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Abstract

Autoimmune diseases occur when the immune cells react against self-antigens and
subsequently lead to inflammation in the tissues. The interactions between genetics and
environmental triggers regulate the phenotypes and outcome of the diseases. Type | interferon has
been shown as one of the most crucial cytokines involving in the pathogenesis of autoimmune
diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). SLE is a
chronic systemic autoimmune disease which can result in autoantibody production and fatal
glomerulonephritis. Activation via nucleic acid sensors can induce the production of type |
interferon from dendritic cells and promote SLE severity. Stimulator of interferon genes (Sting) is a
cytoplasmic DNA sensor that signals downstream to enhance type | interferon production after its
activation. Recently, it was shown that a gain mutation in the STING gene resulting in over-activity of
the IFN pathway can cause familial inflammatory syndrome with lupus-like manifestations in
humans. However, the functional studies of Sting in different autoimmune mouse models suggest
the conflicting roles of Sting in the pathogenesis of autoimmune diseases. In order to determine if
Sting participates in lupus pathogenesis, the Fcgr2b-deficienct mice (lupus mouse model) were
bred with Sting-deficient mice to create the double-deficient mice. In the absence of Sting, the
Fcgr2b-deficient mice do not develop fatal glomerulonephritis and autoantibodies. The original
knowledge from this study is a proof of concept for targeting Sting as a future promising treatment

in autoimmune diseases.
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Materials and Methods
Animal and animal models
Fcgr2b-/- mice on C57BL/6 background were provided by Bolland S. (NIH, Maryland, USA). Sting-/-
mice were provided by Paludan (Aarhus University, Aarhus, Denmark). Wild type mice were
purchased from the National Laboratory Animal Center, Nakornpathom, Thailand. The Fcgr2b-/-
mice were bred with Sting-/- mice to create double deficient mice and their litermate controls. The
animal protocols were approved by Faculty of Medicine, Chulalongkorn University followed the
National Institutes of Health (NIH) criteria.
Survival study

The double deficient mice will be aged and observed the survival rates compared to their
littermates. If the mice can survive up to 12 months, the mice will be euthanized to collect the
tissues (kidney, spleen, bone marrow, and sera) for further analysis.
Flow cytometry analysis
The collected spleens were harvested and incubated with collagenase D at 37 ¢ for 30 minutes to
isolate splenocyte. The splenocytes were stained with flow antibody. The flow cytometry analysis
was performed using BD LSR-II and FlowJo software. The dead cells were excluded from the

analysis.
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Autoantibody testing

The collected sera of the mice at the age of 6 months were tested for anti-nuclear antibody
(Hep-2 cells; immunofluorescence) and anti-dsDNA (ELISA). The sera were diluted into different
dilution factors.
Histopathology

The kidneys were fixed in 4%paraformaldehyde and subsequently were stained with H&E
and PAS. The pathology grading will be blinded analysis by the experience nephrologist.
Real-time PCR

The RNA from kidneys was isolated using Trizol. The DNase-treated RNA was purified using
RNeasy isolation kit. The conversion of RNA to cDNA using iScript RT Supermix (Biorad) was
performed. The gene expression profiles were tested using SsoAdvanced Universal SYBR Green

Supermix. The sequences of primers tested are followed:

Primer name Sequence
CXCL10 F: 5’- ATGACGGGCCAGTGAGAATG-3’
R: 5’- TCGTGGCAATGATCTCAACAC-3’
Mx1 F: 5’-GATCCGACTTCACTTCCAGATGG-3’
R: 5’-CATCTCAGTGGTAGTCAACCC-3’
ISG15 F: 5’-TCTGACTGTGAGAGCAAGCAG-3’
R: 5’-ACCTTTAGGTCCCAGGCCATT-3’
IRF3 F: 5’- GCTTGTGATGGTCAAGGTTGT-3’
R: 5’- AGATGTGCAAGTCCACGGTT-3’
IRF5 F: 5’-TTTGAGATCTTCTTTTGCTTTGGA-3’
R: 5’-GTACCACCTGTACAGTAATGAGCTTCTT-3’
IRF7 F: 5’-CCCAGACTGCCTGTGTAGACG-3’
R: 5’-CCAGTCTCCAAACAGCACTCG-3’
IFN-B F: 5°- GCTTGTGATGGTCAAGGTTGT-3’
R: 5’- AGATGTGCAAGTCCACGGTT-3’
IFN-y F: 5’- ACT GAC TTG AAT GTC CAA CGC A-3’
R:5’- ATC TGACTC CTT TTT CGC TTC C-3’
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P202 F: 5°-AGC CTC TCC TGG ACC TAA CA-3’
R: 5’- GCA GTG AGT ACC ATC ACT GTC A-3’

Sting F: 5’-TCTGACTGTGAGAGCAAGCAG-3’
R: 5’-ACCTTTAGGTCCCAGGCCATT-3’

B- actin F: 5°-TAGCACCATGAAGATCAAGAT-3’
R: 5’-CCGATCCACACAGAGTACTT-3’

Bone marrow-derived dendritic cell (BMDC)

Dendritic cells were obtained from mice’ femur bone (BMDC) that had been euthanized
by cervical dislocation. Cells were cultured in RPMI 1640 supplement with 10 % FBS, 1 mM Na
pyruvate, 10 mM Hepes buffer, 1X L-glutamine, 1X non-essential amino acid, 100 Units/ml of
pen/strep (Gibco-Thermo Fisher Scientific, MA USA) and 50 uM of 2-Mercaptoethanol (Sigma-
Aldrich, Darmstadt, Germany) and maintained at 37°Cin a CO, incubator then stimulated with
20 ng/ml of IL4 and 20 ng/ml of GM-CSF (Miltenyi, Bergisch Gladbach, Germany) for 5 days
followed by adding 10 ug/ml of DMXAA (5,6-Dimethylxanthenone-d-acetic acid or STING ligand)
(Invivogen, San Diego, USA) for 24 hours. The mature BMDC were stained with the following
antibodies: anti- mPDCA, CD80, I-Ab, CD11b and CD11c (Biolegend, San Diego, CA, USA). The
stained cells will be subjected to flow cytometer (BD Biosciences) and analyzed by FlowJo
software (version 10, USA).

Determination of Cytokine in BMDCs

BMDC cells were cultured in 6-well plate and stimulated with IL4 and GM-CSF for 5 days
and followed by 10 ug/ml of DMXAA (STING ligand) for 24 hours. The supernatants were
collected, and the concentration of cytokines panel including: IL-1QL, |L—1B, IL-6, IL-10, IL-12p70,
IL-17A, IL-23, 1L-27, MCP-1, IFN—B, IFN-Y, TNF-0, and GM-CSF were measured by LEGENDplex™
Mouse Inflammation Panel kit (Biolegend, San Diego, CA, USA) as describe above.

Sample preparation for MS analysis

Quantitative proteomic analysis of mature BMDC was studied using a dimethyl labeling
method (73). Briefly, BMDC were cultured, and then stimulated with 10 ug/ml of DMXAA (STING
ligand) for 24 hours. Three hundred microgram proteins per group from BMDC were digested

overnight at 37°C with trypsin [1:50 (w/w)]. Next, stimulated BMDC’s peptides from WT mice,
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cherf/f mice, and cherf/f.Stinggt/gt

mice were labeled with ligsht reagents [formaldehyde
(Sigma) and sodium cyanoborohydride (Sigma)l, medium reagents [formaldehyde-d2 (CIL) and
sodium cyanoborohydride], and heavy reagents [deuterated and PClabeled formaldehyde
(Sigma) and cyanoborodeuteride (CIL)], respectively, for an hour at room temperature. The
peptides were fractionated and subjected to LC-MS/MS (Thermo). Significantly differentially
regulated proteins were determined by unpaired t-tests with p-value < 0.05 considered
significant. The online resource Database for Annotation, Visualization and Integrated Discovery
(DAVID, v 6.8, https://david.ncifcrf.gov/) was employed to classify the significant proteins into
functional categories using all proteins identified by MS as background.
Western Blot Analysis

Splenocytes were lysed in 2 % SDS lysis buffer. Lysates were homogenized and
centrifuged at 12,000xg for 15 min at 4°C. The supernatants were collected, and total protein
was measured by BCA protein assay (Thermo Scientific, Illinois, USA). Cell lysates containing
equal amounts of protein (20 pg) were boiled in SDS sample buffer at 37°C for 15 min before
separation on a 10 % SDS-polyacrylamide gel. Proteins were transferred to nitrocellulose
membranes and Western blot analysis.
Adoptive transfer

/g

BMDCs from WT, cher_/_ and cher_/_,St/ngg “mice were cultured as described above.

got/et

The recipient cher’/’.St/‘n mice (at the age of 4 months) received approximately 10° cells of

get/gt . .
mice received

BMDC by tail vein every two weeks per injection time. Control chr2bf/7.5t/'n
only sterile PBS (vehicle). Sera were collected and the levels of anti-dsDNA were measured by
ELISA. Mice were euthanized 2 weeks after the final transfer (at the age of 6 months).
Statistical analysis

Significant difference of survival rates is tested by Log-rank test. The comparison between

groups is examined by T-test.
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Result
1. Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting

The Fcgr2b-deficient mice start to die at the age of 6 months and the survival rates drop to 22.2%
by 12 month old while the survival rates of double deficient mice are 77.7% (p<0.001). The effect of
one allele of Sting to survival rates of Fcgr2b-deficient mice does not show significant difference

(p=0.6) (Figure 1).

Survival Curve

10 [} [} [} [} [l 1 1 1 L
ﬁ:j —— R2(ko)

T 0.8- —— R2(ko)Sting(het)
; —— R2(ko)Sting (mut)
S 0.6
(72]
c
2 0.4-
Q
S
L 0.2+

00 1 1 1 1 1

1 1 1 1 1 1 1
01 2 3 45 6 7 8 910111
Months
Figure 1 Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting
The survival of the mice was observed until 12 month old. The absence of Sting increase survival of

Fcgr2b-/- mice (p<0.001, N=9 per group).
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2. Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice
The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations, enlarged
glomeruli and crescentic glomeruli. In the absence of Sting, the Fcgr2b-deficient mice do not

develop glomerulonephritis (Figure 2).

Figure 2 Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice

(A-B) Kidney sections of cherf/f and cherf/’. Stinggt/gt mice (6-8 months old) were stained with
H&E. Data are representative of 7-10 mice per group (scale bar = 25 um). (C-D) Glomerular
scores and interstitial scores of kidney sections were blindly graded (N=7-10 per group). Data

show as mean + SEM (*p < 0.05, **p<0.01 and ***p<0.001
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3. Decrease autoantibody production in the double-deficient mice

Anti-dsDNA production and Antinuclear antibody (ANA) decreased in the Sting and Fcgr2b

double-deficient mice (Figure 3A-3D).

Figure 3 Decrease autoantibody productions in the double-deficient mice
The sera of the mice were collected at the age of 6 months to test for antinuclear antibody

(Figure 3A, representative of mice (N=3/group) and anti-dsDNA (Figure 3B, N=6/group, p<0.01)
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4. Decrease IgG deposition and leukocyte infiltration in the kidneys of the double-deficient mice
The kidney section showed that immune complex deposition (IgG) and leukocyte (CD45)

infiltration increased in the Fcgr2b-deficient mice and reduced in double-deficient mice (Figure 4)
DAPI CD45-PE IgG-FitC Merge

chr2b'/ -
StingW?at
chr2b'/ ..
Sting9t/at

Figure 4 Decrease IgG deposition and leukocyte infiltration in the kidneys of the double-deficient

mice.
Immunofluorescence staining in the kidney of chr2b’/’ and double-deficient mice by confocal
microscope (DAPI in blue, CD45 in red and IgG in green). Shown as a representative of mice (N=3

mice per group, scale bar=10 um).



20

5. Decrease interferon-inducible gene expression in the kidneys of the double-deficient mice
Sting-mediated signaling induces type | interferon production and leads to the increase of
interferon inducible gene expression. We determined whether the interferon signature genes in the
kidneys will diminish in the Fcgr2b-double deficient mice. The results show that IRF3, IRF5, IRF7
and Mx1 expression were decreased in the double-deficient mice compared to Fcgr2b-deficient

mice (Figure 4).

Figure 5 Decrease interferon-inducible gene expressions in the kidneys of the double-deficient
mice.
(A-E) Gene expression profiles from the kidneys of wild-type, cher_/_ and cher_/_, Stinggt/gt
mice at the age of 6-7 months were tested by real-time PCR (N=10-17 per group). The mRNA
expressions of interferon-inducible genes shown in (A) Isg15, (B) Mx1,(C) Irf3,(D) Irf5, and (E) Irf7.
Data show as mean + SEM (*p < 0.05 and **p<0.01).
6. Decrease dendritic cells, plasmacytoid dendritic cells and effector T cells in the double-deficient
mice

The splenocytes were analyzed from the mice at the age of 6-7 months to characterize the

alteration of immune-phenotypes. The expansion of dendritic cells (CD11c+) and plasmacytoid

dendritic cells (CD11¢c+PDCA+) in the Fcgr2b-/- mice diminished in the Fcgr2b-/-.Stinggt/gt mice
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(Figure B6A-6B). Also, these data found that the reduction of T effector memory cells
(CD3+CD4+CD62LIoCD44hi), CD3+CD4+ICOS+ cells, and germinal center B cells (B220+GL7+)
in the double-deficient mice (Figure 6C-6E). Besides, the mean fluorescence intensity of MHC-II (1A-
b) on B cells significantly reduced in the double-deficient mice (Figure 15F). However, the
expansion of plasma cells did not show the difference between single and double-deficient mice

(Figure 6G).

Figure 6 Decrease activated immune cells in the double deficient mice
(A-G) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/-, and Fcgr2b-/-.
Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A)
CD11c+, (B) plasmacytoid dendritic cells (pDC), (C) T effector memory
(CD3+CD4+CD44hiCD62Llo), (D) CD3+CD4+ICOS+ cells, (E) B220+GL7+ cells and (G) CD138+

cells. Data show as mean + SEM (*p < 0.05, **p<0.01 and ***p<0.001).
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7. Sting activation increases the maturation of dendritic cells and cytokine production

In order to understand the immunological importance of Sting in lupus Fcgr2b-deficient
mice, the flow cytometry was characterize the subsets of splenocytes from affected mice and
their controls. The activated immune cells showed that the expansion of the DC in the spleen
of the cherf/f mice was Sting-dependent, and the cGAS/Sting pathway is important for DC
activation. To investigate if the expansion of DC in the cher_/_ mice is directly mediated by
Sting signaling, the bone-marrow derived dendritic cells (BMDC) were differentiated into
immature DC and subsequently stimulated with Sting ligands (DMXAA), DMSO, and LPS (as a
control) to assess if Sting played a role in DC maturation. The LPS control induced the immature
DC to increase the expression of MHC-II (IA-b) and CD80, which suggested the phenotypes of
mature DC, from both Sting-sufficient and Sting-deficient mice (Figure 7A and 7C). While the
immature DC from wild-type and chrzbf/f mice also showed the increasing percentage of IA-b"
and CD80" DC cells after DMXAA stimulation, but the Sting-deficient mice did not develop these

mature phenotypes (Figure 7B and 7D).

Figure 7 Sting activation increases the maturation of dendritic cells.
Bone marrows were isolated from wild-type, St/‘nggvgt, cher’/’ and cher’/’. St/nggt/gt
mice at the age of 6-7 months. (A-D) IL-4 and GM-CSF differentiated bone marrow-derived

dendritic cells (BMDC) for five days then immature BMDC were stimulated with LPS or DMXAA
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for 24 hours. Flow cytometry analysis shows the percentage of (A-B) CD11c’ 1AL cells and (C-D)
CD11c CD80" cells. Data show as mean + SEM (N=3-5; *p < 0.05, **p<0.01 and ***p<0.001).

Furthermore, the supernatant from BMDC culture with DMXAA stimulation showed the
increase in the concentration of IL-1Q, IL-6, TNF-Ol, and MCP-1 in the wild-type and cher_/_
mice but not in Sting-deficient mice and double-deficient mice (Figure 8A-8D). These data
suggested that Sting signaling pathway mediated DC maturation, activation stage, and cytokine

production.

Figure 8 Sting-mediated signaling promotes cytokine production in DC.
(A-D) Supernatants were collected and analyzed after DMXAA stimulation for 24 hours.
Cytometric bead array shows the levels of (A) IL-10., (B) IL-6, (C) TNF-OL and (D) MCP-1. Data
show as mean + SEM (N=3-5; *p < 0.05, **p<0.01 and ***p<0.001).
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8. Sting signaling promotes the production of IFN-regulated proteins fromm BMDC

To better understand the function of Sting in DC, the quantitative proteomic analysis of
Sting activated BMDC in the cher_/_ mice compared to the double-deficient mice were
performed using a dimethyl labeling method. The Volcano plot showed the protein that highly
expressed were interferon-regulated proteins (Figure 9). This finding may result from the
increase of IFN-I production in the culture medium, which could upregulate the interferon-

regulated proteins.

Figure 9 cherf/f increase the expression of interferon-regulated proteins.
Volcano plot of protein expressions from proteomic analysis of DMXAA activated BMDC

of cher_/_ and cher_/_, St/'nggt/gt mice at the age of 6-7 months (N=4 per group).
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9. Sting signaling promotes the differentiation of plasmacytoid dendritic cells (pDC)

The hypothesis of this study is Sting might promote the differentiation of pDC (the major
producer of IFN-I). To confirm this hypothesis, the in vitro culture of BMDC with DMXAA and LPS
(as a control) showed a significant increase in pDC and IFN-P3 production with DMXAA but not
with LPS stimulation (Figure 10A-10D). Also, the results show the morphology of these cells by
the imaging flow cytometry and found the pDC expressed CD80 and IA-b as well (Figure 10E -
10F).

Figure 10 Sting activation promotes differentiation of plasmacytoid dendritic cells (pDC).

The percentage of pDC (PDCA" cells) after (A) DMXAA activation and (C) LPS activation
for 24 hours (N = 3-4 per group). (B and D) The level of IFN-f3 from the culture supernatant of
activated BMDC with (B) DMXAA and (C) LPS (N = 5 per group). (E and F) Imaging flow cytometry
of DMXAA activated BMDC shows (E) the representative staining of IA-b (green ), mPDCA (yellow),
CD80 (pink), and CD11c (red) and (F) the percentage of CD11c mPDCA™ cells (N= 3 mice per

group). A representative of 3 experiments. Data show as mean+ SEM (**p<0.01 and ***p<0.001).
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10. Adoptive transfer of Sting expressing BMDC induce lupus development in the Fcgr2b”
.Stinggt/gt mice

The Sting signaling pathway activated the immature BMDC to differentiate into the
mature DC and pDC which are capable of promoting T cell proliferation and producing the
inflammatory cytokines. The proposed of this study is that Sting may induce the lupus disease
by initially acting through the DC activation. To confirm this hypothesis, the adoptive transfers of
Sting-activated BMDC into the double-deficient mice were performed. The anti-dsDNA
significantly increased in the recipient mice who received Sting-sufficient BMDC compared to the
non-recipient controls (Figure 11). The BMDC derived from Sting-sufficient mice (both WT and
cher_/_) induced the recipients to produce a higher titer of anti-dsDNA than the ones from the

double-deficient mice(Figure 11).

Figure 11 Increase of anti-dsDNA in the recipient of double-deficient mice.
DMXAA activated BMDC from cher_/_, WT, and cher_/_.Stinggt/gt were transferred into
the recipient mice (cherf/f. St/'ngm’t). (A) The level of anti-dsDNA from the sera (1:100)
measured by ELISA (N=5-10 per group). Data show as mean + SEM (*p < 0.05, **p<0.01, and

*“%020.001).
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In addition, the flow cytometry analysis of spleens from all groups of recipient mice
showed the increase in the percentage of T effector memory (Tey), CD471Ccos”, and germinal
center B cells when compared with PBS injection group (Figure 12A-12C). However, the transfer
of Sting-activated BMDC from the cherf/f mice significantly induced the T effector memory
(Tern)s CD4+ICOS+, and germinal center B cells, but did not increase CD138" cells, B220"IAb" cells
(Figure 12D).

Figure 12 Increase of activated immune cells in recipient of double-deficient mice.

(A-E) Flow cytometry analysis of recipient splenocytes after BMDC transferred every 2
weeks for 4 times show the percentage of (A) effector T cells (CD4'CDa4"CD62L"), (B) CD4'ICOS"
cells, () B220"GL7" cells and (D) B220'1Ab" cells (N=5-10 per group). Data show as mean = SEM
(*p < 0.05, **p<0.01, and ***p<0.001).
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The survival of the 129/B6.chr2b7/7 mice depends on the autoantibody production and
glomerulonephritis (55, 83) and the data from the previous study indicated that 6 months old of
cher_/_ generated in 129 background mice showed the full lupus phenotypes (28). Moreover, it
is found that Sting is required for the antibody production induced by cyclic-di-GMP in vitro (84).
This study suggested that Sting facilitated the autoantibody production, inflammatory cell
infiltration, and glomerulonephritis in the 129/86.chr2b_/_ mice. Therefore, in the absent of
Sting, resulting in improved the survival rate of 129/86.chr2b7/7 mice.

Investigations by several studies conclude that the expression of interferon-inducible
genes associated with SLE disease activity (85). This study detected the very high expression of a
hundred of IFN inducible genes in the kidneys of 129/86.chr2b_/_ mice by microarray that
showed more severe pathology. The absence of Sting signaling in the cher’/’ mice partly
decreased the expression of interferon-inducible genes in the kidney. This data suggested that
other nucleic acid sensors may promote the type | interferon production or signaling leads to
destructive of kidneys in the cher_/_ mice as well. The Sting-dependent lupus phenotypes do
not mediate only through type-| interferon pathway.

Sting expresses and functions differentially depended on the cell types. The previous
study reported that STING was a low expression in B cell from SLE patients and MRL/lpr mice.
These finding may contribute to the pathogenesis of SLE by increasing the activation of the
JAK1-STAT1 signaling indirectly by STING (86). Whereas, Sting signals coordinately with B cell
receptor (BCR) signaling to promote antibody response (87). The results showed that the
spontaneous germinal center B cells and MHC-II expression in the cher_/_ mice were Sting-
dependent. However, plasma cell expansion was Sting-independent. This data suggested Sting
may contribute to the autoantibody production through memory B cells.

Sting also activates T cells by treatment with Sting ligand (DMXAA) induced not only
Sting-dependent expression of ISGs and type | IFN production but also mediated cell stress and
death (88). Nevertheless, this study found that the increase of T effector memory (T,) in the
cher’/’ mice was Sting-dependent. The expansion of T, may directly mediate through the

interaction with antigen presenting cells, not directly via Sting signaling in T cells.
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Sting agonist (DMXAA) treated mice show the increased expression of CD80, CD86, and
MHC-Il on DC and IFN—B production suggesting promotes the mature phenotypes of DC as the
antigen-presenting cells (APC) which increase the expansion of T cells (89). This observation
found the reduction of DC expansion in the cher’/’ mice, which depended on Sting signaling.

Depletion of pDC ameliorates the autoimmune phenotypes in BXSB lupus-prone mice
and B6.Nba2 mice (96, 97). These data strongly suggested Sting involving in DC function both DC
maturation and pDC differentiation. The adoptive transfer of Sting sufficient BMDC can induce
autoantibody production regardless of Fcer2b status. However, the absence of Fcg2b in the
BMDC can accelerate the autoimmune phenotypes, including the immune complex deposition
and inflammatory cell infiltration in the double-deficient recipient mice. Additionally, the
adoptive transfers of Sting sufficient BMDC derived from Fcg2-/- mice increase the antibody
production and activated immune cells but did not change the kidney pathology in wild type
recipients.

Nevertheless, wild type recipient mice do not develop glomerulonephritis. The data
implied that these wild type mice require lupus-susceptibility gene to progress of the disease
(79). In summary, these data elaborated the vital function of Sting in the autoimmune cherf/f
lupus mouse model. The inhibition of STING signaling is a promising therapeutic target for SLE

patients.
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129/36.chr2b_/_ mice present the strong lupus phenotype

The Fcgr2b-deficient mice start to die at the age of 6 months, and the survival
rates drop to 22.2 % by 12 months old, while the survival rates of double-deficient mice are
77.7 %. The effect of one allele of Sting to survival rates of Fcgr2b-deficient mice does not
show a significant difference. This finding concludes that Sting increases survival rates and
improves the lupus phenotypes in 129/B6.Fcgr2b” lupus mice model.
The activation of Sting pathway involved in the pathogenesis of SLE in lupus mice

In the absence of Sting, the lupus phenotypes of 129/B6.Fcgr2b-deficient mice
were improved, including:

1. The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations,
enlarged glomeruli, and crescentic glomeruli, but double-deficient mice do not develop
glomerulonephritis.

2. Antinuclear antibody (ANA) and anti-dsDNA production in the serum were decreases in
the double-deficient mice. The results suggest that the high levels of autoantibodies are from
the Sting-dependent.

3. Sting-mediated signaling induces type | interferon production and leads to the
increase of interferon-inducible gene expression while the interferon signature genes in the
kidneys were diminished in the double-deficient mice.

4. In order to understand the immunological importance of Sting in lupus Fcer2b-
deficient mice, the flow cytometry were characterized by the subsets of splenocytes from
affected mice and their controls. The activated immune cells decrease in the percentage and
numbers in the double-deficient mice, especially CD11c+ceLls, plasmacytoid dendritic cells, and
effector T cells. Also, B cells in the germinal center reduced in the double-deficient mice but

not plasma cells.
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The Sting-mediated pathway contribute to SLE via DNA sensor-mediated signaling in
antigen presenting cells

The adoptive transfer of Sting-activated bone marrow-derived dendritic cells (BMDC) into
the Sting-deficiency 129/B6.chr2b’/’ mice restored the lupus phenotypes. These data suggested
that Sting signaling expressed in the dendritic cells induced the autoimmune development in

the 129/86.chr2b_/_ mice.
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Abstract

Repeated bacterial infection in patients with Systemic Lupus Erythematosus (SLE) is
common and sepsis is the leading causes of death. Despite proper responses to a single bacterial
infection, the repeated infection might lead to immune exhaustion and severe sepsis. Then the
bacterial susceptibility was tested with cecal ligation and puncture (CLP) after immune exhaustion
induced by the 2-separated-doses of endotoxin (LPS) in FcGRIlb-/- mice and wild type (WT)
control.

In the comparison with wild type group, the prominent serum cytokine after 1* LPS injection
followed by the apparently lower cytokines after 2" LPS administration, cytokine exhaustion, was
demonstrated in FCGRIIb-/- mice. Subsequently, CLP was conducted after double doses of LPS
preconditioning to test the immune suppression. Indeed, a higher mortality rate and a more severe
sepsis (bacterial burdens, serum cytokines and organs injury) at 18h of CLP demonstrated in
FcGRIIb-/- mice. Because macrophages are the major immune cells responsible for sepsis immune
responses, we tested in vitro. Interestingly, the stimulation with separated 2 doses of LPS in bone
marrow-derived macrophage from FcGRIlb-/- mice showed the higher cytokines responses after
the 1% LPS stimulation in comparison with WT cells but the cytokines level were lower than WT cells
after the 2™ LPS stimulation, supplementary to the in vivo results.

In conclusion, macrophage exhaustion was easier inducible in FCGRIlb-/- cells in parallel to
the immune paralysis, highly susceptible to CLP, in FcGRIlb-/- mice compare with wild type group.
These implied the importance of the repeated infections in patients with SLE, especially with
FcGRIIb polymorphisms.

6. ANBTLNEATYIYN SnenilazAnten 1 lunnse ( List of Abbreviations)
SLE, Systemic lupus Erythematosus; FcGRIIb, Fc gamma receptor llb; LPS, endotoxin; CLP,
cecalligation and puncture model; UPCI, urine protein creatinine index; LDH, lactate

dehydrogenase
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Systemic Lupus Erythematosus (SLE), the autoimmune disease with multi-factorial
pathogenesis (1, 2) leads to multi-organs injury, showed a higher prevalence in Asia in comparison
with other regions of the world (3-5). The defect of Fc gamma receptor llb (FcGRIIb), the only
inhibitory signaling receptors in the FcGR family, is one of the genetic susceptibility to SLE (2, 6).
Interestingly, FCGRIIb polymorphisms also demonstrated the high prevalence in Asia which might
due to the protective effect of the gene for malarial infection (7). Coincidentally, the association with
FcGRIIb polymorphisms in patients with SLE in Asia Pacific region is also common (3-5, 8). Perhaps
FcGRIlb polymorphisms could protect malaria in this region but, on other side of the coin, people
with this immunological defect might easier develop SLE. In any case, sepsis, the systemic immune
responses to the severe infection, is one of the important causes of death in patients with SLE (9).
Indeed, the high susceptibility to bacterial sepsis in patients with SLE is well-known (9-13).
However, there are debates whether the susceptibility to infection in patients with SLE is due to the
de novo defects of immune response or immunosuppressive drugs. Unfortunately, the data on
untreated symptomatic patients with SLE is very limited (14). Hence, the studies of infection in
FcGRIlb-/- mice, one of the established SLE mouse model (6), could be resemble to untreated
patients with SLE, especially with FcGRIIb polymorphisms.

FcGRs binds with Fc portion of immunoglobulin mediate antigen uptake and cellular
responses (15). In the mouse, FcGRs are classified into three activation receptors (FcGRI, FcGRIII,
FcGRIV) and only one inhibitory receptor (FCGRIIb) (16). The deficiency of all classes of FCGR in
mice (FCGR -/-) protected from sepsis (17) and FcGRIlb-/- mice response well to the gram positive
bacterial infection due to the effective bacterial killing (18). Nevertheless, a more severe sepsis with
the cytokines storm demonstrated in FcGRIIb-/- mice with the bacterial antigen preconditioning
before bacterial administration. This data supported the overshoot cytokines responses after the
repeated antigen exposures due to the lack of inhibitory signaling in these mice (18). On the other

hand, FcGRIlb-/- mice are protected from Plasmodium and Mycobacterium infection (7, 19), the
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inhibitory signaling defect seems to enhance the activating signaling and show a benefit in these
infections. However, the susceptibility of FCGRIIb-/- mice to polymicrobial sepsis is never tested.

Interestingly, sepsis-induced immune exhaustion or immunoparalysis, the high susceptibility
to secondary infection after sepsis, has been recognized as an important sepsis complication (20,
21) and was demonstrated by several mouse and human models (22-26). In contrast, the
preconditioning of LPS, a single or multiple doses, for 24h before CLP ameliorates sepsis severity in
wild type mice has been showed in previous publications (27, 28). Despite the demonstrated
protective effect to sepsis after 1 day of LPS preconditioning, we hypothesized that the immune
exhaustion after LPS administration might existed in the earlier period and the repeated endotoxin
exposure might mimic the repeated infection in patients. Subsequently, we selected the
preconditioning with double doses of LPS with 5 days separation followed by CLP at 12h after the
2" dose of LPS to demonstrate the immune exhaustion in our models. Of note, half-life of the
important LPS-induced cytokines (TNF-Q, IL-6 and IL-10) is approximately 0.5-1.5h (29), then at
12h, approximately 8 times of the half-life, should be adequate for avoiding the effect of these
cytokines to the subsequent CLP surgery.

On the other hand, the lower macrophage immune responses, especially cytokines
production, after repeated LPS activation is demonstrated, and was known by several terms such
as “macrophage paralysis” or “macrophage exhaustion” or “macrophage tolerance” or “endotoxin
tolerance” (30-32). Although, the association between immunoparalysis and macrophage
exhaustion is not clearly demonstrated (31), it is possible that macrophage exhaustion might cause
ineffective organisms clearance and increase infection susceptibility compatible with the definition
of “immunoparalysis”.

Indeed, macrophage contains both activating and inhibitory FcGRs which competing for
immune complex ligands and the direction of this balance determines the direction of the cell
responses (16, 33). We hypothesize that the defect in the inhibitory signaling of FcGRIlb-/- mice
might result in a prominent response but is easier exhausted after repeated stimulation. Then we
test immunoparalysis of FCGRIIb-/- mice in vivo and macrophage exhaustion in vitro, respectively.

2. flattas (Main Body) fenanaieseaziaenAeniuananfiunsisy (Materials & Method)

NAN19at (Results) YA
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Materials and Methods
Animal and animal models

FcGRIIb-/- mice on C57BL/6 background were provided by Bolland S. (NIH, Maryland,
USA). Other mice were purchased from the National Laboratory Animal Center, Nakornpathom,
Thailand. Female, 8- and 24-week-old C57BL/6 mice were used in the experiments. The animal
protocols were approved by Faculty of Medicine, Chulalongkorn University followed the National
Institutes of Health (NIH) criteria.

Cecal ligation and puncture model

Polymicrobial sepsis was induced by Cecal ligation and puncture model (CLP) slightly
modified from the previous publication (29). Briefly, cecum were ligated at 10 mm from cecal tip
with silk 2-0, punctured twice with a 21-gauge needle then gently squeezed to expel a small
amount of fecal materials through an abdominal incision under isoflurane anesthesia. The incisions
were closed with 2 layers by nylon 4-0 and normal saline (NSS) at 2 ml/kg was administered
subcutaneously for the fluid replacement.

Cecal ligation and puncture with endotoxin pre-conditioning model

Because LPS induced-immuno-suppression is demonstrated (34, 35) and used as a sepsis-
induced immunoparalysis model (26), we follow the principle in our experiments. In our model, the
immunoparalysis, a condition susceptible to an infection, was tested by the severity of polymicrobial
infection from CLP surgery. Endotoxin (LPS) of Escherichia coli 026:B6 (Sigma-Aldrich, St. Louis,
USA) was administered intraperitoneally at 5 days (-120h) and 12h (-12h) before CLP surgery at the
dose of 0.8 g/kg (approximately 20 Mg per 25 g mouse) and 4 g/kg (approximately 100 Mg per 25
g mouse), respectively. Subsequently, CLP was performed as previously mentioned.

To measure inflammatory cytokines after LPS injection, 50 MI of blood was collected
through tail vein nicking at Oh (2h before LPS administration) and at 1, 3 and 6h after. In addition, in
separated experiments, blood from tail vein nicking was also collected before CLP (0h) and at 3h
and 6h to measure time-courses of bacterial burdens and serum cytokines after CLP surgery.
Otherwise, blood was collected through cardiac puncture at sacrifice time under isoflurane

anesthesia at 18h or 96h after CLP for sepsis injury analysis or survival test, respectively.
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Blood chemistry, supernatant media analysis and urine protein

For the natural history of FCGRIlb-/- mice, serum from tail vein nicking and spot urine was
collected once a month from 2 to 12-month-old. Serum and urine creatinine were measured by
(QuantiChrom Creatinine Assay, DICT-500, BioAssay, CA, USA). Spot urine protein was measured
by Bradford protein assay. Urine protein creatinine index (UPCI), a representative of 24h urine
protein, were measured from spot urine by equation; urine protein/urine creatinine.

Serum cytokines after LPS were measured by Luminex-based multiplex technology multi-
analysis panels 8-plex cytokines assay (Bioplex, Bio-RAD, CA, USA) to explore the panel of pro and
anti -inflammatory cytokines (TNF-O, IL-6, IL-1B, IFN-Y and IL-2, IL-4, IL-5, IL-10, respectively)
according to the manufacturer’s protocol. Then the selected important cytokines (TNF-Q, IL-6, IL-
10) were measured by ELISA assay (ReproTech, NJ, USA) in supernatant media and in mouse
serum after CLP surgery. Organs injury was determined by blood urea nitrogen (QuantiChrom Urea
Assay, DIUR-500, BioAssay), serum creatinine (Scr) (QuantiChrom Creatinine Assay, DICT-500,
BiaAssay), alanine transaminase (ALT) (EnzyChrom ALT assay, EALT-100, BioAssay) and lactate
dehydrogenase (LDH) (EnzyChrom LDH assay, EDLC-100, BioAssay). Blood bacterial burdens
were determined by plating a serial volume of blood into blood agar (Oxoid, Hampshire, UK) at

37°C then counted bacterial colonies after 24h of incubation. For blood polymorphonuclear cell

(PMN) and mononuclear cell count, 5 LI of blood mixed in 85 LI of 3% acetic acid for the hemolytic
reaction and total leukocytes was counted by a hemocytometer. In parallel, blood smeared on a
glass slide was stained by Wright stain and counted with x100 magnification in 100 fields to
determine the percentage of PMN and mononuclear cells. The total number of cells was calculated
by total leukocyte count from hemocytometer multiplied by the percentage of cells from the Wright
stain glass slide.
Anti-dsDNA antibodies

Anti-dsDNA antibodies were measured by coating ELISA plates with salmon sperm DNA as
published previously (36). In short, salmon sperm DNA (Life Technologies, InvitrogenTM, MA, USA)
passage through a 45-mm filter (Minisart, Sartorius, Germany) for selecting double stranded DNA
then coated into ELISA plate with the dose at 100 [g/plate. The plates were dry, blocked and

incubated with serial dilutions of serum for 1 hour at 37°C then peroxidase conjugated Fab’2 goat
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anti-mouse IgG 1/2,000 in 1% bovine serum albumin (BSA) in phosphate buffer solution (PBS)
followed by TMB peroxidase substrate (Biolegend, California, USA). The plate was developed in the
dark room for 10 min then added TMB stop solution and read with microplate photometers with a
wavelength at 410 nm.
Bone Marrow-Derived Macrophages

Macrophages were derived from bone marrows (BM) follow the established procedure (37).
In short, BM cells from FcGRIIb-/- and wild type mice obtained from femurs were centrifuged at
1,000 rpm in 4 °C for 10 min. Then cell were incubated in high glucose DMEM supplement with
10% fetal bovine serum (FBS), 1% penicillin/streptomycin, HEPES with sodium pyruvate and 20%
L929-conditioned media in a humidified 5% CO, incubator at 37 °C for 7 days. The cells were
harvested at the end of the culture period using very cold PBS and confirmed macrophage
phenotype with anti-F4/80 and anti-CD11c antibodies (BioLegend, CA, USA).
Macrophage endotoxin tolerance protocol

Macrophage endotoxin tolerance protocol followed the protocols from the previous
publications (38, 39). Briefly, endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at 10 or 100 ng/ml
was used to activate macrophage 1x10° cells/well in 96 well polystyrene tissue culture plate. To see
the difference between single or double LPS stimulations, 2 groups of experiments were performed.
For the single LPS stimulation (N/LPS), there was no endotoxin at the 1* 24h of the incubation then
the plate was washed with phosphate buffer solution (PBS), refilled fresh media and treated with
LPS at 10 ng/ml (N/LPS10) or 100 ng/ml (N/LPS100). For the double LPS stimulation (LPS/LPS), LPS
at 10 or 100 ng/ml was treated for the 1% 24h and treated with the 2™ dose of LPS at 10 ng/ml or
100ng/ml as indicated. The culture supernatant was collected at 1, 2, 4, 6 and 24h after the 2" LPS
incubation in all groups and stored at -80 °C until cytokine determination by ELISA assays
(ReproTech). After the incubation, cell viability was measured by MTS assay (One Solution Cell
Proliferation Assay, Promega Corporation, WI, USA) according to the manufacturer’s instruction
(40). In short, 20 MI of MTS was added to the culture plates for 2h at 37°C in 5% CO2 incubator
then read with microplate photometers with a wavelength at 450 nm. All in vitro experiments

demonstrated cell viability more than 95% (data not showed).
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Macrophage intracellular killing activity and phagocytosis protocol

The protocol followed the previous publication (41). BM derived macrophage at 1x10° cells
in 200 ul of DMEM per well were dispensed into the flat bottom 96-well plate and incubated at 37 °C
in a humidified 5% (v/v) CO, incubator for 24 h, before gently washing with culture media to remove
non-adherent cells. Subsequently, the cells with endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at
10 or 1,000 ng/ml, LPS10 or LPS1000, respectively, and incubated with 1x 10'CFU of E.Coli per
well.

Then after 15 min of incubation, supernatants were aspirated and cells were washed gently
with DMEM to remove un-ingested microorganisms. The supernatant and well washing fluids,
containing the non-phagocytized E.Coli, were combined, plated in serial dilutions on Tryptic soy
agar plates and counted for bacterial colonies for the representative of the non-phagocytic bacteria
which reversed correlated with the phagocytic activity. On the other hand, the cellular part,
phagocytosed macrophage, was further incubated with 200 ul of DMEM for 2h to determine
intracellular bacterial killing activity. The wells were gently scraped and washed with 200 ml distilled
H,O to induce cell lysis and the serial dilution of the lysate were plated on Tryptic soy agar,
incubated at 37 °C for 16 h and determine the bacterial colony count. The number of bacteria from
the cell lysate represented the intracellular killing activity.

Statistical analysis

Data are shown as the mean + SE and differences between groups were examined for
statistical significance using the unpaired Student t-test or one-way analysis of variance (ANOVA)
with Tukey's comparison test for the analysis of experiments with 2 and 3 groups, respectively.
Survival analyses were evaluated using the log-rank test by observation and recorded every 6-24h
then all mice were sacrifice at 96h after CLP. P values < 0.05 were considered statistically

significant. SPSS 11.5 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analysis.



61

Result

Fc gamma receptor llb deficient mice susceptible to cecal ligation and puncture sepsis in
symptomatic SLE mice and asymptomatic SLE group preconditioned with LPS

At 24-weeks-old, FcGRIIb-/- mice showed increased anti-dsDNA with proteinuria but normal
kidney function as evaluated by serum creatinine (Scr) (Fig 1). This natural history allows the
experiments in 2 groups of mice in correspondence with patients with SLE; asymptomatic genetic
prone group (8-weeks-old) and symptomatic proteinuria group (24-weeks-old). To see the
susceptibility to bacterial sepsis without LPS preconditioning in these 2 groups, CLP surgery was
performed in comparison with age-matched wild type control. In the absence of LPS, only
symptomatic, but not asymptomatic, FCGRIIb-/- mice showed higher sepsis mortality rate compare
with wild type (Fig 2A, B) supports the correlation between SLE disease activity and infection

susceptibility (9).
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Figure 1. The natural history of FcGRIlb-/- and wild type (FcGRIlb+/+) mice as determined by

serum creatinine (Scr), urine protein creatinine index (UPCI) and anti-dsDNA (n=4-5/groups).
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Then we test the effect of LPS preconditioning in asymptomatic mice and determine the

severity of immunoparalysis by the mortality rate of CLP surgery (20, 21).

Figure 2. Survival analysis of cecal ligation and puncture (CLP) sepsis surgery in asymptomatic
FcGRIIb-/- mice (8-wk-old) (A) and symptomatic, proteinuria positive but normal serum creatinine,
FcGRIIb-/- mice (24-wk-old) (B) in comparison with age-matched wild type mice (FCGRIIb+/+).
Although the high CLP mortality rate found in both wild type and FcGRIIb-/- mice after LPS-
preconditioning, FCGRIIb-/- showed the higher mortality rate. Whereas all wild type and FcGRIlb-/-
mice die within 72h and 36h, respectively, in CLP with LPS, the survival rate at 30% and 22% found
in wild type and FcGRIIb-/- mice, respectively, in CLP alone (Fig 3A, B). These results supported
the immunoparalysis occur in both wild type and FcGRIIb-/- mice after LPS preconditioning but

FcGRIIb-/- mice showed the more severe immunoparalysis (Fig 3C).
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Figure 3. Survival analysis of cecal ligation and puncture (CLP) sepsis surgery preconditioning
with 2 separated doses of LPS at 120h and 12h prior to CLP, CLP in endotoxin preconditioning
model, in comparison with normal saline (NSS) placebo injection within wild type mice
(FcGRIIb+/+) (A) and FcGRIlb-/- group (B) were showed. Survival analysis of CLP in endotoxin
induced immunoparalysis model between wild type (FcGRIIb+/+) and FcGRIIb-/- mice (C) was

also demonstrated.
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The cytokine responses after LPS injections and after superimposed by cecal ligation and puncture

The luminex-based multiplex system was used to explore the difference in the cytokines
responses after LPS administration between asymptomatic FcGRIlb-/- mice versus wild type.
Among the pro-inflammatory cytokines (TNF-Q, IL-6, IL-1B and IFN-Y), we found that most of the
pro-inflammatory cytokines, except for TNF-U, were significantly higher in FcGRIlb-/- mice at 1h
after the 1% dose of LPS administration (Fig 4A-C). TNF-A, IL-6, IL—1B and IFN—Y at 1h after LPS
administration in FcGRIlb-/- mice and wild type were 21,851+3,200, 3,525+117, 350+£38, 212
pg/ml and 12,453+3,925, 2,301+157, 54+11, 31 pg/ml, respectively. In parallel, for the anti-
inflammatory cytokines (IL-2, IL-4, IL-5 and IL-10), all of these cytokines, except for IL-5, were
higher in FcGRIlb-/- mice at the 1* h after the 1° dose of LPS (Fig 4D-F). In detail, IL-2, IL-4, IL-5
and IL-10 at 1h after LPS administration in FCGRIIb-/- mice and wild type were 26.2+3.4, 10.8+£1.1,
34.5+3.5, 9581106 pg/ml and 12.6+3.3, 3+0.4, 27.1+£3.6, 575£104 pg/ml, respectively. These
results supported the prominent cytokines responses in FcGRIlb-/- mice reported previously (18).
Interestingly, at 1h and/or 2h of the 2" LPS administration with the 5 times higher dose of LPS, all of
these cytokines, except for IL—1ﬁ and IL-5, were significantly lower than the 1* administration in
FcGRIIb-/- mice (Fig 4). In contrast, in wild type mice, only IFN-Y, IL-2, IL-4 and IL-10 were lower
and IL-1B was higher in some time-point of 2" LPS administration compared with the matched
time-point of the 1* LPS injection (Fig 4). The endotoxin tolerance, determined by the lower
cytokines responses after 2" dose of LPS, was easier demonstrated in FCGRIIb-/- mice compare
with wild type. Moreover, the severity of endotoxin tolerance, determined by the cytokine level
difference after matched time-point of 1* and 2™ LPS administration, was higher in FcGRIIb-/- mice

(Fig 4 inset graph).



66

Figure 4. Serum cytokines in wild type (FCGRIIb+/+) or FcGRIIb-/- mice after at 1, 3 and 6h after
1% LPS injection (0.8 g/kg) and 2™ LPS injection (4 g/kg) as measured by TNF-O (A), IL-6 (B), IL-
1ﬁ (C), IFN-Y (D), IL-2 (E), IL-4 (F), IL-5 (G) and IL-10 (H) was demonstrated. To emphasize the
difference of serum cytokines after 1% and 2" doses of LPS, the delta change of serum cytokine
response at the matched-time=points after both LPS injection was showed as inset graph. (n= 5-7
per group)

It is interesting to note that, even with the 5 times higher LPS dose of 2" LPS administration,
most cytokines level was lower than the 1* dose implied endotoxin tolerance status in both

FcGRIIb-/- and wild type mice. Subsequently, we tested the severity of polymicrobial infection in
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these mice with CLP surgery and selected to explore only frequently mentioned sepsis cytokines

(TNF-A, IL-6 and IL-10) in vivo.

Figure 5. The time-course of bacterial burdens after cecal ligation and puncture (CLP) in blood
bacterial burdens (A), mononuclear cell (B), PMN (C), TNF-Q (D), IL-6 (E), IL-10 (F) and the
severity of organs injury after 18h of wild type (FCcGRIIb+/+) and FcGRIlIb-/- as demonstrated by
serum creatinine (Scr) (G) and alanine transaminase (ALT) (H) was showed. (n= 5-7/ time-point

and group)
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Interestingly, bacterial burdens in FCGRIIb-/- mice were higher than wild type in all selected
time-points (3, 6 and 18h) after CLP (Fig 5A). Blood bacterial count (><1O2 CFU/mI) in FcGRIlb-/-
mice and wild type at 3, 6 and 18h were 3.1£0.3, 7.6£1.1, 964+137 and 0.6+0.2, 3.3+0.6, 518473,
respectively.

Moreover, pro-inflammatory cytokines (TNF-O and IL-6) and anti-inflammatory cytokine (IL-
10) were higher in wild type mice at 3 and 6h and only 3h after CLP, respectively (fig 5B-D). Serum
TNF-A, IL-6 and IL-10 at 3h and 6h in FcGRIIb-/- versus wild type were 48+9, and 80+7.1, 69+9
and 145118, 7116 and 10414 pg/ml versus 120+£24 and 211149, 124+24 and 235+33, 102+7 and
170136 pg/ml, respectively. In contrast, at 18h after CLP, all of these cytokines and most of the
organs injury biomarkers (Scr for kidney injury and ALT for liver injury) were higher in FCGRIIb-/-
mice (Fig 5B-H). Despite the prominent responses to LPS in FcGRIIb-/- mice mentioned earlier,
cytokines responses at the early phase of CLP after LPS preconditioning were stun in comparison
with wild type implied the more severe immunoparalysis.

Perhaps, severe immunoparalysis at the early phase of sepsis might associate with the
higher bacterial burdens leading to the higher sepsis severity (Fig 5) and mortality rate (Fig 3C) in
FcGRIlb-/- mice.

Bone marrow derived macrophage of FcGRIIb-/- mice showed higher cytokine responses in the
single incubation of LPS but lower responses in the double incubation of LPS

The previous results demonstrated that FcGRIIb-/- mice, an inhibitory signaling deficiency,
showed a very high initial response, but subsequently follow with a more apparent exhaustion after
LPS stimulation. Because macrophage might be responsible for the exhaustion in vivo then we
tested FCGRIIb-/- macrophages response to endotoxin incubations in vitro in comparison with wild

type cell.
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Figure 6. The cytokine responses in supernatant media from macrophages of FcGRIIb-/- or wild
type (FcGRIIb+/+) after activated with only once low dose LPS (N/LPS10) as measured by TNF-O
(A), IL-6 (B), IL-10 (C) and after activated with twice low dose LPS (LPS10/10) as measured by
TNF-Q (D), IL-6 (E), IL-10 (F) was showed. (Separated experiments were done in triplicate)

In parallel with the in vivo results, higher cytokines, at least in some time-points (3-24h),
found in the supernatant of FCGRIIb-/- macrophages with the single low dose LPS (non LPS at the
1* 24h of the incubation followed by LPS dose at 10 Mg/ml; N/LPS10) (Fig 6A-C). Then TNF-a and
IL-10, but not IL-6, was lower in the double low dose of LPS stimulation (LPS 10 }Jg/ml for 24h then
washed and add the same 2™ dose; LPS10/10) (Fig 6D-F). Then, a higher dose of LPS was used.
Once again, FcGRIIb-/- macrophages showed the higher responses than wild type in the single

high dose of LPS (N/LPS100) (Fig 7A-C). But the cytokines responses of macrophages primed with
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the high dose of LPS seems to depend on doses of the 2" LPS. In high LPS followed by low dose
LPS (LPS100/10), all cytokines were detected at the low level (Fig 7D-F) and the difference between
wild type and FcGRIlb-/- cells were subtle. But the apparent lower TNF-O and IL-10 in FcGRIIb-/-
cells appeared again with the higher 2" dose of LPS (LPS100/100) (Fig 7G-l). To clarify the
macrophage exhaustion, the lower cytokines level after double LPS exposure compare with single
LPS exposure, the cytokines level after single and double LPS exposure at 6 and 24h was
demonstrated (Fig 8). With the double low dose of LPS (LPS10/10), macrophage exhaustion could
be demonstrated with only the lower TNF-a in wild type cell but lower both TNF-a and IL-10 in
FcGRIIb-/- macrophages (Fig 8A-C).

Interestingly, macrophage exhaustion, lower cytokine in double LPS exposure compare with
single LPS, could be demonstrated only by TNF-a and IL-10 in FcGRIlb-/- cells but with TNF-a alone
for wild type cell with the double low dose of LPS (LPS10/10) (Fig 8A-C). On the other hand, with the
higher dose of LPS stimulation, the exhaustion could be demonstrated in all cytokines in FCGRIIb-/-

cells but only in some condition in wild type cell (Fig 8D-F).
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Figure 7. The cytokine responses in supernatant media from macrophages of FcGRIIb-/- or wild
type (FcGRIIb+/+) after activated with only once high dose LPS (N/LPS100) as measured by TNF-
Q, IL-6, IL-10 (A-C) and double LPS doses, low and high dose LPS (LPS100/10 and LPS100/100,

respectively), (D-F) were demonstrated. (Separated experiments were done in triplicate)
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Figure 8. The macrophage endotoxin tolerance emphasized by the difference in cytokine
responses (TNF-A, IL-6, IL-10) in supernatant media from macrophages of FcGRIlb-/- or wild type
(FcGRIIb+/+) after activated with only once low dose (N/LPS10) versus twice low dose of LPS
(LPS10/10) (A-C) and the difference among only once high dose (N/LPS100) versus twice high
and then low dose of LPS (LPS100/10) versus twice high dose of LPS (LPS100/100) (D-F) were

demonstrated. (Separated experiments were done in triplicate)
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Macrophage exhaustion could not be demonstrated by IL-6 responses both in wild type and
FcGRIIb-/- cells with double low dose LPS stimulation. In parallel, with the comparison among
single high dose LPS (N/LPS100) with double LPS dose with low and high 2" LPS dose (LPS100/10
and LPS100/100, respectively), macrophage exhaustion could be shown by all cytokines despite a
less prominent in IL-6 response of the wild type cell (Fig 8D-F). It seems the macrophage
exhaustion occur in both knock-out and wild type cells but more prominent in FcGRIlb-/- cells.

In contrast, the phagocytosis and killing activity of FCGRIIb -/- macrophages were better
than wild type cells and there was a non-significant exhaustion in phagocytosis and killing activity
after LPS stimulation (Fig 9). Although, the killing activity of FcGRIIb -/- macrophage should be able
to control sepsis severity, perhaps the more severe bacterial sepsis severity in FCGRIIb -/- mice
might due to the lower number of mononuclear cell after sepsis (Fig 5).

3. A8 / 3an90] (Discussion) HANNINARES / HANTASETIE LA (aTiTuuaslaifhilyl

PaAun A1)

FcGRIlb deficiency is one of the genetic defects of SLE and FcGRIlb polymorphism with a
lower gene activity commonly reported in patients with SLE in Asia (3-5, 8). Additionally, sepsis is
the leading cause of death in patients with SLE (9). We showed a high susceptibility to CLP in
symptomatic SLE mice but not in asymptomatic group in comparison with age-match wild type
control. In asymptomatic genetic prone mice, the high susceptibility to CLP was showed only after
with repeated endotoxin induced immunoparalysis. The more severe macrophage paralysis in
FcGRIlb-/- macrophages might responsible for the more immunoparalysis in mice leading to higher
sepsis severity after CLP surgery.

The susceptibility to bacterial infection in patients with SLE is associated with several
factors; immunosuppressive drugs, activity of disease, organs involvement, etc (9). Studies on
FcGRIlb-/- mice allow for exploring SLE without several confounding factors, especially
immunosuppressive drugs. As expected, the higher mortality rate of sepsis was showed in 24-wk-
old FcGRIlb-/- mice, positive proteinuria but normal Scr classified into symptomatic SLE group, in
comparison with age-matched wild type mice. These results supported the association between

SLE disease activity and bacterial infection susceptibility reported previously (9). Interestingly, the

mortality rate of sepsis without LPS preconditioning in asymptomatic 8-wk-old FcGRIIb-/- mice,
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positive anti-dsDNA without proteinuria, did not different to wild type mice supported the effective
immune responses to bacterial infection previously published (18).

More prominent endotoxin-induced immunoparalysis in FcGRIIb-/- mice demonstrated by
the high mortality rate of CLP sepsis

The immunoparalysis was induced by the double separate LPS administration and the
severity of immunoparalysis, the condition with a more susceptible to infection, was determined by
the severity of CLP sepsis (20). With this model, there was a higher mortality rate of CLP after LPS
preconditioning compare with NSS placebo control within either 8-wk-old FcGRIIb-/- or wild type
mice demonstrated immunoparalysis occur in both groups. Nevertheless, FcGRIIb-/- mice showed
a higher mortality rate than wild type implied a more severe immunoparalysis.

Despite immunoparalysis could be demonstrated by several biomarkers (42), cytokines
responses are frequently used. Then we tested cytokines responses in panels of pro- and anti-
inflammatiory cytokines, TNF-Q, IL-6, IL—1B, IFN-Y and IL-2, IL-4, IL-5, IL-10, respectively, with
luminex-based measurement in mice with double doses of LPS administration. Most of the
cytokines selected to measure were mainly produced by macrophage except for IFN-Y and IL-5
which produced prominently by NK cell or T cell and mast cell, respectively. With double dose of
LPS administration by the 2" dose of the 5 times higher than the 1% dose, all of these cytokines
response after the 2" LPS stimulation were not higher than the responses after the 1*' LPS dose.
These results suggested immunoparalysis in both FCGRIlb-/- and wild type mice. Interestingly, in
comparison with wild type mice, most of the pro- and anti-inflammatory cytokins, except for IL-5,
were higher in FcGRIlb-/- mice after the 1* LPS stimulation, implied the vigorous cytokines
responses in FcGRIIb-/- mice. Then after 2" LPS administration, all cytokine except for IL-1 B and
IL-5 were lower than the 1 responses in both wild type and but with a more prominent difference,
demonstrated by the cytokine difference between 1* and 2" LPS administration, in FcGRIIb-/- mice.
These results demonstrated a more severe immunoparalysis in FCGRIIb-/- group. Of note, most of
these cytokines produced from macrophages except for IL-5 and IFN-Y which produced mainly
from mast cell and NK cell, respectively. Although functional FcGRIIb expression on mast cell (43)

and murine NK cell (44) were reported, IFN-Y, but not IL-5, response differently between FcGRIIb-/-
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and wild type mice. These implied the difference of FCGRIIb function between these cells. More
experiments needed but out of the scope of this article.

Nevertheless, the double LPS preconditioning seems to affect CLP severity. At the initial
time-point of CLP surgery, 12h after 2" dose of LPS, there was non-difference in TNF-Q, IL-6 and
IL-10 between LPS preconditioning and NSS control (data not showed) supported by the base-line
value before CLP surgery (Figure 5). Interestingly, blood bacterial burdens were higher with the
lower of these cytokines in FCGRIIb-/- mice compare with wild type at 3h and 6h after CLP surgery.
However, at 18h after CLP the sepsis severity was more severe in FCGRIIb-/- mice as demonstrated
by bacterial burdens, cytokines and organs injury. Perhaps, the initial cytokine responses were
needed for the initial innate immune responses to control the infection and the loss of the initial
control in FcGRIIb-/- mice due to LPS preconditioning induced a more severe sepsis. These results
support the importance of the initial bacterial control, especially in patients with SLE and /or

FcGRIlb polymorphism.

More prominent immunoparalysis in FCGRIIb-/- macrophage demonstrated by cytokine
responses after LPS stimulation

The LPS induction in vitro alters macrophage characteristics from classical pro-
inflammatory macrophage responses into a less pro-inflammatory stage of the macrophage (38)
implied the importance of macrophage in immunoparalysis. With the double low doses of LPS
(LPS10/10), macrophage exhaustion could be demonstrated in both FcGRIIb-/- and wild type but
cytokines production after 2" dose of LPS was lower in FCGRIIb-/- macrophages. Moreover, the
exhaustion seems to be more apparent with the higher 1* dose of LPS which needed the higher 2"
dose of LPS to re-stimulate. With the initial high dose of LPS followed by a low dose (LPS100/10),
only subtle cytokines responses were demonstrated. But with the larger 2" LPS dose (LPS100/100),
the difference between FcGRIIb-/- and wild type appeared again. However, FcGRIlb-/-
macrophages produced less cytokines levels after 2" dose of LPS either with high or low LPS
doses. Then LPS could induce a more apparent macrophage paralysis in FCGRIIb-/- cells resulted

in immunoparalysis state in mice which demonstrated by the higher CLP sepsis severity.
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In conclusion, we demonstrated the impact of the repeated infection in patients with SLE
through the CLP preconditioning with LPS in FcGRIIb-/- mice. Despite a good response to the only
once bacterial infection in FcGRIlb-/- mice, the responses to the repeated exposure might be
impaired lead to a more severe bacterial burdens and infection. The repeated infection in patients
with  SLE could be more severe due not only to hyperimmunoglobulin induced hyper-
immuneresponse and sepsis (18), but also from immunoparalysis with the higher bacterial burdens
as currently demonstrated. In the translational aspect, we suggested that the repeated infection in
patients with SLE should be vigorously concerned and the FcGRIlIb polymorphism screening in

Asian patients with SLE might be a useful clinical practice.

4. z@a;ﬂmeu@LLuzLﬁmrTUﬂ’]ﬁﬁi\"ﬂmfuﬁi@iﬂ paamaulsslamTlumadsvg nieaaaiisei

The next final part of the project is the experiments to see if macrophage of FCGRIIb knock-out
which demonstrated exhaustion but intact killing activity show shorter half-life in comparison with wild
type cell. If the last experiment results go along with the hypothesis then FCGRIIb knock-out mice will be
susceptible to sepsis due to macrophage exhaustion and shorten half life of macrophage which will be
stronger support our in vivo results.

Regarding to the translation, the exploration of FCGR polymorphisms in patients with SLE might
be beneficial for the prediction of sepsis and might require a more aggressive antibacterial drug at the

beginning of the simple infectious diseases. More studies will be needed.
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