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ABSTRACT: Recently, it was found by GrcPne and Levin that the Ca;-;irnir energy of certain 

combinations of massless and massiw fields in space with extra dimensions play a crucial 

role in the accelerated expansion of the late-time universe and therefore it could serve as 

a candidate for the dark energy. It also provides a mechanism in stabilizing the volume 

moduli of extra dimensions. However, the shape moduli of the extra dimensions were never 

taken into account in the previous work. We therefore study the stabilization mechanism 

for both volume and shape moduli d uc to the Casimir energy in MI 1 +3 x 1['2
. The result 

of our study shows that the previously known local minimum is a saddle point. It is 

unstable to the perturbations in the direction of the shape moduli. The new stable local 

minima stabilizes all the moduli and drives the accelerating expansion of the universe. The 

cosmological dynamics both in the bulk and the radion pictures are derived and simulated. 

The equations of state for the Casimir energy in a general torus are derived. Shear viscosity 

in extra dimensions induced by the Casimir density in the late times is identified and 

calculated, it is found to be proportional to the Hubble constant. 
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1. Introduction

According to the latest data ou Type Ia Supernovae [l] aud Cosmic lVIicrowave Back­
ground Radiation ( CMBR) [2j. it is strongl)1 believed that the universe consists of a sort 
of vacuum energy, namely dark energy. which contributes Uw accelerated expansion in 
three-dimensional space. Unfortunately, the exact form of the dark energy has not yet 
been uncovered until now. The prominent candidates for dark energy are the cosmological 
constant, and models of scalar fields, such as the quintessence and moduli fields. 

In the standard cosmological model where the acceleration of the universe is taken into 
account by a positive cosmological constant term, dark energy contributes largely, more 
than 70 % of the total density of the universe [2]. This number (roughly 10-11 eV4 ) seems 
arbitrarily small and the known mechanisrrn,, such as the popular TeV-scale supersymme­
try (SUSY) breaking scenario or any top-down high-scale particle physics mechanisms, fail 
to produce it. 

In recent years, theories with large extra dimensions have received an explosion of 
interests as they provide new solution to the hierarchy problem. Recently, it was found 
that Casimir energy of massless and massive fields embedded iu higlwr-dimensional space­
time could play a crucial role of dark euergy with additional significant properties [3. 4]. 



The Casimir energy not only drives the expansion of universe acceleratedly, but also sta­bilizes the volume moduli of extra dimensions. However, the shape moduli, TI, T2, were not included in the work of Greene and Levin. In this work we therefore take into account these moduli in the cosmological dynamics by assuming that tlw extra dimensions are 1f2 . The phenomenological implications of nontrivial shape moduli were pointed out in [5 · 7]. Shape moduli can have dramatic effects 011 the Ka.Juza-Klein spectrum. for example, they can induce level-crossings and varying mass gaps. They can also help to eliminate light KK states. It should be interesting to investigate the role of shape moduli in cosmology. Om work employed the calculation of Cm;imir energy in the 11011-trivial space M4 x 1f2 . The Casimir energy is the vacuum e11ergy contributed from the quantum fluctuation of fields which satisfy certain boundary conditions. In fact, the Casimir energy in various spaces including a distorted torus was studied in earlier works [8 10, 4]. The standard approach for determining the Casimir euergy is the zeta function regularization (11]. Our result shows that the minimum of potential in the previous work [3] ( TJ = 0, T2 = 1) was the unstable local minimum while the true local minimum locates at specific points in the moduli space, Ti = ±1/2, T2 /3/2. confirming the resnlt of ref. [4]. At this local minimum the potential stabilizes all moduli and also sources the accelerated expansion of the four dimensional universe. This paper is organized as follows. In section 2 we review cosmological dynamics on M l+n x 1fP spacetime. In section 3 we present the mathematical calculation to determine the Casimir energy of massive and massless fields in the spacetime with toroidally compactified extra dimensions. Then we go on to construct effective potential contributed by Casimir energy of massive and massless field in M 1 +3 x 1f2 spacetime in section 4. The numerical evidences of the stability of moduli space are presented in section 5. In section 6 we present our conclusions. 
2. Cosmological dynamics in M[ I+n X ']['P

Our study of cosmological dynamics is based upon the application of Einstein's general relativity on the product space Ml 1111 x lr". between a (1 + n)-dimcnsional spacetime and a p-dimensional toroidally-compactified space. As a whole. the total nnmber of spatial dimensions is d = n + p. We assume tlw cosmological ansatz 
(2.1) 

where the metric hij represent the p-dimensional compact space with i, j = 1, ... , p and gw for the (1 + n)-dimensional noncom pact spacetime withµ, 11 0, .... n. Let's assume also that the metric only depends on the noncom pact coordinates :i:1 1
• The compact coordinates are O � yi � 21r. In this paper, we focus our effort on the cosmological dynamics of a 4-dimensional spacetime with two extra dimensions (n = 3 and p = 2). The metric of two-dimensional torus 1f2 takes the form 
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where T = T1 + ir2 is the complex structure ( or shape moduli) and b2 is the Kahler 
structure (or volume moduli). In cosmology, it is customary to write g/l,, = a2 (t)1]µv and 
hij = h.;1 ( t). In the next sections, we will assume that Casimir energy in compact direction, 
P(d+l)D, plays the roles of the dominant energy content in the universe. By using Einstein 
equations in (1 + 5)-dimensional spacetime, we obtain the following equations governing 
the cosmological dynamics: 

where G is the 6-D gTavitational constant. We have defined the Hubble constants Ha= a/a

and Hb = b/b, where a dotted quantity represents the corresponding time derivative and 
p6D is the casimir energy density in six dimensional spacetime. 

2.1 Dynamics in the radian picture 

Equations of motion (2.3)-(2.7) can be obtained by varying the di 1-dimensional Einstein­
Hilbert action: 

(2.8) 

with n = 3 and p = 2, where P(l-+-d)D(h'.I), R. ( I+d) and lvf* are tlw Cm,imir energy density, 
Ricci scalar and the Planck mass in ( 1 ·l cl)-climensional spacetirne respectively. For later 
purpose, it is useful to perform KK-dimensional reduction of the above action from (1 + cl) 
to (1 + n)-dimensional spacetime and Weyl rnscaling g

1ws = ff,t:- 1 g1u,; n = M1-I Vp/m�1-
1,

the action takes the form 

S-Jd l+nxv½i, t�: 1 [nE+gj:"(1 �n V1, ln JhV" In V� V 1, h'i V ,h,1]-u(h'ii}- (2.9)
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Note that the subscript E denotes the Einstein frame variables. Here, Vp = J dPy ./Fi, =(21rb)P = [P is the (invariant) volume of extra dimensions, mpl and U(hij) 
l+n . , l+n .. f ft=n VpP(1+d)D(h1J) = O,T=n fJ(l+n)D(h 1J ) are the Planck mass and the effective potential in 1 + n-dimensional spacetime respectively. We can also take P(l+n)D(hiJ) to be theCasimir energy density in (1 + n)-dirnensional spacetime.Since we are interested in the n = 3, p = 2 case, by using the metric of two-dimensionaltorus defined in eq. (2.2), the action in eq. (2.9) can be written as 

s4d4xFife {�� F" - 'i.o:::" (V,,WV ,,,i, + ,-2•'v,,¢1 V ,,¢1 I v,,,,, V,,,P,)]-u('P, ¢1' ¢2}
(2.10) where 1/J = 2v'2 ln b, ¢1 = T1, and ¢2 = ln T2. Such action gives rise to the following set of equations: 
(2.11) 
(2.12) 
(2.13) 
(2.14) 

and 
4H E + (JJ2 + e- 2¢2 ¢/ + ¢/) = 0. (2.15) 

Note that HE= (daE/dtE)/aE is the Hubble constant in the Einstein's frame. 
3. Casimir energy in M[I+n X 1f P 

In this section, we will undergo the mathematical formulation to determine the Casimir energy, Ecas, associated with a scalar field of mass !VJ in a MI 1+ 11 x TP space. The fermionic degree of freedom will contribute to the Casimir energy with the same expression except for an extra minus sign. We then focus on the result from om phenomenological study (n=3,p=2). 
3.1 Casimir-energy calculation 

Let Vn = L11 be the spatial volume of non-compact spacetime, and \1,1 = lP be the volumeof compact space. If we assume L » l, the zero-point energy of scalar fields in M[ l+n x 'JI'P can be evaluated by 
(3.1) 

where ka ; a = l, ... , n is the momentt1111 in each non-compact SJHttial diniction, ni E Z; i = 1, ... , p is the momentum number in each compact direction.
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Using the property of integratioll ill appendix A and changing variable of integnition 

as v = k'2 /(hiJnini + !v/2 ), we can express tile Casimir enorgy as 

(3.2) 

We can convert the integral into the Gamma function by using the formulae in appendix A; 

as a consequence, we obtain the Casimir energy in a simple form 

E - ~ (27r) 1+2s f(s) ~ (hij, ,, , / 2)-s· 
cas - 2 L ~ 

1 
L.., . n,n.1 + 1\1 , 

7r 2 r(--2)1, ,,. 
', J 

d-p+l 
S=-----2 . (3.3) 

In our case, the compact space is 'Il'2 and hij is the inverse metric from eq. (2.2); 

therefore, our next task is to regularize the infinite summation in the eq. (3.3) 

( 
I 1

2 
) ( I 1

2 
)- ' 

T 2T1 1 2 ~ T 2 2TJ . 1 2 . 2 , 
F s; -b2 , --b2 , -b2 ; M = L.., -b2 n 1 - -b2 n1n2 + b2-n2 + M , (3.4) 

T2 T2 T2 T2 T2 T2 
1J.J,11'2 

which is known as extended Chowla-Selberg zeta function [91. It is worth noting that 

Vp = l2 = (21rb)2 in this case. 

After a few steps of analytic manipulation by using Poisson resummation and property 

of the modified Bessel function, we obtain 

(3.5) 

b2M2) } m2+-- ' 
T2 

where the Epstein-Hurwitz zeta function (E11(s; q) is expressed as 

where the prime at the first sum indicates that the term n = 0 is excluded. A similar 

expression which manifests the periodicity of the Casimir energy with respect to r1 is also 

given in ref. [12]. 
The expression serves as an analytic continuation of the Casimir energy where s is 

extended from positive to negative values. Insl:Jrting eq. (3.5) into eq. (:3.3) and eliminating 

the infinite terms due to the pole of r(s 2) and f(s 1 cc 3) iu this case, we conve­

niently reached the regularized Casimir energy. The dropped divergent terrns correspond 
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Figure 1: The magnitude of the Ca8imir energy density, IP4D1, in four dimension per degree of 

freedom for M = 5, b = 0.133. 

to the constant total energy and the constant energy density in the bulk. Both of them do not depend on any parameters of the torus and therefore can lw safol,v eliminated from the physically relevant Casimir effects by renormalization. The final regulated Casimir energy density p(h;1) in (1 + 3)-dimensional spacetime can then be exprcssl'd as 
2 Ecas p4o(b ,T1,T2) = �

Vm 

= -(4n2b2 )8 {2T2,(T2b2 M2 )-�+¼ f e-½ Ks-1 (2nkbM v-ri)k=I 
+2rJ-• e'::')

l' l fi-1 I<,-1 ( 2•;�/)

4 r:;:: �, ,_ l cos-·(21rT1 km) }"/ ( , + yTz 0/l;· 2 

____ . 1 ' s- I 2Trr,.'T2 
k,m=l ( m2+b2 /vf2 )s-2 2 

b2 Jvf2 } m2 +-- .(3.7) Tz 
T2 

In the case of massless scalar fields (l\[ -'- -- 0), the Casimir energy density becomes 
2s) 
(3.8) 

The Casimir density in (1+-3+2) dimensiorn, is given by P6D = p.w/(2nb)2 .As it is pointed out in the work of Ponton and Poppitz [4]. Since the symmetry T-> ---1/T, T --> T + 1 of the torns is preserved in the Casimir energ�, Pxpression, it is sufficient 
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to consider only the fundamental region where T � l, -1/2 ::; T1 ::; 1/2 of the shape moduli space. In the fundamental region, there are two minima and one saddle point of the magnitude IPI of the Casimir energy density. The saddle point locates at T1 = 0, T2 = 1 
and the two minima locate at T1 = ±1/2, T2 = /3/2. This is shown in figure 1. 
3.2 Analysis for small bM 
In the limit of b]'d « l, we recalculate th(' Casimir energy by pPrforming the binomial 
expansion with respect to small bl\! before regula,rization, and kP<'jl only the leading-order terms. It can be demonstrated that the process of regularizing each term after performing 
binomial expansion is NOT equivalent to the process of regularizing the whole expression at once if s= -2 is set beforehand. When we set s = (1- d)/2 = 2. the binomial expansion of eq. (3.4) gives only three terms with orders of (bM)0 , (bfi.1)2 • and (bM)4 , whereas the 
regularization of the full expression before setting s = -2 as in eq. (3.5) ,which gives eq. (3.7) as a result, generically leads to an infinite series of b1W, even after setting s= -2 
in the final expression. Without setting s = -2 before regularization, the precise dependence of the coefficients 
of the bJ\1-binomial expansion to the moduli parameters T1, T2 will be determined. The 
small bJ\1 expansion is obtained subsequently. We begin by replacing hiJ with the forrn of the inverse metric of 1f'2 in eq. (3.3) and 
using Mellin transform (see appendix A) 

1 (27r)1+2s r(s) � 1·oo dt ts-1e-{�(ITl 2 nt·2T1n1n2+n�)+M 2 }t (3_9)2 L i+ 2
s 1 � 7f 2 r(-2) 111,n2EZ O 

1 (27f)1+2s r(s) 
L /'CXJ i ,--1 --{-L(ITl 2 11 21 -2-r1111112+n�)+(bM)2 }v

- - --,-�--- ( '(! v· e r2 2 £ 1 t2s l 7r-T-r(-2) 111.112EZ' O 

___ 1 (27f)J+2s b2s CXJ -1) 7" 2· , (\Tl 2 ,, TJ 1 2)-(s+j) --,-�---� (bi\[).lf(s+J)� -111 2--111n2+-n2 , -2 L ,,,.11}'r( I)� rn! � '77 T2 T2 T2 " 2 j=O n1,n2E11, 

where the second line is obtained by changing the dummy variable u-= t/b2
, and the final line is obtained by expanding the Taylor series for e-(bM)2 . vVe can determine the double 

summation in eq. (3.9) by using the result in eq. (3.4), (3.5); as a consequence, the Casimir energy density in five spatial dimensions takes the form, 
P6D(b2 , T1, T2) = -(4n2b2)8-1f (-.�)j (bl\1)2]

j=O J. 

X {4nj /ri, f (�.) s;�s(t1rmh1 )Ks+J·-½ (21rmh2)
m,k=I 

-hrs+2J-½ T;+Jr G-s-1((1-2s---2j)+1r 8+2J -l Tt' j ['( 1 - 8- j)((2-2s-2j)}.
In the limit bM « l for s = -2, the Casimir energy density then becomes 

(3.10) 
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where

C2 = 1r-½ T2 1 I' G) ((3)+1r-1TiI'(2)((4)+41r/72 f ( ;') �cos(21rmkT1)K_3;2(21rmkT2),
m,k=l 

(3.11) 

In the next section, the total Cm,irnir densit,v for small bl\! and the full expression will
be numerically compared. The true rniuimurn of the potential. iucl11ced from the Casimir
energy density located at a point (TI, T2) (±1/2, /3/2), appears only when the full
expression is evaluated.

4. Particle spectrum and effective potential for moduli fields

It is demonstrated in ref. [4] and ref. [3] that a careful mixing of massless and massive,
bosonic and fermionic degrees of freedom of the bulk fields can lead to a Casimir energy
density with local minimum with respect to the scale factor, b, of the compact extra
dimensions. In the torus case with the shape moduli T1, T2, it can be shown that the
true minimum of the mixed Casimir energy density (and thus the potential) locates at
T1 = ±1/2, T2 = /3/2, in contrast to the case of undistorted torus considered in the
previous work where the shape moduli are set to T1 = 0, T2 = l.

The simplest model of the bulk fields in our M1 1+3 x 11'2 space consists of a massless
boson, a massless fermion, a massive fermion with mass .M, and a massive boson with
mass >.M. It was found that for the range 0.40 < >. < 0.42 and I\! 5, the mixed Casimir
density has local minimum with respect to the sea.le factor b, awl t\l(> moduli TI, T2. Since
the mass of the boson is different from the mass of the fermion, this is the scenario where
SUSY is broken in the bulk if it exists at higher scales. Then· is no particular reason for
why the ratio of the masses of the massive boson and fermion took the specific value in
this range. If it has anything to do with SUSY breaking, it is desirable that we are able
to establish a SUSY breaking mechanism where this specific ratio of the masses >. could
be explained or distinctively selected. From phenomenological point of view, it is desirable
that these massless and small-mass bulk fields are sterile neutrinos for they can explain the
smallness of neutrino masses in four dimensions. For further details, see ref. [13, 14].

An important issue in mixing bosonic and fermionic degrees of freedom to obtain the
total Casimir energy density with a local minimum is the positivity of the energy density.
Generally, the value of the total Casimir density at TI = ±1/2, T2 :_-;; /3/2 is lower than the
value at the saddle point Ti = 0, T2 = 1, for all range of>.. However, for certain ranges of
>. ( e.g. >. ;S 0.407), the density becomes 11egative around the trnt• minimum and therefore
violates the positive energy condition. A negative value of th(• dew,ity will not stabilize
the dynamics and the size of the torus. We therefore choose the value >. = 0.408 for our
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Figure 2: The total Casimir energy density in six dimension for mixtme of massless and massive 
fields for l\!l = 5, ,\ = 0.408, and T = ✓,i-} + T:j is fixed to 1. 

simulation of the cosmological dynamics. Figure 2 shows the total Casimir energy density 
for the spectrum of massless and massive particles mentioned above. 

The plot of the total Casimir density in (1 +3+2)-climensional spacetime using the 
full expression, eq. (3.7), in comparison to the plot from the small bl\lI approximation, 
eq. (3.10), is given in figure 3. The true minimum at T1 = ±1/2, T2 = ./3/2 only exist in 
the full expression case. This can be understood considering bmin A1 � 0.67 and is somewhat 
close to 1, resulting in a bad approximation of the expression due to higher powers of bA1 
being neglected. It is therefore required that we use the full expression of the total Casimir 
energy density in the simulation of the cosmological dynamics. 

5. Evidence of stability of the moduli space and cosrnological dynamics

By numerically solving the field 0quations in sc,ct.ion 2. tlw Htnhilization of the torus nnd the 
accelerated expansion of large 4-dimcnsional HJm.cetimc can be de111011strated to occur at tlw 
trnc minimum of the Casimir crl('rgy drnsity in the moduli spacP. T]I(' point TJ = 0, T2 = 1 
is a saddle point and it is an turntable equilibrium of the dynamics. 

The rolling of the universe to the true minimum of the Casimir density is illustrated 
in figure 4-7. When the cosmological dynamics is initiated even within a small vicinity of 
the saddle point, T1 = 0, T2 = 1, of the Casimir energy density, it will roll down to the true 
minimum at T1 = ±1/2, T2 = /3/2 even with minimal amount of perturbations. This is 
shown in figure 4, 5. Observe that it tends to roll along the trail T = 1 in the moduli space. 

When the tossing initial conditions are at a distant away from the saddle point and 
the true minimum, certain sets of the initial conditions still result in the stabilization 
of the torus moduli, TJ, T2, and the scale factor, b, of the extra dimension as is shown 
in figure 6, 7. Naturally, as long aH the Casimir energy densit�1 at the stabilized value is 
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Figure 3: The Casimir energy density in six dimension from small bM approximation in the 
upper figure in comparison to the full expression in t.he lower figure. Both are evaluated at. their 
corresponding bmin. 

positive, tlw acceleration of thP scale factor. u. of tlw 01-dinwnsional spa<·<'time is guaranteed. 

The positive c~"imir density serves as t Ii<· posit.iv<> cosmological constant. 

A natural consequence of the Ca:-;irnir energy that is inclepPndcnt of the scale factor, 

a(t), of the large dimension is the fact that it leads to w0 = -l for the pressure Pa = 
w0 p. For the pressure in the compact extra dirnensions, we can start by considering Pb = 
-8(pVb)/8% = WbP, Wb of our Casimir energy density is then given by 

b 8p 
l---

2p 8b 
(5.1) 

where p is the total Casimir energy density. Due to the dynamics of shape moduli ( or 
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Casimir "viscosity" in the compact space, see appendix B), the value of wb at the stabilized 

radius at the true minimum is fractionally smaller than -2 (around -2.16) as is shown in 

figure 5. 
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A more appropriate definition of physical prcssmes in t.he distorted torus is 
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(5.2) 
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Figure 7: Rolling dynamics from other initial condition II. 

where K = 4, 5. This definition gives the following expressions for Wg = Pid p,

( 2 ') ) ( ') ') ) b T1 Fi 2T1 1 T,, Tf' . 

W4 = ·-1 + -81ip �-:,···'°- f -871 
f) + -"· - ·-- dr2() 2p TI fl p T'2 

( 2 •)) ( 2)b T1 T,, J T 
1 + -2 ab() 2 � - - Or2/J· 

(J T
2 

f)
T2 

· 13

(5.4) 



By directly solving the equations of motion in six dimensions at the stabilized point where 
Ha = Hb Hb = TJ = i-2 = 0, it can be shown that W4,5 = -2, as is confirmed numerically 
in figure 5. It is interesting to note that the value of W4,5 becomes -2 at both the saddle 
point and the true minimum where the dynamics is stabilized. 

The difference of the two definitions of pressure originates from the shear viscosity

induced by the Casimir energy in the off-diagonal components of the stress tensor. From 
the equations of motion of the 6-D universe with viscosities, eq. (B.10) in appendix B, 
shear viscosity at the stabilized point T/btab can be identified to lw 

r,"1"b :�Hr,,s/ab (5.5) b lfi?rG 
P6D,min (5.6) --

2Ha,stab 

where Ha,stab is the Hubble constant of the expanding four dimensions at the stabilized 
point of the compactified space. Note that we can evaluate eq. (2.3), (B.8) and (B.9) at 
the stabilized point and use the definition of 17btab to analytically confirm the numerical 
results in which W4,5 = -2 at the stabilized point. 

vVe should mention here that the time scale, ts , of the simulated figures is given by 

- \1'23mpt b3ts - 2 b S' 

7r min (5.7) 

where bs is the scale of b, and bmiu ~ 0.1328b5 as a result of numerical simulation. If we 
require that the stabilization time � 10t8 is less than the age of the universe, 10 10 years, 
this will put constraint on the size brn in of the extra dimensions 1r2 , 

(5.8) 

This is about few hundred times stronger than the constraints from table-top experi­
ments [15]. 

It is interesting that in this kind of cosmological model. the constancy of the 4-
dimensional gravitational constant, G,1 = G/41r2b2 

= 1/m;,1, up to the early times of 
the universe will give a very strong constraint on the size of the c:ompactified extra di­
mensions. Any future observations of the universe from very early epoch could possibly 
put constraints on the inconstancy of the gravitational constant. Such constra,ints will put 
very strong limits on the size of compact extra dimensions in this kind of model where 
oscillatory behaviour is significant in the early tirnes. 

Another important aspect of this model is the relationship between the effective cos­
mological constant in 4-dimensional spacetime, A4 = 81rG4p41J,mi.n, and the size of extra 
dimension, bmin, 

A4 = 81rG4p4D,rnin 
= 3Hlstab· 

(5.9) 
(5.10) 

This leads to the typical value of bmin � 2.4 µm for Pvac � 10-11 eV4 . The value of the
effective size of extra dimensions, 21rbmin � 15µm, yields the quantum gravity scale in the 
bulk, M* � 12 TeV. 
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6. Conclusions and discussion

The stabilization of compact extra dimensions and the acceleration of the other 4-
dimensional part of the spacetime can be simultaneously described by the dynamics of 
the Einstein field equations in the bulk spacetime. The acceleration of the 4-dimensional 
"universe" occurs naturally once the scale of the compact dimensions is stabilized and the 
density of the Casimir energy in the bulk becomes a (positive) constant at that stabilized 
value. As a result, the apparent positive ''cosmological constant" that we seem to observe 
in the four dimensional visible universe is effectively induced. This is demonstrated beau­
tifully in the work by Greene and Levin [31 when the Ca;-;imir density of the undistorted 
torus satisfies Wa = l, wi, = --2 condition. 

Shape moduli of the torw; can be added to the model. The> trne minimum of the 
Casimir energy density of the torus with shape moduli is demonstrated to he located at TI = 

± 1 /2, T2 = /3 /2. The cosmological dynamic shows that a minim all)' small perturbation to 
the saddle point rolls the universe down to the true minimum. Other initial conditions also 
suggest that the universe tends to roll around T = 1 contour to reach the true minimum. 
Note that it is also possible to stabilize the rnoduli at the saddle point TI = 0, T2 = 1 but the 
initial conditions of the shape moduli fields must be fine-tuned so that T1 = 0, i1 = 0. Some 
extra-mechanisms such as Brandenberger-Vafa mechanism in string gas cosmology [16] is 
needed for this purpose. However, as it was pointed out in [17], the stabilized point 
T1 = ±1/2 and T2 = /3/2 is also the fixed point of T-duality and the the enhance symmetry 
point hence Brandenberger-Vafa mechanism could also set the initial value of the moduli 
precisely to be at the stabilized point. 

The shear viscosity in the extra dime1rnion is determined to be proportional to the 
Hubble constant at the stabilized point, 171, = 3Ha ,st.ab/16nG. Through the Einstein field 
equations, this Hubble constant of the 4-D universe is determined by the value of the 
Casimir energy density at the stabilized point. The effective four dimensional cosmological 
constant is also given by 8nGp6D,min · 

In this kind of model, there is a relationship between the size of the compact dimensions 
and the observed four dimensional cosmological constant. This remarkable connection is 
induced by the nature of Casimir energy density which depends on the size of the compact 
dimension, resulting in A4 ~ b;fi 1 • 

It is equally important to note that the constancy of the 4-D gravitational constant 
up to very early time of the universe will provide strong constraint on the size of extra 
dimension in this particular cosmological model which expresses oscillatory behaviour at 
the early times. 
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A. Useful formulae

Phase space integration. 

(A.l) 

Poisson resummation. 

(A.2) 
nEZ mEZ 

where 

(A.3) 

Integral representation of Gamma function. 

(A.4) 

The integral representation of the modified Bessel function of the second kind. 

where \arg( z) I < �, Re( z2 ) > 0. 

Mellin transform. 

Re(z) > 0, 

B. Energy momentum tensor of viscous fluid

(A.5) 

Re(s) > 0. (A.6) 

Let uA = (1, 0, 0, 0, 0, 0) be the 6-velocity of the cosmic fluid in comoving coordinates. In 
terms of the projection tensor hAB = gAB + UA UB, the general energy momentum tensor 
of fluid with bulk viscosity ( and shear viscosity T/ is given by: 

(B.l) 

Here 0 = '1 AUA is the scalar expansion and OAB = h�h�'v (cUn) ·- ½hAa0 is the shear 
tensor. By using metric defined in eq. (2.1) and (2.2), we can show that 

.... 16 -

(B.2) 

(B.3) 



4 [ 7 1 i-2 2 2 T] ] T5 = 277b - + ( T1 - Tz )-2 
T2 2Tz 

5 Tj 
T,I = -7]b2 

Tz 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

Here we assume there is no viscosity in noncompact large dimensions ((a = 7]a = 0). 

Einstein's equations, eq. (2.4)-(2.7), can be written in terms of bulk and shear viscosity as 

Ha+ 3H;_ + 2HaHb = S:G {P6D+Pa 2(pb-(b0)+ 
1
5

2 
7]b(Hb-Ha)}, (B.8) 

Rb+ 2H; + 3HaHb = S:G {P6D-3Pa+2(pb (b0)- \
2 

7]b(Hb-Ha)} ,(B.9) 

fi + (3Ha + 2Hb - 2 
72

) i-1 = 16-rrG {77bi-1}, (B.10) 
Tz 

b i-2 + 3Ha- + 2H1,- (B.11) 
T2 T2 

The conservation of energy is 

= 0. (B.12) 
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Although there have been a lot of progn•ss(•s on constructing phenomenologically viablP 

models bm,ed on theories with extra spatial dilllensions. some fundamental questions have 

not been completely solved. One of thelll is tlw moduli stabilization problem. The size 

and shape of compact space described by dynamical moduli fields have to be fixed in 

order to avoid any conflict with astronomical observations. In addition to these problems, 

we also face the challenges from cosmology in explaining the accelerated expansion of 

the universe. One possible solution for these problems may involve arguments based on 

anthropic principle. However, the search for a.n alternative solution is still going on, for 

example in [l]. 

Recently. it was suggested that Casimir energy from various field fluctuations in 

compact extra dimensions could play a crucial role in addressing these significant prob­

lems [2, :3]. Greene and Levin [:3] argued that if the total Casimir energy is properly chosen, 

then it is possible, at least in the case of vacuum dominated universe, to stabilize the size 

of the extra dimensions and drive the accehmttecl expansion of the three non-compacted 

directions in which the Casimir energy plays the role of dark energy. The authors in [4] 

employed the calculation of Casimir energy in the non-trivial space, M 1 +3 x 11'2 and demon­

strated that the shape of extra dimensions cmi also be stabilized by the same mechanism. 

Interestingly, predictions in this scenario such as radius of extra dimensions and quantum 

gravity scale in the bulk are in agreement with those from the large extra dimensions or 

ADD scenario [5, 6]. Hence, the moduli stabilization problem, dark energy problem and the 



hierarchy problem may possibly be explained in the single unified framework. However, as 
it was pointed out in [:3], there are some crucial obstructions to realizing a phenomenological 
viable version of this scenario. One of them is that the extra dimension fails to stabilize if 
we include contribution from ma.tter conl( 111ts. Dming the matter dominant epoch. energy 
density of non-relativistic matter was the dominant contribution in the effective potential 
of the moduli fields and washed away the minimum of the effective potential. Although 
the minimum reappears in the vacuum dominated epoch, the moduli (i.e. radion field) 

has already passed the dynamical stable f-ixed point. This causes the extra dimension to 
expand and contradicts with our observation. Thus, it would be interesting to investigate 
whether this technical problem could be solved. 

In this paper, we propose the new stabilization mechanism based on the Casimir energy 
and the existence of the Lorentz violating '\ether" field in the compact direction. Starting 
with the simplest model with onE' extra diuwnsion where the space-like rcthcr field lives in 
the compact circle similar to the model c011sidercd in [7, 8], we claim that non-vanishing 
vacuum expectation value (vev) of the ::Bther held would affect the dynamical equation of 
background moduli field. It can reduce the gradient of the raclion 's potential and slows 
clown the oscillation frequency. This ensures stability of extra dimension although there 
is non-relativistic ( dark) matter in the universe. As in the previous works, the Casimir 
energy of massless and massive fields embedded in five-dimensional space play a role of 
dark energy and drive the expansion of non-compact space as expected. Note that the 
effect of a time-like IBther field on slowing down the expansion rate of the universe was 
pointed out in [9]. The effects of the IBther fields on cosmological observable was studied 
in [10]. The authors in [11. 12] also studied the role of ::Bthcr field on the stability of the 
extra dimension in the context of bra1wwmd scenario but ill a different a;;pect. 

It is important to state that we art' aware' of I he stability issue for space-like cether 
field [1:t 1..J.] which may cause difficulty ill the construction of a more realistic model of 
this scenario. However the interplay between the cether field and the dynamical moduli 
field in our model may shed some light on the connection between the clirnensionality of 
spacetime and the violation of Lorentz symmetry. Perhaps nature allows us to observe 
only the large three-dimensional space that preserves Lorentz symmetry but conceals the 
Lorentz violating directions in the compact space. 

This paper is organized a;; follows. In section 2, we start by reviewing the cether model 
in 5-dimensional spacetime. In section :J. we derive cosmological equations of motion in 
5-climensional spacetime with IBther field and write down effective 4-dimensional equations
of motion in the radion picture. Then we review the calculation of Casimir energy and
extend to the case involving interaction between rether field and bulk fields in section 4. In
section 5, we investigate the role of IBther field in the context of stabilization of the extra
dimension both in the vacuum dominated universe and in the universe with non-relativistic:
matter. Finally we summarize our results in section G.
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2 }Ether field and its interactions 

We start by considering a 5-dimensional flat spacetime with coordinates xa = (xµ, y)

where µ = 0, ... , 3 and with mostly plus metric signature. \Ve assume that the fifth 
direction is compactified on a circle. Now we consider a toy model in which Lorentz 
symmetry is spontaneously broken by the mther field •u(I i.e. a vector field with a non­
vanishing expectation value. Most of the ,Pt.her models contain kinetic term that makes 
their Hamiltonian unbounded from below and their stability is a subtle isf->ue [l:l Here WE' 

consider the action with t--faxwell-type kinetic term [8] 

(2.1) 

Here ½,b = Va ub-V b1la has a familiar form to the field strength tensor of electromagnetism. 
However, the &ther field 11.0 is not related to the electromagnetic vector field A a and its 
dynamics does not respect U(l) gauge symmetry. In contrast, the second term in the above 
action enforces the rether field to have a constant norm 

(2.2) 

where >- acts as a Lagrange multiplier and we take v2 > 0. In our unit u" has dimension of 
mass:3/2. The sum £; in (2.1) represent various interaction terms which couple the rether
field to matter fields that we will discuss later in this section. If we neglect the interaction 
terms for the moment, the equations of motion for the rether field ua can be written as 

(2.3) 

Any solutions for which Vab = 0 will solve the equation of motion (2.3). In order to preserve 
Lorentz invariance in the 4-dimensional non-compact space, we choose the background 
solution such that the rether is a space-like, vt'ctor field which has non-vanishing components 
along the extra fifth dimension. 

11" .cc ( 0. 0. 0, (), I'). (2.4) 

It is important to note that there is a subtle stability issue here. Although our aim is to 
investigate the role of the rether field on the stability of the extra dimension, the model of 
space-like rether field with Maxwell-type kinetic term itself is unstable. [13]. However, for 
our purpose, we can consider it as a toy rnodel and assume that there is some mechanism 
which stabilizes the rether field. 

The energy-momentum tensor of the rether field Tc,blu takes the following form 

T. I V, 1 ;c l v, 1 .,cd c,, + 'll ·-2,l' 'll 'll n 1;cd
ab u = ac vb · 4 ('(/ I' .,ab •a ·b •c v d 1 • (2.5) 

Note that properties of the rether field depend crucially on spacetime geometry. The flat 
space background solution in equation (2...1) gives Ta1i\ 11 = 0. However, in curved spacetime, 



the rether field can give rise to non-vm1ishing energy momentum tensor for example a time­
like rether field can produce energy density [9] while a space-like rether gives the stress
components [14]. The case of an rether field oriented along the compact extra dimension
was investigated in [8]. It was shown that such rether configuration can also give rise to non­
vanishing energy momentum tensor. However, Tab lu vanishes when the extra dimension is
stabilized. We will review this result in the next section.

We now consider the effect of the interaction term I:;£ ;. in (2.1) which in general can
include the terms corresponding to the rether field coupled to scalars, fermions and gravity.
However, we will consider stabilization mechanism of the extra dimension involving Casimir
energy of gravitons, bulk scalars and bulk fermions. We will ignore the bulk vector terms.
Let us begin with the effect of the interaction of the mther with a real massive scalar field
¢. The Lagrnngian for the scalar field with the minimal coupling term is

(2.6) 

where fl<!> is the coupling parameters with dimension of mass312
. The corresponding equa­

tion of motion for the scalar field takes the form [8]
(2.7) 

Expanding the scalar field in Fourier modes ¢ ex eikax", we obtain the modified disper­
sion relation,

(2.8) 

where the dimensionless parameter a</J = v / µ<!> is the ratio of the aether vev to the coupling
µ,q,, Next we consider the fermion terms. The Lagrangian for fermionic field with the
minimal coupling term can be written as [8]

(2.9) 

where µ</> is the fermionic coupling constant with the unit of mass:i/2
. In the same spirit

as in the scalar field case, the corresponding moclification of the dispersion relation for the
formionic case can he written as

(2, 1())
where the dimensionless parameter cvi1, v / 114,, The form of this equation is different
from the analogous equation in the bosonic case: i.e. the second term on the right-handed
side increases by a! instead of a�,. Finally, we consider the rether field which couples
non-minimally to gravity. This can be described by the action [8]

_ 5,. !11. 
a b 3 

) Soc - J d :1,j=g ( 161r R + a9u 11. Rab 

4

(2.11) 



where a9 is the dimensionless graviton coupling constant and 1\1* is the Planck mass in
5 dimensional space-time. By varying this action with respect to the metric tensor, we
obtain the equation of motion Gab = 81rGT"1,\ (GC) with

Tab\ (GC) O'.y ( Rcd'U.cUdgab + \1 c'Va (u1,u'') l \11, \1 Jua u'') � \1 c\1 d( Uc 'lld)gab- \1 c \le ( 11,a llb)),
(2.12)

where G is the 5-dimensional gravitational constant. Let us consider small fluctuation of
the metric

(2.13)
Following the explanation in [8], the metric pertmbation can be decomposed into

( 2.14)
where T) 1wh

1w = 0, h
1w presents the propagating modes of the gravitational wave, cf> denotes

the Newtonian gravitational field aud W is a component associated with the radion field
describing the modes of the extra dimeusiou. By setting cf> = 0 = f, and considering
transverse waves, a>- Ti,>-.1, = 0, the gravitational equation of motion becomes

1 c - O'.gV2 2-
2a 8c h1w = 81r 1\13 85hµ v·

* 
(2.15)

Let us define a�
for graviton

a· v
2 l61r N

I} 
. The above equation gives the modified dispersion relation

3 Cosmological dynamics and A�ther field 

3.1 Five-dimensional cosmological dynamics 

(2.16)

In this section we consider cosmological clyna.mics of 5-dimensiona.l spa.cetime by applying
Einstein general relativity to the product space, between 4-dimensiona.l FRW-type space­
time a.nd a circle 5 1 . We assume the cosmological ansatz

(3.1)
where i, j = l, 2, 3, a(t) is the sea.le factor of non-compact 3-dimensiona.l space, and b(t)

denotes the radius of the compact fifth direction. The coordinates on 5 1 are 0 � y < 21r.
For our metric (:3.1), the background solution for the equation of motion (2.3) can be
written as

( V ) 
u" -"-' 0 , 0 , 0 , 0 , 

b(t) . 
(3.2) 

Using this background solution, the energy momentum tensor associated to the rether field
defined in (2.5) can be written as

To I - _v2

H
2

() u. - 2 1,, 
(3.3) 



We have defined the Hubble constants Ha = ii/a and Hb = b/b, where dotted quantities 

represent the corresponding time derivative. A8 we mentioned in the previous section, 

Tabl11 = 0 when the extra dimension is stabilized b =--= 0. The fact that the &ther field does 

not contribute to the energy den8ity at tlw stabilized point implies that the rether field will 

not give any contribution to the cffPctivc potential of the radion. Hence other component 

such as Casimir energy is needed for stabilization of the extra dimension. However, as 

we shall see later on, the &ther field can reduce the influence of the Casimir force. This 

property is important for stabilization mechanism when non-relativistic matter is present. 

Let us assume that the total energy-momentum tensor Tabltotal is decomposed into 

(3.4) 

The contribution from non-minima1ly coupling to gravity Tab[Gc is defined in equa­

tion (2.12). The component TblP = diag( -p.pa,Pa•Pa,Pb) represents contrilrntion from 

Casimir energy [:1]. Casimir energ)' den8ity p plays the role of 5-dimensional cosmological 

constant. Pa = -p and Pb = ~(}rr1~ 00 
- p /Jab() are the pressure density in non-compact 

and compact direction respectively. By substituting Tabltotal into the Einstein field equa­

tion, we get the 5-dimensional cosmological equations of motion 

3H~ + 3HaHb = 8nG (p + ~v
2 H'f;) , (3.5) 

3~ - 3Ha.Hb = -87fG{p + p1; - (1 - 2a9 )v2 A}, (3.6) 

3f + 9Ha.Hb = 87rC:{p f 2p1, -- 3Pc, -- 2(1 - 2a9 )v2 A}, (3.7) 

3.2 Dynamics in the radion picture 

Since we are interested in our obserwd u11iverse. it is useful to a.uaJyze the cosmological dy­

namics by considering 4-dimensional eff<:>ctive field theory. The equations of motion (LS) -

(:1. 7) can be obtained by varying the 5-climensional Einstein-Hilbert action 

5 ]\If* l ab a b 
( 

3 ) S5D = J d x,j=g 
16

7f R - 4 V,,b V + a9 u 11. Rab - V(b) . (3.8) 

V(b) denotes the potential term in 5-dimensional spacetime. Note that we omit the La­

grange multiplier term. For simplicity. we will set a9 = 0 in this section and this will not 

affect our main results. Let us start with KK-dimensional reduction of the above action 

from 5 to 4-climensional spacetime. Tlwn. in order to make the resulting effective action 

in the canonical form, we apply vVeyl rescaling g1111 E = ng1w (µ., 11 = l, ... , 3) and define 

the new time variable dtE = /ficlt. o.E(t.d /Da.(t); n = 27rbM; /m~1. Note that mp1 

is the Planck mass in 4-dirnensional spacetime defined via the relation m~1 = (2nbmin)Af; 

where bmin denotes the stabilized radius of extra dimension. Thus n 1 at b = bmin· The 

effective action takes the form 

S - d4·' ~- _!'!_R ,_ /Wn ,1,n ,1, -- -- pl ,/3111 I V, v11 I { m
2 1 1 m2 ~2 ffirr '1-' 

4u- :1,y-gE E ~g1,• v 1,'¥v,,'¥ 
2 

~ 2 e P 11 

. 16n 2 J\l* bmin 
1/('1')}, (3.9) 



where U(w) = 21rbn-2 V(b) is the 4-dimensional effective potential. Here we define the 
radion field W = � /3ln(b/bm i11) and 1'i, = V,,s = V1,v.5. By using the background
solution in (:3.2), the above 4-dimensional action can be rewritten as 

where we define the dimensionless paramd,Pr cv2 

following set of equations: 

(3.10) 

167rv
2 

3iH} . This action gives rise to the

(3.11) 

(3.12) 

Note that HE = (daE/dtE)/aE is the Hubble constant in the Einstein frame. As we will 
explain later. the factor 1/(1 + c"\'2 ) in tlw right-handed side of equation (:U2) weakens the 
effect of the potential gradient -DU/ D\fl aucl it is crncial for stabilization mechanism of the 
radion field l[!. To make contact with previous section, we note that the energy-momentum 
tensor associated with 5-dimensional action in (:3.8) gives the relations 

4 JEther field and Casimir energy 

(3.13) 

We will start this section by reviewing the mathematical formulation to determine the 
Casimir energy for a scalar field. Eca, • aud tlwn investigating the effect. of !Dthcr coupling 
to the Casimir energy. First. we c011si<h-r Cnsilllir ('lWrgy of a 11on-intcrncti11g scalar field 
of mass, 111. in M 1+ 11 x 8 1 spacetimc b,v following [l:i. Hi]. We keep the number of non­
compact spatial directions to be n for t lw n1onie11t and will set n = 3 at the end of our 
calculation. This scalar field obeys the free Klein-Gordon equation, 

(4.1) 

The scalar field satisfies the periodic boundary condition in the compact direction, </J(y = 
0) = ¢(y = 21r). Its associated dispersion relation can be written as

(4.2) 

where, ·n. E Z is the momentum m1mber iu the compact direction. Then, the total vacuum 
energy contributing to Casimir energy can be written as 

(4.3) 

7 



where Vn = Ln is the spatial volume of non-compact spacetime. Using the fact that 
J f(k)dnk = 2nn/2 /r(n/2) J kn-l f(k)dk, we obtain 

(4.4) 

(4.5) 

where we defines= -(n + 1)/2. Let us cousider the massless case, m 0. By using the 
zeta function regularization procedme. the Casimir energy density per one bosonic degree 
of freedom for massless scalar field can be written as 

(4.6) 
where ( denotes the zeta function and we take 2nb to be the volume of compact dimension. 
For the massive case, we apply the Chowla-Selberg zeta function [Hi] in our regularization 
procedure and obtain the Casimir energy density per one degree of freedom for the massive 
scalar field: 

X 

?c;��ssive -2(2nb)2s-l (n1.b)(l -2.s)/2 L n(2.s--1)/2 [{
(I -2s)/2 (2nbmn), (4.7) 

11=! 

where Kv(x) is the modified Bessel function. The fermionic degrees of freedom will con­
tribute to the Casimir energy density with the same expression except for an extra mi­
nus sign. 

Let us consider the case that a scalar field couples to an cether field with a coupling 
constant CX,t,. In the previous section, we showed that interaction with the cether field 
transforms the usual dispersion relation (1.:2) into its modified version (2.8). Accordingly, 
the Casimir energy will be written as 

Ecas ( Oq, ) 
! (�) 11 2nn /'2 ;· k" -1111,- � C, + m2 + (1 + ex!) ib1;'2 2n r(n/2) 0 V ,-..:� 

ii 

(1 + c?/n+l)/2 - ---- n ktn-ldk' L1 ( L ) n 2 n/2 ;· 
<I> 2 2n r(n/2) . 

n 

n2 k'2 + m'2 + b2, (4.8)

where we rescale k and m in such a way that k2 = (1 + a!)k'2 and m2 = (1 + ai)m'2 . 
By comparing Ecas (a<t,) with the 11011-iuteracting Casimir energy Ecas , we see that the 
rether coupling rescales the Casimir energy and scalar mass by factors (1 + a:!)(n+l)/Z and 
(1 +a!)-112 respectively. Thus, we cau immediately write clown the Casimir energy density
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per one bosonic degrees of freedom with the cPther coupling Lt<t, as 

r( 2 +1)22sb2s-l 3s-l 
massless( ) _ - 8 7f ((- . ) 

Pboson aq, - r(-1/2) (1 + a~)s 2s + 1 ' 
(4.9) 

( ) 

1_1_:/s) ( ) mb 
00 

_ (Zs-l)/z 27rmbii 
~ L n K(l-2s)/2 ~ , (4.10) 

V ,_ , '-'r1, ii=! V 1 + a</J 

massive(a ) - - 2(27rb)2s-l 
Pboson </J - (l + a~)s 

for contributions from massless and massive scalar fields respectively. Other bosonic degrees 

of freedom contribute to the total Casimir energy in a similar way but with different 

coupling constants and masses. For example. the graviton in (n + 2)-dimensional spacetime 

has ½(n + 2)(n - 1) bosonic degrees of freedom with the 33ther coupling o:g and mass 

m = 0. Using the modified dispersiou relation for gTaviton (2.Hi), we can show that the 

graviton contributes (n+z)?-l) Pb~~~/t88 (a9 ) to the total Casimir energy density. Recall that, 

apa.rt from modification of graviton's Casimir energy, non-minimal coupling of the rether 

field to gravity can also affect the clyrn-unical evolution through the energy momentum 

tensor T"bl(GC). 

For fermion case, we use the modified dispersion relation for the fermionic field 

in (2.10). Vl/e can show that the associated Casmir energy density per one fermionic degree 

of freedom, for both massless and massive cast'. is in the similar form of those from bosinic 

degrees of freedom with the over a.11 111i11us sign and (1 + a~) --> (1 + a~,)2. The Casimir 

energy densities for one degree of freedo111 of massless and massive fermion can be written 

respectively as 

massless ( ) 
Pfermion O'.,j; 

r(-2s + 1) 22sb2s-17f:ls l 

r(-1/2) (l+n~J2s ((-2s+l), ( 4.11) 

massive( ) 
Pfermion a,µ = 

(l-2s)/2 

2(27rb)
2
s-l (~) ~. (2s-l)/Z K (27rmbn) 

(l + a2 )2s l + a2 ~ n (1-2s)/2 1 + a2 · 
,j; 1/• n=l 1/J 

(4.12) 

The total Casimir energy density can be written in terms of sum over all degrees of freedom: 

N massless ( - ) N massless ( ) N massive ( ) N- massive ( ) P = bPboson O'.y + J Pfermion ctv, + " bPboson O'.q, + .f Pfermion a,1, • ( 4.13) 

where N1, (N.r) and IV1, (NJ) are the uumlwrs of hosonic (ferrniouic) degrees of freedom for 

massless and massive fields resrwct ivd~·. Tlw uat urc of tht• total Casimir energy drnsity 

depends on the rela.tive magnitude of Ni,. ,V.r. i\1
1, and N.r, 

In our model, Nb ? 5 since, at !Past. tlit' graviton is always present and it has five 

physical degrees of freedom in five-di111rnsional spacetime (n = 3). The compact fifth 

direction would not be stable if there is only the graviton field in the bulk, i.e. it will collapse 

to Planck size, due to the negative Casimir energy associated with quantum fluctuations 

of the gravitation fields. Therefore, it is natural to add more positive contribution to the 

Casimir energy by assuming that there are fermions in the bulk. However, we cannot 

create the minimum of p by including only the massless fermionic fields i.e. the Casimir 

force is attractive for NJ < N1, and becomes repulsive when NJ > Nb. Hence NJ = Nb 
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Particles 

a bulk graviton field 

a massless bulk fermion field 

a massive bulk fermion field 

8 massive bulk scalar fields 

~ ---- - -----

Dcgrt!es of fn!Pdom 

i'h s 

l\!1 8 

N1 8 

Nb = 8 

l'vlass Coupling constant 

0 - __ (16 ll9 U
2 

)J/2 CXg - 7f i'v(} 

0 aif, 

m1 a-i/J 

ms = >-m1 a,t, 

Table 1. The particle spectrum in the bulk, their degrees of freedom, their mass and the cou­

pling constants characterizing their interaction with the rether field. For simplicity, we assume the 

universal fermionic coupling o�, for both massless and massive Dirac fermion. 

does not give us any stable fixed point. We should expect a minimum to be produced if 
we include massive fermionic degreP of frpedom [17]. This can be explained qualitatively 
as the following. Let us consider Cw,irnir energy of a fermion with mass NI. For the region 
where b « 1 /NI, the vacuum energy should have the same form as in the massless case. In 
particular, for NJ > Nb, the net CaHimir force will be repulsive. In the other region where 
b » 1/ 111, the contribution from tlw rna.'>sive fermion mode is negligible compared to that 
of the graviton and the total Casimir force becomes attractive. Hence, there must be a 
stable fixed point between these two regions. 

In this paper, we consider a toy rnodel where the particle spectrum in the bulk consists 
of a bulk graviton, a massless Dira(' fermion. a massive Dirac fermion with mass m1, and 
eight massive scalars with equal masses 111" -� >-m1. Here A is the mass ratio. The presence 
of the massless fermion and the massiw scalars is to ensure that the vacuum energy at the 
minimum has positive value, i.e. Prn in > 0. \;\!(• summarize the particle content in thc> bulk 
in table l. 

There is no unique choice of bulk particle spectrum for this purpose, the other combi­
nations of bulk fields, for example in ref. [:{], can probably create minimum for the vacuum 
energy. Our particular choice is convenient for investigating the effect of the ffither-matter 
interactions on the Casimir energy of the bulk fields. Note that we do not attempt to jus­
tify the existence of these bulk fields phenomenologically because we want to demonstrate 
that stability of the extra dimension could be achieved, if these particles are present in 
the bulk. The Dirac fermions in five dimensional spacetime have eight physical degrees of 
freedom. For more realistic models which have chiral fermion on the brane, we can impose 
the orbifold reflection symmetry: y , .lJ on the compact direction. However. this will not 
affect our main results on stabili,mtion of the extra dimension. We will ignore this issue 
for simplicity. 

5 Effects of The ./Ether field on stabilization of the extra dimension 

5.1 Stabilization in vacuum dominated universe 

We first consider the universe where there is no non-relativistic matter and the Casimir 
energy density is the dominant contribution. Let us start with the case where there is no 
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Figure 1. Left: Casimir enery density pis presented in the y-axis in units of (mJ/40) 5
. The x-axis 

is the radius of the fifth dimension h in 1111its of 40/m.r. Right: The 4-dimensional effective Casimir 
potential Ucas = 21r(h�nin//J(i[J))p(i[J) in unit of (mJ/40)' 1 is presented in the y-axis. The x-axis 
denotes i{1 in the unit of mp/· Here we set o "·' n,1, = n�, = n9 = 0. 

interaction between rether field and hulk matter i.e. setting O'.<t, = 0:<1, = 0:
9 

= 0. The plot 
of the total Casimir energy density in 5-dimensional spacetime p using the expression in 
equation (4.1:�) and particle spectrum in table 1, with the mass ratio ,\ = 0.516, and its 
corresponding 4-dimensional effective Ucas = 2n(b�

1i 11 /b(\Ji))p(\Ji) is given in figure 1. The 
local minimum of Casimir energy density, /Jmin = 23.4316(m1 /40)5 is located at bmin = 
0.01461(40/mf ). In order to get the positive minimum and the radion can stabilize, we 
must choose the value of,\ from a very narrow range, 0.516 � ,\ � 0.527. By solving the 
5-dimensional equations of motion (:L.5) (:l.7) nmnerically, we can demonstrate that the
extra dimension is stabilized at the radius bmi 11 as shown in figure 2. Notice that we set the
expansion time scale to be in the unit of Hubble time iH = H,�

0

1 = 3m�i
J8npc ::::; 10 10 

years. The critical density Pc can lw written in terms of the minimum value of Casimir
energy density Pmin as Pc (1 + 0.24/0.76)(21rb,uin )Pmin·

By comparing 4-dimensional effective Casimir energy density p;,;/n = (21rbmin )Pmin with 
the observed value of energy density for dark energy, p��

s 
::::; (2.3 x 10-:3 e V) 4

, we get m1 ::::; 
4.18 x 10-2 eV. Then, the radius of extra dimension bmin ~ 13.96 ev-

1 
~ 2.75 x 10-5 m. 

This leads to the quantum gravity scale in the bulk, M* ::::; 1.19 x 109 GeV. Note that we 
do not attempt to address the mass hierarchy problem in this paper. In order to compare 
with the ADD brane world scenario, it is better to be demonstrated with 6-dimensional 
models as shown in [3]. Since our aim is to study the role of rether fields on stabilization 
of the extra dimension, the 5-dimensional model is good enough for our purpose. We will 
leave the mass hierarchy problem for future works. 

The role of rether field on dynamical Pvolution of the extra dimension is also illnstrated 
in figure 2. We can see that, as the va.luc' oft' increase, the moduli field b feel less potential 
gradient. Its oscillation frequency and amplitude decrease. In om cacnlation v is in the 
unit of (m1/40)·512t f-! . From the previous paragraph TIIJ = 4.18 x 10-2 eV, this gives 1
unit of vis equivalent to (1.02 x 101'1 Gc\/fl/2::::; (0.09j\I.f112. At very high v, for example
v = 100 or approximately ::::; (9M* fl/:1, tlw period of oscillation is so long that b reaches 
equilibrium before showing any oscillating behavior. The scale factor b rolls slowly to its 
stable fixed point. 

11 



11.1117 v=O 

0.016 

11.111.l 

11.011�
11
----,-------c-------c-

.1
-----,-------,--� 

11.IIIH:�---------------

11,1116 

b(t)ll.111:' 

11.1114 

11.1113 

0.1112 
II 

v=50 

(, 

11.IIIH 

0.017 

0.111<1 

b(t)U.111:' 

11.1114 

11.111.l 

11.1111 
II 

11.1118 

11.1117 

II.Ill(, 

b(t)o.111:< 

11.1114 

11.1113 

11.1111 
II 

v= IO 

v= IOO 

Figure 2. The dynamics of the scale factor b( I) for the compact direct.ion as a function of time with 
different values of parameter v. In the absence of mt.her field v = 0, b(t.) shows oscillation behavior 
a.round its critical value bmin before stabilizing at this value. Non-vanish value of v reduces the 
influence of Casimir force. As the value of 1.• increases, the oscillation frequency and amplitude 
decrease. If the vev of the mther field is large enough. for example v = 100, oscillation behavior 
disappears. The extra dimension evolves smoothb• to it,s stable fixed point. The time variable t is 
presented in the unit. of Hubble time 111. Th<-' tinw for stabilization to occur is a.round~ 6t11. The 
condition for stabilization of bis*:( IO-". 

Let us consider the situation where mthcr field couples to tlw bulk matters. As we 
discussed earlier, interactions with tll{' a:'thcr field reduce the effective mass of the bulk 
fields. For example, the effective ma:-;s for scalar field of ma:-;s m .s wotdd be 

2 2( 2)-1 m
8

(,ff) cc· rr,8 1 + C>:
<P (5.1) 

This will alter the shape of the potential as we demonstrate in figure 3. Interestingly, there 
is an advantage of coupling the bulk fields with the rether field. It seems that we get the 
wider range of parameter space for the mass ratio ,\ that allows positive minima Pmin > 0, 
i.e 0.05 ;S ,\ ;S 0.80.

5.2 Stabilization in the universe with non-relativistic matter 

In this section we consider the role of mther field on stabilizing mechanism of the extra 
dimension in the more realistic model of om universe i.e. a model containing non-relativistic 
rnatter. Let us fist demonstrate tlw destabilizing effect due to uon-relativistic matter by 
following Greene and Levin in RPf [:IJ. WP assume that there is nmtter living in the bulk. 
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Figure 3. Interactions between bosons/fermions and H:)ther field can affect the Casimir energy. In
this figure, we fix the mass ratio,\ 0.5Hi. The Casimir enery density pis presented in the y-axisin units of (m1/40)5 . The solid, long dashed and short dashed line denote the Casimir energy
density when the coupling constant (nq,, O',j1) = (0.0, 0.0), (1.0, 0.644), and (1.5, 0.897) respectively.The value of bmin and Pmin increase as we increase the value of the coupling constants. The shape
of the potential well gets shallower as the coupling increases. We set a

9 
Ciq, for simplicity.

This can be done by adding a 5-dimensional matter term into the 5-dimensional action in
equation (:t8)

S = S',,D ! ./ cl" J' H .C,11al 1cr · (5.2)
This is equivalent to adding the matter energy density Pm rx 1/21ra:3b into the 5-dimensional
cosmological equations of motion (3.:J)-(:3.7). The matter energy density Pm includes con­
tribution from baryonic matter and cold dark matter. By comparing with the observational
data and supposing that all dark matter is cold, the matter density today Pmo is roughly
26% of the total energy density of the universe. The Casimir energy density will be re­
sponsible for the other 74% of the total energy density today in the form of dark energy,
(PAo). Thus, we have the relation. p,,,o (2.6/7.4)PAO· Note that the energy density of
dark energy in our 4-dimensional observed universe today can be written in terms of the
minimum of 5-dimensional Casimir energ)1 density and the stabilized radius of the extra
dimension as PAO Prn in(21rbrn in) (2.:{ x 10 \,vr1

. By using (ao/a.) = 1 + .2', Clo is the
scale factor today and z is the red-shift. we get

2.6 ( brnin) :l Pm = 7.4 Prnin -
b
- (1 + z) .

In this case, the 5-dimensional equations of motion (3.5)-(:1.7) become
3H; + 3Ha Hb = 81rG (p +Pm+ �v2 H;),

3� - 3Ha Hb = ·-81rG{p +Pm+ Pb - (l - 2ag )v2 A},
3� + 9Ha Hb = 81rG{p + p111 + 2pb - 3pa - 2(1 -- 2a:g )v2 A}.
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Figure 4. This is the plot of the effective potential Ucff(\JJ) at red shift z = 0.0, 7.0, 9.0, 11.0, 13.0 
in the unit of (mJ/40) 4 and,\= 0.516. The local minimum of Ucff(\JJ) no longer exists when the 
red shift is increased. 

From equation (5.G), the stability conditions (fh = 0, Hb = 0 and A= 0) require 

(5.7) 

By using equation (5.,5) and requiring that~ > 0 when bis stabilized, we get the constraint 

Pm < 2p. This is the same constraint that we have for a (3 + 1 )-dimensional vacuum 

dominated universe. Thus, as pointed out in [:~], this model describes the (3+ 1 )-dimensional 

vacuum dominated universe when the extra dimension is stabiliz.ecl. 

By using the conservasion of the e1wrgy-momentum tensor in fom and five dimensions. 

we can easily show that the radion tidcl will be driven toward the minimum of the 4-

dimensional effective potential 

U - U , + __!!'__'__ p,,, -- U , . + Pm ~ rn
2 

C (
4

) (b )2 

eff - Cas n 4 - Cas 4 b (5.8) 

where we define the 4-dimensional matter density p~;l = Pm(27rb) = r~/Jrnin (27rbmin) (l+z) 3 

which is a function of (1 + z)3 and does not depend on the radius of the extra dimension b. 

Numerical results for the effective potential Uetr are illustrated in figure 4. Here we 

choose,\= 0.516, and ignore the interaction terms by setting Cr,t, = o:i1, = o:9 = 0. At z = 0, 

the presence of non-relativistic matter would lift up the minimum of Ueff slightly. However, 

at early time, high red-shift, the 1/b2-ten11 in (5.8) becomes do111i11ant and destroys the 

presence of the minimum. This effect will drive b to expand even though there is a minimum 

today since the radion field \Ji has already rolled pass the minimum and cannot get back 

to the stable point. Notice that this effect is the same if matter is confined to the brane. 
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Figure 5. These graphs illustrate cosmological dynamics of the universe which includes non­
relativistic matter content and a2ther field in the extra dimension. Left: The scale factor a (upper) 
and the Hubble constant for the non-compact dimensions Ha (lower) as the function of time. The 
fact that Ha oscillates indicating the period of deceleration and acceleration before it settles down 
to the constant value and a enters a de Sitter phase. Right: The scale factor b (upper) and the 
Hubble constant for the compact extra dimension H1, (lower) as the function of time. Hb oscillates 
between positive and negative region before settles down to zero. The extra dimension is stabilized 
although non-relativistic matter is present.. 

this effect is proved to be crucial for stabilization of the extra dimension. If the vev of rether 
field is of the order of the 5-dimensional Planck mass, v ~ O(l\!?2 ), it can slow down the 
evolution of the moduli field such that there is enough time to CTPate the minimum for the 
effective potential. 

In this paper we assume humog<!ll('OHS and isotropic distrih11tio11 of non-relativistic 
matter. However, local matter distributions might perturb the rndion and knock it over 
the minimum, causing the (local) catastrophic expansion of the fifth dimension. In [:�], it 
was also noted that the minimum of the potential well is generally not deep enough to 
prevent the quantum tunneling of the raclion. At this stage, it is not clear whether these 
two difficulties can be solved by the new mechanism. These aspects of instability in the 
presence of the aether are still open questions. 

Note that the constancy of the 4-climensional cosmological constant up to very early 
epoch of the universe will post strong constraint on the size of the extra dimension. The 
oscillation behavior of the moduli field may contradict with astronomical observations. In 
order to construct a more realistic cosmological model of this sceuario, the extra dimension 
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should reach its stable fixed point before the present time i.e. lstali ;S Lage which require fine 

tuning of many para.meters. The new possible solution is that we assume very high value 
of v so that the oscillation of b hn.,; a very long period. The moduli will evolve smoothly 

with no oscillating behavior. vVe can choose the value of v such that the size of the extra. 

dimension changes so slowly and it ca1111ot alter the results of the Big 13ang model. 

Another interesting idea is to i1J1aginc that t.he 1111iverse start(•d with a very symmetric 
state which all spatial dimensions ar(' c1Hnpa('tificd with thr crpial radius, for example, 
topologically an 4-dimensional torus. In general, the Casimir energies in this compact 
universe generate st.abilizecl potential for I h() radius of all dirc!c:l.io11s. On the other hand. 
at the very early time, the energy clrinsity of matter and radialion will be the dominant 
contribution. This will destabilize the 111odt1li rields and all directions will become large. 

However, if the Lorentz symmetry is spo11t.a11co11sly broken in some direction i.e. there is a 
non-vanishing eel.her field pointing i11 the lift.Ii direction, it will slow down the dynamics of 
moduli field nssocint.cd Lo the broken clirccl inn. The broken direct.ion will be cornpactificd 
al stabilized radius while the u11brokr11 din•clions arc allowed Lo ('Xpand. This cosmologi­
cal scenario 1n:1y establish a co111H•(·t illl1 IH·t \\'('l'l1 the dimcnsio11alit_,· nf spacetime an<l the 
viol at ion of Lorcnt.z syrn111l'I r�•. \\'t• lc·a\'l' this iss11c• for f11tml! im·c·stigat ion. 
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