + pE[Y*] + ¢E[ZY),
E[U%(1)] = (E[U®)])” + 10X (¢ + pE[Y?] + ¢B[2°]) (E[U (1))’
+10tA (¢ — pE[Y®] - ¢E[2%) (E[U(t)])?
+5tA (¢* + pE[Y"] + ¢BE[Z"]) E[U(¢)]

+ 15202 (& + pE[Y?] + qE[22)* E[U (1))
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+ 10622 (¢ + pE[Y?] + qE[Z?)) (¢* — pE[Y?] — qE[Z?))
+tA(c° — pE[Y®] — qE[Z7]),

E[U%(t)] = (E[U®))° + 15tA (¢ + pE[Y?] + ¢E[Z%) (E[U(1)))*
+20tA (¢ — pE[Y?] — ¢B[Z%)) (E[U(1))°
+15tA (¢* + pE[Y*Y] + ¢E[ZY)) (E[U 1))
+ 451202 (& + pE[Y?) + qE[22) (B[U (1))
+ 6tA (¢° — pE[Y®] — ¢E[Z°)]) E[U(¢)]
+ 602 N°E[U ()] (¢* + pE[Y?] + qE[Z?)) (¢* — pE[Y?] — qE[Z?])
+tA (° + pE[Y®] + qE[Z°])
+ 156222 (¢ + pE[Y?] + qB[Z?)) [¢* + pE[Y*] + ¢E[Z"]]
+106202 (& = pE[Y?] — ¢E[2%))?
+ 1568303 (& + pE[Y?] + ¢E[22)°.

Proof. Since E[U"()] = Mg),(0) and M™(0) = c* + (=1)"pE[Y"] + (—1)"qB[2"]

for all n € N, substituting s = 0 into the formulas in Theorem (3.4) yields the desired

results. [

For the risk model (3.38) where Y; and Z; have exponential distributions with
~ ~ ~ 1 ~ 1 ~ ~
parameters a and b, respectively, let A = = and B = = so that the mean of Y; and Z; are
a
A and B, respectively. We will deal with parameters A and B instead of @ and b for the

sake of simplicity of the final formula.

Theorem 3.5. We can approzimate the process {U(t)}1>0 in the risk model (3.5) by
a process {ﬁ(t)}tzo in the risk model (3.38) with parameters X, P, 4, A, B and € by
matching the first siv moments, i.c., E[U(t)*] = E[Ut)*] for k =1,2,...,6. The desired

parameters X, P, G, A, B and € can be solved from the system of equations:

T v3 + 671115 + 3'}/2(24- E)
(@ +6AB+3c(A+ B))’




Yo+ 2m A — @+ 24) A

a:

J

2B(B — A)A
5 X — 71— A{B
PV
and
Fl.yy = BEll-y+ E12 7+ E13 - 73,
F2.75 = E21-9+ E22- 73+ E23 -y,
F3-7 = E31-93+ E32-y + E33 75,
where
F1 = &+46AB+3¢(A+ B),
B1l = G6GAB (#+124B + 4(A + B) ),
B12 = 3(-24A°B+(A+B) +4*(A* + AB + B?)),
E13 = & —24AB(A+ B) —12¢(A* + AB + B?),
F2 = & +12AB+4¢(A+ B),
B2l = 126AB (& +204B +56(A+ B)),
B2 = 4(-60A2B%+(A+ B) + 56 (A% + AB + B?)),
E23 = & —60AB(A+ B) - 20¢(A% + AB + B?),
F3 = &4 20AB+5¢(A+ B),
B3l = 206AB (& + 3048 +66(A+ B)),
B32 = 5(-120A2B% + & (A+ B) + 62 (42 + AB + BY) ),
E33 = & —120AB(A+ B) —30¢(A% + AB + B?),
and
M = Me—pE[Y]—qE[Z]),
Y2 = A(?+pE[Y?+qE[Z?),
73 = A(c—pE[Y? z%),
v o= )\(c4+pEY4+qEZ4)
v = A( —pE[Y? Z%),
Y% = A(S5+pE[YS AR
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Proof. Taking the k-th moment of the random variable that are exponentially distributed

into the equation E[U(t)¥] = E[U(t)¥], we have the system of equations

Y1 = A\é — \pA — \§B, (3.39)
Ny = NG + 2)\pA2 + 20 B2, (3.40)
v3 = A& — 6APA® — 6AGB, (3.41)
vi = At 4 24NpA* + 240GB*, (3.42)
v5 = A& — 120A\pA° — 1200\GB°, (3.43)
Y6 = A® + T20ApAS + 7207\GB°. (3.44)

Now, our aim is to find the constants X, P, G, B, A and ¢ from this system. From

(3.39), we have A\PpA = A& — 1 — AGB. Substituting this into (3.40)—(3.44), we get

yo = —2vi A + E<E+ M) X +2B (E N Z) £, (3.45)
vy = 6y A2 4+ & (5’2 ) 6,12) X+6B (12 - §2> G, (3.46)
Ny = — 24y A3 4T <E3 S 2413) X+ 24B (§3 - 23) £, (3.47)
s = 120m A% 4 & <E4 2 12024) X +120B (Z‘* - §4) $% (3.48)
e = —T20m A° + ’5(&5 + 72025) X+ 7208 (§5 - K5) . (3.49)

Next, from (3.45) we have 2B (E — Z) NG =2 +27A— E(E+ 2;1) X. Substituting this
into (3.46)—(3.49), we obtain

v3= —6mAB -3y (E + E) + E(EQ +6AB + 3¢ (E+ E)) X, (3.50)

4= 24v,AB <Z+ E) 1127, (]12 L AB+ EQ)

47 (53 ~ 24AB (Z + E) 198 (EQ v AB+ EQ)) , (351
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15 = —120mAB (4% + AB + B?) ~ 6072 (A+ B) (A% + B?)

47 (744 12048 (2 + A + B) +-o0¢ ( + 2B+ 4B+ B)) & (3.52)

e = T20mAB (Z + E) (ZQ + Ez) + 360, (24 + A®B 4+ A2B% 4+ AB® + §4>
+c [85 — 7T20AB (13 + A’B+ AB? + §3) — 360¢ (ﬁ“ + 3B+ A2B? + AB® + E“)} .

(3.53)

Next, from (3.50) we have 5(&2 +6AB + 3¢ (Z+ E)) X =173+ 691 AB + 37, (g—i— E)

Substituting this into (3.51)—(3.53), we obtain

Fly, = 6¢AB (52 +124AB + 4¢ (Z+ E)) 7
+3 (—24212§2 - (Z + é) + 4P (22 v AB + EQ)) o (3.54)

+(~244B (A4 B) +2 196 (B + AB + B?) ) s,

Flys = 6GAB ('53 — 60AB (K v E) _ 208 (§2 v AB + EQ)) "
+3 (K + E) <E4 _ 20242 — 207 B + 120Z2§2) -
+ <E4 + 12048 (22 +AB + §2> 1 60¢ (Z?’ + A2B+ AB* + §3)> 3,

(3.55)

Flys = 6¢AB (64 + 36048 <§2 + AB + EQ) +120¢ (Z3 + A’B+ AB? + §3)) "
+3 (55 (K + E) 7204252 (112 +AB+ EQ)
+12022 (K“ + A®B 4+ A2B% 4+ AB® + E“)) Yo
+ (&5 + 720AB (ﬁ?’ + A’B + AB? + §3>
—360¢ (24 + A°B + A’B% + AB® + E‘*)) 3.

(3.56)

B _60AB (A+ E) . 205(22 +AB+ §2>)
72

Multiplying (3.54) by ( and adding (3.55),
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we get
F2ys = 12¢AB (5’2 + 2048 + 5¢ (ﬁ + E)) o

+4 <—6022§2 + (ﬁ+ E) + 5¢2 (22 + AB + EQ)) o (3.57)
+ (2~ 60AB (A+ B) - 20¢ (A2 + AB + B?) ) .

& 4+ 360AB (ZQ + AB + §2) + 120¢ (23 + A2B+ AB? + §3)>
2

Multiplying (3.54) by (

and adding (3.56), we get

F2vs = 126AB (’53 —120AB (K + E) — 308 (22 +AB+ EQ)) o
+4 (54 (K + E) + 360A%B2 (K 4 E) — 3022 (,13 + A’B+ AB? + §3)) V3
+ (¢ + 36048 (A + AB + B) + 1200 (&2 + B+ AB* + ) ) .

(3.58)

- (53 —120AB (Z+ E) \ 30’5(,12 +AB + §2)>

Multiplying (3.57) by 73

and adding (3.58),

we get

F3vs = 20GAB (52 +30AB +6¢ (Z + E) )73
+5 (—1201123'2 3 (K == ’E) + 62 (22 +AB + ’B?))M (3.59)
+ (53 12048 (K+ E) —30¢ (KQ v AB+ §2>) 5.
Hence, we get the desired system of equations. O

Theorem 3.6. The De-Vylder approximation
For the risk model (3.5) under assumptions that Y; and Z; have finite sizth moments and
that the net profit condition (3.7) holds, the De-Vylder approzimation of ruin probability

Ype(u) is given by
Ype(u) = Cre™% + Cae™"  for all u >0, (3.60)

where
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7az_AJrB\/T) ; rle_B‘/E,
A= |Ayp-ABEED )
C
B = 2AB,
ABG+9) 51 GB
D= |i+p-ABCTDL _Gp| P4 _dB)
c c c
Cll 021
C = — [ —
1 C,Dy 2 CD}
which N A N N
on = el AL I T (2,0,
AB B AB A B A B A
o =2 ~ ~
on = Z L/ .fg_w_@_ug(fz_N) y
AB B AB A B A B A

and the constants X, D, q, j, B and € are obtained from solving the system of equations

stated in Theorem 8.5 which have the following values:

5 + 671 AB + 3’)/2(;[4— B)
’5(82 +621§+3E(E+1§))’

bk -l oImA—E(E+24)X
2B(B — A)X

q

N — 1 — A\gB
P=——""""""—

A

)

and g, B and ¢ are obtained from solving the system of equations

Fl-vqy = FEll-m+FE12-v%+ FE13- 73,
F2.v5 = E21-vy+ E22 -3+ E23 -y,
F3-v = E31-v3+4+ E32 v+ E33- s,
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where
F1 = &+6AB+3(A+B),
Bl = G3AB (& +124B + 45(A+ B)),
B12 = 3(-24A°B2+&(A+ B) +4(A* + AB + B?)),
E13 = & -24AB(A+ B) - 12¢(A% + AB + B?),
F2 = & +12AB+4¢(A+ B),
B2l = 12645 (& +20AB +5¢(A+ B)),
E22 = 4 (—6022@2 +3(A+ B) +5¢% (A% + AB + §2)>,
E23 = & —60AB(A+ B) —20¢(A% + AB + B?),
F3 = & +20AB +5¢(A+B),
E31 = 20¢AB (43045 +66(A+ B)),
E32 = 5(~120AB% + & (A+ B) + 62*(4* + AB + 7)),
E33 = & —120AB(A+ B) —30¢(A% + AB + B?),
and
M = Me=pE[Y]-qE[Z))
Y2 = A +pE[Y? +qE[Z?),
v = A(P —pE[Y®] ~qE[Z7]),
4 = A(c*+pE[YH+qE[ZY]),
v = A(c®—pE[Y®]—qE[Z%]),
%6 = A(P+pE[YS+qE[Z9).

To calculate the approximated ruin probability using the De-Vylder approximation

described in (3.60), we can use the MATLAB commands “solve” for computation.

3.4 Lundberg’s inequality

In this section, we will study the martingale and stopping time. This will allow us
to find the adjustment coefficient equation, Lundberg’s inequality for the ruin probability,

which it can be used to create as Lemma, Theorem and Corollary.
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Theorem 3.7. For the profits process {S(t);t > 0},

Ele W] = eto(), (3.61)

where

g(r) = =A[1—e"] = Ap[l = My (r)] = Aq[1 = Mz(r)]. (3.62)

Proof. Since Y;, Z;, N(t), N(t,p) and N(t,q) are mutually independent,

N(t,p) N(tvq)
E [e—rs(t)] = E |exp{-rcN(t)} - exp{r Z Yi} - exp{r Z Zi}
i=1 i=1

= Elexp{-reN(t)}]- E

N(t,p)
exp{r ¥ Yi}| -E
=1

N(t,9)
exp{r Z Zi}| .
i=1

By definition of MGF in Definition 2.24 and Theorem 2.22, we get

B[em0] = Myg(=re) My, (r) - My 4,(r)

e—At[l—eTTe

"le=Apt[1—My (r)] o= Agt[l—Mz(r)]

= exp{t(=A[l—=e "] =Ap[l = My(r)] — Aq[l — Mz(r)))}.

Therefore,

E[efrs(t)] — eta(r)

)

where

g(r) = =A[1—e] = Ap[l = My (r)] = Aq[1 = Mz(r)].

Then, we obtain (3.61).

Theorem 3.8. FEquation

g(r)=0 (3.63)
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has a unique positive solution r = R > 0, we can call (3.63) is said to be an adjustment

coefficient equation of the risk model (3.5), with R > 0 is said to be an adjustment

coefficient.

Proof. We will show that the adjustment coefficient equation has the unique positive

solution, by proving the following properties of g(r).

(1) g(0) =0,

(2) ¢'(0) <0, .

(3) ¢"(r) > 0 for all r > 0, < - )

° - g(0)=0
. 2 ‘\ §'(0)<0
(4) rggloog (r) = oo. 1 9’050 :
; L T T T T
0.00 005 0.10 015

From the definition of MGF in Definition 2.24, My (0) =1 and Mz(0) = 1, we get

(1) From (3.62), then ¢g(0) = 0.

(2) From (3.62), then

g (r) = =Ace™ " + A\pE[Y;e"Y*] 4+ \qE[Z;e"%). (3.64)

Therefore,

9'(0) = =Ac+ ApE[Yi] + \¢E[Z;].



From net profit condition (3.7), we get

g0) = —=Xc+ ApE[Y;] + \E[Zi],
< =AXc+Ae=0.

Therefore, ¢’(0) < 0.

(3) Let » > 0. Due to the explanation of ¢'(r) in (3.64), we have that

g//(r) = /\CQefrc_i_)\pE[YiQerYi]_‘_)\qE[ZiQerZi]‘

Since Y;, Z; are non-negative random variables and r > 0,
c?e7¢ > 0, E[Y2e"Yi] > 0 and E[Z2e"%] > 0.

Therefore,

g"(r) Ae2e "¢ + ApE[Y2eYi] + N\qgE[Z2e"%] > 0.

Thus,

g"(r)>0 forall r>0.

(4) Since (3.62) and the definition of MGF in Definition 2.24,

TEI_POOg(r) = —TEI}}OO)\ [1—e ] — lim Ap[l — My(r)]

T—r+00

— lim Agq[l— Mgz(r)].

r—+00

Since lim e " =0,

lim My (r) = oo, and lim Mz(r) = oo,
r——+00 r—+00 r—-+00

To determine the value of R based in the theory, it can be obtained as the unique

positive solution of g(r) = 0, as indicated in Theorem 3.8. The function g(r) is determined

56
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by (3.62). In practical applications, we will use the R command “uniroot” to compute

the value of adjustment coefficient R.

For the profits process {S(t); t > 0}, let F}° = 0{S(v); v <t} be a filtration.

Theorem 3.9. The random process {H,(t); F; t > 0} is a martingale,
e~ (utS(t))

where H,(t) = o)

Proof. Let v < t, we will show that E[H,(t) | FS] = H,(v).

Consider
[e—r(u+S()
Si—plé T S
B0 ] =Bl | 5
o [ o—r(utS(t)) . o—TS(v)+rS(v) s
eta(r) evg(r)—vg(r) v
/ o= (utS(v)) ' o—r(5(®)—S(v)) s
evy(r) e(t=v)g(r) v
e (utS(v)) 1 .
= ; L= r(S®)=S®) | S
evg(r) e(t—v)g(r) Ele | B (3.65)
Consider
N(t,p) N(t,q)
St)=S@) = dN®-N@]= Y. Yi— > Z
i=N(v,p)+1 i=N(v,q)+1

Since Y;, Z; are i.i.d. and N(t) is stationary increment, we get

d N(t,p)—N(v,p) N(t,q)—N(v,q)
S-S = dNO-NW - Y Y- > Z
1 i=1
d N(t—v,p) = N(t—v,q) ’
> ¢[N(t—v)] Z Y; — Z Z;
= S(t—wv).
Therefore, (3.65) is become
e~ r(ut+S(v)) 1

E[H,(t)|FF] = - Ele”"SCIE]].

evg(r)  elt—v)g(r)
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Since S(t —v) and F¥ are mutually independent and Theorem 2.18,

—r(ut5(v)) 1
s _ € ) . Ble—T(S(t—v))
BlHLOIF] oty eewam Pl I
From Theorem 3.7, we get
—r(u+S(v)) 1
5] — ¢ : . et=0)9(r)
BT = —m— deom ©
= Hy(v).
Therefore,
E[H,OIF)] = Hu(v),
i.e., the random process H,(t) is a martingale. O

Lemma 3.2. The ruin time T is the stopping time of FtS.

Proof. Let T be the ruin time where U(T) < 0 and F}° = o{S(v); v < t}.
From (3.5) and Lemma 3.1, then

Ut) = u+S(t).

Since Fts or o — algebra generated by random process S(v) from time 0 to ¢ occurs, it
gives information S(¢) from time 0 to ¢.

Hence, event {T < t} is a member of F}°.

Therefore,

T is the stopping time of Fts.
O
Theorem 3.10. For the surplus process {U(t);t > 0}, the ruin probability ¥ (u) satisfies

Lundberg inequality:

P(u) <e ™ u>0, (3.66)
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where R is adjustment coefficient.

Proof. Let T be the ruin time, tg > 0 be a fixed time and to AT = min(tg,T), then tg AT

is a stopping time. Hence, tg AT is a bounded stopping time.
e T(utS())

From, H,(t) = and Lemma 3.1, then

etg(?”)

By Theorem 2.24 (The Martingale Stopping Time Theorem ), we have that

E[H,(0)] = E[H,(T Atp)]-

Therefore,
e~ = E[Hy(T A ty)].
Since
T, it T < tg,
TNty = min(T, to) =
to, if T > tg,
E[H,(T Nto)] = E[Hu(T Ato) - Mr<s, + Lrsy,]]

= E[Hu(T Nto) - Lr<t] + E[Hu(T Nto) - L1y,
= E[H(T)[T <to] - P(T < to) + E[Hu(to)|T > to] - P(T" > to).

Let » = R. Therefore,
e = Ble BT < tg] - P(T < to) + E[e V0T > 9] - P(T > t9).  (3.67)

By the fact that 0 < E[e~fU(t)|T > 3] < 1 and Theorem 2.20 (Markov’s inequality ),
we obtain

lim [E[e_RU(t°)|T > to] - P(T > to)] ~0.

to—00
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From (3.67), we get that

lim e R% =  lim [E[e’RU(T)|T < to] - P(T < to) + Ele™ V)| T > t)] - P(T > to)}
to—00 to—00
= Jlim_ [E[e‘RU(T)|T <to] P(T < to)} + lim_ [E[e‘RU(t°)|T > to] - P(T > to)}
_ ; —RU(T) .
= Jim {E[e T <to]- P(T < to)]
Then,
e~ — EleBUMIT < o] - P(T < o)
= Bl RUOT < 00] - ().
Hence,
e—Ru
P(u) = E[eRUM)|T < 0]’ (3.68)
i h h !
Since U(T) < 0, we have that RO <1
From (3.68), we have that
e~ Ru e~ Ru R
V() = PR [T<oq “ B[1T<oq
Therefore,
Y(u) < e v,
O

3.5 Experimental simulations

In this section, we perform numerical studies to investigate performance of the
analytical approximation of the risk model CPST. The studies are divided into three
parts. The first part discussed in Section 3.5.1 introduces the statistical estimation for
the ruin probability z&t(u) by using the Monte Carlo methods. The second part in Section
3.5.2 studies numerical approximation to the ruin probability when the amounts of claims
and surrenders follows an exponential distribution by using the analytical solution such as
the Cramér approximation and the Laplace transform comparing with the Monte Carlo

approximation and the Lundberg’s Upper bound. The third part focuses on the numerical
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approximation to the ruin probability when the amounts of claims and surrenders follows
gamma distributions by using the De-Vylder approximation and the Laplace transform

comparing with the Monte Carlo approximation and the Lundberg’s Upper bound.

3.5.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability @t(u) derived
by the direct simulation of the surplus process using the Monte Carlo methods in order
to evaluate the result of the approximations suggested in this chapter.

The concept of the Monte Carlo method is to generate a lot of sample paths for
the stochastic process of interest and find the average value of the interest aspect of the
process. We will perform the Monte Carlo simulation described in [9]. Let N be the
total number of realizations of the process U(t). We can calculate the average value of
the process U(t) when each ruin occurs at the time point ¢, consequently, we obtain the
corresponding statistical estimate qﬁt(u) for the ruin probability ¥ (u). The Monte Carlo

estimation is obtained as

N
hilw) = 5 > Lw. <o o=

i=1

where t is a fixed time point and N is the sample size. As N — oo and t — oo, by
the law of large numbers, @t(u) converges to ¥ (u). The time points considered here are
t = 1,5,50, and 100, and the sample size of the Monte Carlo method is N = 200,000.
The parameters of the model studied in this section are as follows. The initial capital u
varies in {0,1,2,3,5,7,10} and the constant rate of premiums is ¢ = 0.2. The parameter
of the Poisson counting process of premium is A = 10. The thinning parameters of claims

and surrenders are 0.4 and 0.3, respectively.

3.5.2 Exponential distributions for the claim sizes and surrender

Let the probability density functions of the amounts of claims Y; and the amount
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of surrenders Z; are

where a = 4, b = 6, respectively.

For the Cramer approximation, substituting a =4, b=6, ¢ = 0.2, p=0.4, and ¢ = 0.3
into the formula of r1 and r9 in (3.17), we get r;1 = —5.386001 and ro = —1.113999,
respectively. Consequently, C7 = 0.009246 and Co = 0.740753. Therefore, the Cramér

approximation 9 (u) is

Yo(u) = 0.009246¢ 5386001 4 (7407531113999 £op g1 4 > 0. (3.69)

For the Laplace approximation, substituting a = 4, b = 6, ¢ = 0.2, p = 0.4, and
g = 0.3 into the formula in (3.32), we get S = 0.73. Consequently, s; = —5.386001,

s9 = —1.113999. Therefore, the Laplace approximation ¢ ¢ is

Vg (u) = 0.740753¢ 1113999 4 0.009246¢ 5385000 for ql] u > 0. (3.70)

For the upper bound approximation, substituting a =4, b =6, ¢ = 0.2, p = 0.4, and
g = 0.3 into g(r) in Theorem 3.7 and solve for the unique positive solution g(r) = 0 by
using the R programming to compute the value of R, we have R = 0.831038. Then, from

Theorem 3.10, the upper bound of the ruin probability is

w(u) < 6—0.831038u. (3’71)
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The numerical approximations obtained in (3.69)-(3.71) for different values of
the initial capital u is given in Table 3.1.

¥(u)
u Statistical estimate (u) Numerical approx. | Upper bound
—Ru
t=1 | t=5 | t=50 | t=100 | VeW/¥z(w) ‘
0 | 0.295615 | 0.438440 | 0.472175 | 0.472180 0.750000 1.000000
1 10.079915 | 0.190715 | 0.229500 | 0.229515 0.243190 0.435596
2 1 0.014650 | 0.069690 | 0.101090 | 0.101105 0.079811 0.189744
3 1 0.001985 | 0.023840 | 0.044430 | 0.044440 0.026197 0.082652
5 | 0.000015 | 0.002020 | 0.008170 | 0.008180 0.002822 0.015682
7 | 0.000000 | 0.000135 | 0.001595 | 0.001605 0.000304 0.002975
10 | 0.000000 | 0.000000 | 0.000130 | 0.000135 0.000010 0.000245

Table 3.1: Numerical approximations of the CPST risk model with exponential distri-

butions.
1.0 —o— Numerical: t=1
—&—  Numerical: t=5
0.8 —+—  Numerical: t=50
—*— Numerical: t=100
— 06 —<— Cramer
=) Laplace
> 04 —&—  UpperBound
0.2
00 S, a—— i
4 6 8 10

Figure 3.1: Graph of initial reserve u and the ruin probability of the CPST risk model
with exponential distributions.

From Table 3.1, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases. Notice that the Monte Carlo approximations

z[zt(u) do not have the same value as our approximations. Besides, we can observe that the

ruin probability zﬂt(u) increases as t increases, the Monte Carlo approximation converges

to our approximations, and it is less than the upper bound. Therefore, the Monte Carlo
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approximation is consider to be a good option. However, in practical situations, the
exact value of the ruin probability is unknown; therefore, it is impossible to determine
how high the value of ¢ should be in order to make 1/AJt(u) close to the exact value of the
ruin probability as one desires. Consequently, our approximations are better than the
Monte Carlo approximation regarding real usage.

Also, we can see that the Cramér approximations and the Laplace approximations
fall between the Monte Carlo approximation of ruin probability zﬁt(u) and the upper
bound which is reasonable, since the Cramér and the Laplace approximations are a type
of infinite-time ruin probabilities which should be higher than any of finite-time ruin
probability @t(u) and should not exceed the upper bound. Moreover, we can see that
the Cramér approximations (3.69) and the Laplace approximations (3.70) are equal. The
reason for their equivalence is that the ruin probability formulas for both methods are
equivalent to each other, yielding the same result see Remark 3.1 or derived from solving
the same ODE.

The Monte Carlo simulation will be very good, if we can increase the value of
t. However, it will take long computation time to do so. Therefore, a possible way to
improve the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.

3.5.3 Gamma distributions for the claim sizes and surrender

In this section, we study numerical approximations such the premium, claim sizes
and surrender follow gamma distributions. Specifically, let the probability density func-

tions of the claim sizes Y; and surrender Z; are

Bze P7%(Byz)*7 !
['(az)

~ Bre PY(Byy) ! _
9(y) = o) and  h(z2) =

7y72207

where By = 8, ay = 2,87 = 6,ayz = 1, respectively.

For the De-Vylder approximation, substituting gy = 8, ay = 2,87z =6,az =1, c = 0.2,
p = 04, and ¢ = 0.3 into the formula of r; and r9 in (3.60), we get r; = —11.956600
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and rg = —1.415050, respectively. Consequently, C; = —0.019906 and Cs = 0.769340.

Therefore, the De-Vylder approximation ¢p.(u) is

VYpe(u) = —0.019906¢ ~11:956600u 1 () 769340 14150504 o 1] 4 > 0. (3.72)

For the Laplace approximation, substituting 8y = 8,ay = 2,87 = 6,az =1, ¢ = 0.2,
p = 0.4, and ¢ = 0.3 into the formula of ¥*(s) in (3.30), then taking the inverse Laplace
transform in t*(s) by using the MATLAB for computation. Therefore, the Laplace

approximation ¢ ¢ is

Vo (u) = 0.769160e 14156134 _ () 020628 108124254 £op ] 44 > 0. (3.73)

For the upper bound approximation, substituting Sy = 8,ay = 2,87 = 6,az = 1,
¢=10.2, p=0.4, and ¢ = 0.3 into ¢g(r) in Theorem 3.7 and solve for the unique positive
solution g(r) = 0 by using the R programming to compute the value of R, we have

R =0.979012. Then, from Theorem 3.10 the upper bound of the ruin probability is

1/1(u) < 670.97901274. (374>
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The numerical approximations obtained in (3.72)-(3.74) for different values of
the initial capital u is given in Table 3.2.

Y(u)
Statistical estimate ()

" Upelw) | () | VPP RO

t=1 t=2>5 t =50 t = 100
0 | 0.291345 | 0.424325 | 0.452320 | 0.452335 | 0.749434 | 0.750000 1
1 | 0.06555 0.162965 | 0.194255 | 0.194255 | 0.186883 | 0.186736 0.375681
2 1 0.008780 | 0.050860 | 0.073980 | 0.073995 | 0.045396 | 0.045334 0.141136
3 | 0.000765 | 0.014500 | 0.028220 | 0.028220 | 0.011027 | 0.011006 0.053022
5 | 0.000000 | 0.000730 | 0.003950 | 0.003950 | 0.000650 | 0.000648 0.007483
7 | 0.000000 | 0.000020 | 0.000475 | 0.000475 | 0.000038 | 0.000038 0.001056
10 | 0.000000 | 0.000000 | 0.000025 | 0.000025 | 0.000000 | 0.000000 0.000056

Table 3.2: Numerical approximations of the CPST risk model with gamma distribu-

tions.
1.0 7 —— Numerical: t=1
—&—  Numerical: t=5
0.8 —t+—  Numerical: =50
—*— Numerical: t=100
06 —<— DeVylder
=) Laplace
= 04 - —&— UpperBound
0.2
00 + o g E e - - B &
T T T
6 8 10

Figure 3.2: Graph of initial reserve u and the ruin probability of the CPST risk model
with gamma distributions.

From Table 3.2, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases. Notice that the Monte Carlo approximations

z/}t(u) do not have the same value as our approximations. Besides, we can observe that the

ruin probability @t(u) increases as t increases, the Monte Carlo approximation converges
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to our approximations, and it is less than the upper bound. Therefore, the Monte Carlo
approximation is consider to be a good option. However, in practical situations, the
exact value of the ruin probability is unknown; therefore, it is impossible to determine
how high the value of ¢ should be in order to make 1/;t(u) close to the exact value of the
ruin probability as one desires. Consequently, our approximations are better than the
Monte Carlo approximation regarding real usage.

Also, we can see that the De-Vylder approximations and the Laplace approximations
fall between the Monte Carlo approximation of ruin probability @t(u) and the upper
bound which is reasonable, since the De-Vylder and the Laplace approximations are a
type of infinite-time ruin probabilities which should be higher than any of finite-time ruin
probability 1/Azt(u) and should not exceed the upper bound. Moreover, we can see that
the De-Vylder approximations (3.72) and the Laplace approximations (3.73) are nearby.
The reason for their equivalence is that the ruin probability formulas for both methods
are nearby to each other, yielding the nearby result. However, the values displayed in the
Table 3.2 may differ slightly due to the rounding settings of the program.

The Monte Carlo simulation will be very good, if we can increase the value of
t. However, it will take long computation time to do so. Therefore, a possible way to
improve the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.



CHAPTER IV

RISK MODEL WITH STOCHASTIC
PREMIUMS AND SURRENDERS SUBJECT

TO DEPENDENCE THINNING

In this chapter, we will extend our numerical approximations to the ruin probability
for the risk model with surrenders when the premiums are not necessary to be constant
over time. We first introduce the risk model and evaluate its properties. Then, we obtain
an numerical approximation of the ruin probability by using the Cramér approximation,
the Laplace transforms method, and the De Vylder Approximations. Moreover, we find
the numerical approximations of the three methods and compare them with the Lundberg
upper bound and the Monte Carlo approximation.

The organization of this chapter is as follows. Section 4.1 studies some properties of
the risk model with stochastic premiums and surrenders subject to dependence thinning.
Section 4.2 derives the analytical approximation of the ruin probability. Section 4.3 derives
the Lundberg’s upper bound of the ruin probability. Section 4.4 performs experimental

simulations.

4.1 The risk model with stochastic premiums and surrenders subject

to dependence thinning (SPST)

The risk model considered in this chapter is the risk model with stochastic premiums
and surrenders subject to dependence thinning, denoted as SPST. The risk model consists
of the initial capital, stochastic premiums, claims, and surrenders. In particular, the model

is presented as
N(t) N(t,p) N(t,q)

Uty =u+Y Xi— > Yi— Y Z, (4.1)

where u represents the initial capital, N(t) is the Poisson process with intensity A > 0,

denoting the number of premiums up to time ¢. Particularly, N(¢) ~ Poisson(At).
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The sequence {X;}°, is a sequence of ii.d. non-negative random variables represent-
ing the amounts of premiums with a cumulative distribution function F. N(¢,p), where
0 < p < 1, is the p-thinning process of N(¢) denoting the number of claims up to time
t. In particular, it is defined as Z?i(lt) Q; where Q; are i.i.d. Bernoulli random variables
with parameter p and M (t) is independent and identically distributed with N(¢). The
individual claim size {Y;}3°, is a sequence of i.i.d. non-negative random variables with a
cumulative distribution function G. N (¢, q), where 0 < ¢ < 1, is the g-thinning process
of N(t) denoting the number of surrenders up to time ¢. The sequence of i.i.d. non-
negative random variables {Z;}2°, represents the amount of the i-th payment of insur-
ance policy with a cumulative distribution function H. In addition, we suppose that
N0, AN () Ym0 AN (L) eso. (X2, (i), and {Z}2, are mutually inde-
pendent.

In order to ensure the insurance company’s stable business, we assume that

N() N(t,p) N(t,9)

E|Y Xi—- Y Yi— > z| >0 (4.2)
=1 =1 =1

Since
N(t) N(t.p) N(t.q) N(t) N(t.p) N(t.q)
E ZXi—Z}Q—ZZi =—F in _E ZY;—E ZZi
=1 =1 =1 =1 i=1 =1

= Mux — Aptpy — Aqtpz,
the assumption becomes
px — ppy — quz > 0, (4.3)

which is called as the “net profit condition”.
Lemma 4.1. Define the profits process by {S(t);t > 0} as

N() N(t,p) N(t,q)

SH=> Xi- Y Y- > Z.
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Then, the profits process S(t) has the following properties:

2. E[S(t)] = [ Aux — Appy — Aquz It,
3. Var[S(t)] = ( AE[X?] + A\pE[Y?] + \qE[Z?] ) t,
4. Mgy (s) = exp{t[A(Mx(s) — 1)+ Ap(My(—s) — 1) + Ag (Mz(—s) — 1)]},

5. {S(t) }+>0 has stationary and independent increments.

Proof.
(1) Since N(t), N(t,p), N(t,q) are Poisson processes, N(0) = 0, N(0,p) = 0 and
N(0,q) = 0. Then,

N(0) N(0,p) N(0,q)
SO)=) Xi~ > Yi- > Z
l:l O’L:]. . =1
PO ONE WL
= 7= i=1
=0.

(2) By the property of expectation

E[S(t)] = E

N() N(tp)
i=1 i=1

From Theorem 2.22,

EIS(t)] = [ Aux — Appy — Aquz Jt.

(3) By the property of variance and the independence of X;,Y;, Z;, N(t), N(t,p), and

N(t,q),
N(t) N(t.p) N(t,q)
Var[S(t)] = Var Z Xi| +Var Z Y| +Var Z Zi| -
i=1 i=1 i=1




From Theorem 2.22,
Var[S(t)] = ( AE[X?] + A\pE[Y?] + \¢E[Z?] ) t.

(4) We know that
Mg (s) = Ele*S)].

By the independence property of the three terms of S(t),
Mgy (s) = E [eszyﬁ) Xi} E [efszgpr)yi] E [e*s it Zi} .
The three terms are computed as follows

1) B[] = Moy o (5)

= Gy [Mx(s)]

MM ()-1]

N(t,p)
) B[R] = Mol

= Gn@p) [My(~5)]

A e)\pt[My(—S)_l].
3) B A = Mose 4 (~9)
=GNty [Mz(—5)]

_ eAqt[Mz(—s)—l} ]

Therefore,

Mg (s) = exp{t[A (Mx(s) = 1) + Ap (My (=s) = 1) + Aq (Mz(=s) — 1)]}.
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(5) Since N (t) has stationary increments and {X;}9°, is a sequence of i.i.d. non-negative
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random variables, we get

N(t+h) N(t) N(t+h)—N(t)
Y Xi— > X isidentically distributed as Y X;
i=1 i=1 i=1
and
N(t+h)—N(t) N(s+h)—N(s)
> Xi isidentically distributed as Y X
i=1 i=1
N(®)
Therefore, Z X, has stationary increments.
i=1

To prove that the process has independent increments, let s1 < s9 < s3 < s4. Since
N (t) has independent increments and {X;}9°, is a sequence of i.i.d. non-negative random
variables, we get
N(s2) N(s4)

Z X, is independent with Z X;.
i=N(s1)+1 i=N(s3)+1

N(t)
Therefore, Z X, has independent increments.
i=1
N(t,p) N(t,q)
By the same technique, we can show that Z Y; and Z Z; have stationary and
i=1 i=1
independent increments. Thus, {S(t);¢t > 0} has stationary and independent increments.

O

4.2 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for
the SPST (4.1). We will start by obtaining the integral equation for the ruin probability.
Then we obtain an approximation of the ruin probability using the Cramér approximation,
the Laplace transforms method, and the De Vylder Approximations. To obtain the three

approximations, we first obtain the integral equation stated in Theorem 4.1 below.
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Theorem 4.1. The ruin probability 1 (u) for risk model (4.1) satisfies the integral equation

(L+p+au = gl —Hw)]+pll—G / O+ ) dF ()

(4.4)
+p/1/Ju— )dG(y +q/wu—z dH(z), u >0,

where F, G, and, H are cumulative distribution functions of the amounts of premiums, the
individual claims sizes, and the amount of surrenders with probability density functions

f.g, and h, respectively.

Proof. To compute the non-ruin probability ¢(u), we consider five different possible dis-
joint events of the number of premiums, the number of claims, and the number of sur-
renders during an infinitesimal period [0, A¢], which has been calculated in detail in the

proof of Theorem 3.1 in chapter III, as follows.

Case 1:
There is no premiums, no claims, and no surrenders in the interval when At — 0.

The event occurs with the probability 1 — AAt — ApAt — A\gAt + o( At).

Case 2:
There is no premiums, no claims, and one surrender in the interval when At — 0.

The event occurs with the probability AgAt + o(At).

Case 3:
There is no premiums, one claims, and no surrenders in the interval when At — 0.

The event occurs with the probability ApAt + o(At).

Case 4:
There is one premium, no claims, and no surrenders in the interval when At — 0.

The event occurs with the probability AAt 4+ o(At).

Case 5:
There are more than one event of premiums, claims, and surrenders combined in

the interval when At — 0. The event occurs with the probability o(At).
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From the law of total probability for discrete random variable in Definition 2.16, it follows

that
¢(u) = P[N(At) = 0]P[N(At,p) = 0]P[N(At,q) = 0]
PIU(t) > 0,¥t > 0|N(At) = 0, N(At, p) = 0, N(At, g) = 0]
+P[N(At) = 0]P[N(At,p) = 0]P[N(At, q) = 1]
P[U(t) > 0,V > 0|N(At) = 0, N(At, p) = 0, N(At, q) = 1]
+P[N(At) = 1]P[N(At,p) = 0]P[N(At, q) = 0]
PIU(t) > 0,¥t > 0|N(At) = 1, N(At,p) = 0, N(At, q) = 0]
+P[N(At) = 0]P[N(At,p) = 1]P[N(At, q) = 0]
PIU(t) > 0,¥t > 0|N(At) = 0, N(At,p) = 1, N(At, q) = 0]
+P[N(At) + N(At,p) + N(At, q) > 1]
P[U(t) >0,V > 0|N(At) + N(At,p) + N(At, q) > 1].
Then,

d(u) = [1— AAL + o(AL)][L — ApAt + o(At)][1 — AgAL + o(At)]

- P[U(t) > 0,¥¢ > 0|N(At) = 0, N(At,p) = 0, N(At, q) = 0]
+[1 = AAL + o AD)][1 — ApAL + o(At)][AgAL + o(At)]]

. P[U(t) > 0,Vt > 0[N(At) = 0, N(At, p) = 0, N(At, q) = 1]
+[AAL 4 o(At)][1 — ApAt + o(At)][1 — A\gAt + o(At)]

- P[U(t) > 0,Vt > 0|N(At) = 1, N(At,p) = 0, N(At, q) = 0]
1 = AAE + o AL)][APAE + o(AL)][1 — AgAE + o(At)]

- PIU(t) > 0,V > 0| N(At) = 0, N(At,p) = 1, N(At, q) = 0]
+o(At) - P[U(t) > 0,¥t > 0|N(At) + N(At,p) + N(At,q) > 1].

By the properties of little-oh in Theorem 2.1 for At — 0 and the law of total probability



75

for continuous random variable X;, Y;, and Z; in Definition 2.17.

d(u) = (1 —AAEL — ApAt — A\gAL) P[U(t) > 0,VE > 0 | U(At) = u)
+AgAt /UP[U(t) >0,vt>0]| U(At) =u— z|dH(2)
Ou

FApAL / PIU(t) > 0,Yt > 0 | U(At) = u — y] dG(y)

%
+AAL / PlU(t) > 0,Vt >0 | U(At) = u + x| dF(z) + o(At).
0

According to the concept of stationary, we can treat At as a new start time. Therefore,
we can express U(At) as U(0). This implies that we are starting a new at At and can

use U(0) as the starting point,

d(u) = (1= ANAt — ApAt — A\gAt) P[U(t) > 0,Vt >0 | U(0) = u]
FAgAL / PIUW) > 0,9 > 0| U(0) = u— 2] dH(2)
Ou

TApAL / P[U(t) > 0,Yt >0 | U(0) = u —y] dG(y)

Q
FAA? / PIU() > 0.¥ > 0| U(0) = u + 2] dF(z) + o(At).
0
Then, we get

6(u) = (1— AAL—APAE— AgA?) d(u) + AgAt /O " b(u— ) dH(2)

+ApAt /Ou o(u—y)dG(y) + AAL /OOO d(u+ x) dF(x) + o(At).

That is

u

0 = —)MAE ¢(u) — ApAt ¢(u) — A\gAt ¢(u) + )\th/O d(u— 2)dH(2)

+)\pAt/ d(u—y)dG(y) + NAt / ¢(u+ x) dF(x) + o(At).
0 0
Dividing both sides by At and letting At approach to 0, we have

0 = —Xo(u)— Ap o) — Ag b(u) + Aq /0 " (w2 dH(2)

+/\p/0 o(u —1y) dG(y)—l—)\/Ooo o(u+ x)dF(z).
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That is

(I+p+qo(u /(bu—z )dH (z +p/ d(u —1y) dG(y)

+/0 d(u+ ) dF (z).

Using the property that ¢(u) =1 — 9 (u), we get

L4ptaq) —(+tpto = q/ouldH@)—q/O"w(u—z)dH(z)
+p/”1dG<y> —p/uwu—y)dc;(y)

% 4
+/0 1dF(x)—/0 d(u+2z)dF(x), u>0.

Therefore,

(Itpta)—(1+p+o(u) = qHu —q/ Y(u— 2) dH(2) + pG(u)

—p/o Y(u—y)dG(y) +1—/ d(u+z)dF(z), u>0.

Thus,

(Lp+ Q) = qfl = Hw)+pll - G / ¥+ x) dF (x)

+p/1/1u— dG(y +q/wu—de() u > 0.

4.2.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when
amounts of premiums, claims, and surrenders follow exponential distributions. In par-
ticular, the probability density functions of the premiums, claim sizes, and surrenders

are

f(x) =ae™ g(y) = be™® and h(z) = ce™%, x,y,2 >0, (4.5)
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corresponding to CDF’s are F, G and H, respectively, in Theorem 4.1

Theorem 4.2. For the risk model (4.1) where the amounts of premiums, claims size
and surrenders follow exponential distributions with parameters a, b, and c, respective.
If the net profit condition (4.3) is satisfied, then the Cramér approzimation of the ruin

probability Yo (u) is

Yo(u) = Cre™™ + Cae™"  for all u >0, (4.6)

where Cy,Cy, 11, and ro are as follows

~ Cn - Oy
CI_CD ;CQ_CD )
= > . -
ferg O+ (A+P] . 5
=L bc ac ab |
' R EX) ’
abe
Cetg  (+a (+49)]_ 5
o — 4L bc ac ab |
2 L,0Fptq) ’
abc

which
p_|td (Q+qg (A+p) 2_4(1+p+q) 1 p q
be ac ab abc a b ¢l
Cii=(a—r)ra(bp+cqg—alp+q)?+ (p+ )1 +p+qr2),
Cor=(a—ra)rilbp+cg—alp+q)?+ P+ )1 +p+qr),
and

Cp = (r1—r)a®(p+q)*+ 1A +p+q)?rira—albp+ecqg+ (p+q)(1+p+q)(r1 +r2)].

Proof.
Observe that CDF F and PDF f satisfy dF(u) = f(u)du, as mentioned in Remark 2.2,
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including CDF G, H and PDF g, h, respectively.

Substituting the density functions of X;,Y;, and Z; into (4.4), we have

(L+p+q)Y(u)

= qle ] + ple™"™] + /Ooo Y(u+ x)ae™ " dx + p/ou Y(u—y)be ™™ dy

+q /Ou Y(u— z)ce” “ dz. (4.7)

Differentiating the equation with respect to u, we have

(1+p+ @) (u)

= —qlee™"] — p[be™""] + [—a + pb + qc] ¥ (u)+a? /oo Y(u+z)e “dx
0

pb2/ Y(u—y)e ™ dy — qc2/ P(u—2)e"“dz.
0 0

1
Multiplying the equation by 7 we have

(1+p+q)

D)yt ()
_ 49 —cu —bu —a gc a? > —az g
——g[ce | —ple ]+{T+p+b] w(u)—I—b/O P(u+ x)e x
—pb /Ou Y(u—y)e ™ dy — q—zz /Oull)(u —2)e"“dz. (4.8)

Adding the terms of each side of (4.7) and (4.8), we have

WW(U) +(1+a-E+ 2 v
—q[1-F] e rg[i-7] /0“ blu— soee ds+ [2 4 1] /0°° B+ 2)ae— da.

(4.9)

Differentiating the equation with respect to u, we have

2Dy 4 (144 - L+ 9) 0/ (w)

:—qc{l—g}e_cu—i-{qc{l—g} —a[%#—l}}lﬁ(u)



79
—qc? [1 - g] /Ou Y(u — 2)e” % dz + a® [% + 1] /OOO Y(u+ z)e” * de.

-1
Multiplying the equation by —, we have
a
(1+p+q) ., 1 q¢ gq 1 /
ab Vi) a+a ab+b Vi(w)

=gl {2 =] [ oo )

Adding the terms of left side of (4.9) and (4.10), we have

b a a ab
2

+ {q - %C + % = %%] W (u) (4.11)

I [ [T PR

Differentiating the equation with respect to u, we have

—“+£+”wwm+[@i@—<1+q—*ﬁ]ww>

b a a ab
2
7 AT A Y
+{q At ab]wu)

— g [1 _ g} [1+ ﬂ e + qc [1 - g} [1+ ﬂ W (u)

—qc? [1 - ﬂ [1 i ﬂ /Ouzb(u —2z)e “dz.

1
Multiplying the equation by —, we have
c

A+p+9) m (r+4q) 1 q q "
 abe v (u)—l—[ be _<ac+ac_ab>}¢(u)
a q9 9 qgcy
He-dra-a@lve

— g [1 - g} [1 + g] e 4 g [1 - g} [1 + 2] W(u) (4.12)
—qc [1 - g] [1 + 2} /0u1/1(u —z)e"“dz.
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Adding the terms of each side of (4.11) and (4.12), we have

abce B

_(1 +p+Q)w///(u) + [(p[j;Q) (I;q) . (1;;)10) T/J”(U)
+ ﬁj—lﬁq V' (u) = 0.

(4.13)

The equivalent characteristic equation is

abc be ac  ab b £+ET

_(1+p+q)r3+[(p+Q)_(1+Q) (1+p)}rz+[iﬂ 1 q] -0 (4.14)

Solving the equation, we obtain the three roots as

__(p+Q)_(1+q)_(1+p)'+\/5
bc ac ab
= (ST

abc
erd _Qte (A+D]_ 5
mZ A be ac ab |
2 (+p+a) ’
oy NN 2T

abc

7“3:0,

where

L —4
be ac ab

p_|td (+q 1+p)]? (1+Z;+Q)[1_p_Q]

Therefore, the general solution of ¥ (u) is

’lﬂ(’u) = C1e"" + Coe™" + Cs. (415)

Since

be ac  ab abe

— 1 1 2 a+b)(a+c
_ {(pbcq)_( :cq)Jr( ;rbp)} 4l +a)2§)2; v,

D - {(p+q)_(1+q) (1+p)r_4(l+p+q) [1_p_q]




Then, 71 and 7y are distinct real roots.

Since

(r+q9) (1+9g) (1+p):[1 1H1 p q} p p 9 q

be  ac  ab b ¢

by the Vieta’s theorem in Theorem 2.2 and (4.14), we get

p_1.4
b a ¢
= >0
T T 4ptg)
abc

and

(p+q) (1+q) (1+p)

be ac ab
(1+p+q)
abc

rL+ry = < 0.

81

(4.16)

(4.17)

(4.18)

From (4.17) and the net profit condition (4.3), we can see that r; and ry have the same

sign.
From (4.18) and (4.16), we get

r1 < 0 and ry < 0.

Next, once we know the values of 1 and 71, we will then determine the values of C1,

Cy, and (3 for (4.15) using the initial conditions follow as,

1. lim ¢ (u) =0, since r1,79 < 0 which yields C3 = 0.

U—00

2. Letting v = 0 in (4.7) and using ¢ (u) from (4.15), we get
(14 p+a)(C+Co) =atp+ [ wl)ac " da.
0

Therefore,

p+q=Ch (1+p+Q)+a} + Cy [(1+p+Q)+
rn —a o —a

(4.19)
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3. Letting v = 0 in (4.9) and using ¥ (u) from (4.15), we get

1
M(Cm + Carg) + (1 +q— ae + 9) (C1+Cy)

b b b
B c a Cia Caa
7q[1 5}—'—[5—’—1} |:a—7’1+a—7"2:|.
Therefore,
c
a[1-3]
_o |Atpta ge  ay _[a a
—Cl[ . i+ (1+4q b+b) [b-‘rl}a_rl (4.20)
(1+p+9q) gc | a a a
= TPIY 1rg-LY 124 .
+C2{ b r2+(+q b+b> [b+}a—r2
Solving system of (4.19) and (4.20), we get
C1:~C(£ and 02:@,
D Cp
where
Cu = (a—r)ra(bp+cqg—alp+q)*+(p+q(1+p+qr),
Cn = (a—ra)ri(bp+cg—alp+9)?+ @+ +p+gr),
Cp = (n—=r)a*p+q*+ (1 +p+q)°rir

—afbp +cq+ (p+q)(L+p+q)(r1 +72)]].

To calculate the approximated ruin probability using the Cramér approximation

described in (4.6), we can use the R programming for computation.

4.2.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace
transforms in conjunction with integral equation of ruin probability for the SPST model

(4.1).
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Theorem 4.3. The Laplace transform of ruin probability 1 (u) for risk model (4.1) is

q(1 = h*(s)] + p[1 — g*(s)]

T s(Ttp+aq) —spg(s) —s [(—s) —sq h*(s) (4.21)

P (s)

where f*,g*, and h* are the Laplace transforms of probability density functions for the

amount of premium f, claims size g, and surrender h, respectively.

Proof.
Taking the Laplace transform of (4.4) and formula in Theorem 2.3, we get

rptawe) = af;="2] 45

+p 7(5)g7(s) +q " (s)h"(s).

e AR

Multiplying both sides by s, we have

s(l+p+@)v*(s) = ql=h*(s)|+p[l—g"(s)] +s ¥*(s)f*(-3)
+s p *(s)g™(s) +5 q Y*(s)h"(s).

By the property of cross correlation and the real function f(z), we get

s(l+p+qd*(s) = ql =" () +pll =g"(s)] +5 ¥"(s)f"(—9)
+5 p P (s)g™(s) +5 g ¥ (s)h*(s).

Therefore,

g1 =h"(s)] +p[L—g"(s)]
=s[(l+p+q) —pg'(s) —qh™(s) = f7(=9)]¢7(s).

Thus,

_ q[1 = h*(s)] + p[1 — g*(s)]
s(1+p+q) —spg*(s) —s f*(—s) —sq h*(s)

P (s)
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Remark 4.1. Assume the risk model described in (4.1) where the amount of premium,
claims size, and surrender follow exponential distributions according to (4.5), probability
density functions denoted as f, g, and h, respectively, and with parameters a,b, and c.
If the net profit condition given by (4.3) holds, then the Laplace transform of the ruin

probability ¥ (u) is

acp + abq be(cep +bg) + a(c*p + b*q) + [be(ep + bg) + alep +bg)]s1 .,
Yo(u) = e
—bc + acp + abq (bc — acp — abq)(s1 — s2) (1 +p+q)
—be(ep +bg) — a(c®p + b%q) — [be(ep + bg) + alep +bg)lsz ., (4.22)
(bc — acp — abq)(s1 — s2)(1 +p+q) ’ ’
where
o —cl+p)=b(ltg) +alp+a) - VS
! 21 +p+q) ’
2 —c(14+p) —b(1+q)+alp+q)+VS
? 2(1+p+q) ’
and

S=lc(l+p)+b(1+q)—alp+q)*>—4(1+p+ q)(bc — acp — abq).

Proof. Substituting the Laplace transforms of the density functions density functions of

X;,Y;, and Z; with CDF’s are F, G, and H, respectively, into (4.21), we have

Let R(s) = s?(1+p+q) +s[c(1+p) +b(1+q) —a(p+q)] + (bc — acp — abq) and rearrange

the equation for ¢*(s), we get

(p+q) + slep + bg — a(p + q)] — a(cp + bg)
sR(s)

82
v (s) = . (4.23)
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Let S = [c(1+p) +b(1+q) — a(p + q))* — 4(1 + p + q)(bc — acp — abq) tThen, S > 0.
Factoring R(s), we will obtain that
_ s (p+a) +slep+bg —alp+ )] — alep + bg)

Vi) = G-t pTa) ’ (4.24)

where

o _ —cl+p) —bl+a) +alp+q) — VS
1= 2(1+p+q) ’

—c(1+p)—b(1+q)+alp+q)+VS
2(1+p+q) '

Since S > 0, then s; and s are distinct real roots.

Since

N’ b
c(l+p)+b(1+q)—alp+q) = [ZJFE} (bc—acp—abq)+cp+%+bq+a—cq >0,
(4.25)
by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get
bc — acp — abg
>0 4.26
= 1+p+gqg ( )
and
—le(1 b(1 —

I+p+gq
From (4.26) and the net profit condition (4.3), we can see that s; and sy have the same
sign. From (4.27) and (4.25), we get

s1 < 0and sy < 0.
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Applying partial fraction decomposition to (4.24) with respect to s, we obtain

acp + abg
(—bc + acp + abq)s
be(ep + bq) + a(c?p + b2q) + [be(ep + bq) + alep + bq)]s1
(be — acp — abq)(s1 — s2)(s —s1)(L+p+q)
—be(ep + bg) — a(c?p + b2q) — [be(ep + bq) + alep + bq)]s2
(bc — acp — abg)(s1 — s2)(s — s2)(L +p +q) '

P*(s)

(4.28)

Taking the inverse Laplace transform (4.28) with respect to s, we obtain

V() = acp + abq
z - —bc+ acp + abg
be(ep + bq) + a(cPp +b2q) + [be(ep + bg) + a(ep +bg)ls1 .,
=+ e
(be — acp — abq)(s1 — s2)(1+p+q)
—be(ep + bg) — a(c’p +b%q) — [be(ep + bg) + alep + )]sz .,
(bc — acp — abq)(s1 — s2) (1 +p+q) .

The observation is different from Remark 3.1 in Chapter III, where ¥c(u) = ¢ (u).
However, in this Chapter IV, ¥e(u) # ¥ 2 (u) because the ruin probability formula for
the Cramér approximation (4.6) is expressed as a sum of two exponential terms, whereas
the ruin probability formula for the Laplace transforms (4.22) is expressed as a sum of
three terms, with constant terms that cannot be eliminated. Also, the Laplace transform
(4.22) yields a negative numerical result, as observed in Table 4.1. Therefore, it is not
possible to use the Laplace transform in SPST model.

To calculate the approximated ruin probability using the Laplace transform for
money amounts which follow exponential distributions described in (4.22), we can use
the MATLAB commands “partfrac” and “ilaplace” for computation.

In the case that the money amounts follow gamma distributions, we also use MAT-
LAB to calculate the approximated ruin probability. We use the general Laplace trans-
forms for the ruin probability (4.21) with gamma distributions instead of exponential

distributions.
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4.2.3 The De-Vylder approximation

In this section, we consider the SPST (4.1) where premiums, claim sizes and sur-
renders follow other distributions rather than exponential distributions. The De-Vylder
approximation is used to approximate the risk process by the classical risk model where
the numbers of premiums, claims, and surrenders are exponentially distributed. Specifi-

cally, the model (4.1) is approximated by the following risk model.

N(#) N(t.p)

Ut)y=u+> Xi— > Yi— > Z, (4.29)
=1 =1 =1

where )Z'i, 172-, and Z— have exponential distributions with parameters a, 5, and ¢, respec-
tively. Also, N (t),N (t,p), and N (t,q) are Poisson processes with intensities A, Xﬁ, and

X(Y , respectively.

Since in this risk model the process {U (t)}+>0 is determined by six parameters

A D, g, a, g, and ¢, six equalities are required to determine these parameters. Therefore.

we need to compute the first six moments of U(t) described in [17].

Theorem 4.4. For the risk model (4.1), let Mx(s), My (s), and Mz(s) be the moment
generating functions of the random variables X, Y, and Z, respectively. Then, for any s

in the domain of My, we have

MU(t)(s) = exp {su + t/\(M(s) —1—-p-— q)} ,
M(/](t)( = My (s u—i—t)\M’( ))

M[,]l(t)( = My (s

/_\

(u+tAM'(s +t)\M”(s)>,

M(/J//(t)( = Mys(s

/\

(u+ tAM' (s +t)\M’"(s)+3t)\(u+t)\M’(s))M”(s)>,

M((f()t)( = My (s ( (u+tAM'(s +6t)\M”(s)(u+t)\M’(s))2
+ALAM" (s )(u FEAM(5)) + 3202 [M”(s)]* + t)\M(4)(s)>,

M), (5) = My (s) ((u +EAM(s))” + 10EAM" (s) (u + tAM'(5))°
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F10EAM" () (u + tAM(5))* + SEAM @ (s) (u + tAM(s))
+15202 [M”"(s)]? (u+t)\M’(s)])+10t2)\2M”(s)M”’(s)+t)\M(5)(s)),

M, (5) = My (s) ((u +EAM(s))6 + 15EAM" (s) (u + tAM'(5))"
F20EAM" () (u + tAM(5))* + 15AM@ () (u + tAM'(5))”
FABE2NE (M ()] (u + tAM(s))? + GEAM ) () (u + tAM(s))
+60t2M2 (w + tAM'(s)) M" (s) M () + tAM 6 (s)
F152X2M" () M@ () + 10622 [M"(s)]* + 158373 [M”(s)]? )

where M (s) = Mx(s) + pMy (—s) + ¢Mz(—s).

Proof. By the formula for the moment generating function of S(¢) in Lemma 4.1, we have

My (s) = Ele*+51)]
= exp {su + I\ [(Mx(s) = 1) +p(My(=s) = 1) + g (Mz(—s) — 1)]}

=exp{su+tA\(M(s)—1—p—q)}.
Differentiating with respect to s on both sides of the equation, we have that

(/](t)(s) =exp{su+tA(M(s)=1—p—q)}- (u+tAM'(s))

= MU(t)(S) (u s t)\M/(S)) .
Consequently,

M(/J/(t)(s) = My (s)tAM" (s) + M{J(t)(s) (u+tAM'(s))

= My )(s) ((u + t)\]\fl(s))2 + t/\M”(s)> .

Straightforwardly, we can calculate M, [’]”( " (s), M[(J%)(s), M®) (s) and obtain

Ut (s) and MY

U(t)

the following results.

M[/}/(t) (s) = MU(t)(S) ((u + t)\M’(s))?’ +tAM" (s) + 3t)\(u + tAM’(s))M”(3)> 7
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M0, (5) = My (s) ((u FEAM(5))* + 6EAM (s) (u + tAM'(5))”
FAEAM" (5) (u + XM (5)) + 31202 [M"(s)]* + t/\M(4)(s)> ,
M) (5) = My (s) <(u +EAM(5))° + 10EAM" () (u + EAM(s))°
F10EAM" (5) (u + tAM(5))* + SEAM @ () (u + tAM(5))
+15202 [M” (s)]? (u—i—t/\M’(s)])+10t2/\2M”(s)M”’(s)+t)\M(5)(s)>,
M), (5) = My (s) <(u +EAM(5))6 + 15EIAM" (s) (u + EAM(s)) "
F20EAM" (5) (u + tAM(5))® + 15AM @ (s) (u + tAM'(5))”
45202 [M”(5)]? (u 4+ tAM(s))? + 6tAM ) () (u + tAM' (5))
+60t202 (w + tAM'(s)) M" (s) M () + tAM 6 (s)
+152X2 M (s) MM (s) 4+ 106202 [M" (5)]* + 156303 [M"(s)]? ) . O

For k € {1,2,...,6}, since M[’j(t)(s) is in the form of M¥(s), we can find the

equation for M*(s) for k € {1,2,...,6} from the Remark 4.2.

Remark 4.2. For n € N, the n*? derivative of the function M(s) = e*¢ + pMy (—s) +

qMz(—s) is given by
M) (s) = MP (s) + (=1)"pM I (—5) + (=1)"gM " (—s)

Corollary 4.1. For the risk model (4.1), we assume that X;,Y;, and Z; have finite first

siz moments. Then, for allt > 0, we have

E[U(t)] = u+tA\(E[X] — pE[Y] — qE[Z]),
E[U(t)] = (B[U(1)])* + tA (B[X?] + pE[Y?) + ¢E[27)
E[U3(t)] = (BE[U®)])® + tA (B[X?] — pE[Y?] - ¢B[Z%])
+3AEU )] (BIX?] +pEY?] +qE[Z%)
B[U(t)] = (BE[U 1)) + 6tA (E[X?] + pE[Y?] + ¢E[Z%)) (E[U(1)])°
+ 4tA (B[X?] — pE[Y?] — qE[Z%]) E[U(t)]
+ 3202 (B[X?] + pE[Y?] + qE[2%)”

+ X (BIXY + pE[Y] + ¢E[2Y),



90

E[U°(6)] = (E[U®)])" + 106X (B[X?] + pE[Y?] + ¢E[Z2%]) (E[U(1)])*
+ 106\ (E[X®] = pE[Y®] - ¢B[2%)) (E[U(¢)])?
+5tA (E[XY] + pE[Y*] + qE[Z%]) E[U(¢)]
+ 151222 (B[X?] + pE[Y?] + ¢E[Z%))” E[U(1)]
+10t*°\* (E[X?] + pE[Y?] + qE[Z?)) (E[X?] — pE[Y?®] — qE[Z%))
+ A\ (B[X®] — pE[Y®] — qE[Z7]),
E[US(0)] = (E[U®)" + 15X (EIX?] + pE[Y?] + ¢B[2%) (E[U ()"
+ 206\ (B[X?) — pE[Y®] — qE[Z?]) (E[U (1))’
+ 15tA (E[X"Y] + pE[Y*] + ¢E[ZY)) (E[U()])?
+ 451202 (E[X?] + pE[Y?] + ¢B[27%)” (E[U (t)))?
+ 6tA (E[X°] — pBE[Y®] — qE[Z°]) E[U(t)]
+ 602 \*E[U(t)] (E[X?] + pE[Y?] + qE[Z%]) (E[X?] — pE[Y?] — qE[Z7)])
+tA (E[X®) 4 pE[Y"] + ¢B[Z°))
+ 1562\ (E[X?) + pE[Y?] + ¢E[Z?)) [E[X"] + pE[Y"] + ¢E[Z"]]
+10£20% (E[X?] — pE[Y?] — ¢E[2%)°
+ 15603 (E[X?] + pE[Y?] 4 ¢E[2%)°.

Proof. Since B[U™(1)] = M), (0) and M"(0) = B[X"]+ (—1)"pE[Y "]+ (—1)"qE[2"]

for all n € N, substituting s = 0 into the formulas in Theorem (4.4) yields the desired

results. O

For the risk model (4.29) where )N(i, )71-, and Z have exponential distributions with
~ T - ~ 1 = ~ 1
parameters a, b, and ¢ respectively, let A ==, B = Z, and C' = = so that the mean of
a c
)~(i, }714, and Z are Z, E, and 5, respectively. We will deal with parameters 21: Band C

instead of @, b and ¢ for the sake of simplicity of the final formula.

Theorem 4.5. We can approzimate the process {U(t)}¢>0 in the risk model (4.1) by a
process {ﬁ(t)}tzo in the risk model (4.29) with parameters X, p, ¢, A, B and C by
matching the first siv moments, i.c., E[U(t)*] = E[Ut)*] fork =1,2,...,6. The desired
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parameters X, D, q, E, B and C can be solved from the system of equations:

Y3+ 671§5 + 372 [E + 5}

e L
6A (A+B) (A+c)
- 72+271§—22[2+§]X
q= — 7
20 (C - B) X
5o M~y — \gC
2B ’
and
156 _ 757} + 367274 + 407376 — 3074 [47375 + 7276]
ABC - y JFel
120 [4073 — 1293 (57274 + 1175) + 3 (5717 + 67575) ]
e e o 2 2 1 A 2 _ 2 2
AB+AC-po — 2055 * 35727475 67195 + 5717476 5’732[5%1 +2 Y276) 7
10 [4075 — 1275 (57274 + 1175) + 3 (5177 + 67375) ]
A-B_C - 20937 —15%9] + 6719475 + 69576 — 473 31275 + 717]
8073 — 243 (57274 + 1175) + 6 (5v17; + 67375)
where

7= AE[X]-pE[Y]-qE[Z]],
va = A[E[X?]+pE[Y?] +q¢E 22} ,
v3 = X[E[X?] - pE[Y?3] —qE[Z3]],
v = MEXY+pEYY +qE Z4} ,
v = A[E[X°] - pE[Y®] —qE[Z"]],
v = A[E[X%+pE[YY) +qE[Z5]] .

Proof. Taking the k-th moment of the random variable that are exponentially distributed

into the equation E[U(t)¥] = E[U(t)*], we have the system of equations

v1 = A — \pB — \C, (4.30)
vy = 20A% + 2)\pB? + 2)\GC?, (4.31)

v3 = BAA® — 6APB> — 6AGC3, (4.32)
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vy = 24NA" + 24NpB* + 2470GCH, (4.33)
v5 = 1200A° — 120A\pB° — 1200GC°, (4.34)
Y6 = T20AAS 4+ 720ApBS + 7207GC°, (4.35)

Now our aim is to find the constants X, P, 4, A, B and C from this system. From

(4.30) we have APB = AA — 1 — AGC. Substituting this into (4.31)—(4.35), we get

Ny = —2v1 B + 24 (Z + E) \+2C ((7 - E) G, (4.36)
75 = 63182 +64 (4~ B) (A+B) X+60 (B2 - C*) g, (4:37)
i = 24y B + 244 (Z + E) (/T? ~AB + EQ) X+ 240 (53 - ]§3) 2, (4.38)

5 = 1207, B + 1204 (/T = E) (Z + E) (21'2 T §2> X + 1200 (§4 _ 54) i, (4.39)
6 = —T72071 B° + 7204 (E ¥ E) (K‘* _ BB+ AR AR+ §4) X

+ 7200 (65 - §5) . (4.40)

Next, from (4.36) we have 20 (5’ — E) NG =2 +27B—24 <Z+ é) X. Substituting
this into (4.37)—(4.40), we obtain

3= —61BC -39 (B+C)+64(A+B)(A+C)X, (4.41)

4= 24y BC (E + 5) 11299 (§2 L BC 4+ az)

+24Z(Z+§) (gfg;g) <ﬁ+5)X (4.42)

9= —1201BC (B2 + BC + C2) — 60 (B + C) (B + C?)

+1204 (K + E) <Z+ 5) (22 _AB+ B _ AC+BC+ 52) X (449)
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6 = T20mBC (E + 5) (§2 + 52) + 36072 (E“ + B3C + B2C? + BC® + 54)
+7204 (Z+ E) (Z+ 5) KZ? + B2+ 52> <Z— B- 5) + /Téé} X
(4.44)

Next, from (4.41) we have 64 <Z—|— E) (A—i— CN') A= v3 + 671 BC + 372 (E + 5) Sub-

stituting this into (4.42)—(4.44), we obtain

1= 2nABC+12y, (AB+AC - BO) +4y5 (A-B-C), (4.45)

5= 1201 ABC (K ~-B- 5) + 6072 (ﬁ— E) (K —~ 5) (E - 5*)

_ o RIS (4.46)
1203 <A2 _AB+B?-AC+BC + 02),

6= 7207 ABC (ZQ _AB+B>-AC+BC + 52)
+36072 [ﬁ3§ — A’B? + AB® + A3C — 2A?BC + 2AB*C — B3C — A2C?
+2ABC? - B*C? + AC® — ECN‘?’}
+12073 [23 —~ A’B + AB? - B3 - AC + ABC — B*C + AC? — BC? - (73} :
(4.47)
Multiplying (4.45) by —5 (K -B- 5) and adding (4.46), we get
s = 6079 ABC + 203 (ZE 1 AC - éé) + 54 (Z _B- 5) . (4.48)

Multiplying (4.45) by —30 (ZQ —AB+ B?2— AC + BC + 5'2) and adding (4.47), we get

N6 = 36072 ABC (E _B- 5) + 1207 (K - ’B) (Z - (7) (E n 6)

ST e (4.49)
+30fy4(AZ—AB+BQ—AC+BC+CQ).

Multiplying (4.48) by —6 (Z - B- 6) and adding (4.49), we get

76 = 1209 ABC + 303 (AB + AC - BC) + 635 (A~ B~ C). (4.50)
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Hence, we get the desired system of equations. O

Theorem 4.6. The De-Vylder approximation

For the risk model (4.1) under a assumptions that X;,Y;, and Z; have finite siz moments
and that the net profit condition (4.3) hold, the De-Vylder approzimation of ruin probability
Ype(u) is given by

Ype(u) = Cre™™ + Cae™"  for all u >0, (4.51)

where

A=-[F+9BC - (1+PAC - (1+5)AB),
B=-2(1+7+QABC,

D:[@+®§5—u+®ﬁé~ﬂ+ﬁﬂﬁrf4u+ﬁ+®1&§E—ﬁéfﬁi

—Cn O
CI*CD7CQ*CD;
which
1 p.d 0+9* - - )
C = —_ —T T =4+ = - —~ + + 1+ + T s
11 (A 1>2<B G A2 (P +q)( p+qr
1 p 4 @+9* | - ~ )
C = —_ — T T T‘i‘?_ =~ + + ]-+ _'_ T 5
21 <A 2)1(3 c i (P @( p @1
Cpb

- [ B s i -+ (24 Lo Grpu i)

and the constants X, D, q, Z, B and C are obtained from solving the system of equations

stated in Theorem 4.5 which have the following values:
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34 6mBC + 3y [E n 5}

GG R (Ard)

 wronBo2i[A+ B3

- 20 (C-B)x
SV R,
="z

and Z, B and C are obtained from solving the system of equations

ABC = 7575 + 367272 + 407376 — 3074 [4v375 + Y276
120 [4073 — 1295 (59271 + 717%5) + 3 (57173 + 64375)]

= am mA 209375 4 15727475 — 67175 + 5v1vavs — 57 [57: + 272%6)
AB+AC-BC = - 1o
10 [4075 — 1293 (57274 + 1175) + 3 (51177 + 61375) |

TA-B_0 - 20937 —15%9% + 6719475 + 69576 — 473 31295 + 71]
8075 — 2473 (57272 +1175) + 6 (57177 + 67375) ’

where
7 = AE[X]-pE[Y] - qE[Z]],
2 = AEX?+pE[Y? +qE[Z7],
v = MNEXY=pEY?] - qE[Z%],
v = MEXY +pEYY+qE[ZY],
% = ME[X®] - pE[Y®] - ¢E[Z%],
% = A|EX]+pE[Y] +qE[Z°].

To calculate the approximated ruin probability using the De-Vylder approximation

described in (4.51), we can use the MATLAB commands “solve” for computation.

4.3 Lundberg’s inequality

In this section, we will study the martingale and stopping time. This will allow us
to find the adjustment coefficient equation, Lundberg’s inequality for the ruin probability,

which it can be used to create as Lemma, Theorem and Corollary.
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Theorem 4.7. For the profits process {S(t);t > 0},
Ele W] = eto(), (4.52)
where
g(r) = =A[L = Mx(=7)] = Ap[1 = My (r)] = Aq[1 — Mz(r)]. (4.53)

Proof. Since X;,Y;, Z;, N(t), N(t,p) and N(t,q) are mutually independent,

N(#) N(t,p) N(t.q)

Ele0] = E |exp{—r) Xi}-exp{r Y Y} -exp{r ) Z}
i1 i=1 =t

N(t) N(tp) N(t.q)
= FE cxp{—rZXi} - E |exp{r Z Yit| - E |exp{r Z Zi}
i=1 i=1 i=1

By definition of MGF in Definition 2.24 and Theorem 2.22, we get

EleW] = Myww x (=) - My y, () - My 4 (r)

— e AM[L=Mx(=r)] o= Apt[1—My (r)] ;= Aqt[1— Mz (r)]

= exp{t (Al = Mx(=r)] = Ap[L— My (r)]) = Aq[1 — Mz(r)]}.

Therefore,

E[efrs(t)] — eta(r)

)

where

9(r) = =A[1 = Mx(=r)] = Ap[1 = My (r)] = Aq[L — Mz(r)].

Then, we obtain (4.52).

Theorem 4.8. Equation

g(r)=0 (4.54)
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has a unique positive solution r = R > 0, we can call (3.63) is said to be an adjustment

coefficient equation of the risk model (3.5), with R > 0 is said to be an adjustment

coefficient.

Proof. We will show that the adjustment coefficient equation has the unique positive

solution, by proving the following properties of g(r).

(1) g(0) =0,

(2) ¢'(0) <0, al

(3) ¢"(r) > 0 for all r > 0, - ° |

- o 9(0)=0
. 2 ‘\ §'(0)<0
(4) rggloog(r) = 0 . 9"()>0 :
s 4 , : ‘
0.00 0.05 0.10 015

From the definition of MGF in Definition 2.24, Mx(0) = 1, My (0) = 1, and Mz(0) =1,

we get

(1) From (4.53), then ¢(0) = 0.

(2) From (4.53), then

gr)= “AE[X;e7™8] + \pE[Yie™] + A\qE[Z;e"%]. (4.55)

Hence,

g'(0) = =AE[X;] + A\pE[Yi] + \¢E[Z;].
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From net profit condition (4.3), we get

g'(0) = —AE[X]+ ApE[Yi] + M\E[Z;],
< —AE[Xi]+ Aux = 0.

Therefore, ¢’(0) < 0.

(3) Let » > 0. Due to the explanation of ¢'(r) in (4.55), we have that

g'(r) = XE[XPe "X+ NpE[Y2e™ ] + ME[Z]e ).

Since X;,Y;, Z; are non-negative random variables and r > 0,
E[X2eX] > 0, E[Y2e™] > 0 and E[Z2¢"%] > 0.
Hence,

g'(r) = ME[XZ%e7"X] + \pE[Y2eY]| + M\E[Z%e"4] > 0.

Therefore,

g"(r)>0 forall r>0.

(4) Since (4.53) and the definition of MGF in Definition 2.24,

Jm g(r) = — lim A[1 - My(=r)] = lim Ap[l - My(r)
—TEI_POO)\q [1— Mgz(r)].

Since TEIEOOMX(fT) =0, TETOOMY(T) = 00, and TEIJPOOMZ(T) = 00,

rginoog(r) -

To determine the value of R based in the theory, it can be obtained as the unique

positive solution of g(r) = 0, as indicated in Theorem 4.8. The function g(r) is determined
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by (4.53). In practical applications, we will use the R command “uniroot” to compute

the value of adjustment coefficient R.

For the profits process {S(t); t > 0}, let F}° = 0{S(v); v <t} be a filtration.

Theorem 4.9. The random process {H,(t); F; t > 0} is a martingale,

e—r(u+S(1)

where H,(t) = o)

Proof. Let v < t, we will show that E[H,(t) | FS] = H,(v).

Consider
[ o—r(u+S(t))
S1_ NS/ 74 S
E[Hu(t) \ Fv] =E etg(,«) Fv
[o—r(t+S®#)  o=rS(v)+rS(v) S
AT e | v
/A _e—T(UJrS(v)) e T(S(t)—5(v)) 7S
evy(r) e(t=v)g(r) v
er@S@) .
L ; ) —r(S(t)—S(v)) S
o o oy C | Bl
Consider
N(t) N(t,p) N(t,q)
St -Sw) = Y Xi— Y Y- Yz
i=N(v)+1 i=N(v,p)+1 i=N(v,q)+1

Since X;,Y;, Z; are i.i.d. and N(t) is stationary increment, we get

g NO-NE@) N(t,p)—N(v,p) N(t.q)—N(v,q)
S(t) — S(v) E X — E Y, — E Z
i=1 i=1 i=1
g NE) N(t—v,p) N(t—v,q)

Therefore, (4.56) is become

E[Hu(t”Ff] =

Y x- Y v Y 4
=1 i=1 i=1

S(t—v).

o~ r(utS)) 1

. Bl r(S(t—)) | S
Si—oe Ll 5]

evg(T)

(4.56)
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Since S(t —v) and F¥ are mutually independent and Theorem 2.18,

—r(ut5(v)) 1
s _ € ) . Ble—T(S(t—v))
BlHLOIF] oty eewam Pl I
From Theorem 4.7, we get
—r(u+S(v)) 1
s _ € ) . et=v)g(r)
EHOF] = — 00— cimoem ¢ )
= Hy(v).
Therefore,
E[H,OIF)] = Hu(v),
i.e., the random process H,(t) is a martingale. O

Lemma 4.2. The ruin time T is the stopping time of Fts.

Proof. Let T be the ruin time where U(T) < 0 and F° = o{S(v); v < t}.

From (4.1) and Lemma 4.1, then

Ut) = u+S().

Since F° or o — algebra generated by random process S(v) from time 0 to ¢ occurs, it
gives information S(t) from time 0 to ¢. Hence, event {T < ¢} is a member of F°.
Therefore,

T is the stopping time of Fts.
O

Theorem 4.10. For the surplus process {U(t);t > 0}, the ruin probability ¥ (u) satisfies

Lundberg inequality:

Y(u) <e v u>0, (4.57)

where R is adjustment coefficient.
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Proof. Let T be the ruin time, ¢y > 0 be a fixed time and tg AT = min(tg,T), then tg AT
is a stopping time.
Therefore, tg AT is a bounded stopping time.

o~ (utS(1))

From, H,(t) = and Lemma 4.1, then

etg(r)

By Theorem 2.24 ( The Martingale Stopping Time Theorem ), we have that

E[H,(0)] = E[H,(T Ntg)]-

Therefore,
e”™ = E[Hy(T A tp)].
Since
T, if T <t
T ANty = min(T, to) = ,
to, if T > to,
E[H,(T ANty)] = E[Hu(T Ato) - [Ir<t, + Lrst,]]

= E[HU(T N to) . ]lTSto] e E[HU(T N to) . ]1T>t0]
= E[H(D)|T <to]- P(T < to) + E[Hy(to)|T > to] - P(T > to).

Let r = R. Therefore,
e = Ble BUM|T < 4] - P(T < to) + Ele BV T > 1] - P(T > t9).  (4.58)

By the fact that 0 < E[e”BU()|T > 3] < 1 and Theorem 2.20 (Markov’s inequality ),
we obtain

lim [E[e—RU<tv>|T > to] - P(T > to)] —0.

to—00
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From (4.58), we get that

lim e~Ru = mlppﬂmegmyngm+Ew%WWT>m.mT>m}

to—00 to—00

— lim [E[e—RU<T>|T <to] - P(T < to)} + Tim [E[e‘RU(t°)|T > to] - P(T > to)}

to—00 0—00
:tmnp@%megmyngmﬁ
0—>00
Then,
e~ — EleBUMIT < o] - P(T < o)
= Bl RUOT < 00] - ().
Therefore,
e—Ru
. v . 4.
W) = g (4.59
i h h .
Since U(T') < 0, we have that —RUT) < 1.
From (4.59), we have that
e~ Ru e~ Ru R
vlw) EleBUD) | T <oo] ~ E[1]|T < ] ¢
Therefore,
Y(u) < e i,
O

4.4 Experimental simulations

In this section, we perform numerical studies to investigate performance of the an-
alytical approximation of the risk model with surrender under the thinning dependence.
The studies are divided into three parts. The first part discussed in Section 4.4.1 intro-
duces the statistical estimation for the ruin probability &t(u) by using the Monte Carlo
methods. The second part in Section 4.4.2 studies numerical approximation to the ruin
probability when the amounts of premiums, claims, and surrenders follows an exponential
distribution by using the analytical solution such as the Cramér approximation and the

Laplace transform comparing with the Monte Carlo approximation and the Lundberg’s
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Upper bound. The third part focuses on the numerical approximation to the ruin proba-
bility when the amounts of premiums, claims, and surrenders follows gamma distribution
by using the De-Vylder approximation and the Laplace transform comparing with the

Monte Carlo approximation and the Lundberg’s Upper bound.

4.4.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability @Z]t(u) derived
by the direct simulation of the surplus process using the Monte Carlo methods in order
to evaluate the result of the approximations suggested in this chapter.

Let N be the total number of realizations of the process U(t). We can calculate the
average value of the process U(t) when each ruin occurs at the time point ¢, consequently,
we obtain the corresponding statistical estimate zﬁt(u) for the ruin probability ¥ (u). The

Monte Carlo estimations is obtained as

N

A 1

o) = 5 2 Twaw<ow o=
i=1

where t is a fixed time point and N is the sample size. As N — oo and t — oo, by
the law of large numbers, v (u) converges to ¢ (u). The time points considered here are
t =1,5,50, and 100, and the sample size of the Monte Carlo method is N = 200,000. The
parameters of the model studied in this section are as follows. The initial capital u varies in
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2, 3,5}. The
parameter of the Poisson counting process of premium is A = 10. The thinning parameters

of claims and surrenders are 0.4 and 0.3, respectively.

4.4.2 Exponential distributions for the premium, claim sizes and sur-

render

Let the probability density functions of the amounts of premiums X;, the amounts

of claims Y;, and the amounts of surrenders Z; are

flz)=ae™®, g(y)=be™ and h(z)=ce™* ,z,y,22>0,
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where @ = 5,b = 4 and ¢ = 6, respectively.

For the Cramer approximation in, substituting a =5, b=4, c=6, p =0.4, and ¢ = 0.3
into the formula of r1 and ry in (4.6), we get r1 = —5.271671 and ro = —0.669505,
respectively. Consequently, C; = 0.005614 and Co = 0.847327. Therefore, the Cramér

approximation ¢c(u) is

Yo (u) = 0.005614e 2271671 1 ().847327¢0-669505w £ ] 44 > 0. (4.60)

For the Laplace approximation, substituting a =5, b =4, ¢ =6, p = 0.4, and ¢ = 0.3 into
the formula in (4.51), we get S = 61.21. Consequently, s1 = —5.271671, s; = —0.669505.
Therefore, the Laplace approximation ¢ ¢ is Consequently, the Laplace approximation

”Lﬂg is

Vo (u) = 0.022457¢5-271671u 4 3 389308~ 0-609505w _ 3.0 for all u > 0.  (4.61)

For the upper bound approximation, substituting a = 5, b = 4, ¢ = 6, p = 0.4, and
g = 0.3 into g(r) in Theorem 4.7 and solve for the unique positive solution g(r) = 0 by
using the R programming to compute the value of R, we have R = 0.669505. Then, from

Theorem 4.10, the upper bound of the ruin probability is

w(u) < 6A0.669505u. (4.62)
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Figure 4.1: Graph of initial reserve u and the ruin probability of the SPST risk model
with exponential distributions.

From Table 4.1, we can see that the approximates of ruin probability of all methods
decrease when the initial capital increases, except for the Laplace transforms. Notice that
the Monte Carlo approximations ﬁt(u) do not have the same value as our approxima-
tions. Besides, we can observe that the ruin probability ﬂt(u) increases as t increases,
the Monte Carlo approximation converges to our approximations, and it is less than the
upper bound. Therefore, the Monte Carlo approximation is consider to be a good op-
tion. However, in practical situations, the exact value of the ruin probability is unknown;
therefore, it is impossible to determine how high the value of ¢ should be in order to make
z[)t(u) close to the exact value of the ruin probability as one desires. Consequently, the
Cramér approximations are better than the Monte Carlo approximation regarding real
usage.

Also, we can see that the Cramér approximates of the ruin probability ¥ (u) have
values between the Monte Carlo approximation of ruin probability Q/A)t(u) and the Lund-
berg upper bound which is reasonable, since the Cramér and the Laplace approximations
are a type of infinite-time ruin probabilities which should be higher than any of finite-time
ruin probability ’([Jt (u) and should not exceed the upper bound. In contrast, the Laplace
approximate 1 ¢ (u) are negative for high values of initial capitals which shows bad perfor-

mance of the Laplace approximation in this case. Therefore, we investigate the reason of
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such phenomenon mathematically and found that ulin;o vo(u) = — bca—ci—patpajbi—qabq .
Thus, based on the previous reason, it is not possible to use the Laplace transform of
the ruin probability where the money amounts follow exponential distributions in SPST
model.

The Monte Carlo simulation will be very good, if we can increase the value of ¢.
However, it will take long computation time to do so. Therefore, a possible way to im-
prove the Monte Carlo simulation performance is to increase the time points of interest
and reduce the number of realizations of U(¢) instead. Furthermore, we have attempted
to change the type of transformation from the Laplace transform, into the Fourier trans-
form. This may help us fix the problem that the approximated ruin probabilities of
the Laplace transform are negative because the Fourier transform deals with integrals
of complex functions. We can do this by replacing the variable s in the formula of the
approximated ruin probability of the Laplace transform by is where 4 is the imaginary

number. Unfortunately, the numerical results obtained from this transformed formula for

the ruin probability of Fourier transforms still yield negative values.

4.4.3 Gamma distributions for the premium, claim sizes and surrender

In this section, we study numerical approximations such the premium, claim sizes
and surrender follow gamma distributions. Specifically, letthe probability density func-

tions of the premium X, the claim sizes Y; and the surrender Z; are

_ Bxe Px(Bxa)x !

_ Bre P (Byy) !
f(l‘) < F(OZX) )

o) = o and

_ Bze P (Bz2) !
h(Z) - F(OZZ) 9

for x,y,z > 0, where Sx =5,ax = 1,08y =8,ay = 2,8z = 12, az = 2, respectively.

For the De-Vylder approximation, substituting fx = 5,ax = 1,8y = 8,ay = 2,08z =
12,z = 2, p = 04, and ¢ = 0.3 into the formula of r and 7o in (4.51), we get r1 =
—15.675242 and ro = —0.793073, respectively. Consequently, C7 = —0.019467 and Co =
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0.874847. Therefore, the De-Vylder approximation tp.(u) is

VYpe(u) = —0.019467¢15-675242u 1 () 8748470930724 £op ] 44 > 0. (4.63)

For the Laplace approximation, substituting Sx = b,ax = 1,8y = 8,ay = 2,87 =
12,az = 2, p = 0.4, and ¢ = 0.3 into the formula of ¢)*(s) in (4.21), then taking the
inverse Laplace transform in ¢*(s) by using the MATLAB for computation. Therefore,

the Laplace approximation 1 ¢ is

wg(u) =30+ 3_498836670.79428611 . 0.0921096717.94300871
+(0.002519 — 0.0106717) (9601941 -1.7025061)u

+(0.002519 4 0.0106714)e(~-601941+1.7025060)u gy 411 4, > 0.

Since z1e*" + z7e”" = 2Re(z1e*%), for all u > 0

Yy (u) =—3.0 + 3.498836¢ 70-791286u _ () 092109~ 17-943008u (4.64)

40.005038¢ 9001941 56(1.702506) — 0.021254¢2-601941ugin (1.702506)

For the upper bound approximation, substituting Sx = 5,ax = 1,8y =8, ay = 2,87 =
12,z = 2, p = 0.4, and ¢ = 0.3 into ¢g(r) in Theorem 4.7 and solve for the unique
positive solution g(r) = 0 by using the R programming to compute the value of R, we
have R = 0.794286. Then, from Theorem 4.10, the upper bound of the ruin probability

is

w(u) < 6—0.79428671. (4.65)
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Figure 4.2: Graph of initial reserve u and the ruin probability of the SPST risk model
with gamma distributions.

From Table 4.2, we can see that the approximates of ruin probability of all methods
decrease when the initial capital increases, except for the Laplace transforms. Notice that
the Monte Carlo approximations zZAJt(u) do not have the same value as our approxima-
tions. Besides, we can observe that the ruin probability @t(u) increases as t increases,
the Monte Carlo approximation converges to our approximations, and it is less than the
upper bound. Therefore, the Monte Carlo approximation is consider to be a good op-
tion. However, in practical situations, the exact value of the ruin probability is unknown;
therefore, it is impossible to determine how high the value of ¢ should be in order to make
@t(u) close to the exact value of the ruin probability as one desires. Consequently, the
De-Vyder approximations are better than the Monte Carlo approximation regarding real
usage.

Also, we can see that the De-Vyder approximates of the ruin probability ¢ p.(u)
have values between the Monte Carlo approximation of ruin probability zﬁt(u) and the
Lundberg upper bound which is reasonable, since the De-Vyder and the Laplace ap-
proximations are a type of infinite-time ruin probabilities which should be higher than
any of finite-time ruin probability 1/Ajt(u) and should not exceed the upper bound. In

contrast, the Laplace approximate 1« (u) are negative for high values of initial capitals
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which shows bad performance of the Laplace approximation in this case. Therefore, we
investigate the reason of such phenomenon mathematically and from (4.64) found that
uhﬂngo Yo(u) = =3 < 0. Thus, based on the previous reason, it is not possible to use
the Laplace transform of the ruin probability where the money amounts follow gamma
distributions in SPST model.

The Monte Carlo simulation will be very good, if we can increase the value of t.
However, it will take long computation time to do so. Therefore, a possible way to im-
prove the Monte Carlo simulation performance is to increase the time points of interest
and reduce the number of realizations of U(t) instead. Furthermore, we have attempted
to change the type of transformation from the Laplace transform, into the Fourier trans-
form. This may help us fix the problem that the approximated ruin probabilities of
the Laplace transform are negative because the Fourier transform deals with integrals
of complex functions. We can do this by replacing the variable s in the formula of the
approximated ruin probability of the Laplace transform by ¢s where ¢ is the imaginary
number. Unfortunately, the numerical results obtained from this transformed formula for

the ruin probability of Fourier transforms still yield negative values.
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The numerical approximations obtained in (4.60)—(4.62) for different values of
the initial capital v is given in Table 4.1.

(u)
Statistical estimate v (u)
" dolw) | wolu) | VPP RN
t=1 t=95 t =50 t =100
0 ] 0.334325 | 0.490920 | 0.535130 | 0.535215 | 0.852941 | 0.411765 1.000000
0.1 | 0.303330 | 0.462225 | 0.508595 | 0.508705 | 0.795769 | 0.183077 0.935241
0.2 1 0.273110 | 0.433905 | 0.482160 | 0.482265 | 0.743093 | -0.027627 0.874677
0.3 | 0.245010 | 0.406690 | 0.456810 | 0.456920 | 0.694297 | -0.222813 0.818034
0.4 | 0.219055 | 0.380455 | 0.432245 | 0.432365 | 0.648937 | -0.404253 0.765059
0.5 1 0.195000 | 0.354790 | 0.407845 | 0.407965 | 0.606678 | -0.573290 0.715515
0.6 | 0.172885 | 0.330065 | 0.384190 | 0.384315 | 0.567251 | -0.730995 0.669179
0.7 | 0.153085 | 0.307350 | 0.362150 | 0.362255 | 0.530435 | -0.878260 0.625844
0.8 | 0.134950 | 0.285445 | 0.340895 | 0.341005 | 0.496036 | -1.015854 0.585316
0.9 | 0.117805 | 0.264290 | 0.320260 | 0.320360 | 0.463885 | -1.144459 0.547411
1 10.102915 | 0.245045 | 0.301360 | 0.301485 | 0.433828 | -1.264688 0.511962
1.1 | 0.089255 | 0.226045 | 0.282665 | 0.282780 | 0.405724 | -1.377104 0.478808
1.2 1 0.077220 | 0.208870 | 0.265405 | 0.265520 | 0.379444 | -1.482224 0.447801
1.3 1 0.066320 | 0.191790 | 0.248300 | 0.248435 | 0.354868 | -1.580527 0.418802
1.4 1 0.056875 | 0.176660 | 0.232910 | 0.233065 | 0.331885 | -1.672458 0.391681
1.5 1 0.048515 | 0.161845 | 0.217595 | 0.217750 | 0.310392 | -1.758433 0.366316
1.6 | 0.041245 | 0.148255 | 0.203490 | 0.203635 | 0.290291 | -1.838838 0.342594
1.7 1 0.035180 | 0.135870 | 0.190560 | 0.190710 | 0.271491 | -1.914034 0.320408
1.8 ] 0.029710 | 0.124460 | 0.178585 | 0.178730 | 0.253910 | -1.984361 0.299659
1.9 1 0.025200 | 0.113740 | 0.167040 | 0.167180 | 0.237467 | -2.050133 0.280254
2 1 0.021080 | 0.104095 | 0.156500 | 0.156640 | 0.222089 | -2.111645 0.262105
3 |1 0.002980 | 0.040245 | 0.080515 | 0.080635 | 0.113701 | -2.545197 0.134188
5 | 0.000020 | 0.004710 | 0.021420 | 0.021495 | 0.029802 | -2.880794 0.035171

Table 4.1: Numerical approximations of the SPST risk model with exponential distri-
butions.




111

The numerical approximations obtained in (4.63)—(4.65) for different values of
the initial capital v is given in Table 4.2.

(u)
Statistical estimate v (u)
! Uoew) | wle) | VPPN
t=1 t=95 t =50 t =100
0 ] 0.333420 | 0.481655 | 0.519530 | 0.519545 | 0.855380 | 0.411765 1.000000
0.1 | 0.300120 | 0.450950 | 0.490465 | 0.490480 | 0.804085 | 0.216882 0.923644
0.2 | 0.268845 | 0.420695 | 0.462025 | 0.462040 | 0.745682 | -0.017974 0.853118
0.3 | 0.239060 | 0.391785 | 0.434355 | 0.434370 | 0.689434 | -0.243758 0.787977
0.4 | 0.211670 | 0.364330 | 0.40810 | 0.408120 | 0.636995 | -0.453785 0.727811
0.5 ] 0.186045 | 0.337270 | 0.381990 | 0.382030 | 0.588454 | -0.648067 0.672238
0.6 | 0.161895 | 0.310735 | 0.356555 | 0.356595 | 0.543594 | -0.827594 0.620908
0.7 | 0.140015 | 0.286120 | 0.332745 | 0.332785 | 0.502149 | -0.993446 0.573498
0.8 | 0.120315 | 0.262140 | 0.309550 | 0.309575 | 0.463864 | -1.146647 0.529708
0.9 | 0.102590 | 0.239515 | 0.287405 | 0.287430 | 0.428497 | -1.288157 0.489262
1 | 0.086860 | 0.218145 | 0.266150 | 0.266185 | 0.395827 | -1.418865 0.451904
1.1 1 0.073535 | 0.198885 | 0.246975 | 0.247025 | 0.365647 | -1.539593 0.417398
1.2 1 0.061370 | 0.180590 | 0.22860 | 0.228640 | 0.337769 | -1.651104 0.385527
1.3 1 0.051570 | 0.164055 | 0.211925 | 0.211975 | 0.312016 | -1.754100 0.35609
1.4 1 0.043235 | 0.148725 | 0.196285 | 0.196320 | 0.288227 | -1.849232 0.328900
1.5 ] 0.035735 | 0.134470 | 0.181335 | 0.181370 | 0.266251 | -1.937100 0.303787
1.6 | 0.029305 | 0.121365 | 0.167415 | 0.167445 | 0.245951 | -2.018259 0.280591
1.7 1 0.023600 | 0.109420 | 0.154635 | 0.154665 | 0.227199 | -2.093221 0.259166
1.8 | 0.019015 | 0.098505 | 0.142770 | 0.142800 | 0.209876 | -2.162459 0.239377
1.9 1 0.015210 | 0.088795 | 0.131935 | 0.131975 | 0.193874 | -2.226410 0.221099
2 1 0.012295 | 0.079505 | 0.121715 | 0.121755 | 0.179093 | -2.285478 0.204217
3 | 0.001080 | 0.026025 | 0.054895 | 0.054945 | 0.081031 | -2.677105 0.092286
5 | 0.000005 | 0.002120 | 0.011390 | 0.011420 | 0.016588 | -2.934059 0.018846

Table 4.2: Numerical approximations of the SPST risk model with gamma distribu-

tions.




CHAPTER V

RENEWAL RISK MODEL WITH CONSTANT

PREMIUMS AND SURRENDERS

In this chapter, we study numerical approximations of renewal risk model with
constant premiums and surrenders when the arrival times of premiums, claims, and sur-
renders follow generalized exponential distributions. We first introduce the risk model.
Then, we derive formula for different approximation method of the ruin probability which
are the Cramér approximation and the Laplace transforms method. Moreover, we per-
form numerical studies to investigate performance of the two methods and compare them
with the Monte Carlo approximation.

The organization of this chapter is as follows. Section 5.1 studies some properties
of the renewal risk model with constant premiums and surrenders. Section 5.2 derives
the analytical approximation of the ruin probability. Section 5.3 performs experimental

simulations.

5.1 The renewal risk model with constant premiums and surrenders

In this section, the generalized exponential distribution has been introduced in [16].
A random variable X has the generalized exponential distribution with parameters n and
A, if it has distribution function F(z) = (1 — e **)7 for > 0,A > 0,1 > 0, with
corresponding density function f(z) = npA(1 — e )" 1e™** for 2 > 0, A > 0,7 > 0.

We introduce the renewal risk model with constant premiums and surrenders. The
risk model consists of the initial capital, premiums, claims, and surrenders. In particular,

the surplus at time ¢, U(¢), is defined as

N(t) K(t)
Uty =u+cM(t) = > Yi=> 7, (5.1)
i=1 =1
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where u represents the initial capital, ¢ is the constant rate of premium, M (¢) denoting
the number of premiums up to time ¢t where the inter-premium times follow generalized
exponential distribution with shape parameter 71 = 2 and scale parameter A;. N(t) de-
noting the number of claims up to time ¢ where the inter-claim times follow generalized
exponential distribution with parameter n; = 2 and Xp. The individual claim size {¥;}22,
is a sequence of i.i.d. non-negative random variables with a cumulative distribution func-
tion G. K(t) denoting the number of surrenders up to time ¢ where the inter-surrender
times follow generalized exponential distribution with parameter n3 = 2 and Az. The se-
quence of i.i.d. non-negative random variables {Z;}3°, represents the amount of the i-th
payment of insurance policy with a cumulative distribution function H. In addition, we
suppose that {Y;}5°,, {Z;}5°,, {M(t)}e=0, {NV(t) }e>0, and {K(t)}+>0 are also mutually

independent.

5.2 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for the
renewal risk model with constant premiums and surrenders. We will start by obtaining
the integral equation for the ruin probability. Then we obtain an approximation of the
ruin probability using the Cramér approximation, and the Laplace transforms method. To
obtain the three approximations, we first obtain the integro-differential equations stated
in Theorem 5.2 below.

Define the sequence of i.i.d. random variables {I;}°, represents the inter-arrival
times of i*" premium. The sequence of i.i.d. random variables {J;i}$2, represents the inter-
arrival times of 4" claim. The sequence of i.i.d. random variables {K;}2, represents the
inter-arrival times of ¢*" surrender. In particular, the probability density functions of I,

J;, and K; are

flz) =200 - e‘AlI)e_)‘ﬂ, 9(y) = 2Xx2(1 — e‘>‘2y)43_’\2747 and

h(z) = 2X3(1 — e_ABZ)e_)‘SZ,

for x,y,z > 0, respectively.
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Theorem 5.1. The random variable Ty = min(ly, Ji, K1) has the probability density

function defined as

ﬁ%@:gaﬁ@ﬁhﬂﬁangqubwfn@&wf1nl
+ (2eMT — 1) — 1)(2e™% — 1))y (5.2)

+@&ﬂ—n@&ﬂ—1mﬂf—nky

where 11, J1, and K1 are the interarrival times of first premium, first claim, and first

surrender, respectively.

Proof. Let Ty = min(I4, J1, K7).

Since the interarrival time I3, Ji, and Kj are mutually independent,

P[Ty > z] = P[I; >z and J; > x and K; > z]
= P[Il >/ x] P[Jl > x] P[Kl > l’]
— (26—/\1$ 5 a 6—2/\1x)(26—)\2x S 6—2)\290)(26—)\31: o 6—2)\31:)

= ¢ 2FhetX) (9 _ 1) (26207 — 1)(2eM7 — 1).

Therefore
P[Ty < 2] = 1 — et (2ehm — 1)(2627 — 1)(2eM7 — 1).

Thus, the density of T is

() = - PITy < a]

— 92 (iHAatAs) [(em‘ C1)(26F — 1)(2eMF — 1)\
+ (2eM7 — 1) —1)(2e™% — 1))y

+@aﬂ—n@&ﬂ—1mﬁf—n&]
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Lemma 5.1. The probability that the random variable Ty = min(Iy, J1, K1) is equal to

each of its components is

P[Tl :Il] =1, P[T1 :Jl] = Qg , andP[T1 :K1] = Qas,

respectively, where

\ [ 7 4 4 8
« = — — J—
! 1_/\1+)\2+)\3 2X0 + A3+ A\ A+ 2X3 + Ao )\2_+)\3—|-2)\1
2 4 4
3 VII) VR VLS VS Wris s WL W s v vl
\ 7 4 4 8
Qo = — — —
2 2 A1+ A2+ A3 2M1 + A3+ Ao A+ 2X3 + Ao )\1_+)\3+2)\2
2 4 4
4;2)\1-1-2)\3—1—)\2 S 2A1 + A3+ 2\ + A1 +2>\3+2)\2_ ’
\ 7 4 4 8
= - — " _
’ ’ A+ A2+ A3 220+ A3+ A2 A 22X+ A3 AL+ A+ 2)3
2 4

4

+2/\1 + 2A9 + A3 /)

and

ap +as +ag =1.

PTOOf. Let T1 = min([l,Jl,Kl). Then

PITy = I]
/ Plh=zJ >2, K >x)dx
0

/OOO P(Iy =x)P(J; > z)P(Ky > z)dx

/ 2N (1 — e MT)em T (7o
0
7 4

21 + Ao + 2)3 +

A1+ 2A3 + 22 |

4

Y — _
1[A1+)\2+>\3 200+ A3+ A Az +2Ag + Ay
8 2 4

— + +
Ao + )\344- 21 2X0 + 2X3 + M1 2Xo + A3 + 2\

T+ 2+ 20

= 7.

b

o 6—2)\21:).(26—>\3z . e—2>\3oc) dr

By the same technique, we can show that P[T} = J1] = ag and P[T} = K;] = as.
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Theorem 5.2. The ruin probability ¥(u) for risk model (5.1) satisfies the integro-

differential equation

o) = 220y, >—*[1—G< )

j/ blu—y) dGly) - /;(uz)dH(z), w0,

~ B0 - H(w)
(5.3)

where G and H are cumulative distribution functions of the individual claims sizes and

the amount of surrenders with probability density functions g and h, respectively.

Proof. To compute the non-ruin probability ¢(u), we consider non-ruin probability ¢(u)
and distinguish according to whether there are disjoint events possible of the first occur-
rence of any event among the three events - the first time of premium payment, the first
time of claim payment, and the first time of surrender payment during infinitesimal time

t. Particularly,
/ PlLUS) >0V s>0|U0)=u, Ty =t] fn(t)dt
By the law of total probability of T3,

) = frt|Th=hL)P(Ty=5L)+ fr,(t | Ty = J1)P(Th = Jh)
+fT1(t | T = K1)P(T1 = Kl).

Thus,
/ fr (t) { U(s)>0Vs>0|U(0)=u,I; =t] P|T1 = I1]

FP[U(s)>0¥s> 0| U0) =u,Jy =t] P[T1 = Ji]

—FP[U(S)ZO\V/SZO|U(O)Zu,Klzt]P[leKl]}dt.
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Therefore,

o(u) = /Ooo fr(t) - {alP[U(s) >0Vs>0| N(I)=1]

+agP[U(s) >0Vs >0 | M(J1) =1+ a3P[U(s) >0Vs >0 | K(K;) = 1]} dt.

o0
Using the property that / fr (z)dz =1, we get
0

o(u) =1 P[U(s)>0Vs>0| N(I1) =1+ aaP[U(s) >0Vs >0 | M(J;) =1]
+asP[U(s) >0Vs >0 | K(K;1) =1].

In particular, from the law of total probability, the non-ruin probability can be computed

d(u) =ar1PlU(s) >0Vs >0 | U(l1) =u+]

(7

+ay | PIU(s)=0Vs > 0| U(J1) =u—y]dG(y)

(7

+az | PlU(s)>20Vs>0|U(K1) =u—z]dH(z).

S——

According to the concept of stationary, we can treat any interarrival time as a new start
time. Therefore, we can express any interarrival time as U(0). This implies that we are

starting a new at any interarrival time and can use U(0) as the starting point,

=
£
[
2
!
S
©)
v
e
<C
Vo)
v
e
3
=
I
<
_|_
Q.

Then, we get that

o) = ard(u+tc)+as /()ugb(u—y)dG(y)mg /O”¢<u—z>dH<z>.

By the Taylor series expansion in ¢(u + ¢) around zyp = wu, particularly, ¢(u + ¢) =
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d(u) + c¢d'(u) + o(At) for At — 0, we get

—car @' (u) = ag/ o(u—y)dG(y) + (a1 — 1)p(u) + as /Ou o(u—2)dH(z).

Dividing both sides by —c and using the property a; + as + ag = 1, we have

a1¢’(u)—(a2+a5 /¢>u— dG(y —/¢u—de (5.4)

Using the property that ¢(u) =1 — 9 (u), we get

(e +a3) (a2 + as) a9

() = - v - 22 ["1d60) + 22 [" (- de)

C C C

~ [ am () + %/Ouw(u- z) dH(2).

Therefore,
—an(u) = (2o o)y 2260 422 [Pyt y)acly
——H / (u—z)dH(z
Thus,
a)(u) = (a2+a3 / U(u—1y)dG(y) / (u—z)dH(z
—*[1—G( )]—*1— H(u)].
O
Corollary 5.1. For risk model (5.1),
$(0) = (%ZE[Y] + ;—?’IE[Z]. (5.5)

Proof. Integrate the integro-differential equations (5.4) over the interval (0,¢) on u yields

al/otcél(u)du:w/otqﬁ( du —//(bu— ) dG(y



— % /Ot /Ou d(u— z)dH(z) du. (5.6)

t u
Consider —%/ / ¢(u — 2) dH(z) du and the property of CDF H, we can show that
¢ Jo Jo

//¢u—de //¢>u—z [ — H(2)] du
- ”¢ )1~ Hw) - é(w)

— H(2))¢ (u— 2) dz]du
0

Then,

//gbu—de /cb (1-H d——/qﬁ
// (1—H(2))¢' (u— 2)dzdu. (5.7)

By the same technique, we can show that

//(buf )dG(y) du = —= /qb 1-G df—/qﬁ
/ / (1-G Cy)dydu.  (5.8)

Substituting (5.7) and (5.8) into (5.6), we get

a1/0t¢’(u)du_as/t¢0 |- H(u) du—l—of/t<b(0)(1—G( ) d
// (1-H(2)¢ (u—2)dzdu (5.9)
0/0/0 (1-G(y)¢' (u—y) dy du.

Consider — / / (1- (u — z) dz du, we can show that

// (1-H (u—2)dzdu :—// (1-H(2))¢' (u—2)dudz,
/qbu—z u—2z)
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Then,
o3
// (1-H u—z)dzdu—? (I—H( No(t — z) dz—/ (1—-H(2))®(0)d=.
(5.10)
By the same technique, we can show that
s t U , Qo
2 [ [ - et vayan=2 [(a-cwnot - -2 [ 1= 6we0) i
(5.11)
Substituting (5.10) and (5.11) into (5.9), we get
a16(t) ~a1o(0) = % [ (1= B = 2)ds+ 2 [ (1= GW)ote - ).
Letting ¢ approach to co and using the property that 1i_{n o(u) =1, we get,
o1 — a1(0) = %/ (1—H(z))dz+a2/ (1-G
¢ Jo ¢ Jo
Since / (1 - H(z))dz = E[Z] and / (1 =G(y))dy = E[Y], therefore,
0 0
a1 — 1 ¢(0) = —E[Z] + —E[Y]
Using the property that ¢(u) = 1 — 9 (u), we get
_ o3 a
¥(0) = calE[Z] + calE[Y]'
0

5.2.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when
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amounts of claims and surrenders follow exponential distributions. In particular, the

probability density functions of the claim sizes and surrenders are
g(y) =ae™ ™ and h(z) =be %y, 2z >0, (5.12)

corresponding to CDF’s are G and H, respectively, in Theorem 5.2.

Theorem 5.3. For the risk model (5.1) where the amounts of claims size and surrenders

Q@ @
follow exponential distributions with parameters a and b, respective. If cay — 2_S 5
a

b

and a1, g, a3 > 0, then the Cramér approzimation of the ruin probability o (u) is
po(u) = Cre™" + Cee™"  for allu >0, (5.13)

where C1,Co, 11, and ro are as follows

B ba2 + aa% —abcagay — abcag as + bagas + acsag — cag(bag + aas)ry

Cy —
! abc?a2(ry —ry) ’
o = —ba3 — a3 + abcasay + abeajag — basas — acsas + cag (bag + acs)ry
2 abc?a?(ry —ry) ’
1 1
S|yt leetas)) 5
a b abcaq
= 92 )
ab
1 1
_ [- ol W_Qia_@] D
a b abcon
ro = 2 )
ab
which
1 1 2y
po |ty L (aetas)]” 4f  ar a5 |
a b abca ab acay  beoq
Proof.

Observe that CDF G and PDF g¢ satisfy dG(u) = g(u)du, as mentioned in Remark 2.2,
including CDF H and PDF h.
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Substituting the density functions of Y; and Z; into (5.3), we have

/ _ (052 + 0[3) B 2 —au ﬁ —bu
V' (u) = o ———(u) o’ o
ca1/ Y(u—y) aydy—gl z/Ju—z b2 gz, (5.14)

Differentiating the equation with respect to u, we have

as +« a0 qu ba by OO bo
w) = L)y 1 90 B0 B0 Daay
caq caq
b
aaQ/l/}u— e Ydy + ag/wu—z 2 2.
coq caq
S . 1
Multiplying the equation by —, we have
a
1 + W b . b
) _ (et ag) iy 00 o 008 o 02 B
a aca caq acaq caq aco
b
/ O(u—y)ae ¥ dy + X / Y(u— 2)be % dz. (5.15)
cal acoq

Adding (5.14) and (5.15), we have

" (u) _ _[1 _ (a2 +a3)] W () 4 {043 bag } b(u bag ebu _ 3 —bu

a acoq coy acas aca coy

+ [acal cal] / Y(u — z)be~%* dz. (5.16)

Differentiating the term with respect to u, we have

V[t ol] g [0ty [Po by

a aco cQ aco acon cp
b2a3 bag b Qa3 bOég v
+ et 4 T - — (u — z)be™"% dz
acoy cQq acoy cQq 0

1
Multiplying the equation by 7 we have
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Ll 2] gy [0 gy [ 2]y

ab b abca bcoy  acoq acoy  co
b b u
8 gbu y O3 obu [ s a?’} / Y(u — z)be % dz. (5.17)
acaq cap acay  caq | Jy

Adding the terms of each side of (5.16) and (5.17), we have

ab a b abca acay  beaq

V) | [1 . WF%)} W () + {1 o2 % ] W (1) = 0. (5.18)

The equivalent characteristic equation is

3 1 1 : :
L+ ,+A_M 1“2+ 1-— @2 9 r=0. (519)
a b abco

Solving the equation, we obtain the three roots as

Ty = B 2 B 5

e - 2 2 )

where
D_ 1 1 (ae2t+a3) ? 4 1 Q2 a3
“la b abcay ab acay  beag |

Therefore, the general solution of ¥ (u) is

w(u) = Che™" + Coe™™ + (3. (5.20)
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Since

1 (042 + ag) 2 4 a9 s
a ' b abcoy ] ab [ B acoq B beay
- 1 1 (042 — ag) 2 40[20[3 0
o [b a  abcay ] a?b2c2a? -

S
Il

\
+

Then, 71 and 7y are distinct real roots.

Since

caj — — — |+ —5—+ 55— >0, (5.21)
bcay;  acon a

1 (CYQ + Oég) _ 1 n 1 [ a9 s Q9 a3
b a?cay; = b%con

by the Vieta’s theorem in Theorem 2.2 and (5.19), we get

(%) ; a3
rire = acai bean >0 (5.22)
ab
and
el | (Rt as)
b b
ry +ry = —L2 <o (5.23)
ab
a2 Qs .
From (5.22) and ca; — — — = > 0, we can see that r1 and r9 have the same sign.
a

From (5.23) and (5.21), we get

r1 < 0and ry < 0.

Next, once we know the values of r; and r1, we will then determine the values of Cq, Cs,
and Cs for (5.20) using the initial conditions follow as,

1. lim ¢ (u) =0, since r1,79 < 0 which yields C3 = 0.

U— 00

2. Substituting, ¢(0) = a3
cath  caia

Cy+Cyp=2 (1) b2 <1> . (5.24)
cay \a cap \ b

in (5.20), we get
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3. Letting v = 0 in (5.14) and using ¥ (u) from (5.20), we get

Cyry + Corg = M [O‘Q (1) + a3 (1” _ %2 %3 (5.25)

c cp \a a b
Solving the system of equations (5.24) and (5.25), we get

ba% + aa% — abcaas — abeayag + basag + acsas — caq (bag + aas)ry

Ch =

abc2a(ry — ra)
and

o= —ba3 — a3 + abcajas + abeayag — basas — acsas + caq (bag + aas)ry
2 —_ .

abc?a?(ry — ra)

To calculate the approximated ruin probability using the Cramér approximation

described in (5.13), we can use the R programming for computation.

5.2.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace
transforms in conjunction with integral equation of ruin probability for the the renewal

risk model with constant premiums and surrenders.

Theorem 5.4. The Laplace transform of ruin probability 1¥(u) for risk model (5.1) is

cars(0) — asll — g*(s)] — as[l — h*(s)]

¥i(s) = s(cars — az[l — g*(s)] — asl[l — h*(s))

(5.26)

where (0) = %E[Y] + %E[Z] and g*,h* are the Laplace transforms of probability

density functions for the amount of claims size g and surrender h, respectively.
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Proof. Taking the Laplace transform of (5.3) and formula in Theorem 2.3, we get

crst(s) —onp(0) = 2T ey @2

C C

S Cc S S

{1 B g*(S)} a3 {1 _ h*(S)]

2
=SR2 (s)g"(s) = (7 (s).

c

Multiplying both sides by —cs, we have

—ca182p*(s) + csap(0) = —s(ag + az)*(s) + az [1 — g*(s)] + ag [1 — h*(s)]

+sa"(s)g"(s) + sazh™(s)h*(s).

Therefore,

—az [l —g*(s)] —as [l — h*(s)]

=" (s) [ca132 — s(ag + ag) + sang™(s) + sagh*(s)] —csag1)(0).

Thus,

csanh(0) — an [1 — g*(s)] — ag [1 — h*(s)]
slears —ag [1 — g*(s)] — as[1 — h*(s)]]

P (s) =

O

Corollary 5.2. For the renewal risk model defined in (5.1) where the amount of claims size

and surrender follow exponential distributions according to (5.12), probability density func-

Q@ o
tionss denoted as g and h, respectively, and with parameters a andb. If caq — = ?3 >0
a

and aq, g, a3 > 0, then the Laplace transform of the ruin probability ¥ (u) is

bas + a’as + (baz + aas)s; gty —b?ay — a’a3 — (bag + aas)

52 eS2U
abean (81 — $2) abeaq (81 — $2)

Yo(u) =

(5.27)
where
_ag — acay — bean + a VS

S1 =
2caq ’

ag — acay — beaq + as + V'S
S =
2 2ca ’
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and
S = (—ag + acay + beay — a3)? — deay (—bas + abeay — aas).

Proof.
Substituting the Laplace transforms of the density functions density functions of Y; and

Z; with CDF’s are G and H, respectively, into (5.26), we have

Qg Q3 a b
Cs[ca+ cb} a2 [1_s+a} s [1_s+b}

P (s) =
ST R R)

Let R(s) = —bas + abcay — aas + (—ag + acag + beay — az)s + caps® and rearrange the

equation for ¢*(s), we get

| bVag +a’as + (bag + aag)s

Let S = (—ag + acay + beay — a3)2 — 4eay (—bag + abcay — aag). Then, S > 0.
Factoring R(s), we will obtain that
b2 s b
B*(s) = az +a“az + (bag + aag)s (5.29)

ab(s —s1)(s — s2)ayc
where

ay — acay — beaq + as — V'S
51 =
2ca ’

ag — acaq — bea + ag + VS
2ca '

Since S > 0, then s; and s are distinct real roots.
Since
1 bas  aas

1
ag —acag —becag + a3 = — [b + a} (abcay — bag — aag) — — 3 < 0, (5.30)
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by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get

—-b b —
5152 = @2 T abean — A >0 (5.31)
coq

and
— —b
81+ S92 = a2 —acan co + o < 0. (5.32)
COq
(%) (6% .
From (5.31) and cay — — — n > (0, we can see that s; and so have the same sign. From
a

(5.32) and (5.30), we get
s1 < 0and so < 0.

Applying partial fraction decomposition to (5.29) with respect to s, we obtain

blas + a’az + (bag + aas)sy  —b*as — a’az — (bas + aas)ss

abcaq (51— s2)(s— s1) abean (51— s2)(s — s2)

P (s) = (5.33)

Taking the inverse Laplace transform (5.33) with respect to s, we obtain

2

b2as + a’asz + (bag + aas)sy e —b’as — a’a3 — (bag + aas)se gt

abecai(s1 — $2) abecai(s1 — s2)

Vo(u) =

It can be observed that the ruin probability of the Cramér approximation in (5.13)
Theorem 5.3 and the Laplace transforms in (5.27) Theorem 5.2 are equal. This can be
proven by showing that the formulas of both approximations yield the same value, as

mentioned in Remark 5.1.

Remark 5.1. For the amount of claims size and surrender follow exponential distributions
according to (5.12), probability density functions denoted as g and h, respectively, and
with parameters a and b. The ruin probability of the Cramér approximation ¢ (u) (5.13)

and the Laplace transforms 1o (u) (5.27) yield the same value, for all 4 > 0

Yo(u) = Cre™™ 4+ Cae™",

b2a2 + a2a3 + (ba2 + aa3)31 O _b2a2 — a2a3 — (bag + aag)SQ 2
abeay(s1 — $2) abca (s1 — s2)

Vo(u) =

)
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where C1,Cs,r1,79,81 and s9 are as follows

o bas + aa% — abcasar; — abeayag + basas + acsas — cag (bag + aas)ry
1 pr—
abc2a?(ry —ry)

)

C —ba% — aa% + abcagay + abeajas — basas — aasas + cag(bag + aas)ry
2 = )

abc2a2(ry —ro)

1 1 (ag+a3) 1 1 (ag+a3)]® 4 oy o
|-t - -4+ -—— ——|1- -
a b abco a abcay ab acay  beoy

= )
ab
L1 featay)) 11 (eetan)]t 4T e g
a b abco a b abcoy ab acay  beoq
ro = 2 )
ab
_ag —acay —beay +az — \/(—Oég + acag + beay — ag)? — dear (—bas + abeay — aasz)
1= 2ca ’
ag — acap — beay + as + \/(~a2 + acaq + beay — az)? — deag (—bag + abcay — aas)
SS9 = .

2ca

Proof. We want to show that the various coefficients and constants have the same value

demonstrated as follows.

) uaw}_\/[ul_wrﬂ[k 0 ay

a b abecoy a b abeco ab aca;  beoy
rn =
ab
g —acay — beay + az — \/(—ag + acag + beay — ag)? — dear (—bas + abeay — aas)
a 2conq
= 51,
11 : 11 24 :
1yt _feetag)) 11 (aetay)]t 4 ar o
a b abecoy a b abco ab aca;  beay

ab
a9 — acap — bea + as + \/(—ag + acaq + beay — az)? — 4eaq (—bas + abcay — aa3)

2con

= S92,
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and
o — ba% + aa% — abcagay — abecag ag + bagas + acsag — caq (bag + aag)ro
v abc2a2(ry —ra)
B blas + a’as3 + (bag + aas)s;
- abcay (s1 — s2) ’
o — —ba% — aa% + abcasay + abeajas — basas — acsas + cay (bag + aag)ry
2 abc2a2(ry —ry)
B —bas — a’az — (bag + aag)ss
abean (81 — $2)
Therefore,

Yo(u) =g(u).

To calculate the approximated ruin probability using the Laplace transform for
money amounts which follow exponential distributions described in (5.27), we can use

the MATLAB commands “partfrac” and “ilaplace” for computation.
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5.3 Experimental simulations

In this section, we perform numerical studies to investigate performance of the an-
alytical approximation of the renewal risk model with constant premiums and surrenders,
we focuses on the numerical approximation to the ruin probability when the amounts of
claims, and surrenders follows an exponential distribution by using the analytical solution
such as the Cramér approximation and the Laplace transform comparing with the Monte

Carlo approximation.

5.3.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability @Z]t(u) derived
by the direct simulation of the surplus process using the Monte Carlo methods in order
to evaluate the result of the approximations suggested in this chapter.

Let N be the total number of realizations of the process U(t). We can calculate the
average value of the process U (t) when each ruin occurs at the time point ¢, consequently,
we obtain the corresponding statistical estimate @t(u) for the ruin probability ¥ (u). The

Monte Carlo estimations is obtained as

N

= 1

Pe(u) = ~ E Ly, ty<o|U, (0)=u}»
=1

where t is a fixed time point and N is the sample size. As N — oo and t — oo, by
the law of large numbers, v (u) converges to 1 (u). The time points considered here are
t =1,5,50, and 100, and the sample size of the Monte Carlo method is N = 200,000. The
parameters of the model studied in this section are as follows. The initial capital u varies in
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,/1.3,1.4,1.5,1.6,1.7,1.8,1.9, 2, 3} and the
constant rate of premiums is ¢ = 7. The parameter of the inter-arrival times of premium

is Ay = 4.5. The parameter of the inter-arrival times of claim is Ay = 6. The parameter
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of the inter-arrival times of surrender is A3 = 1.

5.3.2 Exponential distributions for the claim sizes and surrender

Let the probability density function Y; and Z; be

g(y) =ae™ @ and h(z)=be ¥ | y,z>0,

where a = 0.33, b = 0.238, respectively.

For the Cramer approximation, substituting a = 0.33, b = 0.238, ¢ = 7, \; = 4.5,
A2 = 6 and A3 = 1 into the formula of r; and r9 in (5.13), we get r; = —0.246214
and ro = —0.096096, respectively. Consequently, C; = 0.005705 and Cy = 0.696173.

Therefore, the Cramér approximation ¥¢(u) is

Yo (u) = 0.005705e 02462 1 0.696173e~0-09996w  £or 1l u > 0. (5.34)

For the Laplace approximation, substituting a = 0.33, b =0.238, c =7, A1 = 4.5, \a =6
and Az = 1 into the formula in (5.27), we get S = 28. Consequently, s = —0.246214 and

s9 = —0.096096. Therefore, the Laplace approximation ¢ is

o (u) = 0.696173e~0-09996w 4 005705e~0-246214w  for gil u > 0. (5.35)
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The numerical approximations obtained in (5.34)-(5.35) for different values of
the initial capital u is given in Table 5.1

U (u)
a Statistical estimate () Numerical approx.
t=1 |t=5 |t=50 |t=100 | velw/vel

0 | 0.673005 | 0.692920 | 0.692975 | 0.692975 0.701879
0.1 | 0.667260 | 0.687465 | 0.687515 | 0.687515 0.695082
0.2 | 0.661650 | 0.682095 | 0.682145 | 0.682145 0.688352
0.3 | 0.655915 | 0.676540 | 0.676590 | 0.676590 0.681689
0.4 | 0.650170 | 0.671075 | 0.671120 | 0.671120 0.675091
0.5 | 0.644290 | 0.665390 | 0.665435 | 0.665435 0.668559
0.6 | 0.638650 | 0.660030 | 0.660085 | 0.660085 0.662090
0.7 | 0.632830 | 0.654465 | 0.654520 | 0.654520 0.655686
0.8 | 0.626515 | 0.648545 | 0.648600 | 0.648600 0.649344
0.9 | 0.620535 | 0.642780 | 0.642835 | 0.642835 0.643065

1 | 0.614885 | 0.637340 | 0.637400 | 0.637400 0.636847
1.1 | 0.608835 | 0.631570 | 0.631630 | 0.631630 0.630691
1.2 | 0.603075 | 0.626085 | 0.626145 | 0.626145 0.624595
1.3 | 0.597760 | 0.620965 | 0.621025 | 0.621025 0.618559
1.4 | 0.592015 | 0.615590 | 0.615660 | 0.615660 0.612582
1.5 | 0.586200 | 0.610005 | 0.610075 | 0.610075 0.606664
1.6 | 0.580230 | 0.604330 | 0.604395 | 0.604395 0.600804
1.7 | 0.574200 | 0.598435 | 0.598500 | 0.598500 0.595001
1.8 | 0.568010 | 0.592435 | 0.592500 | 0.592500 0.589255
1.9 | 0.562120 | 0.586625 | 0.586690 | 0.58669 0.583566

2 | 0.556255 | 0.580895 | 0.580965 | 0.580965 0.577932

3 | 0.498995 | 0.524915 | 0.524980 | 0.524980 0.524538

Table 5.1: Numerical approximations of the renewal risk model with exponential dis-

tributions.
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Figure 5.1: Graph of initial reserve v and the ruin probability of the renewal risk
model with exponential distributions.

From Table 5.1, we can see that the approximates of ruin probability of all methods
decrease when the initial capital increases. Besides, we can observe that the ruin prob-
ability @t(u) increases as t increases and the Monte Carlo approximation converges to
our approximations. Therefore, the Monte Carlo approximation is consider to be a good
option.

Also, we can see that the Cramér approximations and the Laplace approximations
are nearby the Monte Carlo approximation of ruin probability zﬁt(u) In addition, the
Monte Carlo approximation 1/AJt(u) should converges to the exact value of the ruin prob-
ability when t — co. Moreover, we can see that the Cramér approximations (5.34) and
the Laplace approximations (5.35) are equal. The reason for their equivalence is that
the ruin probability formulas for both methods are equivalent to each other, yielding the
same result see Remark 5.1 or derived from solving the same ODE.

The Monte Carlo simulation will be very good, if we can increase the value of t.
However, it will take long computation time to do so. Therefore, a possible way to im-
prove the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.



CHAPTER VI

CONCLUSION

6.1 Conclusions and Discussions

In chapter I1I, we studied suitable analytical approximations of the ruin probability
for the risk model CPST by using the Cramér approximation in Theorem 3.2, the Laplace
transform in Theorem 3.3, the De-Vylder approximation in Theorem 3.6 and the Lundberg
upper bound in Theorem 3.10. Moreover, numerical methods are used to assist in solving
systems of equations or finding the inverse Laplace transform in situations where manual
computation is not feasible. Moreover, we performed experimental simulations to study
their performance. The computation results presented in Tables 3.1 and 3.2 indicate that
the Cramér approximation in Tables 3.1 and the De-Vylder approximation in Tables 3.2
have the near values of ruin probability z/?t(u) from Monte Carlo approximation when u
has a large value, and both yield ruin probabilities no more than the upper bound. Also,
the computation results presented in Tables 3.1 indicate that the Cramér approximation
and the Laplace transform have the same value of ruin probability. Similarly, the results
in Tables 3.2 indicate that the De-Vylder approximation and the Laplace transform have
approximately the same value of ruin probability as explained in chapter III.

In chapter IV, we studied a suitable analytical approximation of the ruin probability
for the risk model SPST by using the Cramér approximation in Theorem 4.2, the Laplace
transform in Theorem 4.3, the De-Vylder approximation in Theorem 4.6 and the Lundberg
upper bound in Theorem 4.10. Moreover, we perform experimental simulation to study
its performance. Numerical methods are used to assist in solving systems of equations
or finding the inverse Laplace transform in situations where manual computation is not
feasible. The results of computations presented in Tables 4.1 and 4.2 indicate that the
Cramér approximation in Tables 4.1 and the De-Vylder approximation in Tables 4.2 have

the near value of ruin probability z/;t (u) from Monte Carlo approximation when « has a
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large value, and both yield ruin probability no more than upper bound as explained in
the chapter IV.

In chapter V, we studies a suitable analytical approximation of the ruin probability
for the renewal risk model with constant premiums and surrenders by using the Cramér
approximation in Theorem 5.3 and the Laplace transform in Theorem 5.4. Moreover,
we perform experimental simulation to study its performance. Numerical methods are
used to assist in solving systems of equations or finding the inverse Laplace transform
in situations where manual computation is not feasible. The results of computations
presented in Tables 5.1 indicate that the Cramér approximation and the Laplace transform
have the near value of ruin probability 1/A)t(u) from Monte Carlo approximation when u
has a large value. As well as, the results of computations presented in Tables 5.1 indicate
that the Cramér approximation and the Laplace transform have approximately the same
value of ruin probability as explained in the chapter V.

Moreover, the statistical estimate t;(u) for the ruin probability ¥ (u), once time #
reaches a certain point, the probability of ruin ¢ (u) after that point will remain constant.

Finally, noted that while the numerical example discussed above is insufficient to
draw conclusions about the accuracy of the commonly recommended estimation method,
and may not be reflective of the actual situation of an insurance company, it is highly
desirable to have tools to control the accuracy of parameter estimates. Nevertheless, these
estimates can help us to draw some general conclusions. Several extensions of our study
can be done such as to investigate another approximation method for the model or to
extend the numerical approximation of the ruin probability for more general risk models

to accommodate other features of risk models.
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