

Classification of Cardiac Arrhythmias based on Overlapped

ECG Image with Lightweight Neural Network

Miss Khaing Su Thway

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Electrical Engineering

Department of Electrical Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

การแยกแยะภาวะหวัใจเตน้ผิดจงัหวะดว้ยโครงข่ายประสาทแบบไลตเ์วทบนพื้นฐานของภาพซอ้น
รูปคลื่นไฟฟ้าหวัใจ

น.ส.เคียง ซู ทเวย ์

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต

สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2565

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title Classification of Cardiac Arrhythmias based on

Overlapped ECG Image with Lightweight

Neural Network

By Miss Khaing Su Thway

Field of Study Electrical Engineering

Thesis Advisor Assistant Professor Dr. ARPORN

TEERAMONGKONRASMEE

Thesis Co Advisor Assistant Professor Dr. Pakpum Somboon

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn

University in Partial Fulfillment of the Requirement for the Master of

Engineering

Dean of the FACULTY OF

ENGINEERING

 (Professor Dr. SUPOT

TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman

 (Associate Professor Dr. SUPATANA

AUETHAVEKIAT)

Thesis Advisor

 (Assistant Professor Dr. ARPORN

TEERAMONGKONRASMEE)

Thesis Co-Advisor

 (Assistant Professor Dr. Pakpum Somboon)

External Examiner

 (Associate Professor Dr. Wisarn Patchoo)

 iii

ABSTRACT (THAI)
 เคียง ซู ทเวย ์: การแยกแยะภาวะหวัใจเตน้ผิดจงัหวะดว้ยโครงข่ายประสาทแบบไลตเ์วทบน

พ้ืนฐานของภาพซอ้นรูปคล่ืนไฟฟ้าหวัใจ. (Classification of Cardiac
Arrhythmias based on Overlapped ECG Image with

Lightweight Neural Network) อ.ท่ีปรึกษาหลกั : อาภรณ์ ธีรมงคลรัศมี, อ.ท่ี
ปรึกษาร่วม : ภาคภูมิ สมบูรณ์

วิทยานิพนธ์น้ีน าเสนอการจ าแนกภาวะหัวใจเตน้ผิดจงัหวะ ไดแ้ก่ ภาวะ AF, NSR, PAC

และ PVC โดยใช้โครงข่ายประสาทแบบไลต์เวท ในขั้นตอนของการแปลงสัญญาณคล่ืนไฟฟ้าหัวใจ
(ECG) เป็นขอ้มูลภาพเพื่อเป็นอินพุตของโครงข่ายประสาท วิทยานิพนธ์น้ีไดพ้ฒันาวิธีการใหม่ คือ การ
ซอ้นรูปคล่ืนไฟฟ้าหัวใจ ในขั้นตอนการแปลง สัญญาณคล่ืนไฟฟ้าหัวใจความยาว 30 วินาที จะถูกแบ่งเป็น
รูปคล่ืนตามอตัราการเต้นหัวใจ รูปคล่ืนท่ีแบ่งไดถู้กวางซ้อนภายในขอบเขตของแกน x และ y วิธีการน้ี
สามารถสร้างภาพท่ีมีความแตกต่างระหว่างภาวะหวัใจเตน้ผิดจงัหวะท่ีสนใจ ในส่วนของโครงข่ายประสาทท่ี
น ามาใช้เป็นแบบไลต์เวทซ่ึงได้ถูกออกแบบให้สามารถติดตั้ งบนอุปกรณ์พกพาเน่ืองจากโครงข่ายใช้
พารามิเตอร์ท่ีมีจ านวนน้อยลง ประสิทธิภาพของโครงข่ายประสาทท่ีพัฒนาขึ้นไดถู้กทดสอบโดยฐานขอ้มูล
LTAF ของ PhysioNet ฐานขอ้มูลน้ีมีจ านวน 84 ชุดขอ้มูล ซ่ึงแต่ละชุดขอ้มูลมีความยาวประมาณ

24 ชั่วโมง ประสิทธิภาพของการจ าแนกภาวะหัวใจเต้นผิดจ าแนกได้รับการวิเคราะห์โดยใช้
confusion metric และไดค้วามแม่นย ามากกว่า 98% นอกจากน้ี แอปพลิเคชนัของ Android ได้
ถูกพฒันาขึ้นโดยใชโ้มเดลการเรียนรู้ของโครงข่ายประสาท ซ่ึงเป็นการยืนยนัถึงศกัยภาพของการประยุกต์ใช้
งานโครงข่ายประสาทแบบไลตเ์วทกบัโทรศพัทเ์คลือนท่ี

สาขาวิชา วิศวกรรมไฟฟ้า ลายมือช่ือนิสิต
..

ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
..............................

 ลายมือช่ือ อ.ท่ีปรึกษาร่วม

...............................

 iv

ABSTRACT (ENGLI SH)
6370392021 : MAJOR ELECTRICAL ENGINEERING

KEYWO

RD:

Lightweight Deep Learning Neural Network, ECG,

Cardiac Arrhythmias, Atrial Fibrillation AF

 Khaing Su Thway : Classification of Cardiac Arrhythmias based

on Overlapped ECG Image with Lightweight Neural Network.

A d v i s o r : A s s t . P r o f . D r . A R P O R N

TEERAMONGKONRASMEE Co-advisor: Asst. Prof. Dr.

Pakpum Somboon

This dissertation presents the classification of different types of

cardiac arrhythmias, including Atrial Fibrillation (AF), Normal Sinus

Rhythm (NSR), Premature Atrial Contraction (PAC), and Premature

Ventricular Contraction (PVC), using a lightweight neural network. A

novel ECG data transformation method, referred to as transforming into

overlapped ECG images, has been developed and utilized as input

images for our neural network. During the transformation process,

individual heartbeats within a 30-second time frame are cropped based

on heart rate calculations. These resulting beats are then overlapped

with respect to the x and y axis limits, generating distinctive images

representing different arrhythmia types examined in this study. The

lightweight neural networks employed in this research have been

designed to be deployable on low-resource mobile devices due to their

reduced network architecture parameters,. The performance of the

developed neural network is evaluated using the long-term atrial

fibrillation (LTAF) database from PhysioNet, which is clinically

certified. This database comprises a total of 84 records, which consist

of 24-hour duration for each record. The effectiveness of the proposed

approaches is analyzed using confusion metrics, yielding an accuracy

rate exceeding 98%. Furthermore, a demonstration Android application

has been developed based on the trained model of the lightweight

neural network, providing proof of concept for the potential

applications of deploying lightweight deep learning neural networks on

mobile phones.

 Field of

Study:

Electrical Engineering Student's Signature

...............................

Academic

Year:

2022 Advisor's Signature

..............................

 Co-advisor's Signature

.........................

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to

my great advisor, Asst. Prof. Dr. Arporn Teeramongkonrasmee for his

guidance and patience. If he had not accepted me as his student, I would not

have had the chance to study at Chulalongkorn University. He has also

supported and made it possible to do my research, especially for my

extended semester.

Secondly, I am deeply grateful to my co-advisor, Asst. Prof. Dr.

Pakpum Somboon for his insightful comments and suggestions. Without his

persistent help, this thesis would not have been materialized. I have learned

a lot from my professors to be focused, organized, systematic, and

dedicated to work. It was enjoyable to study under their supervision as they

have pointed out my weaknesses and never discouraged me for not meeting

their expectations. Because of that, I managed to sharpen my skills and

deliver my best.

Thirdly, I would like to show my appreciation to Assoc. Prof. Dr.

Supatana Auethavekiat and Asst. Prof. Dr. Wisarn Patchoo for being my

thesis committee and for their constructive feedback to improve my thesis.

Finally, I thank Chulalongkorn University for providing financial support

under the graduate scholarship program for ASEAN and Non-ASEAN

countries.

Khaing Su Thway

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

1 Introduction ... 1

1.1 Motivation and Problem Statement ... 1

1.2 Objective .. 3

1.3 Scope of Thesis .. 3

2 Background section ... 4

2.1 History of ECG .. 4

2.2 Interpretation of electrocardiograph .. 5

2.2.1 Heart Rate, Rhythm, and Isoelectric baseline .. 7

2.3 Current Portable Personal Monitoring ECG Devices .. 7

2.4 Cardiac Arrhythmia ... 8

2.4.1 Atrial Fibrillation (AF) ... 9

2.4.2 Premature Atrial Contractions /Supraventricular Premature Complexes

(PAC) .. 10

2.4.3 Premature Ventricular Contractions (PVC) ... 10

2.5 Neural Networks .. 11

2.5.1 Convolutional Neural Network (CNN) .. 12

2.5.2 Lightweight Convolutional Neural Network .. 13

2.5.3 Optimizer .. 17

2.5.4 Activation Function .. 17

2.5.5 Loss Function ... 18

2.5.6 Regularization .. 19

2.5.7 Normalization ... 19

 vii

3 Literature Review .. 20

3.1 ECG Classification with Time-series Data and Neural Network 21

3.2 ECG Classification with data transformation .. 22

3.3 ECG Classification approach through neural networks optimized for efficient

deployment on portable devices .. 25

4 Methods and Materials .. 27

4.1 The Proposed Cardiac Arrhythmias Classification System 27

4.1.1 Database Exploration ... 28

4.1.2 Dataset Preparation ... 30

4.1.2.1 Data Selection ... 30

4.1.3 Data Preprocessing ... 39

4.1.3.1 Noise Filtering .. 39

4.1.3.2 Data Transformation (Image Creation from 1D 30-second

Segments) ... 41

4.2 Research Procedure ... 43

4.2.1 Loading the dataset ... 43

4.2.2 Setting up the model ... 44

4.2.3 System Implementation .. 44

4.2.3.1 Experimentation with the Deep Learning Light Weight Neural

Networks ... 45

4.2.4 Evaluation of the Classification Model Effectiveness 46

4.2.4.1 Confusion matrix .. 46

4.2.4.2 Sensitivity / Recall .. 47

4.2.4.3 Specificity ... 47

4.2.4.4 Accuracy ... 47

4.2.4.5 Precision ... 48

4.2.4.6 F1_score .. 48

4.2.5 Experimental Environment ... 48

5 Results and Discussion .. 49

5.1 Experimental Results from Testing with Different Scenarios 49

 viii

5.1.1 Experimentation for Binary Classification (AF and NSR) with

Lightweight Deep Learning Neural Networks ... 49

5.1.2 Experimentation for Multiple Classification (AF, NSR, PAC and PVC)

with Lightweight Deep Learning Model .. 51

5.1.3 Experimentation for Different Training Datasets 53

5.2 Deploy Model on Android (using kotlin language constructed in android studio)

 56

6 Conclusion ... 60

APPENDICES ... 62

APPENDIX A .. 62

APPENDIX B .. 68

APPENDIX C .. 71

APPENDIX D .. 75

REFERENCES .. 80

VITA .. 85

1 Introduction

1.1 Motivation and Problem Statement

Cardiac arrhythmia is the abnormal rhythm of the heart related to various underlying

causes, including electrical conduction abnormalities within the heart, medication side effects,

and other underlying health conditions. According to the study [1], it can contribute to the

occurrence of sudden cardiac death in 15-20% of the world population. It can be found even

in children and healthy people during intensive exercise[2]. Moreover, the recent survey

showed that cardiac arrhythmias are correlated with Covid-19 patients due to the cardiac

tissue damage from the virus and side effects of medications. Among many types of cardiac

arrhythmia, atrial fibrillation (AF) is the most common arrhythmia associated with a high risk

of blood clots in the heart, leading to a life-threatening condition such as stroke [3-5]. Along

with the changes in the modern lifestyle and ageing society, the statistic of suffering AF is

estimated to increase over the next 30 years. Even in Asia alone, 72 million people are

estimated to suffer from AF with 4 percent of them being associated with stroke in 2050 [6].

To reduce the fatality rate of AF, fast and early detection has become highly

significant. Conventionally, physicians capture the arrhythmias using 12-lead ECG devices or

Holter monitoring devices. However, conventional methods used by physicians to detect AF

has the potential to misclassify the beats with human naked eyes only from reading a long

ECG record since the nature of AF in ECG cannot be detected from a single beat of ECG. In

addition, it takes years of experience or highly trained physicians to interpret and analyze

complex waveforms of ECG signals properly. Moreover, ECG signals usually involve noises

such as powerline inferences, baseline wander, and electromyographic noises resulting in the

misinterpretation of the heartbeat [7]. For these reasons, automatic diagnosis of ECG becomes

highly demanded to assist physicians to detect arrhythmias automatically and accurately [8,

9].

Along with the increasing trend in the artificial neural network, a large number of

published works have presented classification work by using the deep learning neural network

approach. For example, [10-12] applied artificial neural networks to classify atrial fibrillation

(AF), ventricular fibrillation (VF), premature atrial contraction (PAC), premature ventricular

contraction (PVC), right bundle branch block (RBBB) and left bundle branch block (LBBB)

from the normal beat. However, the techniques applied in those are not suitable to be

deployed in portable ECG devices due to the need for high computational resources for

intensive data processing with high cache memory consumption. The higher accuracy

demanded from the network, the more parameters to process is needed in the conventional

 2

neural network model. Increasing the size of the model's parameters results in a higher

utilization of computational resources.

To address these issues, researchers proposed the use of lightweight neural networks

which can be deployed on mobile phones or limited resources [13-17]. The difference

between lightweight neural networks from conventional ones is the approaches with lower

numbers of parameters to process resulting in reducing the model size, and memory footprint

while preserving the high speed and accuracy in the output result [18].

To implement a neural network-based cardiac arrhythmias classification model with

portable devices, a study developed an AF classification system with the concept of using

compressive sensed ECG instead of ordinary ECG signal on a lightweight deep learning

network MobileNetV2 [19]. Regarding drawbacks, this study only performed the

classification of normal and atrial fibrillation, and the accuracy was 87% because of the loss

of some information due to compressing the original signal. In a subsequent research [20], a

combination of a low complexity algorithm (LDA) in the portable device and AlexNet

implemented in the cloud to differentiate AF from normal rhythm was proposed in . This

approach required two computational platforms (portable device and cloud) to perform a

single classification task and was less cost-effective due to the yearly subscription of the

cloud platform. In another study [21], a custom design of a lightweight deep neural network,

based on MobileNetV2 to classify PAC, PVC, NSR (normal sinus rhythm), LBBB (left

bundle branch beat) and RBBB (right bundle branch beat) was proposed. The proposed

system only intended to classify the arrhythmias beat by beat, which makes it unsuitable for

the classification of long-term rhythm-based arrhythmias AF.

The purpose of this study is to detect atrial fibrillation (AF) from normal sinus rhythm

(NSR) by utilizing a lightweight deep learning neural network that is suitable for deployment

in mobile devices with limited computational resources and memory constraints. This study

will utilize 30-second ECG interval segments for classification since the ECG record with at

least 30-second episode are clinically recognized as AF [22]. The 30-second ECG signal will

then be transformed into an image. The 30-second ECG signal will then be transformed into

an image, which will serve as input for the neural network to classify cardiac arrhythmias. In

addition to previous works, this study will also include the classification of premature atrial

and ventricular contractions (PAC and PVC) occurrence was developed within normal sinus

rhythm 30-second interval , as these conditions can lead to AF gradually [23-25]. Moreover,

PAC is often misdiagnosed as a normal heartbeat and is referred to as the "Silent Killer,"

making its detection critical [25]. Therefore, this study aims to classify dual nature of cardiac

arrhythmias in one system.

 3

This study is particularly beneficial for those living in rural areas, where access to

cardiology specialists and equipment for monitoring arrhythmias is limited. Additionally, the

combination of deep learning and portable ECG access eliminates the need for trained

personnel to detect abnormal heart rhythms in patients, including those with COVID-19 who

require constant vital health monitoring. Early detection of arrhythmias can improve

treatment outcomes, and this study has the potential to enhance treatment options for doctors.

Overall, this study provides a novel approach to detecting and classifying arrhythmias

using a lightweight deep learning neural network suitable for mobile devices. Its impact can

be far-reaching, particularly for underserved communities, where access to advanced

healthcare is limited. Therefore, this study will have significant implications for improving

patient outcomes and advancing medical research.

1.2 Objective

1. To classify the targeted cardiac arrhythmias (NSR, AF, PAC, and PVC) with the up-to-

date lightweight deep learning neural network model

2. To investigate the appropriate input parameters insisting on the classification performance

of the system

3. To investigate and demonstrate the deployment of trained deep learning neural networks

on mobile platforms

1.3 Scope of Thesis

The scope of this thesis is as follows:

1. To design a system capable of classifying two types of cardiac rhythms, namely atrial

fibrillation, which requires series of beats for detection, and premature atrial and

ventricular contractions, which can be detected on a beat-by-beat basis

2. To ensure consistency of ECG records used in this study by limiting them to 30-second

duration segments and exclusively labeled for specific arrhythmias excluding any other

ones

3. To develop a compact image transformation approach that can capture the salient features

of the targeted arrhythmia, thus enabling efficient classification

4. To explore and select the state-of-the-art lightweight deep learning model such as

MobileNetV2, and EfficientNet for arrhythmia classification based on image data

 4

2 Background section

2.1 History of ECG

From 1900 to 03, Dutch physiologist Willem Einthoven was credited for the

invention of the practical electrocardiogram. The electrocardiogram (ECG) is a non-invasive

diagnosis tool to capture the electrochemical activity within the heart by placing electrodes on

the human skin in specific areas. He received the Nobel Prize in Physiology and Medicine for

it in 1924 [26, 27]. Because of his invention, the root of cardiac diseases and arrhythmias

become interpretable for physicians in cardiology. The invention and applying the

electrocardiogram as a clinical application was the upturning point for the development of the

science of diagnosis in cardiology. The first commercial model of ECG was sold to Sir

Edward Schafer of the University of Edinburgh to use clinically as a medical diagnosis tool in

1908.

The very first electrocardiogram made by Willem Einthoven was based on the string

galvanometer. The electrocardiogram has gradually evolved into a common 12-lead ECG. In

fact, the physical electrodes to collect the heart electroactivities are placed with 10 electrodes:

four on the limbs(the arms and the legs) and six on the chest. The right leg is used as the

ground. The three electrodes on the left and right arms and left leg form a triangle, which

gives six views : 3 bipolar views (Lead I, II, III) and 3 unipolar views (augmented voltage

right (aVR), augmented voltage left (aVL), and augmented voltage foot (aVF)). The six

electrodes placed on the chest give the remaining information of 6 leads (views). In this way,

the physicians can collect anatomical information about the heart happening within the patient

as shown in Fig 2.1.

However, the 12-lead ECG is not flexible and unable to monitor the heart during

daily activities. In this case for out-patients, Holter monitoring devices, named after the

physicist Norman Holter, are used to monitor the heart activity inactive not just at rest to

capture the arrhythmias over 24-48 hours. The Holter monitoring device as shown in Fig 2.2

has three to eight electrodes on the chest connected to a small device that is attached to the

patient’s waist. Gradually, single-lead portable handle ECG devices such as AliveCor and

Omron have become trendy along with the development in mobile health care and sensor

technologies. Moreover, ECG is now included in the smartwatch-like Apple watch which can

be applied to in-home care patients and athletes [28].

 5

2.2 Interpretation of electrocardiograph

The electrocardiogram (ECG) is a vital diagnostic modality that enables visualization

of the electrical activity of the heart, facilitating assessment of its functional status. This

diagnostic technique involves the use of an electrocardiograph to capture the electrical signals

generated by the cardiac system. To fully comprehend the information conveyed by an ECG,

it is essential to have a solid understanding of the fundamental principles underlying the

heart's electrical system, including the representation of the action potential vectors on the

ECG.

The heart conduction system controls the generation and propagation of electrical

signals or action potentials triggered at the sinoatrial (SA) node, the heart’s natural pacemaker

in the right atrium. Consequently, it stimulates the heart muscles to contract and the heart to

pump oxygenated blood. For the heart muscle cell to contract, it must depolarize, that is, the

ion balance on either side of its cell membrane must change suddenly and in such a way that

the inside of the cell becomes less negatively charged. All electrical cardiac impulses should

not only take from the SA node but should propagate a normal conduction pathway, which is

originated from the SA node, passed through the atria and then the AV node, through a

bundle of HIS and its branches, and Purkinje Fibers as shown in Fig 2.3.

This electrical activity can be measured by electrodes placed at specific points on the

body skin from which a composite recording is produced in the form of a graph. This

recording is known as an electrocardiogram or ECG, sometimes referred to as EKG. The

electrocardiogram or ECG represents the overall trace of electrochemical activity widely

Fig 2.1. The common clinical 12-Lead ECG [29] Fig 2.2. The Holter ECG Monitoring Device

[29]

 6

spreading from many cardiac action potentials. ECG can be interpreted by observing its

significant wave construction: P, Q, R, S and T.

The signal spreads across both atria causing the cardiac muscle cell to depolarize and

contract to induce a phase known as atrial systole. This activity appears as a P wave on the

electrocardiograph. After leaving the atria, the signal stimulates the ventricles via the

atrioventricular or AV node located in the interatrial septum for the next procedure. It then

enters the bundle of HIS and spreads through the bundle branches and the large-diameter

Purkinje fibers along the ventricle walls. As the signal spreads through the ventricles, the

contractile fibres depolarize and contract very rapidly inducing ventricular systole. This rapid

ventricular depolarization can be regarded as a QRS complex form in the electrocardiogram.

Atrial repolarization also occurs at this, but any atrial activity is hidden on the ECG by the

QRS complex. In the end, the cardiac tissues in the ventricles start to reacquire the relaxed

state after the signal passes out of the ventricles, described as ventricular diastole. The

rounded curving after the QRS complex on the ECG is a T wave representing ventricular

repolarization at which the ventricles start to relax. The duration between ventricular

repolarization and depolarization can be known via the ST segment. The sequence of events

just described and the associated trace repeats with every heartbeat. ECG is not a tracing of a

single action potential but a combination of the many action potentials that constitute the

electrical activity of the heart [29, 30].

Fig 2.3. (left) Cross-sectional view of the flow of the heart’s electrical system [50]

(right) Normal ECG diagram for a human heartbeat as seen on ECG

 7

2.2.1 Heart Rate, Rhythm, and Isoelectric baseline

When analyzing an electrocardiogram, clinicians typically assess the rhythm and

heart rate to determine whether the patient is experiencing arrhythmias. Heart rate is typically

considered normal if it falls within the range of 60 to 100 beats per minute for an average

adult. To calculate heart rate, one can count the number of QRS complexes (the large spikes

on the ECG trace) that occur within a one-minute interval. Rhythm refers to the pattern of the

ECG signal, which can be analyzed by comparing the intervals between successive P or R

waves. An isoelectric baseline, which represents the resting state of the heart without any

electrical activity, can be found as a straight line between the T and P segments on the ECG

trace.

2.3 Current Portable Personal Monitoring ECG Devices

From the domestic and personal health care point of view, ECG devices with less

than or equal to three electrodes will be regarded as portable personal monitoring ECG

devices [31]. Recent studies on the impact of personal monitoring ECG devices for detecting

Atrial Fibrillation (AF) have shown that devices such as AliveCor Kardia, Omron HeartScan,

and Zenicor ECG, which are shown in Fig 2.4, demonstrate high levels of AF detection

comparable to conventional ECG devices.

According to the academic studies [28] analyzing the performance of these personal

ECG devices, the AliveCor Kardia device has shown sensitivity values ranging from 71.4% to

98% in correctly detecting positive cases, with specificity ranging from 91.4% to 97% in

identifying negative cases. The utility of the Omron HeartScan in detecting atrial fibrillation

has been demonstrated in five studies, with sensitivity ranging from 30% to 100% and

specificity ranging from 76.2% to 97%. The Zenicor ECG has shown high sensitivity (96%)

and specificity (92%) for atrial fibrillation detection. However, false positive diagnoses of AF

can lead to unnecessary treatment and burden on clinicians. Further research and development

may be necessary to reduce false positives and enhance the overall utility of personal ECG

devices in detecting AF and other cardiac conditions.

 8

2.4 Cardiac Arrhythmia

Cardiac arrhythmia refers to any deviation from the normal rhythm of the heart,

which can occur due to abnormal triggered action potential locations within the heart. There

are three primary mechanisms responsible for cardiac arrhythmias: automaticity, triggered

activity, and reentry.

Automaticity refers to the natural spontaneous action potential generated by cardiac

tissue, typically from the sinoatrial (SA) node. If the SA node fails to generate impulses, the

automatic impulses can originate from other areas of the heart, such as the atrial tissue.

Triggered activity occurs when premature activation of cardiac muscle cells leads to

depolarization and the initiation of impulses. The most common cardiac arrhythmias caused

by triggered activity is premature ventricular contraction (PVC) when the ventricles are out of

sync with the upper chamber atria.

 Reentry causes the heart to beat faster than normal due to the inability of the

electrical impulse from the SA node to complete a cardiac cycle, resulting in self-sustaining

loop of impulse signals. A prime example of cardiac arrhythmias caused by reentry is atrial

fibrillation (AF).

Fig 2.4. Commercially available portable personal monitoring ECG devices

(a)AliveCor Kardia Mobile Single-lead

handheld ECG [28]
(b)Omron Health Scan [28]

(c)Zenicor ECG [28]

 9

In medical terms, there are two genres of arrhythmia types based on rhythm:

tachycardia, which refers to a faster heart rate than normal (>100 bpm), and bradycardia,

which refers to a slower heart rate than normal (<60 bpm). Among the many types of

arrhythmias, this research focuses on the three most common: atrial fibrillation, premature

atrial contractions, and premature ventricular contractions. However, it should be noted that

current diagnostic tools, such as single-lead electrocardiograms and modified blood pressure

monitors, may have limitations in identifying arrhythmias in primary care settings and could

lead to unnecessary treatment [32-34].

2.4.1 Atrial Fibrillation (AF)

Atrial fibrillation is the most found arrhythmia and a serious type of cardiac

arrhythmia associated with having a blood clot in the heart leading to consequential health

complications, especially stroke. In AF, the heartbeat is irregularly irregular rhythm without

P-waves and the absence of an isoelectric baseline in the ECG morphology as prescribed in

Fig 2.5. Moreover, F-waves (fibrillatory waves) appear with fine amplitude (less than 0.05

mV) or coarse amplitude (greater than 0.05 mV) that are usually misdiagnosed as P waves

utmost 0.25 mV). For this reason, it is better to detect long rhythm appraisal screening for

effective AF detection than single rhythm appraisal [35].

Fig 2.5. 10-seconds of AF ECG signal from Record No: 100

Irregular Rhythm

Absence of

isoelectric baseline

Absence of

P-wave

 10

2.4.2 Premature Atrial Contractions /Supraventricular Premature Complexes (PAC)

PAC is the appearance of a beat earlier than it should appear because of the triggered

signal within the atrium, not from an ordinary SA node. [23, 25]strongly stated that PAC is

the leading association for AF and other serious cardiac-related risks. PAC is unnoticeable to

diagnosis because it is hiding in the normal sinus beat. If PAC is detected earlier correctly, the

increase of incident arrhythmias can be reduced. For a PAC beat structure stand-alone, its

structure is like a normal beat with a non-sinus P wave followed by a normal QRS complex

underlying the normal sinus rhythm as shown in Fig 2.6. The natural pacemaker (SA node) is

reset from the PAC beat depolarization making the next normal beat delayed. The interval

between before the PAC beat and after the PAC beat is less than two times the RR interval,

called incomplete compensatory pause.

2.4.3 Premature Ventricular Contractions (PVC)

PVC is the occurrence of the ectopic beat within the ventricles leading to

interventricular conduction delay. The abnormal morphology for PVC includes the prolonged

QRS complex wider than 120 milliseconds and earlier occurrence than expected for the next

sinus impulse. Moreover, the discordant ST-ST segment changes in the T wave can be found.

Additionally, the phenomenon of backward conduction from the AV node to the atria can

occur unintentionally, the PVC complex is followed by a full compensatory pause. The full

compensatory pause is the interval between the normal beat before and after the premature

beat (PVC beat) equivalent to the length of two normal beats (2 R-R intervals) when added

together unlike PAC as below in Fig 2.7.

Fig 2.6. The pattern of Premature Atrial Complex within the normal sinus rhythm from Record No: 100

PAC

Beat

PAC occurs earlier than expected,

with different P-wave form compare

with normal sinus P-wave

 Followed by wider

RR Interval

 11

2.5 Neural Networks

Deep learning is the type of machine learning inspired by the structure of the human

brain to improve analytical skills on tons of data-driven processes. The architecture of the

neural network is composed of layers of neurons that intimate the function of the human

brain. Neurons in the neural networks take in data, train themselves to recognize the patterns

in the data and then predict the output for a new set of similar data. The first layer of the

network is the input neurons layer that receives the input data, and the last layer is the output

layer that predicts the final output. Between the input and output layers, the hidden layers

exist where most of the computations required by the network are performed. The features of

the inputs are selected by the neurons in the hidden layers without human intervention.

Neural networks can be in various shapes and structures, nevertheless, the backbone

is as in the following Fig 2.8. In a neural network architecture, the neurons of one layer have

connected to the neurons of another layer through channels. Each of these channels between

each layer is assigned numerical values known as weight (w). The input data into the first

neuron layers are processed and transformed. After that, the inputs are multiplied to the

corresponding weight and then their sum is further sent as input to the neurons in the hidden

layers. Each of these neurons is assigned a numerical value called the bias (b) which is then

added to the input sum. Furthermore, the values have proceeded through the activation

function.

The activation function is a type of transformation function which can learn to decide

whether the neuron will be operated or not. The data is then transmitted via the operated

neuron to the neuron in the next layer through the channels. In this manner, the data are

carried and processed to the output layer called forward propagation. In the output layer, the

Fig 2.7. The pattern of Premature Ventricular Complex within the normal sinus rhythm from

Record No: 105

RR

Twice of RR Interval

discordant ST segment / T wave

PVC beat

 12

neuron with the highest probability value sets off and determines the output value. To

optimize the output value, is needed to do backpropagation for error checking using the loss

function. From the value of the optimizer, the network keeps updating the weight and learning

the features and patterns of the data. Deep learning neural networks are characterized by their

depth, referring to the number of hidden layers they possess, which distinguishes them from

other neural networks.

2.5.1 Convolutional Neural Network (CNN)

In the last decade, researchers have proposed various learning approaches to neural

network architecture, with CNN contributing more than half of researchers' interest in

classifying ECG arrhythmias, as stated in [36, 37]. This is primarily due to CNN's

effectiveness in classifying problems involving image data as input. The key advantage of

applying CNN in image classification lies in its capability to extract significant features by

reducing image noise through filtering. Consequently, the model can make more accurate

predictions by focusing solely on the essential features of the image.

Firstly, CNN performs convolution to the input image data with convolution matrix

as shown in Fig 2.9. The convolution matrix is a matrix of weights which are multiplied with

the input image data to extract relevant features. When the convolution filter is applied to the

image, it brings out certain features, such as vertical or horizontal lines to make the image

more interpretable for the model. While convolutional layers can be followed by additional

convolutional layers or pooling layers, the fully connected layer is the final layer. The

progressive augmentation of depth in a convolutional neural network (CNN) result in

heightened complexity, thereby facilitating the discernment of larger segments within the

Fig 2.8. Basic Architecture of a Neural Network

b

 13

input image. The initial layers of the network predominantly focus on rudimentary features

such as colors and edges. As the image data traverses subsequent layers of the CNN, it

progressively acquires the capacity to perceive more substantial components or contours of

the object, ultimately culminating in the successful identification of the target object. In

general, the more convolution layers the model uses, the more details in the image the model

can capture. Nonetheless, a trade-off exists concerning training time as the network's density

increases, leading to an enhancement in accuracy. This leads to consuming processing power

and memory storage so much that a resource constraint environment is not applicable (such as

mobile phones, and embedded system devices) [18].

2.5.2 Lightweight Convolutional Neural Network

In recent years, there has been growing interest in addressing the gap within

Convolutional Neural Networks (CNNs) through the concept of lightweight convolutional

neural networks. These neural networks are a subset of deep learning neural networks that

aim to achieve comparable accuracy while significantly reducing the parameter requirements.

Parameters in this context refer to the weights of connections that are learned during the

training phase or the coefficients of the model selected by the model itself. These coefficients

are automatically optimized by the model using an optimization function, which ultimately

yields a set of parameters that minimize the error during the learning process. By adopting

lightweight convolutional neural networks, researchers strive to strike a balance between

computational efficiency and maintaining high levels of performance.

To get the alignment between parameter reduction and accuracy maintenance, new

convolution methods have appeared such as dilated convolution, deformable convolution,

Fig 2.9. Basic Architecture of Convolutional Neural Network

 14

group convolution, and depthwise separable convolution. Dilated convolution is the method

of using dilated convolution filters which have wide kernel sizes by spacing value kernels

with holes presented in Fig 2.10. Dilated convolution filters can improve the learning capacity

and enhance the capability of feature extraction by the network without introducing additional

parameters to the network [38, 39]. For deformable convolution as in Fig 2.11, it has the

adaptability to reshape the convolution kernel by the insides of interest. This leads to being

better at extracting necessary features only while increasing the network performance with

fewer parameters [40].

In group convolution shown in Fig 2.12, the input channel is divided into groups and

convolved separately and then joined in each group to give the output result . For the concept

of depthwise separable convolution as in Fig 2.13, it is composed of two convolutions;

pointwise convolution: 1 x 1 convolution kernel and depthwise convolution: a lightweight

convolution filter per input channel. In this process, the computational cost per convolution is

reduced since the depthwise convolution performed less than twice of computation compared

to conventional convolution neural network. Under these circumstances, not only the size

(parameters) of the model but also the consumption of resources (storage and computing

power) by the model can be reduced significantly.

Fig 2.11. 3x3 Deformable Convolution [40] Fig 2.10. Dilated Convolution [38,39]

Fig 2.13. Depthwise Separable Convolution [13] Fig 2.12. Group Convolution [41]

 15

As a reference for judgement, four state-of-the-art lightweight deep neural networks

are used as baselines for this research, namely, MobileNetV2, ShuffleNetV1, ShuffleNetV2,

MixNet, and EfficientNet. According to the architecture of the models, MobileNetV2 is built

with depthwise separable convolution combined inverted residual structure and linear

bottleneck, ShuffleNetV1 is built with group convolution through shuffle operation,

ShuffleNetV2 is an extension of ShuffleNetV1 with channel shuffling and pointwise group

convolution, MixNet is built with by mixing different shades of convolution kernels and

EfficientNet is built with convolution included depth, width, and resolution balancing module

[13-17, 41].

According to the statistics presented in [18], when analyzing the ImageNet dataset,

deep lightweight neural networks such as MobileNetV2, MobileNetV3, and EfficientNet

outperform traditional convolutional neural networks by reducing the parameter requirements

for calculations. The comparison of parameter reduction between traditional CNN and

lightweight CNN, as tested on the Imagenet 2012 Dataset, is shown in Table 2.1.

MobileNetV2 is a lightweight convolutional neural network developed by Google in

2019. MobileNetV2 is constructed with a full convolutional layer followed by a chain of 17

efficient convolutional building blocks called Inverted Residuals and Linear Bottlenecks (

MBConv Block) [14] as shown in Fig 2.14. In this block, the features from a lower

dimensional representation are scaled up with 1x1 pointwise convolution with the Relu6

activation function. Then, a Depthwise convolution and Relu6 are applied. ReLU6 function is

a variant of ReLU which will be stated in section 2.5.4. ReLU6 bounds the positive output

values at 6. Finally, the features are compressed back into the earlier lower dimensional

representation with 1x1 pointwise convolution. Since it is used residual connection, it creates

a shortcut between the first and last layer for making flow of data in the block easier. By

constructing the convolution blocks this way, the trainable parameters are reduced to be faster

computation time without decreasing the accuracy and can be deployed easily on the mobile

and embedded edge devices.

No.
Traditional

CNN
Parameters No. Lightweight CNN Parameters

1 Alexnet 60.9 M 1 MobileNetV2 3.4 M

2 VGG16 138 M 2 MobileNetV3 2.5 M

3 GoogLeNet 6.8 M 3 Efficient Net 5.3 M

Table 2.1 Parameters Usage Comparison between Traditional CNN and Lightweight CNN which is tested on

2012 Imagenet Dataset

 16

EfficientNet, developed by Tan and Le [17] in 2019, is a neural network architecture

based on the concept of compound scaling. Compound scaling involves adjusting the depth (

d = αϕ, the number of layers in the network), width (w = βϕ, the number of channels in the

layers), and resolution (r = γϕ, the input image size) of the network uniformly, allowing for an

extended depth of the network with a compound coefficient, ϕ. EfficientNet uses the

MobileNetV2 Convolutional Building Block (MBConv) as the base network by adding the

squeeze-and-excitation module (SE). The squeeze-and-excitation module is customizable to

change the weighting of the channels by plugging the feature images to a single numeric

value using an average pooling. Then, the baseline network can be scaled to get better

accuracy and efficiency from EfficientNet-B0 to B7 in accordance with the required system.

EfficientNet offers models from B0 to B7, with different scales and input shape requirements.

For example, B0 expects input shapes of 224x224, while B1, B2, and others have different

sizes. In the research context, a resolution of 224x224 is chosen to compare with

MobileNetV2, making EfficientNet B0 the suitable option.

MobileNetV3 is a lightweight convolutional neural network designed for deploying

neural networks on mobile phone CPUs, following the success of MobileNetV2 and

EfficientNet. In MobileNetV3, a combination of hard swish activation and squeeze-and-

excitation modules is applied to the MBConv blocks, as shown in Fig 2.15. Hard swish is an

activation function that replaces sigmoid with ReLU6, offering robustness and efficient

computation for low-precision settings [13]. A comparison of these three lightweight neural

networks (MobileNetV2, EfficientNet, and MobileNetV3) is presented in Table 2.2.

Network Building Blocks No of Layers No of

Parameters

(millions)

Input

Size

MobileNetV2 Inverted Residual Blocks 53 3.4 224 x 224

MobileNetV3 Inverted Residual Blocks

Squeeze-and-Excitation Modules

23 2.5 224 x 224

EfficientNetB0 Inverted Residual Blocks

Adjustable Squeeze-and-Excitation

Modules

66 5.3 224 x 224

Table 2.2 Composition Comparison for Lightweight Deep Learning Neural Networks interested in

this Research

 17

2.5.3 Optimizer

Many researchers developed optimization algorithms for a wide range of neural

networks to train with. Among them, Adam stood out and showed promising results. Adam

stands for Adaptive Moment Estimations which is an optimization algorithm with adaptive

learning rate by putting momentum and RMSProp together. Adam is one of the most common

and best optimizers that optimizes the neural network to train in less time effectively [42].

The weight updates in neural networks with Adam are performed as per follow equation:

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚
^

𝑡

√𝑣
^

𝑡 + 𝜖

In which:

𝑚
^

𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

𝑣
^

𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

Where Ƞ stands for learning rate, w is the weight , 𝜖 is a small positive number with 1e-8

preventing from dividing by zero, 𝑔 is gradient, t is time, m is aggregate of gradients, ν is sum

of square of past gradients and beta parameters β1 and β2 present moving average parameter

with constant value 0.9.

2.5.4 Activation Function

 Activation functions are crucial components of neural networks that introduce non-

linearity and determine whether a neuron can contribute to the next layer. They are based on a

specific value or threshold, and various activation functions have been created to address this

decision. The step function is a simple and intuitive function that activates a neuron if its

value is above a certain threshold and does not activate it otherwise. However, it has

limitations when classifying multiple neurons into different classes due to its linearity,

making it challenging to determine which class a particular neuron belongs to.

 To overcome this issue of step function, activation functions that output a range of

probabilities were developed. Linear functions can be connected to multiple neurons,

allowing for a maximum value to be selected in case more than one neuron fires. However,

 18

the gradient has no relationship with x, making it unsuitable for gradient descent. The sigmoid

function is a commonly used activation function in neural networks that has a smooth

gradient, outputs analog activation, which is defined as an if x is equal to 1 over 1 plus e to

the negative x. This function has a non-linear nature, non-binary activations, smooth

gradients, and is bound in a range from zero to one inclusive. Despite these advantages, the

sigmoid function has several disadvantages, such as the gradient at the ends of the function is

almost zero, giving rise to the vanishing gradient problem, where the gradient becomes too

small for gradient descent.

 Another commonly used activation function is the tanh function, which is similar to

the sigmoid function but is bound in the range of -1 to 1 inclusive. The rectified linear unit

(ReLU) function is another popular activation function that overcomes the vanishing gradient

problem of sigmoid and tan h functions and is computationally efficient. However, it has its

own limitations, such as the "dying ReLU" problem, where neurons can become inactive and

produce zero output, leading to "dead" neurons in the network.

 The choice of activation function depends on the specific problem being addressed.

The graph of the mentioned activation functions are illustrated in Fig 2.14. While the step

function, sigmoid, tan h, and ReLU are commonly used activation functions, the effect of

each function on this research is explored to understand the advantages and disadvantages of

each function to determine which one is best suited for this research.

2.5.5 Loss Function

 The cross-entropy loss function is widely utilized in machine learning, with binary

cross-entropy for binary classification and sparse categorical cross-entropy for multiclass

problems. In this particular study, sparse categorical cross-entropy is selected as there are four

classes to categorize. This loss function penalizes the model for low probabilities for correct

Fig 2.14. Plot of Five Activation Functions

 19

classes and high ones for incorrect classes. The objective is to reduce the difference between

predicted and true class distributions. This can be achieved by updating model parameters via

backpropagation. Sparse categorical cross-entropy is more efficient for larger multiclass

problems, and regularization can be introduced for handling noisy data. The equation of

sparse categorical cross-entropy loss is as follow:

Loss = -∑ 𝑦𝑛
𝑘=0 .logYk

where y is true value and Y is predicted probabilities of the classes.

2.5.6 Regularization

Among many forms of regularizations to increase the accuracy of deep learning, the

simple and most common one : dropout is applied in this research with different values for

different trials to prevent over fitting by temporarily suspended the connections within input

and hidden at specific probability.

2.5.7 Normalization

In deep learning neural networks, normalization layer plays big parts to accelerate the

model learning rate, optimize the performance and reduce overfitting. In this research , batch

normalization is applied in both training and testing. Batch normalization is created by two

researchers Sergey Ioffe and Christian Szegedy [43]. Instead of only normalizing the input

data and then feeding the data into the neural network, all the outputs of all the hidden layers

in our network are normalized. The equation applied batch normalization for a mini batch,

BN is as follow:

𝜇ℬ =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

𝜎ℬ
2 =

1

𝑚
∑(𝑥𝑖 − 𝜇ℬ)

2

𝑚

𝑖=1

𝑥
^

𝑖 =
𝑥𝑖 − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

𝑦𝑖 = 𝛾𝑥
^

𝑖 + 𝛽 = BN𝛾,𝛽(𝑥𝑖)

Where γ and β are learnable parameters.

 20

3 Literature Review

Accurate detection and classification of cardiac arrhythmia types are critical for

effective treatment, however, there are still challenges for clinicians due to the complex and

variable nature of arrhythmias. In recent years, machine learning and artificial intelligence

have emerged as promising tools for computer-aided diagnosis of cardiac arrhythmias.

Support vector machine (SVM), principal components analysis (PCA), and k-means

clustering are among the most widely used machine learning algorithms for arrhythmia

detection.

In the literature, four basic steps are generally performed for arrhythmias

classification: preprocessing, heartbeat segmentation, feature extraction, and classification.

The abnormality of ECG signals classified from the time-series signal requires a combination

of multiple steps such as PCA for features dimension reduction and selection, a bag of visual

words for clustering, and then SVM and Random Forest as a classifier to achieve high

accuracy to develop hybrid cardiac arrhythmia classification model using multiple machine

learning in [44]. This proposed system enables classifying 13 classes among 16 arrhythmia

classes in Arrhythmias Dataset __UCI Machine Learning Repository with an accuracy of

91.2%. Alternatively, Hsu and Cheng [45] proposed a supervised machine learning model

with features extracted from waveform-based signal processing (WIP) to the original signal

and a deep learning model with a 2-D image to classify normal beat (N), supraventricular

ectopic beat (S), ventricular ectopic (V), fusion (F), and unknown (Q) from the MIT BIH

Arrhythmias database. Preprocessing the signals is compulsory to analyze time-series signals

due to the existence of noises, such as power line interference, motion artefact, baseline

wander, etc. These conventional machine learning approaches required signal preprocessing,

waveform detection, feature extraction and the use of manually reconstructed features

selection for classification with statistical computing tasks. By synthesizing and critically

evaluating the existing literature a comprehensive overview of the state-of-the-art methods for

arrhythmia detection using machine learning, highlighting recent advances, challenges, and

future directions will be provided sectors by sectors.

 21

3.1 ECG Classification with Time-series Data and Neural Network

Mathews et al. [10] proposed a method for classifying five types of cardiac

arrhythmias (Normal beat, Premature Atrial Contraction (PAC), Premature Ventricular

Contraction (PVC), Fusion beat, and unknown beats) from the MIT BIH Arrhythmias

Database. They employed a deep belief network (DBN) with three layers to create a low-

resource consuming system by utilizing a low sampling rate and a small set of features. Prior

to implementing the DBN, the authors carried out three preliminary steps.

Firstly, baseline wander, power-line interference, high-frequency noise, and motion

artefacts are removed not to disturb analysis performance. Secondly, the preprocessed signals

are downsampled from the original 360 Hz to 114 Hz for heartbeat detection. The heartbeat-

detected signals are then segmented per beat for T-wave offset detection. Finally, feature

extraction proceeded with two practices: the former contained 26 features values of pre-RR

intervals, post-RR intervals, average-RR intervals, heartbeat intervals and segmented

morphology intervals and the latter holds 22 features from RR intervals between successive

heartbeats and fixed-interval morphology.

The proposed method achieved the objective of classification in data with low

resolution. According to the confusion matrix, this approach is quite sensitive at

distinguishing PAC and PVC with 93.63% and 95.87% respectively although the normal

beats are misclassified as PAC. The manual features selection is the major drawback to their

experiment leading to that this approach not being appropriate for those who need a medical

perspective background and is not reliable for the classification of rhythm base arrhythmias

clinically.

Kiranyaz et al. [11] developed a method comparable to Mathews et al. [10]for

classifying five cardiac arrhythmias on a patient-specific basis. They utilized an adaptive 5-

layer 1-D convolutional neural network (CNN) as both a feature extractor and classifier. The

primary aim of this method was to reduce computational complexity, making it suitable for

lightweight applications. The study utilized raw data from the MIT BIH Arrhythmias

Database and segmented 5-minute data frames from each patient's record for initial patient

adaptation training.

The segmented data were fed into the input layer of the proposed adaptive 1-D CNN

which included three hidden layers with 32, 16, and 10 neurons respectively utilized 50

iterations of training with backpropagation. The experimental results demonstrated impressive

performance for Premature Atrial Contraction (PAC) and Premature Ventricular Contraction

(PVC), achieving accuracies of 97.6% and 99% respectively. This study presents a reliable

 22

and innovative approach to address the challenges of training data requirements and

computational processing constraints in lightweight applications.

However, a major drawback of implementing this system is its inability to detect

arrhythmia characteristics in healthy individuals without any arrhythmias. As mentioned by

[46], Kiranyaz's approach heavily relies on the end-user's history to distinguish abnormal

beats from normal ones. Additionally, this proposed system is focused on specific beats,

limiting its applicability to the most common type of rhythm abnormality, such as Atrial

Fibrillation (AF), which requires analysis of a series of beats (rhythm-based).

3.2 ECG Classification with data transformation

Unlike classifying cardiac arrhythmias from the time domain, frequency domain, and

considering specific characteristics, patterns, or criteria that are relevant from a medical

perspective with complex mathematically and statistically selected features using the time-

series signal of the ECG, Salem, et al.[47] proposed the time-series ECG signal to project

from 1-D to the 2-D plane by using spectrogram images. As an example, the spectrogram

image representing AF and NSR is shown in Fig 3.1 and 3.2. The authors claimed that a large

volume of data was required to train a deep neural network for high accuracy whereas the

availability of public data in the ECG domain is quite small. Therefore, the authors studied

the classification of cardiac arrhythmias using transfer learning from a pre-trained 2-D

convolutional neural network to reduce the requirement of high data volume while

maintaining high performance.

Fig 3.2. Spectrogram Representation of

NSR from Salem, et al. [47]

Fig 3.1. Spectrogram Representation of AF from

Salem, et al. [47]

 23

This study analyzed 7008 data instances from four datasets: MIT-BIH Normal Sinus

Rhythm Database, MIT-BIH Atrial Fibrillation Dataset, MIT-BIH Malignant Ventricular

Arrhythmia Database, and European ST-T (ST segment and T wave changes) Database: to

classify normal conditions, atrial fibrillation, ventricular fibrillation, and changes in ST-

segment. The raw ECG signal was cropped into a 500-sample window size around the relative

annotated area. After that, the signal was transformed into a spectrogram image using the

Fourier Transform method. This alternative approach took the transformed spectrogram

images as the input of the neural network, which was pertained with millions of images in the

ImageNet, for feature extraction. The extracted features were then classified according to the

classes with the support vector machine classifier and achieved 97.23% accuracy in

classification. The implementation of transfer learning showed that the models could analyze

quite correctly the unseen spectrogram images of ECG signals with the knowledge gained

from the pre-trained model.

Another similar approach to converting the 1-D signal to the 3-D image is with a

recurrent plot to cover not only the spectral features from the signal but also included

temporal features from the original signal in the image. A recent study by Mathunjwa, et al.

[48] presented an approach to transforming raw ECG data into an image using the recurrence

plot (RP) technique. Recurrent plot is a visualization matrix which can visualize the phase

space. The property of RP is the capability of presenting the phase nature of the time-series

signal. The authors tried to solve the need for arrhythmia classification in devices without

relying on the users’ medical history. The authors analyzed the data from MIT BIH AF

database, MIT BIH VF database and Creighton University Ventricular Tachyarrhythmia

Database (CUDB). In this research, the raw ECG signals with 30-second were first segmented

into 2-second segments. Then, the segments were selected based on the annotation approach

used for the ECG data. After that, selected two-second segments of the 1D ECG signals were

converted into 2D images using recurrence plots (RPs). The example representation of the RP

image for AF and NSR used by the research is illustrated in Fig 3.3 and 3.4.

 24

The altered RP images were used as the input to the neural network. This system had

performed two classification steps: one with 2-second segment data for classifying noise,

ventricular fibrillation, and others and the second step classifies the others signal with beat-

by-beat classification to AF, normal, PAC and PVC. The classification was performed

directly on neural networks: AlexNet, VGG 16 and VGG 19 and compared the results of each

network respectively. To get the optimal values, the authors performed many trials with

various learning rates and epochs. Finally, the results showed that AlexNet outperformed in

classification compared to VGG 16 and 19 results. The accuracy achievement of AlexNet to

classify arrhythmias from RP is 96.64 %.

However, this study has a limitation that hinders implementation in resource constraints

environment. This study classified rhythm-based arrhythmia AF to distinguish with beat

leading to a false positive result as PAC. The authors themselves stated that this approach

requires a lot of processing power and storage which cannot fill the gap of implementation in

devices. Moreover, the transformation of RP is deeply reliant on the threshold value which is

directly proportional to the noise existence of the signal. The drawback of these transforming

methods requires additional processing steps and consumes processing power and energy for

resource-limited devices.

Fig 3.3. Recurrent Plot of AF from

Mathunjwa, et al. [48]

Fig 3.4. Recurrent Plot of NSR from

Mathunjwa, et al. [48]

 25

3.3 ECG Classification approach through neural networks optimized for efficient

deployment on portable devices

In the study, Abdelazez et al. [19] introduced a classification system for atrial fibrillation

(AF) that utilized compressive sensed ECG signals instead of traditional ECG signals. The

purpose of this approach was to decrease memory consumption in the system. The

compressive sensed ECG proposed by the author is that the time-series 30-second ECG

signals are compressed with wavelet transformation. The compressed signal is then

transformed into spectrogram images. The resulting transformed images are used to train the

lightweight deep learning network MobileNetV2 in detection of the ECG signal whether the

signal is AF or not. According to statics shown, However, the compression ratio was found to

have a negative impact on classification accuracy. The accuracy of the model predicted

declined from 87% accuracy (when utilizing uncompressed signals) to 79% accuracy when

compressing approximately one-third to one-fourth of the original ECG signal. This drop in

accuracy was attributed to the information lost during the time-series signal compression

process.

Chanthercrob, et al. [20] proposed a combination of a low complexity algorithm

(LDA) in the portable device and implementation of AlexNet in the cloud to differentiate AF

from normal rhythm. Firstly, the heart rate variability (HRV) is calculated based on the R-R

interval to know whether it is higher than the normal heart rate or not. The LDA implemented

in the device classifies whether the signal is AF or not from the heart rate variability. To

improve specificity, the ECG record is divided into the 3-s interval and these time series are

transformed into 3-second segment ECG image to classify with cloud-computed AlexNet.

However, this approach requires two computational platforms (portable device and cloud) to

perform a single classification task and is not cost-effective due to the yearly subscription of

the cloud platform [31].

Recently, Liu, et al. [21] performed research on the lightweight network to classify

arrhythmias by transforming time-series signals to beat images with high accuracy which is

intended to deploy with mobile terminals or embedded devices. Like other researchers, the

MIT BIH arrhythmias database was used. In this study, the raw ECG signal was first

preprocessed with noise-cancelling by wavelet transform. The clean signal was then

segmented into a 1-second time frame and then the plotted signal was saved as an ECG beat

image. After that, the images were used as the input of the proposed neural network. The

uniqueness of this study was performed on a lightweight neural network with small-scale

 26

convolution filters. The neural network in this research used VGGNet architecture as a

backbone with modifications such as removing certain convolutional layers and replacing

with the inverted residual with linear bottleneck structure from MobileNet V2. The

lightweight neural network served as both feature extractor and classifier in this study which

removed the additional computing kinds of stuff and advanced feature engineering concept

which affected the performance in resource-limited environments. This research achieved an

overall accuracy of 99.41 % although there were some drawbacks to be pointed out.

According to the confusion matrix presented, PAC and PVC were misclassified as normal

beats. Since this classification was based on analyzing individual beats, it could not be as

effective in identifying rhythm-based arrhythmias, such as atrial fibrillation (AF), which

requires an analysis of the entire rhythm pattern and the relationship between consecutive

beats. The authors stated that this study could use time consumption for computing whereas

the memory requirement problem had not been solved.

Approach
Classified

Types

Applied

Neural

Networks

Data

Transformation

Techniques

Advantages Disadvantages Accuracy

Abdelazez et

al. [19]
AF , NSR MobileNetV2

Compressed 30s

Time-series,

then transform

spectrogram

Reduced

memory

consumption

Classify AF

only, Less

Accuracy,

Signal Loss

87%

(AUC)

Chanthercrob

et al. [20]
AF , NSR

LDA and

AlexNet

Transformed 3s

Time-series into

RGB Image

Combination

of rhythm-

based and

morphology-

based

algorithm

Classify AF

only, two

computational

platforms, cost-

effectiveness

concerns

96.7%

(sensitivity)

100%

(specificity)

Liu et al.

[21]

NSR ,

PAC ,

PVC,

LBBB ,

RBBB

Custom

DNN(based on

VGGNet and

MobileNetV2)

Transformed 1s

Time-series into

ECG beat Image

Less

Processing

Time

Unapplicable to

AF, Require

large data set

99.41%

(Accuracy)

Table 3.1. Summary of comparison of state-of-art arrhythmias classification using neural networks for

deploying on portable devices

 27

4 Methods and Materials

4.1 The Proposed Cardiac Arrhythmias Classification System

The proposed research procedure comprised several key steps for investigating and

analyzing electrocardiogram (ECG) data for classification of cardiac arrhythmia detection.

The overview step of the proposed cardiac arrhythmias classification system is illustrated in

Fig 4.1 and details as follow:

1. Preprocess ECG Data: The raw ECG data will be preprocessed such as filtering

techniques to remove noise and artifacts for good quality, segmenting the data into

individual heartbeats, and transforming the time-series data into image data to be used

as the input image of the network.

2. Create Datasets: In order to train, validate, and test the performance of the models,

datasets are divided into three subsets: training, validation, and testing. The training

subset is to optimize the model's parameters, the validation subset is to fine-tune the

model and avoid overfitting, while the testing subset is for an independent evaluation

of the model's performance.

3. Build Input Pipeline: An efficient input pipeline before feeding it into the model plays

an important factor in training the model smoothly. This will involve resizing the

resulted overlapped ECG beats image to a standardized size in accordance with the

model requirement, normalizing the data to a common range, and applying

augmentation techniques to increase the diversity of the training data.

4. Instantiate Model: A suitable model architecture is set up for arrhythmia detection,

based on previous research and literature. The selected model is going to be used as

the foundation for subsequent training and evaluation and further deployment in the

mobile device.

5. Train the Model: The instantiated model will be trained with the prepared datasets.

During the training process, the model will learn to recognize and classify different

types of assigned cardiac arrhythmias based on the features extracted.

6. Record and Analyze Performance: The performance of the trained model will be

recorded and analyzed. This involved evaluating various performance metrics, such

as accuracy, sensitivity, and specificity, to assess the model's ability to correctly

classify arrhythmias. The recorded results will be thoroughly analyzed to gain

insights into the model's strengths and weaknesses. Based on the findings, the model

 28

is optimized by adjusting its parameters to minimize the training loss and maximize

its predictive capabilities.

7. Start Again with Another Network: To explore different approaches and enhance the

research findings, the process is going to be repeated with alternative model

architectures. This iterative approach allowed for a comprehensive comparison of

multiple networks, enabling a deeper understanding of their relative performance.

8. Compare and Conclude Results: The results obtained from different models will be

systematically compared and contrasted to derive meaningful conclusions. The

strengths, limitations, and trade-offs of each model will be assessed to identify the

most effective approach for arrhythmia detection and suggest further research

directions.

Overall, this research procedure employed a systematic and iterative approach to

investigate the classification of cardiac arrhythmias using the proposed overlapping of the

ECG beat images. The emphasis is on data transformation of the raw ECG data, training

models with varying architectures, and critically analyzing their performance to gain insights

into their effectiveness.

4.1.1 Database Exploration

The data training for the model in this study will be collected from the clinically

certified dataset at PhysioNet namely the Long-Term Atrial Fibrillation (LTAF) database in

which 84 records of around 24-hour long ECG recordings with sampling frequency of 128 Hz

Fig 4.1. Block Diagram of Proposed Research Framework

 29

including both annotations based on beat and rhythm type in each record [49]. The reason for

using ECG data from PhysioNet is due to its provision of annotated electrocardiogram (ECG)

data, specifically labeled for beats and rhythms, allowing for the development, and testing of

algorithms for beat and rhythm analysis. Furthermore, the user-friendly wfdb Python library

offered by PhysioNet simplifies access, analysis, and manipulation of physiological signals.

This LTAF database from PhysioNet contains 5 types of beat annotation: N for Normal Sinus

Rhythm, A for premature atrial contraction, V for premature ventricular contraction, Q for

unknown beat and ‘ “ ’ for missing beat. Comparatively, the rhythm beat annotation has nine

types of annotation involved. However, the interest in this thesis is limited to atrial fibrillation

and normal sinus rhythm in rhythm-based annotation and normal beat, premature atrial

contraction and premature ventricular contraction beat in beat-wise annotation.

In Figure 4.2, we illustrate the distribution of resultant 30-second segments after

applying our data selection process. The N Segments refer to pure NSR, free from any type of

arrhythmias. AF segments represent the number of 30-second segments with AF exclusively.

PAC segments consist of PAC beats, with each segment including PAC beats comprising at

least 20% of the total beats within that 30-second interval. Similarly, PVC segments consist

of PVC beats, with each segment including PVC beats accounting for at least 20% of the total

beats within the 30-second period.

To gain deeper insights, Figure 4.3 showcases the distribution of 30-second segments

containing premature atrial contractions (PAC) and premature ventricular contractions (PVC),

organized according to their respective PAC and PVC beat percentages. The comprehensive

details of the methodology employed for selecting 30-second segments from the original

database and their subsequent transformation into images are provided in Section 4.1.3.

Fig 4.2. The Distribution Chart for 30-second Segments of Each Arrhythmias Type

 30

4.1.2 Dataset Preparation

4.1.2.1 Data Selection

 Providing the model with relevant data for accurate classification is very critical,

particularly in healthcare settings. In this research, the selection of appropriate data is a

challenging and time-consuming task. Consequently, this study aims to thoroughly explore

and explain the functionality of the algorithms in relation to data selection, offering valuable

insights into this intricate process. The dataset utilized for training the neural network

encompasses 30-second recordings of four distinct arrhythmia types: atrial fibrillation (AF),

characterized by rhythm-type arrhythmias; normal sinus rhythm (NSR); premature atrial

contraction (PAC) and premature ventricular contraction (PVC), which represent ectopic-beat

type arrhythmias.

Fig 4.3. Percentage Composition of PVC and PVC Segments

 31

The precise assignment of criteria for each arrhythmia is of paramount importance

due to the research's dual focus on rhythm-type and ectopic-beat type arrhythmias, which

have proven challenging to classify using a single classification model. The original database

comprises 84 records, each spanning approximately 24 hours. However, for training the

model, we specifically require 30-second data segments. While it may seem that the data is

abundant, it is essential to note that each record contains both the desired arrhythmias and

those we wish to exclude. Therefore, it necessitates that these two types of arrhythmias do not

interfere with each other when we identify episodes of the desired arrhythmias in the data

selection. To address this, specific criteria have been devised for each arrhythmia category to

identify a suitable 30-second interval from the original electrocardiogram (ECG) recording, as

outlined below:

1. Normal Sinus Rhythm (NSR) 30-second record : The whole 30-second duration must

be uninterrupted normal sinus rhythm without any additional arrhythmic features

encompassing both rhythm-type and ectopic-beat type arrhythmias. We specifically

exclude any other types of abnormal heart rhythms or irregular beats from being present

in this record.

2. Atrial Fibrillation (AF)30-second record : The whole 30-second duration must be

completely atrial fibrillation rhythm without interfered from any other types of irregular

beats such as premature atrial contractions (PAC) or premature ventricular contractions

(PVC).type of beat arrhythmias .

3. For Premature Atrial Contraction (PAC) and Premature Ventricular Contraction

(PVC), specific criteria are established to accurately identify for their analysis. The

process involves examining 30-second segments, which must be free from any

concurrent rhythm disturbances, such as Atrial Fibrillation (AF) or Ventricular

Tachycardia (VT). Furthermore, within these selected segments, a minimum proportion

of 20% must be dedicated to either premature atrial or ventricular contractions. For

instance, when considering PAC, we carefully check the 30-second segment to ensure

that PAC beats make up at least 20% of the total duration, without any PVC beats.

Similarly, when studying PVC, the segment should contain at least 20% PVC beats,

without any PAC beats.

By adhering to these rigorous selection criteria, the integrity and validity of the

resultant dataset are upheld, thereby enhancing the effectiveness of subsequent neural

network training processes. The overview representation of the selection is presented as an

integral component within diagram 4.4.

 32

In the process of data retrieval, the Python "wfdb" library plays a crucial role by

facilitating access to the original data stored in the PhysioNet database. The database consists

of records that are comprised of three distinct file types: "atr," "hea," and "data." To extract

the signal values, the ".hea" file type is read. This enables the exploration of various attributes

associated with the record, which are stored as a dictionary. In the context of this research,

one specific attribute of interest is the "p-signal," which represents a 2D NumPy array

containing the physical signal values of the electrocardiogram (ECG) record.

To further gather information regarding the annotation of the record, another file with

the extension ".atr" needs to be read. Similar to the ".hea" file, the ".atr" file is also stored as a

dictionary, encompassing 14 attributes which are record name, extension, sample, symbol,

subtype, channel, aux-note, sampling frequency, label store, description, custom labels,

contained labels and annotation length. Among these attributes, the "symbol" attribute is

utilized to obtain beat annotations, providing valuable insights into the specific characteristics

of each beat. Additionally, the "aux-note" attribute is employed to extract rhythm annotations,

shedding light on the overall rhythm patterns present within the ECG recording.

During the data selection process for 30-second segments from the 24-hour record, a

window scanning approach is employed to identify the desired signal. The window width is

consistently set to 30 seconds, while the step of the window varies depending on the specific

arrhythmia type under consideration. For Atrial Fibrillation (AF) and Normal Sinus Rhythm

(NSR), the step is also set to 30 seconds. However, for Premature Atrial Contraction (PAC)

and Premature Ventricular Contraction (PVC), the step is adjusted to one beat.

In our exploration of the database, as documented in section 4.1.1, it was observed

that the data distribution of PAC and PVC is relatively low in comparison to AF and NSR. To

address this discrepancy and mitigate potential issues related to data imbalance and

Fig 4.4. Overview of Data Selection and Segmentation Process for Obtaining 30-Second Segments

from the LTAF Database

ECG
Record

AF

Pure AF
AF with

PAC&PV
C

Ignore

NON-AF

NSR

Pure NSR

NSR with
PAC|PVC

<20

NSR with
PAC>=20

PAC

NSR with
PVC
>=20

PVC

Other
Rhythms

Ignore

 33

overfitting, a modified approach known as scanning with a window and stepping per beat is

employed for data selection. By adopting this method, we aim to compensate for the limited

representation of PAC and PVC data while maintaining a balanced dataset. This approach

contributes to mitigating the risk of overfitting, ultimately ensuring a more robust and reliable

analysis. The algorithm of how the window scanning the record is illustrated in Fig 4.5.

Initially, the record undergoes scanning to identify intervals exhibiting atrial fibrillation

(AF) rhythm, over or equal to a duration of 30 seconds. Subsequently, data within these

intervals is collected. Thereafter, the selected intervals in the record are then proceeded into

scanning with window to get precisely 30-second intervals segments. The number of samples

contained within each 30-second segment is derived by multiplying the sampling frequency,

which is 128 Hz for LTAF database, by 30 seconds, resulting in 3840 samples within a single

30-second segment. Furthermore, each selected 30-second segment undergoes thorough

examination to identify any presence of beat arrhythmias. Segments that are free from any

form of beat arrhythmias are considered as pure atrial fibrillation (AF) segments and are

selected for further processing. The same procedure is applied for the interval with only

normal sinus rhythm free from any type of arrhythmias. Figures 4.6 and 4.7 present the flow

of outlining the step-by-step procedure for extracting AF (Atrial Fibrillation) and NSR

(Normal Sinus Rhythm) 30-second segments, respectively, from the original 24-hour long

record.

Fig 4.5. Construction of ECG Record Window Scanning :Right Process Flowchart and Left Class

Diagram

 34

In this research, the decision to employ a minimum threshold of 20 percent for the

proportion of premature atrial complex (PAC) or premature ventricular complex (PVC)

within 30-second segments derives its significance from the insightful findings of Huang et al

[50]. By implementing this criterion, our data selection algorithm ensures the preservation of

segments exclusively characterized by a PAC and PVC burden of 20 percent or higher, while

avoiding any disruption from other forms of arrhythmias, whether ectopic beat or rhythm

type. This methodical approach effectively safeguards the integrity of specific segments,

facilitating precise analysis and interpretation within the parameters of our study. The process

of selecting premature atrial complex (PAC) and premature ventricular complex (PVC) is

explained using an outlined step-by-step procedure. This process is illustrated in the flowchart

diagram found in Figure 4.8. Additionally, an example is provided to demonstrate how PVC

30-second segments are chosen from the record. Specifically, this example shows what

happens when a PAC beat is encountered within the selection window or when the proportion

of PVC beats is below the 20 percent threshold. A captured image accompanies Fig 4.9 and

Fig 4.10 as the example.

Fig 4.6. Flowchart for Selection of 30-

second Interval Atrial Fibrillation Signal

Fig 4.7. Flowchart for Selection of 30-

second Interval NSR Signal

YES NO

YES

 35

After following the data preparation for each cardiac arrhythmias from the original

database, the total of 78412, 11405, 2898 and 587 of 30-second-long ECG signal segments

for NSR, AF, PAC (≥ 20%) and PVC (≥20%) respectively. In Table 4.1, a comprehensive

summary of key measurements and intervals extracted from the Long-Term Atrial Fibrillation

database is provided. The table with each row corresponds to a specific record, identified by

the Record ID includes important information such as the number of normal sinus rhythm

(NSR) intervals and their total duration, as well as the number and duration of atrial

fibrillation (Afib) intervals are presented. Moreover, it provides the presence of premature

atrial contractions (PAC) and premature ventricular contractions (PVC) by means of the

respective 30-second segment quantities. Furthermore, the table includes columns indicating

the presence of PAC or PVC beats with proportions of at least 20% within 30-second

intervals.

Fig 4.8. Flowchart for Premature Atrial Complex (PAC) and Premature Ventricular Complex

(PVC) Selection Procedure

 36

Fig 4.9. The way of sliding window performs while searching for PVC beats contains at least

to 20 percent

Fig 4.10. Example for showing how the data selecting window works when there is PAC beat

(A) while searching for PVC beats at least 20 percent

in which A is annotation for PAC

 37

Rd ID

No of

NSR

interva

l

Total

Duratio

n of

NSR

Interval

s

30sec

Segment

s (NSR)

No of

Afib

interva

l

Total

Duratio

n of

Afib

Interval

s

30sec

Segment

s (AF)

30sec

Segment

s (PAC)

PAC

%

>=20

30sec

Segment

s (PVC)

PVC

%

>=20

Rd:00 5 18:31:31 2153 44 2:14:54 27 50 0 32 0

Rd:01 457 3:38:53 136 53 16:13:06 1924 202 181 2 1

Rd:03 1648 14:56:49 1379 22 1:20:03 154 454 102 3 0

Rd:05 14 24:17:02 2895 3 0:40:00 0 1099 17 4 0

Rd:06 48 24:22:27 2655 19 0:45:04 45 704 313 0 0

Rd:07 499 21:25:26 1679 8 3:24:47 391 46 0 839 48

Rd:08 20 25:42:48 3073 4 0:01:38 2 340 16 56 0

Rd:10 148 8:23:01 844 80 17:07:44 2001 253 7 9 0

Rd:10
0

839 21:35:34 1484 659 1:53:30 21 885 161 183 5

Rd:10

1
675 19:47:36 1538 147 3:20:54 274 563 88 287 24

Rd:10

2
46 23:07:36 2724 43 51:37:00 80 155 2 24 0

Rd:10
3

2095 9:37:09 81 1 12:26:55 1492 187 184 0 0

Rd:10

4
29 17:51:43 2074 16 24:01:00 30 249 10 4 0

Rd:10

5
398 13:51:55 1357 96 5:11:07 533 57 0 25 0

Rd:11 0 0:00:00 0 2 26:03:09 3083 0 0 0 0

Rd:11

0
84 22:26:20 2614 22 1:09:57 87 1208 12 0 0

Rd:11

1
52 15:19:46 1635 26 8:26:24 946 989 12 13 0

Rd:11
2

1055 13:07:24 867 1042 10:49:36 818 234 2 1 0

Rd:11

3
19 21:39:33 2506 2 1:58:10 212 52 2 4 0

Rd:11

4
132 23:35:38 2781 30 12:47:00 22 442 34 4 0

Rd:11
5

214 3:25:19 201 175 20:15:32 1851 124 7 2 0

Rd:11

6
752 22:29:29 1885 25 0:24:09 0 1114 120 0 0

Rd:11

7
4 14:47:19 1771 5 9:11:35 1094 8 0 0 0

Rd:11
8

7 19:34:24 2156 1 4:11:33 476 392 0 50 0

Rd:11

9
340 20:50:43 1637 87 2:16:45 0 279 100 9 0

Rd:12 0 0:00:00 0 1 24:05:39 2874 0 0 0 0

Rd:12
0

53 23:31:17 2370 37 0:17:33 0 746 5 8 0

Rd:12

1
1335 11:58:04 196 111 3:14:08 277 197 16 230 32

Rd:12

2
1078 13:39:05 564 16 8:43:01 1024 25 0 949 287

Rd:13 193 10:08:00 1172 2 4:56:14 592 60 1 4 0

Rd:15 4 0:16:00 0 801 23:17:57 1353 0 0 0 0

Rd:16 117 23:14:58 2638 37 0:19:57 10 129 0 1007 63

Rd:17 0 0:00:00 0 1 24:55:10 2942 0 0 0 0

Rd:18 0 0:00:00 0 1 24:59:16 2936 0 0 0 0

Rd:19 83 23:49:19 2824 9 0:05:03 6 1491 20 3 0

Rd:20 0 0:00:00 0 2 24:19:08 2915 0 0 0 0

Table 4.1. Table for Long Term Atrial Fibrillation Database

 38

Rd:20
0

0 0:00:00 0 19 23:50:26 2833 0 0 0 0

Rd:20

1
0 0:00:00 0 7 23:58:08 2860 0 0 0 0

Rd:20

2
0 0:00:00 0 1 23:59:51 2807 0 0 0 0

Rd:20
3

0 0:00:00 0 6 18:09:04 2168 0 0 0 0

Rd:20

4
0 0:00:00 0 334 20:35:58 1066 0 0 0 0

Rd:20

5
0 0:00:00 0 1 23:49:35 2814 0 0 0 0

Rd:20
6

0 0:00:00 0 6 20:47:16 2366 0 0 0 0

Rd:20

7
0 0:00:00 0 17 23:49:22 2759 0 0 0 0

Rd:20

8
0 0:00:00 0 1 23:55:16 2861 0 0 0 0

Rd:21 0 0:00:00 0 1 20:56:25 2493 0 0 0 0

Rd:22 1636 22:37:36 382 102 0:23:58 0 576 206 122 51

Rd:23 1194 16:22:18 1130 57 5:59:42 620 774 641 26 0

Rd:24 784 21:58:46 2129 2 0:01:47 2 688 7 8 0

Rd:25 0 0:00:00 0 346 18:01:49 1465 60 0 1 0

Rd:26 93 1:02:02 32 177 16:43:49 990 21 15 22 0

Rd:28 271 15:43:05 1576 106 4:43:36 364 0 0 0 0

Rd:30 14 6:06:41 712 0 0:00:00 0 617 1 9 0

Rd:32 541 19:28:40 1899 361 0:36:26 0 272 22 90 0

Rd:33 0 0:00:00 0 120 24:09:47 2738 0 0 0 0

Rd:34 0 0:00:00 0 5 24:32:53 2939 0 0 0 0

Rd:35 147 19:11:21 2215 7 3:52:13 460 150 2 5 0

Rd:37 1447 15:18:23 1452 4 0:01:29 1 302 11 76 0

Rd:38 1236 18:28:33 1538 1 25:41:00 41 160 0 37 0

Rd:39 78 3:21:11 336 141 21:26:04 2416 343 255 0 0

Rd:42 56 15:01:09 1748 122 5:38:42 350 3 0 0 0

Rd:43 0 0:00:00 0 3 25:35:32 3070 0 0 0 0

Rd:44 0 0:00:00 0 4 25:22:22 3038 0 0 0 0

Rd:45 277 22:35:48 2449 82 2:41:01 197 86 0 35 0

Rd:47 882 21:25:50 2023 4 0:01:05 0 470 58 16 0

Rd:48 0 0:00:00 0 13 23:59:23 2872 0 0 0 0

Rd:49 0 0:00:00 0 7 23:58:38 2869 0 0 0 0

Rd:51 348 22:22:04 1386 68 1:26:53 101 271 16 1291 76

Rd:53 339 52:49:00 0 448 2:58:48 0 2 0 0 0

Rd:54 0 0:00:00 0 1 24:59:03 2750 0 0 0 0

Rd:55 22 21:33:46 2555 12 4:02:41 479 788 20 9 0

Rd:56 4 15:18:16 1835 1 8:46:36 1053 35 0 13 0

Rd:58 928 14:59:38 684 12 6:16:52 724 1053 232 87 0

Rd:60 0 0:00:00 0 2 22:19:51 2623 0 0 0 0

Rd:62 0 0:00:00 0 41 24:47:28 2952 0 0 0 0

Rd:64 0 0:00:00 0 1 5:42:33 685 0 0 0 0

Rd:65 0 0:00:00 0 2 25:44:39 3064 0 0 0 0

Rd:68 0 0:00:00 0 6 23:55:35 2821 0 0 0 0

Rd:69 0 0:00:00 0 1 23:40:11 2736 0 0 0 0

Rd:70 0 0:00:00 0 1 26:05:15 2824 0 0 0 0

Rd:71 0 0:00:00 0 1 24:02:05 2853 0 0 0 0

Rd:72 72 3:56:45 442 29 20:08:31 2399 191 0 15 0

Rd:74 11 0:29:00 0 1044 23:32:16 913 0 0 0 0

 39

Rd:75 0 0:00:00 0 1 20:48:17 2477 0 0 0 0

Total 78412 111405 19596 2898 5614 587

4.1.3 Data Preprocessing

4.1.3.1 Noise Filtering

Since the raw ECG signal in the record involves noises such as powerline

interferences, baseline wanders, and electromyographic noises, all the selected 30-second

time-series signals are firstly filtered using 5th order high-pass Butterworth filter with a cutoff

frequency of 0.5 Hz to eliminate the baseline wander. Then, the powerline interference of 60

Hz is removed from each segment with the use of a band stop filter centered at 60 Hz since

the original raw signal include 60 Hz powerline interference. The comparison between the

signals before and after filtering can be seen in Fig. 4.11 for each ECG type.

 40

A

(c)

(a)

(b)

V V

(d)

Fig 4.11. Comparison of Raw and Filtered Signal for (a) AF (b)NSR (c)PAC and (d) PVC

 41

4.1.3.2 Data Transformation (Image Creation from 1D 30-second Segments)

After filtering, the heart rate is calculated with the Neurokit2 algorithm [51], which firstly

detects QRS complexes from the steepness of the absolute gradient of the 30-second ECG

signal record. Subsequently, R-peaks are then selected from local maxima within the detected

QRS complexes. The calculated heart rate (beat per minute) is then divided by 60 seconds to

get the cardiac cycle value as presented in Fig 4.12.

The individual beats within 30 seconds segment are then plotted on a plain white

background with the obtained cardiac cycle value for the x-axis and the amplitude range of -3

mv to 3 mv for the y-axis. Finally, the plotted beat images are overlayed over each other to

form a single synchronized beat image which represents the overall information of all the

beats in 30-second of the ECG record as in Fig 4.13.

According to this image transformation approach, the difference between arrhythmias and

NSR can be significantly observed. NSR is regular beats composed of noticeable P, Q, R, S

and T waves in each beat and complete QRS complex for all beats look like each other.

Consequently, the segmented individual heartbeats in the same window frame are

synchronized to each other as shown in Fig 4.14 (c). Based on this image, the 30-s record of

the ECG signal can be classified as free from any type of arrhythmias with the use of a single

image. The benefit of the approached image transformation method becomes noticeable in

PAC. As mentioned above, PAC is hiding in the normal heartbeat with complete QRS

complex whereas PAC beat is the early appearance of a heartbeat. Since the PAC is not

aligned with the normal beat, the appearance of early P-wave and incomplete compensatory

beat of PAC appear obviously as in Fig 4.14 (a). Moreover, the ST depression of PVC can be

seen clearly within an image as shown in Fig 4.14 (b).

Fig 4.12. Example of 30-second ECG record with detected R-peaks and segmentation per cardiac

cycle

 42

Finally, for AF, the characteristic of AF is irregularly irregular beats with the absence

of P-wave and the presence of F-wave. As result, the combined image of beats in AF is totally

different from the NSR image shown in Fig 4.14 (d). Since the overall differentiation of AF

can be seen in one image, the misdiagnosed of AF from other arrhythmias is also reduced.

The proposed image transformation method allows for the classification of different types of

arrhythmias and NSR based on visual patterns and features observed in the ECG beat

overlapped images.

Fig. 4.13. The formation of the overlapped beat image after overlapping individual beat images in a

single frame.

Fig. 4.14. Comparison of Overlapped Images which represents 30-second ECG signals of each Arrhythmias

(a) PAC and (b) PVC (c) NSR and (d) AF.

P

S

R

T

Atrial

Fibrillation

(c)
(d)

One hidden

PAC gives a

peaked

appearance near

the T wave

Appearance

of

Incomplete

(a) (b)

 43

4.2 Research Procedure

4.2.1 Loading the dataset

The training set is the dataset that the neural networks use to learn any potential

underlying patterns or relationships that will enable making predictions. It is needed to be

careful that the training set should cover the representative of all the classes without biasing

on particular class. If the training set is biased, the overfitting in training may be encountered.

To mitigate this risk, the validation dataset is needed to analyze the performance of the model

effected by the hyperparameter choices while the model is compiled. Based on comparing the

model training graph with training and validation, we can analyze whether the model is

overfitting or underfitting. Finally, the test dataset is set up to determine the performance of

the trained model on unseen dataset in assessing the model's ability to perform accurately and

effectively on data that it was not specifically trained on.

In this research , the datasets outlined in Table 4.2 provide insights into the

robustness of the cardiac arrhythmia classification model. These datasets are designed to

analyze the model's performance under different criteria, further examining the potential

usability of the developed model in medical practice. Analyzing the model's performance

across diverse datasets provides valuable insights into its robustness in classifying different

types of cardiac arrhythmias, aiding in determining its feasibility and potential utilization in

practical healthcare applications for cardiac arrhythmia classification.

In the input pipeline of the model for this research, the dataset is divided into 3:1:1.5

for training, validation and testing respectively as in Table 4.2. Initial step of the model

training, the input pipeline for training the model is prepared for achieving high performance

and to reduce the time required to execute a single training step by delivering data for the next

step before the current step has finished. In this research, prefetching is added into the input

pipeline to reduce the extraction time of data of the model from the dataset. This enhances the

input pipeline reading the data for the next step while the model is executing current training.

Since there are four classes intended to classify in this research, four folders included with a

thousand photos are created with respect to their class name. In addition, the images within

the data sets are resized to (224x224) and rescaled into the range of [-1,1].

 44

4.2.2 Setting up the model

In the research transfer learning from the pretrained lightweight neural networks are

applied with weights trained on the Image Net Dataset. Therefore, the base models are created

and applied as a feature extractor. The lower layers of the models are frozen to prevent

updating the weights during training. However, the classification layer (top layer) of the

original models are modified in accordance with the research requirements since the

pretrained model is designed to classify thousands of classes. The model is complied with the

chosen optimizer and loss function before training. The details of the chosen optimizer,

learning rates and other parameters are provided in Section 4.2.3.1.

4.2.3 System Implementation

The research with lightweight neural networks is performed from the pretrained

model in Python using TensorFlow and Keras which are open-source popular neural network

libraries. In this research, the base model is tested with three models : MobileNetV2,

MobileNetV3 and EfficientNetB0 which are pretrained with weights from ImageNet Datasets

consisting of 1.4M images and 1000 classes. The basic architecture of the neural networks in

this research are illustrated in block diagrams in section 2.5.2. This base of trained knowledge

will be used to classify our specific cardiac arrhythmias dataset. First, the layer of MobileNet

used for feature extraction is set up by specifying the top layer trainable as “False”. The

features from the base models converted to single 1280-element vector per image using a

Table 4.2. Datasets Configuration and Class Distribution

DataSets NSR AF PAC PVC

Pure NSR Pure AF PAC>=20% PAC>=20%

587 587 587 587

Pure NSR Pure AF PAC>=15% PAC>=15%

1184 1184 1184 1184

Mixed NSR Pure AF PAC>=20% PAC>=20%

(150 of PAC<20)

(150 of PVC<20)

287 of PureNSR

587 587 587

Mixed NSR Pure AF PAC>=15% PAC>=15%

(250 of PAC<15)

(250 of PVC<15)

584 of PureNSR

1184 1184 1184

D1

D2

D3

D4

 45

tf.keras.layers.GlobalAveragePooling2D layer. After that, tf.keras.layers.Dense (fully

connected) layer is applied to convert these features into probabilities of each class .

4.2.3.1 Experimentation with the Deep Learning Light Weight Neural Networks

In preparation for model training, the dataset is subjected to a preprocessing stage to

align it with the specific requirements of the neural network being employed. For instance,

when utilizing MobileNetV2 for classification, the dataset is first preprocessed using the

keras.application.MobileNetV2.preprocess_input function, which involves performing

rescaling and resizing operations. The base model is then established with weights initialized

to ImageNet and the classifier activation set to 'softmax', while ensuring that it is not

trainable. Subsequently, the pretrained model is loaded with a modified classification top

layer tailored to our specific needs. Finally, the model layers are sequenced, considering the

number of classes (4 in our case).

The model is constructed by defining the input shape as (224, 224, 3). In addition,

data augmentation is applied, incorporating random zooming in or out of the ECG beat

images within a specified maximum zoom of 50%. This augmentation technique serves to

enhance the model's resilience to variations in scale and appearance, allowing it to effectively

analyze and interpret ECG beat images with improved robustness. Then, preprocessing is

performed on the inputs using preprocess_input. The base model is applied to the

preprocessed inputs with the training parameter set to False, thereby leveraging the features

learned from the pretrained model. Global average pooling is then applied to obtain a fixed-

length vector representation. Batch normalization and dropout layers are added to enhance the

model's performance utilizing the GlorotUniform initializer for weight initialization.

Subsequently, the model is compiled with the Adam optimizer, using Xavier as the

weight initializer and Zeros as the bias initializer as in Table 4.3. The learning rate is set to

0.001, and a mini-batch size of 200 is employed. During training, the model's performance is

evaluated using the SparseCategoricalAccuracy metric. Once the model has been trained, its

performance is evaluated on the test dataset. Moreover, additional experimentation is

performed by adjusting various hyperparameters, as outlined in detail in Section 5.1.2. This

includes exploring different optimizers, incorporating batch normalization, and introducing

dropout layers.

 46

4.2.4 Evaluation of the Classification Model Effectiveness

The performances of the applied models are evaluated using six standard performance

measures such as sensitivity, specificity, accuracy, precision, recall and f1_score. These

values are enumerated based upon the true positive (TP) , true negative (TN) , false-negative

(FN) and false-positive (FP) from the confusion matrix.

4.2.4.1 Confusion matrix

Confusion matrix is a table applied in classification problems for both binary and

multiclass classification problems to analyze the outcomes of the predictions of the model.

The rows represent the true value of the classes whereas the columns represent the predicted

outcomes. Based on the number of classes (N) to do classification, the confusion matrix

becomes N x N matrix. In this research, the resulted confusion matrix of the models is 4 x 4

matrix since 4 classes (AF, NSR, PAC and PVC) are classified by the models. The confusion

matrix, applied to a dataset consisting of four classes of cardiac arrhythmias is illustrated in

Figure 4.15. Based on this confusion matrix, True Positive(TP),False Positive(FP),True

Negative(TN) and False Negative(FN) for each class can be recognized so that the way of the

prediction’s correctness or inaccuracy can be aware. From these values , standard

performance measures such as sensitivity, specificity, precision, recall, f1-score, and accuracy

can be calculated.

Table 4.3 Experimental Configuration for Model Training

Optimizer
Weight

Initializer

Bias

Initializer

Learning

Rate

Mini Batch

Size

Performance

metrices

Adam Xavier Zeros 0.001 200
SparseCategorical

Accuracy

 47

4.2.4.2 Sensitivity / Recall

Sensitivity is the indicator of the model which correctly classified the positive of the

class, known as true positive rate. The calculated formula of the sensitivity of the model is as :

Sensitivity (Recall) =TP/(FN+TP)

4.2.4.3 Specificity

Specificity focuses on correctly classified the negative of the class by the model,

known as true negative rate. The formula for calculating specificity is as follow:

Specificity=TP/(TN+FP)

4.2.4.4 Accuracy

Accuracy value indicates the number of correctly predicted (true positive and true

negative) classes by the model. The accuracy is calculated as per follow:

Accuracy=(TP+TN)/(TP+TN+FP+FN)

Classes AF NSR PAC PVC

AF TP FN FN FN

NSR FP TN TN TN

PAC FP TN TN TN

PVC FP TN TN TNA
c
tu

a
l

V
a
lu

e
s

Predicted Values

FOR AF

Classes AF NSR PAC PVC

AF TN FP TN TN

NSR FN TP FN FN

PAC TN FP TN TN

PVC TN FP TN TN

Predicted Values

A
c
tu

a
l

V
a
lu

e
s

FOR NSR

Fig 4.15 Semantic of the Confusion Matrices for Four Classes (AF, NSR,

PAC and PVC) result

Classes AF NSR PAC PVC

AF TN TN FP TN

NSR TN TN FP TN

PAC FN FN TP FN

PVC TN TN FP TN

Predicted Values

A
c
tu

a
l

V
a

lu
e
s

FOR PAC

Classes AF NSR PAC PVC

AF TN TN TN FP

NSR TN TN TN FP

PAC TN TN TN FP

PVC FN FN FN TP

Predicted Values

A
c
tu

a
l

V
a

lu
e
s

FOR PVC

 48

4.2.4.5 Precision

The Precision, also known as Positive Predictive Value (PPV) shows how precisely

the model can predict the positive value of the classes. The formula for precision is as below:

Precision=TP/(TP+FP)

4.2.4.6 F1_score

F1_score represents the harmonic mean of the combination of precision and recall.

The formula for f1-score is presented below:

 F1_score=
2

1

Precison
+

1

Recall

4.2.5 Experimental Environment

This research is performed to train the deep learning model with personal computer in

which specifications are as follow:

Device name : Dell Vostro 5490

Processor : Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz

Graphic : NVIDIA GeForce MX250

Installed RAM : 16.0 GB (15.8 GB usable)

System Type : 64-bit operating system, x64-based processor

Operating System: Windows11

 After training, the model is converted to the requisite format for deployment on

mobile devices. In order to substantiate the potential of lightweight deep learning for

deployment on mobile devices and assess the model's performance, an Oppo Reno 4 mobile

phone is employed as the experimental platform. The device is powered by a Qualcomm

Snapdragon 720G Octa-core processor, operates on Color OS version 12.1, and is equipped

with 8 GB of RAM. By utilizing this specific configuration, a comprehensive evaluation of

the lightweight deep learning approach can be conducted, ensuring reliable and accurate

results. This choice of hardware provides an appropriate setting for the examination and

validation of the claim regarding the suitability and effectiveness of lightweight deep learning

in the context of mobile devices.

 49

5 Results and Discussion

5.1 Experimental Results from Testing with Different Scenarios

5.1.1 Experimentation for Binary Classification (AF and NSR) with Lightweight Deep

Learning Neural Networks

The main objective of this research is to accurately detect atrial fibrillation (AF) and

therefore, the initial focus is on performing a binary classification of AF and NSR (normal

sinus rhythm). The images used in the experiments are resized to a dimension of 224x224,

which is compatible with the model being employed. Data augmentation techniques, such as

random magnification, and a normalizing layer are applied to the input pipeline. These

techniques aim to improve the performance and diversity of the ECG database used for

training the model. Furthermore, the last three layers of the model, namely the global average

pooling 2D layer, dropout layer, and prediction layer, are modified. This modification is

necessary to adapt the model specifically for binary classification, as required by the study.

Furthermore, the optimal image quality required for detecting arrhythmias in

resource-constrained environments is investigated. The overlapped beat images are examined

under three different scenarios: original images without compression, images compressed to

50% of the original quality, and images compressed to 10% of the original quality using the

widely used JPEG compression algorithm. The resulting compressed images had peak signal-

to-noise ratios (PSNR) of 42.42 dB for the 50% compressed images and 33.55 dB for the 10%

compressed images. Notably, the file sizes of the JPEG-encoded images were approximately

36 KB for the original ECG image, 12 KB for the 50% compressed image, and a mere 5 KB

for the 10% compressed image.

While evaluating the performance, the original uncompressed images exhibited

impressive results, with a sensitivity of 98.1%, specificity of 99.6%, and an overall average

accuracy of around 99%. Interestingly, even when the images were compressed by 50%, the

sensitivity remained consistently high at 98.3%, while the specificity showed a slight decrease

to 98.8%. Consequently, the overall average accuracy remained commendable at around 98%.

For the 10% compressed images, a minor reduction in sensitivity is observed, resulting in a

value of 95%, along with a specificity of 97.1%. Despite this reduction, the overall average

accuracy remained notable at around 96%.

These findings implied that image compression has minimal impact on the

effectiveness of arrhythmia detection. The sensitivity, specificity, and overall accuracy

 50

metrics remained robust, even with the compressed images. Consequently, these results

suggest that employing compressed images is a practical and viable approach in resource-

constrained settings, without compromising the performance of arrhythmia detection.

Continuously, the performance of various models in detecting AF and NSR is

evaluated, and the results are summarized in Table 5.1. The models, including

"EfficientNetB0," "MobileNetV2," and "MobileNetV3," are tested using original ECG

images and compressed images at 50% and 10% of the original quality. The average accuracy

and training time for each model and image configuration are presented in the table.

According to the table, the performance evaluation of three models, "EfficientNetB0,"

"MobileNetV2," and "MobileNetV3," for atrial fibrillation (AF) and normal sinus rhythm

(NSR) detection revealed robust performance. The models achieved high accuracy levels,

with average accuracies of 99%, 99%, and 99% respectively when trained and tested on

original ECG images. Even with image compression to 50% and 10% of the original quality,

the models maintained strong accuracy levels, with average accuracies ranging from 98% to

97%. The training times for the models varies significantly, with "EfficientNetB0" taking the

longest time while "MobileNetV3" demonstrated the shortest training duration. These

variations in training times are important factors for this research when selecting a model for

deployment, considering the available computational resources and time constraints.

Table 5.1. Performance and Training Times of Different Models for AF and NSR Classification

Model
Input

Image
First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

Avg

Accuracy
Training Time

Original 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99

50% 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

10% 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Original 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

50% 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

10% 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Original 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99

50% 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

10% 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Efficient

NetB0

Mobile

NetV2

Mobile

NetV3

For only AF and NSR

1d 15h

11min 27s

8h 44min

25s

3h 57min 5s

 51

5.1.2 Experimentation for Multiple Classification (AF, NSR, PAC and PVC) with

Lightweight Deep Learning Model

The scope of this research expands beyond the detection of atrial fibrillation (AF) to

investigate the applicability of our proposed data transformation method in classifying other

cardiac arrhythmias, specifically premature atrial contractions (PAC) and premature

ventricular contractions (PVC). PAC and PVC are ectopic-beat type arrhythmias that,

although distinct from AF, have a high likelihood of progressing to AF and pose serious

threats to life in severe cases [23, 25, 52]. Consequently, we proceeded with an investigation

of model performance in classifying these four cardiac arrhythmias using the overlapped ECG

beat images generated through our proposed data transformation method.

The findings from table 5.2 and 5.3 demonstrate the significance of employing

diverse scenarios and techniques in the classification of cardiac arrhythmias using deep

learning models. In this research, three deep learning models, namely MobileNetV2,

MobileNetV3, and EfficientNetB0, are analyzed using various scenarios and performance

metrics. These models are trained and tested on a dataset comprising different types of cardiac

arrhythmias, including AF, NSR, PAC, and PVC. Each scenario utilized distinct techniques

such as transfer learning, data augmentation, and adjustments in dropout rates and batch

normalization. The tables provide detailed evaluation metrics, encompassing sensitivity,

specificity, precision, F1 score, and accuracy, for each model and scenario.

Firstly, MobileNetV2 demonstrated exceptional performance in the transfer learning

scenario for all arrhythmia classes, with sensitivities ranging from 0.92 to 0.97 and

specificities from 0.97 to 0.99. Furthermore, the implementation of the data augmentation

technique resulted in further improvements, leading to higher sensitivity and specificity

values in most cases. The impact of additional experiments involving dropout regularization

and batch normalization varied, resulting in diverse effects on the model's performance.

In contrast, MobileNetV3 exhibited relatively lower performance in the transfer

learning scenario compared to MobileNetV2, with sensitivities ranging from 0.72 to 0.98 and

specificities ranging from 0.91 to 0.99. However, the application of data augmentation

techniques significantly enhanced the results, leading to higher sensitivities and specificities.

Furthermore, the introduction of dropout regularization and batch normalization further

improved the model's performance in most cases.

 52

Finally, EfficientNetB0 exhibited competitive performance in the transfer learning

scenario, with sensitivities ranging from 0.82 to 0.98 and specificities ranging from 0.96 to

0.99. The implementation of data augmentation techniques resulted in slight improvements in

sensitivity and specificity. Similarly, to the other models, the impact of incorporating dropout

regularization and batch normalization varied, influencing the overall performance. The

training and validation graph are provided at APPENDIX D as an example for MobileNetV3.

Table 5.2. Performance Evaluation of Each Model for different Scenario

AF NSR PAC PVC AF NSR PAC PVC AF NSR PAC PVC AF NSR PAC PVC

1 0.92 0.95 0.95 0.97 0.97 0.98 0.99 0.98 0.92 0.95 0.99 0.96 0.92 0.95 0.97 0.97 0.95

2 0.95 0.93 0.96 0.97 0.97 0.98 0.96 0.98 0.94 0.97 0.94 0.97 0.94 0.95 0.95 0.97 0.95

3 0.93 0.96 0.95 0.95 0.98 0.99 0.96 0.99 1.00 1.00 0.91 0.96 1.00 0.95 0.93 0.96 0.97

4 0.95 0.96 0.97 0.95 0.98 0.99 0.96 0.99 0.98 0.98 0.93 0.96 0.96 0.97 0.95 0.95 0.96

5 0.97 0.91 0.94 0.98 0.96 0.99 0.98 0.98 0.91 0.98 0.94 0.96 0.94 0.94 0.94 0.97 0.95

6 0.97 0.98 0.97 0.98 0.98 0.99 0.99 0.98 0.96 0.99 0.98 0.96 0.96 0.98 0.97 0.97 0.97

7 0.97 0.96 0.97 0.97 0.98 0.99 0.97 0.99 1.00 1.00 0.99 0.98 0.96 0.98 0.98 0.97 0.98

1 0.72 0.91 0.78 0.98 0.96 0.91 0.95 0.96 0.89 0.79 0.81 0.91 0.80 0.85 0.80 0.95 0.85

2 0.91 0.99 0.85 0.95 0.96 0.97 0.97 0.99 0.91 0.92 0.91 0.97 0.91 0.95 0.88 0.96 0.93

3 0.93 0.99 0.93 0.96 0.98 0.98 0.98 0.98 0.95 0.96 0.94 0.96 0.94 0.97 0.94 0.96 0.95

4 0.93 0.91 0.97 0.97 0.98 0.99 0.96 0.98 0.95 0.97 0.91 0.96 0.94 0.94 0.94 0.96 0.95

5 0.94 0.93 0.97 0.97 0.98 0.99 0.96 0.99 0.96 0.98 0.92 0.97 0.95 0.95 0.94 0.97 0.95

6 0.99 0.96 0.99 0.97 0.99 0.99 0.98 0.99 0.98 0.99 0.95 0.98 0.98 0.97 0.97 0.97 0.97

7 0.99 0.96 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.96 0.98 0.98 0.97 0.97 0.98 0.98

1 0.82 0.96 0.93 0.98 0.96 0.98 0.99 0.96 0.99 0.94 0.98 0.89 0.85 0.95 0.96 0.93 0.93

2 0.85 0.95 0.95 0.97 0.96 0.97 0.98 0.97 0.91 0.96 0.94 0.92 0.88 0.95 0.94 0.94 0.94

3 0.89 0.95 0.95 0.97 0.97 0.97 0.98 0.97 0.93 0.96 0.94 0.92 0.91 0.95 0.94 0.94 0.94

4 0.93 0.97 0.96 1.00 0.97 1.00 1.00 0.97 0.93 1.00 1.00 0.90 0.93 0.98 0.98 0.95 0.96

5 0.96 1.00 0.93 1.00 1.00 0.98 1.00 0.97 1.00 0.96 1.00 0.92 0.98 0.98 0.96 0.96 0.97

6 0.99 0.97 1.00 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.96 0.99 0.99 0.98 0.98 0.98 0.98

7 0.98 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.98 0.99 0.99

f1_score

Accuracy

Precision

Efficient

NetB0

Model Scenerio

Sensitivity Specificity

Mobile

NetV2

Mobile

NetV3

No. 1 2 3 4 5 6 7

Scenerio Transfer Learning Data Augment
Data Augment

Dropout(0.1)

Data Augment

Dropout(0.2)

Data Augment

Dropout(0.4)

Data Augment

Dropout(0.2)

BatchNormalized

Data Augment

Dropout(0.4)

BatchNormalized

Table 5.3. Different Scenarios for Testing the Performance of the Models

 53

5.1.3 Experimentation for Different Training Datasets

After conducting experiments with different hyperparameters in Section 5.1.2, we

performed further experiments using the optimized hyperparameters. In this section, we

examine how the models perform on test datasets when trained with different datasets. The

experimental setup for training the models remains the same as described in Section 4.2.3.1,

but we adjusted the hyperparameters to reflect the optimized values obtained in Section 5.1.2.

These optimized values are presented in Table 5.3, and the models are trained using diverse

datasets listed in Table 4.2. This experimentation allows us to evaluate the models'

performance on various datasets and determine how effective the optimized hyperparameters

are in improving classification accuracy.

Out of the three models considered, MobileNetV3 is the preferred choice due to its

lightweight design, characterized by fewer parameters and shorter training duration. However,

it is worth noting that MobileNetV3 is sensitive to variations in the training data. Therefore,

in the subsequent section, our focus shifts to assessing the model's performance under diverse

experimental conditions using the MobileNetV3 architecture. This analysis aims to provide

valuable insights into the model's suitability and its adaptability.

Across these datasets, the model consistently achieves high sensitivity values, ranging

from 0.97 to 0.99 except the model trained with D3 as shown in Fig 5.1, accurately

identifying each class when they are tested with simple test dataset in which NSR data is not

interrupted with PAC and PVC less than 20%. Similarly, the specificity values consistently

range from 0.97 to 0.99, indicating the model's ability to correctly classify instances not

belonging to each class. The F1-scores, which consider both precision and sensitivity, range

from 0.95 to 0.98, demonstrating a balanced performance for each class. Overall, the

MobileNetV3 model exhibits reliable accuracy in classifying the four classes accurately

across different training datasets.

In addition, we retested the models with datasets that included mixed NSR records

containing occasional PAC and PVC instances below the 20% threshold. This was done to

enhance the relevance and practicality of the test data and to provide a comprehensive

assessment of the model's performance in real-life scenarios where normal sinus rhythm

records may contain such instances. The resulting performance indicators are shown in Figure

5.2. Comparing the assessment of the models presented in Fig 5.1 and Fig 5.2 demonstrates

impressed good accuracy achieved, ranging from 0.93 to 0.9, across all models tested.

Notably, these models exhibit superior performance when subjected to a dataset exclusively

comprising instances of Pure NSR, AF, PAC>=20%, and PVC>=20%.

 54

These results signify the effectiveness of the models in accurately classifying these

specific types of arrhythmias. However, an important observation is that models trained solely

on Pure NSR data experience a significant decrease in precision scores when tested with a

dataset containing mixed NSR records, which include instances of PAC and PVC below the

20% threshold. This decline implies a higher likelihood of false-positive classifications for

NSR records in the presence of limited PAC and PVC involvement. In other words, these

models are more prone to misidentifying NSR records as arrhythmias, despite the records

only having minimal representation of PAC and PVC.

 In contrast, our findings reveal that models trained on a dataset encompassing both

pure NSR and mixed NSR records with minimal PAC and PVC involvement maintain

precision and F1-score values above the 0.95 threshold. This particular model demonstrates a

notable ability to distinguish between NSR records with minimal PAC and PVC

representation and those that genuinely represent pure NSR, leading to improved precision

and overall performance.

0.900

0.920

0.940

0.960

0.980

1.000
P

er
ce

n
ta

g
es

D1

Accuracy 0.984

AF NSR PAC PVC

0.900

0.920

0.940

0.960

0.980

1.000

P
er

ce
n

ta
g
es

D2

Accuracy 0.976

AF NSR PAC PVC

0.900

0.920

0.940

0.960

0.980

1.000

P
er

ce
n

ta
g
es

D3

Accuracy 0.965

AF NSR PAC PVC

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000
P

er
ce

n
ta

g
es

D4

Accuracy 0.974

AF NSR PAC PVC

Fig 5.1. Performance Comparison of Models Trained with Four Datasets Tested on Test Data Set

including Pure NSR, AF, PAC>=20%, and PVC>=20%

 55

In summary, our experiment in this section highlight the significance of using specific

data types during model training, particularly when classifying NSR records mixed with a few

PAC and PVC instances. These results suggest that using datasets that include both Pure NSR

and mixed NSR records can help improve the accuracy and performance metrics like

precision and F1-score. This approach is particularly beneficial when dealing with situations

where NSR records might occasionally have a few PAC and PVC instances below a specific

threshold.

0.880

0.900

0.920

0.940

0.960

0.980

1.000

TrainedWithD1 TestOn

DatasetNSRmixedwithPAC&PVC<20%

Accuracy 0.969

AF NSR PAC PVC

0.880

0.900

0.920

0.940

0.960

0.980

1.000

TrainedWithD2 TestOn

DatasetNSRmixedwithPAC&PVC<20%

Accuracy 0.936

AF NSR PAC PVC

0.880

0.900

0.920

0.940

0.960

0.980

1.000

TrainedWithD3 TestOn

DatasetNSRmixedwithPAC&PVC<20%

Accuracy 0.969

AF NSR PAC PVC

0.880

0.900

0.920

0.940

0.960

0.980

1.000

TrainedWithD4 TestOn

DatasetNSRmixedwithPAC&PVC<20%

Accuracy 0.976

AF NSR PAC PVC

Fig 5.2. Performance Comparison of Models Trained with Four Datasets Tested on Test Data Set

including NSR(Pure and Mixed with PAC&PVC<20%), AF, PAC>=20%, and PVC>=20%

 56

On the other hand, correctly identifying NSR records with occasional PAC and PVC

instances provides healthcare providers with confidence in confirming normal heart function,

reducing the necessity for further investigations, and offering reassurance to patients.

Accurate classification of NSR records is therefore crucial for making appropriate medical

decisions and optimizing patient care in the context of arrhythmia detection and diagnosis.

From an engineering standpoint, accurately classifying NSR (normal sinus rhythm)

records that occasionally contain a small number of PAC (premature atrial contraction) and

PVC (premature ventricular contraction) instances below a specific threshold is crucial for

achieving robust and reliable classification of AF (atrial fibrillation). This is because AF

detection heavily relies on distinguishing it from NSR. Misclassifying NSR records with

occasional PAC and PVC instances as AF could lead to false positives and inaccurate

diagnosis, which can have significant implications for patient management and treatment

decisions. Therefore, engineering-wise, ensuring precise classification of NSR records is

essential for developing a highly accurate AF detection system.

5.2 Deploy Model on Android (using kotlin language constructed in android studio)

Along with the rise of mobile devices and the popularity of machine learning, the interest

in deploying machine learning models on these devices for offline use and real-time inference

has also been increased. By deploying machine learning models on Android devices, it

becomes helpful in scenarios where internet connectivity is limited or unreliable, such as in

remote areas or during natural disasters. In particular, deploying machine learning models on

Android devices has become a popular research area due to the widespread use of Android

devices and the availability of powerful hardware. Applications on mobile devices can

provide real-time inference without requiring an internet connection or cloud infrastructure.

The application utilizes a pre-trained TensorFlow Lite model to classify

electrocardiogram (ECG) images obtained through the device's camera or from the gallery.

This section explores the technical aspects, implementation, and the challenges encountered

during its development. The Android application's system architecture and implementation

details are also presented in this section. The deployment process involves downloading the

Android Studio application from the website https://developer.android.com/studio, according

to the specific operating system setup. As the application is designed for mobile phones or

tablets, it is important to select the appropriate initial layout option for these devices. The

development of the application entails the utilization of the Kotlin programming language, for

its user-friendly coding interface that promotes the efficient implementation of desired

 57

functionalities. This language's built-in ease of setup and coding enhances the overall ease in

developing of the application.

In Figure 5.3, a step-by-step process block diagram is presented, illustrating the

deployment of a model and the access to media files for the purpose of classifying cardiac

arrhythmias. This diagram provides a comprehensive overview of the procedures involved in

efficiently utilizing the model to analyze and categorize abnormalities in cardiac rhythm.

Initially, it is necessary to ensure the availability of images that are to be classified by the

program. Thus, the images intended for classification must be present within the gallery of the

mobile device. By adhering to this diagram, users are guided through the necessary steps to

grant access and navigate the procedures required to retrieve media files. This access enables

the accurate classification of cardiac arrhythmias utilizing the embedded trained model.

The application leverages the TensorFlow Lite framework to deploy a pre-trained deep

learning model specifically designed for image classification. Prior to deployment, the trained

deep learning neural network model needs to be converted into a TensorFlow Lite format,

inclusive of assigned weights and bias values. This converted model is then saved as a ".h5"

format, which is compatible with Android devices for efficient deployment. Subsequently, the

transformed format of the model is embedded into the Android Studio application. By

AF / NSR /
PAC / PVC

Fig 5.3. Process Block Diagram for Model Deployment and Media File Access in Cardiac

Arrhythmia Classification

 58

granting the user access to the image gallery, the model can retrieve the image that the user

intends to classify.

Ultimately, the developed classifier application successfully detects occurrences of

cardiac arrhythmias. The application, though not commercially available at present, stands as

a proof-of-concept in the feasible deployment of lightweight deep learning neural networks

on mobile devices as shown in Fig 5.4. The central objective of this study is to showcase the

immense potential of deep neural networks for real-world applications that can be executed

locally on mobile devices without the need for internet connectivity via cloud platforms.

Finally, we also tested the application by deploying MobileNetV2, MobileNetV3 type and

EfficientNetB0 type. When those models are transformed into the Tflite format for

deployment, there may not be significant differences in performance. This is because the

Tflite format is specifically optimized for mobile and resource-constrained devices, ensuring

efficient inference and compatibility with various platforms.

In Fig 5.5 of showing confusion matrix from the deployed models, MobileNetV2

(MV2), MobileNetV3 (MV3), and EfficientNetB0 (EfB0), all achieved effective

classification of AF and NSR instances, which are essential for cardiac arrhythmia detection.

EfB0 exhibited slightly higher accuracy in classifying AF and NSR compared to MV2 and

Fig 5.4. The successful results of cardiac arrhythmias classification done by the

demo application

 59

MV3. Additionally, EfB0 and MV3 showed improved performance in classifying PAC and

PVC instances compared to MV2. However, some misclassifications were observed in

distinguishing PAC and PVC instances for all models.

Based on the results from Figure 5.5, both the MobileNetV2 and MobileNetV3

applications achieved an accuracy of approximately 0.92. However, there were high false

negative values for the PAC class. In the case of the EfficientNetB0 deployment, missed PAC

classifications persisted, although the overall accuracy remained around 0.97. When

comparing the performance of MobileNetV3 deployed on a mobile device to the trained

model of MobileNetV3 on a PC, there was a reduction in performance by approximately 6

percent.

The drop in performance when using a trained model on a mobile phone is due to the

limited computing power and memory of mobile devices compared to PCs or servers. These

limitations can make it challenging for the model to process and classify efficiently, resulting

in lower performance. To make models suitable for mobile use, it is necessary to employ

various optimizations and parameter quantization. Therefore, there is a lot of room for future

research to explore and improve these optimization methods. Further investigation can focus

on finding the right balance between reducing the model's size and maintaining its accuracy.

In the future, researchers can concentrate on developing new ways to enhance models on

mobile devices. They can create better optimization methods and explore advancements in

hardware to improve the efficiency and effectiveness of models on mobile platforms.

Fig 5.5 Confusion Matrix for Testing the Classification with Deployed Models

AF NSR PAC PVC AF NSR PAC PVC AF NSR PAC PVC

AF 133 1 3 0 AF 130 3 3 1 AF 137 0 0 0

NSR 2 133 1 1 NSR 2 135 0 0 NSR 0 137 0 0

PAC 13 7 115 2 PAC 16 4 114 3 PAC 5 4 126 2

PVC 6 1 3 127 PVC 8 0 2 127 PVC 2 0 0 135

A
c
tu

a
lV

a
lu

e

DeployedEFB0

PredictedValue

Deployed MV3

PredictedValue

A
c
tu

a
lV

a
lu

e

PredictedValue

A
c
tu

a
lV

a
lu

e

Deployed MV2

 60

6 Conclusion

This study makes two primary contributions to the field of cardiac arrhythmia

detection. The first contribution lies in the development of an unconventional method for

transforming electrocardiogram (ECG) data, while the second contribution involves the

application of a lightweight deep learning neural network to achieve highly accurate

classification of cardiac arrhythmias.

As contrary to previous studies that rely on spectrogram or recurrent plot

transformations, this research introduces a novel approach for transforming raw ECG data.

The proposed method involves converting the time series ECG data into overlapped ECG beat

images. This noble transformation allows for a comprehensive visualization of the ECG

signal, capturing the intricate details and patterns necessary for accurate arrhythmias

classification. Each resulting image is then appropriately labeled according to its

corresponding cardiac arrhythmia type, creating a labeled dataset for model training,

validation, and testing.

The image dataset of cardiac arrhythmias (atrial fibrillation, normal sinus rhythm,

premature atrial contractions, and premature ventricular contractions) is split into 3:1:1.5 for

training, validation and testing respectively. The performance of the model is compared

across different scenarios to provide a comprehensive evaluation of the model's accuracy ,

effectiveness, and robustness. The performance of the proposed models has been thoroughly

analyzed by optimizing the hyperparameters of the model. This includes the incorporation of

batch normalization, dropout, and optimizer techniques. These techniques were utilized to

enhance the accuracy of the model and optimize its overall performance. The results

demonstrate that the proposed model achieved comparable performance to the existing

methods [19-21]. These findings suggest that the proposed model has the potential to be a

useful approach in accurately classifying different types of cardiac arrhythmias.

Notably, the results highlight the model's ability to successfully distinguish atrial

fibrillation (AF) from other arrhythmias, including normal sinus rhythm (NSR), premature

atrial contractions (PAC), and premature ventricular contractions (PVC), using a simple ECG

data transformation which is overlapped ECG beat images. According to the results, this

classification of cardiac arrhythmias with lightweight neural network showed promising

results. Our concept of overlapping ECG beats into a single image has been validated to

effectively distinguish AF features from ectopic beat-based arrhythmias like PAC and PVC.

This finding contradicts the claim made in a previous study [21] that their research was not

 61

applicable for AF classification. Futhermore, it provides a comprehensive view of the ECG

data, enabling easier differentiation between various arrhythmias and normal rhythm.

The applied lightweight neural networks in this reseach are consturcted based on

essential MBconv blocks. For MobileNetV2, its characteristics is applying inverted residuals

and linear bottlenecks convolutional blocks. For MobileNetV3, it modifies the MobileNetV2

convolutional blocks by adding squeez and extiation module. For EfficientNet B0, it adjusts

the MobileNetV2 convolutional blocks size based on the input size, weight and resolution.

Based upon their architecutre, the light weight neural networks are beneficial to extract only

the manifold of interest (MOI) of the image.

The effectiveness of employing lightweight neural networks as feature extractors to

detect cardiac arrhythmias with high accuracy is thoroughly investigated in this research. This

approach not only demonstrates superior performance compared to existing methods but also

holds promise in handling the memory usage issues of portable devices. As evidence, the

trained model has been successfully deployed on an Android mobile phone, further validating

its practical application. Based on the obtained results, our approach demonstrated high

sensitivity and specificity, achieving an overall accuracy of approximately 0.98 in the

classification of all four targeted cardiac arrhythmias. This significant outcome holds

potential for future application in home-based ECG screening tests. With its satisfactory

performance, this novel approach can lead to the way for the development of a portable

cardiac arrhythmia detection system that can be commercially utilized for medical purposes in

the future.

However, it is important to acknowledge certain limitations of the study. Firstly, the focus

on patient-specific datasets may limit the generalizability of the findings. Incorporating larger

and more diverse datasets in future studies would enhance the model's ability to generalize

across a broader patient population.

Another limitation is the data preprocessing step, performed on a computer instead of

directly on the mobile phone. This presents an opportunity for improvement by refining the

preprocessing stage and embedding it into the mobile device itself. Such a development

would enhance overall performance, accuracy, and user convenience, allowing users to

perform preprocessing and classification on their mobile phones.

Recognizing these limitations provides insights for future investigations. Addressing them

through the inclusion of diverse datasets and refining preprocessing techniques while

embedding them into mobile devices will contribute to the development of a more effective

and user-friendly cardiac arrhythmia detection system.

 62

APPENDICES

APPENDIX A

DATASET PREPARATION

 The dataset preparation program performs collecting 30-second ECG signals from the

original 24-hour long ECG records in the long-term atrial fibrillation database. Firstly, the

required libraries are imported into the program.

import os

import wfdb

import itertools

import numpy as np

import pandas as pd

from collections import Counter

All the files within the database are loaded into the program.

def find_files_with_extension(path=None, extension="atr"):

 files = [os.path.join(

 path,

 name) for name in os.listdir(path) if name.find(extension) != -1]

 return files

files=find_files_with_extension(path="D:\\ECG DB\\long-term-af-database-

1.0.0\\files\\",extension="atr")

file_list=[files[i][:-4] for i in range(len(files))]

The objects needed to apply in the program are constructed. In this program, four objects are

constructed namely Record, RecordReader , Window and Converter.

class Record:

 def __init__(self, parent, signal, symbol, aux, sample):

 self.__parent = parent

 self.__signal = signal

 self.__symbol = symbol

 self.__aux = aux

 self.__sample = sample

 self.__collection = {"signal": self.__signal, "symbol": self.__symbol, "aux": self.__aux,

 "sample": self.__sample, "hasMissedBeat": self.hasMissedBeat(),

 "hasUnknownBeat": self.hasUnknownBeat()}

 def __getitem__(self, key):

 return self.__collection[key]

 63

 def __str__(self):

 return "Summary\n" + \

 "Size of signal: " + str(len(self.__signal)) + \

 "\nSize of symbol: " + str(len(self.__symbol)) + \

 "\nSize of aux: " + str(len(self.__aux)) + "\n"

 def getInterval(self):

 return (self.__sampfrom, self.__sampto)

 def getIndexesOf(self, this=None):

 if (len(self.__symbol) > 0) and (len(self.__aux)) > 0:

 if this=="+":

 return np.where(np.asarray(self.__symbol)=="+")[0]

 elif this == "(N":

 return np.where(np.asarray(self.__aux)=='(N')[0]

 def getIntersectOf(self, a, b):

 return np.intersect1d(a,b,return_indices=True)

 def getRhythmInterval(self):

 rhythmInterval = list()

 plusIndexes = self.getIndexesOf('+')

 NIndexes = self.getIndexesOf("(N")

 if len(plusIndexes)!=0 and len(NIndexes) != 0:

 _,aIndexes, bIndexes = self.getIntersectOf(a=NIndexes,

 b=plusIndexes)

 for i in range(len(bIndexes)-1):

 intervalStart=NIndexes[i]

 intervalEnd=plusIndexes[bIndexes[i]+1]

 interval = (self.__sample[intervalStart],self.__sample[intervalEnd])

 rhythmInterval.append(interval)

 if plusIndexes[-1]==NIndexes[-1]:

 interval = (self.__sample[NIndexes[-1]], len(self.__signal))

 rhythmInterval.append(interval)

 return rhythmInterval

 def getValidRhythmInterval(self):

 rhythmIntervals = self.getRhythmInterval()

 return [itval for itval in rhythmIntervals if self.isIntervalValid(interval=itval,

 sampling_freq=128, duration=30)]

 def isIntervalValid(self, interval, sampling_freq, duration):

 return (abs(interval[1]-interval[0]) >= (sampling_freq * duration))

 def findIndexOfSymbol(self, symbol):

 64

 if symbol in self.__symbol:

 return np.where(np.asarray(self.__symbol)==symbol)[0]

 return -1

 def findQIndex(self):

 return self.findIndexOfSymbol('Q')

 def findQuoteIndex(self):

 return self.findIndexOfSymbol('"')

 def hasUnknownBeat(self):

 return ("Q" in self.__symbol)

 def hasMissedBeat(self):

 return ('"' in self.__symbol)

 def moveToanyQorQuote(self):

 qIndex=self.findQIndex()

 quoteIndex=self.findQuoteIndex()

 moveIndex=qIndex+quoteIndex

 return max(moveIndex)

 def moveToNoPAC(self):

 pacIndexes=self.findIndexOfSymbol("A")

 return max(pacIndexes)

 def moveToNoPVC(self):

 pvcIndexes=self.findIndexOfSymbol("V")

 return max(pvcIndexes)

 def hasPAC(self):

 return ("A" in self.__symbol)

 def hasPVC(self):

 return ("V" in self.__symbol)

 def getPACPercentage(self):

 pacCount=self.getPACCounts()

 if len(self.__symbol) > 0:

 return (pacCount/len(self.__symbol))*100

 else:

 return 0

 def getPVCPercentage(self):

 pvcCount=self.getPVCCounts()

 if len(self.__symbol) > 0:

 65

 return (pvcCount/len(self.__symbol))*100

 else:

 return 0

 def IsPositive(self, arrType):

 if arrType == "PAC":

 percentage = self.getPACPercentage()

 return ((percentage >=20) and (self.getPVCCounts()==0))

 if arrType =="PVC":

 percentage = self.getPVCPercentage()

 return ((percentage >=20) and (self.getPACCounts()==0))

 def getPACCounts(self):

 return Counter(self.__symbol)['A']

 def getPVCCounts(self):

 return Counter(self.__symbol)['V']

 def which(self):

 return self.__parent

class RecordReader:

 @classmethod

 def read(self, path, number, channel, sampfrom, sampto):

 fullpath = os.path.join(path, number)

 signal = wfdb.rdrecord(fullpath, sampfrom=sampfrom, sampto=sampto).

p_signal[:,channel]

 ann = wfdb.rdann(fullpath, 'atr', shift_samps=True, sampfrom=sampfrom, sampto=sampto)

 symbol = ann.symbol

 aux = ann.aux_note

 sample = ann.sample

 return Record(parent=number, signal=signal, symbol=symbol, aux=aux, sample=sample)

class Window:

 def __init__(self, width, leftEnd,arrTypeSearchFor, arrTypeNotSearchFor):

 self.width = width

 self.leftEnd = leftEnd

 self.thirtySegments = list()

 self.arrTypeSearchFor = arrTypeSearchFor

 self.arrTypeNotSearchFor = arrTypeNotSearchFor

 66

 self.rightEnd = self.leftEnd + self.width

 def scan(self, segment):

 while ((self.leftEnd + self.width)<= len(segment["signal"])):

 thirtySeg = self.getRegionOfInterest(segment)

 newLeftEnd = self.checkForUnkownandMissBeat(thirtySeg)

 if newLeftEnd == None:

 if thirtySeg.IsPositive(self.arrTypeSearchFor):

 self.thirtySegments.append(thirtySeg)

 newleftEnd=self.leftEnd+self.width

 self.leftEnd=newleftEnd

 elif self.arrTypeNotSearchFor in thirtySeg["symbol"]:

if self.arrTypeNotSearchFor=="PAC":

self.leftEnd=thirtySeg["sample"][thirtySeg.moveToNoPAC()]+distancebetNextbeat

if self.arrTypeNotSearchFor=="PVC":

self.leftEnd=thirtySeg["sample"][thirtySeg.moveToNoPVC()]+distancebetNextbeat

 else:

 self.leftEnd = self.leftEnd + distancebetNextbeat

 else:

 self.leftEnd=thirtySeg["sample"][newLeftEnd]+ distancebetNextbeat

 return self.thirtySegments

 def checkForUnkownandMissBeat(self, segment):

 if (not segment.hasUnknownBeat()) or (not segment.hasMissedBeat()):

 newLeftEnd = None

 else:

 newLeftEnd=segment.moveToanyQorQuote()

 return newLeftEnd

 def getRegionOfInterest(self, segment):

 rightEnd = self.leftEnd+self.width

 signal = segment["signal"][self.leftEnd:rightEnd]

 annIndexes=np.intersect1d(np.where(np.asarray(segment["sample"])>=self.leftEnd),

 np.where(np.asarray(segment["sample"])<=rightEnd))

 symbol=[segment["symbol"][annIndexes[i]] for i in range(len(annIndexes))]

 sample=[segment["sample"][annIndexes[i]] for i in range(len(annIndexes))]

 shifted_sample=[sample[i]-self.leftEnd for i in range(len(sample))]

 aux = [segment["aux"][annIndexes[i]] for i in range(len(annIndexes))]

 return Record(parent=segment.which(), signal=signal, symbol=symbol, aux=aux,

 sample=shifted_sample)

class Converter:

 def __init__(self, label):

 67

 self.label = label

 def convert(self, record):

 data = {"signal": [record["signal"]],

 "symbol": [record["symbol"]],

 "sample": [record["sample"]],

 "PAC_percent": [record.getPACPercentage()],

 "PVC_percent": [record.getPVCPercentage()],

 "label": self.label, "record no.": record.which()}

 return pd.DataFrame.from_dict(data)

for i in range(len(record_numbers)):

 recordNumber = record_numbers[i]

 print("At Record : "+str(recordNumber))

 recordPath = "./records"

 sampfrom = 0

 sampto = None

 arrType = "PVC"

 record = RecordReader.read(path=recordPath, number=recordNumber, channel=0,

 sampfrom=sampfrom, sampto=sampto)

 rhythmIntervals = record.getValidRhythmInterval()

 segments = [RecordReader.read (path=recordPath, number=recordNumber, channel=0,

sampfrom=interval[0], sampto=interval[1]) for interval in rhythmIntervals]

 thirtySegs =[]

 for j in range(len(segments)):

 window = Window(width=3839, leftEnd=0,

 arrTypeSearchFor=arrType, arrTypeNotSearchFor="PAC")

 thirtySegWithinInterval=window.scan(segments[j])

 thirtySegs.append(thirtySegWithinInterval)

 thirtySegs = list(itertools.chain(*thirtySegs))

 con=Converter(arrType)

 thirtySegs_df = [con.convert(seg) for seg in thirtySegs]

 #print(len(thirtySegs_df))

 if len(thirtySegs_df):

 rdDataFrame=pd.concat(thirtySegs_df, axis=0)

 rdDataFrame.reset_index(drop=True)

 rdDataFrame.to_csv("Record "+str(segments[0].which())+" "+arrType+" equaltoORover20

.csv")

 68

APPENDIX B

DATA TRANSFORMATION

(FROM 1-DIMENSIONAL ECG SIGNALS INTO 2-DIMENSTIONAL

OVERLAPPED IMAGES)

import os

import cv2

import json

import shutil

import pathlib

import imageio

import posixpath

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from PIL import Image

from collections import Counter

from datetime import datetime as dt

%matplotlib inline

import wfdb

import neurokit2 as nk

from neurokit2.epochs import epochs_create, epochs_to_df

from neurokit2.signal import signal_rate

from neurokit2 import ecg_peaks

class CSV_Records:

 def __init__(self,path,extension):

 self.path=path

 self.extension=extension

 def RecordPaths_and_RecordNames(self):

 records = [os.path.join(self.path,name) for name in os.listdir(self.path)

 if name.find(self.extension) != -1]

 record_names=[str(records[i].split(".")[0]).split("\\")[-1] for i in range(len(records))]

 return records,record_names

records=CSV_Records("D:\GPU\data_preparation\khaing\data", 'csv')

files_list,record_names=records.RecordPaths_and_RecordNames()

 69

def _ecg_segment_window(heart_rate=None, rpeaks=None, sampling_rate=128,

desired_length=None):

 # Extract heart rate

 if heart_rate is not None:

 heart_rate = np.mean(heart_rate)

 if rpeaks is not None:

 heart_rate = np.mean(signal_rate(rpeaks, sampling_rate=sampling_rate,

desired_length=desired_length))

 # Modulator

 m = heart_rate / 70

 # Window

 epochs_start = -0.3 / m

 epochs_end = 0.45 / m

 # Adjust for high heart rates

 if heart_rate >= 90:

 c = 0.15

 epochs_start = epochs_start - c

 epochs_end = epochs_end + c

 return epochs_start, epochs_end

def ecg_segment(ecg_cleaned, rpeaks=None, sampling_rate=128):

 # Sanitize inputs

 if rpeaks is None:

 _, rpeaks = ecg_peaks(ecg_cleaned, sampling_rate=sampling_rate,correct_artifacts=False)

 rpeaks = rpeaks["ECG_R_Peaks"]

 epochs_start, epochs_end = _ecg_segment_window(rpeaks=rpeaks,

sampling_rate=sampling_rate,

 desired_length=len(ecg_cleaned))

 heartbeats = epochs_create(ecg_cleaned, rpeaks, sampling_rate=sampling_rate,

 epochs_start=epochs_start, epochs_end=epochs_end)

 return heartbeats

def get_combined_beat_image(signal=None, voltage_range=[-3,3],folder_name=None,

img_name=None):

 beats = ecg_segment(signal, rpeaks=None, sampling_rate=128)

 fig = plt.figure(num=1, figsize=(5,8), dpi=300)

 ax = fig.add_subplot(111)

 ax.axis("off")

 for key in beats.keys():

 ax.plot(beats[key]["Signal"], color="tab:blue", linewidth=1)

 ax.set_ylim(voltage_range)

 fig.tight_layout()

 if not os.path.exists(folder_name):

 os.mkdir(folder_name)

 fig.savefig(os.path.join(folder_name, img_name + ".jpg"))

 70

 ax.clear()

 fig.clf()

Creating overlapped beat images for AF

for j in range(0,len(files_list)):

 signal_from_record=pd.read_csv(files_list[j])

 print(files_list[j])

 list_for_signalWithAF=[]

 for i in range(len(signal_from_record)):

 if signal_from_record.loc[i,'PAC_Percent']==0 and

signal_from_record.loc[i,'PVC_Percent']==0 :

 signalWithAF=signal_from_record.loc[i,'0':'3839'].values.tolist()

 list_for_signalWithAF.append(signalWithAF)

 print(len(list_for_signalWithAF))

 if list_for_signalWithAF:

 cleaned_signal=[]

 for k in range(len(list_for_signalWithAF)):

 clean_data=nk.ecg_clean(ecg_signal=list_for_signalWithAF[k],sampling_rate=128)

 cleaned_signal.append(clean_data)

 print(len(cleaned_signal))

 for l in range(len(cleaned_signal)):

 get_combined_beat_image(cleaned_signal[l], folder_name="AF Images for Record "+

str(record_names[j]), img_name= str(1+l))

Creating overlapped beat images for NSR

for j in range(0,len(files_list_withoutAF)):

 signal_from_record=pd.read_csv(files_list_withoutAF[j])

 print(files_list_withoutAF[j])

 list_for_signalWithoutAF=[]

 for i in range(len(signal_from_record)):

 if signal_from_record.loc[i,'PAC_Percent']==0 and

signal_from_record.loc[i,'PVC_Percent']==0 :

 signalWithoutAF=signal_from_record.loc[i,'0':'3839'].values.tolist()

 list_for_signalWithoutAF.append(signalWithoutAF)

 print(len(list_for_signalWithoutAF))

 if list_for_signalWithoutAF:

 cleaned_signal=[]

 for k in range(len(list_for_signalWithoutAF)):

 clean_data=nk.ecg_clean(ecg_signal=list_for_signalWithoutAF[k],sampling_rate=128)

 cleaned_signal.append(clean_data)

 print(len(cleaned_signal))

 for l in range(len(cleaned_signal)):

 get_combined_beat_image(cleaned_signal[l], folder_name="Record "+

str(record_names_withoutAF[j])+" NSR", img_name= str(1+l))

 71

APPENDIX C

TRAINING AND TESTING OF LIGHT WEIGHT NEURAL

NETWORKS

import os

import cv2

import json

import pathlib

import numpy as np

import pandas as pd

import tensorflow as tf

import albumentations as A

import matplotlib.pyplot as plt

from PIL import Image

from datetime import datetime as dt

from tensorflow import keras

from tensorflow.keras import Model

from tensorflow.keras import layers

from tensorflow.keras.applications import mobilenet_v3

from tensorflow.keras.layers import Dense,GlobalMaxPooling2D

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.python.client import device_lib

tf.test.is_built_with_cuda()

print("Num GPUs Available: ", len(device_lib.list_local_devices()))

IMG_SIZE = 224

batch_size=500

%%time

ds_train= tf.keras.preprocessing.image_dataset_from_directory("D:\\ECG DB\\ECG Beat

Images from LTAF DB", labels='inferred', label_mode='int',

class_names=['AF','NSR','PAC’,'PVC '], color_mode='rgb', batch_size=batch_size,

image_size=(IMG_SIZE,IMG_SIZE), #reshapeauto

shuffle=True,seed=123, validation_split=0.4, subset="training")

%%time

ds_validate=tf.keras.preprocessing.image_dataset_from_directory(

 "D:\\ECG DB\\ECG Beat Images from LTAF DB", labels='inferred',label_mode='int',

 class_names=['AF','NSR','PAC',’PVC'], color_mode='rgb', batch_size=batch_size,

 image_size=(IMG_SIZE,IMG_SIZE), #reshapeauto

 shuffle=True, seed=123, validation_split=0.4, subset="validation",

)

 72

%%time

val_batches = tf.data.experimental.cardinality(ds_validate)

test_dataset = ds_validate.take(val_batches //3)

validation_dataset = ds_validate.skip(val_batches //3)

#Enhance the input pipeline performance while training

%%time

AUTOTUNE = tf.data.AUTOTUNE

train_dataset = ds_train.prefetch(buffer_size=AUTOTUNE)

validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)

test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE)

#Instantiate the base model pretrained on Image Net

%%time

from tensorflow.keras.applications import MobileNetV3Small

model = MobileNetV3Small(input_shape=(224,224,3), weights="imagenet",

include_top=False)

#Add data augmentation into the input pipeline

data_augmentation = tf.keras.Sequential([

tf.keras.layers.experimental.preprocessing.RandomZoom(.5,.5)])

preprocess_input = tf.keras.applications.mobilenet_v3.preprocess_input

rescale = tf.keras.layers.Rescaling(1./223.5, offset=-1)

base_model = tf.keras.applications.MobileNetV3Small(input_shape=(224,224,3),

include_top=False,

 weights='imagenet', classifier_activation='softmax')

image_batch, label_batch = next(iter(train_dataset))

feature_batch = base_model(image_batch)

print(feature_batch.shape)

base_model.trainable = False #Freeze the convolutional base

#Customize the classification head of the network

global_average_layer = tf.keras.layers.GlobalAveragePooling2D()

feature_batch_average = global_average_layer(feature_batch)

print(feature_batch_average.shape)

prediction_layer = tf.keras.layers.Dense(1)

prediction_batch = prediction_layer(feature_batch_average)

print(prediction_batch.shape)

#Compile the model

inputs = tf.keras.Input(shape=(224,224, 3))

 73

x = data_augmentation(inputs)

x = preprocess_input(x)

x = base_model(x, training=False)

x = global_average_layer(x)

x = layers.BatchNormalization()(x)

x = layers.Dropout(0.2)(x)

outputs =prediction_layer(x)

mv3small = tf.keras.Model(inputs, outputs)

base_learning_rate = 0.01

mv3small.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),

 loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),

 metrics=['accuracy'])

#Train and validate the model

%%time

initial_epochs = 20

loss_two, accuracy_two = mv3small.evaluate(validation_dataset)

first_hist = mv3small.fit(train_dataset, epochs=50, validation_data=validation_dataset)

#Plot the learning curve of the model

acc = first_hist.history['accuracy']

val_acc = first_hist.history['val_accuracy']

loss = first_hist.history['loss']

val_loss = first_hist.history['val_loss']

plt.figure(figsize=(8, 8))

plt.style.use('_classic_test_patch')

plt.grid(True)

plt.subplot(2, 1, 1)

plt.style.use('_classic_test_patch')

plt.grid(True)

plt.plot(acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.legend(loc='lower right')

plt.ylabel('Accuracy')

plt.ylim([min(plt.ylim()),1])

plt.title('Training and Validation Accuracy')

plt.subplot(2, 1, 2)

plt.style.use('_classic_test_patch')

plt.grid(True)

plt.plot(loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.legend(loc='upper right')

plt.ylabel('Cross Entropy')

 74

plt.ylim([0,1.0])

plt.title('Training and Validation Loss')

plt.xlabel('epoch')

plt.show()

Confusion Matrix

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn import metrics

y_true=label_batch

y_pred=predictions.NumPy()[0:500]

print(y_pred)

def confusion_metrics (conf_matrix):

 TP = conf_matrix[1][1]

 TN = conf_matrix[0][0]

 FP = conf_matrix[0][1]

 FN = conf_matrix[1][0]

 accuracy = (float (TP+TN) / float(TP + TN + FP + FN))

 misclassification = 1- accuracy

 sensitivity = (TP / float(TP + FN))

 specificity = (TN / float(TN + FP))

 print('-'*50)

 print(f'Accuracy: {(accuracy)}')

 print(f'Sensitivity: {(sensitivity)}')

 print(f'Specificity: {(specificity)}')

confusion_matrix= metrics.confusion_matrix(y_true, y_pred)

Assigning columns names

confusion_matrix_df= pd.DataFrame(confusion_matrix,

 columns = ['Predicted Negative','Predicted Positive'],

 index = ['Actual Negative','Actual Positive'])

confusion_matrix_df

 75

APPENDIX D

Fig 1 Learning Curve of MobileNetV3 with

data augmentation during 50 epochs
Fig 2 Learning Curve of MobileNetV3 with data

augmentation, Dropout value 0.1 during 50 epochs

Fig 3 Learning Curve of MobileNetV3 with Data

Augmentation and Dropout 0.2 during 70 epochs

Fig 4 Learning Curve of MobileNetV3 with Data

Augmentation, Dropout 0.4 during 100 epochs

 76

Rec

ord

Ectopic Beat Rhythm

N V A Q
MI
SS

B

NSR SVTA VT AFIB B T IVR AB SBR

0
105

416

77

8
53 - 1

5

(18:31:3

1)

-

40

(0:42

)

44

(2:14:54

)

- - - - -

1
849
57

60
7

49
82

- 30
457

(3:38:53

)

25
(0:58)

-
53

(16:13:0

6)

16
(1:46)

6
(0:53)

-
293

(27:36)
83

(10:02)

3
786

48
96

22

13
- 2

1648

(14:56:4

9)

11

(0:32)

2

(0:03

)

22

(1:20:03

)

2

(0:13)

1

(0:14)
-

34

(4:53)

1587

(7:52:5

3)

5
110

925
4

19

93
7 7

14

(24:17:0

2)

2

(0:05)
- 3 (0:40) - - -

8

(0:29)
-

6
100

153
5

45

05
- 181

48

(24:22:2

7)

16

(0:29)
-

19

(45:04)
- - -

11

(0:44)
1 (0:01)

7
100

679

67

41

11

99
- 3

499

(21:25:2

6)

28

(1:21)
-

8

(3:24:47

)

416

(33:44)

1

(0:07)
-

51

(4:27)
-

8
106
872

27
2

11
82

1 1
20

(25:42:4

8)

13
(0:17)

- 4 (1:38)
1

(0:04)
- -

1
(0:04)

-

10
105

519

27

9

71

4
- 1

148

(8:23:01

)

68

(3:35)
-

80

(17:07:4

4)

- - -
1

(0:05)
-

11
102

489

10

7
- - 2 - -

1

(0:02

)

2

(26:03:0

9)

- - - - -

Table 1 : Original Table from Physionet.org for LTAF Database

Fig 6 Learning Curve of MobileNetV3 with Data

Augment, Dropout 0.4 and Batch Normalization during

100epochs

Fig. 5 Learning Curve of MobileNetV3 with Data

Augment, Dropout 0.2 and Batch Normalization

during 100epochs

 77

12
116

650

41

8
-

7

5
1 - - -

1

(24:05:3

9)

- - - - -

13
682

36

23

5

49

8
- 140

193

(10:08:0

0)

12

(0:34)
-

2

(4:56:14

)

3

(0:20)

1

(0:13)
-

12

(1:56)

172

(4:48:4

0)

15
850

87

19

9
68 - 306 4 (0:16) - -

801

(23:17:5

7)

- - - -

802

(1:11:3

9)

16
121
308

18
76

69
3

3 1

117

(23:14:5
8)

4
(0:17)

-
37

(19:57)
7

(1:39)
16

(1:19)
-

39
(8:15)

64
(12:31)

17
138

027
32 - - 1 - - -

1

(24:55:1

0)

- - - - -

18
141

470
42 - - 1 - - -

1

(24:59:1

6)

- - - - -

19
104

439
4

34

55
- 1

83
(23:49:1

9)

21

(0:52)
- 9 (5:03) - - -

46

(4:05)
6 (0:23)

20
107

983
12 - - 1 - - -

2

(24:19:0

8)

- - - - 1 (0:03)

21
797

90

18

10
- - 577 - - -

1

(20:56:2
5)

- - - - -

22
954

30

16

65

1

12

67

7

- 17

1636

(22:37:3

6)

36

(1:35)

85

(1:55

)

102

(23:58)

996

(1:18:1

1)

282

(27:28

)

-
188

(21:01)

107

(8:47)

23
818

70

24

07

15

67

7

- 3

1194

(16:22:1

8)

184

(8:00)

1

(0:02

)

57

(5:59:42

)

172

(34:16)

6

(0:49)
-

801

(2:22:2

2)

122

(10:25)

24
944

65
18

13

56
- 17

784
(21:58:4

6)

9

(0:26)
- 2 (1:47) - - -

16

(2:33)

759
(1:53:3

6)

25
104

065

58

99
- - 1 - -

212

(7:11

)

346

(18:01:4

9)

- -

133

(7:19

)

- -

26
683

96

20

0

34

1
- 9

93

(1:02:02
)

4

(0:13)
-

177

(16:43:4
9)

-
9

(1:18)
-

1

(0:06)

196

(25:25)

28
965

25

10

46

42

8
- 1

271

(15:43:0

5)

29

(1:14)
-

106

(4:43:36

)

11

(2:26)

1

(0:11)
-

15

(2:39)

161

(19:30)

30
293

89
42

17

30
- 1

14

(6:06:41

)

8

(0:14)
- - - - -

5

(0:26)
-

32
864
95

14
9

25
51

- 2
541

(19:28:4

0)

28
(1:14)

2
(0:04

)

361
(36:26)

- - -
174

(17:58)
-

33
113

231

79

23
- - 1 - -

23

(0:38

)

120

(24:09:4

7)

55

(4:29)

41

(9:31)
- - -

34
132

424

27

42
- - 1 - -

3

(0:06

)

5

(24:32:5

3)

-
1

(0:07)
- - -

35
885

85
19

25

4
- 13

147

(19:11:2

1)

5

(0:18)
-

7

(3:52:13

)

- - -
1

(0:12)

135

(1:17:0

8)

37
616

06

47

5

25

62
- 1

1447

(15:18:2

3)

38

(3:16)
- 4 (1:29) - - -

56

(6:30)

1392

(4:25:2

0)

38
808
96

12
9

30
3

- 2
1236

(18:28:3

3)

3
(0:10)

-
1

(25:41)
1

(0:05)
-

2
(0:16

)

-
1232

(5:27:5

1)

39
110

259
23

36

47
- 4

78

(3:21:11

)

6

(0:50)
-

141

(21:26:0

4)

- - -
28

(2:59)

56

(8:12)

42
111

901

19

2

21

03
- 1

56

(15:01:0

9)

39

(11:32

)

3

(0:04

)

122

(5:38:42

)

- - -
30

(2:32)
-

43
104

462

25

67
- - 1 - -

2

(0:03

)

3

(25:35:3

2)

- - - - -

44 143 38 - - 7 - - 3 4 - - - - -

 78

643 03 (0:04

)

(25:22:2

2)

45
951
13

30
6

17
3

2 1
277

(22:35:4

8)

5
(0:11)

-
82

(2:41:01

)

3
(0:38)

- -
1

(0:04)
191

(27:16)

47
834

44

34

4

53

70
- 2

882

(21:25:5

0)

18

(6:11)

9

(0:12

)

4 (1:05)
5

(0:34)

8

(1:30)
-

437

(1:04:4

1)

417

(1:49:2

4)

48
146

116

64

5
- - 1 - -

12

(0:13

)

13

(23:59:2

3)

- - - - -

49
794

15

29

3
- - 183 - -

5

(0:20

)

7

(23:58:3

8)

- -

1

(0:05

)

- -

51
869

67

52

47

20

27
- 184

348

(22:22:0

4)

5

(0:10)
-

68

(1:26:53

)

39

(3:16)

14

(1:28)
-

35

(3:13)

186

(15:33)

53
468
03

8
68
4

- 747
339

(52:49)
1

(0:02)
-

448

(2:58:48
)

- - -
25

(4:53)

714

(15:43:
11)

54
118

187
11 - - 1 - - -

1

(24:59:0

3)

- - - - -

55
105

478
26

13

62
- 2

22

(21:33:4

6)

4

(0:11)
-

12

(4:02:41

)

- - -
5

(0:28)
-

56
131

784

20

8

13

8
- 1

4

(15:18:1

6)

-

1

(0:02

)

1

(8:46:36

)

- - -
1

(0:06)
-

58
927

85

86

3

14

59

0

- 1

928

(14:59:3

8)

153

(49:00

)

-

12

(6:16:52

)

3

(0:11)

7

(0:52)
-

741

(1:48:2

0)

22

(1:43)

60
116
503

31
2

- - 1 - -

1

(0:02
)

2

(22:19:5
1)

- - - - -

62
119

393

40

13
- - 135 - -

8

(0:10

)

41

(24:47:2

8)

- - - -
32

(2:02)

64
119

466

31

2
- - 1 - -

1

(0:02

)

1

(5:42:33

)

- - - - -

65
959

03

19

3
- - 1 - -

1

(0:02

)

2

(25:44:3

9)

- - - - -

68
183

691

11

06
- - 1 - -

5

(0:06

)

6

(23:55:3

5)

- - - - -

69
140

526

99

7
- - 1 - - -

1

(23:40:1
1)

- - - - -

70
127

638

69

7
- - 1 - - -

1

(26:05:1

5)

- - - - -

71
124

789

41

2
- - 1 - - -

1

(24:02:0

5)

- - - - -

72
141

864

19

47

38

7
- 40

72
(3:56:45

)

5

(0:13)

1
(0:02

)

29
(20:08:3

1)

41

(8:25)

5

(0:46)
-

2

(0:52)
4 (0:39)

74
886

34

30

04

14

6
-

122

6

11

(0:29)
-

2

(0:03

)

1044

(23:32:1

6)

- - -
1

(0:09)

1043

(1:44:3

7)

75
126

253

51

8
- - 1 - - -

1

(20:48:1
7)

- - - - -

100
826

14

27

23

60

90
- 1

839

(21:35:3

4)

21

(0:45)

1

(0:03

)

659

(1:53:30

)

98

(9:41)

24

(2:54)
-

72

(5:45)
4 (0:19)

101
903

19

29

96

48

50
- 1

675

(19:47:3

6)

221

(8:56)
-

147

(3:20:54

)

153

(16:09)

44

(5:52)
-

122

(18:21)
5 (0:41)

102
114

102
38

24

3
- 1

46
(23:07:3

6)

2

(0:03)
-

43

(51:37)
- - - - -

103
127

444

21

66

22

04
- 1

2095

(9:37:09

1369

(53:47

1

(0:02

1

(12:26:5

8

(0:30)

2

(0:10)
-

824

(1:00:4
-

 79

6))) 5) 5)

104
835

50
3

60

1
- 2

29

(17:51:4
3)

10

(0:18)
-

16

(24:01)
- - -

3

(0:11)
-

105
688

83
45 70 1 379

398

(13:51:5

5)

1

(0:03)
-

96

(5:11:07

)

- - -
1

(0:11)

301

(1:42:5

8)

110
101

827
13

34

53
- 1

84

(22:26:2

0)

1

(0:02)
-

22

(1:09:57

)

- - -
60

(11:54)
-

111
100

583
44

18

83
- 2

52
(15:19:4

6)

15

(0:43)
-

26
(8:26:24

)

- - -
21

(8:37)
-

112
115

263
24

87

4
- 1

1055

(13:07:2

4)

- -

1042

(10:49:3

6)

- - -
7

(0:40)

22

(1:20)

113
112

549
28

19

9
- 1

19

(21:39:3
3)

- -

2

(1:58:10
)

- - -
16

(1:12)
-

114
110

181
11

20

77
- 1

132

(23:35:3

8)

35

(1:02)
-

30

(12:47)
- - -

76

(10:05)
-

115
108

021
28

92

0
- 2

214

(3:25:19

)

19

(0:47)
-

175

(20:15:3

2)

- - -
41

(4:50)
2 (0:07)

116
996

17
7

12
13

6

- 2
752

(22:29:2

9)

649
(32:37

)

-
25

(24:09)
- - -

86

(11:37)
-

117
995

33

52

7
12 - 7

4

(14:47:1

9)

-

1

(0:01

)

5

(9:11:35

)

- - - - -

118
124

817

11

9

21

6
- 7

7

(19:34:2

4)

5

(0:10)

1

(0:02

)

1

(4:11:33

)

- - - - -

119
960

97

95

6

17

01
- 1

340

(20:50:4

3)

6

(0:16)

37

(0:50

)

87

(2:16:45

)

-
2

(0:13)
-

52

(6:45)

238

(28:50)

120
109

043
14

13

82
- 1

53

(23:31:1

7)

15

(0:42)
-

37

(17:33)
- - -

2

(0:11)
-

121
690
09

57
78

29
52

- 212
1335

(11:58:0

4)

116
(5:19)

2
(0:03

)

111
(3:14:08

)

298
(49:04)

124
(21:55

)

-
23

(3:19)

748
(4:06:2

8)

122
781

27

10

01

6

56

4
- 3

1078

(13:39:0

5)

3

(0:05)
-

16

(8:43:01

)

368

(34:33)

188

(24:33

)

-
7

(0:32)

514

(36:47)

200
777

69

48

46
2 - 1

11

(1:14)
-

5

(0:09

)

19

(23:50:2

6)

-
2

(0:15)
- - -

201
859

34
89 - -

144

3
- - -

7

(23:58:0

8)

- - - - 6 (0:31)

202
141

501

41

22
- - 1 - - -

1

(23:59:5

1)

- - - - -

203
731
98

64
1

- - 1 - -
4

(0:19

)

6
(18:09:0

4)

- -
1

(0:03

)

- -

204
118

880

17

24

0

- - 1 - -

333

(9:56

)

334

(20:35:5

8)

- - - - -

205
116

473
27 - - 1 - - -

1

(23:49:3

5)

- - - - -

206
121

059

35

1
- - 2 - -

4

(0:05

)

6

(20:47:1

6)

- - - - 1 (0:03)

207
130

780

47

9
- - 3 - -

16

(0:42

)

17

(23:49:2

2)

- - - - -

208
120
658

84 - - 8 - - -

1

(23:55:1
6)

- - - - -

REFERENCES

REFERENCES

[1] N. T. Srinivasan and R. J. Schilling, "Sudden cardiac death and arrhythmias,"

Arrhythmia & electrophysiology review, vol. 7, no. 2, p. 111, 2018.

[2] M. Nagashima et al., "Cardiac arrhythmias in healthy children revealed by 24-

hour ambulatory ECG monitoring," Pediatric cardiology, vol. 8, pp. 103-108,

1987.

[3] S. K. Kunutsor and J. A. Laukkanen, "Cardiovascular complications in

COVID-19: a systematic review and meta-analysis," Journal of Infection, vol.

81, no. 2, pp. e139-e141, 2020.

[4] X. Li et al., "Cardiac injury associated with severe disease or ICU admission

and death in hospitalized patients with COVID-19: a meta-analysis and

systematic review," Critical care, vol. 24, pp. 1-16, 2020.

[5] A. S. Manolis, A. A. Manolis, T. A. Manolis, E. J. Apostolopoulos, D.

Papatheou, and H. Melita, "COVID-19 infection and cardiac arrhythmias,"

Trends in cardiovascular medicine, vol. 30, no. 8, pp. 451-460, 2020.

[6] C.-E. Chiang, K.-L. Wang, and G. Y. Lip, "Stroke prevention in atrial

fibrillation: an Asian perspective," Thrombosis and haemostasis, vol. 112, no.

05, pp. 789-797, 2014.

[7] G. D. Clifford, F. Azuaje, and P. Mcsharry, "ECG statistics, noise, artifacts,

and missing data," Advanced methods and tools for ECG data analysis, vol. 6,

no. 1, p. 18, 2006.

[8] M. M. Hadhoud, M. I. Eladawy, and A. Farag, "Computer aided diagnosis of

cardiac arrhythmias," in 2006 International Conference on Computer

Engineering and Systems, 2006: IEEE, pp. 262-265.

[9] A. Shiyovich, A. Wolak, L. Yacobovich, A. Grosbard, and A. Katz, "Accuracy

of diagnosing atrial flutter and atrial fibrillation from a surface

electrocardiogram by hospital physicians: analysis of data from internal

medicine departments," The American journal of the medical sciences, vol.

340, no. 4, pp. 271-275, 2010.

[10] S. M. Mathews, C. Kambhamettu, and K. E. Barner, "A novel application of

deep learning for single-lead ECG classification," Computers in biology and

medicine, vol. 99, pp. 53-62, 2018.

[11] S. Kiranyaz, T. Ince, and M. Gabbouj, "Real-time patient-specific ECG

classification by 1-D convolutional neural networks," IEEE Transactions on

Biomedical Engineering, vol. 63, no. 3, pp. 664-675, 2015.

[12] G. Sannino and G. De Pietro, "A deep learning approach for ECG-based

heartbeat classification for arrhythmia detection," Future Generation

Computer Systems, vol. 86, pp. 446-455, 2018.

[13] A. Howard et al., "Searching for mobilenetv3," in Proceedings of the

IEEE/CVF international conference on computer vision, 2019, pp. 1314-1324.

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

"Mobilenetv2: Inverted residuals and linear bottlenecks," in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp. 4510-

4520.

[15] X. Zhang, X. Zhou, M. Lin, and J. Sun, "Shufflenet: An extremely efficient

convolutional neural network for mobile devices," in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 6848-6856.

 82

[16] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, "Shufflenet v2: Practical guidelines

for efficient cnn architecture design," in Proceedings of the European

conference on computer vision (ECCV), 2018, pp. 116-131.

[17] M. Tan and . Le, "Efficientnet: Rethinking model scaling for convolutional

neural networks," in International conference on machine learning, 2019:

PMLR, pp. 6105-6114.

[18] Y. Zhou, S. Chen, Y. Wang, and W. Huan, "Review of research on lightweight

convolutional neural networks," in 2020 IEEE 5th Information Technology

and Mechatronics Engineering Conference (ITOEC), 2020: IEEE, pp. 1713-

1720.

[19] M. Abdelazez, S. Rajan, and A. D. Chan, "Transfer learning for detection of

atrial fibrillation in deterministic compressive sensed ECG," in 2020 42nd

Annual International Conference of the IEEE Engineering in Medicine &

Biology Society (EMBC), 2020: IEEE, pp. 5398-5401.

[20] J. Chanthercrob, S. Mahattanatawee, A. Teeramongkonrasmee, and P.

Somboon, "Development of rhythm-based and morphology-based algorithm

for atrial fibrillation detection from single lead ecg signal," in 2020 8th

International Electrical Engineering Congress (iEECON), 2020: IEEE, pp. 1-

4.

[21] Y. Liu et al., "Precise and efficient heartbeat classification using a novel

lightweight-modified method," Biomedical Signal Processing and Control,

vol. 68, p. 102771, 2021.

[22] J. S. Steinberg, H. O’Connell, S. Li, and P. D. Ziegler, "Thirty-second gold

standard definition of atrial fibrillation and its relationship with subsequent

arrhythmia patterns: analysis of a large prospective device database,"

Circulation: Arrhythmia and Electrophysiology, vol. 11, no. 7, p. e006274,

2018.

[23] T. J. Jensen, J. Haarbo, S. M. Pehrson, and B. Thomsen, "Impact of premature

atrial contractions in atrial fibrillation," Pacing and clinical electrophysiology,

vol. 27, no. 4, pp. 447-452, 2004.

[24] Y. G. Kim et al., "Premature ventricular contraction is associated with

increased risk of atrial fibrillation: a nationwide population-based study,"

Scientific reports, vol. 11, no. 1, p. 1601, 2021.

[25] G. M. Marcus and T. A. Dewland, "Premature atrial contractions: a wolf in

sheep’s clothing?," vol. 66, ed: American College of Cardiology Foundation

Washington, DC, 2015, pp. 242-244.

[26] J. Burnett, "The origins of the electrocardiograph as a clinical instrument,"

Medical History, vol. 29, no. S5, pp. 53-76, 1985.

[27] W. B. Fye, "A history of the origin, evolution, and impact of

electrocardiography," The American journal of cardiology, vol. 73, no. 13, pp.

937-949, 1994.

[28] A. Bansal and R. Joshi, "Portable out‐of‐hospital electrocardiography: A

review of current technologies," Journal of arrhythmia, vol. 34, no. 2, pp. 129-

138, 2017.

[29] P. A. Iaizzo, Handbook of cardiac anatomy, physiology, and devices. Springer

Science & Business Media, 2010.

 83

[30] S. Vieau and P. A. Iaizzo, "Basic ECG theory, 12-lead recordings, and their

interpretation," Handbook of Cardiac Anatomy, Physiology, and Devices, pp.

321-334, 2015.

[31] N. Lowres et al., "Feasibility and cost-effectiveness of stroke prevention

through community screening for atrial fibrillation using iPhone ECG in

pharmacies," Thrombosis and haemostasis, vol. 111, no. 06, pp. 1167-1176,

2014.

[32] K. Kearley et al., "Triage tests for identifying atrial fibrillation in primary

care: a diagnostic accuracy study comparing single-lead ECG and modified

BP monitors," BMJ open, vol. 4, no. 5, p. e004565, 2014.

[33] P. J. Podrid and P. R. Kowey, Cardiac arrhythmia: mechanisms, diagnosis,

and management. Lippincott Williams & Wilkins, 2001.

[34] G. Tse, "Mechanisms of cardiac arrhythmias," Journal of arrhythmia, vol. 32,

no. 2, pp. 75-81, 2016.

[35] F. Kaasenbrood et al., "Opportunistic screening versus usual care for

diagnosing atrial fibrillation in general practice: a cluster randomised

controlled trial," British Journal of General Practice, vol. 70, no. 695, pp.

e427-e433, 2020.

[36] Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, "A review on

deep learning methods for ECG arrhythmia classification," Expert Systems

with Applications: X, vol. 7, p. 100033, 2020.

[37] D. Gupta, B. Bajpai, G. Dhiman, M. Soni, S. Gomathi, and D. Mane,

"WITHDRAWN: Review of ECG arrhythmia classification using deep neural

network," ed: Elsevier, 2021.

[38] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, "Revisiting dilated

convolution: A simple approach for weakly-and semi-supervised semantic

segmentation," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 7268-7277.

[39] L. Zhou, C. Zhang, and M. Wu, "D-LinkNet: LinkNet with pretrained encoder

and dilated convolution for high resolution satellite imagery road extraction,"

in Proceedings of the IEEE conference on computer vision and pattern

recognition workshops, 2018, pp. 182-186.

[40] J. Dai et al., "Deformable convolutional networks," in Proceedings of the

IEEE international conference on computer vision, 2017, pp. 764-773.

[41] M. Tan and . V. Le, "Mixconv: Mixed depthwise convolutional kernels,"

arXiv preprint arXiv:1907.09595, 2019.

[42] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[43] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network

training by reducing internal covariate shift," in International conference on

machine learning, 2015: PMLR, pp. 448-456.

[44] P. Shimpi, S. Shah, M. Shroff, and A. Godbole, "A machine learning approach

for the classification of cardiac arrhythmia," in 2017 international conference

on computing methodologies and communication (ICCMC), 2017: IEEE, pp.

603-607.

[45] P.-Y. Hsu and C.-K. Cheng, "Arrhythmia classification using deep learning

and machine learning with features extracted from waveform-based signal

 84

processing," in 2020 42nd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), 2020: IEEE, pp. 292-

295.

[46] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman,

"1D convolutional neural networks and applications: A survey," Mechanical

systems and signal processing, vol. 151, p. 107398, 2021.

[47] M. Salem, S. Taheri, and J. S. Yuan, "ECG arrhythmia classification using

transfer learning from 2-dimensional deep CNN features," in 2018 IEEE

biomedical circuits and systems conference (BioCAS), 2018: Ieee, pp. 1-4.

[48] B. M. Mathunjwa, Y.-T. Lin, C.-H. Lin, M. F. Abbod, and J.-S. Shieh, "ECG

arrhythmia classification by using a recurrence plot and convolutional neural

network," Biomedical Signal Processing and Control, vol. 64, p. 102262,

2021.

[49] A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet:

components of a new research resource for complex physiologic signals,"

circulation, vol. 101, no. 23, pp. e215-e220, 2000.

[50] T.-C. Huang, P.-T. Lee, M.-S. Huang, P.-F. Su, and P.-Y. Liu, "Higher

premature atrial complex burden from the Holter examination predicts poor

cardiovascular outcome," Scientific reports, vol. 11, no. 1, p. 12198, 2021.

[51] D. Makowski et al., "NeuroKit2: A Python toolbox for neurophysiological

signal processing," Behavior research methods, pp. 1-8, 2021.

[52] Y. G. Kim et al., "Premature ventricular contraction is associated with

increased risk of atrial fibrillation: a nationwide population-based study,"

Scientific reports, vol. 11, no. 1, pp. 1-8, 2021.

VITA

VITA

NAME Miss Khaing Su Thway

DATE OF BIRTH 13 March 1995

PLACE OF BIRTH Mandalay, Myanmar

INSTITUTIONS

ATTENDED

Chulalongkorn University

HOME ADDRESS Room 407, Building No. 132, ABLE26

Apartment, Soi Phahoyothin 26, Yak 5, Chom

Phom, Chatuchuk, Bangkok

PUBLICATION https://ieeexplore.ieee.org/abstract/document/9894

861

AWARD RECEIVED Graduate_Scholars for ASEAN and Non-ASEANs

scholarship program

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Objective
	1.3 Scope of Thesis

	2 Background section
	2.1 History of ECG
	2.2 Interpretation of electrocardiograph
	2.2.1 Heart Rate, Rhythm, and Isoelectric baseline

	2.3 Current Portable Personal Monitoring ECG Devices
	2.4 Cardiac Arrhythmia
	2.4.1 Atrial Fibrillation (AF)
	2.4.2 Premature Atrial Contractions /Supraventricular Premature Complexes (PAC)
	2.4.3 Premature Ventricular Contractions (PVC)

	2.5 Neural Networks
	2.5.1 Convolutional Neural Network (CNN)
	2.5.2 Lightweight Convolutional Neural Network
	2.5.3 Optimizer
	2.5.4 Activation Function
	2.5.5 Loss Function
	2.5.6 Regularization
	2.5.7 Normalization

	3 Literature Review
	3.1 ECG Classification with Time-series Data and Neural Network
	3.2 ECG Classification with data transformation
	3.3 ECG Classification approach through neural networks optimized for efficient deployment on portable devices

	4 Methods and Materials
	4.1 The Proposed Cardiac Arrhythmias Classification System
	4.1.1 Database Exploration
	4.1.2 Dataset Preparation
	4.1.2.1 Data Selection

	4.1.3 Data Preprocessing
	4.1.3.1 Noise Filtering
	4.1.3.2 Data Transformation (Image Creation from 1D 30-second Segments)

	4.2 Research Procedure
	4.2.1 Loading the dataset
	4.2.2 Setting up the model
	4.2.3 System Implementation
	4.2.3.1 Experimentation with the Deep Learning Light Weight Neural Networks

	4.2.4 Evaluation of the Classification Model Effectiveness
	4.2.4.1 Confusion matrix
	4.2.4.2 Sensitivity / Recall
	4.2.4.3 Specificity
	4.2.4.4 Accuracy
	4.2.4.5 Precision
	4.2.4.6 F1_score

	4.2.5 Experimental Environment

	5 Results and Discussion
	5.1 Experimental Results from Testing with Different Scenarios
	5.1.1 Experimentation for Binary Classification (AF and NSR) with Lightweight Deep Learning Neural Networks
	5.1.2 Experimentation for Multiple Classification (AF, NSR, PAC and PVC) with Lightweight Deep Learning Model
	5.1.3 Experimentation for Different Training Datasets

	5.2 Deploy Model on Android (using kotlin language constructed in android studio)

	6 Conclusion
	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

	REFERENCES
	VITA

