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กิตติüัฒน์ üรเกตุ : การประมาณค่าเชิงตัüเลขของคüามน่าจะเป็นการล้มละลายของการ
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ทั่üไปมีคüามยาก ดังนั้น จึงมีการใช้การĀาค่าขอบเขตบนในบทประยุกต์ต่างๆ ในüิทยานิพนธ์
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CHAPTER I

INTRODUCTION

The risk model is an important tool for insurance company to evaluate the risk

of business. Several risk models have been introduced for different types of insurance

contracts. One type of popular insurance contracts is the classical risk model, defined by

U(t) = u+ ct−
N(t)∑

i=1

Xi for t ≥ 0, (1.1)

where u ≥ 0 is the initial reserve, c > 0 is the premium rate, and {N(t), t ≥ 0} is

a Poisson process with intensity λ > 0, representing the number of claims up to time

t. The individual claim sizes X1, X2, . . . , independent of {N(t), t ≥ 0}, are indepen-

dent and identically distributed (i.i.d.) non-negative random variables with the common

distribution function FX . The classical risk model is a basic model of the total cost of

insurance which is often used for insurance risk management.

The most important quantity in the insurance risk model is the ruin probability

which is the probability that the surplus eventually becomes negative. In particular, the

ruin probability is defined as

ψ(u) = Pr[ U(t) < 0 for some t ≥ 0 | U(0) = u]. (1.2)

However, the ruin probability is usually difficult to calculate in general. Therefore, it is

commonly estimated by an upper bound called as the Lundberg upper bound of the ruin

probability defined as

ψ(u) ≤ e−Ru, (1.3)

where R is the unique positive solution of the adjustment equation λMX(r)− λ− cr = 0

called as the adjustment coefficient and MX is the moment generating function of the

claim size.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Beside of using the Lundberg upper bound, there is an interest in obtaining a nu-

merical approximation of the ruin probability among researchers. For example, in 1991,

Grandell [4] proposed several numerical approximations of the ruin probability for the

classical risk model. Those numerical approximations are the Laplace transform method,

the De Vylder approximation, and the Cramér-Lundberg approximation. Since then, the

concept of numerical approximations of the ruin probability has been extended to more

general risk models. For example, in 2003, Boikov [2] proposed a numerical approximation

for risk models with stochastic premium process. In 2010, Seixas and Reis [14] proposed

a numerical approximation for risk models with interference. In 2015, Mishura, Rag-

ulina and Stroyev [9] proposed a numerical approximation for risk models with additional

funds. In 2020, Ragulina [11] proposed a numerical approximation for risk models with

stochastic premiums and a constant dividend strategy.

In this thesis, we investigate suitable numerical approximations to the ruin prob-

ability of a more generalized risk model. Moreover, we perform numerical studies to in-

vestigate the performance of the obtained numerical approximation comparing to Monte

Carlo approximation and the Lundberg upper bound.

The rest of this thesis is organized as follows. Chapter 2 introduces the content,

definitions, and theories that will be encountered in this thesis. Chapter 3 studies nu-

merical approximation of the ruin probability for the risk model with constant premiums

and surrenders subject to dependence thinning involving the Cramér approximation, the

Laplace transform method, the De-Vylder approximation, and the Lundberg inequality.

Chapter 4 studies numerical approximation of the ruin probability for the risk model

with stochastic premiums and surrenders subject to dependence thinning involving the

Cramér approximation, the Laplace transform method, the De-Vylder approximation,

and the Lundberg inequality. Chapter 5 studies numerical approximation of the ruin

probability for the renewal risk model with constant premiums and surrenders involving

the Cramér approximation and the Laplace transform method. Chapter 6 gives discusses

and conclusions of our study.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARY

In this chapter, we will introduce the basics, definitions, and theories of probability

theory to be used in this project.

2.1 Basic real analysis and applied analysis

In this section, we introduce important, definitions and theorems in real analysis

and applied analysis used in this project.

Definition 2.1. A set A ⊆ R is bounded above, if there exists a number b ∈ R such

that a ≤ b for all a ∈ A. The number b is called an upper bound for A. Similarly, the

set A is bounded below, if there exists a number l ∈ R satisfying l ≤ a for every a ∈ A.

The number l is called a lower bound for A. If A have both upper bound and lower

bound, we say that A is a bounded set.

Definition 2.2. Assume g(x) &= 0 for all x &= a in some interval containing a.

The Little-oh notation is a notation representing the behavior of a limit of a function

at a given value. The statement

f(x) = o(g(x)) as x → a

can be intuitively interpreted as saying that g(x) grows much faster than f(x) at a or

mean that

lim
x→a

f(x)

g(x)
= 0.

The symbol f(x) = o(g(x)) is read “f(x) is little-oh of g(x)” or “f(x) is of smaller order

than g(x)” as x → a.
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Theorem 2.1. [10] Properties of the Little-oh notation are as follows.

1. If c is a nonzero constant and f = o(g), then c · f = o(g).

2. If f = o(F ) and g = o(G), then f · g = o(F ·G).

3. If f = o(g) and g = o(h), then f = o(h).

Theorem 2.2. [18] Vieta’s theorem

Let r1 and r2 be the roots of the quadratic equation ax2 + bx + c = 0. Then, the two

identities

r1 + r2 = − b

a
and r1r2 =

c

a

both hold.

In the same way, let r1, r2 and r3 be the roots of the cubic equation ax3+bx2+cx+d = 0.

Then, we have

r1 + r2 + r3 = − b

a
, r1r2 + r2r3 + r1r3 =

c

a
, and r1r2r3 = −d

a
.

Definition 2.3. [1] The Fundamental Theorem of Calculus

If f is continuous on [0, b], then the function F defined by F (x) =

∫ x

0
f(t) dt, for all

x ∈ [0, b], is continuous on [0, b] and differentiable on (0, b) and

F ′(x) = f(x) for all x ∈ (0, b).

Definition 2.4. The Leibniz integral rule

Let f(x, t) be a function such that both f(x, t) and its partial derivative fx(x, t) are

continuous in t and x in some region of the xt-plane including a(x) ≤ t ≤ b(x), for x0 ≤

x ≤ x1. Also, suppose that the functions a(x) and b(x) are both continuous and both

have continuous derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1,

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f

(
x, b(x)

)
· d

dx
b(x)− f

(
x, a(x)

)
· d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt.
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Definition 2.5. Let f be a complex-valued function of a real variable so that it can be

decomposed as

f(x) = g(x) + ih(x),

where g and h are real-valued functions. The complex conjugate of f , denoted by f ,

is defined by

f(x) = f(x) = g(x)− ih(x).

Definition 2.6. The cross-correlation of two complex functions f(x) and g(x) of a

real variable x on [0,∞), denoted by f $ g, is defined by

[f $ g](x) =

∫ ∞

0
f(x+ y)g(y) dy.

Definition 2.7. Let f : [0,∞) −→ R be a continuous function such that e−ξ0xf(x) is in

L1([0,∞)) for some ξ0 ∈ R. Its Laplace transform is the function defined by

L [f(x)](s) = f∗(s) :=

∫ ∞

0
e−sxf(x) dx, for all s ∈ C s.t. Re(s) > ξ0.

Here, for the Laplace transform of f ′, we assume that f is continuously differentiable on

(0,∞) and lim
x→0+

f ′(x) is finite.

Theorem 2.3. [3] Properties of the Laplace transform are as follows:

L [af(x) + bg(x)](s) = af∗(s) + bg∗(s),

L [1](s) = 1/s,

L [e−ax] (s) = 1/(s+ a),

L [f ′(x)] (s) = sf∗(s)− f(0),

L

[∫ x

0
f(t) dt

]
(s) = f∗(s)/s,

L

[∫ x

0
f(t)g(x− t) dt

]
(s) = f∗(s) · g∗(s),

L

[∫ ∞

0
f(x+ y)g(y) dy

]
(s) = f∗(s)g∗(−s),

where a and b are constant.
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2.2 Basic probability theory

In this section, we will use some techniques to find the probabilistic properties of

random variables.

Definition 2.8. A random experiment is any activity or process whose outcome is

subject to uncertainty.

Definition 2.9. The set of all possible outcomes of a random experiment is called a

sample space denoted by Ω. Each outcome in a sample space is called a sample point.

Definition 2.10. A collection F ⊆ 2Ω of subsets of Ω is called a σ-field (also σ-algebra

or event space) on Ω, if it has the following three properties.

1. Ω ∈ F .

2. If A ∈ F , then Ac ∈ F . (closed under complement)

3. If Ai ∈ F for all i ∈ N, then
∞⋃

i=1

Ai ∈ F . (closed under countable union)

Each element in a σ-field is referred to as an event.

For a sample space Ω, let A be a collection of events, and let σ(A) represent the

smallest σ-field containing A. Thus, σ(A) is called the σ-field ‘‘generated” by A.

Definition 2.11. Let F be a σ-field on a sample space Ω. A set function P : F → [0, 1]

is called a probability measure, if it has the following two properties.

1. P (Ω) = 1

2. If Ai ∈ F for all i ∈ N and Ai ∩Aj = ∅ for all i &= j, then we have that

0 P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai). (countably additive, σ-additive)

The triple (Ω,F , P ) is called a probability space.

Remark 2.1. We can call (Ω,F ) a measurable space and (Ω,F , P ) a measure space.

For a topological space Ω, let B(Ω) represent the σ-field generated by all open sets

in Ω. Thus, B(Ω) is called the Borel σ-field. Each set in this σ-field is called a Borel

set.
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Definition 2.12. If F is a σ-field on Ω, then a function X : Ω → R is said to be

F -measurable or (F ,B(R))-measurable, if

X−1(B) ∈ F

for every Borel set B ∈ B(R). If (Ω,F , P ) is a probability space, then such a function

is called a random variable.

Definition 2.13. Let X be a random variable on (Ω,F , P ). Define a probability measure

PX on R by

PX(A) = P
(
X−1(A)

)
= P (X ∈ A) for all A ∈ B(R)

and call it the probability distribution of X. The function FX : R → [0, 1] defined by

FX(x) = PX ((−∞, x]) = P (X ≤ x) for all x ∈ R

is called the distribution function or cumulative distribution function (CDF) of

X.

Definition 2.14. The random variable X is called discrete, if it takes values in some

countable subset of R. The discrete random variable X has probability mass function

(PMF) f : R → [0, 1] given by

f(x) = P (X = x) for all x ∈ R.

Definition 2.15. The random variable X is called continuous, if its distribution can be

expressed as

FX(x) =

∫ x

−∞
f(u) du for all x ∈ R

for some integrable function f : R → [0,∞) called the probability density function

(PDF) of X.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

Remark 2.2. From definition of probability density function and the fundamental the-

orem of calculus in theorem 2.3 , we get

F ′
X(x) = f(x) for f is continuous at x.

Definition 2.16. Law of total probability for a discrete random variable

Let (Ω,F , P ) be a probability space. Suppose X is a discrete random variable with

distribution function FX , and A an event on (Ω,F , P ). Then

P (A) =
∑

x

P (A | X = x)P (X = x).

Definition 2.17. Law of total probability for a continuous random variable

Let (Ω,F , P ) be a probability space. Suppose X is a continuous random variable with

distribution function FX , and A an event on (Ω,F , P ). Then,

P (A) =

∫ ∞

−∞
P (A | X = x) dFX(x).

Definition 2.18. If P (B) > 0, then the conditional probability that A occurs given

that B occurs is defined to be

P (A | B) =
P (A ∩B)

P (B)
.

Definition 2.19. Events A and B are independent, if

P (A ∩B) = P (A)P (B).

More generally, a family of events {Ai | i ∈ I} is called independent or mutually

independent, if

P

(
⋂

i∈J
Ai

)
=
∏

i∈J
P (Ai)

for any finite subset J of I.
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Definition 2.20. We say that random variables X1, X2, . . . , Xn are independent, if the

σ-field σ(X1),σ(X2), . . . ,σ(Xn) are independent, i.e., for any A1, A2, . . . , An ∈ B(R), we

have that

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P (X1 ∈ A1)P (X2 ∈ A2) · · ·P (Xn ∈ An).

More generally, a family {Xi}i∈I of random variables is said to be independent, if every

finite subfamily is.

Definition 2.21. Let X be a random variable on a probability space (Ω,F , P ). The

expected value or expectation of X, denoted by E(X), is defined by

E(X) =

∫

Ω

X dP.

If X is a discrete or continuous random variable. Then,

E(X) =






∑

x∈ImX

xf(x), if X is discrete with PMF f ,

∫ ∞

−∞
xf(x) dx, if X is continuous with PDF f .

Theorem 2.4. [8] Let X be a random variable with finite expected value. Then, for any

constant a and b,

E(aX + b) = aE(X) + b.

Remark 2.3. Let X and Y be random variables with finite expected values. Then,

1. E(X ± Y ) = E(X)± E(Y );

2. if X ≥ 0, then E(X) ≥ 0;

3. if X ≥ Y , so X − Y ≥ 0, then E(X)− E(Y ) = E(X − Y ) ≥ 0, i.e.,

E(X) ≥ E(Y ).
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Theorem 2.5. [8] If X1, X2, . . . , Xn are independent random variables and E|Xi| < ∞

for all i, then

E

[
n∏

i=1

Xi

]
=

n∏

i=1

E[Xi],

i.e., the expectation on the left exists and has the value given on the right.

Theorem 2.6. [8] Random variables X and Y are independent if and only if

E(f(X)g(Y )) = E(f(X))E(g(Y )).

for all bounded Borel measurable functions f and g.

Definition 2.22. Let X be a random variable with finite expected value µ, the variance

of X, denoted by V ar(X), is defined by

V ar(X) := E[(X − µ)2] = E(X2)− µ2.

The quantity
√

V ar(X) is called the standard deviation of X, denoted by SD(X).

Remark 2.4. Let X1, . . . , Xn be independent random variables. Then,

V ar
( n∑

i=1

aiXi

)
=

n∑

i=1

a2iV ar(Xi) for all constant ai.

Definition 2.23. Let X be a random variable. Then, the generating function (GF

of X, denoted by GX , is defined as

GX(t) = E[tX ] for all t ∈ R for which the expected value exists in R.

Remark 2.5. Let X be a discrete or continuous random variable. Then,

GX(t) =






∑

x∈ImX

txf(x), if X is discrete with PMF f ,

∫ ∞

−∞
txf(x)dx, if X is continuous with PDF f .
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Theorem 2.7. [8] If the generating function GX of a random variable X exists, then

G(n)
X (1) = E

(
X(X − 1) · · · (X − (n− 1))

)
for all n ∈ N.

Theorem 2.8. [8] Let X and Y be random variables, and a and b be real numbers. Then,

1. GX+a(t) = taGX(t),

2. GbX(t) = GX(tb),

3. GbX+a(t) = taGX(tb),

4. GX+Y (t) = GX(t)GY (t),if X and Y are independent.

Theorem 2.9. [8] Let X and Y be random variables. Then, GX(t) = GY (t) for all t ∈ R

if and only if X and Y have the same distribution.

Definition 2.24. Let X be a random variable. Then, the moment generating func-

tion (MGF) of X, denoted by MX , is defined by

MX(t) = E[etX ].

We say that the moment generating function of X exists, if there exists δ > 0 such that

MX(t) is finite for all t ∈ (−δ, δ). The domain of MX is the set {t ∈ R | MX(t) < ∞}.

Remark 2.6. Let X be a discrete or continuous random variable. Then,

MX(t) =






∑

x∈ImX

etxf(x), if X is discrete with PMF f ,

∫ ∞

−∞
etxf(x)dx, if X is continuous with PDF f .

Theorem 2.10. [8] If the moment generating function MX of a random variable X exists,

then M (n)
X (0) = E(Xn) for all n ∈ N.

Theorem 2.11. [8] Let X and Y be random variables, and a and b be real numbers.

Then,

1. MX+a(t) = eatMX(t),

2. MbX(t) = MX(bt),

3. MbX+a(t) = eatMX(bt),

4. MX+Y (t) = MX(t)MY (t), if X and Y are independent.
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Theorem 2.12. [8] Let X and Y be random variables. Then, MX(t) = MY (t) for all

t ∈ R if and only if X and Y have the same distribution.

Remark 2.7. GX(t) = E[tX ] = E[eln(t)X ] = MX(ln(t)).

Definition 2.25. Let X be a random variable. Then, the cumulant generating func-

tion (CGF) of X, denoted by KX , is defined as

KX(t) = ln(E[etX ]) = ln(MX(t)) for all t in the domain of MX .

Theorem 2.13. [8] Let X and Y be random variables. Then,

1. KX+Y (t) = KX(t) +KY (t), if X and Y are independent,

2. K ′
X(0) = E(X),

3. K ′′
X(0) = E([X − E(X)]2) = V ar(X),

4. K ′′′
X(0) = E([X − E(X)]3).

Definition 2.26. Let (Ω,F , P ) be a probability space and let X : Ω → R be a random

variable such that E(|X|) < ∞. If G ⊆ F is a σ-field on the probability space (Ω,F , P ),

then the conditional expectation of X given G, denoted by E(X | G) is a G-measurable

function such that
∫

A

E(X | G) dP =
∫

A

X dP for any A ∈ G.

Definition 2.27. A random variable X is said to have a Poisson distribution with

parameter λ (for some λ > 0), denoted as X ∼ Poi(λ), if

P (X = x) =
e−λλx

x!
for x = 0, 1, 2, . . .

Theorem 2.14. [8] Let X ∼ Poi(λ). Then,

1. E(X) = λ,

2. V ar(X) = λ,

3. GX(t) = eλ(t−1) for t ∈ R,

4. MX(t) = eλ(e
t−1) for t ∈ R.
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Definition 2.28. A random variable X is said to have a generalized exponential

distribution with shape parameter α > 0 and scale parameter η > 0, denoted as X ∼

GExp(α, η), if its probability density function is defined as

f(x) =





αη(1− e−ηx)α−1e−ηx, if x ≥ 0

0, if x < 0.

Theorem 2.15. [5] Let X ∼ GExp(α, η). Then,

1. E(X) =
1

η
[ψ(α+ 1)− ψ(1)],

2. V ar(X) =
1

η2
[ψ′(1)− ψ′(α+ 1)],

3. MX(t) =
Γ(α+ 1)Γ(1− t

η )

Γ(α− t
η + 1)

, for t < η,

4. F (x) = (1− e−ηx)α, for x ≥ 0,

where Γ,ψ, and ψ′ are gamma, digamma, and trigamma functions, respectively.

Definition 2.29. A random variable X is said to have an exponential distribution

with parameter η (for some η > 0), denoted as X ∼ Exp(η), if its probability density

function is defined as

f(x) =





ηe−ηx if x ≥ 0

0 if x < 0.

Theorem 2.16. [8] Let X ∼ Exp(η). Then,

1. E(X) =
1

η
,

2. V ar(X) =
1

η2
,

3. MX(t) =
η

η − t
, for t < η,

4. E [Xn] =
n!

λn
, for n ∈ N.
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Definition 2.30. A random variable X is said to have a gamma distribution with

parameters β (β > 0) and α (α > 0), denoted as X ∼ Gamma(α,β), if its probability

density function is defined as

f(x) =






βe−βx(βx)α−1

Γ(α)
if x ≥ 0

0 if x < 0,

where the gamma function Γ : (0,∞) → R is defined as

Γ(α) =

∫ ∞

0
xα−1e−xdx.

Theorem 2.17. [8] Let X ∼ Gamma(α,β). Then,

1. E(X) =
α

β
,

2. V ar(X) =
α

β2
,

3. MX(t) =

(
β

β − t

)α

for t < β,

4. E [Xn] =
Γ(n+ α)

βnΓ(α)
for n ∈ N.

Theorem 2.18. [8] For a probability space (Ω,F , P ), let X : Ω → R and Y : Ω → R

be random variables with finite first moment and G is a σ-field on the probability space

(Ω,F , P ) such that G ⊆ F , then the properties of conditional expectation are as follows.

1. E(aX + bY | G) = aE(X | G) + bE(Y | G) for all a, b ∈ R;

2. if X ≥ 0, then E(X | G) ≥ 0;

3. if X ≤ Y , then E(X | G) ≤ E(Y | G);

4. if F1 is a σ-field such that F1 ⊆ F , F2 is a σ-field such that F2 ⊆ F and

4. F1 ⊆ F2, then E(E(X | F2) | F1) = E(X | F1);

5. E(E(X | G)) = E(X);

6. if X is independent of G, then E(X | G) = E(X);

7. if Y is G-measurable, then E(XY | G) = Y (X | G).
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Definition 2.31. Let X : Ω → R be a random variable. The conditional variance of

X given σ-field G ⊆ F , denoted by V ar(X | G), is defined by

V ar(X | G) := E
(
(X − E(X|G))2 | G

)
= E(X2 | G)− (E(X | G))2.

Theorem 2.19. [8] Assume that X : Ω → R, G ⊆ F is a σ-field on the probability space

(Ω,F , P ), F is σ-field on Ω, E(|X|) < ∞, and V ar(|X|) < ∞. Then,

V ar(X) = E(V ar(X | G)) + V ar(E(X | G)).

Theorem 2.20. [15] Markov’s Inequality

Let X be a non-negative random variable and a a positive real number. Then,

P (X ≥ a) ≤ E(X)

a
.

Theorem 2.21. [6] Hoeffding’s Inequality

Suppose that X1, . . . , Xn are independent random variables such that ai ≤ Xi ≤ bi and

E[Xi] = µ. Then, for any t > 0

P (|X̄ − µ| ≥ t) ≤ 2 exp
(
− 2n2t2
∑N

i=1(bi − ai)2

)
,

where X̄n = n−1
∑

iXi. When a ≤ Xi ≤ b, this becomes

P (|X̄ − µ| ≥ t) ≤ 2 exp
(
− 2n2t2

(b− a)2

)
.

2.3 Basic stochastic processes

In this section, we will introduce the definitions, properties and theories of stochastic

processes which consists of stochastic processes, counting processes, poisson processes to

be used in this project.

Definition 2.32. A stochastic process is a collection of random variables X = {Xt | t ∈

T} defined on a common probability space (Ω,F , P ), i.e., Xt is a random variable for
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all t ∈ T . The index set T is called the parameter space, the set S containing all

possible values of Xt for t ∈ T is called the state space, and each member in S is called

a state. If T is a countable set, such as N and N ∪ {0}, then X is called a discrete-

time stochastic process. If T is an interval in R, then X is called a continuous-time

stochastic process.

Definition 2.33. Let X1, X2, . . . be independent and identically distributed (i.i.d.) ran-

dom variables and let N be a random variable taking values in {0, 1, 2, 3, . . .} which is

independent of {Xi}∞i=1. Let

SN = X1 +X2 + · · ·+XN =
N∑

i=1

Xi,

with SN = 0 if N = 0. The random variable SN is called a random sum. The

distribution of a random sum is said to be a compound distribution.

Definition 2.34. For a stochastic process X(t) and time s < t, the random variable

X(t)−X(s) is called an increment of the process, since it gives the increase (or decrease)

in the value over the period running from time s to t.

We say that the process has independent increments, if the increments over disjoint

time intervals are independent.

Definition 2.35. We say that the process has stationary increments, if the distri-

bution of any increment depends only on the length of the time interval and not the

particular starting point, i.e., given any h > 0 and time s and t, we require that

X(s+ h)−X(s) ∼ X(t+ h)−X(t).

Definition 2.36. A stochastic process {N(t) : t ≥ 0} is said to be a counting process,

if N(t) represents the total number of “events” that have occurred up to time t.

A counting process N(t) must satisfy:

1. N(t) ≥ 0 ∀t ≥ 0;

2. N(t) is integer-valued;

3. If 0 ≤ s < t, then N(s) ≤ N(t).
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For a counting process {N(t) : t ≥ 0} and s < t, N(t) − N(s) is the number of

events occurring in the time interval (s, t].

Definition 2.37. A counting process N(t) is called a Poisson process with rate λ, if

it has stationary and independent increments and if, for all t > 0,

N(t) ∼ Poi(λt) .

From the definition, a stochastic process N(t) is a Poisson process with rate λ > 0 if]]

1. N(0) = 0;

2. the process has independent increments;

3. for t ≥ 0 and s > 0, N(t+ s)−N(t) has a Poisson distribution with mean λs.

Lemma 2.1. [12] If we consider a very short interval of length ∆t, then the number of

arrivals in this interval has the same distribution as N(∆t). We can write

P (no event occurs in the interval) = P (N(∆t) = 0) = 1− α∆t+ o(∆t),

P (one event occurs in the interval) = P (N(∆t) = 1) = α∆t+ o(∆t),

P (more than one event occur in the interval) = P (N(∆t) ≥ 2) = o(∆t).

Definition 2.38. Let {N(t)}t≥0 be a Poisson process with parameter λ, and let {Yi}∞i=1

be a sequence of independent and identically distributed random variables, each with

distribution function F , independent of N(t) for all t > 0. We define a process {S(t)}t≥0

by

S(t) =

N(t)∑

i=1

Yi,

with S(t) = 0 when N(t) = 0. The process {S(t)}t≥0 is said to be a compound Poisson

process with Poisson parameter λ.
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Theorem 2.22. [12] A compound Poisson process S(t) has the following properties.

1. Expectation : E(S(t)) = λtE(Y ).

2. Variance : V ar(S(t)) = λtE(Y 2).

3. Moment generating function : MS(t)(z) = eλt(MY (z)−1).

4. For t > 0, the random variable S(t) has a compound Poisson distribution

1 with Poisson parameter λt.

5. The compound Poisson Process have stationary and independent increments.

Definition 2.39. Let M be any non-negative integer-value random variable and X1, X2, . . .

be i.i.d. Bernoulli random variables with parameter α (0 ≤ α ≤ 1). Then,

α ◦M =
M∑

i=1

Xi

is called the binomial thinning operator of M .

Theorem 2.23. [7] The binomial thinning operator in definition 2.39 has the following

property.

If M is a Poisson random variable with parameter λ, then α ◦ M is a Poisson

random variable with parameter αλ and α ◦M is called α-thinning.

Definition 2.40. A continuous-time stochastic process X(t) is a martingale, if

1. E(|X(t)|) < ∞ for all t > 0,

2. E(X(t) | X(u), 0 ≤ u ≤ s) = X(s) for all t ≥ s.

Definition 2.41. A random variable T is a stopping time with respect to the filtration

{Ft}, if {T ≤ t} ∈ Ft for all t ≥ 0.

Theorem 2.24. [13] The Martingale Stopping Time Theorem

Let {Zt} be a martingale and T a stopping time. If any one of the following

conditions holds:

1. T is bounded;

2. E[T ] < ∞, and there is an M < ∞ such that

E[|Zn+1 − Zn| | Z0, Z1, Z2, . . . , Zn] < M.
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Then,

E[ZT ] = E[Z0].

2.4 Basic risk theory

In this section, we will introduce the definitions, properties and theories of risk

theory which consists of compound sum, risk model to be used in this project.

Definition 2.42. The classical risk model is a model of total capital values, defined

by

U(t) = u + ct − S(t),

when

U(t) is the total capital values at time t,

u is the amount of initial reserves,

c is a constant rate of premium per unit of time,

S(t) is the aggregated claims up to time t,

such that

S(t) =

N(t)∑

i=1

Yi,

when

N(t) is the number of claims up to time t, which is a counting process,

{Yi}i≥1 is a sequence of the amount of the ith claims which are independent and

identically distributed (i.i.d.) random variables.

Definition 2.43. Ruin Time or Time of Ruin

Time of ruin T is the first time at which the surplus process become negative, defined by

T = inf{t ≥ 0 | U(t) < 0}.
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Definition 2.44. Ruin Probability or Probability of Ruin

Let ψ(u) be a ruin probability when the initial reserves u > 0. It is defined by

ψ(u) = P [ T < ∞ | U(0) = u ]

≡ P [ U(s) < 0 for some s ≥ 0 | U(0) = u ].

where T is the time of ruin.

Definition 2.45. Let ψ(u, t) be the probability of ruin at some point in the time interval

(0, t], given initial reserves u > 0. It is defined by

ψ(u, t) = P [ T < t | U(0) = u ]

≡ P [ U(s) < 0 for some s ∈ [0, t] | U(0) = u ].

Definition 2.46. Non-Ruin Probability or Probability of Survival

Let φ(u) be a survival probability when the initial reserves u > 0. It is defined by

φ(u) = P [ U(s) ≥ 0 for all s ≥ 0 | U(0) = u ].

Definition 2.47. Let φ(u, t) be the probability of survival at some point in the time

interval (0, t], given initial reserves u > 0. It is defined by

φ(u, t) = P [ U(s) ≥ 0 for all s ∈ [0, t] | U(0) = u ].

Remark 2.8. The ruin probability and the non-ruin probability have the following prop-

erties.

1. ψ(u) = 1− φ(u),

2. ψ(u, t) = 1− φ(u, t).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

RISK MODEL WITH CONSTANT

PREMIUMS AND SURRENDERS SUBJECT

TO DEPENDENCE THINNING

In this chapter, we study numerical approximations of a risk model with constant

premiums and surrenders subject to dependence thinning. In our study, we first introduce

the risk model and ruin probability and evaluate its properties. Then, we obtain formula

for numerical approximation of the ruin probability by using the Cramér approximation,

the Laplace transforms method, and the De Vylder Approximations. Moreover, perform

numerical studies to see performance of the three methods and compare them with the

Lundberg upper bound and the Monte Carlo approximation.

The organization of this chapter is as follows. Section 3.1 introduces the classical

risk model. Section 3.2 studies some properties of the risk model with constant premi-

ums and surrenders subject to dependence thinning. Section 3.3 derives the analytical

approximation of the ruin probability. Section 3.4 derives the Lundberg’s upper bound

of the ruin probability. Section 3.5 performs experimental simulations.

3.1 Introduction to the classical risk model

In this section, we will introduce the classical risk model and the ruin probability.

Definition 3.1. The classical risk model is the model of total capital values, defined by

U(t) = u + ct −
N(t)∑

i=1

Yi, (3.1)

when
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U(t) is the total capital values at time t,

u is the amount of initial reserves,

c is a constant rate of premium per unit of time,

N(t) is the number of claims up to time t, which is a Poisson process,

{Yi}i≥1 is a sequence of the amount of the ith claims which are independent and

identically distributed (i.i.d.) random variables.

The time to ruin, denoted by T , is defined as

T = inf{t ≥ 0 | U (t) < 0}. (3.2)

The ruin probability with an initial surplus u > 0, ψ (u), is

ψ (u) = P [ T < ∞ | U (0) = u ],

≡ P [ U(s) < 0 for some s ≥ 0 | U(0) = u ]. (3.3)

The non-ruin probability with an initial surplus u > 0, φ(u), is

φ(u) = P [ U(s) ≥ 0 for all s ≥ 0 | U(0) = u ]. (3.4)

From (3.3) and (3.4) we see that ψ(u) + φ(u) = 1.

3.2 The risk model with constant premiums and surrenders subject to

dependence thinning (CPST)

In this section, we introduce the risk model with constant premiums and surrenders

subject to dependence thinning, denoted as CPST. The concept of dependence thinning

arises from the fact that, in reality, the variance of the claim number following a Poisson

distribution exceeds the mean of the claim number. This occurs due to certain events

where the policyholder may not to claim for compensation in the event of an accident,

leading to a situation where the number of claims is lower than the actual number of

accidents. Similarly, the number of surrenders is lower than the actual number of contract
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cancellations. Therefore, we are interested in scenarios where the expectation number of

claims and surrenders is lower than the expectation number of premiums, as both values

depend on the number of premiums. This allows us to apply the thinning process.

The risk model consists of the initial capital, premiums, claims, and surrenders,

where premiums are assumed to be equal for all customers and surrenders represent the

amounts lost due to cancellation of the contract. In particular, the model is presented as

U(t) = u+ cN(t)−
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi, (3.5)

where u represents the initial capital, c is the constant rate of premium, N(t) is the

Poisson process with intensity λ > 0, denoting the number of premiums up to time t.

Particularly, N(t) ∼ Poisson(λt). N(t, p), where 0 < p < 1, is the p-thinning process of

N(t) denoting the number of claims up to time t. In particular, it is defined as
∑M(t)

i=1 Qi

where Qi are i.i.d. Bernoulli random variables with parameter p and M(t) is independent

and identically distributed with N(t). The individual claim size {Yi}∞i=1 is a sequence of

i.i.d. non-negative random variables with a cumulative distribution function G. N(t, q),

where 0 < q < 1, is the q-thinning process of N(t) denoting the number of surrenders

up to time t. The sequence of i.i.d. non-negative random variables {Zi}∞i=1 represents the

amount of the i-th payment of insurance policy with a cumulative distribution function H.

In addition, we suppose that {N(t)}t≥0, {N(t, p)}t≥0, {N(t, q)}t≥0, {Yi}∞i=1, and {Zi}∞i=1

are mutually independent.

In order to ensure the insurance company’s stable business, we assume that

E



 cN(t)−
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi



 > 0. (3.6)

Since

E



 cN(t)−
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi



 = E [cN(t)]− E




N(t,p)∑

i=1

Yi



− E




N(t,q)∑

i=1

Zi





= cλt − λptµY − λqtµZ ,
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the assumption becomes

c − pµY − qµZ > 0, (3.7)

which is called as the “net profit condition”.

Lemma 3.1. Define the profits process by {S(t); t ≥ 0} as

S(t) = cN(t)−
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi.

Then, the profits process S(t) has the following properties:

1. S(0) = 0,

2. E[S(t)] = [ cλ− λpµY − λqµZ ]t,

3. V ar[S(t)] =
(
cλ+ λpE[Y 2] + λqE[Z2]

)
t,

4. MS(t)(s) = exp {t [λ (esc − 1) + λp (MY (−s)− 1) + λq (MZ(−s)− 1)]} ,

5. {S(t); t ≥ 0} has stationary and independent increments.

Proof.

(1) Since N(t), N(t, p), N(t, q) are Poisson processes, N(0) = 0, N(0, p) = 0, and

N(0, q) = 0. Then,

S(0) = cN(0)−
N(0,p)∑

i=1

Yi −
N(0,q)∑

i=1

Zi,

= 0−
0∑

i=1

Yi −
0∑

i=1

Zi

= 0.
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(2) By the property of expectation

E[S(t)] = E [cN(t)]− E




N(t,p)∑

i=1

Yi



− E




N(t,q)∑

i=1

Zi



 .

From Theorem 2.22,

E[S(t)] = [ cλ− λpµY − λqµZ ]t.

(3) By the property of variance and the independence of Yi, Zi, N(t), N(t, p), and N(t, q),

V ar[S(t)] = V ar [cN(t)] + V ar




N(t,p)∑

i=1

Yi



+ V ar




N(t,q)∑

i=1

Zi



 .

From Theorem 2.22,

V ar[S(t)] =
(
cλ+ λpE[Y 2] + λqE[Z2]

)
t.

(4) We know that

MS(t)(s) = E[esS(t)].

By the independence property of the three terms of S(t),

MS(t)(s) = E
[
escN(t)

]
E
[
e−s

∑N(t,p)
i=1 Yi

]
E
[
e−s

∑N(t,q)
i=1 Zi

]
.

The three terms are computed as follows

1) E
[
escN(t)

]
= MN(t)(sc)

= eλt(e
sc−1).

2) E
[
e−s

∑N(t,p)
i=1 Yi

]
= M∑N(t,p)

i=1 Yi
(−s)

= GN(t,p) [MY (−s)]

= eλpt[MY (−s)−1].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

3) E
[
e−s

∑N(t,q)
i=1 Zi

]
= M∑N(t,q)

i=1 Zi
(−s)

= GN(t,q) [MZ(−s)]

= eλqt[MZ(−s)−1].

Therefore,

MS(t)(s) = exp {t [λ (esc − 1) + λp (MY (−s)− 1) + λq (MZ(−s)− 1)]} .

(5) Since N(t, p) has stationary increments and {Yi}∞i=1 is a sequence of i.i.d. non-negative

random variables, we get

N(t+h,p)∑

i=1

Yi −
N(t,p)∑

i=1

Yi is identically distributed as
N(t+h,p)−N(t,p)∑

i=1

Yi

and
N(t+h,p)−N(t,p)∑

i=1

Yi is identically distributed as
N(s+h,p)−N(s,p)∑

i=1

Yi.

Therefore,
N(t,p)∑

i=1

Yi has stationary increments.

To prove that the process has independent increments, let s1 < s2 ≤ s3 < s4.

Since N(t, p) has independent increments and {Yi}∞i=1 is a sequence of i.i.d. non-negative

random variables, we get

N(s2,p)∑

i=N(s1,p)+1

Yi is independent with
N(s4,p)∑

i=N(s3,p)+1

Yi.

Therefore,
N(t,p)∑

i=1

Yi has independent increments.

By the same technique, we can show that
N(t,q)∑

i=1

Zi has stationary and independent

increments. Thus, {S(t); t ≥ 0} has stationary and independent increments.
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3.3 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for the

CPST model (3.5). We will start by obtaining the integro-differential equation for the ruin

probability. Then we obtain an approximation of the ruin probability using the Cramér

approximation, the Laplace transforms method, and the De Vylder Approximations. To

obtain the three approximations, we first obtain the integro-differential equations stated

in Theorem 3.1 below.

Theorem 3.1. The ruin probability ψ(u) for risk model (3.5) satisfies the integro-

differential equation

ψ′(u) =
[p
c
+

q

c

]
ψ(u)− q

c
[1−H(u)]− p

c
[1−G(u)]

−p

c

∫ u

0
ψ(u− y) dG(y)− q

c

∫ u

0
ψ(u− z) dH(z), u ≥ 0,

(3.8)

where G and H are cumulative distribution functions of the individual claims sizes and

the amount of surrenders with probability density functions g and h, respectively.

Proof. To compute the non-ruin probability φ(u), we consider five different possible dis-

joint events of the number of premiums, the number of claims, and the number of sur-

renders during an infinitesimal period [0,∆t] as follows.

Case 1:

There is no premiums, no claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability

P (N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 0)

= P (N(∆t) = 0)P (N(∆t, p) = 0)P (N(∆t, q) = 0)

= (1− λ∆t+ o(∆t))(1− λp∆t+ o(∆t))(1− λq∆t+ o(∆t))

= 1− λ∆t− λp∆t− λq∆t+ o(∆t).
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Case 2:

There is no premiums, no claims, and one surrender in the interval when ∆t → 0.

The event occurs with the probability

P (N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 1)

= P (N(∆t) = 0)P (N(∆t, p) = 0)P (N(∆t, q) = 1)

= (1− λ∆t+ o(∆t))(1− λp∆t+ o(∆t))(λq∆t+ o(∆t))

= λq∆t+ o(∆t).

Case 3:

There is no premiums, one claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability

P (N(∆t) = 0, N(∆t, p) = 1, N(∆t, q) = 0)

= P (N(∆t) = 0)P (N(∆t, p) = 1)P (N(∆t, q) = 0)

= (1− λ∆t+ o(∆t))(λp∆t+ o(∆t))(1− λq∆t+ o(∆t))

= λp∆t+ o(∆t).

Case 4:

There is one premium, no claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability

P (N(∆t) = 1, N(∆t, p) = 0, N(∆t, q) = 0)

= P (N(∆t) = 1)P (N(∆t, p) = 0)P (N(∆t, q) = 0)

= (λ∆t+ o(∆t))(1− λp∆t+ o(∆t))(1− λq∆t+ o(∆t))

= λ∆t+ o(∆t).
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Case 5:

There are more than one event of premiums, claims, and surrenders combined in

the interval when ∆t → 0. The event occurs with the probability

P (N(∆t) +N(∆t, p) +N(∆t, q) > 1) = o(∆t).

From the law of total probability for discrete random variable in Definition 2.16, it follows

that

φ(u) = P [N(∆t) = 0]P [N(∆t, p) = 0]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 0]

+P [N(∆t) = 0]P [N(∆t, p) = 0]P [N(∆t, q) = 1]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 1]

+P [N(∆t) = 1]P [N(∆t, p) = 0]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 1, N(∆t, p) = 0, N(∆t, q) = 0]

+P [N(∆t) = 0]P [N(∆t, p) = 1]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 1, N(∆t, q) = 0]

+P [N(∆t) +N(∆t, p) +N(∆t, q) > 1]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) +N(∆t, p) +N(∆t, q) > 1].

Then

φ(u) = [1− λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 0]

+[1− λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][λq∆t+ o(∆t)]]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 1]

+[λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 1, N(∆t, p) = 0, N(∆t, q) = 0]

+[1− λ∆t+ o(∆t)][λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 1, N(∆t, q) = 0]

+o(∆t) · P [U(t) ≥ 0, ∀t > 0|N(∆t) +N(∆t, p) +N(∆t, q) > 1].
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By the properties of little-oh in Theorem 2.1 for ∆t → 0 and the law of total probability

for continuous random variable Yi and Zi in Definition 2.17.

φ(u) = (1− λ∆t− λp∆t− λq∆t) P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u]

+λq∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u− z] dH(z)

+λp∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u− y] dG(y)

+λ∆t P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u+ c] + o(∆t).

According to the concept of stationary, we can treat ∆t as a new start time. Therefore,

we can express U(∆t) as U(0). This implies that we are starting a new at ∆t and can

use U(0) as the starting point,

φ(u) = (1− λ∆t− λp∆t− λq∆t) P [U(t) ≥ 0, ∀t > 0 | U(0) = u]

+λq∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(0) = u− z] dH(z)

+λp∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(0) = u− y] dG(y)

+λ∆t P [U(t) ≥ 0, ∀t > 0 | U(0) = u+ c] + o(∆t).

Then, we get

φ(u) = (1− λ∆t− λp∆t− λq∆t) φ(u) + λq∆t

∫ u

0
φ(u− z) dH(z)

+λp∆t

∫ u

0
φ(u− y) dG(y) + λ∆tφ(u+ c) + o(∆t).

By the Taylor series expansion in φ(u + c) around x0 = u, particularly, φ(u + c) =

φ(u) + cφ′(u) + o(∆t) for ∆t → 0 , we get

−λ∆tφ′(u)c = −λp∆t φ(u)− λq∆t φ(u) + λq∆t

∫ u

0
φ(u− z) dH(z)

+λp∆t

∫ u

0
φ(u− y) dG(y) + o(∆t).

Dividing both sides by ∆t and letting ∆t approach to 0, we have

φ′(u) =
[p
c
+

q

c

]
φ(u)− p

c

∫ u

0
φ(u− y) dG(y)− q

c

∫ u

0
φ(u− z) dH(z), u ≥ 0. (3.9)
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Using the property that φ(u) = 1− ψ(u), we get

−ψ′(u) =
[p
c
+

q

c

]
−
[p
c
+

q

c

]
ψ(u)− p

c

∫ u

0
1 dG(y)− q

c

∫ u

0
1 dH(z)

+
p

c

∫ u

0
ψ(u− y) dG(y) +

q

c

∫ u

0
ψ(u− z) dH(z), u ≥ 0.

Therefore,

−ψ′(u) =
[p
c
+

q

c

]
−
[p
c
+

q

c

]
ψ(u)− p

c
G(u)− q

c
H(u)

+
p

c

∫ u

0
ψ(u− y) dG(y) +

q

c

∫ u

0
ψ(u− z) dH(z), u ≥ 0.

Thus,

ψ′(u) =
[p
c
+

q

c

]
ψ(u)− q

c
[1−H(u)]− p

c
[1−G(u)]

−p

c

∫ u

0
ψ(u− y) dG(y)− q

c

∫ u

0
ψ(u− z) dH(z), u ≥ 0.

Corollary 3.1. For risk model (3.5),

ψ(0) =
p

c
E[Y ] +

q

c
E[Z].

Proof. Integrate the integro-differential equations (3.9) over the interval (0, t) on u yields

∫ t

0
φ′(u) du =

[p
c
+

q

c

] ∫ t

0
φ(u) du− p

c

∫ t

0

∫ u

0
φ(u− y) dG(y) du

−q

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du. (3.10)

Consider −q

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du and the property of CDF H, we can show that

−q

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du =

q

c

∫ t

0

∫ u

0
φ(u− z) d[1−H(z)] du,

=
q

c

∫ t

0

(
φ(0)(1−H(u))− φ(u)

+

∫ u

0
(1−H(z))φ′(u− z) dz

)
du.
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Then,

−q

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du =

q

c

∫ t

0
φ(0)(1−H(u)) du− q

c

∫ t

0
φ(u) du

+
q

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du. (3.11)

By the same technique, we can show that

−p

c

∫ t

0

∫ u

0
φ(u− y) dG(y) du =

p

c

∫ t

0
φ(0)(1−G(u)) du− p

c

∫ t

0
φ(u) du

+
p

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du. (3.12)

Substituting (3.11) and (3.12) into (3.10), we get

∫ t

0
φ′(u) du =

q

c

∫ t

0
φ(0)(1−H(u)) du+

p

c

∫ t

0
φ(0)(1−G(u)) du

+
q

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du (3.13)

+
p

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du.

Consider q

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du, we can show that

q

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du =

q

c

∫ t

0

∫ t

z
(1−H(z))φ′(u− z) du dz,

=
q

c

∫ t

0
(1−H(z))

∫ t

z
φ′(u− z) d(u− z) dz.

Then,

q

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du =

q

c

∫ t

0
(1−H(z))φ(t− z) dz − q

c

∫ t

0
(1−H(z))φ(0) dz.

(3.14)
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By the same technique, we can show that

p

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du =

p

c

∫ t

0
(1−G(y))φ(t− y) dy − p

c

∫ t

0
(1−G(y))φ(0) dy.

(3.15)

Substituting (3.14) and (3.15) into (3.13), we get

φ(t)− φ(0) =
q

c

∫ t

0
(1−H(z))φ(t− z) dz +

p

c

∫ t

0
(1−G(y))φ(t− y) dy.

Letting t approach to ∞ and using the property that lim
u→∞

φ(u) = 1, we get,

1− φ(0) =
q

c

∫ ∞

0
(1−H(z)) dz +

p

c

∫ ∞

0
(1−G(y)) dy.

Since
∫ ∞

0
(1−H(z)) dz = E[Z] and

∫ ∞

0
(1−G(y)) dy = E[Y ], therefore,

1− φ(0) =
q

c
E[Z] +

p

c
E[Y ].

Using the property that φ(u) = 1− ψ(u), we get

ψ(0) =
q

c
E[Z] +

p

c
E[Y ].

3.3.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when

amounts of claims and surrenders follow exponential distributions. In particular, the

probability density functions of the claim sizes and premiums are

g(y) = ae−ay and h(z) = be−bz, y, z ≥ 0, (3.16)
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corresponding to CDF’s are G and H, respectively, in Theorem 3.1.

Theorem 3.2. For the risk model (3.5) where the amounts of claims size and surrenders

follow exponential distributions with parameters a and b, respectively, if the net profit

condition (3.7) is satisfied, then the Cramér approximation of the ruin probability ψC(u)

is

ψC(u) = C1e
r1u + C2e

r2u for all u ≥ 0, (3.17)

where C1, C2, r1, and r2 are as follows

C1 =
C11

CD
, C2 =

C21

CD
,

r1 =
−
[
1

a
+

1

b
− (p+ q)

acb

]
−

√
D

2

ab

,

1

r2 =
−
[
1

a
+

1

b
− (p+ q)

acb

]
+

√
D

2

ab

,

which

D =

[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]
,

C11 = −abcp+ bp2 − abcq + apq + bpq + aq2 − c(bp+ aq)r2,

C21 = abcp− bp2 + abcq − apq − bpq − aq2 + c(bp+ aq)r1,

and

CD = abc2(r1 − r2).

Proof.

Observe that CDF G and PDF g, satisfy dG(u) = g(u)du, as mentioned in Remark 2.2,
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including CDF H and PDF h.

Substituting the density functions of Yi and Zi with CDF’s are G and H, respectively,

into (3.8), we have

ψ′(u) =
[p
c
+

q

c

]
ψ(u)− q

c
[e−bu]− p

c
[e−au]− p

c

∫ u

0
ψ(u− y)ae−ay dy

− q

c

∫ u

0
ψ(u− z)be−bz dz. (3.18)

Differentiating the equation with respect to u, we have

ψ′′(u) =
[p
c
+

q

c

]
ψ′(u) +

pa

c
[e−au] +

qb

c
[e−bu] +

[
−qb

c
− pa

c

]
ψ(u)

+
pa

c

∫ u

0
ψ(u− y)ae−ay dy +

qb

c

∫ u

0
ψ(u− z)be−bz dz.

Multiplying the equation by 1

a
, we have

ψ′′(u)

a
=
[ p
ca

+
q

ca

]
ψ′(u) +

p

c
[e−au] +

qb

ca
[e−bu] +

[
− qb

ca
− p

c

]
ψ(u)

+
p

c

∫ u

0
ψ(u− y)ae−ay dy +

qb

ca

∫ u

0
ψ(u− z)be−bz dz. (3.19)

Adding the terms of each side of (3.19) and (3.18), we have

1
ψ′′(u)

a
+
(
1− p

ca
− q

ca

)
ψ′(u)

=

[
q

c
− qb

ca

]
ψ(u) +

[
qb

ca
− q

c

]
e−bu +

[
qb

ca
− q

c

] ∫ u

0
ψ(u− z)be−bz dz. (3.20)

Differentiating the equation with respect to u, we have

1
ψ′′′(u)

a
+
(
1− p

ca
− q

ca

)
ψ′′(u)

=

[
q

c
− qb

ca

]
ψ′(u)−

[
qb2

ca
− qb

c

]
e−bu+

[
qb2

ca
− qb

c

]
ψ(u)

−
[
qb2

ca
− qb

c

] ∫ u

0
ψ(u− z)be−bz dz.
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Multiplying the equation by 1

b
, we have

1
ψ′′′(u)

ab
+

(
1

b
− p

acb
− q

acb

)
ψ′′(u)

=
[ q
bc

− q

ca

]
ψ′(u)−

[
qb

ca
− q

c

]
e−bu+

[
qb

ca
− q

c

]
ψ(u) (3.21)

−
[
qb

ca
− q

c

] ∫ u

0
ψ(u− z)be−bz dz.

Adding the terms of each side of (3.21) and (3.20), we have

ψ′′′(u)

ab
+

(
1

a
− p

acb
− q

acb
+

1

b

)
ψ′′(u) +

[
1− p

ca
− q

bc

]
ψ′(u) = 0. (3.22)

The equivalent characteristic equation is

r3

ab
+

(
1

a
− p

acb
− q

acb
+

1

b

)
r2 +

[
1− p

ca
− q

bc

]
r = 0. (3.23)

Solving the equation, we obtain the three roots as

r1 =
−
[
1

a
+

1

b
− (p+ q)

acb

]
−

√
D

2

ab

,

1

r2 =
−
[
1

a
+

1

b
− (p+ q)

acb

]
+

√
D

2

ab

,

1

r3 = 0,

where

D =

[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]
.

Therefore, the general solution of ψ(u) is

ψ(u) = C1e
r1u + C2e

r2u + C3. (3.24)
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Since
D =

[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]

=

[
1

b
− 1

a
− (p− q)

acb

]2
+

4pq

a2b2c2
> 0.

Then, r1 and r2 are distinct real roots.

Since

1

a
+

1

b
− (p+ q)

acb
=

[
1

cb
+

1

ca

] [
c− p

a
− q

b

]
+

p

a2c
+

q

b2c
> 0, (3.25)

by the Vieta’s theorem in Theorem 2.2 and (3.23), we get

r1r2 =
1− p

ca
− q

bc
ab

> 0 (3.26)

and

r1 + r2 = −

[
1

a
+

1

b
− (p+ q)

acb

]

ab
< 0. (3.27)

From (3.26) and the net profit condition (3.7), we can see that r1 and r2 have the same

sign. From (3.27) and (3.25), we get

r1 < 0 and r2 < 0.

Next, once we know the values of r1 and r1, we will then determine the values of C1,

C2 and C3 for (3.24) by using the initial conditions follow as,

1. lim
u→∞

ψ(u) = 0, since r1, r2 < 0 which yields C3 = 0.

2. Substituting, ψ(0) = q

cb
+

p

ca
in (3.24), we get

C1 + C2 =
q

cb
+

p

ca
. (3.28)

3. Letting u = 0 in (3.18) and using ψ(u) from (3.24), we get

C1r1 + C2r2 =
[p
c
+

q

c

] [ q
cb

+
p

ca

]
− p

c
− q

c
. (3.29)
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Solving system of (3.28) and (3.29), we get

C1 =
C11

CD
and C2 =

C21

CD
,

where
C11 = −abcp+ bp2 − abcq + apq + bpq + aq2 − c(bp+ aq)r2,

C21 = abcp− bp2 + abcq − apq − bpq − aq2 + c(bp+ aq)r1,

CD = abc2(r1 − r2).

To calculate the approximated ruin probability using the Cramér approximation

described in (3.17), we can use the R programming for computation.

3.3.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace

transforms in conjunction with integral equation of ruin probability for the CPST model

(3.5).

Theorem 3.3. The Laplace transform of ruin probability ψ(u) for risk model (3.5) is

ψ∗(s) =
−p[1− g∗(s)]− q[1− h∗(s)] + csψ(0)

s [cs− p[1− g∗(s)]− q[1− h∗(s)]− q[1− h∗(s)]]
, (3.30)

where ψ(0) = q

c
E[Z] +

p

c
E[Y ] and g∗, h∗ are the Laplace transforms of probability density

functions for the amount of claims size g and surrender h, respectively.

Proof. Taking the Laplace transform of (3.8) and formula in Theorem 2.3, we get

sψ∗(s)− ψ(0) =
[p
c
+

q

c

]
ψ∗(s)− p

c

[
1

s
− g∗(s)

s

]
− q

c

[
1

s
− h∗(s)

s

]

−p

c
ψ∗(s)g∗(s)− q

c
ψ∗(s)h∗(s).
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Multiplying both sides by −cs, we have

−cs2ψ∗(s) + csψ(0) = −s [p+ q]ψ∗(s) + p [1− g∗(s)] + q [1− h∗(s)]

+ps ψ∗(s)g∗(s) + qs ψ∗(s)h∗(s).

Therefore,

−p [1− g∗(s)]− q [1− h∗(s)] + csψ(0) =
[
cs2 − s [p+ q] + qs h∗(s) + ps g∗(s)

]
ψ∗(s).

Thus,

ψ∗(s) =
−p [1− g∗(s)]− q [1− h∗(s)] + csψ(0)

s [cs− p [1− g∗(s)]− q [1− h∗(s)]]
.

Corollary 3.2. Assume the risk model described in (3.5) where the amount of claims

size and surrender follow exponential distributions according to (3.16), probability density

functions denoted as g and h, respectively, and with parameters a and b. If the net profit

condition given by (3.7) holds, then the Laplace transform of the ruin probability ψ(u) is

ψL (u) =
b2p+ a2q + (bp+ aq)s1

abc(s1 − s2)
es1u +

−b2p− a2q − (bp+ aq)s2
abc(s1 − s2)

es2u, (3.31)

where

s1 =
−ac− bc+ p+ q −

√
S

2c
,

1

s2 =
−ac− bc+ p+ q +

√
S

2c
,

and

S = (ac+ bc− p− q)2 − 4c(abc− bp− aq).
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Proof.

Substituting the Laplace transforms of the density functions of Yi and Zi with CDF’s are

G and H, respectively, into (3.30), we have

ψ∗(s) =

−p

[
1− a

s+ a

]
− q

[
1− b

s+ b

]
+ cs

[ p
ca

+
q

cb

]

s

(
cs− p

[
1− a

s+ a

]
− q

[
1− b

s+ b

]) .

Let R(s) = abc− bp− aq+ (ac+ bc− p− q)s+ cs2 and rearrange the equation for ψ∗(s),

we get

ψ∗(s) =
b2p+ a2q + (bp+ aq)s

abR(s)
. (3.32)

Let S = (ac+ bc− p− q)2 − 4c(abc− bp− aq). Then, S > 0.

Factoring R(s), we will obtain that

ψ∗(s) =
b2p+ a2q + (bp+ aq)s

abc(s− s1)(s− s2)
, (3.33)

where

s1 =
−ac− bc+ p+ q −

√
S

2c
,

s2 =
−ac− bc+ p+ q +

√
S

2c
.

Since S > 0, then s1 and s2 are distinct real roots.

Since

−ac− bc+ p+ q = −
[
1

b
+

1

a

]
(abc− bp− aq)− bp

a
− aq

b
< 0, (3.34)

by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get

s1s2 =
abc− bp− aq

c
> 0 (3.35)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

and

s1 + s2 =
−(ac+ bc− p− q)

c
< 0. (3.36)

From (3.35) and the net profit condition (3.7), we can see that s1 and s2 have the same

sign. From (3.36) and (3.34), we get

s1 < 0 and s2 < 0.

Applying partial fraction decomposition to (3.33) with respect to s, we obtain

ψ∗(s) =
b2p+ a2q + (bp+ aq)s1
abc(s1 − s2)(s− s1)

+
−b2p− a2q − (bp+ aq)s2

abc(s1 − s2)(s− s2)
. (3.37)

Taking the inverse Laplace transform (3.37) with respect to s, we obtain

ψL (u) =
b2p+ a2q + (bp+ aq)s1

abc(s1 − s2)
es1u +

−b2p− a2q − (bp+ aq)s2
abc(s1 − s2)(s− s2)

es2u.

It can be observed that the ruin probability of the Cramér approximation in (3.17)

Theorem 3.2 and the Laplace transforms in (3.31) Theorem 3.2 are equal. This can be

proven by showing that the formulas of both approximations yield the same value, as

mentioned in Remark 3.1.

Remark 3.1. For the amount of claims size and surrender follow exponential distributions

according to (3.16), probability density functions denoted as g and h, respectively, and

with parameters a and b. The ruin probability of the Cramér approximation ψC(u) (3.17)

and the Laplace transforms ψL (u) (3.31) yield the same value, for all u ≥ 0

ψC(u) = C1e
r1u + C2e

r2u,

ψL (u) =
b2p+ a2q + (bp+ aq)s1

abc(s1 − s2)
es1u +

−b2p− a2q − (bp+ aq)s2
abc(s1 − s2)

es2u,

where C1, C2, r1, r2, s1 and s2 are as follows

C1 =
−abcp+ bp2 − abcq + apq + bpq + aq2 − c(bp+ aq)r2

abc2(r1 − r2)
,
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C2 =
abcp− bp2 + abcq − apq − bpq − aq2 + c(bp+ aq)r1

abc2(r1 − r2)
,

r1 =

−
[
1

a
+

1

b
− (p+ q)

acb

]
−

√[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]

2

ab

,

1

r2 =

−
[
1

a
+

1

b
− (p+ q)

acb

]
+

√[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]

2

ab

,

1

s1 =
−ac− bc+ p+ q −

√
(ac+ bc− p− q)2 − 4c(abc− bp− aq)

2c
,

1

s2 =
−ac− bc+ p+ q +

√
(ac+ bc− p− q)2 − 4c(abc− bp− aq)

2c
.

Proof. We want to show that the various coefficients and constants have the same value

demonstrated as follows.

r1 =

−
[
1

a
+

1

b
− (p+ q)

acb

]
−

√[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]

2

ab

=
−ac− bc+ p+ q −

√
(ac+ bc− p− q)2 − 4c(abc− bp− aq)

2c

= s1,

r2 =

−
[
1

a
+

1

b
− (p+ q)

acb

]
+

√[
1

a
+

1

b
− (p+ q)

acb

]2
− 4

ab

[
1− p

ca
− q

bc

]

2

ab

=
−ac− bc+ p+ q +

√
(ac+ bc− p− q)2 − 4c(abc− bp− aq)

2c

= s2,
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and
C1 =

−abcp+ bp2 − abcq + apq + bpq + aq2 − c(bp+ aq)r2
abc2(r1 − r2)

=
−abp+ bp2

c − abq + apq
c + bpq

c + aq2

c − (bp+ aq)s2
abc(s1 − s2)

=
b2p+ a2q + (bp+ aq)s1

abc(s1 − s2)
,

C2 =
abcp− bp2 + abcq − apq − bpq − aq2 + c(bp+ aq)r1

abc2(r1 − r2)

=
abp− bp2

c + abq − apq
c − bpq

c − aq2

c + (bp+ aq)s1
abc(s1 − s2)

=
−b2p− a2q − (bp+ aq)s2

abc(s1 − s2)
.

Therefore,

ψC(u) = ψL (u).

To calculate the approximated ruin probability using the Laplace transform for

money amounts which follow exponential distributions described in (3.31), we can use

the MATLAB commands “partfrac” and “ilaplace” for computation.

In the case that the money amounts follow gamma distributions, we also use MAT-

LAB to calculate the approximated ruin probability. We use the general Laplace trans-

forms for the ruin probability (3.30) with gamma distributions instead of exponential

distributions.

3.3.3 The De-Vylder approximation

In this section, we consider the CPST (3.5) where claim sizes and surrenders follow

other distributions rather than exponential distributions. The method used in this topic

is the De-Vylder approximation which is to approximate the risk process by the classical

risk model where the numbers of premiums, claims, and surrenders are exponentially
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distributed. In particular, the model (3.5) is approximated by the risk model:

Ũ(t) = u+ c̃Ñ(t)−
Ñ(t,p̃)∑

i=1

Ỹi −
Ñ(t,q̃)∑

i=1

Z̃i, (3.38)

where Ỹi and Z̃i have exponential distributions with parameters ã and b̃, respectively.

Also, Ñ(t), Ñ(t, p̃), and Ñ(t, q̃) are Poisson processes with intensities λ̃, λ̃p̃, and λ̃q̃,

respectively.

Since in this risk model the process {Ũ(t)}t≥0 is determined by six parameters

λ̃, p̃, q̃, ã, b̃, and c̃, six equalities are required to determine these parameters. Therefore,

we need to compute the first six moments of Ũ(t) described in [17].

Theorem 3.4. For the risk model (3.5), let MY (s) and MZ(s) be the moment generating

functions of the random variables Yi and Zi, respectively. Then, for any s in the domain

of MU(t), we have

MU(t)(s) = exp
{
su+ tλ

(
M(s)− 1− p− q

)}
,

M ′
U(t)(s) = MU(t)(s)

(
u+ tλM ′(s)

)
,

M ′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)2
+ tλM ′′(s)

)
,

M ′′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)3
+ tλM ′′′(s) + 3tλ

(
u+ tλM ′(s)

)
M ′′(s)

)
,

M (4)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
4 + 6tλM ′′(s)

(
u+ tλM ′(s)

)2

+4tλM ′′′(s)
(
u+ tλM ′(s)

)
+ 3t2λ2 [M ′′(s)]2 + tλM (4)(s)

)
,

M (5)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)5
+ 10tλM ′′(s)

(
u+ tλM ′(s)

)3

+10tλM ′′′(s)
(
u+ tλM ′(s)

)2
+ 5tλM (4)(s)

(
u+ tλM ′(s)

)

+15t2λ2 [M ′′(s)]2
(
u+tλM ′(s)]

)
+10t2λ2M ′′(s)M ′′′(s)+tλM (5)(s)

)
,

M (6)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
6 + 15tλM ′′(s)

(
u+ tλM ′(s)

)4



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

+20tλM ′′′(s)
(
u+ tλM ′(s)

)3
+ 15tλM (4)(s)

(
u+ tλM ′(s)

)2

+45t2λ2 [M ′′(s)]2
(
u+ tλM ′(s)

)2
+ 6tλM (5)(s)

(
u+ tλM ′(s)

)

+60t2λ2
(
u+ tλM ′(s)

)
M ′′(s)M ′′′(s) + tλM (6)(s)

+15t2λ2M ′′(s)M (4)(s) + 10t2λ2 [M ′′′(s)]2 + 15t3λ3 [M ′′(s)]3
)
,

where M(s) = esc + pMY (−s) + qMZ(−s).

Proof. By the formula for the moment generating function of S(t) in Lemma 3.1, we have

MU(t)(s) = E[es(u+S(t))]

= exp {su+ tλ [(esc − 1) + p (MY (−s)− 1) + q (MZ(−s)− 1)]}

= exp
{
su+ tλ

(
M(s)− 1− p− q

)}
.

Differentiating with respect to s on both sides of the equation, we have that

M ′
U(t)(s) = exp

{
su+ tλ

(
M(s)− 1− p− q

)}
·
(
u+ tλM ′(s)

)

= MU(t)(s)
(
u+ tλM ′(s)

)
.

Consequently,

M ′′
U(t)(s) = MU(t)(s)tλM

′′(s) +M ′
U(t)(s)

(
u+ tλM ′(s)

)

= MU(t)(s)

((
u+ tλM ′(s)

)2
+ tλM ′′(s)

)
.

Straightforwardly, we can calculate M ′′′
U(t)(s),M

(4)
U(t)(s),M

(5)
U(t)(s) and M (6)

U(t)(s) and obtain

the following results.

M ′′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)3
+ tλM ′′′(s) + 3tλ

(
u+ tλM ′(s)

)
M ′′(s)

)
,

M (4)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
4 + 6tλM ′′(s)

(
u+ tλM ′(s)

)2

+4tλM ′′′(s)
(
u+ tλM ′(s)

)
+ 3t2λ2 [M ′′(s)]2 + tλM (4)(s)

)
,

M (5)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)5
+ 10tλM ′′(s)

(
u+ tλM ′(s)

)3

+10tλM ′′′(s)
(
u+ tλM ′(s)

)2
+ 5tλM (4)(s)

(
u+ tλM ′(s)

)
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+15t2λ2 [M ′′(s)]2
(
u+tλM ′(s)]

)
+10t2λ2M ′′(s)M ′′′(s)+tλM (5)(s)

)
,

M (6)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
6 + 15tλM ′′(s)

(
u+ tλM ′(s)

)4

+20tλM ′′′(s)
(
u+ tλM ′(s)

)3
+ 15tλM (4)(s)

(
u+ tλM ′(s)

)2

+45t2λ2 [M ′′(s)]2
(
u+ tλM ′(s)

)2
+ 6tλM (5)(s)

(
u+ tλM ′(s)

)

+60t2λ2
(
u+ tλM ′(s)

)
M ′′(s)M ′′′(s) + tλM (6)(s)

+15t2λ2M ′′(s)M (4)(s)+10t2λ2 [M ′′′(s)]2+15t3λ3 [M ′′(s)]3
)
.

For k ∈ {1, 2, . . . , 6}, since Mk
U(t)(s) is in the form of Mk(s), we can find the

equation for Mk(s) for k ∈ {1, 2, . . . , 6} from the Remark 3.2.

Remark 3.2. For n ∈ N, the nth derivative of the function M(s) = esc + pMY (−s) +

qMZ(−s) is given by

M (n)(s) = cnesc + (−1)npM (n)
Y (−s) + (−1)nqM (n)

Z (−s)

Corollary 3.3. For the risk model (3.5), we assume that Yi and Zi have finite first six

moments. Then, for all t ≥ 0, we have

E[U(t)] = u+ tλ
(
c− pE[Y ]− qE[Z]

)
,

E[U2(t)] = (E[U(t)])2 + tλ
(
c2 + pE[Y 2] + qE[Z2]

)
,

E[U3(t)] = (E[U(t)])3 + tλ
(
c3 − pE[Y 3]− qE[Z3]

)

+ 3tλE[U(t)]
(
c2 + pE[Y 2] + qE[Z2]

)
,

E[U4(t)] = (E[U(t)])4 + 6tλ
(
c2 + pE[Y 2] + qE[Z2]

)
(E[U(t)])2

+ 4tλ
(
c3 − pE[Y 3]− qE[Z3]

)
E[U(t)]

+ 3t2λ2
(
c2 + pE[Y 2] + qE[Z2]

)2

+ tλ
(
c4 + pE[Y 4] + qE[Z4]

)
,

E[U5(t)] = (E[U(t)])5 + 10tλ
(
c2 + pE[Y 2] + qE[Z2]

)
(E[U(t)])3

+ 10tλ
(
c3 − pE[Y 3]− qE[Z3]

)
(E[U(t)])2

+ 5tλ
(
c4 + pE[Y 4] + qE[Z4]

)
E[U(t)]

+ 15t2λ2
(
c2 + pE[Y 2] + qE[Z2]

)2
E[U(t)]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

+ 10t2λ2
(
c2 + pE[Y 2] + qE[Z2]

) (
c3 − pE[Y 3]− qE[Z3]

)

+ tλ
(
c5 − pE[Y 5]− qE[Z5]

)
,

E[U6(t)] = (E[U(t)])6 + 15tλ
(
c2 + pE[Y 2] + qE[Z2]

)
(E[U(t)])4

+ 20tλ
(
c3 − pE[Y 3]− qE[Z3]

)
(E[U(t)])3

+ 15tλ
(
c4 + pE[Y 4] + qE[Z4]

)
(E[U(t)])2

+ 45t2λ2
(
c2 + pE[Y 2] + qE[Z2]

)2
(E[U(t)])2

+ 6tλ
(
c5 − pE[Y 5]− qE[Z5]

)
E[U(t)]

+ 60t2λ2E[U(t)]
(
c2 + pE[Y 2] + qE[Z2]

) (
c3 − pE[Y 3]− qE[Z3]

)

+ tλ
(
c6 + pE[Y 6] + qE[Z6]

)

+ 15t2λ2
(
c2 + pE[Y 2] + qE[Z2]

) [
c4 + pE[Y 4] + qE[Z4]

]

+ 10t2λ2
(
c3 − pE[Y 3]− qE[Z3]

)2

+ 15t3λ3
(
c2 + pE[Y 2] + qE[Z2]

)3
.

Proof. Since E[Un(t)] = M (n)
U(t)(0) and M (n)(0) = cn + (−1)npE[Y n] + (−1)nqE[Zn]

for all n ∈ N, substituting s = 0 into the formulas in Theorem (3.4) yields the desired

results.

For the risk model (3.38) where Ỹi and Z̃i have exponential distributions with

parameters ã and b̃, respectively, let Ã =
1

ã
and B̃ =

1

b̃
so that the mean of Ỹi and Z̃i are

Ã and B̃, respectively. We will deal with parameters Ã and B̃ instead of ã and b̃ for the

sake of simplicity of the final formula.

Theorem 3.5. We can approximate the process {U(t)}t≥0 in the risk model (3.5) by

a process {Ũ(t)}t≥0 in the risk model (3.38) with parameters λ̃, p̃, q̃, Ã, B̃ and c̃ by

matching the first six moments, i.e., E[U(t)k] = E[Ũ(t)k] for k = 1, 2, . . . , 6. The desired

parameters λ̃, p̃, q̃, Ã, B̃ and c̃ can be solved from the system of equations:

λ̃ =
γ3 + 6γ1ÃB̃ + 3γ2

(
Ã+ B̃

)

c̃
(
c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

)) ,

1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

q̃ =
γ2 + 2γ1Ã− c̃

(
c̃+ 2Ã

)
λ̃

2B̃
(
B̃ − Ã

)
λ̃

,

1

p̃ =
λ̃c̃− γ1 − λ̃q̃B̃

λ̃Ã
,

and
F1 · γ4 = E11 · γ1 + E12 · γ2 + E13 · γ3,

F2 · γ5 = E21 · γ2 + E22 · γ3 + E23 · γ4,

F3 · γ6 = E31 · γ3 + E32 · γ4 + E33 · γ5,

where
F1 = c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

)
,

E11 = 6c̃ÃB̃
(
c̃2 + 12ÃB̃ + 4c̃

(
Ã+ B̃

))
,

E12 = 3
(
−24Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 4c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E13 = c̃3 − 24ÃB̃
(
Ã+ B̃

)
− 12c̃

(
Ã2 + ÃB̃ + B̃2

)
,

1

F2 = c̃2 + 12ÃB̃ + 4c̃
(
Ã+ B̃

)
,

E21 = 12c̃ÃB̃
(
c̃2 + 20ÃB̃ + 5c̃

(
Ã+ B̃

))
,

E22 = 4
(
−60Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 5c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E23 = c̃3 − 60ÃB̃
(
Ã+ B̃

)
− 20c̃

(
Ã2 + ÃB̃ + B̃2

)
,

1

F3 = c̃2 + 20ÃB̃ + 5c̃
(
Ã+ B̃

)
,

E31 = 20c̃ÃB̃
(
c̃2 + 30ÃB̃ + 6c̃

(
Ã+ B̃

))
,

E32 = 5
(
−120Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 6c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E33 = c̃3 − 120ÃB̃
(
Ã+ B̃

)
− 30c̃

(
Ã2 + ÃB̃ + B̃2

)
,

and
γ1 = λ (c− pE[Y ]− qE[Z]) ,

γ2 = λ
(
c2 + pE[Y 2] + qE[Z2]

)
,

γ3 = λ
(
c3 − pE[Y 3]− qE[Z3]

)
,

γ4 = λ
(
c4 + pE[Y 4] + qE[Z4]

)
,

γ5 = λ
(
c5 − pE[Y 5]− qE[Z5]

)
,

γ6 = λ
(
c6 + pE[Y 6] + qE[Z6]

)
.
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Proof. Taking the k-th moment of the random variable that are exponentially distributed

into the equation E[U(t)k] = E[Ũ(t)k], we have the system of equations

γ1 = λ̃c̃− λ̃p̃Ã− λ̃q̃B̃, (3.39)

γ2 = λ̃c̃2 + 2λ̃p̃Ã2 + 2λ̃q̃B̃2, (3.40)

γ3 = λ̃c̃3 − 6λ̃p̃Ã3 − 6λ̃q̃B̃3, (3.41)

γ4 = λ̃c̃4 + 24λ̃p̃Ã4 + 24λ̃q̃B̃4, (3.42)

γ5 = λ̃c̃5 − 120λ̃p̃Ã5 − 120λ̃q̃B̃5, (3.43)

γ6 = λ̃c̃6 + 720λ̃p̃Ã6 + 720λ̃q̃B̃6. (3.44)

Now, our aim is to find the constants λ̃, p̃, q̃, B̃, Ã and c̃ from this system. From

(3.39), we have λ̃p̃Ã = λ̃c̃− γ1 − λ̃q̃B̃. Substituting this into (3.40)–(3.44), we get

γ2 = −2γ1Ã+ c̃
(
c̃+ 2Ã

)
λ̃+ 2B̃

(
B̃ − Ã

)
λ̃q̃, (3.45)

γ3 = 6γ1Ã
2 + c̃

(
c̃2 − 6Ã2

)
λ̃+ 6B̃

(
Ã2 − B̃2

)
λ̃q̃, (3.46)

γ4 = −24γ1Ã
3 + c̃

(
c̃3 + 24Ã3

)
λ̃+ 24B̃

(
B̃3 − Ã3

)
λ̃q̃, (3.47)

γ5 = 120γ1Ã
4 + c̃

(
c̃4 − 120Ã4

)
λ̃+ 120B̃

(
Ã4 − B̃4

)
λ̃q̃, (3.48)

γ6 = −720γ1Ã
5 + c̃

(
c̃5 + 720Ã5

)
λ̃+ 720B̃

(
B̃5 − Ã5

)
λ̃q̃. (3.49)

Next, from (3.45) we have 2B̃
(
B̃ − Ã

)
λ̃q̃ = γ2 + 2γ1Ã− c̃

(
c̃+ 2Ã

)
λ̃. Substituting this

into (3.46)–(3.49), we obtain

γ3 = −6γ1ÃB̃ − 3γ2
(
Ã+ B̃

)
+ c̃

(
c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

))
λ̃, (3.50)

γ4 = 24γ1ÃB̃
(
Ã+ B̃

)
+ 12γ2

(
Ã2 + ÃB̃ + B̃2

)

+c̃
(
c̃3 − 24ÃB̃

(
Ã+ B̃

)
− 12c̃

(
Ã2 + ÃB̃ + B̃2

))
λ̃,

(3.51)
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γ5 = −120γ1ÃB̃
(
Ã2 + ÃB̃ + B̃2

)
− 60γ2

(
Ã+ B̃

)(
Ã2 + B̃2

)

+c̃
(
c̃4 + 120ÃB̃

(
Ã2 + ÃB̃ + B̃2

)
+ 60c̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))
λ̃,

(3.52)

γ6 = 720γ1ÃB̃
(
Ã+ B̃

)(
Ã2 + B̃2

)
+ 360γ2

(
Ã4 + Ã3B̃ + Ã2B̃2 + ÃB̃3 + B̃4

)

+c̃
[
c̃5 − 720ÃB̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

)
− 360c̃

(
Ã4 + Ã3B̃ + Ã2B̃2 + ÃB̃3 + B̃4

)]
.

(3.53)

Next, from (3.50) we have c̃
(
c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

))
λ̃ = γ3 + 6γ1ÃB̃ + 3γ2

(
Ã+ B̃

)
.

Substituting this into (3.51)–(3.53), we obtain

F1γ4 = 6c̃ÃB̃
(
c̃2 + 12ÃB̃ + 4c̃

(
Ã+ B̃

))
γ1

+3
(
−24Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 4c̃2

(
Ã2 + ÃB̃ + B̃2

))
γ2

+
(
−24ÃB̃

(
Ã+ B̃

)
+ c̃3 − 12c̃

(
Ã2 + ÃB̃ + B̃2

))
γ3,

(3.54)

F1γ5 = 6c̃ÃB̃
(
c̃3 − 60ÃB̃

(
Ã+ B̃

)
− 20c̃

(
B̃2 + ÃB̃ + B̃2

))
γ1

+3
(
Ã+ B̃

)(
c̃4 − 20c̃2Ã2 − 20c̃2B̃2 + 120Ã2B̃2

)
γ2

+
(
c̃4 + 120ÃB̃

(
Ã2 + ÃB̃ + B̃2

)
+ 60c̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))
γ3,

(3.55)

F1γ6 = 6c̃ÃB̃
(
c̃4 + 360ÃB̃

(
B̃2 + ÃB̃ + B̃2

)
+ 120c̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))
γ1

+3
(
c̃5
(
Ã+ B̃

)
− 720Ã2B̃2

(
Ã2 + ÃB̃ + B̃2

)

+120c̃2
(
Ã4 + Ã3B̃ + Ã2B̃2 + ÃB̃3 + B̃4

))
γ2

+
(
c̃5 + 720ÃB̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

)

−360c̃
(
Ã4 + Ã3B̃ + Ã2B̃2 + ÃB̃3 + B̃4

))
γ3.

(3.56)

Multiplying (3.54) by
−
(
c̃3 − 60ÃB̃

(
Ã+ B̃

)
− 20c̃

(
Ã2 + ÃB̃ + B̃2

))

F2
and adding (3.55),
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we get

F2γ5 = 12c̃ÃB̃
(
c̃2 + 20ÃB̃ + 5c̃

(
Ã+ B̃

))
γ2

+4
(
−60Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 5c̃2

(
Ã2 + ÃB̃ + B̃2

))
γ3

+
(
c̃3 − 60ÃB̃

(
Ã+ B̃

)
− 20c̃

(
Ã2 + ÃB̃ + B̃2

))
γ4.

(3.57)

Multiplying (3.54) by
−
(
c̃4 + 360ÃB̃

(
Ã2 + ÃB̃ + B̃2

)
+ 120c̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))

F2
and adding (3.56), we get

F2γ6 = 12c̃ÃB̃
(
c̃3 − 120ÃB̃

(
Ã+ B̃

)
− 30c̃

(
Ã2 + ÃB̃ + B̃2

))
γ2

+4
(
c̃4
(
Ã+ B̃

)
+ 360Ã2B̃2

(
Ã+ B̃

)
− 30c̃2

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))
γ3

+
(
c̃4 + 360ÃB̃

(
Ã2 + ÃB̃ + B̃2

)
+ 120c̃

(
Ã3 + Ã2B̃ + ÃB̃2 + B̃3

))
γ4.

(3.58)

Multiplying (3.57) by
−
(
c̃3 − 120ÃB̃

(
Ã+ B̃

)
− 30c̃

(
Ã2 + ÃB̃ + B̃2

))

F3
and adding (3.58),

we get

F3γ6 = 20c̃ÃB̃
(
c̃2 + 30ÃB̃ + 6c̃

(
Ã+ B̃

))
γ3

+5
(
−120Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 6c̃2

(
Ã2 + ÃB̃ + B̃2

))
γ4

+
(
c̃3 − 120ÃB̃

(
Ã+ B̃

)
− 30c̃

(
Ã2 + ÃB̃ + B̃2

))
γ5.

(3.59)

Hence, we get the desired system of equations.

Theorem 3.6. The De-Vylder approximation

For the risk model (3.5) under assumptions that Yi and Zi have finite sixth moments and

that the net profit condition (3.7) holds, the De-Vylder approximation of ruin probability

ψDe(u) is given by

ψDe(u) = C1e
r1u + C2e

r2u for all u ≥ 0, (3.60)

where
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r2 =
A+

√
D

B , r1 =
A−

√
D

B ,

1

A = −
[
Ã+ B̃ − ÃB̃(p̃+ q̃)

c̃

]
,

1

B = 2ÃB̃,

1

D =

[
Ã+ B̃ − ÃB̃(p̃+ q̃)

c̃

]2
− 4ÃB̃

[
1− p̃Ã

c̃
− q̃B̃

c̃

]
,

1

C1 =
C11

CD
, C2 =

C21

CD
,

which
C11 = − c̃p̃

ÃB̃
+

p̃2

B̃
− cq̃

ÃB̃
+

p̃q̃

Ã
+

p̃q̃

B̃
+

q̃2

Ã
− c̃

(
p̃

B̃
+

q̃

Ã

)
r2,

C21 =
c̃p̃

ÃB̃
− p̃2

B̃
+

cq̃

ÃB̃
− p̃q̃

Ã
− p̃q̃

B̃
− q̃2

Ã
+ c̃

(
p̃

B̃
− q̃

Ã

)
r1,

CD =
c̃2(r1 − r2)

ÃB̃
,

and the constants λ̃, p̃, q̃, Ã, B̃ and c̃ are obtained from solving the system of equations

stated in Theorem 3.5 which have the following values:

λ̃ =
γ3 + 6γ1ÃB̃ + 3γ2

(
Ã+ B̃

)

c̃
(
c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

)) ,

1

q̃ =
γ2 + 2γ1Ã− c̃

(
c̃+ 2Ã

)
λ̃

2B̃
(
B̃ − Ã

)
λ̃

,

1

p̃ =
λ̃c̃− γ1 − λ̃q̃B̃

λ̃Ã
,

and Ã, B̃ and c̃ are obtained from solving the system of equations

F1 · γ4 = E11 · γ1 + E12 · γ2 + E13 · γ3,

F2 · γ5 = E21 · γ2 + E22 · γ3 + E23 · γ4,

F3 · γ6 = E31 · γ3 + E32 · γ4 + E33 · γ5,
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where
F1 = c̃2 + 6ÃB̃ + 3c̃

(
Ã+ B̃

)
,

E11 = 6c̃ÃB̃
(
c̃2 + 12ÃB̃ + 4c̃

(
Ã+ B̃

))
,

E12 = 3
(
−24Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 4c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E13 = c̃3 − 24ÃB̃
(
Ã+ B̃

)
− 12c̃

(
Ã2 + ÃB̃ + B̃2

)
,

1

F2 = c̃2 + 12ÃB̃ + 4c̃
(
Ã+ B̃

)
,

E21 = 12c̃ÃB̃
(
c̃2 + 20ÃB̃ + 5c̃

(
Ã+ B̃

))
,

E22 = 4
(
−60Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 5c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E23 = c̃3 − 60ÃB̃
(
Ã+ B̃

)
− 20c̃

(
Ã2 + ÃB̃ + B̃2

)
,

1

F3 = c̃2 + 20ÃB̃ + 5c̃
(
Ã+ B̃

)
,

E31 = 20c̃ÃB̃
(
c̃2 + 30ÃB̃ + 6c̃

(
Ã+ B̃

))
,

E32 = 5
(
−120Ã2B̃2 + c̃3

(
Ã+ B̃

)
+ 6c̃2

(
Ã2 + ÃB̃ + B̃2

))
,

E33 = c̃3 − 120ÃB̃
(
Ã+ B̃

)
− 30c̃

(
Ã2 + ÃB̃ + B̃2

)
,

and
γ1 = λ (c− pE[Y ]− qE[Z]) ,

γ2 = λ
(
c2 + pE[Y 2] + qE[Z2]

)
,

γ3 = λ
(
c3 − pE[Y 3]− qE[Z3]

)
,

γ4 = λ
(
c4 + pE[Y 4] + qE[Z4]

)
,

γ5 = λ
(
c5 − pE[Y 5]− qE[Z5]

)
,

γ6 = λ
(
c6 + pE[Y 6] + qE[Z6]

)
.

To calculate the approximated ruin probability using the De-Vylder approximation

described in (3.60), we can use the MATLAB commands “solve” for computation.

3.4 Lundberg’s inequality

In this section, we will study the martingale and stopping time. This will allow us

to find the adjustment coefficient equation, Lundberg’s inequality for the ruin probability,

which it can be used to create as Lemma, Theorem and Corollary.
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Theorem 3.7. For the profits process {S(t); t ≥ 0},

E[e−rS(t)] = etg(r), (3.61)

where

g(r) = −λ
[
1− e−rc

]
− λp [1−MY (r)]− λq [1−MZ(r)] . (3.62)

Proof. Since Yi, Zi, N(t), N(t, p) and N(t, q) are mutually independent,

E
[
e−rS(t)

]
= E



exp{−rcN(t)} · exp{r
N(t,p)∑

i=1

Yi} · exp{r
N(t,q)∑

i=1

Zi}





= E [exp{−rcN(t)}] · E



exp{r
N(t,p)∑

i=1

Yi}



 · E



exp{r
N(t,q)∑

i=1

Zi}



 .

By definition of MGF in Definition 2.24 and Theorem 2.22, we get

E
[
e−rS(t)

]
= MN(t)(−rc) ·M∑N(t,p)

i=1 Yi
(r) ·M∑N(t,q)

i=1 Zi
(r)

= e−λt[1−e−rc]e−λpt[1−MY (r)]e−λqt[1−MZ(r)]

= exp {t (−λ [1− e−rc]− λp [1−MY (r)]− λq [1−MZ(r)])} .

Therefore,

E[e−rS(t)] = etg(r),

where

g(r) = −λ
[
1− e−rc

]
− λp [1−MY (r)]− λq [1−MZ(r)] .

Then, we obtain (3.61).

Theorem 3.8. Equation

g(r) = 0 (3.63)
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has a unique positive solution r = R > 0, we can call (3.63) is said to be an adjustment

coefficient equation of the risk model (3.5), with R > 0 is said to be an adjustment

coefficient.

Proof. We will show that the adjustment coefficient equation has the unique positive

solution, by proving the following properties of g(r).

(1) g(0) = 0,

(2) g′(0) < 0,

(3) g′′(r) > 0 for all r > 0,

(4) lim
r→+∞

g(r) = ∞.

From the definition of MGF in Definition 2.24, MY (0) = 1 and MZ(0) = 1, we get

(1) From (3.62), then g(0) = 0.

(2) From (3.62), then

g′(r) = −λce−rc + λpE[Yie
rYi ] + λqE[Zie

rZi ]. (3.64)

Therefore,

g′(0) = −λc+ λpE[Yi] + λqE[Zi].
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From net profit condition (3.7), we get

g′(0) = −λc+ λpE[Yi] + λqE[Zi],

< −λc+ λc = 0.

Therefore, g′(0) < 0.

(3) Let r > 0. Due to the explanation of g′(r) in (3.64), we have that

g′′(r) = λc2e−rc + λpE[Y 2
i e

rYi ] + λqE[Z2
i e

rZi ].

Since Yi, Zi are non-negative random variables and r > 0,

c2e−rc > 0, E[Y 2
i e

rYi ] ≥ 0 and E[Z2
i e

rZi ] ≥ 0.

Therefore,

g′′(r) = λc2e−rc + λpE[Y 2
i e

rYi ] + λqE[Z2
i e

rZi ] > 0.

Thus,

g′′ (r) > 0 for all r > 0.

(4) Since (3.62) and the definition of MGF in Definition 2.24,

lim
r→+∞

g(r) = − lim
r→+∞

λ
[
1− e−rc

]
− lim

r→+∞
λp [1−MY (r)]

− lim
r→+∞

λq [1−MZ(r)] .

Since lim
r→+∞

e−rc = 0, lim
r→+∞

MY (r) = ∞, and lim
r→+∞

MZ(r) = ∞,

lim
r→+∞

g(r) = ∞.

To determine the value of R based in the theory, it can be obtained as the unique

positive solution of g(r) = 0, as indicated in Theorem 3.8. The function g(r) is determined
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by (3.62). In practical applications, we will use the R command “uniroot” to compute

the value of adjustment coefficient R.

For the profits process {S(t); t ≥ 0}, let FS
t = σ{S(v); v ≤ t} be a filtration.

Theorem 3.9. The random process {Hu(t); FS
t ; t ≥ 0} is a martingale,

where Hu(t) =
e−r(u+S(t))

etg(r)
.

Proof. Let v < t, we will show that E[Hu(t) | FS
v ] = Hu(v).

Consider

E[Hu(t) | FS
v ] = E

[
e−r(u+S(t))

etg(r)

∣∣∣∣∣ F
S
v

]

= E

[
e−r(u+S(t))

etg(r)
· e

−rS(v)+rS(v)

evg(r)−vg(r)

∣∣∣∣∣ F
S
v

]

= E

[
e−r(u+S(v))

evg(r)
· e

−r(S(t)−S(v))

e(t−v)g(r)

∣∣∣∣∣ F
S
v

]

=
e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t)−S(v)) | FS

v ]. (3.65)

Consider

S(t)− S(v) = c[N(t)−N(v)]−
N(t,p)∑

i=N(v,p)+1

Yi −
N(t,q)∑

i=N(v,q)+1

Zi.

Since Yi, Zi are i.i.d. and N(t) is stationary increment, we get

S(t)− S(v)
d∼= c[N(t)−N(v)]−

N(t,p)−N(v,p)∑

i=1

Yi −
N(t,q)−N(v,q)∑

i=1

Zi

d∼= c[N(t− v)]−
N(t−v,p)∑

i=1

Yi −
N(t−v,q)∑

i=1

Zi

= S(t− v).

Therefore, (3.65) is become

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t−v))|FS

v ].
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Since S(t− v) and FS
v are mutually independent and Theorem 2.18,

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t−v))].

From Theorem 3.7, we get

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· e(t−v)g(r)

= Hu(v).

Therefore,

E[Hu(t)|FS
v ] = Hu(v),

i.e., the random process Hu(t) is a martingale.

Lemma 3.2. The ruin time T is the stopping time of FS
t .

Proof. Let T be the ruin time where U(T ) < 0 and FS
t = σ{S(v); v ≤ t}.

From (3.5) and Lemma 3.1, then

U(t) = u+ S(t).

Since FS
t or σ − algebra generated by random process S(v) from time 0 to t occurs, it

gives information S(t) from time 0 to t.

Hence, event {T ≤ t} is a member of FS
t .

Therefore,

T is the stopping time of FS
t .

Theorem 3.10. For the surplus process {U(t); t ≥ 0}, the ruin probability ψ(u) satisfies

Lundberg inequality:

ψ(u) ≤ e−Ru , u ≥ 0, (3.66)
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where R is adjustment coefficient.

Proof. Let T be the ruin time, t0 > 0 be a fixed time and t0∧T = min(t0, T ), then t0∧T

is a stopping time. Hence, t0 ∧ T is a bounded stopping time.

From, Hu(t) =
e−r(u+S(t))

etg(r)
and Lemma 3.1, then

e−ru = E[Hu(0)].

By Theorem 2.24 (The Martingale Stopping Time Theorem), we have that

E[Hu(0)] = E[Hu(T ∧ t0)].

Therefore,

e−ru = E[Hu(T ∧ t0)].

Since

T ∧ t0 = min(T, t0) =





T, if T ≤ t0,

t0, if T > t0,

E[Hu(T ∧ t0)] = E[Hu(T ∧ t0) · [1T≤t0 + 1T>t0 ]]

= E[Hu(T ∧ t0) · 1T≤t0 ] + E[Hu(T ∧ t0) · 1T>t0 ]

= E[Hu(T )|T ≤ t0] · P (T ≤ t0) + E[Hu(t0)|T > t0] · P (T > t0).

Let r = R. Therefore,

e−Ru = E[e−RU(T )|T ≤ t0] · P (T ≤ t0) + E[e−RU(t0)|T > t0] · P (T > t0). (3.67)

By the fact that 0 ≤ E[e−RU(t0)|T > t0] ≤ 1 and Theorem 2.20 (Markov’s inequality),

we obtain

lim
t0→∞

[
E[e−RU(t0)|T > t0] · P (T > t0)

]
= 0.
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From (3.67), we get that

lim
t0→∞

e−Ru = lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0) + E[e−RU(t0)|T > t0] · P (T > t0)

]

= lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0)

]
+ lim

t0→∞

[
E[e−RU(t0)|T > t0] · P (T > t0)

]

= lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0)

]
.

Then,
e−Ru = E[e−RU(T )|T ≤ ∞] · P (T ≤ ∞)

= E[e−RU(T )|T ≤ ∞] · ψ(u).

Hence,

ψ(u) =
e−Ru

E[e−RU(T )|T ≤ ∞]
. (3.68)

Since U(T ) < 0, we have that 1

e−RU(T )
< 1.

From (3.68), we have that

ψ(u) =
e−Ru

E[e−RU(T ) | T < ∞]
<

e−Ru

E[ 1 |T < ∞]
= e−Ru.

Therefore,

ψ(u) ≤ e−Ru.

3.5 Experimental simulations

In this section, we perform numerical studies to investigate performance of the

analytical approximation of the risk model CPST. The studies are divided into three

parts. The first part discussed in Section 3.5.1 introduces the statistical estimation for

the ruin probability ψ̂t(u) by using the Monte Carlo methods. The second part in Section

3.5.2 studies numerical approximation to the ruin probability when the amounts of claims

and surrenders follows an exponential distribution by using the analytical solution such as

the Cramér approximation and the Laplace transform comparing with the Monte Carlo

approximation and the Lundberg’s Upper bound. The third part focuses on the numerical
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approximation to the ruin probability when the amounts of claims and surrenders follows

gamma distributions by using the De-Vylder approximation and the Laplace transform

comparing with the Monte Carlo approximation and the Lundberg’s Upper bound.

3.5.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability ψ̂t(u) derived

by the direct simulation of the surplus process using the Monte Carlo methods in order

to evaluate the result of the approximations suggested in this chapter.

The concept of the Monte Carlo method is to generate a lot of sample paths for

the stochastic process of interest and find the average value of the interest aspect of the

process. We will perform the Monte Carlo simulation described in [9]. Let N be the

total number of realizations of the process U(t). We can calculate the average value of

the process U(t) when each ruin occurs at the time point t, consequently, we obtain the

corresponding statistical estimate ψ̂t(u) for the ruin probability ψ(u). The Monte Carlo

estimation is obtained as

ψ̂t(u) =
1

N

N∑

i=1

I{Ui(t)<0|Ui(0)=u},

where t is a fixed time point and N is the sample size. As N → ∞ and t → ∞, by

the law of large numbers, ψ̂t(u) converges to ψ(u). The time points considered here are

t = 1, 5, 50, and 100, and the sample size of the Monte Carlo method is N = 200,000.

The parameters of the model studied in this section are as follows. The initial capital u

varies in {0, 1, 2, 3, 5, 7, 10} and the constant rate of premiums is c = 0.2. The parameter

of the Poisson counting process of premium is λ = 10. The thinning parameters of claims

and surrenders are 0.4 and 0.3, respectively.

3.5.2 Exponential distributions for the claim sizes and surrender

Let the probability density functions of the amounts of claims Yi and the amount
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of surrenders Zi are

g(y) = ae−ay and h(z) = be−bz , y, z ≥ 0,

where a = 4, b = 6, respectively.

For the Cramer approximation, substituting a = 4, b = 6, c = 0.2, p = 0.4, and q = 0.3

into the formula of r1 and r2 in (3.17), we get r1 = −5.386001 and r2 = −1.113999,

respectively. Consequently, C1 = 0.009246 and C2 = 0.740753. Therefore, the Cramér

approximation ψC(u) is

ψC(u) = 0.009246e−5.386001u + 0.740753e−1.113999u for all u ≥ 0. (3.69)

For the Laplace approximation, substituting a = 4, b = 6, c = 0.2, p = 0.4, and

q = 0.3 into the formula in (3.32), we get S = 0.73. Consequently, s1 = −5.386001,

s2 = −1.113999. Therefore, the Laplace approximation ψL is

ψL (u) = 0.740753e−1.113999u + 0.009246e−5.386000u for all u ≥ 0. (3.70)

For the upper bound approximation, substituting a = 4, b = 6, c = 0.2, p = 0.4, and

q = 0.3 into g(r) in Theorem 3.7 and solve for the unique positive solution g(r) = 0 by

using the R programming to compute the value of R, we have R = 0.831038. Then, from

Theorem 3.10, the upper bound of the ruin probability is

ψ(u) ≤ e−0.831038u. (3.71)
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The numerical approximations obtained in (3.69)–(3.71) for different values of
the initial capital u is given in Table 3.1.

u

ψ(u)

Statistical estimate ψ̂(u) Numerical approx.
ψC(u)/ψL (u)

Upper bound
e−Ru

t = 1 t = 5 t = 50 t = 100

0 0.295615 0.438440 0.472175 0.472180 0.750000 1.000000
1 0.079915 0.190715 0.229500 0.229515 0.243190 0.435596
2 0.014650 0.069690 0.101090 0.101105 0.079811 0.189744
3 0.001985 0.023840 0.044430 0.044440 0.026197 0.082652
5 0.000015 0.002020 0.008170 0.008180 0.002822 0.015682
7 0.000000 0.000135 0.001595 0.001605 0.000304 0.002975
10 0.000000 0.000000 0.000130 0.000135 0.000010 0.000245

Table 3.1: Numerical approximations of the CPST risk model with exponential distri-
butions.

Figure 3.1: Graph of initial reserve u and the ruin probability of the CPST risk model
with exponential distributions.

From Table 3.1, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases. Notice that the Monte Carlo approximations

ψ̂t(u) do not have the same value as our approximations. Besides, we can observe that the

ruin probability ψ̂t(u) increases as t increases, the Monte Carlo approximation converges

to our approximations, and it is less than the upper bound. Therefore, the Monte Carlo
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approximation is consider to be a good option. However, in practical situations, the

exact value of the ruin probability is unknown; therefore, it is impossible to determine

how high the value of t should be in order to make ψ̂t(u) close to the exact value of the

ruin probability as one desires. Consequently, our approximations are better than the

Monte Carlo approximation regarding real usage.

Also, we can see that the Cramér approximations and the Laplace approximations

fall between the Monte Carlo approximation of ruin probability ψ̂t(u) and the upper

bound which is reasonable, since the Cramér and the Laplace approximations are a type

of infinite-time ruin probabilities which should be higher than any of finite-time ruin

probability ψ̂t(u) and should not exceed the upper bound. Moreover, we can see that

the Cramér approximations (3.69) and the Laplace approximations (3.70) are equal. The

reason for their equivalence is that the ruin probability formulas for both methods are

equivalent to each other, yielding the same result see Remark 3.1 or derived from solving

the same ODE.

The Monte Carlo simulation will be very good, if we can increase the value of

t. However, it will take long computation time to do so. Therefore, a possible way to

improve the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.

3.5.3 Gamma distributions for the claim sizes and surrender

In this section, we study numerical approximations such the premium, claim sizes

and surrender follow gamma distributions. Specifically, let the probability density func-

tions of the claim sizes Yi and surrender Zi are

g(y) =
βY e−βY y(βY y)αY −1

Γ(αY )
and h(z) =

βZe−βZz(βZz)αZ−1

Γ(αZ)
, y, z ≥ 0,

where βY = 8,αY = 2,βZ = 6,αZ = 1, respectively.

For the De-Vylder approximation, substituting βY = 8,αY = 2,βZ = 6,αZ = 1, c = 0.2,

p = 0.4, and q = 0.3 into the formula of r1 and r2 in (3.60), we get r1 = −11.956600
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and r2 = −1.415050, respectively. Consequently, C1 = −0.019906 and C2 = 0.769340.

Therefore, the De-Vylder approximation ψDe(u) is

ψDe(u) = −0.019906e−11.956600u + 0.769340e−1.415050u for all u ≥ 0. (3.72)

For the Laplace approximation, substituting βY = 8,αY = 2,βZ = 6,αZ = 1, c = 0.2,

p = 0.4, and q = 0.3 into the formula of ψ∗(s) in (3.30), then taking the inverse Laplace

transform in ψ∗(s) by using the MATLAB for computation. Therefore, the Laplace

approximation ψL is

ψL (u) = 0.769160e−1.415613u − 0.020628e−10.812425u for all u ≥ 0. (3.73)

For the upper bound approximation, substituting βY = 8,αY = 2,βZ = 6,αZ = 1,

c = 0.2, p = 0.4, and q = 0.3 into g(r) in Theorem 3.7 and solve for the unique positive

solution g(r) = 0 by using the R programming to compute the value of R, we have

R = 0.979012. Then, from Theorem 3.10 the upper bound of the ruin probability is

ψ(u) ≤ e−0.979012u. (3.74)
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The numerical approximations obtained in (3.72)–(3.74) for different values of
the initial capital u is given in Table 3.2.

u

ψ(u)

Statistical estimate ψ̂t(u)
ψDe(u) ψL (u)

Upper bound
e−Ru

t = 1 t = 5 t = 50 t = 100

0 0.291345 0.424325 0.452320 0.452335 0.749434 0.750000 1
1 0.06555 0.162965 0.194255 0.194255 0.186883 0.186736 0.375681
2 0.008780 0.050860 0.073980 0.073995 0.045396 0.045334 0.141136
3 0.000765 0.014500 0.028220 0.028220 0.011027 0.011006 0.053022
5 0.000000 0.000730 0.003950 0.003950 0.000650 0.000648 0.007483
7 0.000000 0.000020 0.000475 0.000475 0.000038 0.000038 0.001056
10 0.000000 0.000000 0.000025 0.000025 0.000000 0.000000 0.000056

Table 3.2: Numerical approximations of the CPST risk model with gamma distribu-
tions.

Figure 3.2: Graph of initial reserve u and the ruin probability of the CPST risk model
with gamma distributions.

From Table 3.2, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases. Notice that the Monte Carlo approximations

ψ̂t(u) do not have the same value as our approximations. Besides, we can observe that the

ruin probability ψ̂t(u) increases as t increases, the Monte Carlo approximation converges
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to our approximations, and it is less than the upper bound. Therefore, the Monte Carlo

approximation is consider to be a good option. However, in practical situations, the

exact value of the ruin probability is unknown; therefore, it is impossible to determine

how high the value of t should be in order to make ψ̂t(u) close to the exact value of the

ruin probability as one desires. Consequently, our approximations are better than the

Monte Carlo approximation regarding real usage.

Also, we can see that the De-Vylder approximations and the Laplace approximations

fall between the Monte Carlo approximation of ruin probability ψ̂t(u) and the upper

bound which is reasonable, since the De-Vylder and the Laplace approximations are a

type of infinite-time ruin probabilities which should be higher than any of finite-time ruin

probability ψ̂t(u) and should not exceed the upper bound. Moreover, we can see that

the De-Vylder approximations (3.72) and the Laplace approximations (3.73) are nearby.

The reason for their equivalence is that the ruin probability formulas for both methods

are nearby to each other, yielding the nearby result. However, the values displayed in the

Table 3.2 may differ slightly due to the rounding settings of the program.

The Monte Carlo simulation will be very good, if we can increase the value of

t. However, it will take long computation time to do so. Therefore, a possible way to

improve the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

RISK MODEL WITH STOCHASTIC

PREMIUMS AND SURRENDERS SUBJECT

TO DEPENDENCE THINNING

In this chapter, we will extend our numerical approximations to the ruin probability

for the risk model with surrenders when the premiums are not necessary to be constant

over time. We first introduce the risk model and evaluate its properties. Then, we obtain

an numerical approximation of the ruin probability by using the Cramér approximation,

the Laplace transforms method, and the De Vylder Approximations. Moreover, we find

the numerical approximations of the three methods and compare them with the Lundberg

upper bound and the Monte Carlo approximation.

The organization of this chapter is as follows. Section 4.1 studies some properties of

the risk model with stochastic premiums and surrenders subject to dependence thinning.

Section 4.2 derives the analytical approximation of the ruin probability. Section 4.3 derives

the Lundberg’s upper bound of the ruin probability. Section 4.4 performs experimental

simulations.

4.1 The risk model with stochastic premiums and surrenders subject

to dependence thinning (SPST)

The risk model considered in this chapter is the risk model with stochastic premiums

and surrenders subject to dependence thinning, denoted as SPST. The risk model consists

of the initial capital, stochastic premiums, claims, and surrenders. In particular, the model

is presented as

U(t) = u+

N(t)∑

i=1

Xi −
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi, (4.1)

where u represents the initial capital, N(t) is the Poisson process with intensity λ > 0,

denoting the number of premiums up to time t. Particularly, N(t) ∼ Poisson(λt).
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The sequence {Xi}∞i=1 is a sequence of i.i.d. non-negative random variables represent-

ing the amounts of premiums with a cumulative distribution function F . N(t, p), where

0 < p < 1, is the p-thinning process of N(t) denoting the number of claims up to time

t. In particular, it is defined as
∑M(t)

i=1 Qi where Qi are i.i.d. Bernoulli random variables

with parameter p and M(t) is independent and identically distributed with N(t). The

individual claim size {Yi}∞i=1 is a sequence of i.i.d. non-negative random variables with a

cumulative distribution function G. N(t, q), where 0 < q < 1, is the q-thinning process

of N(t) denoting the number of surrenders up to time t. The sequence of i.i.d. non-

negative random variables {Zi}∞i=1 represents the amount of the i-th payment of insur-

ance policy with a cumulative distribution function H. In addition, we suppose that

{N(t)}t≥0, {N(t, p)}t≥0, {N(t, q)}t≥0, {Xi}∞i=1, {Yi}∞i=1, and {Zi}∞i=1 are mutually inde-

pendent.

In order to ensure the insurance company’s stable business, we assume that

E




N(t)∑

i=1

Xi −
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi



 > 0. (4.2)

Since

E




N(t)∑

i=1

Xi −
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi



 = E




N(t)∑

i=1

Xi



− E




N(t,p)∑

i=1

Yi



− E




N(t,q)∑

i=1

Zi





= λtµX − λptµY − λqtµZ ,

the assumption becomes

µX − pµY − qµZ > 0, (4.3)

which is called as the “net profit condition”.

Lemma 4.1. Define the profits process by {S(t); t ≥ 0} as

S(t) =

N(t)∑

i=1

Xi −
N(t,p)∑

i=1

Yi −
N(t,q)∑

i=1

Zi.
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Then, the profits process S(t) has the following properties:

1. S(0) = 0,

2. E[S(t)] = [ λµX − λpµY − λqµZ ]t,

3. V ar[S(t)] =
(
λE[X2] + λpE[Y 2] + λqE[Z2]

)
t,

4. MS(t)(s) = exp {t [λ (MX(s)− 1) + λp (MY (−s)− 1) + λq (MZ(−s)− 1)]} ,

5. {S(t)}t≥0 has stationary and independent increments.

Proof.

(1) Since N(t), N(t, p), N(t, q) are Poisson processes, N(0) = 0, N(0, p) = 0 and

N(0, q) = 0. Then,

S(0) =

N(0)∑

i=1

Xi −
N(0,p)∑

i=1

Yi −
N(0,q)∑

i=1

Zi

=
0∑

i=1

Xi −
0∑

i=1

Yi −
0∑

i=1

Zi = 0

= 0.

(2) By the property of expectation

E[S(t)] = E




N(t)∑

i=1

Xi



− E




N(t,p)∑

i=1

Yi



− E




N(t,q)∑

i=1

Zi



 ,

From Theorem 2.22,

E[S(t)] = [ λµX − λpµY − λqµZ ]t.

(3) By the property of variance and the independence of Xi, Yi, Zi, N(t), N(t, p), and

N(t, q),

V ar[S(t)] = V ar




N(t)∑

i=1

Xi



+ V ar




N(t,p)∑

i=1

Yi



+ V ar




N(t,q)∑

i=1

Zi



 .
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From Theorem 2.22,

V ar[S(t)] =
(
λE[X2] + λpE[Y 2] + λqE[Z2]

)
t.

(4) We know that

MS(t)(s) = E[esS(t)].

By the independence property of the three terms of S(t),

MS(t)(s) = E
[
es

∑N(t)
i=1 Xi

]
E
[
e−s

∑N(t,p)
i=1 Yi

]
E
[
e−s

∑N(t,q)
i=1 Zi

]
.

The three terms are computed as follows

1) E
[
es

∑N(t)
i=1 Xi

]
= M∑N(t)

i=1 Xi
(s)

= GN(t) [MX(s)]

= eλt[MX(s)−1].

2) E
[
e−s

∑N(t,p)
i=1 Yi

]
= M∑N(t,p)

i=1 Yi
(−s)

= GN(t,p) [MY (−s)]

= eλpt[MY (−s)−1].

3) E
[
e−s

∑N(t,q)
i=1 Zi

]
= M∑N(t,q)

i=1 Zi
(−s)

= GN(t,q) [MZ(−s)]

= eλqt[MZ(−s)−1].

Therefore,

MS(t)(s) = exp {t [λ (MX(s)− 1) + λp (MY (−s)− 1) + λq (MZ(−s)− 1)]} .

(5) Since N(t) has stationary increments and {Xi}∞i=1 is a sequence of i.i.d. non-negative
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random variables, we get

N(t+h)∑

i=1

Xi −
N(t)∑

i=1

Xi is identically distributed as
N(t+h)−N(t)∑

i=1

Xi

and
N(t+h)−N(t)∑

i=1

Xi is identically distributed as
N(s+h)−N(s)∑

i=1

Xi.

Therefore,
N(t)∑

i=1

Xi has stationary increments.

To prove that the process has independent increments, let s1 < s2 ≤ s3 < s4. Since

N(t) has independent increments and {Xi}∞i=1 is a sequence of i.i.d. non-negative random

variables, we get

N(s2)∑

i=N(s1)+1

Xi is independent with
N(s4)∑

i=N(s3)+1

Xi.

Therefore,
N(t)∑

i=1

Xi has independent increments.

By the same technique, we can show that
N(t,p)∑

i=1

Yi and
N(t,q)∑

i=1

Zi have stationary and

independent increments. Thus, {S(t); t ≥ 0} has stationary and independent increments.

4.2 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for

the SPST (4.1). We will start by obtaining the integral equation for the ruin probability.

Then we obtain an approximation of the ruin probability using the Cramér approximation,

the Laplace transforms method, and the De Vylder Approximations. To obtain the three

approximations, we first obtain the integral equation stated in Theorem 4.1 below.
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Theorem 4.1. The ruin probability ψ(u) for risk model (4.1) satisfies the integral equation

(1 + p+ q)ψ(u) = q[1−H(u)] + p[1−G(u)] +

∫ ∞

0
ψ(u+ x) dF (x)

+p

∫ u

0
ψ(u− y) dG(y) + q

∫ u

0
ψ(u− z) dH(z), u ≥ 0,

(4.4)

where F,G, and, H are cumulative distribution functions of the amounts of premiums, the

individual claims sizes, and the amount of surrenders with probability density functions

f, g, and h, respectively.

Proof. To compute the non-ruin probability φ(u), we consider five different possible dis-

joint events of the number of premiums, the number of claims, and the number of sur-

renders during an infinitesimal period [0,∆t], which has been calculated in detail in the

proof of Theorem 3.1 in chapter III, as follows.

Case 1:

There is no premiums, no claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability 1− λ∆t− λp∆t− λq∆t+ o(∆t).

Case 2:

There is no premiums, no claims, and one surrender in the interval when ∆t → 0.

The event occurs with the probability λq∆t+ o(∆t).

Case 3:

There is no premiums, one claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability λp∆t+ o(∆t).

Case 4:

There is one premium, no claims, and no surrenders in the interval when ∆t → 0.

The event occurs with the probability λ∆t+ o(∆t).

Case 5:

There are more than one event of premiums, claims, and surrenders combined in

the interval when ∆t → 0. The event occurs with the probability o(∆t).
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From the law of total probability for discrete random variable in Definition 2.16, it follows

that

φ(u) = P [N(∆t) = 0]P [N(∆t, p) = 0]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 0]

+P [N(∆t) = 0]P [N(∆t, p) = 0]P [N(∆t, q) = 1]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 1]

+P [N(∆t) = 1]P [N(∆t, p) = 0]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 1, N(∆t, p) = 0, N(∆t, q) = 0]

+P [N(∆t) = 0]P [N(∆t, p) = 1]P [N(∆t, q) = 0]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 1, N(∆t, q) = 0]

+P [N(∆t) +N(∆t, p) +N(∆t, q) > 1]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) +N(∆t, p) +N(∆t, q) > 1].

Then,

φ(u) = [1− λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 0]

+[1− λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][λq∆t+ o(∆t)]]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 0, N(∆t, q) = 1]

+[λ∆t+ o(∆t)][1− λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 1, N(∆t, p) = 0, N(∆t, q) = 0]

+[1− λ∆t+ o(∆t)][λp∆t+ o(∆t)][1− λq∆t+ o(∆t)]

· P [U(t) ≥ 0, ∀t > 0|N(∆t) = 0, N(∆t, p) = 1, N(∆t, q) = 0]

+o(∆t) · P [U(t) ≥ 0, ∀t > 0|N(∆t) +N(∆t, p) +N(∆t, q) > 1].

By the properties of little-oh in Theorem 2.1 for ∆t → 0 and the law of total probability
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for continuous random variable Xi, Yi, and Zi in Definition 2.17.

φ(u) = (1− λ∆t− λp∆t− λq∆t) P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u]

+λq∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u− z] dH(z)

+λp∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u− y] dG(y)

+λ∆t

∫ ∞

0
P [U(t) ≥ 0, ∀t > 0 | U(∆t) = u+ x] dF (x) + o(∆t).

According to the concept of stationary, we can treat ∆t as a new start time. Therefore,

we can express U(∆t) as U(0). This implies that we are starting a new at ∆t and can

use U(0) as the starting point,

φ(u) = (1− λ∆t− λp∆t− λq∆t) P [U(t) ≥ 0, ∀t > 0 | U(0) = u]

+λq∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(0) = u− z] dH(z)

+λp∆t

∫ u

0
P [U(t) ≥ 0, ∀t > 0 | U(0) = u− y] dG(y)

+λ∆t

∫ ∞

0
P [U(t) ≥ 0, ∀t > 0 | U(0) = u+ x] dF (x) + o(∆t).

Then, we get

φ(u) = (1− λ∆t− λp∆t− λq∆t) φ(u) + λq∆t

∫ u

0
φ(u− z) dH(z)

+λp∆t

∫ u

0
φ(u− y) dG(y) + λ∆t

∫ ∞

0
φ(u+ x) dF (x) + o(∆t).

That is

0 = −λ∆t φ(u)− λp∆t φ(u)− λq∆t φ(u) + λq∆t

∫ u

0
φ(u− z) dH(z)

+λp∆t

∫ u

0
φ(u− y) dG(y) + λ∆t

∫ ∞

0
φ(u+ x) dF (x) + o(∆t).

Dividing both sides by ∆t and letting ∆t approach to 0, we have

0 = −λ φ(u)− λp φ(u)− λq φ(u) + λq

∫ u

0
φ(u− z) dH(z)

+λp

∫ u

0
φ(u− y) dG(y) + λ

∫ ∞

0
φ(u+ x) dF (x).
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That is

(1 + p+ q)φ(u) = q

∫ u

0
φ(u− z) dH(z) + p

∫ u

0
φ(u− y) dG(y)

+

∫ ∞

0
φ(u+ x) dF (x).

Using the property that φ(u) = 1− ψ(u), we get

(1 + p+ q)− (1 + p+ q)ψ(u) = q

∫ u

0
1 dH(z)− q

∫ u

0
ψ(u− z) dH(z)

+p

∫ u

0
1 dG(y)− p

∫ u

0
ψ(u− y) dG(y)

+

∫ ∞

0
1 dF (x)−

∫ ∞

0
φ(u+ x) dF (x), u ≥ 0.

Therefore,

(1 + p+ q)− (1 + p+ q)ψ(u) = qH(u)− q

∫ u

0
ψ(u− z) dH(z) + pG(u)

−p

∫ u

0
ψ(u− y) dG(y) + 1−

∫ ∞

0
φ(u+ x) dF (x), u ≥ 0.

Thus,

(1 + p+ q)ψ(u) = q[1−H(u)] + p[1−G(u)] +

∫ ∞

0
ψ(u+ x) dF (x)

+p

∫ u

0
ψ(u− y) dG(y) + q

∫ u

0
ψ(u− z) dH(z), u ≥ 0.

4.2.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when

amounts of premiums, claims, and surrenders follow exponential distributions. In par-

ticular, the probability density functions of the premiums, claim sizes, and surrenders

are

f(x) = ae−ax, g(y) = be−by and h(z) = ce−cz, x, y, z ≥ 0, (4.5)
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corresponding to CDF’s are F,G and H, respectively, in Theorem 4.1

Theorem 4.2. For the risk model (4.1) where the amounts of premiums, claims size

and surrenders follow exponential distributions with parameters a, b, and c, respective.

If the net profit condition (4.3) is satisfied, then the Cramér approximation of the ruin

probability ψC(u) is

ψC(u) = C1e
r1u + C2e

r2u for all u ≥ 0, (4.6)

where C1, C2, r1, and r2 are as follows

C1 =
C11

CD
, C2 =

C21

CD
,

1

r1 =
−
[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
+

√
D

−2
(1 + p+ q)

abc

,

1

r2 =
−
[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
−

√
D

−2
(1 + p+ q)

abc

,

which

D =

[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]2
− 4

(1 + p+ q)

abc

[
1

a
− p

b
− q

c

]
,

C11 = (a− r1)r2(bp+ cq − a(p+ q)2 + (p+ q)(1 + p+ q)r2),

C21 = (a− r2)r1(bp+ cq − a(p+ q)2 + (p+ q)(1 + p+ q)r1),

and

CD = (r1 − r2)[a2(p+ q)2 + (1 + p+ q)2r1r2 − a[bp+ cq + (p+ q)(1 + p+ q)(r1 + r2)]].

Proof.

Observe that CDF F and PDF f satisfy dF (u) = f(u)du, as mentioned in Remark 2.2,
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including CDF G,H and PDF g, h, respectively.

Substituting the density functions of Xi, Yi, and Zi into (4.4), we have

1(1 + p+ q)ψ(u)

= q[e−cu] + p[e−bu] +

∫ ∞

0
ψ(u+ x)ae−ax dx+ p

∫ u

0
ψ(u− y)be−by dy

+q

∫ u

0
ψ(u− z)ce−cz dz. (4.7)

Differentiating the equation with respect to u, we have

1(1 + p+ q)ψ′(u)

= −q[ce−cu]− p[be−bu] + [−a+ pb+ qc] ψ(u)+a2
∫ ∞

0
ψ(u+ x)e−ax dx

−pb2
∫ u

0
ψ(u− y)e−by dy − qc2

∫ u

0
ψ(u− z)e−cz dz.

Multiplying the equation by 1

b
, we have

1
(1 + p+ q)

b
ψ′(u)

= −q

b
[ce−cu]− p[e−bu] +

[
−a

b
+ p+

qc

b

]
ψ(u) +

a2

b

∫ ∞

0
ψ(u+ x)e−ax dx

−pb

∫ u

0
ψ(u− y)e−by dy − qc2

b

∫ u

0
ψ(u− z)e−cz dz. (4.8)

Adding the terms of each side of (4.7) and (4.8), we have

1
(1 + p+ q)

b
ψ′(u) +

(
1 + q − qc

b
+

a

b

)
ψ(u)

= q
[
1− c

b

]
e−cu + q

[
1− c

b

] ∫ u

0
ψ(u− z)ce−cz dz +

[a
b
+ 1
] ∫ ∞

0
ψ(u+ x)ae−ax dx.

(4.9)

Differentiating the equation with respect to u, we have

1
(1 + p+ q)

b
ψ′′(u) +

(
1 + q − qc

b
+

a

b

)
ψ′(u)

= −qc
[
1− c

b

]
e−cu +

{
qc
[
1− c

b

]
− a

[a
b
+ 1
]}

ψ(u)
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−qc2
[
1− c

b

] ∫ u

0
ψ(u− z)e−cz dz + a2

[a
b
+ 1
] ∫ ∞

0
ψ(u+ x)e−ax dx.

Multiplying the equation by −1

a
, we have

1−(1 + p+ q)

ab
ψ′′(u)−

(
1

a
+

q

a
− qc

ab
+

1

b

)
ψ′(u)

=
qc

a

[
1− c

b

]
e−cu −

{qc
a

[
1− c

b

]
−
[a
b
+ 1
]}

ψ(u) (4.10)

+
qc2

a

[
1− c

b

] ∫ u

0
ψ(u− z)e−cz dz − a

[a
b
+ 1
] ∫ ∞

0
ψ(u+ x)e−ax dx.

Adding the terms of left side of (4.9) and (4.10), we have

1−(1 + p+ q)

ab
ψ′′(u) +

[
(p+ q)

b
−
(
1

a
+

q

a
− qc

ab

)]
ψ′(u)

+

[
q − qc

b
+

qc

a
− qc2

ab

]
ψ(u) (4.11)

= q
[
1− c

b

] [
1 +

c

a

]
e−cu + qc

[
1− c

b

] [
1 +

c

a

] ∫ u

0
ψ(u− z)e−cz dz.

Differentiating the equation with respect to u, we have

1−(1 + p+ q)

ab
ψ′′′(u) +

[
(p+ q)

b
−
(
1

a
+

q

a
− qc

ab

)]
ψ′′(u)

+

[
q − qc

b
+

qc

a
− qc2

ab

]
ψ′(u)

= −qc
[
1− c

b

] [
1 +

c

a

]
e−cu + qc

[
1− c

b

] [
1 +

c

a

]
ψ(u)

−qc2
[
1− c

b

] [
1 +

c

a

] ∫ u

0
ψ(u− z)e−cz dz.

Multiplying the equation by 1

c
, we have

1−(1 + p+ q)

abc
ψ′′′(u) +

[
(p+ q)

bc
−
(

1

ac
+

q

ac
− q

ab

)]
ψ′′(u)

+
[q
c
− q

b
+

q

a
− qc

ab

]
ψ′(u)

= −q
[
1− c

b

] [
1 +

c

a

]
e−cu + q

[
1− c

b

] [
1 +

c

a

]
ψ(u) (4.12)

−qc
[
1− c

b

] [
1 +

c

a

] ∫ u

0
ψ(u− z)e−cz dz.
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Adding the terms of each side of (4.11) and (4.12), we have

1−(1 + p+ q)

abc
ψ′′′(u) +

[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
ψ′′(u)

+

[
p

b
− 1

a
+

q

c

]
ψ′(u) = 0. (4.13)

The equivalent characteristic equation is

−(1 + p+ q)

abc
r3+

[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
r2+

[
p

b
− 1

a
+

q

c

]
r = 0. (4.14)

Solving the equation, we obtain the three roots as

r1 =
−
[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
+

√
D

−2
(1 + p+ q)

abc

,

1

r2 =
−
[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]
−

√
D

−2
(1 + p+ q)

abc

,

1

r3 = 0,

where

D =

[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]2
− 4

(1 + p+ q)

abc

[
1

a
− p

b
− q

c

]
.

Therefore, the general solution of ψ(u) is

ψ(u) = C1e
r1u + C2e

r2u + C3. (4.15)

Since

D =

[
(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab

]2
− 4

(1 + p+ q)

abc

[
1

a
− p

b
− q

c

]

=

[
(p− q)

bc
− (1 + q)

ac
+

(1 + p)

ab

]2
+ 4

(a+ b)(a+ c)pq

a2b2c2
> 0.
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Then, r1 and r2 are distinct real roots.

Since

(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab
= −

[
1

b
+

1

c

] [
1

a
− p

b
− q

c

]
− p

b2
− p

ab
− q

c2
− q

ac
< 0,

(4.16)

by the Vieta’s theorem in Theorem 2.2 and (4.14), we get

r1r2 =

p

b
− 1

a
+

q

c

−(1 + p+ q)

abc

> 0 (4.17)

and

r1 + r2 =

(p+ q)

bc
− (1 + q)

ac
− (1 + p)

ab
(1 + p+ q)

abc

< 0. (4.18)

From (4.17) and the net profit condition (4.3), we can see that r1 and r2 have the same

sign.

From (4.18) and (4.16), we get

r1 < 0 and r2 < 0.

Next, once we know the values of r1 and r1, we will then determine the values of C1,

C2, and C3 for (4.15) using the initial conditions follow as,

1. lim
u→∞

ψ(u) = 0, since r1, r2 < 0 which yields C3 = 0.

2. Letting u = 0 in (4.7) and using ψ(u) from (4.15), we get

(1 + p+ q)(C1 + C2) = q + p+

∫ ∞

0
ψ(x)ae−au dx.

Therefore,

p+ q = C1

[
(1 + p+ q) +

a

r1 − a

]
+ C2

[
(1 + p+ q) +

a

r2 − a

]
. (4.19)
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3. Letting u = 0 in (4.9) and using ψ(u) from (4.15), we get

1
(1 + p+ q)

b
(C1r1 + C2r2) +

(
1 + q − qc

b
+

a

b

)
(C1 + C2)

= q
[
1− c

b

]
+
[a
b
+ 1
] [ C1a

a− r1
+

C2a

a− r2

]
.

Therefore,

1q
[
1− c

b

]

= C1

[
(1 + p+ q)

b
r1 +

(
1 + q − qc

b
+

a

b

)
−
[a
b
+ 1
] a

a− r1

]
(4.20)

+ C2

[
(1 + p+ q)

b
r2 +

(
1 + q − qc

b
+

a

b

)
−
[a
b
+ 1
] a

a− r2

]
.

Solving system of (4.19) and (4.20), we get

C1 =
C11

CD
and C2 =

C21

CD
,

where
C11 = (a− r1)r2(bp+ cq − a(p+ q)2 + (p+ q)(1 + p+ q)r2),

C21 = (a− r2)r1(bp+ cq − a(p+ q)2 + (p+ q)(1 + p+ q)r1),

CD = (r1 − r2)[a2(p+ q)2 + (1 + p+ q)2r1r2

−a[bp+ cq + (p+ q)(1 + p+ q)(r1 + r2)]].

To calculate the approximated ruin probability using the Cramér approximation

described in (4.6), we can use the R programming for computation.

4.2.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace

transforms in conjunction with integral equation of ruin probability for the SPST model

(4.1).
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Theorem 4.3. The Laplace transform of ruin probability ψ(u) for risk model (4.1) is

ψ∗(s) =
q[1− h∗(s)] + p[1− g∗(s)]

s(1 + p+ q)− sp g∗(s)− s f∗(−s)− sq h∗(s)
. (4.21)

where f∗, g∗, and h∗ are the Laplace transforms of probability density functions for the

amount of premium f , claims size g, and surrender h, respectively.

Proof.

Taking the Laplace transform of (4.4) and formula in Theorem 2.3, we get

(1 + p+ q)ψ∗(s) = q

[
1

s
− h∗(s)

s

]
+ p

[
1

s
− g∗(s)

s

]
+ ψ∗(s)f∗(−s),

+p ψ∗(s)g∗(s) + q ψ∗(s)h∗(s).

Multiplying both sides by s, we have

s(1 + p+ q)ψ∗(s) = q [1− h∗(s)] + p [1− g∗(s)] + s ψ∗(s)f∗(−s)

+s p ψ∗(s)g∗(s) + s q ψ∗(s)h∗(s).

By the property of cross correlation and the real function f(x), we get

s(1 + p+ q)ψ∗(s) = q [1− h∗(s)] + p [1− g∗(s)] + s ψ∗(s)f∗(−s)

+s p ψ∗(s)g∗(s) + s q ψ∗(s)h∗(s).

Therefore,

1 q [1− h∗(s)] + p [1− g∗(s)]

= s [(1 + p+ q)− p g∗(s)− q h∗(s)− f∗(−s)]ψ∗(s).

Thus,

ψ∗(s) =
q[1− h∗(s)] + p[1− g∗(s)]

s(1 + p+ q)− sp g∗(s)− s f∗(−s)− sq h∗(s)
.
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Remark 4.1. Assume the risk model described in (4.1) where the amount of premium,

claims size, and surrender follow exponential distributions according to (4.5), probability

density functions denoted as f, g, and h, respectively, and with parameters a, b, and c.

If the net profit condition given by (4.3) holds, then the Laplace transform of the ruin

probability ψ(u) is

ψL (u) =
acp+ abq

−bc+ acp+ abq
+

bc(cp+ bq) + a(c2p+ b2q) + [bc(cp+ bq) + a(cp+ bq)]s1
(bc− acp− abq)(s1 − s2)(1 + p+ q)

es1u

+
−bc(cp+ bq)− a(c2p+ b2q)− [bc(cp+ bq) + a(cp+ bq)]s2

(bc− acp− abq)(s1 − s2)(1 + p+ q)
es2u, (4.22)

where

s1 =
−c(1 + p)− b(1 + q) + a(p+ q)−

√
S

2(1 + p+ q)
,

1

s2 =
−c(1 + p)− b(1 + q) + a(p+ q) +

√
S

2(1 + p+ q)
,

and

S = [c(1 + p) + b(1 + q)− a(p+ q)]2 − 4(1 + p+ q)(bc− acp− abq).

Proof. Substituting the Laplace transforms of the density functions density functions of

Xi, Yi, and Zi with CDF’s are F,G, and H, respectively, into (4.21), we have

ψ∗(s) =

q

[
1− c

s+ c

]
+ p

[
1− b

s+ b

]

s(1 + p+ q)− sp

(
b

s+ b

)
− s

(
a

−s+ a

)
− sq

(
c

s+ c

) .

Let R(s) = s2(1+p+q)+s[c(1+p)+ b(1+q)−a(p+q)]+(bc−acp−abq) and rearrange

the equation for ψ∗(s), we get

ψ∗(s) =
s2(p+ q) + s[cp+ bq − a(p+ q)]− a(cp+ bq)

sR(s)
. (4.23)
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Let S = [c(1 + p) + b(1 + q)− a(p+ q)]2 − 4(1 + p+ q)(bc− acp− abq) tThen, S > 0.

Factoring R(s), we will obtain that

ψ∗(s) =
s2(p+ q) + s[cp+ bq − a(p+ q)]− a(cp+ bq)

s(s− s1)(s− s2)(1 + p+ q)
, (4.24)

where

s1 =
−c(1 + p)− b(1 + q) + a(p+ q)−

√
S

2(1 + p+ q)
,

1

s2 =
−c(1 + p)− b(1 + q) + a(p+ q) +

√
S

2(1 + p+ q)
.

Since S > 0, then s1 and s2 are distinct real roots.

Since

c(1 + p) + b(1 + q)− a(p+ q) =

[
1

b
+

1

c

]
(bc− acp− abq) + cp+

acp

b
+ bq +

abq

c
> 0,

(4.25)

by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get

s1s2 =
bc− acp− abq

1 + p+ q
> 0 (4.26)

and

s1 + s2 =
−[c(1 + p) + b(1 + q)− a(p+ q)]

1 + p+ q
< 0. (4.27)

From (4.26) and the net profit condition (4.3), we can see that s1 and s2 have the same

sign. From (4.27) and (4.25), we get

s1 < 0 and s2 < 0.
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Applying partial fraction decomposition to (4.24) with respect to s, we obtain

ψ∗(s) =
acp+ abq

(−bc+ acp+ abq)s

+
bc(cp+ bq) + a(c2p+ b2q) + [bc(cp+ bq) + a(cp+ bq)]s1

(bc− acp− abq)(s1 − s2)(s− s1)(1 + p+ q)

+
−bc(cp+ bq)− a(c2p+ b2q)− [bc(cp+ bq) + a(cp+ bq)]s2

(bc− acp− abq)(s1 − s2)(s− s2)(1 + p+ q)
.

(4.28)

Taking the inverse Laplace transform (4.28) with respect to s, we obtain

ψL (u) =
acp+ abq

−bc+ acp+ abq

+
bc(cp+ bq) + a(c2p+ b2q) + [bc(cp+ bq) + a(cp+ bq)]s1

(bc− acp− abq)(s1 − s2)(1 + p+ q)
es1u

+
−bc(cp+ bq)− a(c2p+ b2q)− [bc(cp+ bq) + a(cp+ bq)]s2

(bc− acp− abq)(s1 − s2)(1 + p+ q)
es2u.

The observation is different from Remark 3.1 in Chapter III, where ψC(u) = ψL (u).

However, in this Chapter IV, ψC(u) ,= ψL (u) because the ruin probability formula for

the Cramér approximation (4.6) is expressed as a sum of two exponential terms, whereas

the ruin probability formula for the Laplace transforms (4.22) is expressed as a sum of

three terms, with constant terms that cannot be eliminated. Also, the Laplace transform

(4.22) yields a negative numerical result, as observed in Table 4.1. Therefore, it is not

possible to use the Laplace transform in SPST model.

To calculate the approximated ruin probability using the Laplace transform for

money amounts which follow exponential distributions described in (4.22), we can use

the MATLAB commands “partfrac” and “ilaplace” for computation.

In the case that the money amounts follow gamma distributions, we also use MAT-

LAB to calculate the approximated ruin probability. We use the general Laplace trans-

forms for the ruin probability (4.21) with gamma distributions instead of exponential

distributions.
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4.2.3 The De-Vylder approximation

In this section, we consider the SPST (4.1) where premiums, claim sizes and sur-

renders follow other distributions rather than exponential distributions. The De-Vylder

approximation is used to approximate the risk process by the classical risk model where

the numbers of premiums, claims, and surrenders are exponentially distributed. Specifi-

cally, the model (4.1) is approximated by the following risk model.

Ũ(t) = u+

Ñ(t)∑

i=1

X̃i −
Ñ(t,p̃)∑

i=1

Ỹi −
Ñ(t,q̃)∑

i=1

Z̃i, (4.29)

where X̃i, Ỹi, and Z̃i have exponential distributions with parameters ã, b̃, and c̃, respec-

tively. Also, Ñ(t), Ñ(t, p̃), and Ñ(t, q̃) are Poisson processes with intensities λ̃, λ̃p̃, and

λ̃q̃, respectively.

Since in this risk model the process {Ũ(t)}t≥0 is determined by six parameters

λ̃, p̃, q̃, ã, b̃, and c̃, six equalities are required to determine these parameters. Therefore.

we need to compute the first six moments of Ũ(t) described in [17].

Theorem 4.4. For the risk model (4.1), let MX(s), MY (s), and MZ(s) be the moment

generating functions of the random variables X, Y , and Z, respectively. Then, for any s

in the domain of MU(t), we have

MU(t)(s) = exp
{
su+ tλ

(
M(s)− 1− p− q

)}
,

M ′
U(t)(s) = MU(t)(s)

(
u+ tλM ′(s)

)
,

M ′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)2
+ tλM ′′(s)

)
,

M ′′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)3
+ tλM ′′′(s) + 3tλ

(
u+ tλM ′(s)

)
M ′′(s)

)
,

M (4)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
4 + 6tλM ′′(s)

(
u+ tλM ′(s)

)2

+4tλM ′′′(s)
(
u+ tλM ′(s)

)
+ 3t2λ2 [M ′′(s)]2 + tλM (4)(s)

)
,

M (5)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)5
+ 10tλM ′′(s)

(
u+ tλM ′(s)

)3
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+10tλM ′′′(s)
(
u+ tλM ′(s)

)2
+ 5tλM (4)(s)

(
u+ tλM ′(s)

)

+15t2λ2 [M ′′(s)]2
(
u+tλM ′(s)]

)
+10t2λ2M ′′(s)M ′′′(s)+tλM (5)(s)

)
,

M (6)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
6 + 15tλM ′′(s)

(
u+ tλM ′(s)

)4

+20tλM ′′′(s)
(
u+ tλM ′(s)

)3
+ 15tλM (4)(s)

(
u+ tλM ′(s)

)2

+45t2λ2 [M ′′(s)]2
(
u+ tλM ′(s)

)2
+ 6tλM (5)(s)

(
u+ tλM ′(s)

)

+60t2λ2
(
u+ tλM ′(s)

)
M ′′(s)M ′′′(s) + tλM (6)(s)

+15t2λ2M ′′(s)M (4)(s) + 10t2λ2 [M ′′′(s)]2 + 15t3λ3 [M ′′(s)]3
)
,

where M(s) = MX(s) + pMY (−s) + qMZ(−s).

Proof. By the formula for the moment generating function of S(t) in Lemma 4.1, we have

MU(t)(s) = E[es(u+S(t))]

= exp {su+ tλ [(MX(s)− 1) + p (MY (−s)− 1) + q (MZ(−s)− 1)]}

= exp {su+ tλ (M(s)− 1− p− q)} .

Differentiating with respect to s on both sides of the equation, we have that

M ′
U(t)(s) = exp

{
su+ tλ

(
M(s)− 1− p− q

)}
·
(
u+ tλM ′(s)

)

= MU(t)(s)
(
u+ tλM ′(s)

)
.

Consequently,

M ′′
U(t)(s) = MU(t)(s)tλM

′′(s) +M ′
U(t)(s)

(
u+ tλM ′(s)

)

= MU(t)(s)

((
u+ tλM ′(s)

)2
+ tλM ′′(s)

)
.

Straightforwardly, we can calculate M ′′′
U(t)(s),M

(4)
U(t)(s),M

(5)
U(t)(s) and M (6)

U(t)(s) and obtain

the following results.

M ′′′
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)3
+ tλM ′′′(s) + 3tλ

(
u+ tλM ′(s)

)
M ′′(s)

)
,
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M (4)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
4 + 6tλM ′′(s)

(
u+ tλM ′(s)

)2

+4tλM ′′′(s)
(
u+ tλM ′(s)

)
+ 3t2λ2 [M ′′(s)]2 + tλM (4)(s)

)
,

M (5)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)5
+ 10tλM ′′(s)

(
u+ tλM ′(s)

)3

+10tλM ′′′(s)
(
u+ tλM ′(s)

)2
+ 5tλM (4)(s)

(
u+ tλM ′(s)

)

+15t2λ2 [M ′′(s)]2
(
u+tλM ′(s)]

)
+10t2λ2M ′′(s)M ′′′(s)+tλM (5)(s)

)
,

M (6)
U(t)(s) = MU(t)(s)

((
u+ tλM ′(s)

)
6 + 15tλM ′′(s)

(
u+ tλM ′(s)

)4

+20tλM ′′′(s)
(
u+ tλM ′(s)

)3
+ 15tλM (4)(s)

(
u+ tλM ′(s)

)2

+45t2λ2 [M ′′(s)]2
(
u+ tλM ′(s)

)2
+ 6tλM (5)(s)

(
u+ tλM ′(s)

)

+60t2λ2
(
u+ tλM ′(s)

)
M ′′(s)M ′′′(s) + tλM (6)(s)

+15t2λ2M ′′(s)M (4)(s)+10t2λ2 [M ′′′(s)]2+15t3λ3 [M ′′(s)]3
)
.

For k ∈ {1, 2, . . . , 6}, since Mk
U(t)(s) is in the form of Mk(s), we can find the

equation for Mk(s) for k ∈ {1, 2, . . . , 6} from the Remark 4.2.

Remark 4.2. For n ∈ N, the nth derivative of the function M(s) = esc + pMY (−s) +

qMZ(−s) is given by

M (n)(s) = M (n)
X (s) + (−1)npM (n)

Y (−s) + (−1)nqM (n)
Z (−s)

Corollary 4.1. For the risk model (4.1), we assume that Xi, Yi, and Zi have finite first

six moments. Then, for all t ≥ 0, we have

E[U(t)] = u+ tλ
(
E[X]− pE[Y ]− qE[Z]

)
,

E[U2(t)] = (E[U(t)])2 + tλ
(
E[X2] + pE[Y 2] + qE[Z2]

)
,

E[U3(t)] = (E[U(t)])3 + tλ
(
E[X3]− pE[Y 3]− qE[Z3]

)

+ 3tλE[U(t)]
(
E[X2] + pE[Y 2] + qE[Z2]

)
,

E[U4(t)] = (E[U(t)])4 + 6tλ
(
E[X2] + pE[Y 2] + qE[Z2]

)
(E[U(t)])2

+ 4tλ
(
E[X3]− pE[Y 3]− qE[Z3]

)
E[U(t)]

+ 3t2λ2
(
E[X2] + pE[Y 2] + qE[Z2]

)2

+ tλ
(
E[X4] + pE[Y 4] + qE[Z4]

)
,
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E[U5(t)] = (E[U(t)])5 + 10tλ
(
E[X2] + pE[Y 2] + qE[Z2]

)
(E[U(t)])3

+ 10tλ
(
E[X3]− pE[Y 3]− qE[Z3]

)
(E[U(t)])2

+ 5tλ
(
E[X4] + pE[Y 4] + qE[Z4]

)
E[U(t)]

+ 15t2λ2
(
E[X2] + pE[Y 2] + qE[Z2]

)2
E[U(t)]

+ 10t2λ2
(
E[X2] + pE[Y 2] + qE[Z2]

) (
E[X3]− pE[Y 3]− qE[Z3]

)

+ tλ
(
E[X5]− pE[Y 5]− qE[Z5]

)
,

E[U6(t)] = (E[U(t)])6 + 15tλ
(
E[X2] + pE[Y 2] + qE[Z2]

)
(E[U(t)])4

+ 20tλ
(
E[X3]− pE[Y 3]− qE[Z3]

)
(E[U(t)])3

+ 15tλ
(
E[X4] + pE[Y 4] + qE[Z4]

)
(E[U(t)])2

+ 45t2λ2
(
E[X2] + pE[Y 2] + qE[Z2]

)2
(E[U(t)])2

+ 6tλ
(
E[X5]− pE[Y 5]− qE[Z5]

)
E[U(t)]

+ 60t2λ2E[U(t)]
(
E[X2] + pE[Y 2] + qE[Z2]

) (
E[X3]− pE[Y 3]− qE[Z3]

)

+ tλ
(
E[X6] + pE[Y 6] + qE[Z6]

)

+ 15t2λ2
(
E[X2] + pE[Y 2] + qE[Z2]

) [
E[X4] + pE[Y 4] + qE[Z4]

]

+ 10t2λ2
(
E[X3]− pE[Y 3]− qE[Z3]

)2

+ 15t3λ3
(
E[X2] + pE[Y 2] + qE[Z2]

)3
.

Proof. Since E[Un(t)] = M (n)
U(t)(0) and M (n)(0) = E[Xn]+(−1)npE[Y n]+(−1)nqE[Zn]

for all n ∈ N, substituting s = 0 into the formulas in Theorem (4.4) yields the desired

results.

For the risk model (4.29) where X̃i, Ỹi, and Z̃i have exponential distributions with

parameters ã, b̃, and c̃ respectively, let Ã =
1

ã
, B̃ =

1

b̃
, and C̃ =

1

c̃
so that the mean of

X̃i, Ỹi, and Z̃i are Ã, B̃, and C̃, respectively. We will deal with parameters Ã, B̃ and C̃

instead of ã, b̃ and c̃ for the sake of simplicity of the final formula.

Theorem 4.5. We can approximate the process {U(t)}t≥0 in the risk model (4.1) by a

process {Ũ(t)}t≥0 in the risk model (4.29) with parameters λ̃, p̃, q̃, Ã, B̃ and C̃ by

matching the first six moments, i.e., E[U(t)k] = E[Ũ(t)k] for k = 1, 2, . . . , 6. The desired
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parameters λ̃, p̃, q̃, Ã, B̃ and C̃ can be solved from the system of equations:

λ̃ =
γ3 + 6γ1B̃C̃ + 3γ2

[
B̃ + C̃

]

6Ã
(
Ã+ B̃

)(
Ã+ C̃

) ,

1

q̃ =
γ2 + 2γ1B̃ − 2Ã

[
Ã+ B̃

]
λ̃

2C̃
(
C̃ − B̃

)
λ̃

,

1

p̃ =
λ̃Ã− γ1 − λ̃qC̃

λ̃B̃
,

and

ÃB̃C̃ =
75γ34 + 36γ2γ

2
5 + 40γ23γ6 − 30γ4 [4γ3γ5 + γ2γ6]

120
[
40γ33 − 12γ3 (5γ2γ4 + γ1γ5) + 3

(
5γ1γ

2
4 + 6γ22γ5

)] ,

1

ÃB̃ + ÃC̃ − B̃C̃ =
20γ23γ5 + 15γ2γ4γ5 − 6γ1γ

2
5 + 5γ1γ4γ6 − 5γ3

[
5γ24 + 2γ2γ6

]

10
[
40γ33 − 12γ3 (5γ2γ4 + γ1γ5) + 3

(
5γ1γ

2
4 + 6γ22γ5

)] ,

1

Ã− B̃ − C̃ =
20γ23γ4 − 15γ2γ

2
4 + 6γ1γ4γ5 + 6γ22γ6 − 4γ3 [3γ2γ5 + γ1γ6]

80γ33 − 24γ3 (5γ2γ4 + γ1γ5) + 6
(
5γ1γ

2
4 + 6γ22γ5

) ,

where
γ1 = λ [E[X]− pE[Y ]− qE[Z]] ,

γ2 = λ
[
E[X2] + pE[Y 2] + qE[Z2]

]
,

γ3 = λ
[
E[X3]− pE[Y 3]− qE[Z3]

]
,

γ4 = λ
[
E[X4] + pE[Y 4] + qE[Z4]

]
,

γ5 = λ
[
E[X5]− pE[Y 5]− qE[Z5]

]
,

γ6 = λ
[
E[X6] + pE[Y 6] + qE[Z6]

]
.

Proof. Taking the k-th moment of the random variable that are exponentially distributed

into the equation E[U(t)k] = E[Ũ(t)k], we have the system of equations

γ1 = λ̃Ã− λ̃p̃B̃ − λ̃q̃C̃, (4.30)

γ2 = 2λ̃Ã2 + 2λ̃p̃B̃2 + 2λ̃q̃C̃2, (4.31)

γ3 = 6λ̃Ã3 − 6λ̃p̃B̃3 − 6λ̃q̃C̃3, (4.32)
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γ4 = 24λ̃Ã4 + 24λ̃p̃B̃4 + 24λ̃q̃C̃4, (4.33)

γ5 = 120λ̃Ã5 − 120λ̃p̃B̃5 − 120λ̃q̃C̃5, (4.34)

γ6 = 720λ̃Ã6 + 720λ̃p̃B̃6 + 720λ̃q̃C̃6, (4.35)

Now our aim is to find the constants λ̃, p̃, q̃, Ã, B̃ and C̃ from this system. From

(4.30) we have λ̃p̃B̃ = λ̃Ã− γ1 − λ̃q̃C̃. Substituting this into (4.31)–(4.35), we get

γ2 = −2γ1B̃ + 2Ã
(
Ã+ B̃

)
λ̃+ 2C̃

(
C̃ − B̃

)
λ̃q̃, (4.36)

γ3 = 6γ1B̃
2 + 6Ã

(
Ã− B̃

)(
Ã+ B̃

)
λ̃+ 6C̃

(
B̃2 − C̃2

)
λ̃q̃, (4.37)

γ4 = −24γ1B̃
3 + 24Ã

(
Ã+ B̃

)(
Ã2 − ÃB̃ + B̃2

)
λ̃+ 24C̃

(
C̃3 − B̃3

)
λ̃q̃, (4.38)

γ5 = 120γ1B̃
4 + 120Ã

(
Ã− B̃

)(
Ã+ B̃

)(
Ã2 + B̃2

)
λ̃+ 120C̃

(
B̃4 − C̃4

)
λ̃q̃, (4.39)

γ6 = −720γ1B̃
5 + 720Ã

(
Ã+ B̃

)(
Ã4 − Ã3B̃ + Ã2B̃2 − ÃB̃3 + B̃4

)
λ̃

γ6 =+ 720C̃
(
C̃5 − B̃5

)
λ̃q̃. (4.40)

Next, from (4.36) we have 2C̃
(
C̃ − B̃

)
λ̃q̃ = γ2 + 2γ1B̃ − 2Ã

(
Ã+ B̃

)
λ̃. Substituting

this into (4.37)–(4.40), we obtain

γ3 = −6γ1B̃C̃ − 3γ2
(
B̃ + C̃

)
+ 6Ã

(
Ã+ B̃

)(
Ã+ C̃

)
λ̃, (4.41)

γ4 = 24γ1B̃C̃
(
B̃ + C̃

)
+ 12γ2

(
B̃2 + B̃C̃ + C̃2

)

+24Ã
(
Ã+ B̃

)(
Ã− B̃ − C̃

)(
Ã+ C̃

)
λ̃,

(4.42)

γ5 = −120γ1B̃C̃
(
B̃2 + B̃C̃ + C̃2

)
− 60γ2

(
B̃ + C̃

)(
B̃2 + C̃2

)

+120Ã
(
Ã+ B̃

)(
Ã+ C̃

)(
Ã2 − ÃB̃ + B̃2 − ÃC̃ + B̃C̃ + C̃2

)
λ̃,

(4.43)
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γ6 = 720γ1B̃C̃
(
B̃ + C̃

)(
B̃2 + C̃2

)
+ 360γ2

(
B̃4 + B̃3C̃ + B̃2C̃2 + B̃C̃3 + C̃4

)

+720Ã
(
Ã+ B̃

)(
Ã+ C̃

) [(
Ã2 + B̃2 + C̃2

)(
Ã− B̃ − C̃

)
+ ÃB̃C̃

]
λ̃.

(4.44)

Next, from (4.41) we have 6Ã
(
Ã+ B̃

)(
Ã+ C̃

)
λ̃ = γ3 + 6γ1B̃C̃ + 3γ2

(
B̃ + C̃

)
. Sub-

stituting this into (4.42)–(4.44), we obtain

γ4 = 24γ1ÃB̃C̃ + 12γ2
(
ÃB̃ + ÃC̃ − B̃C̃

)
+ 4γ3

(
Ã− B̃ − C̃

)
, (4.45)

γ5 = 120γ1ÃB̃C̃
(
Ã− B̃ − C̃

)
+ 60γ2

(
Ã− B̃

)(
Ã− C̃

)(
B̃ + C̃

)

+20γ3
(
Ã2 − ÃB̃ + B̃2 − ÃC̃ + B̃C̃ + C̃2

)
,

(4.46)

γ6 = 720γ1ÃB̃C̃
(
Ã2 − ÃB̃ + B̃2 − ÃC̃ + B̃C̃ + C̃2

)

+360γ2
[
Ã3B̃ − Ã2B̃2 + ÃB̃3 + Ã3C̃ − 2Ã2B̃C̃ + 2ÃB̃2C̃ − B̃3C̃ − Ã2C̃2

+2ÃB̃C̃2 − B̃2C̃2 + ÃC̃3 − B̃C̃3
]

+120γ3
[
Ã3 − Ã2B̃ + ÃB̃2 − B̃3 − Ã2C̃ + ÃB̃C̃ − B̃2C̃ + ÃC̃2 − B̃C̃2 − C̃3

]
.

(4.47)

Multiplying (4.45) by −5
(
Ã− B̃ − C̃

)
and adding (4.46), we get

γ5 = 60γ2ÃB̃C̃ + 20γ3
(
ÃB̃ + ÃC̃ − B̃C̃

)
+ 5γ4

(
Ã− B̃ − C̃

)
. (4.48)

Multiplying (4.45) by −30
(
Ã2 − ÃB̃ + B̃2 − ÃC̃ + B̃C̃ + C̃2

)
and adding (4.47), we get

γ6 = 360γ2ÃB̃C̃
(
Ã− B̃ − C̃

)
+ 120γ3

(
Ã− B̃

)(
Ã− C̃

)(
B̃ + C̃

)

+30γ4
(
Ã2 − ÃB̃ + B̃2 − ÃC̃ + B̃C̃ + C̃2

)
.

(4.49)

Multiplying (4.48) by −6
(
Ã− B̃ − C̃

)
and adding (4.49), we get

γ6 = 120γ3ÃB̃C̃ + 30γ4
(
ÃB̃ + ÃC̃ − B̃C̃

)
+ 6γ5

(
Ã− B̃ − C̃

)
. (4.50)
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Hence, we get the desired system of equations.

Theorem 4.6. The De-Vylder approximation

For the risk model (4.1) under a assumptions that Xi, Yi, and Zi have finite six moments

and that the net profit condition (4.3) hold, the De-Vylder approximation of ruin probability

ψDe(u) is given by

ψDe(u) = C1e
r1u + C2e

r2u for all u ≥ 0, (4.51)

where

r1 =
A+

√
D

B , r2 = A−
√
D

B ,

1,

A = −
[
(p̃+ q̃)B̃C̃ − (1 + q̃)ÃC̃ − (1 + p̃)ÃB̃

]
,

1

B = −2(1 + p̃+ q̃)ÃB̃C̃,

1

D =
[
(p̃+ q̃)B̃C̃ − (1 + q̃)ÃC̃ − (1 + p̃)ÃB̃

]2
− 4(1 + p̃+ q̃)ÃB̃C̃

[
Ã− p̃B̃ − q̃C̃

]
,

1

C1 =
C11

CD
, C2 =

C21

CD
,

which

C11 =

(
1

Ã
− r1

)
r2

(
p̃

B̃
+

q̃

C̃
− (p̃+ q̃)2

Ã
+ (p̃+ q̃)(1 + p̃+ q̃)r2

)
,

C21 =

(
1

Ã
− r2

)
r1

(
p̃

B̃
+

q̃

C̃
− (p̃+ q̃)2

Ã
+ (p̃+ q̃)(1 + p̃+ q̃)r1

)
,

CD

= (r1 − r2)

[
(p̃+ q̃)2

Ã2
+ (1 + p̃+ q̃)2r1r2 −

1

Ã

(
p̃

B̃
+

q̃

C̃
+ (p̃+ q̃)(1 + p̃+ q̃)(r1 + r2)

)]
.

and the constants λ̃, p̃, q̃, Ã, B̃ and C̃ are obtained from solving the system of equations

stated in Theorem 4.5 which have the following values:
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λ̃ =
γ3 + 6γ1B̃C̃ + 3γ2

[
B̃ + C̃

]

6Ã
(
Ã+ B̃

)(
Ã+ C̃

) ,

1

q̃ =
γ2 + 2γ1B̃ − 2Ã

[
Ã+ B̃

]
λ̃

2C̃
(
C̃ − B̃

)
λ̃

,

1

p̃ =
λ̃Ã− γ1 − λ̃qC̃

λ̃B̃
.

and Ã, B̃ and C̃ are obtained from solving the system of equations

ÃB̃C̃ =
75γ34 + 36γ2γ

2
5 + 40γ23γ6 − 30γ4 [4γ3γ5 + γ2γ6]

120
[
40γ33 − 12γ3 (5γ2γ4 + γ1γ5) + 3

(
5γ1γ

2
4 + 6γ22γ5

)] ,

1

ÃB̃ + ÃC̃ − B̃C̃ =
20γ23γ5 + 15γ2γ4γ5 − 6γ1γ

2
5 + 5γ1γ4γ6 − 5γ3

[
5γ24 + 2γ2γ6

]

10
[
40γ33 − 12γ3 (5γ2γ4 + γ1γ5) + 3

(
5γ1γ

2
4 + 6γ22γ5

)] ,

1

Ã− B̃ − C̃ =
20γ23γ4 − 15γ2γ

2
4 + 6γ1γ4γ5 + 6γ22γ6 − 4γ3 [3γ2γ5 + γ1γ6]

80γ33 − 24γ3 (5γ2γ4 + γ1γ5) + 6
(
5γ1γ

2
4 + 6γ22γ5

) ,

where
γ1 = λ [E[X]− pE[Y ]− qE[Z]] ,

γ2 = λ
[
E[X2] + pE[Y 2] + qE[Z2]

]
,

γ3 = λ
[
E[X3]− pE[Y 3]− qE[Z3]

]
,

γ4 = λ
[
E[X4] + pE[Y 4] + qE[Z4]

]
,

γ5 = λ
[
E[X5]− pE[Y 5]− qE[Z5]

]
,

γ6 = λ
[
E[X6] + pE[Y 6] + qE[Z6]

]
.

To calculate the approximated ruin probability using the De-Vylder approximation

described in (4.51), we can use the MATLAB commands “solve” for computation.

4.3 Lundberg’s inequality

In this section, we will study the martingale and stopping time. This will allow us

to find the adjustment coefficient equation, Lundberg’s inequality for the ruin probability,

which it can be used to create as Lemma, Theorem and Corollary.
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Theorem 4.7. For the profits process {S(t); t ≥ 0},

E[e−rS(t)] = etg(r), (4.52)

where

g(r) = −λ [1−MX(−r)]− λp [1−MY (r)]− λq [1−MZ(r)] . (4.53)

Proof. Since Xi, Yi, Zi, N(t), N(t, p) and N(t, q) are mutually independent,

E
[
e−rS(t)

]
= E



exp{−r

N(t)∑

i=1

Xi} · exp{r
N(t,p)∑

i=1

Yi} · exp{r
N(t,q)∑

i=1

Zi}





= E



exp{−r

N(t)∑

i=1

Xi}



 · E



exp{r
N(t,p)∑

i=1

Yi}



 · E



exp{r
N(t,q)∑

i=1

Zi}





By definition of MGF in Definition 2.24 and Theorem 2.22, we get

E
[
e−rS(t)

]
= M∑N(t)

i=1 Xi
(−r) ·M∑N(t,p)

i=1 Yi
(r) ·M∑N(t,q)

i=1 Zi
(r)

= e−λt[1−MX(−r)]e−λpt[1−MY (r)]e−λqt[1−MZ(r)]

= exp {t (−λ [1−MX(−r)]− λp [1−MY (r)])− λq [1−MZ(r)]} .

Therefore,

E[e−rS(t)] = etg(r),

where

g(r) = −λ [1−MX(−r)]− λp [1−MY (r)]− λq [1−MZ(r)] .

Then, we obtain (4.52).

Theorem 4.8. Equation

g(r) = 0 (4.54)
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has a unique positive solution r = R > 0, we can call (3.63) is said to be an adjustment

coefficient equation of the risk model (3.5), with R > 0 is said to be an adjustment

coefficient.

Proof. We will show that the adjustment coefficient equation has the unique positive

solution, by proving the following properties of g(r).

(1) g(0) = 0,

(2) g′(0) < 0,

(3) g′′(r) > 0 for all r > 0,

(4) lim
r→+∞

g(r) = ∞.

From the definition of MGF in Definition 2.24, MX(0) = 1,MY (0) = 1, and MZ(0) = 1,

we get

(1) From (4.53), then g(0) = 0.

(2) From (4.53), then

g′(r) = −λE[Xie
−rXi ] + λpE[Yie

rYi ] + λqE[Zie
rZi ]. (4.55)

Hence,

g′(0) = −λE[Xi] + λpE[Yi] + λqE[Zi].
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From net profit condition (4.3), we get

g′(0) = −λE[Xi] + λpE[Yi] + λqE[Zi],

< −λE[Xi] + λµX = 0.

Therefore, g′(0) < 0.

(3) Let r > 0. Due to the explanation of g′(r) in (4.55), we have that

g′′(r) = λE[X2
i e

−rXi ] + λpE[Y 2
i e

rYi ] + λqE[Z2
i e

rZ ].

Since Xi, Yi, Zi are non-negative random variables and r > 0,

E[X2
i e

−rXi ] > 0, E[Y 2
i e

rYi ] ≥ 0 and E[Z2
i e

rZi ] ≥ 0.

Hence,

g′′(r) = λE[X2e−rX ] + λpE[Y 2erY ] + λqE[Z2erZ ] > 0.

Therefore,

g′′ (r) > 0 for all r > 0.

(4) Since (4.53) and the definition of MGF in Definition 2.24,

lim
r→+∞

g(r) = − lim
r→+∞

λ [1−MX(−r)]− lim
r→+∞

λp [1−MY (r)]

− lim
r→+∞

λq [1−MZ(r)] .

Since lim
r→+∞

MX(−r) = 0, lim
r→+∞

MY (r) = ∞, and lim
r→+∞

MZ(r) = ∞,

lim
r→+∞

g(r) = ∞.

To determine the value of R based in the theory, it can be obtained as the unique

positive solution of g(r) = 0, as indicated in Theorem 4.8. The function g(r) is determined
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by (4.53). In practical applications, we will use the R command “uniroot” to compute

the value of adjustment coefficient R.

For the profits process {S(t); t ≥ 0}, let FS
t = σ{S(v); v ≤ t} be a filtration.

Theorem 4.9. The random process {Hu(t); FS
t ; t ≥ 0} is a martingale,

where Hu(t) =
e−r(u+S(t))

etg(r)
.

Proof. Let v < t, we will show that E[Hu(t) | FS
v ] = Hu(v).

Consider

E[Hu(t) | FS
v ] = E

[
e−r(u+S(t))

etg(r)

∣∣∣∣∣ F
S
v

]

= E

[
e−r(u+S(t))

etg(r)
· e

−rS(v)+rS(v)

evg(r)−vg(r)

∣∣∣∣∣ F
S
v

]

= E

[
e−r(u+S(v))

evg(r)
· e

−r(S(t)−S(v))

e(t−v)g(r)

∣∣∣∣∣ F
S
v

]

=
e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t)−S(v)) | FS

v ]. (4.56)

Consider

S(t)− S(v) =

N(t)∑

i=N(v)+1

Xi −
N(t,p)∑

i=N(v,p)+1

Yi −
N(t,q)∑

i=N(v,q)+1

Zi.

Since Xi, Yi, Zi are i.i.d. and N(t) is stationary increment, we get

S(t)− S(v)
d∼=

N(t)−N(v)∑

i=1

Xi −
N(t,p)−N(v,p)∑

i=1

Yi −
N(t,q)−N(v,q)∑

i=1

Zi

d∼=
N(t−v)∑

i=1

Xi −
N(t−v,p)∑

i=1

Yi −
N(t−v,q)∑

i=1

Zi

= S(t− v).

Therefore, (4.56) is become

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t−v))|FS

v ].
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Since S(t− v) and FS
v are mutually independent and Theorem 2.18,

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· E[e−r(S(t−v))].

From Theorem 4.7, we get

E[Hu(t)|FS
v ] =

e−r(u+S(v))

evg(r)
· 1

e(t−v)g(r)
· e(t−v)g(r),

= Hu(v).

Therefore,

E[Hu(t)|FS
v ] = Hu(v),

i.e., the random process Hu(t) is a martingale.

Lemma 4.2. The ruin time T is the stopping time of FS
t .

Proof. Let T be the ruin time where U(T ) < 0 and FS
t = σ{S(v); v ≤ t}.

From (4.1) and Lemma 4.1, then

U(t) = u+ S(t).

Since FS
t or σ − algebra generated by random process S(v) from time 0 to t occurs, it

gives information S(t) from time 0 to t. Hence, event {T ≤ t} is a member of FS
t .

Therefore,

T is the stopping time of FS
t .

Theorem 4.10. For the surplus process {U(t); t ≥ 0}, the ruin probability ψ(u) satisfies

Lundberg inequality:

ψ(u) ≤ e−Ru , u ≥ 0, (4.57)

where R is adjustment coefficient.
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Proof. Let T be the ruin time, t0 > 0 be a fixed time and t0∧T = min(t0, T ), then t0∧T

is a stopping time.

Therefore, t0 ∧ T is a bounded stopping time.

From, Hu(t) =
e−r(u+S(t))

etg(r)
and Lemma 4.1, then

e−ru = E[Hu(0)].

By Theorem 2.24 (The Martingale Stopping Time Theorem), we have that

E[Hu(0)] = E[Hu(T ∧ t0)].

Therefore,

e−ru = E[Hu(T ∧ t0)].

Since

T ∧ t0 = min(T, t0) =





T, if T ≤ t0,

t0, if T > t0,
,

E[Hu(T ∧ t0)] = E[Hu(T ∧ t0) · [1T≤t0 + 1T>t0 ]]

= E[Hu(T ∧ t0) · 1T≤t0 ] + E[Hu(T ∧ t0) · 1T>t0 ]

= E[Hu(T )|T ≤ t0] · P (T ≤ t0) + E[Hu(t0)|T > t0] · P (T > t0).

Let r = R. Therefore,

e−Ru = E[e−RU(T )|T ≤ t0] · P (T ≤ t0) + E[e−RU(t0)|T > t0] · P (T > t0). (4.58)

By the fact that 0 ≤ E[e−RU(t0)|T > t0] ≤ 1 and Theorem 2.20 (Markov’s inequality),

we obtain

lim
t0→∞

[
E[e−RU(t0)|T > t0] · P (T > t0)

]
= 0.
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From (4.58), we get that

lim
t0→∞

e−Ru = lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0) + E[e−RU(t0)|T > t0] · P (T > t0)

]

= lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0)

]
+ lim

t0→∞

[
E[e−RU(t0)|T > t0] · P (T > t0)

]

= lim
t0→∞

[
E[e−RU(T )|T ≤ t0] · P (T ≤ t0)

]
.

Then,
e−Ru = E[e−RU(T )|T ≤ ∞] · P (T ≤ ∞)

= E[e−RU(T )|T ≤ ∞] · ψ(u).

Therefore,

ψ(u) =
e−Ru

E[e−RU(T )|T ≤ ∞]
. (4.59)

Since U(T ) < 0, we have that 1

e−RU(T )
< 1.

From (4.59), we have that

ψ(u) =
e−Ru

E[e−RU(T ) | T < ∞]
<

e−Ru

E[ 1 |T < ∞]
= e−Ru.

Therefore,

ψ(u) ≤ e−Ru.

4.4 Experimental simulations

In this section, we perform numerical studies to investigate performance of the an-

alytical approximation of the risk model with surrender under the thinning dependence.

The studies are divided into three parts. The first part discussed in Section 4.4.1 intro-

duces the statistical estimation for the ruin probability ψ̂t(u) by using the Monte Carlo

methods. The second part in Section 4.4.2 studies numerical approximation to the ruin

probability when the amounts of premiums, claims, and surrenders follows an exponential

distribution by using the analytical solution such as the Cramér approximation and the

Laplace transform comparing with the Monte Carlo approximation and the Lundberg’s



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103

Upper bound. The third part focuses on the numerical approximation to the ruin proba-

bility when the amounts of premiums, claims, and surrenders follows gamma distribution

by using the De-Vylder approximation and the Laplace transform comparing with the

Monte Carlo approximation and the Lundberg’s Upper bound.

4.4.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability ψ̂t(u) derived

by the direct simulation of the surplus process using the Monte Carlo methods in order

to evaluate the result of the approximations suggested in this chapter.

Let N be the total number of realizations of the process U(t). We can calculate the

average value of the process U(t) when each ruin occurs at the time point t, consequently,

we obtain the corresponding statistical estimate ψ̂t(u) for the ruin probability ψ(u). The

Monte Carlo estimations is obtained as

ψ̂t(u) =
1

N

N∑

i=1

I{Ui(t)<0|Ui(0)=u},

where t is a fixed time point and N is the sample size. As N → ∞ and t → ∞, by

the law of large numbers, ψ̂t(u) converges to ψ(u). The time points considered here are

t = 1, 5, 50, and 100, and the sample size of the Monte Carlo method is N = 200,000. The

parameters of the model studied in this section are as follows. The initial capital u varies in

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 5}. The

parameter of the Poisson counting process of premium is λ = 10. The thinning parameters

of claims and surrenders are 0.4 and 0.3, respectively.

4.4.2 Exponential distributions for the premium, claim sizes and sur-

render

Let the probability density functions of the amounts of premiums Xi, the amounts

of claims Yi, and the amounts of surrenders Zi are

f(x) = ae−ax, g(y) = be−by and h(z) = ce−cz , x, y, z ≥ 0,
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where a = 5, b = 4 and c = 6, respectively.

For the Cramer approximation in, substituting a = 5, b = 4, c = 6, p = 0.4, and q = 0.3

into the formula of r1 and r2 in (4.6), we get r1 = −5.271671 and r2 = −0.669505,

respectively. Consequently, C1 = 0.005614 and C2 = 0.847327. Therefore, the Cramér

approximation ψC(u) is

ψC(u) = 0.005614e−5.271671u + 0.847327e−0.669505u for all u ≥ 0. (4.60)

For the Laplace approximation, substituting a = 5, b = 4, c = 6, p = 0.4, and q = 0.3 into

the formula in (4.51), we get S = 61.21. Consequently, s1 = −5.271671, s2 = −0.669505.

Therefore, the Laplace approximation ψL is Consequently, the Laplace approximation

ψL is

ψL (u) = 0.022457e−5.271671u + 3.389308e−0.669505u − 3.0 for all u ≥ 0. (4.61)

For the upper bound approximation, substituting a = 5, b = 4, c = 6, p = 0.4, and

q = 0.3 into g(r) in Theorem 4.7 and solve for the unique positive solution g(r) = 0 by

using the R programming to compute the value of R, we have R = 0.669505. Then, from

Theorem 4.10, the upper bound of the ruin probability is

ψ(u) ≤ e−0.669505u. (4.62)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

105

Figure 4.1: Graph of initial reserve u and the ruin probability of the SPST risk model
with exponential distributions.

From Table 4.1, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases, except for the Laplace transforms. Notice that

the Monte Carlo approximations ψ̂t(u) do not have the same value as our approxima-

tions. Besides, we can observe that the ruin probability ψ̂t(u) increases as t increases,

the Monte Carlo approximation converges to our approximations, and it is less than the

upper bound. Therefore, the Monte Carlo approximation is consider to be a good op-

tion. However, in practical situations, the exact value of the ruin probability is unknown;

therefore, it is impossible to determine how high the value of t should be in order to make

ψ̂t(u) close to the exact value of the ruin probability as one desires. Consequently, the

Cramér approximations are better than the Monte Carlo approximation regarding real

usage.

Also, we can see that the Cramér approximates of the ruin probability ψC(u) have

values between the Monte Carlo approximation of ruin probability ψ̂t(u) and the Lund-

berg upper bound which is reasonable, since the Cramér and the Laplace approximations

are a type of infinite-time ruin probabilities which should be higher than any of finite-time

ruin probability ψ̂t(u) and should not exceed the upper bound. In contrast, the Laplace

approximate ψL (u) are negative for high values of initial capitals which shows bad perfor-

mance of the Laplace approximation in this case. Therefore, we investigate the reason of
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such phenomenon mathematically and found that lim
u→∞

ψL (u) =
acp+ abq

−bc+ acp+ abq
< 0.

Thus, based on the previous reason, it is not possible to use the Laplace transform of

the ruin probability where the money amounts follow exponential distributions in SPST

model.

The Monte Carlo simulation will be very good, if we can increase the value of t.

However, it will take long computation time to do so. Therefore, a possible way to im-

prove the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead. Furthermore, we have attempted

to change the type of transformation from the Laplace transform, into the Fourier trans-

form. This may help us fix the problem that the approximated ruin probabilities of

the Laplace transform are negative because the Fourier transform deals with integrals

of complex functions. We can do this by replacing the variable s in the formula of the

approximated ruin probability of the Laplace transform by is where i is the imaginary

number. Unfortunately, the numerical results obtained from this transformed formula for

the ruin probability of Fourier transforms still yield negative values.

4.4.3 Gamma distributions for the premium, claim sizes and surrender

In this section, we study numerical approximations such the premium, claim sizes

and surrender follow gamma distributions. Specifically, letthe probability density func-

tions of the premium Xi, the claim sizes Yi and the surrender Zi are

f(x) =
βXe−βXx(βXx)αX−1

Γ(αX)
, g(y) =

βY e−βY y(βY y)αY −1

Γ(αY )
, and

h(z) =
βZe−βZz(βZz)αZ−1

Γ(αZ)
,

for x, y, z ≥ 0, where βX = 5,αX = 1,βY = 8,αY = 2,βZ = 12,αZ = 2, respectively.

For the De-Vylder approximation, substituting βX = 5,αX = 1,βY = 8,αY = 2,βZ =

12,αZ = 2, p = 0.4, and q = 0.3 into the formula of r1 and r2 in (4.51), we get r1 =

−15.675242 and r2 = −0.793073, respectively. Consequently, C1 = −0.019467 and C2 =
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0.874847. Therefore, the De-Vylder approximation ψDe(u) is

ψDe(u) = −0.019467e−15.675242u + 0.874847e−0.793072u for all u ≥ 0. (4.63)

For the Laplace approximation, substituting βX = 5,αX = 1,βY = 8,αY = 2,βZ =

12,αZ = 2, p = 0.4, and q = 0.3 into the formula of ψ∗(s) in (4.21), then taking the

inverse Laplace transform in ψ∗(s) by using the MATLAB for computation. Therefore,

the Laplace approximation ψL is

ψL (u) =−3.0 + 3.498836e−0.794286u − 0.092109e−17.943008u

+(0.002519− 0.010671i)e(−9.601941−1.702506i)u

+(0.002519 + 0.010671i)e(−9.601941+1.702506i)u for all u ≥ 0.

Since z1ez2u + z1ez2u = 2Re(z1ez2u), for all u ≥ 0

ψL (u) =−3.0 + 3.498836e−0.794286u − 0.092109e−17.943008u (4.64)

+0.005038e−9.601941ucos(1.702506)− 0.021254e−9.601941usin(1.702506)

For the upper bound approximation, substituting βX = 5,αX = 1,βY = 8,αY = 2,βZ =

12,αZ = 2, p = 0.4, and q = 0.3 into g(r) in Theorem 4.7 and solve for the unique

positive solution g(r) = 0 by using the R programming to compute the value of R, we

have R = 0.794286. Then, from Theorem 4.10, the upper bound of the ruin probability

is

ψ(u) ≤ e−0.794286u. (4.65)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108

Figure 4.2: Graph of initial reserve u and the ruin probability of the SPST risk model
with gamma distributions.

From Table 4.2, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases, except for the Laplace transforms. Notice that

the Monte Carlo approximations ψ̂t(u) do not have the same value as our approxima-

tions. Besides, we can observe that the ruin probability ψ̂t(u) increases as t increases,

the Monte Carlo approximation converges to our approximations, and it is less than the

upper bound. Therefore, the Monte Carlo approximation is consider to be a good op-

tion. However, in practical situations, the exact value of the ruin probability is unknown;

therefore, it is impossible to determine how high the value of t should be in order to make

ψ̂t(u) close to the exact value of the ruin probability as one desires. Consequently, the

De-Vyder approximations are better than the Monte Carlo approximation regarding real

usage.

Also, we can see that the De-Vyder approximates of the ruin probability ψDe(u)

have values between the Monte Carlo approximation of ruin probability ψ̂t(u) and the

Lundberg upper bound which is reasonable, since the De-Vyder and the Laplace ap-

proximations are a type of infinite-time ruin probabilities which should be higher than

any of finite-time ruin probability ψ̂t(u) and should not exceed the upper bound. In

contrast, the Laplace approximate ψL (u) are negative for high values of initial capitals
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which shows bad performance of the Laplace approximation in this case. Therefore, we

investigate the reason of such phenomenon mathematically and from (4.64) found that

lim
u→∞

ψL (u) = −3 < 0. Thus, based on the previous reason, it is not possible to use

the Laplace transform of the ruin probability where the money amounts follow gamma

distributions in SPST model.

The Monte Carlo simulation will be very good, if we can increase the value of t.

However, it will take long computation time to do so. Therefore, a possible way to im-

prove the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead. Furthermore, we have attempted

to change the type of transformation from the Laplace transform, into the Fourier trans-

form. This may help us fix the problem that the approximated ruin probabilities of

the Laplace transform are negative because the Fourier transform deals with integrals

of complex functions. We can do this by replacing the variable s in the formula of the

approximated ruin probability of the Laplace transform by is where i is the imaginary

number. Unfortunately, the numerical results obtained from this transformed formula for

the ruin probability of Fourier transforms still yield negative values.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

The numerical approximations obtained in (4.60)–(4.62) for different values of
the initial capital u is given in Table 4.1.

u

ψ(u)

Statistical estimate ψ̂t(u)
ψC(u) ψL (u)

Upper bound
e−Ru

t = 1 t = 5 t = 50 t = 100

0 0.334325 0.490920 0.535130 0.535215 0.852941 0.411765 1.000000
0.1 0.303330 0.462225 0.508595 0.508705 0.795769 0.183077 0.935241
0.2 0.273110 0.433905 0.482160 0.482265 0.743093 -0.027627 0.874677
0.3 0.245010 0.406690 0.456810 0.456920 0.694297 -0.222813 0.818034
0.4 0.219055 0.380455 0.432245 0.432365 0.648937 -0.404253 0.765059
0.5 0.195000 0.354790 0.407845 0.407965 0.606678 -0.573290 0.715515
0.6 0.172885 0.330065 0.384190 0.384315 0.567251 -0.730995 0.669179
0.7 0.153085 0.307350 0.362150 0.362255 0.530435 -0.878260 0.625844
0.8 0.134950 0.285445 0.340895 0.341005 0.496036 -1.015854 0.585316
0.9 0.117805 0.264290 0.320260 0.320360 0.463885 -1.144459 0.547411
1 0.102915 0.245045 0.301360 0.301485 0.433828 -1.264688 0.511962

1.1 0.089255 0.226045 0.282665 0.282780 0.405724 -1.377104 0.478808
1.2 0.077220 0.208870 0.265405 0.265520 0.379444 -1.482224 0.447801
1.3 0.066320 0.191790 0.248300 0.248435 0.354868 -1.580527 0.418802
1.4 0.056875 0.176660 0.232910 0.233065 0.331885 -1.672458 0.391681
1.5 0.048515 0.161845 0.217595 0.217750 0.310392 -1.758433 0.366316
1.6 0.041245 0.148255 0.203490 0.203635 0.290291 -1.838838 0.342594
1.7 0.035180 0.135870 0.190560 0.190710 0.271491 -1.914034 0.320408
1.8 0.029710 0.124460 0.178585 0.178730 0.253910 -1.984361 0.299659
1.9 0.025200 0.113740 0.167040 0.167180 0.237467 -2.050133 0.280254
2 0.021080 0.104095 0.156500 0.156640 0.222089 -2.111645 0.262105
3 0.002980 0.040245 0.080515 0.080635 0.113701 -2.545197 0.134188
5 0.000020 0.004710 0.021420 0.021495 0.029802 -2.880794 0.035171

Table 4.1: Numerical approximations of the SPST risk model with exponential distri-
butions.
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The numerical approximations obtained in (4.63)–(4.65) for different values of
the initial capital u is given in Table 4.2.

u

ψ(u)

Statistical estimate ψ̂t(u)
ψDe(u) ψL (u)

Upper bound
e−Ru

t = 1 t = 5 t = 50 t = 100

0 0.333420 0.481655 0.519530 0.519545 0.855380 0.411765 1.000000
0.1 0.300120 0.450950 0.490465 0.490480 0.804085 0.216882 0.923644
0.2 0.268845 0.420695 0.462025 0.462040 0.745682 -0.017974 0.853118
0.3 0.239060 0.391785 0.434355 0.434370 0.689434 -0.243758 0.787977
0.4 0.211670 0.364330 0.40810 0.408120 0.636995 -0.453785 0.727811
0.5 0.186045 0.337270 0.381990 0.382030 0.588454 -0.648067 0.672238
0.6 0.161895 0.310735 0.356555 0.356595 0.543594 -0.827594 0.620908
0.7 0.140015 0.286120 0.332745 0.332785 0.502149 -0.993446 0.573498
0.8 0.120315 0.262140 0.309550 0.309575 0.463864 -1.146647 0.529708
0.9 0.102590 0.239515 0.287405 0.287430 0.428497 -1.288157 0.489262
1 0.086860 0.218145 0.266150 0.266185 0.395827 -1.418865 0.451904

1.1 0.073535 0.198885 0.246975 0.247025 0.365647 -1.539593 0.417398
1.2 0.061370 0.180590 0.22860 0.228640 0.337769 -1.651104 0.385527
1.3 0.051570 0.164055 0.211925 0.211975 0.312016 -1.754100 0.35609
1.4 0.043235 0.148725 0.196285 0.196320 0.288227 -1.849232 0.328900
1.5 0.035735 0.134470 0.181335 0.181370 0.266251 -1.937100 0.303787
1.6 0.029305 0.121365 0.167415 0.167445 0.245951 -2.018259 0.280591
1.7 0.023600 0.109420 0.154635 0.154665 0.227199 -2.093221 0.259166
1.8 0.019015 0.098505 0.142770 0.142800 0.209876 -2.162459 0.239377
1.9 0.015210 0.088795 0.131935 0.131975 0.193874 -2.226410 0.221099
2 0.012295 0.079505 0.121715 0.121755 0.179093 -2.285478 0.204217
3 0.001080 0.026025 0.054895 0.054945 0.081031 -2.677105 0.092286
5 0.000005 0.002120 0.011390 0.011420 0.016588 -2.934059 0.018846

Table 4.2: Numerical approximations of the SPST risk model with gamma distribu-
tions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

RENEWAL RISK MODEL WITH CONSTANT

PREMIUMS AND SURRENDERS

In this chapter, we study numerical approximations of renewal risk model with

constant premiums and surrenders when the arrival times of premiums, claims, and sur-

renders follow generalized exponential distributions. We first introduce the risk model.

Then, we derive formula for different approximation method of the ruin probability which

are the Cramér approximation and the Laplace transforms method. Moreover, we per-

form numerical studies to investigate performance of the two methods and compare them

with the Monte Carlo approximation.

The organization of this chapter is as follows. Section 5.1 studies some properties

of the renewal risk model with constant premiums and surrenders. Section 5.2 derives

the analytical approximation of the ruin probability. Section 5.3 performs experimental

simulations.

5.1 The renewal risk model with constant premiums and surrenders

In this section, the generalized exponential distribution has been introduced in [16].

A random variable X has the generalized exponential distribution with parameters η and

λ, if it has distribution function F (x) = (1 − e−λx)η for x > 0,λ > 0, η > 0, with

corresponding density function f(x) = ηλ(1− e−λx)η−1e−λx for x > 0,λ > 0, η > 0.

We introduce the renewal risk model with constant premiums and surrenders. The

risk model consists of the initial capital, premiums, claims, and surrenders. In particular,

the surplus at time t, U(t), is defined as

U(t) = u+ cM(t)−
N(t)∑

i=1

Yi −
K(t)∑

i=1

Zi, (5.1)
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where u represents the initial capital, c is the constant rate of premium, M(t) denoting

the number of premiums up to time t where the inter-premium times follow generalized

exponential distribution with shape parameter η1 = 2 and scale parameter λ1. N(t) de-

noting the number of claims up to time t where the inter-claim times follow generalized

exponential distribution with parameter η2 = 2 and λ2. The individual claim size {Yi}∞i=1

is a sequence of i.i.d. non-negative random variables with a cumulative distribution func-

tion G. K(t) denoting the number of surrenders up to time t where the inter-surrender

times follow generalized exponential distribution with parameter η3 = 2 and λ3. The se-

quence of i.i.d. non-negative random variables {Zi}∞i=1 represents the amount of the i-th

payment of insurance policy with a cumulative distribution function H. In addition, we

suppose that {Yi}∞i=1, {Zi}∞i=1, {M(t)}t≥0, {N(t)}t≥0, and {K(t)}t≥0 are also mutually

independent.

5.2 Approximation to the ruin probability of the risk model

In this section, we will study analytical approximation of the ruin probability for the

renewal risk model with constant premiums and surrenders. We will start by obtaining

the integral equation for the ruin probability. Then we obtain an approximation of the

ruin probability using the Cramér approximation, and the Laplace transforms method. To

obtain the three approximations, we first obtain the integro-differential equations stated

in Theorem 5.2 below.

Define the sequence of i.i.d. random variables {Ii}∞i=1 represents the inter-arrival

times of ith premium. The sequence of i.i.d. random variables {Ji}∞i=1 represents the inter-

arrival times of ith claim. The sequence of i.i.d. random variables {Ki}∞i=1 represents the

inter-arrival times of ith surrender. In particular, the probability density functions of Ii,

Ji, and Ki are

f(x) = 2λ1(1− e−λ1x)e−λ1x, g(y) = 2λ2(1− e−λ2y)e−λ2y, and

h(z) = 2λ3(1− e−λ3z)e−λ3z,

for x, y, z ≥ 0, respectively.
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Theorem 5.1. The random variable T1 = min(I1, J1,K1) has the probability density

function defined as

fT1
(x) = 2e−2x(λ1+λ2+λ3)

[
(eλ1x − 1)(2eλ2x − 1)(2eλ3x − 1)λ1

+ (2eλ1x − 1)(eλ2x − 1)(2eλ3x − 1)λ2 (5.2)

+(2eλ1x − 1)(2eλ2x − 1)(eλ3x − 1)λ3
]
,

where I1, J1, and K1 are the interarrival times of first premium, first claim, and first

surrender, respectively.

Proof. Let T1 = min(I1, J1,K1).

Since the interarrival time I1, J1, and K1 are mutually independent,

P [T1 > x] = P [I1 > x and J1 > x and K1 > x]

= P [I1 > x] P [J1 > x] P [K1 > x]

= (2e−λ1x − e−2λ1x)(2e−λ2x − e−2λ2x)(2e−λ3x − e−2λ3x)

= e−2x(λ1+λ2+λ3)(2eλ1x − 1)(2eλ2x − 1)(2eλ3x − 1).

Therefore

P [T1 ≤ x] = 1− e−2x(λ1+λ2+λ3)(2eλ1x − 1)(2eλ2x − 1)(2eλ3x − 1).

Thus, the density of T1 is

fT1
(x) =

d

dx
P [T1 ≤ x]

= 2e−2x(λ1+λ2+λ3)
[
(eλ1x − 1)(2eλ2x − 1)(2eλ3x − 1)λ1

+ (2eλ1x − 1)(eλ2x − 1)(2eλ3x − 1)λ2

+(2eλ1x − 1)(2eλ2x − 1)(eλ3x − 1)λ3
]
.
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Lemma 5.1. The probability that the random variable T1 = min(I1, J1,K1) is equal to

each of its components is

P [T1 = I1] = α1 , P [T1 = J1] = α2 , and P [T1 = K1] = α3,

respectively, where

α1 = λ1

[
7

λ1 + λ2 + λ3
− 4

2λ2 + λ3 + λ1
− 4

λ1 + 2λ3 + λ2
− 8

λ2 + λ3 + 2λ1

+
2

2λ2 + 2λ3 + λ1
+

4

2λ1 + λ3 + 2λ2
+

4

λ2 + 2λ3 + 2λ1

]
,

α2 = λ2

[
7

λ1 + λ2 + λ3
− 4

2λ1 + λ3 + λ2
− 4

λ1 + 2λ3 + λ2
− 8

λ1 + λ3 + 2λ2

+
2

2λ1 + 2λ3 + λ2
+

4

2λ1 + λ3 + 2λ2
+

4

λ1 + 2λ3 + 2λ2

]
,

α3 = λ3

[
7

λ1 + λ2 + λ3
− 4

2λ1 + λ3 + λ2
− 4

λ1 + 2λ2 + λ3
− 8

λ1 + λ2 + 2λ3

+
2

2λ1 + 2λ2 + λ3
+

4

2λ1 + λ2 + 2λ3
+

4

λ1 + 2λ3 + 2λ2

]
,

and

α1 + α2 + α3 = 1.

Proof. Let T1 = min(I1, J1,K1). Then

P [T1 = I1]

=

∫ ∞

0
P (I1 = x, J1 ≥ x,K1 ≥ x) dx

=

∫ ∞

0
P (I1 = x)P (J1 ≥ x)P (K1 ≥ x) dx

=

∫ ∞

0
2λ1(1− e−λ1x)e−λ1x · (2e−λ2x − e−2λ2x)·(2e−λ3x − e−2λ3x) dx

= λ1

[
7

λ1 + λ2 + λ3
− 4

2λ2 + λ3 + λ1
− 4

λ2 + 2λ3 + λ1

− 8

λ2 + λ3 + 2λ1
+

2

2λ2 + 2λ3 + λ1
+

4

2λ2 + λ3 + 2λ1

+
4

λ2 + 2λ3 + 2λ1

]

= α1.

By the same technique, we can show that P [T1 = J1] = α2 and P [T1 = K1] = α3.
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Theorem 5.2. The ruin probability ψ(u) for risk model (5.1) satisfies the integro-

differential equation

α1ψ′(u) =
(α2 + α3)

c
ψ(u)− α2

c
[1−G(u)]− α3

c
[1−H(u)]

−α2

c

∫ u

0
ψ(u− y) dG(y)− α3

c

∫ u

0
ψ(u− z) dH(z), u ≥ 0,

(5.3)

where G and H are cumulative distribution functions of the individual claims sizes and

the amount of surrenders with probability density functions g and h, respectively.

Proof. To compute the non-ruin probability φ(u), we consider non-ruin probability φ(u)

and distinguish according to whether there are disjoint events possible of the first occur-

rence of any event among the three events - the first time of premium payment, the first

time of claim payment, and the first time of surrender payment during infinitesimal time

t. Particularly,

φ(u) =

∫ ∞

0
P [ U(s) ≥ 0 ∀ s ≥ 0 | U(0) = u , T1 = t ] fT1

(t) dt.

By the law of total probability of T1,

fT1
(t) = fT1

(t | T1 = I1)P (T1 = I1) + fT1
(t | T1 = J1)P (T1 = J1)

+fT1
(t | T1 = K1)P (T1 = K1).

Thus,

φ(u) =

∫ ∞

0
fT1

(t) ·
{
P [ U(s) ≥ 0 ∀s ≥ 0 | U(0) = u, I1 = t ] P [T1 = I1]

+P [ U(s) ≥ 0 ∀s ≥ 0 | U(0) = u, J1 = t ] P [T1 = J1]

+P [ U(s) ≥ 0 ∀s ≥ 0 | U(0) = u,K1 = t ] P [T1 = K1]

}
dt.
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Therefore,

φ(u) =

∫ ∞

0
fT1

(t) ·
{
α1P [U(s) ≥ 0 ∀s ≥ 0 | N(I1) = 1]

+α2P [U(s) ≥ 0 ∀s ≥ 0 | M(J1) = 1] + α3P [U(s) ≥ 0 ∀s ≥ 0 | K(K1) = 1]

}
dt.

Using the property that
∫ ∞

0
fT1

(x) dx = 1, we get

φ(u) = α1P [U(s) ≥ 0 ∀s ≥ 0 | N(I1) = 1] + α2P [U(s) ≥ 0 ∀s ≥ 0 | M(J1) = 1]

+α3P [U(s) ≥ 0 ∀s ≥ 0 | K(K1) = 1].

In particular, from the law of total probability, the non-ruin probability can be computed

as
φ(u) = α1P [U(s) ≥ 0 ∀s ≥ 0 | U(I1) = u+ c]

+α2

∫ u

0
P [U(s) ≥ 0 ∀s ≥ 0 | U(J1) = u− y] dG(y)

+α3

∫ u

0
P [U(s) ≥ 0 ∀s ≥ 0 | U(K1) = u− z] dH(z).

According to the concept of stationary, we can treat any interarrival time as a new start

time. Therefore, we can express any interarrival time as U(0). This implies that we are

starting a new at any interarrival time and can use U(0) as the starting point,

φ(u) = α1P [U(s) ≥ 0 ∀s ≥ 0 | U(0) = u+ c]

+α2

∫ u

0
P [U(s) ≥ 0 ∀s ≥ 0 | U(0) = u− y] dG(y)

+α3

∫ u

0
P [U(s) ≥ 0 ∀s ≥ 0 | U(0) = u− z] dH(z).

Then, we get that

φ(u) = α1φ(u+ c) + α2

∫ u

0
φ(u− y) dG(y) + α3

∫ u

0
φ(u− z) dH(z).

By the Taylor series expansion in φ(u + c) around x0 = u, particularly, φ(u + c) =
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φ(u) + cφ′(u) + o(∆t) for ∆t → 0 , we get

−cα1φ′(u) = α2

∫ u

0
φ(u− y) dG(y) + (α1 − 1)φ(u) + α3

∫ u

0
φ(u− z) dH(z).

Dividing both sides by −c and using the property α1 + α2 + α3 = 1, we have

α1φ
′(u) =

(α2 + α3)

c
φ(u)− α2

c

∫ u

0
φ(u− y) dG(y)− α3

c

∫ u

0
φ(u− z) dH(z). (5.4)

Using the property that φ(u) = 1− ψ(u), we get

−α1ψ′(u) =
(α2 + α3)

c
− (α2 + α3)

c
ψ(u)− α2

c

∫ u

0
1 dG(y) +

α2

c

∫ u

0
ψ(u− y) dG(y)

−α3

c

∫ u

0
1 dH(z) +

α3

c

∫ u

0
ψ(u− z) dH(z).

Therefore,

−α1ψ′(u) =
(α2 + α3)

c
− (α2 + α3)

c
ψ(u)− α2

c
G(u) +

α2

c

∫ u

0
ψ(u− y) dG(y)

−α3

c
H(u) +

α3

c

∫ u

0
ψ(u− z) dH(z).

Thus,

α1ψ′(u) =
(α2 + α3)

c
ψ(u)− α2

c

∫ u

0
ψ(u− y) dG(y)− α3

c

∫ u

0
ψ(u− z) dH(z)

−α2

c
[1−G(u)]− α3

c
[1−H(u)].

Corollary 5.1. For risk model (5.1),

ψ(0) =
α2

cα1
E[Y ] +

α3

cα1
E[Z]. (5.5)

Proof. Integrate the integro-differential equations (5.4) over the interval (0, t) on u yields

α1

∫ t

0
φ′(u) du =

(α2 + α3)

c

∫ t

0
φ(u) du− α2

c

∫ t

0

∫ u

0
φ(u− y) dG(y) du
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− α3

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du. (5.6)

Consider −α3

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du and the property of CDF H, we can show that

−α3

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du =

α3

c

∫ t

0

∫ u

0
φ(u− z) d[1−H(z)] du,

=
α3

c

∫ t

0

[
φ(0)(1−H(u))− φ(u)

+

∫ u

0
(1−H(z))φ′(u− z) dz

]
du.

Then,

−α3

c

∫ t

0

∫ u

0
φ(u− z) dH(z) du =

α3

c

∫ t

0
φ(0)(1−H(u)) du− α3

c

∫ t

0
φ(u) du

+
α3

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du. (5.7)

By the same technique, we can show that

−α2

c

∫ t

0

∫ u

0
φ(u− y) dG(y) du =

α2

c

∫ t

0
φ(0)(1−G(u)) du− α2

c

∫ t

0
φ(u) du

+
α2

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du. (5.8)

Substituting (5.7) and (5.8) into (5.6), we get

α1

∫ t

0
φ′(u) du =

α3

c

∫ t

0
φ(0)(1−H(u)) du+

α2

c

∫ t

0
φ(0)(1−G(u)) du

+
α3

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du (5.9)

+
α2

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du.

Consider α3

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du, we can show that

α3

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du =

α3

c

∫ t

0

∫ t

z
(1−H(z))φ′(u− z) du dz,

=
α3

c

∫ t

0
(1−H(z))

∫ t

z
φ′(u− z) d(u− z) dz.
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Then,

α3

c

∫ t

0

∫ u

0
(1−H(z))φ′(u− z) dz du =

α3

c

∫ t

0
(1−H(z))φ(t− z) dz − α3

c

∫ t

0
(1−H(z))φ(0) dz.

(5.10)

By the same technique, we can show that

α2

c

∫ t

0

∫ u

0
(1−G(y))φ′(u− y) dy du =

α2

c

∫ t

0
(1−G(y))φ(t− y) dy − α2

c

∫ t

0
(1−G(y))φ(0) dy.

(5.11)

Substituting (5.10) and (5.11) into (5.9), we get

α1φ(t)− α1φ(0) =
α3

c

∫ t

0
(1−H(z))φ(t− z) dz +

α2

c

∫ t

0
(1−G(y))φ(t− y) dy.

Letting t approach to ∞ and using the property that lim
u→∞

φ(u) = 1, we get,

α1 − α1φ(0) =
α3

c

∫ ∞

0
(1−H(z)) dz +

α2

c

∫ ∞

0
(1−G(y)) dy.

Since
∫ ∞

0
(1−H(z)) dz = E[Z] and

∫ ∞

0
(1−G(y)) dy = E[Y ], therefore,

α1 − α1φ(0) =
α3

c
E[Z] +

α2

c
E[Y ].

Using the property that φ(u) = 1− ψ(u), we get

ψ(0) =
α3

cα1
E[Z] +

α2

cα1
E[Y ].

5.2.1 The Cramér approximation

In this section, we obtain the Cramér approximation to the ruin probability when
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amounts of claims and surrenders follow exponential distributions. In particular, the

probability density functions of the claim sizes and surrenders are

g(y) = ae−ay and h(z) = be−bz, y, z ≥ 0, (5.12)

corresponding to CDF’s are G and H, respectively, in Theorem 5.2.

Theorem 5.3. For the risk model (5.1) where the amounts of claims size and surrenders

follow exponential distributions with parameters a and b, respective. If cα1 −
α2

a
− α3

b
> 0

and α1,α2,α3 > 0, then the Cramér approximation of the ruin probability ψC(u) is

ψC(u) = C1e
r1u + C2e

r2u for all u ≥ 0, (5.13)

where C1, C2, r1, and r2 are as follows

C1 =
bα2

2 + aα2
3 − abcα2α1 − abcα1α3 + bα2α3 + aα2α3 − cα1(bα2 + aα3)r2

abc2α2
1(r1 − r2)

,

C2 =
−bα2

2 − aα2
3 + abcα2α1 + abcα1α3 − bα2α3 − aα2α3 + cα1(bα2 + aα3)r1

abc2α2
1(r1 − r2)

,

r1 =
−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
−

√
D

2

ab

,

r2 =
−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
+

√
D

2

ab

,

which

D =

[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]
.

Proof.

Observe that CDF G and PDF g satisfy dG(u) = g(u)du, as mentioned in Remark 2.2,

including CDF H and PDF h.
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Substituting the density functions of Yi and Zi into (5.3), we have

ψ′(u) =
(α2 + α3)

cα1
ψ(u)− α2

cα1
e−au − α3

cα1
e−bu

− α2

cα1

∫ u

0
ψ(u− y)ae−ay dy − α3

cα1

∫ u

0
ψ(u− z)be−bz dz. (5.14)

Differentiating the equation with respect to u, we have

ψ′′(u) =
(α2 + α3)

cα1
ψ′(u) +

aα2

cα1
e−au +

bα3

cα1
e−bu − aα2

cα1
ψ(u)− bα3

cα1
ψ(u)

+
aα2

cα1

∫ u

0
ψ(u− y)ae−ay dy +

bα3

cα1

∫ u

0
ψ(u− z)be−bz dz.

Multiplying the equation by 1

a
, we have

ψ′′(u)

a
=

(α2 + α3)

acα1
ψ′(u) +

α2

cα1
e−au +

bα3

acα1
e−bu − α2

cα1
ψ(u)− bα3

acα1
ψ(u)

+
α2

cα1

∫ u

0
ψ(u− y)ae−by dy +

bα3

acα1

∫ u

0
ψ(u− z)be−bz dz. (5.15)

Adding (5.14) and (5.15), we have

ψ′′(u)

a
= −

[
1− (α2 + α3)

acα1

]
ψ′(u) +

[
α3

cα1
− bα3

acα2

]
ψ(u)− bα3

acα1
e−bu − α3

cα1
e−bu

+

[
bα3

acα1
− α3

cα1

] ∫ u

0
ψ(u− z)be−bz dz. (5.16)

Differentiating the term with respect to u, we have

ψ′′′(u)

a
= −

[
1− (α2 + α3)

acα1

]
ψ′′(u) +

[
α3

cα1
− bα3

acα1

]
ψ′(u) +

[
b2α3

acα1
− bα3

cα1

]
ψ(u)

+
b2α3

acα1
e−bu +

bα3

cα1
e−au −

[
b2α3

acα1
− bα3

cα1

] ∫ u

0
ψ(u− z)be−bz dz.

Multiplying the equation by 1

b
, we have
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ψ′′′(u)

ab
= −

[
1

b
− (α2 + α3)

abcα1

]
ψ′′(u) +

[
α3

bcα1
− α3

acα1

]
ψ′(u) +

[
bα3

acα1
− α3

cα1

]
ψ(u)

+
bα3

acα1
e−bu +

α3

cα1
e−bu −

[
bα3

acα1
− α3

cα1

] ∫ u

0
ψ(u− z)be−bz dz. (5.17)

Adding the terms of each side of (5.16) and (5.17), we have

ψ′′′(u)

ab
+

[
1

a
+

1

b
− (α2 + α3)

abcα1

]
ψ′′(u) +

[
1− α2

acα1
− α3

bcα1

]
ψ′(u) = 0. (5.18)

The equivalent characteristic equation is

r3

ab
+

[
1

a
+

1

b
− (α2 + α3)

abcα1

]
r2 +

[
1− α2

acα1
− α3

bcα1

]
r = 0. (5.19)

Solving the equation, we obtain the three roots as

r2 =
−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
+

√
D

2

ab

,

1

r1 =
−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
−

√
D

2

ab

,

1

r3 = 0,

where

D =

[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]
.

Therefore, the general solution of ψ(u) is

ψ(u) = C1e
r1u + C2e

r2u + C3. (5.20)
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Since
D =

[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]

=

[
1

b
− 1

a
− (α2 − α3)

abcα1

]2
+

4α2α3

a2b2c2α2
1

> 0.

Then, r1 and r2 are distinct real roots.

Since

1

a
+

1

b
− (α2 + α3)

abcα1
=

[
1

bcα1
+

1

acα1

] [
cα1 −

α2

a
− α3

b

]
+

α2

a2cα1
+

α3

b2cα1
> 0, (5.21)

by the Vieta’s theorem in Theorem 2.2 and (5.19), we get

r1r2 =
1− α2

acα1
− α3

bcα1
1

ab

> 0 (5.22)

and

r1 + r2 =

−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]

1

ab

< 0. (5.23)

From (5.22) and cα1 −
α2

a
− α3

b
> 0, we can see that r1 and r2 have the same sign.

From (5.23) and (5.21), we get

r1 < 0 and r2 < 0.

Next, once we know the values of r1 and r1, we will then determine the values of C1, C2,

and C3 for (5.20) using the initial conditions follow as,

1. lim
u→∞

ψ(u) = 0, since r1, r2 < 0 which yields C3 = 0.

2. Substituting, φ(0) = α3

cα1b
+

α2

cα1a
in (5.20), we get

C1 + C2 =
α2

cα1

(
1

a

)
+

α3

cα1

(
1

b

)
. (5.24)
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3. Letting u = 0 in (5.14) and using ψ(u) from (5.20), we get

C1r1 + C2r2 =
(α2 + α3)

cα1

[
α2

cα1

(
1

a

)
+

α3

cα1

(
1

b

)]
− α2

cα1
− α3

cα1
. (5.25)

Solving the system of equations (5.24) and (5.25), we get

C1 =
bα2

2 + aα2
3 − abcα1α2 − abcα1α3 + bα2α3 + aα2α3 − cα1(bα2 + aα3)r2

abc2α2
1(r1 − r2)

and

C2 =
−bα2

2 − aα2
3 + abcα1α2 + abcα1α3 − bα2α3 − aα2α3 + cα1(bα2 + aα3)r1

abc2α2
1(r1 − r2)

.

To calculate the approximated ruin probability using the Cramér approximation

described in (5.13), we can use the R programming for computation.

5.2.2 The Laplace transform

In this section, we obtain an approximation of ruin probability using the Laplace

transforms in conjunction with integral equation of ruin probability for the the renewal

risk model with constant premiums and surrenders.

Theorem 5.4. The Laplace transform of ruin probability ψ(u) for risk model (5.1) is

ψ∗(s) =
cα1sψ(0)− α2[1− g∗(s)]− α3[1− h∗(s)]

s(cα1s− α2[1− g∗(s)]− α3[1− h∗(s))
, (5.26)

where ψ(0) =
α2

cα1
E[Y ] +

α3

cα1
E[Z] and g∗, h∗ are the Laplace transforms of probability

density functions for the amount of claims size g and surrender h, respectively.
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Proof. Taking the Laplace transform of (5.3) and formula in Theorem 2.3, we get

α1sψ∗(s)− α1ψ(0) =
(α2 + α3)

c
ψ∗(s)− α2

c

[
1

s
− g∗(s)

s

]
− α3

c

[
1

s
− h∗(s)

s

]

−α2

c
ψ∗(s)g∗(s)− α3

c
ψ∗(s)h∗(s).

Multiplying both sides by −cs, we have

−cα1s2ψ∗(s) + csα1ψ(0) = −s(α2 + α3)ψ
∗(s) + α2 [1− g∗(s)] + α3 [1− h∗(s)]

+sα2ψ
∗(s)g∗(s) + sα3ψ

∗(s)h∗(s).

Therefore,

−α2 [1− g∗(s)]− α3 [1− h∗(s)]

= ψ∗(s)
[
cα1s

2 − s(α2 + α3) + sα2g
∗(s) + sα3h

∗(s)
]
−csα1ψ(0).

Thus,

ψ∗(s) =
csα1ψ(0)− α2 [1− g∗(s)]− α3 [1− h∗(s)]

s [cα1s− α2 [1− g∗(s)]− α3 [1− h∗(s)]]
.

Corollary 5.2. For the renewal risk model defined in (5.1) where the amount of claims size

and surrender follow exponential distributions according to (5.12), probability density func-

tionss denoted as g and h, respectively, and with parameters a and b. If cα1 −
α2

a
− α3

b
> 0

and α1,α2,α3 > 0, then the Laplace transform of the ruin probability ψ(u) is

ψL (u) =
b2α2 + a2α3 + (bα2 + aα3)s1

abcα1(s1 − s2)
es1u +

−b2α2 − a2α3 − (bα2 + aα3)s2
abcα1(s1 − s2)

es2u

(5.27)

where

s1 =
α2 − acα1 − bcα1 + α3 −

√
S

2cα1
,

1

s2 =
α2 − acα1 − bcα1 + α3 +

√
S

2cα1
,
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and

S = (−α2 + acα1 + bcα1 − α3)2 − 4cα1(−bα2 + abcα1 − aα3).

Proof.

Substituting the Laplace transforms of the density functions density functions of Yi and

Zi with CDF’s are G and H, respectively, into (5.26), we have

ψ∗(s) =

cs
[α2

ca
+
α3

cb

]
− α2

[
1− a

s+ a

]
− α3

[
1− b

s+ b

]

s

(
cα1s− α2

[
1− a

s+ a

]
− α3

[
1− b

s+ b

]) .

Let R(s) = −bα2 + abcα1 − aα3 + (−α2 + acα1 + bcα1 − α3)s+ cα1s2 and rearrange the

equation for ψ∗(s), we get

ψ∗(s) =
b2α2 + a2α3 + (bα2 + aα3)s

abR(s)
. (5.28)

Let S = (−α2 + acα1 + bcα1 − α3)
2 − 4cα1(−bα2 + abcα1 − aα3). Then, S > 0.

Factoring R(s), we will obtain that

ψ∗(s) =
b2α2 + a2α3 + (bα2 + aα3)s

ab(s− s1)(s− s2)α1c
, (5.29)

where

s1 =
α2 − acα1 − bcα1 + α3 −

√
S

2cα1
,

1

s2 =
α2 − acα1 − bcα1 + α3 +

√
S

2cα1
.

Since S > 0, then s1 and s2 are distinct real roots.

Since

α2 − acα1 − bcα1 + α3 = −
[
1

b
+

1

a

]
(abcα1 − bα2 − aα3)−

bα2

a
− aα3

b
< 0, (5.30)
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by the Vieta’s theorem in Theorem 2.2 and equation R(s), we get

s1s2 =
−bα2 + abcα1 − aα3

cα1
> 0 (5.31)

and

s1 + s2 =
α2 − acα1 − bcα1 + α3

cα1
< 0. (5.32)

From (5.31) and cα1 −
α2

a
− α3

b
> 0, we can see that s1 and s2 have the same sign. From

(5.32) and (5.30), we get

s1 < 0 and s2 < 0.

Applying partial fraction decomposition to (5.29) with respect to s, we obtain

ψ∗(s) =
b2α2 + a2α3 + (bα2 + aα3)s1

abcα1(s1 − s2)(s− s1)
+

−b2α2 − a2α3 − (bα2 + aα3)s2
abcα1(s1 − s2)(s− s2)

. (5.33)

Taking the inverse Laplace transform (5.33) with respect to s, we obtain

ψL (u) =
b2α2 + a2α3 + (bα2 + aα3)s1

abcα1(s1 − s2)
es1u +

−b2α2 − a2α3 − (bα2 + aα3)s2
abcα1(s1 − s2)

es2u.

It can be observed that the ruin probability of the Cramér approximation in (5.13)

Theorem 5.3 and the Laplace transforms in (5.27) Theorem 5.2 are equal. This can be

proven by showing that the formulas of both approximations yield the same value, as

mentioned in Remark 5.1.

Remark 5.1. For the amount of claims size and surrender follow exponential distributions

according to (5.12), probability density functions denoted as g and h, respectively, and

with parameters a and b. The ruin probability of the Cramér approximation ψC(u) (5.13)

and the Laplace transforms ψL (u) (5.27) yield the same value, for all u ≥ 0

ψC(u) = C1e
r1u + C2e

r2u,

ψL (u) =
b2α2 + a2α3 + (bα2 + aα3)s1

abcα1(s1 − s2)
es1u +

−b2α2 − a2α3 − (bα2 + aα3)s2
abcα1(s1 − s2)

es2u,
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where C1, C2, r1, r2, s1 and s2 are as follows

C1 =
bα2

2 + aα2
3 − abcα2α1 − abcα1α3 + bα2α3 + aα2α3 − cα1(bα2 + aα3)r2

abc2α2
1(r1 − r2)

,

C2 =
−bα2

2 − aα2
3 + abcα2α1 + abcα1α3 − bα2α3 − aα2α3 + cα1(bα2 + aα3)r1

abc2α2
1(r1 − r2)

,

r1 =

−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
−

√[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]

2

ab

,

r2 =

−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
+

√[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]

2

ab

,

s1 =
α2 − acα1 − bcα1 + α3 −

√
(−α2 + acα1 + bcα1 − α3)2 − 4cα1(−bα2 + abcα1 − aα3)

2cα1
,

s2 =
α2 − acα1 − bcα1 + α3 +

√
(−α2 + acα1 + bcα1 − α3)2 − 4cα1(−bα2 + abcα1 − aα3)

2cα1
.

Proof. We want to show that the various coefficients and constants have the same value

demonstrated as follows.

r1 =

−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
−

√[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]

1

ab

=
α2 − acα1 − bcα1 + α3 −

√
(−α2 + acα1 + bcα1 − α3)2 − 4cα1(−bα2 + abcα1 − aα3)

2cα1

= s1,

r2 =

−
[
1

a
+

1

b
− (α2 + α3)

abcα1

]
+

√[
1

a
+

1

b
− (α2 + α3)

abcα1

]2
− 4

ab

[
1− α2

acα1
− α3

bcα1

]

2

ab

=
α2 − acα1 − bcα1 + α3 +

√
(−α2 + acα1 + bcα1 − α3)2 − 4cα1(−bα2 + abcα1 − aα3)

2cα1

= s2,
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and

C1 =
bα2

2 + aα2
3 − abcα2α1 − abcα1α3 + bα2α3 + aα2α3 − cα1(bα2 + aα3)r2

abc2α2
1(r1 − r2)

=
b2α2 + a2α3 + (bα2 + aα3)s1

abcα1(s1 − s2)
,

C2 =
−bα2

2 − aα2
3 + abcα2α1 + abcα1α3 − bα2α3 − aα2α3 + cα1(bα2 + aα3)r1

abc2α2
1(r1 − r2)

=
−b2α2 − a2α3 − (bα2 + aα3)s2

abcα1(s1 − s2)
.

Therefore,

ψC(u) = ψL (u).

To calculate the approximated ruin probability using the Laplace transform for

money amounts which follow exponential distributions described in (5.27), we can use

the MATLAB commands “partfrac” and “ilaplace” for computation.
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5.3 Experimental simulations

In this section, we perform numerical studies to investigate performance of the an-

alytical approximation of the renewal risk model with constant premiums and surrenders,

we focuses on the numerical approximation to the ruin probability when the amounts of

claims, and surrenders follows an exponential distribution by using the analytical solution

such as the Cramér approximation and the Laplace transform comparing with the Monte

Carlo approximation.

5.3.1 Statistical estimations for the ruin probability

In this section, we study a statistical estimate for the ruin probability ψ̂t(u) derived

by the direct simulation of the surplus process using the Monte Carlo methods in order

to evaluate the result of the approximations suggested in this chapter.

Let N be the total number of realizations of the process U(t). We can calculate the

average value of the process U(t) when each ruin occurs at the time point t, consequently,

we obtain the corresponding statistical estimate ψ̂t(u) for the ruin probability ψ(u). The

Monte Carlo estimations is obtained as

ψ̂t(u) =
1

N

N∑

i=1

I{Ui(t)<0|Ui(0)=u},

where t is a fixed time point and N is the sample size. As N → ∞ and t → ∞, by

the law of large numbers, ψ̂t(u) converges to ψ(u). The time points considered here are

t = 1, 5, 50, and 100, and the sample size of the Monte Carlo method is N = 200,000. The

parameters of the model studied in this section are as follows. The initial capital u varies in

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3} and the

constant rate of premiums is c = 7. The parameter of the inter-arrival times of premium

is λ1 = 4.5. The parameter of the inter-arrival times of claim is λ2 = 6. The parameter
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of the inter-arrival times of surrender is λ3 = 1.

5.3.2 Exponential distributions for the claim sizes and surrender

Let the probability density function Yi and Zi be

g(y) = ae−ay and h(z) = be−bz , y, z ≥ 0,

where a = 0.33, b = 0.238, respectively.

For the Cramer approximation, substituting a = 0.33, b = 0.238, c = 7, λ1 = 4.5,

λ2 = 6 and λ3 = 1 into the formula of r1 and r2 in (5.13), we get r1 = −0.246214

and r2 = −0.096096, respectively. Consequently, C1 = 0.005705 and C2 = 0.696173.

Therefore, the Cramér approximation ψC(u) is

ψC(u) = 0.005705e−0.246214u + 0.696173e−0.096096u for all u ≥ 0. (5.34)

For the Laplace approximation, substituting a = 0.33, b = 0.238, c = 7, λ1 = 4.5, λ2 = 6

and λ3 = 1 into the formula in (5.27), we get S = 28. Consequently, s1 = −0.246214 and

s2 = −0.096096. Therefore, the Laplace approximation ψL is

ψL (u) = 0.696173e−0.096096u + 0.005705e−0.246214u for all u ≥ 0. (5.35)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

133

The numerical approximations obtained in (5.34)–(5.35) for different values of
the initial capital u is given in Table 5.1

u

ψ(u)

Statistical estimate ψ̂(u) Numerical approx.
ψC(u)/ψL (u)

t = 1 t = 5 t = 50 t = 100

0 0.673005 0.692920 0.692975 0.692975 0.701879
0.1 0.667260 0.687465 0.687515 0.687515 0.695082
0.2 0.661650 0.682095 0.682145 0.682145 0.688352
0.3 0.655915 0.676540 0.676590 0.676590 0.681689
0.4 0.650170 0.671075 0.671120 0.671120 0.675091
0.5 0.644290 0.665390 0.665435 0.665435 0.668559
0.6 0.638650 0.660030 0.660085 0.660085 0.662090
0.7 0.632830 0.654465 0.654520 0.654520 0.655686
0.8 0.626515 0.648545 0.648600 0.648600 0.649344
0.9 0.620535 0.642780 0.642835 0.642835 0.643065
1 0.614885 0.637340 0.637400 0.637400 0.636847

1.1 0.608835 0.631570 0.631630 0.631630 0.630691
1.2 0.603075 0.626085 0.626145 0.626145 0.624595
1.3 0.597760 0.620965 0.621025 0.621025 0.618559
1.4 0.592015 0.615590 0.615660 0.615660 0.612582
1.5 0.586200 0.610005 0.610075 0.610075 0.606664
1.6 0.580230 0.604330 0.604395 0.604395 0.600804
1.7 0.574200 0.598435 0.598500 0.598500 0.595001
1.8 0.568010 0.592435 0.592500 0.592500 0.589255
1.9 0.562120 0.586625 0.586690 0.58669 0.583566
2 0.556255 0.580895 0.580965 0.580965 0.577932
3 0.498995 0.524915 0.524980 0.524980 0.524538

Table 5.1: Numerical approximations of the renewal risk model with exponential dis-
tributions.
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Figure 5.1: Graph of initial reserve u and the ruin probability of the renewal risk
model with exponential distributions.

From Table 5.1, we can see that the approximates of ruin probability of all methods

decrease when the initial capital increases. Besides, we can observe that the ruin prob-

ability ψ̂t(u) increases as t increases and the Monte Carlo approximation converges to

our approximations. Therefore, the Monte Carlo approximation is consider to be a good

option.

Also, we can see that the Cramér approximations and the Laplace approximations

are nearby the Monte Carlo approximation of ruin probability ψ̂t(u). In addition, the

Monte Carlo approximation ψ̂t(u) should converges to the exact value of the ruin prob-

ability when t → ∞. Moreover, we can see that the Cramér approximations (5.34) and

the Laplace approximations (5.35) are equal. The reason for their equivalence is that

the ruin probability formulas for both methods are equivalent to each other, yielding the

same result see Remark 5.1 or derived from solving the same ODE.

The Monte Carlo simulation will be very good, if we can increase the value of t.

However, it will take long computation time to do so. Therefore, a possible way to im-

prove the Monte Carlo simulation performance is to increase the time points of interest

and reduce the number of realizations of U(t) instead.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSION

6.1 Conclusions and Discussions

In chapter III, we studied suitable analytical approximations of the ruin probability

for the risk model CPST by using the Cramér approximation in Theorem 3.2, the Laplace

transform in Theorem 3.3, the De-Vylder approximation in Theorem 3.6 and the Lundberg

upper bound in Theorem 3.10. Moreover, numerical methods are used to assist in solving

systems of equations or finding the inverse Laplace transform in situations where manual

computation is not feasible. Moreover, we performed experimental simulations to study

their performance. The computation results presented in Tables 3.1 and 3.2 indicate that

the Cramér approximation in Tables 3.1 and the De-Vylder approximation in Tables 3.2

have the near values of ruin probability ψ̂t(u) from Monte Carlo approximation when u

has a large value, and both yield ruin probabilities no more than the upper bound. Also,

the computation results presented in Tables 3.1 indicate that the Cramér approximation

and the Laplace transform have the same value of ruin probability. Similarly, the results

in Tables 3.2 indicate that the De-Vylder approximation and the Laplace transform have

approximately the same value of ruin probability as explained in chapter III.

In chapter IV, we studied a suitable analytical approximation of the ruin probability

for the risk model SPST by using the Cramér approximation in Theorem 4.2, the Laplace

transform in Theorem 4.3, the De-Vylder approximation in Theorem 4.6 and the Lundberg

upper bound in Theorem 4.10. Moreover, we perform experimental simulation to study

its performance. Numerical methods are used to assist in solving systems of equations

or finding the inverse Laplace transform in situations where manual computation is not

feasible. The results of computations presented in Tables 4.1 and 4.2 indicate that the

Cramér approximation in Tables 4.1 and the De-Vylder approximation in Tables 4.2 have

the near value of ruin probability ψ̂t(u) from Monte Carlo approximation when u has a
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large value, and both yield ruin probability no more than upper bound as explained in

the chapter IV.

In chapter V, we studies a suitable analytical approximation of the ruin probability

for the renewal risk model with constant premiums and surrenders by using the Cramér

approximation in Theorem 5.3 and the Laplace transform in Theorem 5.4. Moreover,

we perform experimental simulation to study its performance. Numerical methods are

used to assist in solving systems of equations or finding the inverse Laplace transform

in situations where manual computation is not feasible. The results of computations

presented in Tables 5.1 indicate that the Cramér approximation and the Laplace transform

have the near value of ruin probability ψ̂t(u) from Monte Carlo approximation when u

has a large value. As well as, the results of computations presented in Tables 5.1 indicate

that the Cramér approximation and the Laplace transform have approximately the same

value of ruin probability as explained in the chapter V.

Moreover, the statistical estimate ψ̂t(u) for the ruin probability ψ(u), once time t

reaches a certain point, the probability of ruin ψ(u) after that point will remain constant.

Finally, noted that while the numerical example discussed above is insufficient to

draw conclusions about the accuracy of the commonly recommended estimation method,

and may not be reflective of the actual situation of an insurance company, it is highly

desirable to have tools to control the accuracy of parameter estimates. Nevertheless, these

estimates can help us to draw some general conclusions. Several extensions of our study

can be done such as to investigate another approximation method for the model or to

extend the numerical approximation of the ruin probability for more general risk models

to accommodate other features of risk models.
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