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ABSTRACT (THAI) 
 สุทิวัส สมิธาราแก้ว : การทำนายราคาแท่งเทียนของบิทคอยน์ด้วยโครงข่ายประสาทเทียมแบบวนซ้ำ. 

( Bitcoin Candlestick Price Prediction with Recurrent Neural Network) อ.ที่ปรึกษาหลัก : 
รศ. ดร.ดาริชา สุธีวงศ ์

  
บิทคอยน์เป็นหนึ่งในสินทรัพย์ที่มีผลตอบแทนและความเสี่ยงสูง การทำนายราคาแท่งเทียนของบิท

คอยน์จะช่วยให้นักลงทุนมีข้อมูลเพิ่มเติมในการตัดสินใจ งานวิจัยนี้มีวัตถุประสงค์เพื่อสร้างแบบจำลองโครงข่าย
ประสาทเทียมเพื่อทำนายราคาแท่งเทียนของบิทคอยน์ในวันถัดไป และเพื่อศึกษาวิธีการปรับปรุงประสิทธิภาพใน
การทำนายของแบบจำลอง โดยใช้การแปลงคุณสมบัติของข้อมูล กล่าวคือการปรับช่วงของข้อมูล โดยงานวิจัยนี้
ใช้แบบจำลองโครงข่ายประสาทเทียมแบบวนซ้ำสองชนิด  คือ หน่วยความจําระยะสั้นแบบยาว (LSTM) และ 
โครงข่ายประตูวกกลับ (GRU) เพื่อที่จะพยากรณ์ราคาแท่งเทียนรายวันของบิทคอยน์ สำหรับการปรับปรุง
สมรรถนะของแบบจำลอง งานวิจัยนี้เปรียบเทียบวิธีการปรับช่วงของข้อมูลสองวิธีคือ การปรับช่วงของข้อมูลโดย
ใช้คุณสมบัติของชุดข้อมูลฝึกสอน (whole set normalization) และการปรับช่วงของข้อมูลแบบเคลื่อนที่  
(sliding window normalization) ซึ่งงานวิจัยนี้ศึกษาเทคนิคการปรับช่วงข้อมูล 3 ชนิด คือ การปรับช่วงข้อมูล
ด้วยค่ามาตรฐาน (z-score), การปรับช่วงข้อมูลด้วยค่ามากสุดและค่าน้อยสุด  (min-max), และการปรับช่วง
ข้อมูลแบบการเปลี่ยนแปลงสัมพันธ์ (relative change) นอกจากนี้งานวิจัยนี้ยังเปรียบเทียบวิธีการสร้างแท่ง
เทียน 2 วิธี คือ การใช้ราคาแท่งเทียน (OHLC) และการใช้ไส้เทียน (CULR) ในการทำนาย ทั้งนี้แบบจำลองใน
งานวิจัยนี้จะใช้ราคาแท่งเทียนในอดีตหลายวันเพื่อจะพยากรณ์ราคาแท่งเทียนของวันถัดไป จากการทดลองพบว่า
แบบจำลองที่มีประสิทธิภาพในการพยากรณ์ดีที่สุดนั้นคือ แบบจำลองโครงข่ายประตูวกกลับ ร่วมกับการปรับช่วง
ข้อมูลด้วยค่ามาตรฐานแบบเคลื่อนท่ี และการสร้างแท่งเทียนด้วยการใช้ราคาแท่งเทียน โดยมีค่าเฉลี่ยร้อยละของ
ความคลาดเคลื่อนสัมบูรณ์ (MAPE) ที่ต่ำที่สุดคือ 1.95% และมีค่ารากที่สองของค่าเฉลี่ยความผิดพลาดกำลังสอง 
(RMSE) ที่ต่ำที่สุดคือ 767.71 นอกจากนี้ยังพบว่าการใช้การปรับช่วงของข้อมูลแบบเคลื่อนที่มีค่าความคลาด
เคลื่อนที่ต่ำกว่าการปรับช่วงของข้อมูลโดยใช้คุณสมบัติของชุดข้อมูลฝึกสอนในแบบจำลองทั้งสองชนิด สำหรับ
วิธีการสร้างแท่งเทียนพบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญในแง่ของค่าความคลาดเคลื่อนของการ
พยากรณ์ และการทำนายความแม่นยำในการทำนายทิศทาง แต่พบว่าการใช้ราคาแท่งเทียนมีประสิทธิภาพดีกว่า
เล็กน้อย 

 

สาขาวิชา วิศวกรรมอุตสาหการ ลายมือช่ือนิสติ ................................................ 
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ABSTRACT (ENGLISH) 
# # 6470364521 : MAJOR INDUSTRIAL ENGINEERING 
KEYWORD: Bitcoin, Neural networks, Cryptocurrency, Forecasting, Price Prediction, 

Candlestick, Normalization, Recurrent Neural Network, LSTM, GRU 
 Sutiwat Simtharakao : Bitcoin Candlestick Price Prediction with Recurrent Neural 

Network. Advisor: Assoc. Prof. DARICHA SUTIVONG, Ph.D. 
  

Bitcoin is a high-risk asset with a potentially high return. Predicting Bitcoin candlestick, 
i.e., open, high, low, and close (OHLC) prices, can help investors make trading decisions. The 
objective of this study is to develop a neural network model to predict the candlestick prices 
of Bitcoin for the next period. Additionally, this study investigates methods to enhance the 
model's forecasting performance by feature transformations, specifically data normalization. 
This study employs two neural network algorithms, Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), to forecast daily Bitcoin OHLC prices. To enhance the model's 
performance, we compare sliding window normalization with whole set normalization 
techniques. The normalization techniques investigated for both whole set and sliding window 
data include z-score normalization, min-max normalization, and relative change normalization. 
Furthermore, this study compares two candlestick prediction methods, namely using OHLC 
prices and using candle wick (CULR) to predict OHLC prices. The models use historical OHLC 
prices over several days to predict the next day's OHLC prices. The results indicate that the 
best-performing model is the OHLC method using GRU algorithm with sliding window z-score 
normalization, which achieves an MAPE of 1.95% and an RMSE of 767.71. Moreover, the sliding 
window normalization generally outperforms the whole set normalization for both LSTM and 
GRU models in terms of RMSE and MAPE. Regarding the candlestick prediction methods, there 
was no significant difference in their performance in terms of accuracy and forecasting error. 
However, our results suggest that the OHLC method performs slightly better than the CULR 
method. 
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Chapter 1: Introduction 
1.1 Background 

As a financial asset, cryptocurrencies have higher volatility than other assets, especially in 
recent years (Ghorbel & Jeribi, 2021). Cryptocurrencies are digital or virtual currencies that are 
secured by cryptography and designed to be the medium of exchange as a fiat currency. 
Investing in cryptocurrencies can help diversify portfolio risks. Furthermore, most cryptocurrencies 
generally provide better average daily returns than traditional investments (Kuo Chuen et al., 
2017).  

One of the most well-known cryptocurrencies is Bitcoin. It is the world's first 
cryptocurrency and was introduced in October 2008 by Satoshi Nakamoto (Nakamoto & Bitcoin, 
2008). Moreover, Bitcoin is the world’s largest market-cap cryptocurrency and the highest price 
coin. Bitcoin trading is a viable option for investment due to its popularity and credibility. In order 
to aid a trader's decision in buying or selling an investment instrument, forecasting an asset price 
movements is a common practice (Alkhodhairi et al., 2021). 

Candlestick price or OHLC price is a type of price representation that displays four prices 
for a specific time interval. The candlestick price contains the opening price, the highest price, the 
lowest price, and the closing price. The candlestick price prediction assists traders in making more 
sophisticated decisions by buying financial assets at near-predicted low prices and selling at near-
predicted high prices (Wang et al., 2021). In addition, the candlestick pattern can reflect the 
market circumstances and sentiment. 

Data normalization is a pre-processing step that transforms data into a specific range and, 
in some cases, also modifies data distribution. Data normalization is a crucial process in neural 
networks and other machine learning algorithms to ensure the quality of data before it is given to 
a model (Panigrahi & Behera, 2013). Normalization can also help reduce the training time, as it 
starts the training process with each feature on the same scale, as well as reduce bias inside the 
neural network from one feature to another (Nayak et al., 2013). Research shows that model 
performance may vary when different normalization techniques are used on the same model 
setting (Nayak et al., 2013; Panigrahi & Behera, 2013). 

From the benefit of Bitcoin trading and owning the Bitcoin, finding the right time to trade 
can help the trader get more profit. A forecast is a tool for decision making, so knowing more 
information like candlestick price helps the trader make a better decision. In addition, the higher 
quality of data given to a model can improve model forecasting performance. 
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1.2 Objectives of the study 

1. To create a model to predict the Bitcoin candlestick price for the next period using the 
neural network technique. 

2. To explore feature transformation aiming to enhance the forecasting performance of the 
neural network. Specifically, various data normalization (scaling) such as z-score, min-
max, and relative change normalization, will be investigated. 

3. To explore additional candlestick price prediction approaches that are not OHLC price 
prediction, for example, candle wick (CULR) prediction, etc. 

1.3 Scope of the study 
1. This study will analyze Bitcoin daily price during August 2017 – August 2022 on the 

Binance trade exchange. 
2. This study will focus on quantitative methodologies and will investigate only 

endogenous variables. 
3. The investigated neural network technique is a recurrent neural network, which includes 

Long short-term memory (LSTM) and Gated recurrent unit (GRU). 
4. The model performance improvement method in this study is the feature transformation 

technique, and the investigated feature transformation technique is data normalization 
(scaling), such as Z-Score, Min-Max, and relative change normalization. 

5. The forecasting performance metrics in this study are Mean absolute percentage error 
(MAPE) and Root mean square error (RMSE). 

 

1.4 Expected outcomes of the study 
1. Obtain a model to predict the Bitcoin candlestick price 
2. Understand the effectiveness of various normalization techniques 
3. Acquire different approaches to create candlestick price prediction 

 

1.5 Expected benefits of the study 
1. Accurate candlestick price forecasting helps the investor to make a higher rate of return.  
2. The normalization technique developed in this research can be applied to other time 

series data using neural networks in the future. 
3. The candlestick price prediction method developed in this research can help the 

investor to make a better decision. 
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Chapter 2: Related theories and literature review 
2.1 Related theories  
2.1.1 Neural network 

The neural network is a type of algorithm in artificial intelligence that performs data 
processing in a manner inspired by the human brain. It is a subset of machine learning and the 
foundation of deep learning algorithms. 

 

2.1.2 Recurrent neural network (RNN) 
Recurrent neural networks are neural networks that have been modified to handle 

sequence data. It used the previous state (memory) as a feature of the current state, so its 
computation considers historical information. 

 

2.1.2.1 Simple RNN 
A simple recurrent neural network or Simple RNN is a basic type of RNN that receives 

input data ( tx  ) and the previous hidden state ( 1ta −   ) before passing them to the activation 

function ( 1g ), which is used to update the hidden state. The hidden state can be calculated by 
equation 2.1 and the output by equation 2.2. A pictorial representation of a single simple RNN 
unit is shown in Figure 1. 

 1

1( )t t t

aa ax aa g W a W x b   −   = + +  (2.1) 

 2 ( )t t

ya yy g W a b   = +  (2.2) 

 

 
Figure  1 A simple RNN unit representation (Afshine Amidi) 

Where ta   = current cell hidden state  

 tx  = current cell input data  

  aaW , axW , 
yaW  are weighted of hidden layers 

  ab , 
yb  are bias of hidden layers 
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1g  = activation function for hidden state 

2g = activation function for output 
 

2.1.2.2 Long short-term memory (LSTM) 
Long short-term memory is a type of RNN which is capable of handling long-term 

dependencies. The core principles of LSTM are gate mechanisms and cell states. The cell state is 
a unit memory of the network. The gates are mathematical functions that control information 
flow in the cell and the information memorizing process. There are three types of gates in LSTM: 
input gate, output gate, and forget gate. A pictorial representation of a single Long Short-Term 
Memory unit is shown in Figure 2. 

 
Figure  2 An internal Long short-term memory (LSTM) representation (Afshine Amidi) 

The gates and cell states are composed of mathematical functions and operations that 
serve as the basis for data manipulation. The related functions are the hyperbolic tangent ( tanh ) 
and the sigmoid function ( ), which are non-linear functions. Tanh regulates the network's 
values, keeping them between -1 and 1, whereas sigmoid function output values range from 0 to 
1.  

The Hadamard product, also known as the element-wise product (*), is an important 
operator in this algorithm. It is an operation that takes two matrices of the same dimensions and 
multiplies each element corresponding to the same row and columns. 

The cell state or memory cell collects information from the previous cell state ( 1tc −  ) 

and passes current cell state ( tc  ) to the next cell. The current cell state ( tc  ) is calculated 

by combining a candidate cell state ( tc  ) which is considered as new information and the 

previous cell state ( 1tc −  ). The candidate cell state and the current cell state can be calculated 
by equations 2.3 and 2.7 respectively. 

The forget gate (
f ) determines whether the cell should retain the previous cell state (

1tc −  ) or discard it via looking at input from the current timestep ( tx  ) and the old hidden 

state ( 1ta −  ). Since the activation function of the forget gate is the sigmoid function, the output 
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value of this gate is a number between 0 and 1. When the output value is close to 0, the cell 

forgets the previous cell state ( 1tc −  ). When the value is 1, it indicates that the cell must store 
data. The forget gate is shown in equation 2.5. 

 The input gate or update gate ( u )  determines how much to update the previous cell 

state with a new candidate ( tc  ) by watching the inputs from the current timestep ( tx  ) and 

the old hidden state ( 1ta −  ) like the forget gate. In addition, the update gate works together 
with the forget gate to create the current cell state to pass the value to the next cell. The input 
gate can be calculated by equation 2.4. 

 The output gate ( o ), which can be calculated by equation 2.6, regulates how much to 

reveal the current cell state ( tc  ) to the current cell hidden state ( ta  ). Like the other gates, 

the output gate value can be calculated by the current timestep ( tx  ) and the old hidden state 

( 1ta −  ). Then the current hidden state ( ta  ) is generated by the output gate and tanh function 
of the current cell state as shown in equation 2.8. 
 

 1[tanh( ), ]t t t

c cW a x bc   −   = +  (2.3) 

 1( )[ , ]t t

uuu aW x b  −    = +  (2.4) 

 1( )[ , ]t t

fff aW x b  −    = +  (2.5) 

 1( )[ , ]t t

ooo aW x b  −    = +  (2.6) 

 1* *t t t

u fc cc     − =  +  (2.7) 

 )*tanh(t t

oa c   =   (2.8) 
 

Where tc   = candidate cell state, tc  = current cell state, 
ta  = current hidden state, tx  = the current timestep input 

u = update gate, 
f = forgot gate, o  = output gate 

cW = cell state weight, uW = update gate weight, 
fW = forgot gate weight,  

oW  = output gate weight, cb = cell state bias, ub = update gate bias, 

fb = forgot gate bias, and ob  output gate bias 
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2.1.2.3 Gated recurrent unit (GRU) 
Gated recurrent unit (GRU) uses the same core principle as the LSTM but has a different 

architecture and fewer parameters. GRU has only two types of gates: update gate and relevance 
gate. A pictorial representation of a single Gated recurrent unit is shown in Figure 3. 

 

 
Figure  3 An internal Gated Recurrent Unit (GRU) representation(Afshine Amidi) 

The relevance gate ( r ), also known as the reset gate, determines the importance of 

the previous cell state ( 1tc −  ) in candidate cell state ( tc  ) calculation. The prior timestep cell 

state ( 1tc −  ) and the present input data ( tx   ) are parameters of this gate. The relevance gate 
is represented by equation 2.11, while the candidate cell is represented by equation 2.9. 

The update gate ( u ), which can be calculated by equation 2.10, decides how much to 

update a new candidate ( tc  ) with the previous cell state by watching the inputs from the 

current timestep ( tx   ) and the previous cell state ( 1tc −  ). Inversely, the update gate 
determines the amount to discard the prior timestep cell state as demonstrated in equation 2.12. 
Unlike LSTM, the current hidden cell state in GRU is equal to the present cell state, as shown in 
equation 2.13. 

 

 1 )[ * , ]tanh(t

c

t t

r cc W c x b   −   =  +  (2.9) 

 1( )[ , ]t t

uuu cW x b  −    = +  (2.10) 

 1( )[ , ]t t

rrr cW x b  −    = +  (2.11) 

 1* (1 )*t t t

u uc cc     − + −=  (2.12) 

 t ta c   =  (2.13) 

Where tc   = candidate cell state, tc  = current cell state, 

 ta  = current hidden state, tx  = the current timestep input 
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u = update gate, 
f = forgot gate, r  = relevant gate 

cW = cell state weight, uW = update gate weight, rW = relevant gate weight,  

cb = cell state bias, ub = update gate bias, rb = relevant gate bias 
 

2.1.3 Forecasting performance metric 
When evaluating the performance of a time series model, there is a mathematical 

notation is developed for forecasting which is summarized as follows: 

tY = the actual value of a time series at period t 
ˆ
tY = the forecast value for period t 

ˆ
t t te Y Y= − = the residual or forecast error 

 

2.1.3.1 Mean absolute error (MAE) 
The mean absolute error (MAE) can be calculated by averaging the absolute error as 

shown in equation 2.14. It provides an average size of the miss without direction consideration 
and measures the accuracy by averaging the magnitudes of the error. 

 
1

1 ˆ| |
n

t t

t

MAE Y Y
n =

= −  (2.14) 

2.1.3.2 Mean absolute percentage error (MAPE) 
  The mean absolute percentage error (MAPE) is calculated by averaging the ratio of the 

absolute error in each period and the absolute of the actual value, as shown in equation 2.15. 

The final value is then multiplied by 100 and expressed as a percentage.  

 
1

ˆ| |1
 100%,  Y 0

n
t t

t

t t

Y Y
MAPE

n Y=

−
=    (2.15) 

2.1.3.3 Mean square error (MSE) 
The mean square error (MSE) is determined by averaging the squared of error, as given in 

equation 2.16. This measurement penalizes large forecasting errors. 

 2

1

1 ˆ( )  
n

t t

t

MSE Y Y
n =

= −  (2.16) 
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2.1.3.4 Root mean square error (RMSE) 
The root mean square error (RMSE) is determined by square root of averaging the 

squared of error, as given in equation 2.17. This measurement penalizes large forecasting errors. 
This error has the same unit as the predictor and inherits the MSE's characteristic in penalizing 
large forecasting errors. 

 2

1

1 ˆ( )  
n

t t

t

RMSE Y Y
n =

= −  (2.17) 

 

2.1.4 Classification metrics 
The classification metrics are used to evaluate the performance of classification 

problems and are based on the confusion matrix. The confusion matrix is a table that shows the 
number of true positives, true negatives, false positives, and false negatives predictions made by 
the model compared to the actual labels, as shown in Table 1. 

Table  1 Confusion matrix 
 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

2.1.4.1 Accuracy ………… 
Accuracy is the proportion of correctly classified samples out of all samples, as shown in 

equation 2.18. 

 Accuracy
TP TN

TP FN FP TN

+
=

+ + +
 (2.18) 

 

2.1.4.2 Precision …….….. 
Precision is the proportion of true positives out of all predicted positives, as given in 

equation 2.19. 

 Precision
TP

TP FP
=

+
 (2.19) 

 

2.1.4.3 Recall ………….… 
Recall is the proportion of true positives out of all actual positives, as given in equation 

2.20. 
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 Recall
TP

TP FN
=

+
 (2.20) 

 

2.1.4.4 F1-Score …… 
F1 score is the harmonic mean of precision and recall, balances both metrics, as shown 

in equation 2.21 – 2.22. 

 
Precision Recall

F1 2 ( )
Precision Recall


= 

+
 (2.21) 

 
2

F1
2

TP

TP FP FN
=

+ +
 (2.22) 

 

2.1.5 Data normalization and scaling techniques 
2.1.5.1 Z-Score normalization 

To normalize the data, this technique uses the mean ( ) and standard deviation ( ) of 
the original data as shown in equation 2.23. The training set's mean and standard deviation were 
utilized for z-score normalization. 

 x
x





−
 =  (2.23) 

2.1.5.2 Min-Max normalization 
As demonstrated in equation 2.24, the minimum value ( minx ) and maximum value ( maxx

) of the original data are used to linear transform the data. The training set's minimum and 
maximum are utilized to transform the training set and the other sets for the min-max 
normalization. 

 min

max min

x x
x

x x

−
 =

−
 (2.24) 

2.1.5.3 Relative change normalization 
The relative change normalizes the window elements by using the first value of the 

sequence ( 0x ) as illustrated in equation 2.25. In general case, the first value of the sequence is 
the first value of the training set. 

 0

0

x x
x

x

−
 =  (2.25) 
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2.1.6 Skewness 
Skewness is a statistical property that measures the asymmetry of the probability 

distribution. This study utilizes Pearson's second coefficient of skewness to measure the skewness 
which can be calculated by equation 2.26. The skewness value interpretation is shown in Table 
2. 

 3( )x median
skewness

s

−
=  (2.26) 

Table  2 Pearson's second coefficient of skewness value interpretation 

Level of skewness 
Skewed left  

(negatively skewed) 
Skewed right 

(positively skewed) 
Approximately symmetric -0.5 < skewness < 0 0 < skewness < 0.5 
Moderately skewed - 1.0 < skewness < -0.5 0.5 < skewness < 1.0 
Highly skewed skewness < -1.0 skewness > 1.0 

  

2.2 Related work 
2.2.1 Studies relating to cryptocurrency price prediction with deep learning 

Many researchers have explored various techniques and algorithms to predict the 
cryptocurrency market. Some of which involve neural networks. GRU, LSTM, and MLP were used 
to predict the Bitcoin's next-hour price by using 24 hours of data as input (Jiang, 2020). They were 
compared by changing the neural network cell type and the number of layers. The results 
revealed that the LSTM 2 layers outperform all others, and GRU 2 layers outperform all others 
when tested on cross validation. Another study examined the performance of LSTM and GRU by 
altering the size of the window and the number of days ahead in a day trading period. The study 
concluded that the optimal settings for this experiment were a window size of 12 and days 
ahead of 7 performed by LSTM, while GRU outperformed LSTM in other situations (Muniye et al., 
2020) 

Some papers are talking about a comparison of traditional forecasting techniques and 
neural network techniques. The classical forecasting method, linear regression, was compared to 
the Long Short-Term Memory (LSTM) in (Kavitha et al., 2020), and it was discovered that the 
LSTM outperformed the old technique in terms of R2, MAE, and RMSE. In (Phaladisailoed & 
Numnonda, 2018), the Gated Recurrent Unit, and regression methods: Theil-Sen Regression and 
Huber Regression, were compared to LSTM. The recurrent neural networks outperformed the 
regressions in terms of R2, and GRU had the best MSE while MSE of the regressions were better 
than the LSTM. A well-known time series forecasting model such as ARIMA was also compared to 
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modern techniques such as simple recurrent neural networks (RNN) and LSTM in terms of RMSE 
and classification performance, where the labels for categorization were price up, price down, 
and no change. Z-score normalization technique was applied. Deep learning algorithms 
outperformed ARIMA in terms of RMSE and accuracy, but not precision (McNally et al., 2018).  
Five cryptocurrencies' close prices, including Bitcoin price, were predicted by OHLC prices and 
volume (Hansun et al., 2022). They also compared the performance of LSTM, GRU, and 
bidirectional LSTM (Bi-LSTM) using the min-max normalization. The results show that GRU 
outperformed the others with an RMSE of 1,777.31.  

A novel hybrid technique based on LSTM and GRU for cryptocurrency prediction was 
applied to predict Litecoin and Zcash's next-day price by using the previous days' weighted price 
(mean of OHLC price) and the Bitcoin price direction (Tanwar et al., 2021). This study also tested 
the algorithm with various window sizes (1, 3, 7, and 30 days) and compared the novel technique 
to Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). The results showed that the 
novel technique outperformed the GRU and LSTM in both Litecoin and Zcash prediction.  

There is also a study that examined the effect of an external factor in cryptocurrency 
prediction with the recurrent neural networks, which are simple RNN, LSTM, and GRU (Vanderbilt 
et al., 2020). They compared using the previous-day price to predict the next-day price with using 
the previous-day price and google trends data and tested on three cryptocurrencies: Bitcoin, 
Ripple, and Litecoin. The study concluded that Google trends data is not a useful data input for 
RNN models in cryptocurrency price prediction, and GRU outperforms all others. The summary of 
this topic is shown in Table 3. 

Table  3 Studies relating to cryptocurrency price prediction with deep learning 
Authors Data Features Output Techniques Results 

(Jiang, 2020) Bitcoin minute price 
but convert to 
hourly price (Jan 
2012 to July 2018) 

Previous 24-hour price Next hour price Multi-Layer 
Perceptron (MLP), 
Gated Recurrent 
Unit (GRU),  
Long Short-Term 
Memory (LSTM) 

- The best 
RMSE:19.020  
by LSTM 

(Muniye et al., 
2020) 

Bitcoin daily price  Previous day price in 
different window size 
 

Next day price 
in different 
number of 
days ahead  

Gated Recurrent 
Unit (GRU),  
Long Short-Term 
Memory (LSTM 

- The best RMSE: 
0.045 
- The best MAPE: 
0.030 
by LSTM 

(Kavitha et al., 
2020) 

Bitcoin minute price 
but convert to a day 
period price (Jun 
2012 to July 2019) 

Previous day weighted 
price (Mean of OHLC 
price) 

Next day 
weighted price 
(Mean of OHLC 
price) 

Long Short-Term 
Memory (LSTM), 
Linear Regression 

- LSTM: RMSE = 
95.067, MAE = 64.389, 
R2 =0.981 
- Linear Regression:  
RMSE = 296.747, MAE 
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Authors Data Features Output Techniques Results 

=143.704, R2 = 0.908 

(Phaladisailoed 
& Numnonda, 
2018) 

Bitcoin minute price 
but convert to a day 
period price (Jan 
2012 to Jan 2018) 

OHLC price Next day 
weighted price 
(Mean of OHLC 
price) 

Gated Recurrent 
Unit (GRU),  
Long Short-Term 
Memory (LSTM), 
Theil-Sen 
Regression, Huber 
Regression 

- LSTM: MSE = 
0.000431, R2 =0.992 
- GRU: MSE = 0.00002,  
R2 = 0.992 
- Theil-Sen 
Regression: MSE = 
0.000375, R2 =0.99176 
- Huber Regression: 
MSE = 0.000373, R2 

=0.99179 

(McNally et al., 
2018) 

Bitcoin daily close 
price (August 2013 
to July 2016) 

- SMA 5 days close 
price 
- SMA 10 days close 
price 
- de-noised close price 

Next day close 
price 

Recurrent Neural 
Network (RNN), 
Long Short-Term 
Memory (LSTM),  
Autoregressive 
integrated moving 
average (ARIMA) 

- LSTM: RMSE = 6.87% 
Precision = 35.50% 
- RNN: RMSE = 5.45% 
Precision = 39.08% 
- ARIMA: RMSE = 
53.74% 
Precision = 100 % 

(Hansun et al., 
2022) 

Bitcoin daily price 
(Sept 2014 to Oct 
2021) 

- OHLC price and 
volume 

Next day close 
price 

- Gated Recurrent 
Unit (GRU) 
- Long Short-Term 
Memory (LSTM) 
- Bidirectional Long 
Short-Term 
Memory (Bi-LSTM) 
 

- LSTM: 
RMSE=2518.02 
MAPE = 4.23% 
- Bi-LSTM:  
RMSE = 2222.73 
MAPE = 3.80% 
- GRU: RMSE = 
1777.30 
MAPE = 3.50% 

(Tanwar et al., 
2021) 

 Daily price of 
- Litecoin  
(Aug 2016 - May 
2021) 
- Zcash  
(Oct 2016 - May 
2021) 
- Bitcoin 

- weighted 
cryptocurrency price 
and parent coin’s 
direction (Bitcoin 
direction: up and 
down) 
 
** tested algorithm 
with various window 
size: 1,3,7, and 30 
days 

Next day 
cryptocurrency 
price 

- Gated Recurrent 
Unit (GRU) 
- Long Short-Term 
Memory (LSTM) 
- LSTM-GRU hybrid 
 

Litecoin: 
- GRU: MSE = 0.02113 
(1 day) 
- LSTM: MSE = 0.0285 
(1 day) 
- Hybrid: MSE = 
0.02038 (1 day) 
Zcash: 
- GRU: MSE = 0.00462 
(7 days) 
- LSTM: MSE = 
0.00497 (3 days)  
- Hybrid: MSE = 
0.00461 (1 day) 

(Vanderbilt et 
al., 2020) 

Daily price of 
- Litecoin  
- Ripple 
- Bitcoin 
(Jan 2015 -  
Apr 2020) 

Compare two 
methods 
- previous day price 
- previous day price 
with Google trends 
data 

Next day price 
 
 
 
 
 
 

- Simple RNN  
- Gated Recurrent 
Unit (GRU) 
- Long Short-Term 
Memory (LSTM) 
 

Bitcoin: 
- RNN: RMSE = 569.02 
- RNN with google 
trend: RMSE = 569.41 
- LSTM: RMSE =562.08 
- LSTM with google 
trend:  RMSE = 553.19 
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Authors Data Features Output Techniques Results 

- GRU: RMSE = 403.23 
- GRU with google 
trend:  RMSE = 411.09 

2.2.2 Studies relating to cryptocurrency candlestick price prediction with deep 
learning 
Limited research has been on candlestick or OHLC Bitcoin price prediction. While most 

studies on the candlestick price utilized it as a feature to predict the price, (Alkhodhairi et al., 
2021) employed the candlestick as both a feature and an output. The study examined the 
performance of LSTM and GRU in predicting OHLC price, as well as determined the candlestick 
interval (4 h, 12 h, or 24 h) that rendered the most accurate forecast. This study used decimal 
scaling for feature normalization and used a novel technique called real-time data prediction, 
which involves feeding new data to the whole dataset and fitting the data again to update the 
model. The findings showed that the LSTM with a 4-h interval along with the real-time data 
prediction technique yielded an optimal performance, as shown in Table 4. 

Table  4 Studies relating to cryptocurrency candlestick price prediction with deep learning 
Authors Data Features Output Techniques Results 

(Alkhodhairi 
et al., 2021) 

Bitcoin minute price 
but convert to 4h, 12h, 
24h price 
(Jan 2017 to Aug 2020) 

Previous interval 
OHLC 

Next interval 
OHLC 

Long Short-Term 
Memory (LSTM),  
Gated Recurrent 
Unit (GRU) 

- Real time prediction  
MAPE: 0.63 % by 
LSTM 
- Historical prediction  
MAPE: 2.60 % by 
LSTM 

 

2.2.3 Normalization technique in cryptocurrency price prediction with deep 
learning 
Table 5 shows an overview of previous research's normalization techniques according to 

2.2.1 - 2.2.2. In the investigated studies, four techniques appear: Min-Max normalization, Z-score 
normalization, relative change normalization, and Decimal scaling. In addition, the most popular 
normalization technique in the explored studies is Min-Max scaling. 

Table  5 Studies relating to cryptocurrency candlestick price prediction with deep learning 
Authors Data Algorithm Technique 

(Jiang, 2020)  Bitcoin minute price but convert 
to hourly price (Jan 2012 to July 
2018) 

- Multi-Layer Perceptron (MLP)  
- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM) 

- Min-Max 
- Relative change 

(Muniye et al., 2020) Bitcoin daily price 
(Jan 2014 to Feb 2018) 

- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM) 

Min-Max 
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Authors Data Algorithm Technique 

(Phaladisailoed & 
Numnonda, 2018) 

Bitcoin minute price 
but convert to a day period price  
(Jun 2012 to July 2019) 

- Long Short-Term Memory (LSTM) 
- Linear Regression 

Min-Max 

(Kavitha et al., 2020) Bitcoin minute price but convert to 
a day period price (Jan 2012 to Jan 
2018) 

- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM), 
- Theil-Sen Regression 
- Huber Regression 

Min-Max 

(McNally et al., 2018)  Bitcoin daily close price  
(August 2013 to July 2016) 

- Recurrent Neural Network (RNN)  
- Long Short-Term Memory (LSTM) 
- Autoregressive integrated moving 
average (ARIMA) 

Z-Score 

(Hansun et al., 2022) Bitcoin daily price (Sept 2014 to 
Oct 2021) 

- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM) 
- Bidirectional Long Short-Term 
Memory (Bi-LSTM) 

Min-Max 

(Tanwar et al., 2021) Daily price of 
- Litecoin (Aug 2016 - May 2021) 
- Zcash (Oct 2016 - May 2021) 
- Bitcoin (Aug 2016 - May 2021) 

- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM) 
- LSTM-GRU hybrid 

Z-Score 

(Vanderbilt et al., 
2020) 

Daily price of 
- Litecoin (Jan 2015 - Apr 2020) 
- Ripple (Jan 2015 - Apr 2020) 
- Bitcoin (Jan 2015 - Apr 2020) 

- Simple RNN  
- Gated Recurrent Unit (GRU) 
- Long Short-Term Memory (LSTM) 

Min-Max 

(Alkhodhairi et al., 
2021) 

Bitcoin minute price 
but convert to  
4h, 12h, 24h price 
(Jan 2017 to Aug 2020) 

- Long Short-Term Memory (LSTM) 
- Gated Recurrent Unit (GRU) 

Decimal scaling 

 

2.2.4 Studies relating to candlestick price and candlestick price prediction 
method 
Some previous works explored candlestick price prediction methods. (Alkhodhairi et al., 

2021) used the previous time interval OHLC price to predict the next OHLC price with LSTM and 
GRU on Bitcoin data. They used MAPE, RMSE, MAE, and R2 to measure the performance of the 
model. Another study introduces a novel technique to forecast the candlestick price of Chinese 
stock market index by transforming the OHLC (Wang et al., 2021), as shown in equation 2.22 – 
2.24. They applied this technique to vector auto-regression (VAR), and vector error correction 
(VEC). Moreover, they guarantee that the output of this technique does not violate the 
candlestick constraint. This study used MAPE, RMSE, and Accuracy ratio (average of the ratio of 
length intersection and union between actual and predicted value) to measure the performance 
of the model.  
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The Convolutional Neural Network (CNN) model, which is well-suited to computer vision, 
is also used to predict the time series data. (Guo et al., 2018) predicted the next day price 
movement (direction) of Taiwan stock index by converting candlestick data (OHLC) to images and 
using CNN-Autoencoder to generate features for a 1D-CNN model to predict price movement. 
Another research recognized the candlestick pattern with Convolutional Neural Network (CNN) 
(Chen & Tsai, 2020). They also compared encoding OHLC price to image with Gramian Angular 
Field (GAF), which converts time series to polar coordinate, with encoding CULR price to the 
image. Moreover, they compared this technique with Long Short-Term Memory (LSTM). The result 
showed that using CULR with CNN to predict the candlestick pattern outperformed the other 
setting. The summary of this topic is shown in Table 6. 

Table  6 Studies relating to candlestick price and candlestick price prediction method 
Authors Data Output Algorithm Techniques Measurement 

(Alkhodhairi 
et al., 
2021) 

Bitcoin minute price 
but convert to 4h, 
12h, 24h price 
(Jan 2017 to Aug 
2020) 

Next interval 
OHLC 

Long Short-Term 
Memory (LSTM),  
Gated Recurrent 
Unit (GRU) 

use OHLC price to 
predict OHLC price 

- MAPE 
- RMSE 
- MAE 
- R2 
 

(Wang et 
al., 2021) 

 Index of Chinese 
stock market 

OHLC price - Vector auto-
regression (VAR),  
- Vector error 
correction (VEC) 

use transformed OHLC 
price to predict 
transformed OHLC price 

- MAPE 
- RMSE 
- Accuracy ratio 

(Guo et al., 
2018) 

 Taiwan stock index next day price 
Movement 
(Up/Down) 

Convolutional 
Neural Network 
(CNN) 

- map candlestick data 
(OHLC) to image 
- CNN-Autoencoder to 
create feature for 1D-
CNN model to predict 
price movement 

- Accuracy 
- Precision 
- Recall 
- F1-Score 
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Authors Data Output Algorithm Techniques Measurement 

(Chen & 
Tsai, 2020) 

EUR/USD 1-minute 
price  
(January 1, 2010, to 
January 1, 2018) 

candlestick 
pattern  
 
 

- Convolutional 
Neural Network 
(CNN) - LeNet 
- Long Short-Term 
Memory (LSTM) 
 
 

Compare two methods 
- encoded OHLC price 
to image with Gramian 
Angular Field (GAF) 
- encoded CULR price 
to image with Gramian 
Angular Field (GAF) 

Accuracy 

 
From the above studies, there has been limited research on cryptocurrency candlestick 

price prediction. It was also found that RNNs generally outperformed MLP and traditional 
statistical models (such as ARIMA) in terms of forecasting error. Among the related work being 
investigated, the most popular normalization technique is the min-max normalization. There has 
been little research on cryptocurrency candlestick price prediction, and few studies have 
explored the performance of the candlestick price prediction method with recurrent neural 
networks in terms of both direction accuracy and forecasting error. Additionally, external factors 
do not appear to improve model forecasting performance. 

Among the investigated studies, two studies were found to be the most similar to our 
work. The first study is (Alkhodhairi et al., 2021). They predicted the OHLC price of the next time 
period using the previous time period's OHLC price. They utilized LSTM and GRU models, which 
are similar to our work in terms of the model used. However, they did not investigate the effects 
of normalization on forecasting performance or the impact of different candlestick construction 
methods. 

Another research similar to our work is (Jiang, 2020). The study focused on investigating 
the performance of two normalization approaches: whole set min-max normalization and sliding 
window relative change normalization on Bitcoin hourly price using LSTM, GRU and MLP model. 
However, they did not explore other normalization techniques such as z-score normalization or 
other combinations of normalization approaches (such as sliding window and whole set 
normalization) and techniques (such as min-max normalization). Additionally, they only 
investigated two combinations of normalization. Furthermore, the study did not investigate the 
reasons why sliding window normalization outperforms whole set normalization. 

Therefore, this research aims explore cryptocurrency candlestick price prediction using 
RNNs and simultaneously investigate various normalization techniques and their impact on RNNs 
performance. Additionally, this study aims to explore additional candlestick price prediction 
approaches that are not OHLC price prediction, such as candle wick (CULR) prediction 
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Chapter 3: Methodology 
3.1 Problem approach 

Since the objective of this research is to predict the Bitcoin candlestick price of the next 
day and the Bitcoin historical trading data is time-series data, the suitable quantitative forecast 
method for this problem should be the time-series method or the machine learning method that 
the model can handle sequential data. Price prediction is a financial problem, so it requires high-
accuracy prediction. In addition, the Bitcoin price is a high volatility trading data, so to precisely 
predict the price, complex models like neural networks, which are the machine learning method, 
are suitable to use to solve this problem instead of classical time series forecasting methods 
(McNally et al., 2018).  

The neural network type which is suitable for time series forecasting is Recurrent Neural 
Networks (RNNs) because it is modified to handle sequence data. Based on the previous work in 
section 2, it is unclear whether LSTM or GRU perform better. As a result, both LSTM and GRU 
were used in all experiments in this work. 

Our workflow is structured into three main phases: data preparation, feature 
construction, and model construction, as shown in Figure 4. The process begins with obtaining 
raw data, followed by cleansing the data, and performing feature selection and exploratory data 
analysis (EDA). In the feature construction phase, we split the data into three distinct sets, 
normalize the data, and create sliding windows. Then, we perform EDA once again. In the model 
construction phase, we train the models, tune their hyperparameters, and perform the inverse 
transformation or scaling back to the original scale. Finally, we evaluate the models' 
performance. 

 

 
Figure  4 Workflow 
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3.1.1 Data source 
This research uses historical trading data sets from Cryptodatadownload website 

(https://www.cryptodatadownload.com) of Bitcoin (BTC) and Tether coin (USDT), which is a stable 
coin where 1 USDT is approximately 1 USD. The 

Cryptodatadownload website retrieves data from the Binance exchange, the world's 
largest cryptocurrency exchange by trading volume. The raw data from Cryptodatadownload 
includes ten columns, namely Unix timestamp, date, symbol, 

opening price, highest price, lowest price, closing price, volume (Crypto), volume Base, 
and trade count. The meanings of each column are shown in Table 7. This study focuses on a 
one-day timeframe from August 17, 2017 to August 29, 2022 or 1,840 rows. 

Table  7 Raw data definitions 
Column Definition 

Unix timestamp total of seconds that used to convert to local time zone 

date timestamp 

symbol symbol for which cryptocurrency converts to base coin 

opening price the time period's opening price 

highest price the time period's highest price 

lowest price the time period's lowest price 

closing price the time period's closing price 

volume (Crypto) volume in the transacted Crypto (BTC) 

volume Base volume in the base/converted crypto (USDT) 

trade count number of trades for the given time-period 

* BTC = Bitcoin, USDT = Tether coin which is a stable coin cryptocurrency and 1 USDT is approximate 1 USD 
 

3.1.2 Data preparation 
The steps of data preparation are as follows: 

1. Data cleaning 
Any empty rows and columns were eliminated. The date format was updated to be 

consistent across the entire dataset. 
2. Feature selection 

This work focuses on the candlestick prices (OHLC prices) which are open price, high 
price, low price, and close price. 
3. Exploratory Data Analysis 

This work used time series plots, decomposition plots, and histograms to analyze the 
data. 
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3.1.3 Feature construction 
This study divided feature construction into three phases: Data splitting, normalization, 

and sliding window construction.  
The steps of model construction are as follows: 

1. Data splitting 
The data was divided into three sets: the training set contains 80% of the data for model 

training, the validation set contains 10% for hyperparameter tuning, and the test set contains 
10% for model evaluation. 
2. Data normalization  

From related work (chapter 2.1), the most popular normalization technique is min-max 
normalization, so we used this technique with the minimum and maximum values of the training 
set to normalize the data. 
3. Sliding window construction 

The sliding window is a feature construction method that uses a rolling origin to separate 
data into small sets. This research used a fixed size sliding window, implying that each sliding 
window contains the same number of members which have some overlapped members. The 
sliding window of the OHLC price was used as the model's input in this experiment, as shown in 
equation 3.1, and the model's output is described in equation 3.2 which refers to the OHLC price 
of the next time step. Because of sliding window size effect on the forecasting performance 
(Tomar et al., 2022), different sliding window sizes give different errors, this study tested each 
treatment (algorithm and normalization technique) with various sliding window sizes which are 3, 
5, 7, 15, and 30 days.  

 1 2 1( , , ,..., )t t t t t wX x x x x+ + + −=  (3.1) 

 ( )t t wY x +=  (3.2) 

Where tx is vector of OHLC price at time step t, w is sliding window size, tX  is input sliding 

window for model, tY  is output for model. 
 

3.1.4 Model construction 
3.1.4.1 Model configuration 

The prediction of candlestick prices is a multivariate forecasting problem. Previous 
research (Du et al., 2019) demonstrated that employing a multiple-feature model outperforms 
using single-feature models, so this study used the multiple-feature model, as illustrated in Figure 
5. Furthermore, the model architecture is Many-to-one, with x representing the feature's time 
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step, y representing the model's output, and a representing data transfer between time steps, as 
illustrated in Figure 6. 

 
Figure  5 Feature diagram of the model  

 

 

Figure  6 Structure diagram of the model (Afshine Amidi) 

 
3.1.4.2 Model training and optimization 

 After the experiment settings have been determined, the models are trained and 
optimized by the following steps: 

1. Train each model or algorithm on training set with MSE loss function 
2. Hyperparameter tuning with Bayesian optimization by improving the validation set MSE 

and optimizing the hyperparameter as shown in Table 8. Note that we fixed the 
hyperparameter shown in Table 9. 

3. Inverse transform the output from standardized data to the original representation (scale 
back) 

4. Evaluate the performance with MAPE and RMSE on the test set 
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Table  8  The tuned hyperparameter and tuning range 
Hyperparameter Range Step 

Units 16 – 256 1 
Dropout 0.2 – 0.5 0.1 
Epoch 10 – 300 1 

Batch size 32 - 256 Power of 2 
Learning Rate 10-4 - 1 log scale 
epoch decay 10 - 50 10 

Table  9  The fixed hyperparameter 
Hyperparameter Value Note 

Activation function tanh default of each architecture unit type 
Output Activation function Linear default of each architecture unit type 

Optimizer Adam Based on the previous work 
(Alkhodhairi et al., 2021) 

Number of Layers 2 Based on the previous work  
(Alkhodhairi et al., 2021) (Jiang, 2020) 

Decay rate 0.5 parameter for learning rate step decay 

 

3.1.5 Tools and programming language 
Python 3.7 is the main programming language used in this study, which runs on Google 

Colab. Furthermore, R 4.1 was used for exploratory data analysis (EDA). This project made use of 
several tools and Python libraries. For data pre-processing and modification, NumPy and Pandas 
were used. Matplotlib was used for graphical display of information and data, often known as 
data visualization. For data transformation, Scikit-learn was employed. TensorFlow and Keras 
were the primary libraries used for model training, prediction, and hyperparameter tuning. 
 

3.2 Model performance improvement with normalization techniques 
This part aimed to improve models using normalizing techniques. To achieve the 

objective of this study, this part compared two normalization approaches: whole set 
normalization and sliding window normalization. The whole set normalization means data are 
normalized by a training set parameter, and the sliding window normalization means the data are 
normalized by a sliding window parameter. 

These two main normalization approaches led to a different process order in the feature 
construction phase. For the whole set approach, normalization occurs before sliding window 
construction, whereas normalization occurs after sliding window construction for the sliding 
window approach. The workflow of each normalization approach are shown in Figure 7. 
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Figure  7 Workflow of each normalization approach 

The investigated normalization techniques for both the whole set and the sliding 
window set include z-score normalization, min-max normalization, and relative change 
normalization. The details of all investigated normalizing techniques are shown in numbers 1–6 
and equation 3.3-3.8.  

Because of sliding window size effect on the forecasting performance (Tomar et al., 
2022), different sliding window sizes give different errors, this study tested each treatment 
(algorithm and normalization technique) with various sliding window sizes which are 3, 5, 7, 15, 
and 30 days. 

1. Z-Score normalization  
To normalize the data, this technique uses the mean ( ) and standard deviation ( ) of 

the original data as shown in equation 3.3. The training set's mean and standard deviation 
were utilized for whole-set z-score normalization. 

 x
x





−
 =  (3.3) 

2. Min-Max normalization  

As demonstrated in equation 3.4, the minimum value ( minx ) and maximum value ( maxx )  
of the original data are used to linear transform the data. The training set's minimum and 
maximum are utilized to transform the training set and the other sets for the whole set min-
max normalization. 

 min

max min

x x
x

x x

−
 =

−
 (3.4) 

3. Relative change normalization 

The relative change normalizes the data using the first value of the training set ( 0x ) as 
illustrated in equation 3.5. 

 0

0

x x
x

x

−
 =  (3.5) 
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4. Window z-score normalization  
Unlike the whole set normalization, the window z-score normalization used the mean (

w ) and standard deviation ( w ) of the sliding window with as shown in 3.6. 

 i w
i

w

x
x





−
 =  (3.6) 

5.  Window min-max normalization  
This technique also uses the statistic of the sliding window which are the minimum value 

of the window ( minWx ) and maximum value of the window ( maxWx ) as illustrated in 
equation 3.7. 

 min

max min

i W
i

W W

x x
x

x x

−
 =

−
 (3.7) 

6. Window relative change normalization 
The relative change normalizes the window elements by the first value of the sliding 

window ( 0x ) as illustrated in equation 3.8. 

 0

0

i
i

x x
x

x

−
 =  (3.8) 

 

3.3 Candlestick price prediction method 
This section aims to compare the performance of candlestick price prediction methods 

in terms of both direction accuracy and forecasting error. The investigated methods include using 
OHLC price to predict OHLC price and using CULR price to predict CULR price. 

OHLC price or candlestick price means four prices in the specific time interval which 
contains the opening price, the highest price, the lowest price, and the closing price of that time 
interval, as shown in Figure 8. 

Another way to display the candlestick price is CULR. CULR or candlewick price also 
contains four components: closing price, upper shadow, lower shadow, and real body. The 
visualization of CULR is also shown in Figure 8. The CULR method includes additional processes 
compared to the OHLC method, specifically, the conversion of OHLC features to CULR features, 
as shown in Figure 9. This conversion can be accomplished using equations 3.9 - 3.11, and CULR 
features can be converted back to OHLC features by equations 3.12 – 3.14. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24 

 
Figure  8 Candlestick component (16 must-know candlestick patterns for a successful trade, 2021) 

 
Figure  9 Workflow of CULR method 

     –  Real Body close open=  (3.9) 
Real Body 0 (Bullish)

   
Real Body 0 (Bearish)

high close
Upper Shadow

high open

− 
= 

− 
 (3.10) 

Real Body 0 (Bullish)
   

Real Body 0 (Bearish)

open low
Lower Shadow

close low

− 
= 

− 
  (3.11) 

 

   open close Real Body= −  (3.12) 
 Real Body 0 (Bullish)

  
 Real Body 0 (Bearish)

close Upper Shadow
high

open Upper Shadow

+ 
= 

+ 
 (3.13) 

 Real Body 0 (Bullish)
  

 Real Body 0 (Bearish)

open Lower Shadow
low

close Lower Shadow

− 
= 

− 
 (3.14) 

 
We compared the methods by utilizing several normalization techniques that were 

investigated in Section 3.2. Moreover, we evaluated each method using various sliding window 
sizes, including 3, 5, 7, 15, and 30 days. The performance of candlestick price prediction methods 
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using the OHLC price was compared. For the CULR method, we transformed the predicted CULR 
price into OHLC price format. 

 To compare direction accuracy, we converted the predicted OHLC price (numeric) to 
direction (categorical) or price movement: bullish (upward) and bearish (downward). Note that for 
neutral direction or when the close price is equal to the open price, it is treated as bullish. The 
equation for direction conversion is shown in equation 3.15. The performance metric for 
forecasting error is RMSE, and the performance metric for direction is accuracy. 

 

 
Bullish

  
Bearish

close open
Direction

close open
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
 (3.15) 
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Chapter 4: Result and discussion 
4.1 Exploratory data analysis 
4.1.1 Exploratory data analysis before data splitting 

After selecting the features, the data was explored through a time series plot depicted in 
Figure 10, summary statistics presented in Table 10, and decomposition analysis illustrated in 
Figure 11. 

According to Figure 10, each candlestick price or OHLC price had the same major feature 
but was different in detail that was not significant for overview consideration, so in this section, 
the open price is representative of the OHLC price to analyze the data character. Although the 
price fluctuated from 2017 to the end of 2020, it did not vary significantly when compared to the 
cryptocurrency boom period from the end of 2020 to 2021, which was a clear uptrend. The price 
had been dropping from the end of 2021 to the beginning of 2022. 

 

Figure  10 Time series plot of OHLC prices. 

 The following step is to find a basic statistical summary of each price. Table 10 displays 
the following fundamental statistics: minimum, first quartile, median, mean, third quartile, and 
maximum. 

 This study also used decomposition to determine the data's component. The open price 
was chosen to represent the OHLC prices since they have similar properties. The price in this 
dataset has three components, as illustrated in Figure 11. They are trend or trend-cyclical, 
seasonal, and irregular, and they are joined by multiplicative decomposition. 
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Table  10 Basic statistical summary table of each price 
 
 
 
 
 
 

 
Figure  11 The decomposition plot of open price 

4.1.2 Exploratory data analysis after data splitting 
After splitting the data into three sets, the data was explored by the time series plot and 

histogram, as shown in Figure 12-13 respectively. According to part 4.1.1, the open price is 
representative of the OHLC price to analyze the data character. In addition, this part also shows a 
basic statistical summary of the open price after splitting the data in Table 11. 

Table  11 Basic statistical summary table of open price after data splitting 

Statistics Open price High price Low price Close price 

count 1,840 1,840 1,840 1,840 

mean 19,484.23 20,057.92 18,836.06 19,494.10 

std 17,284.92 17,778.82 16,722.02 17,281.56 

min 3,189.02 3,276.50 2,817.00 3,189.02 

max 67,606.96 69,198.70 66,300.00 67,606.96 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 1472 80 14,315.33 14,123.20 3,189.02 63,645.05 1.147 Highly skewed 

Validation set 184 10 49,474.80 8,314.67 35,043.73 67,606.96 0.652 
Moderately 

skewed 

Test set 184 10 30,844.89 8,992.62 18,970.79 47,418.5 0.418 
Approximately 

symmetric 

Whole data set 1840 100 19,484.23 17,284.92 3,189.02 67,606.96 1.623 Highly skewed 
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Figure  12 Time series plot of open prices with data splitting 

  

 

Figure  13 Distribution of open price with data splitting 

4.2 Model performance 
This section shows the forecasting performance of the LSTM and GRU, which were 

averaged across various sliding window sizes of 3, 5, 7, 15, and 30 days. Table 12 shows the 
model performance in terms of MAPE, which ranges between 4.29% - 7.92%. Overall, LSTM has 
an average MAPE over the OHLC prices of 6.99%, while GRU’s MAPE is 4.96%. Table 13 shows the 
performance in terms of RMSE, ranging from 1,603.14 – 2,729.23. Overall, RMSE of LSTM is 
2,458.21, and RMSE of GRU is 1,857.86. Therefore, the forecasting errors of the GRU are generally 
lower than the errors of the LSTM in our case. 
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Table  12 Average and standard deviation of MAPE (%) on test set for LSTM and GRU. 

Algorithm 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 

LSTM 6.03 2.07 7.29 2.53 6.72 LSTM 6.03 2.07 7.29 2.53 

GRU 4.29 1.01 5.30 0.93 4.73 GRU 4.29 1.01 5.30 0.93 

Table  13 Average and standard deviation of RMSE on test set for LSTM and GRU. 

Algorithm 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 

LSTM 2162.40 636.56 2514.33 736.78 2426.87 630.73 2729.23 783.55 2458.21 675.31 

GRU 1603.14 294.81 1925.27 269.93 1838.87 276.33 2064.17 251.53 1857.86 304.30 

 

 
4.3 Model performance improvement with various normalization techniques 

To evaluate the effect of normalization methods on forecasting performance, LSTM and 
GRU models were trained and tested on the normalized data with various sliding window sizes. 
The average and standard deviation of MAPE and RMSE for the OHLC prices over various sliding 
window sizes of LSTM are shown in Table 14-15 and GRU in Table 16-17, respectively. 
Furthermore, the overall average RMSE of each normalization technique and model algorithm is 
also illustrated in Figure 14, and each price average RMSE is presented in Figure 15. 

From Table 14-17, note that all sliding window normalization techniques (the last three 
rows) yield significantly lower errors than the whole set normalization techniques (the first three 
rows) for both LSTM and GRU. Moreover, the window relative change normalization yields the 
lowest average errors in terms of MAPE and RMSE for both LSTM and GRU techniques in most 
cases. Nonetheless, since the errors of all three sliding window normalization techniques are 
relatively close, it is not obvious if any sliding window normalization technique definitely 
dominates the others. However, it can be concluded that the sliding window normalization 
techniques, in general, significantly outperform the whole set normalization techniques in terms 
of forecasting performance. 
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Table  14 LSTM average and standard deviation of MAPE (%) on the test set 
Normalization 

Technique 
open high low close overall 

Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 6.13 1.69 7.51 2.52 5.46 1.44 7.54 2.00 6.66 2.02 

Whole set min-max 6.03 2.07 7.29 2.53 6.72 2.20 7.92 2.80 6.99 2.33 

Whole set  
relative change 

11.43 3.38 12.36 3.89 10.97 2.79 11.98 3.42 11.69 3.16 

Window z-score 1.98 1.17 2.13 0.20 2.50 0.36 2.96 0.20 2.40 0.69 

Window min-max 2.04 1.16 2.10 0.13 2.31 0.22 2.67 0.10 2.28 0.60 

Window 
relative change 

1.47 0.50 2.31 0.33 2.44 0.33 3.00 0.31 2.31 0.66 

Table  15 LSTM average and standard deviation of RMSE on the test set 
Normalization 

technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 
Whole set  

z-score 
2054.90 347.37 2485.50 599.22 1958.31 298.74 2552.45 417.41 2262.79 476.83 

Whole set  
min-max 

2162.40 636.56 2514.33 736.78 2426.87 630.73 2729.23 783.55 2458.21 675.31 

Whole set 
relative change 

3702.02 957.95 4079.99 1135.40 3556.16 784.95 3975.25 975.30 3828.35 916.84 

Window z-
score 

953.24 711.31 825.90 104.79 989.94 73.21 1172.31 71.33 985.35 356.64 

Window 
min-max 

989.43 720.34 818.38 78.31 948.23 56.78 1094.38 43.59 962.60 349.14 

Window 
relative change 

578.06 168.41 862.01 89.78 965.24 85.99 1190.87 76.72 899.04 247.99 

Table  16 GRU average and standard deviation of MAPE (%) on the test set 
Normalization 

Technique 
open high low close overall 

Average SD Average SD Average SD Average SD Average SD 

Whole set Z-Score 5.62 1.84 6.42 1.30 4.91 0.41 6.40 0.52 5.84 1.25 

Whole set Min-Max 4.29 1.01 5.30 0.93 4.73 0.97 5.53 0.94 4.96 1.02 
Whole set  

relative change 
11.36 6.30 11.89 6.42 10.64 5.18 11.93 5.24 11.46 5.36 

Window Z-Score 1.84 1.28 2.14 0.34 2.42 0.21 2.96 0.47 2.34 0.78 

Window Min-Max 1.93 1.16 2.06 0.14 2.35 0.18 2.74 0.19 2.27 0.64 
Window 

Relative change 
1.46 0.45 2.25 0.28 2.37 0.29 2.94 0.24 2.25 0.62 

 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

Table  17 GRU average and standard deviation of RMSE the test set 
Normalization 

technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 
Whole set  

z-score 
2277.30 652.74 2627.58 488.66 2091.83 190.67 2625.52 250.85 2405.56 465.62 

Whole set 
min-max 

1603.14 294.81 1925.27 269.93 1838.87 276.33 2064.17 251.53 1857.86 304.30 

Whole set 
relative change 

3906.07 2073.65 4225.82 2119.07 3682.77 1590.14 4075.87 1684.74 3972.63 1738.81 

Window z-
score 

912.87 784.69 845.45 172.52 992.33 78.44 1212.84 232.24 990.87 410.71 

Window  
min-max 

980.86 782.37 815.17 89.31 942.34 40.62 1098.85 61.98 959.31 377.48 

Window 
relative change 

560.21 153.14 834.16 62.85 930.75 72.73 1156.94 45.58 870.52 235.69 

 

 
Figure  14 Box plot showing average RMSE of OHLC with various normalization techniques in GRU and LSTM  

 

 
Figure  15 Box plot showing each price RMSE with various normalization techniques in GRU and LSTM 
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4.4 Impact of normalization on data characteristics 
This section explores why sliding window normalization techniques seem to outperform 

whole set normalization techniques by observing data characteristics, particularly the model 
input distribution and the sliding window for model input. 

4.4.1 Impact of normalization on data distribution 
This section explores why the sliding window normalization techniques seem to 

outperform the whole set normalization ones by observing the skewness of data distributions, 
especially the model input distribution. 

Figure 16a-16c show a sample of open-price input distributions of the training, validation, 
and test sets with a sliding window size of 7 days before normalization. The input distributions 
investigated in this section are derived from the sliding window of the model input, which is 
combined into a single column. Note that the input distribution of each set differs. The training 
set is highly skewed. The validation and test sets are both moderately skewed. 

   
(a) (b) 

 
(c) 

Figure  16 Sample input distribution before normalization of (a) training set (b) validation set (c) test set 

Tables 18-20 illustrate the skewness of data distribution after various normalization 
techniques on the training set, the validation set and the test set, respectively. The skewness 
values shown in the table are root mean square (RMS) values of five skewness values when the 
window sizes are 3, 5, 7, 15, 30 days to provide an overall view of skewness across various 
window sizes. Additionally, sample box plots of open price skewness (magnitude) for the training 
set, validation set, and test set of input distribution with various normalization techniques are 
shown in Figures 17-19. 
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Table  18 Average of training set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 1.136 1.134 1.120 1.139 

Whole set z-score 1.136 1.134 1.120 1.139 
Whole set min-max 1.136 1.134 1.120 1.139 

Whole set relative change 1.136 1.134 1.120 1.139 

Window z-score 0.053 0.099 0.057 0.054 
Window min-max 0.047 0.110 0.055 0.051 

Window relative change 0.333 0.375 0.291 0.334 

Table  19 Average of validation set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 0.676 0.645 0.594 0.678 

Whole set z-score 0.676 0.645 0.594 0.678 
Whole set min-max 0.676 0.645 0.594 0.678 

Whole set relative change 0.676 0.645 0.594 0.678 

Window z-score 0.084 0.136 0.050 0.084 
Window min-max 0.120 0.164 0.110 0.116 

Window relative change 0.141 0.151 0.117 0.145 

Table  20 Average of test set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 0.421 0.378 0.422 0.425 

Whole set z-score 0.421 0.378 0.422 0.425 
Whole set min-max 0.421 0.378 0.422 0.425 

Whole set relative change 0.421 0.378 0.422 0.425 

Window z-score 0.132 0.152 0.040 0.130 
Window min-max 0.137 0.144 0.081 0.144 

Window relative change 0.455 0.456 0.457 0.472 

 
Figure  17 Skewness of training set open price input distribution with various normalization techniques 
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Figure  18 Skewness of validation set open price input distribution with various normalization techniques 

 
Figure  19 Skewness of test set open price input distribution with various normalization techniques 

Table 18 displays the training set skewness before and after each normalization 
technique. Note that the data before normalization are highly skewed. Moreover, the whole set 
normalization techniques do not affect the distribution in terms of skewness at all. On the 
contrary, the skewness of the data distribution are all lower after the sliding window 
normalization techniques. In fact, after all three window normalization techniques, the data 
distributions are close to symmetric because their skewness values are between -0.5 and 0.5. 
Samples of transformed data distributions after various normalization techniques are shown in 
Figure 20a-20f. Note that all three sliding window normalization techniques help decrease 
skewness of highly skewed data. 

Table 19 and 20 show similar impact on data distributions after normalization on the 
validation set and the test set. Again, the whole set normalization techniques do not change the 
distribution skewness, while the sliding window techniques help reduce the skewness for all 
distributions to almost symmetric. However, we note that the window relative change 
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normalization technique seems to have less impact in reducing the skewness, especially on the 
test set, when compared to the window z-score and the window min-max techniques. 

The results in this section illustrate that the sliding window normalization techniques 
generally lead to more symmetric (less skewness) in the input data distribution than the whole 
set normalization. Potentially due to this impact, more symmetric input distributions then lead to 
better forecasting performances in both LSTM and GRU models. 

 
 (a) (b) (c) 

      
 (d)  (e) (f) 

Figure  20 Sample input distribution after normalization by (a) whole set z-score (b) whole set min-max (c) whole 
set relative change (d) window z-score (e) window min-max (f) window relative change 

4.4.2 Impact of normalization on sliding window 
In order to provide a clearer understanding of why sliding window normalization 

techniques seem to outperform whole set normalization, we also examined the statistical 
properties of sliding windows by plotting the mean and standard deviation of the sliding windows 
over time. Figure 21 displays samples of the sliding window mean for the open price using 
various normalization techniques with a window size of 7 days. Figure 22 shows samples of the 
sliding window standard deviation for the open price using the same techniques and window 
size. Note that sliding window mean and sliding window standard deviation for whole set 
normalization are equivalent to moving average and moving standard deviation, respectively. 

According to Figures 21-22, it was found that sliding window statistical properties of 
normalized data using sliding window normalization in each sliding window have a stable 
characteristic, as observed by the value of sliding window mean and sliding window standard 
deviation that do not significantly change over time. Additionally, the explored statistical 
properties in each data set have similar values. However, in the case of whole set normalization, 
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sliding window properties vary considerably over time, and the sliding window properties of each 
data set are significantly different, particularly for sliding window mean.  

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f)  

Figure  21 Sliding window mean after normalization by (a) whole set z-score (b) whole set min-max (c) whole set 
relative change (d) window z-score (e) window min-max (f) window relative change 

 
 (a) (b) 
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 (c) (d) 

 
 (d) (e) 

Figure  22 Sliding window standard deviation after normalization by (a) whole set z-score (b) whole set min-max 
(c) whole set relative change (d) window z-score (e) window min-max (f) window relative change 

To further elaborate the findings presented in Figures 21 and 22, we investigated the 
characteristics of three sliding windows from each dataset using all the normalization techniques 
under consideration. In addition, we used open price as representative of OHLC. Figure 23 
presents a time series plot of the open price, along with selected sliding windows for 
observation. We selected an example of nine sliding windows including different characteristics 
(moving upward, moving downward, and moving sideways), with the specified time range for each 
window provided in Table 21.  

Figures 24-27 showcase time series plots of the open price sliding window for the model 
input using various normalization techniques at each observation window with a sliding window 
size of 7 days. These include without normalization, z-score normalization, min-max 
normalization, and relative change normalization. Additionally, Figures 25-27 display both the 
whole set normalization approach and the sliding window normalization approach.  

Figures 28a-28d present box plots of open price sliding window with various 
normalization at each observation window. These also include without normalization, z-score 
normalization, min-max normalization, and relative change normalization. For Figures 28b-28d, 
each normalization technique is shown with both the whole set normalization approach and the 
sliding window normalization approach.  
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According to Figures 25 – 27 and Figures 28b – 28d, we observed that the sliding window 
of the whole set normalization technique showed a significant difference in the range of each 
observation sliding window, particularly across the dataset. Conversely, the range of each 
observation point under the sliding window normalization technique was found to be relatively 
similar.  

The findings of this section indicate that the sliding window normalization techniques 
have more stable sliding window statistical characteristics. This is evidenced by the sliding 
window mean, standard deviation, and range of each sliding window used as input for the model. 
These stable characteristics lead to a similar sequence for prediction, which ultimately results in 
better forecasting performance in both LSTM and GRU models when using sliding window 
normalization.  

 
Figure  23 Time series plot of open price with selected sliding windows for observation 

Table  21 Time range of the observation windows 
Number Set Start date End date 

1 

Training set 

2018-01-20 2018-01-26 

2 2019-02-20 2019-02-26 

3 2021-01-01 2021-01-07 

4 

Validation set 

2021-09-10 2021-09-16 

5 2021-10-30 2021-11-05 

6 2021-12-20 2021-12-26 

7 

Test set 

2022-03-19 2022-03-25 

8 2022-06-10 2022-06-16 

9 2022-07-10 2022-07-16 
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Figure  24 Time series plot of open price sliding window without normalization at each observation window 

 

Figure  25 Time series plot of open price sliding window with z-score normalization techniques at each 
observation window 
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Figure  26 Time series plot of open price sliding window with min-max normalization techniques at each 
observation window 

 

Figure  27 Time series plot of open price sliding window with relative change normalization techniques at each 
observation window 
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 (a) (b) 

 
 (c) (d) 

Figure  28 Box plot of open price sliding window with various normalization at each observation window a) 
without normalization b) z-score normalization c) min-max normalization d) relative change normalization 

In summary, our analysis reveals the following findings. Firstly, the sliding window 
normalization techniques tend to result in a more symmetric input data distribution, as 
compared to the whole set normalization technique. This increased symmetry potentially 
explains the improved forecasting performance observed in both the LSTM and GRU models. 
Secondly, the sliding window normalization approach ensures that the models observe a similar 
sequence for prediction, which contributes to superior predictive performance when compared 
to models using the whole set normalization approach.  
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4.5 Exploring candlestick price prediction method 
This section compares model performance with different candlestick construction methods: 

OHLC method and CULR method. Note that the results of OHLC are shown in section 4.1 - 4.3. 

4.5.1 Exploring the model with CULR feature 
4.5.1.1 Exploratory data analysis for CULR 

After converting OHLC features to CULR features, the data was explored through a time 
series plot, as illustrated in Figure 29a-29d, and a basic statistical summary for each feature was 
generated and presented in Table 22. Our analysis revealed that the characteristics of each 
feature were not similar, which differs from the OHLC feature. In addition, we present the 
decomposition plot of close price, upper shadow, lower shadow, and real body in Figures 30 to 
33, respectively. 

 
 (a) (b)  

 
  (c) (d) 

Figure  29 Time series plot of CULR (a) close price (b) upper shadow (c) lower shadow (d) real body 

Table  22 Summary statistics of each feature 
Statistical property Close Upper shadow Lower shadow Real body 

count 1840 1840 1840 1840 

mean 19,494.10 289.56 373.9 9.87 

std 17,281.56 478.46 628.56 1,016.82 

min 3,189.02 0 0 -7,116.94 

max 67,606.96 10,950.51 8,246.77 7,602.08 
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Figure  30 The decomposition plot of close price 

  
Figure  31 The decomposition plot of upper shadow 

  
Figure  32 The decomposition plot of lower shadow 
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Figure  33 The decomposition plot of upper shadow 

 Figures 34 to 37 display the time series plot and histogram of the close price, upper 
shadow, lower shadow, and real body, respectively, after dividing the data into three sets: 
training set, validation set, and test set. Each figure comprises subfigures that illustrate the time 
series plot and histogram of each set. Furthermore, Tables 23 to 26 provide a basic statistical 
summary of each CULR feature after dividing the data. 

Table  23 Summary statistics for close price after data splitting 

Table  24 Summary statistics for upper shadow after data splitting 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 1472 80 14,344.11 14,146.35 3,189.02 63,649.71 1.15 Highly skewed 

Validation set 184 10 49,432.64 8,347.62 35,043.73 67,606.96 0.64 
Moderately 

skewed 

Test set 184 10 30,755.42 8,992.05 18,970.79 47,418.50 0.42 
Approximately 

symmetric 

Whole data set 1840 100 19,494.10 17,281.56 3,189.02 67,606.96 1.62 Highly skewed 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 1472 80 232.26 469.61 0.00 10,950.51 0.92 
Moderately 

skewed 

Validation set 184 10 628.36 516.10 1.28 2,649.08 0.95 
Moderately 

skewed 

Test set 184 10 409.12 324.46 3.10 1,798.30 0.87 
Moderately 

skewed 

Whole data set 1840 100 289.56 478.46 0.00 10,950.51 1.07 
Highly 

skewed 
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Table  25 Summary statistics for lower shadow after data splitting 

Table  26 Summary statistics for real body after data splitting 

 

   
 (a) (b) 

  
 (c) (d) 
Figure  34 Visualization of close price with data splitting (a) Time series plot (b) Histogram of training set  

(c) Histogram of validation set (d) Histogram of test set 
 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 1472 80 315.03 593.33 0.00 8,001.14 1.00 
Highly 

skewed 

Validation set 184 10 820.84 875.76 0.02 8,246.77 0.90 
Moderately 

skewed 

Test set 184 10 397.96 379.84 4.82 2,389.70 0.80 
Moderately 

skewed 

Whole data set 1840 100 373.90 628.56 0.00 8,246.77 1.06 
Highly 

skewed 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 1472 80 28.79 876.25 -7,116.94 7,602.08 0.06 
Approximately 

symmetric 

Validation set 184 10 -42.16 1,698.90 -5,819.59 4,325.21 -0.09 
Approximately 

symmetric 

Test set 184 10 -89.47 1,147.38 -4,093.20 5,482.90 -0.09 
Approximately 

symmetric 

Whole data set 1840 100 9.87 1,016.82 -7,116.94 7,602.08 0.00 
Approximately 

symmetric 
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 (a) (b) 

 
 (c) (d) 

Figure  35 Visualization of upper shadow with data splitting (a) time series plot (b) histogram of training set (c) 
histogram of validation set (d) histogram of test set 

 
 (a) (b) 

 
 (c) (d) 

Figure  36 Visualization of lower shadow with data splitting (a) time series plot (b) histogram of training set (c) 
histogram of validation set (d) histogram of test set 
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 (a) (b) 

 
 (c) (d) 

Figure  37 Visualization of real body with data splitting (a) time series plot (b) histogram of training set (c) 
histogram of validation set (d) histogram of test set 

 

4.5.1.2 Model performance with CULR feature 
This section shows the forecasting performance of the LSTM and GRU using CULR feature 

with various normalization techniques, which were averaged across various sliding window sizes 
of 3, 5, 7, 15, and 30 days. Note that All the illustrations presented in this section depict the 
performance of the model after the conversion to OHLC prices. The average and standard 
deviation of RMSE and MAPE on the test set of LSTM are shown in Tables 27-28 and GRU in 
Tables 29-30, respectively. Furthermore, Figure 38 illustrates the average RMSE for each price 
with various normalization techniques and model algorithms, whereas Figure 39 presents the 
overall average RMSE. 

Table 27 shows the performance of LSTM in terms of MAPE, with an average value 
ranging from 1.58% to 9.42%. The best model performance was achieved using the window z-
score technique, with an overall MAPE of 2.40%. Additionally, Table 28 presents the LSTM’s 
performance in terms of RMSE, ranging from 658.55 to 3066.23. The best forecasting error was 
also achieved using the same technique, with an overall RMSE of 974.90. 

Table 29 displays the performance of GRU in terms of MAPE, with an average value 
ranging from 1.54% to 5.20%. The window z-score technique yielded the best model 
performance, with an overall MAPE of 2.29%. Furthermore, Table 30 presents LSTM’s 
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performance in terms of RMSE, with values ranging from 626.45 to 2005.53. The best forecasting 
error was also achieved using the window z-score technique, with an overall RMSE of 925.08. 

From Table 27–30, it is obvious that the sliding window normalization techniques yield 
significantly lower errors than the whole set normalization techniques for both LSTM and GRU. As 
a result, the sliding window normalization with CULR features also outperforms the whole set 
normalization same as the model with OHLC features. Furthermore, it appears that LSTM 
underperforms compared to GRU for the whole set normalization approach. While the sliding 
window normalization techniques are relatively close, it is not obvious if any technique definitely 
dominates the others. However, the window z-score technique seems to yield the best 
forecasting error. 

Table  27 LSTM average and standard deviation of MAPE on the test set 
Normalization 

Technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 5.44 2.39 5.67 2.26 6.30 2.22 6.47 2.08 5.97 2.10 

Whole set min-max 8.45 3.74 8.12 3.65 9.42 4.16 9.29 4.21 8.82 3.66 

Window z-score 1.58 0.51 2.24 0.52 2.69 0.56 3.09 0.49 2.40 0.75 

Window min-max 1.96 0.49 2.30 0.34 2.81 0.70 2.98 0.38 2.51 0.62 

Table  28 LSTM average and standard deviation of RMSE on the test set 
Normalization 

Technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 
Whole set z-

score 
1997.86 806.52 2070.19 820.56 2282.69 671.95 2344.47 675.03 2173.80 701.03 

Whole set min-
max 

2805.03 968.27 2751.58 967.89 3066.23 1068.58 3053.82 1114.17 2919.16 957.92 

Window z-
score 

658.55 195.98 908.03 168.06 1098.59 192.85 1234.42 162.82 974.90 276.96 

Window min-
max 

740.48 137.87 870.37 62.84 1109.18 157.27 1199.61 79.10 979.91 216.11 

Table  29 GRU average and standard deviation of MAPE on the test set 
Normalization 

Technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 3.84 1.21 4.12 1.25 4.39 0.84 4.62 0.73 4.24 0.99 

Whole set min-max 4.74 0.81 4.74 0.82 5.20 0.64 5.15 0.51 4.96 0.68 

Window z-score 1.54 0.36 2.07 0.29 2.60 0.32 2.94 0.20 2.29 0.61 

Window min-max 2.06 0.53 2.30 0.35 2.75 0.41 2.93 0.22 2.51 0.51 
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Table  30 GRU average and standard deviation of RMSE on the test set 
Normalization 

Technique 
Open High Low Close Overall 

Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 1473.69 444.55 1599.29 518.50 1679.75 315.83 1783.09 318.19 1633.96 392.43 
Whole set min-

max 
1847.68 371.71 1859.99 422.03 2005.53 269.14 2000.61 274.23 1928.45 321.79 

Window z-score 626.45 153.33 816.40 108.29 1075.00 99.68 1182.47 55.17 925.08 245.10 

Window min-max 799.14 204.39 888.89 130.34 1112.06 92.10 1177.63 39.88 994.43 199.83 

 

 

 
Figure  38 Box plot showing RMSE of each price with various normalization techniques on CULR Method 

 
Figure  39 Box plot showing average RMSE of OHLC price with various normalization techniques on CULR Method 
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4.5.2 Forecasting error comparison 
This section presents a comparison of model performance in terms of forecasting error 

(RMSE), which is averaged across various sliding window sizes of 3, 5, 7, 15, and 30 days, using 
different features. Figure 40 displays the RMSE for each price of the OHLC method compared to 
the RMSE of the CULR method with various normalization techniques and algorithms (GRU and 
LSTM). Figure 41 presents the average RMSE of OHLC prices for both OHLC and CULR methods 
using the same comparison approach. 

Based on Figures 40 and 41, it was found that there is no significant difference in the 
forecasting error between the OHLC method and the CULR method for the sliding window 
normalization approach. However, for whole set normalization, the forecasting error varies 
depending on the normalization technique used. The CULR method performs better for the z-
score and relative change techniques, while the OHLC method performs better for the min-max 
technique. Additionally, the sliding window normalization approach outperforms the whole set 
normalization approach for both the OHLC method and the CULR method. Among the 
investigated techniques, the window relative change technique using the OHLC method 
performed the best in terms of RMSE for both the LSTM and GRU algorithms, based on the 
average across sliding window sizes. However, the window relative change normalization was not 
the best when considered for a single sliding window size in our case. The best RMSE when 
considered for a single sliding window size is shown in section 4.5.4. 

 

 
Figure  40 Box plot showing each price RMSE with various normalization techniques for candlestick prediction 

method performance comparison 
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Figure  41 Box plot showing average RMSE of OHLC with various normalization techniques for candlestick price 

prediction method performance comparison. 

 

4.5.3 Accuracy comparison 
This section compares the model performance of two candlestick prediction methods in 

terms of directional prediction. After predicting the OHLC price or converting the CULR prediction 
to OHLC, the price (number) is converted to price movement (category) or candlestick price 
direction: bullish (upward) and bearish (downward). 

Table 31 displays the average and standard deviation of accuracy on the test set using 
different candlestick prediction methods and algorithms (LSTM and GRU) average of various 
sliding window sizes of 3, 5, 7, 15, and 30 days, as well as different normalization techniques. The 
average accuracy range is 0.45 to 0.55, with the OHLC method achieving the highest average 
accuracy of 0.55 using the GRU model and sliding window min-max normalization technique. 
Additionally, Figure 42 illustrates the test set accuracy of each candlestick prediction method 
with various normalization techniques and algorithms. 

Based on Table 31 and Figure 42, it was observed that there is no significantly 
outperforming method in terms of accuracy. However, the OHLC method shows slightly better 
performance than the CULR method, except for the whole set min-max normalization technique. 
Additionally, the sliding window normalization approach appears to be slightly better than the 
whole set approach. Among the investigated techniques, the window min-max technique using 
the OHLC Method performed the best in terms of direction accuracy for both LSTM and GRU 
algorithms. 
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Table  31 Average and standard deviation of accuracy on the test set 

Normalization Technique 

OHLC Method CULR Method 

GRU LSTM GRU LSTM 

Average SD Average SD Average SD Average SD 

whole set min-max 0.47 0.04 0.47 0.04 0.48 0.06 0.45 0.01 

whole set z-score 0.48 0.04 0.46 0.01 0.45 0.01 0.45 0.01 

whole set relative change 0.51 0.05 0.48 0.04 - - - - 

Window min-max 0.55 0.04 0.54 0.06 0.49 0.04 0.47 0.03 

Window z-score 0.51 0.05 0.50 0.04 0.50 0.05 0.47 0.02 

Window relative change 0.50 0.02 0.47 0.03 - - - - 

 

 
Figure  42 Box plot of test set accuracy with various candlestick prediction method 

 

4.5.4 The best model performance 
This section explores the best model performance by analyzing the average RMSE of 

OHLC prices and direction accuracy of the test set across different sliding window sizes and 
normalization techniques. Unlike the previous sections, which explored the average across sliding 
windows to choose the best technique, this section evaluates the performance across various 
sliding window sizes to identify the best-performing model. 

When examining the forecasting error, it was found that the best test average RMSE was 
767.71 with an average MAPE of 1.95%. The best test set average RMSE was achieved by the GRU 
algorithm using the OHLC method with window z-score normalization, and a sliding window size 
of 15 days. These results are presented in Table 32, which displays the RMSE and MAPE of each 
predicted OHLC value, as well as the average of the best test set RMSE. Additionally, Table 33 
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presents the classification metrics of the best test set RMSE, with an accuracy of 50% observed in 
this model. 

Table  32 RMSE and MAPE of best test set RMSE 
Error Open High Low Close Average 

RMSE 419.56 680.96 919.07 1051.25 767.71 

MAPE (%) 1.06 1.86 2.24 2.65 1.95 

Table  33 Classification metrics of best test set RMSE 
 Precision Recall F1-Score Support 

bearish 0.56 0.35 0.43 91 

bullish 0.47 0.68 0.56 78 

accuracy 0.50 

macro avg 0.52 0.52 0.50 169 

weighted avg 0.52 0.50 0.49 169 

 
The best test set accuracy was found to be 60%, achieved by the GRU algorithm using 

the OHLC method with window min-max normalization and a sliding window of 7 days. 
Additional classification metrics can be found in Table 35, while Table 34 displays the forecasting 
errors. 

Table  34 RMSE and MAPE of best test set Accuracy 
Error Open High Low Close Average 

RMSE 486.30 775.19 915.62 1073.91 812.76 
MAPE (%) 1.16 2.04 2.19 2.60 2.00 

Table  35 Classification metrics of best test set Accuracy 
 Precision Recall F1-Score Support 

bearish 0.63 0.61 0.62 96 

bullish 0.56 0.58 0.57 81 

accuracy 0.60 

macro avg 0.60 0.60 0.60 177 

weighted avg 0.60 0.60 0.60 177 
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4.6 Exploring effect of sliding window size 
This section explores the effect of sliding window size on forecasting performance, 

specifically RMSE. We investigated both candlestick prediction methods: OHLC Method and CULR 
Method, using LSTM and GRU algorithms, as well as various normalization techniques. 

Figure 43 displays the effect of sliding window size on RMSE with various normalization 
techniques for the OHLC method, while Figure 45 displays the same for the CULR method. 
According to Figures 43 – 45, there are two types of characteristic graphs observed in the 
investigated techniques: the uptrend graph and the graph with a turning point. It was found that 
most of the performance curves had the characteristic of a graph with a turning point. However, 
there was also an unexplainable characteristic graph observed for the performance curve of the 
whole set relative change with GRU. A summary of these characteristics is presented in Table 36. 

According to Table 36, the normalization techniques with a graph displaying a turning 
point were whole set z-score, window z-score, and window min-max. On the other hand, the 
techniques with an uptrend graph were whole set min-max (almost) and window relative change. 

 

 
 (a) (b) 

 
 (c) (d) 
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 (e) (f) 

Figure  43 Visualization of the effect of sliding window size on RMSE with various normalization techniques for 
the OHLC method (a) whole set z-score (b) whole set min-max (c) whole set relative change (d) window z-score 

(e) window min-max (f) window relative change 

 

 
 (a) (b) 

 
 (c) (d) 

Figure  44 Visualization of the effect of sliding window size on RMSE with various normalization techniques for 
the CULR method (a) whole set z-score (b) whole set min-max (c) window z-score (d) window min-max 
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Table  36 Summary of the sliding window effect on the forecasting performance characteristic  

Normalization technique 

OHLC method CULR method 

GRU LSTM GRU LSTM 

Uptrend 
Turning 
point 

Uptrend 
Turning 
point 

Uptrend 
Turning 
point 

Uptrend 
Turning 
point 

Whole set z-score   ✔   ✔   ✔   ✔ 
Whole set min-max ✔   ✔     ✔ ✔   

Whole set relative change cannot explain   ✔ - - 

Window z-score   ✔   ✔   ✔   ✔ 
Window min-max   ✔   ✔   ✔   ✔ 

Window relative change ✔   ✔   - - 

Note ✔ means the technique has that characteristic 

 

4.7 Performance comparison of proposed method with previous research 
models 

This section compares the forecasting performance of our best model with the previous 
research models. We compared the forecasting performance by the test set normalized root 
mean square (NRMSE) because most of the research represents the forecasting error by RMSE or 
MSE, which are different scales since they used different time series ranges. The NRMSE can be 
calculated by equation 4.1 or by equation 4.2. 
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We selected the research about cryptocurrency price prediction from chapter 2.2 

literature review which predicted the daily price, and our best average RMSE of OHLC. The 
summary of the comparison is presented in Table 37. Note that for the paper that does not 
specify split ratio, we assume they used 80:20 for data splitting. 

According to Table 37, although our model does not have the best NRMSE performance 
when compared with all investigated research, it has better performance when compared to 
models used by other researchers with data ranges similar to our study (no. 5-8). 
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Table  37  A comparison of our purposed model with the previous research model   

# Authors Data Best model 
Normalization 

technique 
Split ratio RMSE 

Test set 
mean 

NRMSE 
(%) 

1 
(Muniye et al., 
2020) 

Bitcoin daily price 
(Jan 2014 to Feb 
2018) 

- LSTM 
min-max 
(normalized 
before split) 

80/20 0.045 * 
6295.51 
(0.32) 

13.94 

2 
(Kavitha et al., 
2020) 

Bitcoin daily price 
(Jun 2012 to July 
2019) 

- LSTM min-max 
Does not say 
(assume 
80/20) 

95.067 7355.14 1.29 

3 
(Phaladisailoed 
& Numnonda, 
2018) 

Bitcoin daily price 
(Jan 2012 to Jan 
2018) 

- GRU min-max 70/30 0.0044 * 
3675.07 
(3.07) 

0.15 

4 
(McNally et al., 
2018) 

Bitcoin daily close 
price (August 2013 to 
July 2016) 

- RNN z-score 80/20 5.45% 2637.3 5.45 

5 
(Hansun et al., 
2022) 

Bitcoin daily close 
price (Sept 2014 to 
Oct 2021) 

- GRU min-max 80/20 1777.31 30421.02 5.84 

6 

(Tanwar et al., 
2021) 

Daily price of 
- Litecoin (Aug 2016 
– May 2021) 
- Zcash (Oct 2016 – 
May 2021) 

- LSTM-GRU 
hybrid 

z-score 80/20 

Zcash 
0.07* 
Litecoin 
0.14* 

Zcash 
105.23 
(-0.55) 
Litecoin 
125.17 
(0.68) 

Zcash 
12.44 
Litecoin 
21.02 

7 
(Vanderbilt et 
al., 2020) 

Bitcoin daily price  
(Jan 2015 – Apr 2020) 

- Gated 
Recurrent 
Unit (GRU) 

min-max 80/20 403.23 8269.59 4.87 

8 

(Alkhodhairi et 
al., 2021) 

Bitcoin daily OHLC 
price (Jan 2017 to 
Aug 2020) 

- Gated 
Recurrent 
Unit (GRU) 
(for historical 

prediction) 

decimal 
scaling 

80/20 0.0037* 
8674.95 
(0.09) 

4.27 

9 
proposed 
model 

Bitcoin daily price 
(Aug 2017 to Aug 
2022) 

- Gated 
Recurrent 
Unit (GRU) 

window z-
score 

80/10/10 767.71 30,844.89 2.49 

Note * is RMSE of normalized data, and () is the mean of normalized data 
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4.8 Exploring model performance with before the cryptocurrency boom (before 
Aug 18, 2020) 

To validate the superior performance of the sliding normalization approach over the 
whole set normalization, we investigated the model’s performance in other scenarios by 
exploring fewer volatile data. This section focused exclusively on forecasting errors and tested 
the normalization approaches using OHLC price and Bitcoin price data from the Cryptocurrency 
boom period (before Aug 18, 2020). Note that the experiments in this section also split the data 
into three sets with the same proportions as when exploring the full range of data. 

 

4.8.1 Exploratory data analysis for data before Aug 18, 2020 
This section shows the exploratory data analysis for data before August 18, 2020. Figure 

45 shows the time series plot of each price. Table 38 shows basic summary statistics for each 
price. According to Figure 45 and Table 38 all components of the candlestick price, namely the 
OHLC prices, obviously moved in the same direction during these periods. The finding is also the 
same as when exploring the full range of data. 

After splitting the data into three sets, the data was explored by the time series plot and 
histogram using open price as representative of OHLC, as shown in Figure 46. In addition, Table 
39 shows a basic statistical summary after splitting the data. 

 

 
Figure  45 Time series plot of OHLC prices before Aug 18, 2020 
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Table  38 Summary statistics of each price 
Statistics Open price High price Low price Close price 

count 1,098 1,098 1,098 1,098 

mean 7,768.81 8,003.09 7,495.66 7,775.89 

std 2,728.89 2,854.13 2,542.98 2,730.23 

min 3,189.02 3,276.50 2,817.00 3,189.02 

max 19,102.66 19,798.68 18,510.00 19,102.66 

Table  39 Summary statistics for open price before Aug 18, 2020 after data splitting 

Set Size (rows) Percentage (%) Mean Std Min Max Skewness 
Skewness 

interpretation 

Training set 878 80 7,488.70 2,894.52 3,189.02 19,102.66 0.25 
Approximately 

symmetric 

Validation set 110 10 8,026.34 1,429.85 4,762.28 10,356.27 -0.35 
Approximately 

symmetric 

Test set 110 10 9,747.11 918.35 8,560.73 11,921.32 1.06 Highly skewed 

Whole data set 1098 100 7,768.81 2,728.89 3,189.02 19,102.66 0.11 
Approximately 

symmetric 

  

 
 (a) (b) 

 
 (c) (d) 

Figure  46 Visualization of open price before Aug 18, 2020 with data splitting (a) time series plot (b) histogram of 
training set (c) histogram of validation set (d) histogram of test set 
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4.8.2 Model performance with various normalization techniques 
To validate the superior performance of the sliding normalization approach over the 

whole set normalization, LSTM and GRU models were also trained and tested on the normalized 
data with various sliding window sizes of 3, 5, 7, 15, 30 days same as when exploring full range of 
data. The average and standard deviation of MAPE and RMSE for the OHLC prices over various 
sliding window sizes of LSTM are shown in Table 40-41 and GRU in Table 42-43, respectively. 
Furthermore, the overall average RMSE of each normalization technique and model algorithm is 
also illustrated in Figure 47, and each price average RMSE is presented in Figure 48. 

From Table 40-43, the finding also same as part 4.3 that all sliding window normalization 
techniques (the last three rows) yield significantly lower errors than the whole set normalization 
techniques (the first three rows) for both LSTM and GRU. Moreover, the window relative change 
normalization yields the lowest average errors in terms of MAPE and RMSE for both LSTM and 
GRU techniques in most cases. Nonetheless, since the errors of all three sliding window 
normalization techniques are relatively close, it is not obvious if any sliding window normalization 
technique definitely dominates the others. However, it can be concluded that the sliding window 
normalization techniques, in general, significantly outperform the whole set normalization 
techniques in terms of forecasting performance. 

Table  40 LSTM average and standard deviation of MAPE (%) on the test set using data before 
Aug 18, 2020. 

Normalization 
technique 

Open High Low Close Overall 
Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 2.52 0.52 2.33 0.12 4.01 0.66 3.15 0.24 3.00 0.79 

Whole set min-max 2.86 0.28 2.48 0.28 4.19 1.34 3.13 0.82 3.17 0.99 

Whole set  
relative change 

2.53 0.72 2.95 0.47 4.19 0.73 3.37 0.65 3.26 0.87 

Window z-score 1.25 0.88 1.71 0.37 1.87 0.27 2.19 0.50 1.75 0.62 

Window min-max 1.43 1.02 1.61 0.21 1.98 0.12 2.18 0.25 1.80 0.58 

Window 
relative change 

0.97 0.17 1.59 0.12 1.68 0.17 1.90 0.11 1.54 0.38 

Table  41 LSTM average and standard deviation of RMSE on the test set using data before Aug 
18, 2020. 

Normalization 
technique 

Open High Low Close Overall 
Average SD Average SD Average SD Average SD Average SD 

Whole set z-
score 

367.25 53.30 363.89 25.88 514.71 58.51 467.39 33.49 428.31 78.33 

Whole set min-
max 

371.08 34.94 376.86 29.04 484.19 140.37 430.34 86.98 415.62 91.58 
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Normalization 
technique 

Open High Low Close Overall 
Average SD Average SD Average SD Average SD Average SD 

Whole set  
relative change 

354.65 76.20 435.06 53.89 492.15 96.66 458.29 87.46 435.04 90.07 

Window z-score 201.92 142.06 269.88 51.56 267.27 53.24 320.59 63.19 264.91 90.07 
Window min-

max 
215.22 152.55 254.53 22.15 267.53 25.32 311.56 33.28 262.21 81.34 

Window 
relative change 

135.86 29.36 256.83 20.38 235.28 32.73 279.80 17.53 226.94 61.08 

 

Table  42 GRU average and standard deviation of MAPE (%) on the test set using data before 
Aug 18, 2020. 

Normalization 
technique 

Open High Low Close Overall 
Average SD Average SD Average SD Average SD Average SD 

Whole set z-score 2.15 0.56 2.36 0.53 3.53 0.87 2.95 0.47 2.75 0.80 

Whole set min-max 2.63 0.45 2.92 0.44 4.51 0.91 3.37 0.62 3.36 0.94 

Whole set  
relative change 

1.96 0.29 2.32 0.27 3.66 0.51 3.34 0.98 2.82 0.90 

Window z-score 1.38 1.13 1.66 0.19 1.81 0.28 2.13 0.47 1.74 0.65 

Window min-max 1.53 1.05 1.53 0.16 1.79 0.22 2.17 0.49 1.76 0.61 

Window 
relative change 

1.03 0.23 1.61 0.17 1.76 0.39 1.95 0.10 1.59 0.42 

 

Table  43 GRU average and standard deviation of RMSE the test set before data before Aug 18, 
2020. 

Normalization 
technique 

Open High Low Close Overall 
Average SD Average SD Average SD Average SD Average SD 

Whole set z-
score 

353.58 101.48 389.12 76.88 473.16 120.91 455.42 83.11 417.82 102.10 

Whole set min-
max 

356.18 49.78 412.22 55.65 519.03 89.48 458.09 65.72 436.38 86.81 

Whole set  
relative change 

277.36 31.50 334.54 7.83 433.97 45.59 442.91 97.36 372.20 87.84 

Window z-score 219.02 175.92 252.88 16.75 252.47 43.03 307.83 56.48 258.05 93.29 

Window min-
max 

226.53 147.66 237.63 10.55 254.15 35.31 313.95 64.43 258.06 83.35 

Window 
relative change 

139.74 35.18 254.67 20.32 241.02 44.05 283.55 17.86 229.74 62.56 
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Figure  47 Box plot showing RMSE of each price with various normalization techniques in GRU and LSTM models 

using data before Aug 18, 2020 

 

Figure  48 Box plot showing average RMSE of OHLC with various normalization techniques in GRU and LSTM 
models using data before Aug 18, 2020 

4.8.3 Impact of normalization on data characteristics 
This section explores why sliding window normalization techniques seem to outperform 

whole set normalization techniques by observing data characteristics, particularly the model 
input distribution and the sliding window for model input. 

4.8.3.1 Impact of normalization on data distribution 
This section explores why the sliding window normalization techniques seem to 

outperform the whole set normalization ones by observing the skewness of data distributions, 
especially the model input distribution. 

Figures 49a-49c show a sample of open-price input distributions of the training, 
validation, and test sets with a sliding window size of 7 days before normalization. The input 
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distributions investigated in this section are derived from the sliding window of the model input, 
which is combined into a single column. Note that the input distribution of each set differs. The 
distribution of before cryptocurrency boom period is dissimilar to that of the full range data. 
Specifically, the training set exhibits approximately skewed distribution with a skewness of 0.267, 
while the validation set and test sets show moderately skewed distributions with skewness 
values of -0.825 and 0.98, respectively. 

 
 (a) (b) (c) 

Figure  49 Sample input distribution before normalization of (a) training set (b) validation set (c) test set 

Tables 44-46 illustrate the skewness of data distribution after various normalization 
techniques on the training set, the validation set and the test set, respectively. The skewness 
values shown in the table are root mean square (RMS) values of five skewness values when the 
window sizes are 3, 5, 7, 15, 30 days to provide an overall view of skewness across various 
window sizes. Additionally, sample box plots of open price skewness (magnitude) for the training 
set, validation set, and test set of input distribution with various normalization techniques are 
shown in Figures 50-52. 

Table  44 Average of training set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 0.269 0.319 0.206 0.269 

Whole set z-score 0.269 0.319 0.206 0.269 
Whole set min-max 0.269 0.319 0.206 0.269 

Whole set relative change 0.269 0.319 0.206 0.269 

Window z-score 0.058 0.154 0.068 0.061 
Window min-max 0.048 0.199 0.067 0.052 

Window relative change 0.247 0.244 0.227 0.250 

Table  45 Average of validation set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 0.784 0.805 0.916 0.790 

Whole set z-score 0.784 0.805 0.916 0.790 
Whole set min-max 0.784 0.805 0.916 0.790 

Whole set relative change 0.784 0.805 0.916 0.790 

Window z-score 0.140 0.202 0.231 0.146 
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Normalization Technique Open High Low Close 
Window min-max 0.259 0.225 0.257 0.273 

Window relative change 0.193 0.201 0.157 0.194 

Table  46 Average of test set input distribution skewness 
Normalization Technique Open High Low Close 
Without normalization 0.972 1.053 0.850 1.003 

Whole set z-score 0.972 1.053 0.850 1.003 
Whole set min-max 0.972 1.053 0.850 1.003 

Whole set relative change 0.972 1.053 0.850 1.003 

Window z-score 0.228 0.270 0.263 0.218 
Window min-max 0.280 0.263 0.300 0.280 

Window relative change 0.656 0.642 0.607 0.660 

 

 

Figure  50 Skewness of training set open price input distribution with various normalization techniques 

 
Figure  51 Skewness of validation set open price input distribution with various normalization techniques 
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Figure  52 Skewness of test set open price input distribution with various normalization techniques 

Table 44 displays the training set skewness before and after each normalization 
technique. Note that the data before normalization are approximately skewed. Moreover, the 
whole set normalization techniques do not affect the distribution in terms of skewness at all. On 
the contrary, the skewness of the data distribution are all lower after the sliding window 
normalization techniques. In fact, after all three window normalization techniques, the data 
distributions are close to symmetric because their skewness values are between -0.5 and 0.5. 
Note that all three sliding window normalization techniques help decrease skewness of highly 
skewed data. Although the window relative change did not reduce skewness in all cases, the 
skewness after applying sliding window normalization remained approximately symmetric. 
Samples of transformed data distributions after various normalization techniques are shown in 
Figures 53a-53f. 

Tables 45 and 46 show similar impact on data distributions after normalization on the 
validation set and the test set. Again, the whole set normalization techniques do not change the 
distribution skewness, while the sliding window techniques help reduce the skewness for all 
distributions to almost symmetric. However, we note that the window relative change 
normalization technique seems to have less impact in reducing the skewness, especially on the 
test set, when compared to the window z-score and the window min-max techniques.  

The results in this section illustrate that the sliding window normalization techniques 
generally lead to more symmetric (less skewness) in the input data distribution than the whole 
set normalization. Potentially due to this impact, more symmetric input distributions then lead to 
better forecasting performances in both LSTM and GRU models. 
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 (a) (b)  (c) 

 
 (d)  (e) (f) 

Figure  53 Sample input distribution after normalization by (a) whole set z-score (b) whole set min-max (c) whole 
set relative change (d) window z-score (e) window min-max (f) window relative change 

4.8.3.2 Impact of normalization on sliding window 
In order to provide a clearer understanding of why sliding window normalization 

techniques seem to outperform whole set normalization, we also examined the statistical 
properties of sliding windows by plotting the mean and standard deviation of the sliding windows 
over time. Figure 54 displays samples of the sliding window mean for the open price using 
various normalization techniques with a window size of 7 days. Figure 55 shows samples of the 
sliding window standard deviation for the open price using the same techniques and window 
size. Note that sliding window mean and sliding window standard deviation for whole set 
normalization are equivalent to moving average and moving standard deviation, respectively. 

According to Figures 54-55, it was found that sliding window statistical properties of 
normalized data using sliding window normalization in each sliding window have a stable 
characteristic, as observed by the value of sliding window mean and sliding window standard 
deviation that do not significantly change over time. Additionally, the explored statistical 
properties in each data set have similar values. However, in the case of whole set normalization, 
sliding window properties vary considerably over time, and the sliding window properties of each 
data set are significantly different, particularly for sliding window mean.  
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 (a) (b)  (c) 

 
 (d) (e) (f) 

Figure  54 Sliding window mean after normalization by (a) whole set z-score (b) whole set min-max (c) whole set 

relative change (d) window z-score (e) window min-max (f) window relative change 

 
 (a) (b)  (c) 

 
 (d) (e) (f)  
Figure  55 Sliding window standard deviation after normalization by (a) whole set z-score (b) whole set min-max 

(c) whole set relative change (d) window z-score (e) window min-max (f) window relative change 

To further elaborate the findings presented in Figures 54 and 55, we investigated the 
characteristics of three sliding windows from each data set using all the normalization techniques 
under consideration. In addition, we used open price as representative of OHLC. Figure 56 
presents a time series plot of the open price, along with selected sliding windows for 
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observation. We selected an example of nine sliding windows including different characteristics 
(moving upward, moving downward, and moving sideways), with the specified time range for each 
window provided in Table 47. 

Figures 57-60 showcase time series plots of the open price sliding window for the model 
input using various normalization techniques at each observation window with a sliding window 
size of 7 days. These include without normalization, z-score normalization, min-max 
normalization, and relative change normalization. Additionally, Figures 58-60 display each 
normalization technique with both the whole set normalization approach and the sliding window 
normalization approach.  

Figures 61a-61d present box plots of open price sliding window with various 
normalization at each observation window. These also include without normalization, z-score 
normalization, min-max normalization, and relative change normalization. For Figures 61b-61d, 
each normalization technique is shown with both the whole set normalization approach and the 
sliding window normalization approach.  

According to Figures 58 – 60 and Figures 61b – 61d, we observed that the sliding window 
of the whole set normalization technique showed a significant difference in the range of each 
observation sliding window, particularly across the dataset. Conversely, the range of each 
observation point under the sliding window normalization technique was found to be relatively 
similar. 

The findings of this section indicate that the sliding window normalization techniques 
have more stable sliding window statistical characteristics. This is evidenced by the sliding 
window mean, standard deviation, and range of each sliding window used as input for the model. 
These stable characteristics lead to a similar sequence for prediction, which ultimately results in 
better forecasting performance in both LSTM and GRU models when using sliding window 
normalization.  

 

 
Figure  56 Time series plot of open price with selected sliding windows for observation 
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Table  47 Time range of the observation windows for data before Aug 18, 2020 
Number Set Start date End date 

1 

Training set 

2018-01-20 2018-01-26 

2 2019-02-18 2019-02-24 

3 2019-06-08 2019-06-14 

4 

Validation set 

2020-02-01 2020-02-07 

5 2020-03-05 2020-03-11 

6 2020-04-14 2020-04-20 

7 

Test set 

2020-05-19 2020-05-25 

8 2020-06-21 2020-06-27 

9 2020-07-17 2020-07-23 

 

    

Figure  57 Time series plot of open price sliding window without normalization at each observation window 
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Figure  58 Time series plot of open price sliding window with z-score normalization techniques at each 
observation window 

 

 

Figure  59 Time series plot of open price sliding window with min-max normalization techniques at each 
observation window 
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Figure  60 Time series plot of open price sliding window with relative change normalization techniques at each 
observation window 

 
 (a) (b) 

 
 (c) (d) 

Figure  61 Box plot of open price sliding window with various normalization at each observation window a) 
without normalization b) z-score normalization c) min-max normalization d) relative change normalization 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 72 

In summary, our analysis reveals the following findings. Firstly, the sliding window 
normalization techniques tend to result in a more symmetric input data distribution, as 
compared to the whole set normalization technique. This increased symmetry potentially 
explains the improved forecasting performance observed in both the LSTM and GRU models. 
Secondly, the sliding window normalization approach ensures that the models observe a similar 
sequence for prediction, which contributes to superior predictive performance when compared 
to models using the whole set normalization approach. 

 

4.8.3.3 Summary of before the cryptocurrency boom 
To summarize the exploration of model performance before the cryptocurrency boom 

(before Aug 18, 2020), it was found that although the characteristics of this range differ from 
those of the full range data, the finding that sliding window normalization outperforms whole set 
normalization on both LSTM and GRU models still holds true, as demonstrated by the RMSE and 
MAPE. Moreover, the finding that sliding window normalization reduces the skewness of the 
distribution and enables the model to observe a similar sliding window sequence for prediction 
also holds true, as previously observed in the full range data  
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Chapter 5: Conclusion 
The objective of this study is to create a model for predicting the Bitcoin candlestick 

price of the next day using the recurrent neural network technique, specifically the LSTM and 
GRU models. Additionally, the study aims to explore feature transformation techniques to 
enhance the forecasting performance of the neural network, including various data normalization 
(scaling) methods. Finally, the study aims to investigate additional candlestick price prediction 
approaches that are not OHLC price prediction, such as candle wick (CULR) prediction. 

The best forecasting error was achieved using the GRU algorithm with the OHLC method 
and window z-score normalization, utilizing a sliding window of 15 days. This resulted in an 
average RMSE of OHLC of 767.71 or MAPE of 1.95%. Similarly, the best direction accuracy was 
achieved using the GRU algorithm with the OHLC method and window min-max normalization, 
utilizing a sliding window of 7 days, resulting in a direction accuracy of 60%. 

The main findings are as follows: First, the sliding window normalization generally 
outperforms the whole set normalization for both LSTM and GRU models in terms of RMSE and 
MAPE. Second, sliding window normalization techniques generally lead to a more symmetric (less 
skewed) input data distribution compared to the whole set normalization. This effect potentially 
leads to better forecasting performance in both LSTM and GRU models. Third, the sliding window 
normalization approach enables the models to observe a similar sequence for prediction, 
resulting in better performance compared to models using the whole set normalization. Fourth, 
there is no significantly outperforming method in terms of both accuracy and forecasting, but the 
OHLC method seems to be slightly better than the CULR method. Finally, among the investigated 
normalization techniques, two types of RMSE-sliding window size relationship were observed: 
uptrend and turning point. Most of the performance curves displayed a turning point 
characteristic. 

Further research could explore alternative normalization techniques and evaluate their 
performance on different time series datasets. Additionally, more complex RNN models such as 
Bidirectional RNN, Attention model, and transformer networks, could be explored. Future studies 
could also explore optimizing the fixed hyperparameters in our study and expanding the search 
space for the tuned hyperparameters to enhance the model's performance.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74 

Appendix 

LSTM and GRU test set RMSE with various normalization techniques using OHLC method 
Window size 

(Days) 
Normalization 

technique 
Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

3 

whole set z-score 

2246.56 2239.41 2947.26 2512.25 1999.76 2170.31 2618.14 2710.02 2452.93 2408.00 

5 1963.74 1900.64 2436.48 2170.40 1851.90 1711.09 2350.29 2278.33 2150.60 2015.12 

7 1860.32 1688.73 2618.67 1924.06 2234.30 1632.04 2725.92 2135.69 2359.80 1845.13 

15 1902.49 1880.54 1931.65 2335.96 2329.98 1940.19 2989.77 2444.21 2288.47 2150.22 

30 3413.37 2565.15 3203.82 3484.83 2043.20 2337.95 2443.45 3193.98 2775.96 2895.48 

3 

whole set min-
max 

1179.72 1308.99 1530.60 1562.39 1457.84 1539.12 1849.10 1637.39 1504.31 1511.97 

5 1459.77 1861.84 1780.85 1993.65 1660.28 2258.68 1772.47 2368.24 1668.34 2120.60 

7 1955.76 2366.50 2152.32 2583.48 2082.61 2263.06 2332.08 2678.28 2130.69 2472.83 

15 1693.59 2244.00 1995.92 3169.05 1899.19 3082.26 2080.10 3488.15 1917.20 2995.87 

30 1726.83 3030.66 2166.68 3263.10 2094.42 2991.25 2287.08 3474.10 2068.76 3189.77 

3 

whole set 
relative change 

5458.66 5237.47 5693.69 5962.00 4999.07 4920.64 5280.13 5649.32 5357.89 5442.36 

5 1456.12 3939.93 1707.45 4291.95 1613.62 3316.76 1773.93 3755.31 1637.78 3825.99 

7 2283.45 3308.22 2288.98 3610.33 2453.71 3136.63 2830.20 3863.21 2464.09 3479.60 

15 6386.56 2738.58 6510.56 3145.68 5232.98 2957.86 5639.28 3161.38 5942.34 3000.87 

30 3945.56 3285.91 4928.44 3389.99 4114.48 3448.92 4855.83 3447.01 4461.08 3392.96 

3 

window z-score 

2296.56 2208.98 1122.19 961.37 1101.93 1028.09 1623.00 1235.82 1535.92 1358.56 

5 754.36 776.21 894.38 886.94 993.89 951.07 1153.04 1235.85 948.92 962.52 

7 469.19 486.94 768.43 753.49 916.32 941.27 1116.49 1127.87 817.61 827.39 

15 419.56 574.11 680.96 697.16 919.07 928.39 1051.25 1072.29 767.71 817.99 

30 624.69 719.94 761.27 830.54 1030.43 1100.91 1120.43 1189.74 884.20 960.28 

3 

window min-max 

2335.60 2235.99 909.52 880.37 943.39 941.75 1187.97 1159.31 1344.12 1304.36 

5 941.27 876.23 908.46 921.71 902.09 909.67 1125.06 1118.99 969.22 956.65 

7 486.30 462.28 775.19 740.15 915.62 935.52 1073.91 1072.27 812.76 802.56 

15 447.53 532.67 711.35 767.97 942.94 908.05 1085.53 1063.45 796.84 818.03 

30 693.61 840.00 771.33 781.69 1007.65 1046.16 1021.80 1057.85 873.60 931.43 

3 

window relative 
change 

394.81 375.79 762.73 771.16 874.59 894.35 1105.44 1119.27 784.39 790.14 

5 500.35 436.26 827.84 810.20 917.22 923.21 1156.72 1142.98 850.53 828.16 

7 461.04 644.57 784.21 877.37 850.07 910.63 1117.83 1204.00 803.29 909.14 

15 708.42 647.99 900.50 845.15 1007.78 995.26 1200.88 1172.29 954.39 915.17 

30 736.45 785.70 895.50 1006.18 1004.12 1102.73 1203.83 1315.78 959.97 1052.60 

 LSTM and GRU test set MAPE (%) with various normalization techniques using OHLC method 
Window size 

(Days) 
Normalization 

technique 
Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

3 

whole set z-score 

5.42 7.27 6.99 7.95 4.55 6.61 6.21 8.43 5.79 7.57 

5 5.17 5.63 6.59 6.39 4.66 4.41 6.23 6.56 5.66 5.75 

7 4.25 4.37 6.13 5.11 5.06 4.05 6.39 5.51 5.46 4.76 

15 4.45 4.95 4.42 6.46 5.56 4.86 7.27 6.59 5.43 5.72 

30 8.79 8.45 7.96 11.64 4.74 7.35 5.89 10.59 6.85 9.51 

3 

whole set min-
max 

2.99 3.32 4.05 4.04 3.52 3.73 4.84 4.13 3.85 3.81 

5 3.82 5.01 4.79 5.46 4.07 5.99 4.54 6.45 4.31 5.73 

7 5.73 6.93 6.27 7.55 5.78 6.15 6.73 7.76 6.13 7.10 

15 4.31 6.02 5.27 9.65 4.65 9.25 5.28 10.95 4.88 8.97 

30 4.59 8.86 6.14 9.77 5.61 8.48 6.27 10.29 5.65 9.35 

3 

whole set 
relative change 

15.94 16.20 15.36 18.22 13.52 15.40 14.37 17.59 14.80 16.85 

5 3.43 13.30 4.18 14.34 3.76 11.05 4.32 11.94 3.92 12.66 

7 6.27 10.18 5.77 10.64 6.52 9.61 8.69 11.66 6.81 10.52 

15 18.15 7.43 18.20 8.75 15.61 7.86 16.41 8.48 17.09 8.13 

30 13.03 10.03 15.92 9.86 13.81 10.92 15.87 10.25 14.66 10.27 

3 
window z-score 

4.10 4.03 2.72 2.36 2.72 2.50 3.78 2.97 3.33 2.97 

5 1.47 1.39 2.11 2.14 2.46 2.25 2.78 2.88 2.21 2.17 
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Window size 
(Days) 

Normalization 
technique 

Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

7 1.08 1.23 1.92 1.96 2.19 2.32 2.69 2.88 1.97 2.10 

15 1.06 1.42 1.86 1.91 2.24 2.32 2.65 2.77 1.95 2.11 

30 1.50 1.85 2.10 2.30 2.48 3.12 2.91 3.30 2.25 2.64 

3 

window min-max 

3.94 3.98 2.22 2.09 2.32 2.34 3.06 2.77 2.89 2.80 

5 1.73 1.46 2.13 2.25 2.18 2.11 2.64 2.59 2.17 2.10 

7 1.16 1.13 2.04 1.91 2.19 2.23 2.60 2.58 2.00 1.96 

15 1.12 1.40 1.84 2.08 2.44 2.20 2.64 2.65 2.01 2.08 

30 1.71 2.22 2.06 2.19 2.61 2.68 2.78 2.78 2.29 2.47 

3 

window relative 
change 

0.99 0.91 1.91 1.91 2.13 2.20 2.67 2.69 1.93 1.93 

5 1.18 1.06 2.17 2.14 2.12 2.16 2.78 2.73 2.06 2.02 

7 1.24 1.59 2.08 2.37 2.23 2.33 2.89 3.11 2.11 2.35 

15 1.86 1.67 2.56 2.33 2.60 2.56 3.20 3.04 2.56 2.40 

30 2.01 2.14 2.52 2.80 2.75 2.95 3.18 3.44 2.62 2.83 

 LSTM and GRU test set RMSE with various normalization techniques using CULR Method 
Window size 

(Days) 
Normalization 

technique 
Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

3 

whole set z-score 

2266.59 2936.19 2504.41 3103.89 2174.29 2844.36 2332.31 2984.35 2319.40 2967.20 

5 1310.80 1638.82 1551.95 1717.41 1415.29 1909.20 1602.90 2010.41 1470.24 1818.96 

7 1220.91 1165.40 1373.76 1258.04 1392.71 1565.95 1530.74 1645.85 1379.53 1408.81 

15 1296.12 1465.83 1322.80 1490.79 1693.07 1956.34 1711.10 1934.07 1505.77 1711.76 

30 1274.05 2783.04 1243.52 2780.83 1723.39 3137.61 1738.40 3147.66 1494.84 2962.28 

3 

whole set min-
max 

2471.25 1675.70 2588.57 1766.91 2439.54 1830.11 2462.39 1910.88 2490.44 1795.90 

5 1592.41 1964.51 1748.65 1861.26 1779.16 2090.86 1865.33 1923.52 1746.39 1960.04 

7 1544.89 3231.69 1513.62 3050.55 1781.95 3511.55 1743.97 3448.07 1646.11 3310.46 

15 1864.14 3131.91 1803.84 2967.89 2016.87 3543.09 1987.60 3513.23 1918.11 3289.03 

30 1765.70 4021.33 1645.26 4111.29 2010.15 4355.56 1943.75 4473.38 1841.21 4240.39 

3 

window z-score 

723.12 778.96 956.14 1133.58 1106.33 1262.26 1241.22 1424.13 1006.70 1149.73 

5 828.41 642.15 897.55 791.74 1052.28 1004.90 1184.26 1131.28 990.63 892.52 

7 521.25 468.52 728.47 797.31 1019.38 908.70 1114.59 1099.80 845.92 818.58 

15 445.68 479.03 795.87 773.99 968.05 971.52 1140.94 1116.79 837.64 835.33 

30 613.79 924.11 703.96 1043.51 1228.98 1345.56 1231.34 1400.10 944.52 1178.32 

3 

window min-max 

1150.18 881.50 1120.81 951.75 1185.34 1137.22 1235.21 1228.57 1172.89 1049.76 

5 670.55 630.35 843.26 836.17 1015.64 975.47 1150.15 1146.23 919.90 897.06 

7 760.76 680.93 833.01 822.40 1085.98 1043.48 1155.56 1172.81 958.83 929.91 

15 640.33 613.26 838.88 817.35 1043.50 1019.83 1143.84 1126.97 916.63 894.35 

30 773.91 896.34 808.50 924.16 1229.86 1369.89 1203.37 1323.49 1003.91 1128.47 

LSTM and GRU test set MAPE (%) with various normalization techniques using CULR Method 
Window 

size 
(Days) 

Normalization 
technique 

Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

3 

whole set z-score 

5.99 8.04 6.33 8.19 5.72 7.92 5.89 7.90 5.98 8.01 

5 3.26 4.07 3.74 4.44 3.63 4.86 4.12 5.26 3.69 4.66 

7 3.20 3.14 3.56 3.51 3.72 4.13 4.19 4.53 3.67 3.83 

15 3.55 3.92 3.63 4.16 4.52 5.27 4.41 5.28 4.03 4.66 

30 3.22 8.02 3.35 8.06 4.35 9.33 4.50 9.39 3.86 8.70 

3 

whole set min-max 

5.95 4.36 6.07 4.63 6.05 4.93 5.80 5.17 5.97 4.77 

5 4.10 4.97 4.39 4.61 4.61 5.39 4.84 4.92 4.48 4.97 

7 3.90 10.70 3.87 9.75 4.57 11.82 4.50 11.27 4.21 10.88 

15 4.88 9.12 4.77 8.40 5.17 10.45 5.15 10.33 4.99 9.57 

30 4.88 13.10 4.58 13.23 5.59 14.51 5.47 14.75 5.13 13.90 

3 

window z-score 

1.81 1.68 2.41 2.55 2.82 2.88 3.10 3.28 2.54 2.60 

5 1.92 1.52 2.31 1.97 2.48 2.38 2.92 2.77 2.41 2.16 

7 1.14 1.18 1.70 1.79 2.27 2.25 2.62 2.72 1.93 1.99 
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Window 
size 

(Days) 

Normalization 
technique 

Open High Low Close Average 

GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM 

15 1.17 1.12 1.98 1.88 2.38 2.33 2.93 2.81 2.11 2.04 

30 1.63 2.39 1.97 3.00 3.04 3.59 3.12 3.87 2.44 3.21 

3 

window min-max 

2.87 2.18 2.88 2.45 2.93 2.81 3.09 2.90 2.94 2.58 

5 1.57 1.50 2.07 2.06 2.31 2.24 2.73 2.72 2.17 2.13 

7 1.82 1.66 2.04 2.02 2.51 2.39 2.74 2.75 2.28 2.21 

15 1.73 1.74 2.16 2.15 2.65 2.62 2.88 2.89 2.35 2.35 

30 2.32 2.72 2.37 2.83 3.36 4.00 3.24 3.65 2.82 3.30 

LSTM and GRU test set direction accuracy with various normalization techniques 

Window size (Days) Normalization technique 
OHLC method CULR method 

GRU LSTM GRU LSTM 

3 

whole set z-score 

0.49 0.45 0.45 0.46 

5 0.42 0.49 0.44 0.44 

7 0.49 0.46 0.46 0.45 

15 0.48 0.46 0.47 0.46 

30 0.53 0.45 0.44 0.44 

3 

whole set min-max 

0.45 0.55 0.51 0.45 

5 0.54 0.46 0.54 0.45 

7 0.45 0.45 0.42 0.46 

15 0.46 0.46 0.54 0.46 

30 0.44 0.44 0.41 0.44 

3 

whole set relative change 

0.55 0.45 - - 

5 0.47 0.54 - - 

7 0.56 0.51 - - 

15 0.54 0.47 - - 

30 0.44 0.44 - - 

3 

window z-score 

0.47 0.45 0.49 0.46 

5 0.52 0.49 0.58 0.46 

7 0.58 0.56 0.47 0.46 

15 0.50 0.51 0.50 0.49 

30 0.46 0.50 0.47 0.49 

3 

window min-max 

0.51 0.44 0.51 0.49 

5 0.51 0.55 0.54 0.51 

7 0.60 0.59 0.48 0.47 

15 0.56 0.53 0.44 0.44 

30 0.57 0.58 0.49 0.44 

3 

window relative change 

0.49 0.47 - - 

5 0.51 0.51 - - 

7 0.53 0.48 - - 

15 0.52 0.46 - - 

30 0.47 0.44 - - 
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