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ABSTRACT (ENGLISH) # # 6176058832 : MAJOR PROSTHODONTICS 
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 Wisarut Prawatvatchara : EFFECT OF APROTIC SOLVENTS ON THE 

MICROTENSILE BOND STRENGTH OF COMPOSITE CORE AND FIBER-
REINFORCED COMPOSITE POSTS. Advisor: Assoc. Prof. NIYOM 
THAMRONGANANSKUL, D.D.S., M.SC., PH.D. 

  
           Objective: The purpose of this study was to examine the effect of 

aprotic solvents, which were tetrahydrofuran, pyridine, and morpholine, compared 
to hydrogen peroxide on surface roughness of fiber-reinforced composite post and 
microtensile bond strength between fiber-reinforced composite post surfaces and 
the composite core. 

           Material and methods: A total of 75 FRC posts plus, and 75 D.T. 
light posts were divided into 3 groups (non-thermocycling, 5,000-cycle and 10,000-
cycle thermocycling groups). Each group was divided into five subgroups according 
to the post-surface treatment: C: non-treatment group; H2O2: immersing with 35% 
hydrogen peroxide; THF: immersing with tetrahydrofuran; PY: immersing with 
pyridine; MP: immersing with morpholine.  After 1 minute of immersion, all 
specimens were rinsed with deionized water, dried with an air blow, silane and 
bonding agent application, placed in the bottom of the plastic cap, filled with 
composite core material and prepared specimens for the microtensile bond test. 
After microtensile testing, Stereo microscope was used to evaluate mode of failure 
on all specimens at 40x magnification. White light interferometry and scanning 
electron microscopy (SEM) were utilized to evaluate surface roughness for each 
surface treatment. A one-way ANOVA was used to analyze all of 3 groups (non-
thermocycling, 5,000-cycle and 10,000-cycle thermocycling groups) and the 
significance level was determined using Tukey’s test, while statistically significant 
differences between type of fiber-reinforced composite post groups was analysis 
by the paired-samples t-test. 

            Result: In non-thermocycling conditions and 5,000 and 10,000-
cycle thermocycling, both FRC post plus and D.T. light-post in the PY subgroup 
showed the significantly highest microtensile bond strength which correspond with 
the surface roughness result. 
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CHAPTER 1 
INTRODUCTION 

 
For the purpose of providing core retention, stress distribution, and fracture 

resistance in endodontically treated teeth with insufficient coronal tooth structure, 
dental posts are required. 
  Although the various techniques of fabricating posts and cores can be 
classified into prefabricated type and custom-cast type, these also divided the 
materials used for post-fabrication, such as titanium alloy, fiber-reinforced composite, 
and zirconia.  Currently, prefabricated composite posts with fiber reinforcement are 
frequently employed. Because, when compared to rigid post materials, they have an 
elasticity modulus that is virtually equivalent to that of dentin. When the tooth, 
which had a post and core to restore it, came under pressure.  

The dentine/composite core interphase was revealed to be a prevalent 
location for adhesive failure due to the weak bond strength of the two materials. 
However, the bond strength between the interphase of the post and the composite 
core is also crucial for securing the core restoration (1, 2, 3). As a result, numerous 
studies have focused on using chemical or chemo-mechanical treatments to improve 
the bond strength between dental posts and composite core (4, 5).  

From the past to the present, a variety of chemical reagents, including 
sodium ethoxide, potassium permanganate, hydrofluoric acid and hydrogen peroxide 
have been investigated for their etching ability to remove polymer matrix. According 
to the findings of this study, etching with reagent can increase surface roughness and 
bond strength (1, 6, 7, 8). However, these reagents still have substantial downsides, 
such as difficult procedures when employing potassium permanganate (9, 10), skin 
irritation due by high concentrations of hydrofluoric acid and hydrogen peroxide (11, 
12), and prolonged immersion time with sodium ethoxide (10, 13). Therefore, the 
search for a new chemical reagent for glass fiber surface modification was initiated. 
When predicting the capacity of chemical solutions for etching resin matrix, the 
solubility parameters are the tools for choosing the best etching solvent agents for 
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the polymer. In general, solvents can dissolve polymers whose solubility parameters 
are not drastically different (14). Therefore, the polymer matrix type of fiber post has 
an influence on the solvent chemical etching; Tetrahydrofuran also takes part in the 
study (15, 16). While several chemical reagents, such as pyridine and morpholine, 
have solubility parameters that are extremely close to those of Bis-GMA, which is a 
part of the polymer matrix in fiber post.  

Additionally, neither morpholine nor pyridine were used as etching agents in 
any dental fiber post research. Therefore, the purpose of this investigation was to 
evaluate the microtensile bond strength of a composite core and fiber post that had 
been etched using four different types of chemical agents. 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Dental glass fiber-reinforced composite post  

2.1.1 The dental fiber-reinforced composite posts  
When compared to other metallic or ceramic posts, the greatest benefit of 

fiber-reinforced composite posts is their modulus of elasticity (17). Because of the 
similarity between the elastic moduli of fiber-reinforced composite posts and dentin, 
will distribute the stress more evenly and are less prone to cause root fracture in 
teeth that have had endodontic treatment (17, 18, 19, 20). 

Fiber-reinforced composite posts can be bonded to the dentinal wall with 
adhesive or resin cement, which has benefits including lowering the post's tendency 
to wedge into the root canal and thereby lowering the risk of root fracture (21). Posts 
built of fiber-reinforced composites are constructed using pre-stretched fibers that 
are encapsulated in a matrix of resin. Epoxy resin or Bis-GMA matrix are typically 
used, as well as certain fillers, in fiber-reinforced posts (22, 23). 

A Carbon fibers are unidirectional and continuous are impregned into an 
epoxy resin matrix but the disadvantage of using carbon-fiber posts is to achieve the 
ideal aesthetics with all-ceramic restorations (17). Therefore, many manufacturers 
develop glass-fiber and quartz-fiber reinforced posts for providing aesthetic outcome.  

Glass fiber-reinforced composite posts contain quartz-fibers, which are pure 
silica in crystalline form. Additionally, glass fiber-reinforced composite posts contain 
E-glass (electrical glass) and S-glass (high-strength glass) (17, 21, 22, 23). According to 
the manufacturers, these posts have similar biomechanical characteristics to carbon 
fiber-reinforced composite posts (24, 25, 26); however, some research found that the 
carbon fiber-reinforced composite posts has better mechanical performances than 
others (25). 

Moreover, they have a hydroxyl group that is capable of silanization (8), This 
results in improved in the bond strength between the fiber-reinforced composite 
posts and the composite core interphase (7). The arrangement of the fibers in fiber-
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reinforced composite posts gives the posts a high tensile strength, while the resin 
matrix can withstand compressive stresses (7, 27). 
2.1.2 Resin matrix in fiber-reinforced composite posts 

The matrix is basically a homogeneous and monolithic material in which a 
fiber system of a composite is embedded. It bonds the fiber reinforcement, 
distributes loads among the fibers, and improves the composite's mechanical 
properties.   

A highly cross-linked structure consisting of methacrylate or epoxy polymers 
makes up the resin matrix of fiber-reinforced composite posts (23). 

Epoxy resins are thermosetting polymers that are extensively employed in 
fiber composites as a matrix material, and they are also used as a resin base for the 
dental fiber posts (28, 29). However, posts with the epoxy resin matrix had 
inadequate chemical affinity for the luting resin due to different chemical 
compositions (10). 

The introduction of the aromatic monomer bisphenol A glycidyl methacrylate 
was the cause for a new revolution in the dental composite posts industry (30). 

The use of bisphenol A-glycidyl methacrylate (Bis-GMA) was considered 
advantageous for enhancing the chemical bonding between the post matrix and that 
of the resin cement (31). In terms of mechanical properties, the Bis-GMA matrix also 
has greater flexural strength due to its stiffer nature than that of the epoxy matrix 
(25, 30). 

Surface treatment of fiber posts for increasing bond strength between the 
fiber-reinforced composite posts and composite core interphase is an interesting 
topic for several research studies (7, 29, 30, 32). Micro-mechanical and chemical 
bonding methods were developed using a variety of chemical solutions; however, 
these approaches lacked selectivity and had the potential to occasionally alter the 
structure of the post due to the fact that they impacted both the matrix and the 
fibers (33). 

Hydrogen peroxide, sodium ethoxide and potassium permanganate were 
chosen as chemical reagents because to their potential to partly dissolve resin 
matrices (34). After the top layer of the epoxy resin has been removed, there will be 
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a larger surface area of exposed glass fibers that is accessible for silanization. The 
outcomes of these surface treatments are to be considered favorable (13). 
2.2 Dental core-build up materials 

Core-build-up materials are the materials placed in the coronal portion of the 
teeth where natural tooth structure has been lost. In the past ten years, core build-
up materials have become increasingly popular, particularly when employing 
prefabricated posts in teeth that have undergone endodontic treatment.  

When used with fiber-reinforced composite posts, the core material is 
particularly important for the overall success of the restoration of endodontically 
treated teeth. Several types of materials, such as amalgam, resin composite, glass 
ionomer cement, and resin modified glass ionomer cement, are the most used core 
build-up materials. 

Nowadays, the most popular core build-up material for fiber-reinforced 
composite posts is resin composite because it has properties like tooth structure in 
terms of hardness and fracture toughness (35, 36, 37, 38). 

The strength of the composite core materials is influenced by a variety of 
parameters, including filler particle size, filler loading, amount and type of monomer, 
intensity and distance of the incident light curing, and irradiation times (38, 39, 40, 
41). This may suggest that the strength of the core material alone may not affect the 
strength of endodontically treated teeth restored with fiber-reinforced composite 
posts (42). Some studies have shown that several posts and cementation materials 
have no direct effect on fracture strength or failure patterns. Different circumstances 
played a role in the study's outcomes, as certain core materials were employed both 
as cement and as core material (43, 44). 

Although debonding of a post restoration at the resin cement/dentin 
interface is the most common cause of adhesive failure at the restoration's weakest 
point, only a chemical bond between the fiber post surface and the composite can 
maintain the connection of the core material around the post at the level of the 
post-core interface, which influences the stress distribution of the post restoration 
(8). 
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The bond strength between the fiber-reinforced composite posts and the 
core buildup is consequently essential to the success of endodontically treated 
tooth restorations. 
2.3 Surface-treatment chemicals for dental glass fiber post  

To achieve better adhesion, a variety of techniques, such as sandblasting and 
etching with hydrofluoric acid, were used. However, the strength of the posts was 
reduced because of these approaches, and the structure of the glass fibers was 
damaged (45, 46, 47).  

In order to prevent the integrity of the fiber from being compromised, having 
identified chemicals that could dissolve only the resin matrix section (8, 10, 12, 48). 
Potassium permanganate (KMnO4), sodium ethoxide (C2H5ONa), and hydrogen 
peroxide (H2O2) were applied in order to etch and disclose the glass fibers (8, 10, 12, 
48, 49).  
2.3.1 Hydrogen peroxide 

Hydrogen peroxide has the chemical formula H2O2. It is considerably more 
viscous than water, and when pure it is a very light blue color (50). Because of this, it 
is frequently employed as a diluted solution (3%–6% by weight) in water for 
consumer use where it functions as an oxidant, bleaching agent, and antiseptic (51), 
and in greater concentrations where it functions as an antiseptic and bleaching agent 
(52). Hydrogen peroxide is a reactive oxygen species and the simplest peroxide with 
an oxygen-oxygen single bond (53). It degrades gradually in the presence of light but 
degrades rapidly in the presence of organic or reactive chemicals (54).  

In immunological electron microscopy, hydrogen peroxide is frequently used 
to partially dissolve the epoxy resin surface of tissue sections embedded in epoxy 
resin and expose tissue epitopes for improved immunolabeling (55, 56). For this 
reason, hydrogen peroxide has been recommended in dentistry for fiber-reinforced 
composite posts-etching to improve its reactivity to silanization.  

Many studies reported that the etching effect of hydrogen peroxide depends 
on the capacity to partially dissolve the resin matrix, destroying epoxy resin bonds 
through a mechanism of substrate oxidation (34, 55, 56, 57, 58, 59). 
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Higher push-out bond strength was obtained after 20 minutes of pre-treatment with 
20% H2O2 on the post surface before silanization (49). 

Monticelli claimed that 10% H2O2 for 20 minutes produced a strong 
connection (29). While another study recommended 24% hydrogen peroxide for 1 
min for fiber-reinforced composite posts surface treatment (60). According to 
research findings, there are numerous procedures; therefore, dentists should select 
the appropriate and practical fiber-reinforced composite posts-etching technique. 
2.3.2 Tetrahydrofuran (THF) 

The chemical compound oxolane, also known as tetrahydrofuran (THF), has 
the formula (CH2)4O. as shown in Figure 1.  

 
Figure  1 shows the structure of THF. 

This substance is categorized as a heterocyclic substance, more specifically as 
cyclic ether. It is colorless, has a low viscosity, and is water soluble (53, 61). THF is 
mostly utilized as a polymer precursor. It is a multipurpose solvent since it is polar 
and has a large liquid range (62). This volatile solvent has a boiling point of 66 °C and 
a vapor pressure of 176 mm Hg; as a result, high amounts of vapor may occur in the 
workplace. Compared to other cyclic ethers, its toxicity is believed to be low (53).   

Additionally, tetrahydrofuran can be generated via catalytic hydrogenation of 
furan (63, 64). This enables the conversion of certain sugars to THF through acid-
catalyzed digestion to furfural and decarbonylation to furan, however this method is 
not frequently used (65). THF can therefore be produced using renewable resources. 
Applications 

It is commonly used as a PVC industrial solvent and in varnishes. Because it 
has a dielectric constant of 7.6; therefore, it is classified as an aprotic solvent (63). It 
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is a solvent with a moderate polarity that may dissolve a variety of polar and 
nonpolar chemical substances (62, 65). THF has also been researched for usage in 
aqueous solutions as a miscible co-solvent to help liquefy and delignify plant 
lignocellulosic biomass for the creation of renewable platform chemicals and sugars 
as potential biofuel precursors (66). 

In polymer science, THF is frequently utilized. For instance, polymers can be 
dissolved with it before their molecular mass is determined using gel permeation 
chromatography (67, 68, 69, 70). 

THF is also the main ingredient in PVC adhesives because it dissolves PVC as 
well. It is widely used in industry to clean metal parts and can be used to liquefy 
aged PVC cement (71). 

In addition, THF is utilized as a solvent in the 3D printing of Polylactic acid 
(PLA) plastics (72). It can be used to clean clogged 3D printer components as well as 
eliminate extruder lines from completed prints and give them a glossy finish. 

In the dental field, THF was used as a solvent and surface treatment reagent.  
We know that THF is an organic, polar, heterocyclic solvent that dissolves a variety of 
polar and nonpolar substances. These characteristics may support the use of THF in 
dental adhesives that blend hydrophobic and hydrophilic components. Additionally, 
THF's volatile nature suggests that it might be easily removed from a surface after 
application. Fontes et al. (73) showed that THF appears to be a promising solvent for 
use in dental adhesive systems due to its bond strength stability over time.
 Additionally, the combination of THF and silane can increase the shear bond 
strength of glass fiber posts (15). Consequently, THF is one of the chemical agents 
that could be used to modify the FRP post surface. 
2.3.3 Morpholine 

Morpholine is also known as tetrahydro-1,4-oxazine, tetrahydro-2H-I ,4-
oxazine, diethylene oximide, diethyleneimide oxide, and diethyIene imidoxide.  
Morpholine is a simple heterocyclic 2° amine that has great industrial importance and 
a variety of uses.  It conforms to the formula illustrated in Figure 2 (74). 
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Figure  2 demonstrates the chemical structure of Morpholine. 

 
The dehydration of diethanolamine by a strong acid is one technique for 

synthesizing morpholine as shown in Figure 3 (75, 76). Concentrated sulfuric acid and 
concentrated hydrochloric acid are two acids that can be utilized in this procedure. A 
molar excess of acid is used generally at a temperature over 150°C. An aqueous 
solution of morphine is produced by neutralizing the initially acidic reaction mixture 
with an alkali. By extracting the purified morpholine from the aqueous solution with 
either an organic solvent or concentrated aqueous alkali, followed by distillation, it 
can be obtained. 

 
Figure  3 shows the dehydration of diethanolamine to produce Morpholine. 

Morpholine is a clear, hygroscopic liquid that can absorb moisture from its 
surroundings and has a characteristic amine odor (75, 77, 78).  It dissolves into several 
different liquids, including water, methanol, ethanol, benzene, acetone, ether, 2-
hexanone, castor oil, ethylene glycol, linseed oil, turpentine, and pine oil However, 
concentrated sodium hydroxide solutions cannot dissolve it (78, 79, 80). The 
chemical and physical data of morpholine are displayed in Table 1. 
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Table  1 shows the chemical and physical data of morpholine. 

Physical form  Colorless, volatile, alkaline, oily liquid  

Odor  Amine odor 

Formula C4H9NO 

Molecular weight 87.1 2 

Assay 99.0% minimum (for cosmetic use) 
98% (technical grade) 

Vapor pressure  6.6 mmHg at 20°C 

Refractive index 1.4537-1.4547 at 20°C 

Specific gravity 0.998 at 25°C 

Boiling point 1260°C 

Viscosity 2.23 centipoises at 20°C  

Surface tension 37.5 dynes/cm at 20°C 

pH 11.2 (undiluted) 

Density 0.999 g/cc at 20°C  

Flammability Flammable 

 
Because of its superior physical, chemical, biological, and metabolic qualities 

as well as its frequently straightforward synthesis processes, morphine is frequently 
used in both industrial and medical chemistry (81). In this suggestion, the application 
of morpholine will be divided into groups for non-cosmetic and cosmetic uses. 

Non-cosmetic: Morpholine is used in a broad variety of processes, such as 
those that produce optical brighteners for detergents, corrosion inhibitors, 
antioxidants, etc. 

Morpholine is also widely employed as a polymerization inhibitor, a step in 
the process of making rubber, a catalyst for certain chemical reactions, as a corrosion 
inhibitor in steam condensate systems, as a component of fresh fruit and vegetable 
protection coverings, as well as a component of waxes and polishes (82). 
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Cosmetic: Morphine is a common ingredient in cosmetic items like mascara 
in several countries. In the USA, data submitted to the Food and Drug Administration 
(FDA) by cosmetic companies participating in the voluntary cosmetic registration 
program indicated that 38 different cosmetic items that include morphine (83).  

Cosmetic product types formulated with this compound included eye 
shadow, eyeliner, mascara, eye makeup removers and skin care preparations. 
Mascara is the most common application for morpholine (32 products). Additionally, 
it is a component in shampoos and other bathroom goods (84).  
 

Studies on human cancer: Data is not available.  
Studies of Cancer in Experimental Animals: By administering morphine 

orally to two strains of mice, one strain each of rats and hamsters, its carcinogenic 
potential was examined. It was determined that the hamster and one type of mouse 
studies were insufficient for consideration. No appreciable rise in the prevalence of 
tumors was observed in treated mice from the other strain. Morpholine was also 
studied in rats by inhalation exposure, however it had no effect on the frequency of 
tumors compared to controls (85). 
 Morpholine is currently found only once in the dental field reported that 
improved the bond strength of repairing dental resin composites (86). Due to its 
outstanding properties such as good solvent, high vapor pressure at normal 
temperatures and high safety. Therefore, its application as a reagent for surface 
modification of fiber-reinforced composite posts of interest to us. 

The chemical formula for pyridine is C5H5N. It is a heterocyclic organic 
molecule with a weak base (87).  It has a similar structure to benzene but one of the 
methine groups (=CH-) has been replaced with a nitrogen atom as shown in Figure 4. 
It is a highly flammable, slightly alkaline, water-miscible liquid with a peculiar, fishy-
like odor (88). Pyridine is clear, however older, or impure samples may seem yellow, 
because long, unsaturated polymeric chains are created, and these chains exhibit 
significant electrical conductivity (89, 90, 91).                                            
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Figure  4 illustrates the Chemical Structure of Pyridine. 

The pyridine ring is present in a wide variety of essential substances, such as 
vitamins, medicines (92), and agricultural chemicals (93). The chemical and physical 
data of pyridine are shown in Table 2. 

Table  2 shows the chemical and physical data of Pyridine. 

Physical form  Colorless, volatile, alkaline, oily liquid  

Odor  Fish-like odor 
Formula C5H5N 

Molecular weight 79.1 

Assay 99.0% minimum (for cosmetic use) 
98% (technical grade) 

Vapor pressure  18 mmHg at 20°C 
Refractive index 1.5093 at 20°C 

Specific gravity 0.998 at 25°C 

Boiling point 115.2°C 
Viscosity 0.974 centipoises at 20°C 

pH 8.81 (undiluted) 
Density 0.9819 g/cc at 20°C  

Flammability Flammable 

 
There are numerous uses for pyridine, including as a crucial raw material in 

the chemical industry, an antibacterial in dental care products, antiviral drugs, etc. 
(94, 95, 96, 97) 
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Applications: Pyridine is a polar solvent used for dehalogenation processes 
as well as the extraction of antibiotics. In addition to being employed as a solvent in 
the paint and rubber industries (98, 99), pyridine is also used in research labs to 
extract plant hormones (100). 

Dental and Medicine application: Cetylpyridinium and laurylpyridinium, 
which are utilized as antiseptics in oral and dental care products (101, 102), are made 
using pyridine as a starting material. A derivative of pyridine monomer, 
methacryloyloxydodecyl pyridinium bromide (MDPB), is a potent antimicrobial agent 
present in composites and self-etch adhesives. According to several studies, adhesive 
systems containing MDPB may protect the hybrid layer by inhibiting MMP (103, 104). 

Additionally, the pyridine molecule is a component of many drugs' chemical 
structures. esomeprazole, which is used to treat gastroesophageal reflux, is one 
example (105). Another medication made from pyridine known as Claritin, loratadine, 
is used as a therapy for allergic reactions (106). While Pyridine (phenazopyridine) pills 
are utilized to treat urinary tract irritation symptoms. Additionally, Phenazopyridine is 
a dye that acts as an analgesic in the urinary tract (107, 108). In addition, it is utilized 
to denaturize alcohol and dye various textiles (109, 110). 

For the surface treatment of fiber-reinforced composite posts in the pilot 
study, hydrogen peroxide, morpholine, tetrahydrofuran, and pyridine reagents were 
utilized. The outcome shown that pyridine can increase the microtensile bond 
between fiber-reinforced composite posts and core build-up materials. 

However, there is still not enough information of some aprotic solvents which 
are Pyridine and Morpholine for use as surface treatment for enhancing the bond 
strength between fiber-reinforced composite posts and core build up materials. in 
addition, the bond strength before and after thermocycling experiments which 
simulate oral situation. Which is why this research originated. The objective of this 
research is to explore the effect of aprotic solvent on surface treatments of fiber-
reinforced composite posts.      
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2.4 Solubility parameters 

Solubility parameters are numerical values that represent a solvent's relative 
behavior (111). The energy required to turn a liquid into a gas, known as cohesive 
energy parameters, is used to calculate solubility parameters. The vaporization 
energy is a direct measure of the overall energy (cohesive) that holds liquid 
molecules together (111, 112). In several processing and industrial applications, 
solubility parameter models are frequently used to choose solvents and non-
solvents that are appropriate for polymers.  

The Hildebrand and Hansen solubility parameter models, which have both 
gained widespread acceptance, are the focus of this review.                                                                                   
The idea that "like dissolves like" is the foundation of both models (111, 113, 114, 
115). This idea helps for polymer science applications such as forecasting the 
swelling of elastomers by solvents and polymer-binary polymers (binary mixture of 
polymers) and determining solvent permeation rates (113, 114, 115). There are 
several factors related to solubility parameters that will be described below. 
2.4.1 Solvent and solute molecules attractions  

Intermolecular forces are responsible for the cohesion of all material, 
whether it be liquids or solids. To form a solution, the solvent molecules must 
overcome the solute's intermolecular force and move between and around the 
solute molecules (114). At the same time, it is necessary for the solute molecules to 
effectively separate the solvent molecules from one another. This is most efficiently 
accomplished when the molecular attractions of both components are equal. If the 
attractions are distinct enough, strongly attracted molecules will adhere to and 
exclude less attracted molecules, resulting in immiscibility (114, 115). 
2.4.2 Heat of vaporization 

The heat of vaporization is the amount of heat necessary to turn one gram of 
a liquid into vapor without increasing the temperature of the liquid (115, 116).  
2.4.3 Van der Waals forces 
Van der Waals forces are caused by induced electrical interactions between two or 
more very near atoms or molecules. These forces, which include dipole-dipole 
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forces and dispersion forces, are the weakest intermolecular forces.   
 This polarity characteristic can have an effect on the solubility, which can be 
explained by the fact that the outer shell of a neutral atom or molecule is 
exclusively made up of electrons with a negative charge, which surrounds the 
nucleus, which has a positive charge. Difference in the density of the electron shell 
will cause a small magnetic imbalance, turning the molecule into a tiny magnet, or 
dipole. Furthermore, it is created through the interaction of transitory or permanent 
electric dipole moments. 

The degree of polarity is determined by variations in electron density based 
on the atomic structure of the molecule. Similar polarity substances will dissolve in 
each other, but when polarity differences increase, solubility becomes increasingly 
difficult (113, 116, 117, 118). 
2.4.5) Cohesive Energy Density 

A liquid's cohesive energy density is a measurement of the amount of van der 
Waals forces holding the liquid's molecules together, represented as vaporization 
energy in calories per cubic centimeter (118). Because van der Waals forces and 
vaporization are related, vaporization and solubility behavior are correlated as well 
(119).  The similarity of the intermolecular attractive forces between two substances 
determines how soluble they are. It seems to reason that substances with 
comparable cohesive energy density values would be soluble as well. The cohesive 
energy density can be determined from the heat of vaporization, expressed in 
calories per cubic centimeter of liquid, using the following formula (115, 120): 

C = (∆H-RT)/Vm 
C=Cohesive energy density, ∆H=Heat of vaporization, 
R=Gas constant, T=Temperature, Vm = Molar volume 

2.4.6) The Hildebrand solubility parameter 
Hildebrand and Scott were the ones who initially coined the phrase 

"solubility parameter." To assess whether a material is a good solvent or nonsolvent 

for a polymer, the Hildebrand model uses a single parameter (δt), which is defined 
as the square root of the cohesive energy density (115, 121). The following equation 
illustrates the Hildebrand solubility parameter: 
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δt = (E/V)1/2 
Where E is the pure solvent's (measurable) vaporization energy and V is the 

solvent's molar volume. The solubility parameter's numerical value in MPa1/2 is 
2.0455 times greater than that in (cal/cm3)1/2. 

The Hildebrand solubility parameter (δt) can be a useful tool for determining 
solubility because it gives a numerical assessment of the level of interaction 
between two materials, especially for nonpolar substances like many polymers. 
Materials with comparable values are probably miscible. 

The term "nonsolvent" refers to solvents whose δ values deviate from a 
polymer's by more than 2 MPa1/2. While good solvents are those with values that are 
within ± 2 MPa1/2 of a polymer (122, 123). The Hildebrand solubility criterion is 
illustrated in Figure 5. 

 
Figure  5 shows the Hildebrand solubility criterion. 

However, the fundamental drawback of the Hildebrand parameter is that it 
disregards specific molecular interactions. (e.g., dipole-dipole interactions). As a 
result, increasingly complex models, like the three-dimensional Hansen solubility 
parameters, have been created (121, 122, 123). 
2.4.7) Hansen solubility parameter (HSP) 

In 1967, Charles M. Hansen developed the Hansen Solubility Parameters (HSP) 
to predict whether one substance would dissolve in another and form a solution 
(113, 115, 118, 119).  

Hansen suggested extending the solubility parameter in a three-dimensional 
system. Based on the belief that cohesive energy is the sum of the contributions 
from molecular interactions with nonpolar, polar, and hydrogen bonds. He 
partitioned the total solubility parameter into three different components, which are 
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referred to as the dispersion force component (δd), the hydrogen bonding 

component (δh), and the polar component (δp) (113, 118, 119, 122). These three 
parameters (components) can be thought of as coordinates for a point in three 
dimensions, which is also known as the Hansen space which exhibit in Figure 6. In 
this three-dimensional space, the closer two molecules are to one another, the more 
likely it is that they will dissolve into each other. 

 
Figure  6 exhibits Hansen solubility sphere. 

To ascertain whether a solute lies within the solubility sphere of a given 
polymer, its distance from the center of the polymer solubility sphere needs to be 
less than the radius of interaction (Ro) for the given polymer.  

Whereas Ro is a distinct property of the necessary solute and can be 
measured experimentally for each polymer.  

Therefore, to calculate the distance (Ra) between Hansen parameters in 
Hansen space, the following formula is used:  

∆δ(S-P) or Ra =[4(Sδd-Pδd)2+(Sδp-Pδp)2+(Sδh-Pδh)2]½ 

∆δ(S-P) or Ra = distance between solute and center of solubility sphere 
Sδ = Hansen parameter for solvent 

Pδ = Hansen parameter for polymer 
 
The system's relative energy difference (RED) is described as follows: 

RED=Ra/Ro 
If RED<1, the polymer should be soluble in the solvent. 

If RED=1, the polymer should be partially dissolved in the solvent. 
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If RED>1, the polymer will not be dissolved in the solvent. 
 

HSP was initially created as a useful manual for choosing solvents for coating 
systems, but it is now utilized in a wide range of industries, including pharmaceutical 
chemistry (124, 125), molecular biology (126), dental material science (127, 128) and 
chemical sensing (129, 130, 131). 

There are several collections of solubility parameters for solvents and 
polymers in Table 3. and 4. A select number of solubility parameters data are 
represented for the solvents and the more important representative classes of 
polymers utilized in industry and academic investigations (122). 

 
Table  3 The Hansen solubility parameters are as follows. 

Solvent δt (MPa)1/2 δd(MPa)1/2 δp(MPa)1/2 δh(MPa)1/2 
n-hexane 14.9 14.9 0.0 0.0 

Cyclohexane 16.8 16.8 0.0 0.2 

Toluene 18.2 18.0 1.4 2.0 
Xylene 18.0 17.8 1.0 3.1 

Acetone 20.0 15.5 10.4 7.0 

Methyl ethyl ketone 19.0 16.0 9.0 5.1 
Methyl isobutyl ketone 17.0 15.3 6.1 4.1 

Ethyl acetate 18.1 15.8 5.3 7.2 
n-Butyl acetate 17.4 15.8 3.7 6.3 

Ethanol 26.5 15.8 8.8 19.4 

Pyridine 21.8 19.0 8.8 5.9 
Morpholine 21.5 18.8 4.9 9.2 

N,N-
Dimethylformamide 

24.8 17.4 13.7 11.3 

Tetrahydrofuran 19.4 16.8 5.7 8.0 

Ethylene glycol 32.9 17.0 11.0 26.0 
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Glycerol 36.1 17.4 12.1 29.3 

Dichloromethane 18.5 16.6 8.2 0.4 
Carbon tetrachloride 17.8 17.8 0.0 0.6 

Water 47.8 15.6 16.0 42.3 

 
 
 

Table  4 shows the Hansen solubility parameters for polymer selection. 

Polymer δt(MPa)1/2 δd(MPa)1/2 δp(MPa)1/2 δh(MPa)1/2 
Epoxy resin 23.75 20.0 10.0 8.0 

Bis-GMA 22.1 16.6 13.4 5.8 

TEGDMA 19.2 14.2 10.1 8.2 
100% HEMA 23.6 13.3 12.3 15.2 

Poly(methyl 
methacrylate) 

22.7 18.6   10.5   7.5 

Poly(ethyl 
methacrylate) 

18.4 17.6 9.7 4.0 

 
More than solvent selection, HSP was used in applications for explaining 

problems that are involved in mixing or diffusion phenomena, including swelling 
behavior and the prediction of environmental stress cracking in plastics (132) and the 
optimization of polymer additives. 
2.5 Interaction between solvent and polymer  

A solvent contact with a polymer, the solvent diffuses into the polymer, 
causing the polymer surface to swell (133, 134). The rate of diffusion is influenced by 
a number of factors, including time, temperature, the nature of the solvent, the 
structure of the polymer, and the glass transition temperature (Tg) of the polymer 
(135). 

The process of solvent diffusion into a polymer might take place in one of 
two distinct ways depending on the type of polymer. When a polymer is amorphous 
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and its temperature is above the glass transition temperature, the diffusion of the 
solvent into the polymer forms a smooth composition curve, with the most highly 
swollen material located at the outside border. 

In this circumstance, diffusion within the glassy polymer is slow. The solvent 
must first plasticize the polymer by reducing its glass transition temperature to below 
ambient. Then, rapid swelling ensues. Extremely swollen material and considerably 
non-swollen material are separated by a boundary that is quite distinct and 
constantly shifting. Typically, the tension near the swelling border is responsible for 
the sample cracking or breaking. this similar effect is observed with semicrystalline 
polymers. 

If the polymer is cross-linked, it will only swell until it reaches a state of 
equilibrium (134, 135). 
2.5.1) Swelling Phenomena 

The definition of swelling is the penetration of a solvent into a polymer 
network, which results in an abrupt change in volume (136). When a polymer has 
contact with a solvent. There is polymer to solvent diffusion and solvent to polymer 
diffusion. As a minute solvent molecule, the diffusion rate of the solvent is 
considerably increased. The degree of crystallinity, cross-linking, and the strength of 
attracting and repulsive forces can influence the intensity of the swelling (134, 137, 
138).          

Consequently, the polymer interacts with the solvent for a period. If the 
polymer is glassy, the solvent reduces the Tg through a plasticizing effect. polymer 
molecular motion increases (139). 
2.6 Multicomponent polymer material  

When two or more polymers are combined, a basic six-polymer combination 
is formed, as shown in Figure 7. (140, 141). 
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Figure  7 shows the six basic combinations of two polymers. 

a, Polymer blend, no bonding between chains; b, a graft copolymer; c, a block 

copolymer; d, and graft copolymer; e, an IPN; f a Semi-IPN. 

2.6.1) Interpenetrating Polymer Network (IPN) 
An interpenetrating polymer network (IPN) is a type of polymeric system in 

which there are no covalent interactions between two or more polymeric networks 
that are at least partially interlocked at the molecular level (139, 140).  

Semi- interpenetrating networks (semi-IPN) Compositions that contain one or 
more cross-linked polymers and one or more linear or branched polymers. In 
dentistry, acrylic resin is introduced as restorative materials. These materials are 
prepared from two components to form a semi-IPN polymer that is made up of 
linear poly (methyl methacrylate) as polymer B and MMA monomer plus crosslinking 
agents as network A (133, 141, 142). The technique begins with the synthesis of a 
crosslinked polymer A. The monomer B and initiator are then swelled into polymer A 
and polymerized in situ, as shown in Figure 8. 
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Figure  8 depicts the semi-interpenetrating network fabrication approach. 

However, interpenetrating polymer network creation can be classified into 
sequential and simultaneous interpenetrating networks. 
2.6.2) The sequential interpenetrating networks  

The procedure starts with the creation of a crosslinked polymer A.  After that, 
the monomer B, plus its own crosslinker and initiator, are swollen into polymer A 
and then polymerized in situ, as shown in Figure 9. 

 
Figure  9 shows the process of sequential interpenetrating network syntheses. 

2.6.3) The simultaneous interpenetrating networks 
Differ from above, beginning with a solution of monomers and crosslinkers 

that are polymerized simultaneously by noninterfering modes as Figure 10. 
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Figure  10 demonstrates the simultaneous interpenetrating network synthesis. 

2.7 Surface roughness 

Surface roughness, often known as surface texture, is defined as the 
irregularities that occur throughout the manufacturing process. It could be caused by 
vibrations, work deflections, and strains in the material. Roughness is often regarded 
as the high-frequency, short-wavelength part of a measured surface in surface 
metrology (143).  

In tribology, rough surfaces often wear faster and have greater friction 
coefficients than smooth ones. Roughness is frequently a useful predictor of 
mechanical component performance because surface irregularities might act as 
nucleation sites for fractures or corrosion. Roughness, on the other hand, may 
encourage adherence (144). 
2.8 Measurement of surface roughness 

Arithmetic average roughness or Ra parameter refers to the arithmetic mean 
of the absolute values of vertical deviation from the mean line through the profile 
within the measuring length, as shown in Figure 11 (143). In the dentistry sciences, 
the Ra or arithmetic average roughness parameter is commonly utilized as an 
evaluation metric. 
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Figure  11 illustrates the graphics of roughness parameter. evaluated included 

average roughness or Ra parameter, L is the measuring length, M is the mean line. 

For the surface treatment methods which applied to dental material 
significantly affect the bond strength. Increasing bond strength may correlate with a 
rise in average surface roughness (144). Profilometry is usually used to assess the 
surface roughness of dental materials. 

Profilometry: A profilometer is a is a measuring topographical technique 
which used to analyze a surface's profile, to get surface morphology, step heights 
and surface roughness (143). A single point, a line, or even a complete three-
dimensional scan can be used for this. Profilometry can be derived into two types of 
methods, which are contact and non-contact profilometry. 
2.8.1 Contact profilometry.  

Instruments for measuring surface roughness using the contact technique are 
made up of the tip of a stylus that comes into direct contact with a specimen’s 
surface. The stylus is parallel to the sample's surface during tracing a surface, and 
electrical sensors pick up the stylus' vertical movement. as shown in Figure 12 (145, 
146). The electrical signals are amplified and digitally converted before being 
recorded.   
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Figure  12 shows the measuring surface roughness by stylus technique. 

Using a contact-method surface roughness tester to properly measure 
delicate forms and roughness, The radius of the stylus tip must be as tiny as feasible 
while maintaining low contact pressure. Styluses are commonly made of sapphire or 
diamond, with a tip radius of 1.5–2.5 µm (146). A stylus with a conical shape and a 
ballpoint tip is thought to be suitable. As demonstrated in Figure 13, the smallest 
profiles that a stylus is able to trace are determined by the cone angle as well as the 
tip radius. These measurements which are based on the use of a sharp tip are 
influenced by the size and form of the stylus tip (144, 145, 146, 147, 148, 149).  

 
Figure  13 shows the cone angle and tip radius of stylus. 

This technique has limitations, for example taking more analysis time than 
non-contact techniques, The spherical stylus tip cannot trace the groove, which is 
narrower than the radius of the stylus tip, as shown in Figure 14.  
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Figure  14 The effect of the grooves which are narrower than the radius of the stylus 

tip. 

In general, the stylus tips made of wear-resistant materials such as diamond 
or sapphire can damage and may leave micro-scratches on testing surfaces (150), 
however, as time passes, the stylus's tip wears down and must be polished. The 
pattern of wear varies, thus depending on the material and form of the target object 
for measurement, the stylus tip might become flat or rounded. Different stylus 
shapes result in fundamentally distinct wave characteristics.  A commercially 
available wear-inspection test piece can be used to determine stylus wear. Figure 15 
depicts a comparison of the data profile (groove width) of the test piece before and 
after stylus wear. 

 
Figure  15 depicts the discrepancies in measurement outcomes caused by stylus 

wear. 

Moreover, the stylus cannot maintain contact and precisely align the 
profilometer trace along a cylindrical surface (144, 151, 152).  
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As illustrated in Table 5, direct contact with a sample typically entails several 
disadvantages. 
Table  5 shows the advantages and disadvantages of contact-method surface 

roughness testing. 

Advantages Disadvantages  

 - A distinct wave profile - the deterioration of the 
stylus tip 

 

- Long-distance 
measurement capability 

- Pressure measurement 
might result in scratches on 
the sample surface 

 

 - The radius of the stylus tip 
limits the measurement.  

 

 - Impossibility of quantifying 
viscous samples 

 

 - Difficulties in identifying 
and locating delicate 
measuring points  

 

 - It takes time  

 - Sample cutting and 
processing are required for 
detector tracing. 

 

 
Atomic force microscopes (AFM) in contact mode 

Using the atomic forces between the tip and the sample, the atomic force 
microscope (AFM) calculates the roughness of a sample. The user positions the 
cantilever, which has a probe at one end and a sharp tip at the other, in close 
contact to a sample surface to take measurements. Throughout scanning, a constant 
force is maintained between the tip and the sample.  A laser beam is emitted from 
the rear side of the cantilever, and the reflected beam is detected by two- or four-
segment photodiodes as shown in Figure 16. This optical lever method generally is 
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used to measure the deflected cantilever during giving the piezo scanner feedback. 
The z-axial displacement, which represents the surface structure, is determined by 
measuring the feedback displacement from the piezo scanner. 

 

 
Figure  16 shows the Illustration of an Atomic Force Microscope (AFM) probe tip for 

surface roughness measurement. 

An AFM creates images by scanning a tiny cantilever across a sample's 
surface. The cantilever's pointed tip makes contact with the surface, bending it and 
adjusting the intensity of laser light reflected into the photodetection. The cantilever 
height is then modified to reestablish the response signal, with the measured 
cantilever height tracking the surface. 

AFM has been used to assess erosion in human enamel, and this has been 
shown to be an appropriate instrument for assessing the early phases of enamel 
demineralization (153). 

The advantages and disadvantages of AFM (contact mode) are outlined in 
Table 6. 
Table  6 shows the advantages and disadvantages of AFM (contact mode) for surface 

roughness measurement. 

Advantages Disadvantages 
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It provides high resolution on the 
nanoscale. 

The vertical range is limited. 

Sample preparation is kept to a minimum. Images that have been distorted as a 
result of lateral forces. 

When compared to other operation 
modes, the scan speed is fast. 

Soft sample distortion as a result of 
strong probe-surface interactions. 

 
It is becoming more and more important to produce the most precise control 

approaches as requirements for improving the quality of metrological methods rise.  
The improvement of the frequently used stylus instruments has attained a high level 
of technicality. One of the main drawbacks of these mechanical profilometers is that 
a tip must make mechanical contact with the surface being measured, yet this 
requirement raises the possibility of soft material damage. Unwanted resonance 
frequencies of the measurement tip as it passes over the surface restrict their 
accuracy and sensitivity. By adopting non-contact measurement methods that can be 
created based on optical principles, these drawbacks can be virtually avoided. 
Several non-contact optical and non-optical methods have been developed. 
2.8.2 Non-contact profilometry 

Non-contact profilometry involves the use of light or sound. Optical devices 
such as white light and confocal replace the stylus. These devices employ various 
measurement principles. Some non-contact equipment is made from repurposed 
contact-type detectors by replacing the physical probe with microscopes and optical 
sensors (154). 

This device will initially transmit an ultrasonic pulse to the surface. After then, 
the sound waves will be changed and reflected to the device. The roughness 
parameters can then be calculated using the reflected waves. Non-contact methods 
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include structured light, electrical capacitance, electron microscopy, interferometry, 
confocal microscopy, focus variation, atomic force microscopy (non-contact method), 
and photogrammetry (155). 

Furthermore, light can be used to assess surface roughness by shining a laser 
beam onto the surface and measuring the intensity of the reflected light. The 
rougher the surface, the lighter is scattered, and the less light is reflected. The 
following Table 7 summarizes the characteristics of non-contact approaches. 
 
Table  7 shows the advantages and disadvantages of non-contact methods for 

surface roughness measurement. 

Advantages Disadvantages 

-There is no surface damage to the 
sample. 

Target measurement size is limited.                               
(Some microscope types) 

- Non-contact method has less asperity 
than contact method 

 

- Rapid measurements  

- Surface image and height profile 
observation at the same time 
(microscope type) 

 

- Capable of acquiring high-definition, 
fully focused images comparable to 
those obtained by SEM (color 3D laser 
microscope) 

 

 
Optical profilometry 

The optical profilometer is a type of microscope that uses a light source to 
analyze the surface's topography. A beam splitter is placed between the objective 
and the sample of an optical microscope to divide light into two paths. One path 
directs light to the sample's surface, while the other directs light to a reference 
mirror just below the objective lens. Reflections from the sample surface and the 
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mirror are recombined to generate interference fringes, which are projected onto an 
array detector (151). 

Having a surface that can reflect the light beam is crucial for this technique to 
work, which means that it is often necessary to modify the sample surface in order 
to get a more accurate reflection. 

There are numerous data collection methods, including focus variation, white 
light interferometry, and laser scanning confocal microscopy (152). 
Laser microscopes for measuring surface roughness. 

A 3D laser scanning microscope is a type of observation/measuring device 
that can perform 3D measurements as well as deep focus depth observations at the 
same time. It allows for observations under typical environmental conditions and has 
no limitations on sample size or composition. A user-friendly interface like that of an 
optical microscope is also present in the 3D laser scanning microscope (155, 156); 
materials do not need to be pretreated before measurement. Color observations can 
be made, which aids in the correct analysis of the target object's conditions. A 3D 
laser scanning microscope can also be used to check the surface, inside, and 
opposite of a translucent item, as well as to measure the thickness of films. (157). 

While the 3D laser scanning microscope outperforms a SEM or an AFM in 
terms of operability, it falls behind in terms of observation magnification and 
measurement resolution. Bottom areas with high aspect ratios and steep slopes 
cannot be measured or identified because they do not reflect the laser beam. Table 
8 summarizes the features of a 3D laser scanning microscope. 
Table  8 displays the benefits and drawbacks of a 3D laser scanning microscope. 

Advantages Disadvantages 

- The deep focus - Capable of high-definition observation 
and accuracy measurements down to 1 
nanometer. 

- Color images of the target object are 
available. 

- Data cannot be gathered from sample 
surfaces (such as the sides) that do not 
receive laser beam emission. 
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- Creates 3D profiles and displays color 
3D images 

- Materials that absorb laser beam 
wavelength cannot be measured. 

- Capable of determining the thickness of 
a translucent object's film 

 

- Analysis under atmospheric conditions 
is possible, with no sample pretreatment 
required. 

 

- There are no restrictions on sample size 
or material, and the simple operation 
makes it ideal for general-purpose use. 

 

 
White Light Interferometry (WLi) 

White light interferometry is an optical profilometry technique that is selected 
over monochromatic light due to its shorter coherence length, which provides higher 
accuracy (152, 158, 159).  

Light interference happens when the light travels a different distance from 
the surface of a target item to a specific spot. Figure 17 depicts the fundamental 
architecture of white light scanning interferometry 

 
Figure 17 illustrates the fundamental arrangement of white light scanning 

interferometry. 
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The white light emitted by the source is divided into beams:  measurement 
beam and reference beam. The measurement beam is reflected to the sample 
surface, whilst the reference beam travels through the reference mirror via a beam 
splitter. The reference mirror reflects the passing beam onto the CCD image sensor, 
creating an interference pattern. The other beam is reflected off the surface of the 
sample, goes through the beam splitter, and generates an image using the CCD image 
sensor. Through the CCD image sensor (160, 161, 162).             

White Light Interferometry is easier, faster, and more accurate than other 
optical methods. It can also cover a larger image area than atomic force microscopy 
(151, 163). 

White light interferometry was used to analyze erosion enamel (164), etched 
enamel (165) and surface characteristics of implant materials (166, 167). However, 
these were not reported regarding glass fiber following analysis of surface roughness 
with white light interferometry. The characteristics of white light interferometers can 
be summarized as shown in table 9. 
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Table  9 summarizes the properties of white light interferometers. 

Advantages Disadvantages 
- Capable of measuring a large field 
of vision 
It is feasible to measure in the sub-
nanometer range. 

- There is only a limited angular feature. 

- Quick measurement - The application is limited to particular 
items. White light interferometers are only 
able to detect when there is a strong 
reflection. There, measuring capabilities on a 
diverse assortment of things are not 
supported. 
 
Measurements may also be impossible if the 
light reflected from the reference mirror 
differs significantly from the light reflected 
from the measurement area.  

 - Adjustment of the tilt is necessary. Before 
measurement, a goniometric stage must be 
employed to correct sample tilt. Tilted 
samples may result in closely spaced 
interference patterns, hence decreasing the 
precision of measurements. Some white light 
interferometry systems have a tilt mechanism 
that automatically corrects sample tilt. 

 - Sensivity to vibrations Due to the 
equipment's extreme vibrational sensitivity, 
installation choices are restricted. Installation 
calls for shock-absorbing tables. 
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There is numerous measurement equipment on the market for analyzing and 
evaluating surface roughness. The characteristics of contact and non-contact can be 
summarized as shown in table 10. 
 

Table  10 summarizes the differences between contact and non-contact features. 

 
 
  

Method Contact Non-contact 

Instrument for 
measuring 

Roughness 
tester of 
contact type 

Atomic force 
microscope 
(AFM) 

White light 
interferometer 
(WLi) 

Laser 
microscope 

Resolution of 
measurement 

1 nanometer < 0.01  
nanometer 

< 0.1  
nanometer 

0.1 nanometer 

Height 
measurement 
range 

1 millimeter 
or less 

< 10 
micrometer 

< a few 
millimeter 

< 7  millimeter 

Range that can 
be measured 

a few of 
millimeters   

1 to 200 
micrometer   

40 micrometer  
to 15  
millimeter 

15  micrometer  
to 2.7  millimeter   

An angular 
feature 

– Poor Fair Good 

An angular 
characteristic 

– VGA VGA SXGA 

Samples are 
damaged. 

Contact Contact Non-contact Non-contact 
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2.9 Conceptual framework 

 
2.10 Research Question 

Would the different etching agents have an effect on microtensile bond 
strength of composite core and different fiber posts type? 
2.11 Research Objective 

To assess the microtensile bonding strength between two distinct types of 
fiber posts and a composite core using various etching chemicals. 
2.12 Research Hypotheses 

H10: There is no difference of microtensile bond strength between composite 
core and fiber post using different etching agents. 

H11: There is difference of microtensile bond strength between composite 
core and fiber post using different etching agents. 

H20: There is no difference of microtensile bond strength between composite 
core and different type of fiber post using different etching agents. 

H21: There is difference of microtensile bond strength between composite 
core and different type of fiber post using different etching agents. 
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H30: There is no difference of microtensile bond strength between composite 
core and each type of fiber post using different etching agents before and after 5,000 
and 10,000-cycle thermocycling. 

H31: There is difference of microtensile bond strength between composite 
core and each type of fiber post using different etching agents before and after 5,000 
and 10,000-cycle thermocycling groups. 

H40: There is no difference in surface roughness of each type of fiber post 
using different etching agents. 

H41: There is no difference in surface roughness of each type of fiber post 
using different etching agents. 
2.13 Proposed Benefits 

          To suggest etching agents that provide the maximum microtensile bonds 
strength between two different types of fiber posts and a composite core. 
2.14 Related or similar research  

There has not been any study on the surface modification of fiber-reinforced 
composite posts with Tetrahydrofuran, Pyridine and Morpholine.     
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CHAPTER 3 
RESEARCH METHODOLOGY 

 
Materials and Methods 

3.1 Materials 
1. FRC post plus; Ivoclar Vivadent, Schaan, Liechtenstein 
2. D.T. light- post; Recherches Techniques Dentaires, RTD, St. Egreve, France 
3. Multicore Flow; Ivoclar Vivadent, Schaan, Liechtenstein 
4. Excite DSC; Ivoclar Vivadent, Schaan, Liechtenstein 
5. Monobond plus; Ivoclar Vivadent, Schaan, Liechtenstein 
6. Tetrahydrofuran; LOBA Chemie Pvt. Ltd. - Jehangir Villa, 107, Wode House 

Road, Colaba, Mumbai, India 
7. 35% Hydrogen peroxide; 
8. Pyridine; LOBA Chemie Pvt. Ltd. - Jehangir Villa, 107, Wode House Road, 

Colaba, Mumbai, India 
9. Morpholine; LOBA Chemie Pvt. Ltd. - Jehangir Villa, 107, Wode House Road, 

Colaba, Mumbai, India 
10. Model repair ll; Sankin industry, Tokyo, Japan 
11. deionized water 
12. forcep 
13. glass slide 
14. plastic cup 
15. microbrush 

 
3.2 Equipment 

1.Universal Testing Machine;EZ-S 500N, Shimadzu Corporation, Kyoto, Japan. 
2. Light curing unit; Bluephase N®, Ivoclar Vivadent, Schaan, Liechtenstein. 
3. Ultrasonic cleaner; Branson5210, Bransonic, CT, USA. 
4. Stereo Microscope; SZ61, Olympus Corporation, Tokyo, Japan. 
5. Gold sputtering unit; JFC-1200E Fine coater, JEOL Ltd., Japan. 
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6. Scanning Electron Microscope; Quanta 250, FEI Company, Oregon, U.S.A. 
7. Slow speed cutting machine, Model Isomet, Buehler, IL, U.S.A. 
8. Digital Vernier caliper ;Mitutoyo series 500, Japan 
9. The metal grip for Universal Testing Machine to microtensile test 
10. The White Light optical interferometry; WLI, ContourX-1000, Bruker, 

Salbruken, Germany. 
 
3.3 Specimen Preparation 

150 fiber-reinforced composite posts with a maximum diameter (size 3) 
consisting of 75 FRC plus posts and 75 D.T. light-posts. Each set of fiber-reinforced 
composite posts was separated into 3 subgroups (non-thermocycling 5,000-cycle and 
10,000-cycle thermocycling group). Before testing, all specimens were immersed in 
24°C water with ultrasonic cleaner (Branson5210, Bransonic, CT, USA.) for 5 minutes 
and stored in a dry place. 
  According to the post surface treatment, the non-thermocycling group was 
subdivided into the following five subgroups: 
Subgroup 1: 

C: non-etching group, rinsed with deionized water, dried with air blow, silane 
application 
Subgroup 2: 

H2O2: immersed in 35% hydrogen peroxide for 1 minute, rinsed with 
deionized water, dried with air blow, silane application. 
Subgroup 3: 

THF: immersed in tetrahydrofuran for 1 minute, rinsed with deionized water, 
dried with air blow, silane application. 
Subgroup 4: 

PY: immersed in pyridine for 1 minute, rinsed with deionized water, dried with 
air blow, silane application. 
Subgroup 5: 

MP: immersed in Morpholine for 1 minute, rinsed with deionized water, dried 
with air blow, silane application. 
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Then, an identical technique for all subgroups was used: All specimens were 
placed into the hole in bottom of plastic cap as display in Figure 18. ExcitE F DSC 
(Ivoclar Vivadent, Schaan, Liechtenstein) was applied for 10 seconds with a 
microbrush for only thin layer and the excess bonding agent was removed with 
gently air-dried, then polymerization with light curing unit (Bluephase N®, Ivoclar 
Vivadent, Schaan, Liechtenstein), with high intensity, for 20 seconds. 

 

 
Figure  17 demonstrates the plastic cap with a hole in the bottom which a glass fiber 

post was placed. 

Multicore flow (Ivoclar Vivadent, Schaan, Liechtenstein) was injected around 
the post until fully fill in plastic cap and light cured for 40 seconds per surface. All 
specimens were stored in dry environment for 24 hours at 37 °C before section into 1 
x 1 mm2 cross-sectional bar shape by a slow-speed diamond machine (Model 
Isomet, Buehler, IL, USA) and were measured with Digital Vernier caliper (Mitutoyo 
series 500, Japan) as shown in Figure 19. 

 
Figure  18 illustrates a cross-sectional bar-shaped specimen illustration. 
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Thermocycling group was divided by different treatment agents into 5 
subgroups (Ctmc, H2O2tmc, THFtmc, PYtmc and MPtmc) as same Non thermocycling 
group.  

The thermocycle specimens were 10,000-cycle thermocycling between water 
baths at 5 degrees °C and 55 degrees °C, with a dwell time of 60 seconds in each. 

Each of specimen was attached to the metal grip as shown in Figure 20, 
which can assemble with Universal Testing Machine (EZ-S 500N, Shimadzu 
Corporation, Kyoto, Japan) with cyanoacrylate glue (Model repair ll; Sankin industry, 
Tokyo, Japan) and tensile strength loaded at a crosshead speed of 1 mm/min until 
failure occurred. 

 
Figure  19 shows the schematic represent of the specimen attached to the metal 

grip. 

Each step of the specimen preparation procedure is illustrated in Figure 21.  
The microtensile bond strength was determined by the applied tension 

divided by the bonded area. But the post-composite core interface is curved, this 
area was measured by using the mathematical formula described; A = 2r arcsin (L/2r) 
x h, where r, L, and h are the diameter, width, and thickness of the post, shown in 
Figure 22. While Figure 23 was a schematic depiction of all group specimens 
collected during the investigation.  
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Figure  20 demonstrates schematic represent flow chart of specimen preparations. 

 

Figure  21 presents a graphic illustration of bond area calculation. 
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Figure  22 shows the schematic representation of all group specimens in the 

investigation. 

3.4 Manufacturers and compositions of the materials are presented in Table 11. 
Table  11 exhibits trade names, manufacturers, and compositions of experimental 

materials. 

Brand Manufacturer Composition 

FRC post plus Ivoclar Vivadent, 
Schaan, Liechtenstein 

Glass fiber (61.5% w/w) 
Bis-EMA (10-13% w/w) 
ytterbium trifluoride (<10% 
w/w) 
Bis-GMA (3-7% w/w) 
1,4-butanediol 
dimethacrylate (3-5% w/w) 

D.T. light- post Recherches Techniques 
Dentaires, RTD, St. 
Egreve, France 

Epoxy resin matrix (40 vol%) 
Quartz fibers (60 vol%) 
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Multicore Flow Ivoclar Vivadent, 
Schaan, Liechtenstein 

Matrix: Bis-GMA, urethane 
dimethacrylate, triethylene 
glycol dimethacrylate,  
Fillers: barium glass, 
ytterbium Ba-Al-fluorosilicate 
glass, highly dispersed silicon 
dioxide. Particle size 0.04-25 

μm Total volume of fillers 
(47%) 

ExcitE F DSC Ivoclar Vivadent, 
Schaan, Liechtenstein 

Bis-GMA (25-30%),  
Ethanol (10-25%), 
2-hydroxyethyl methacrylate 
(10-25%), 
phosphonic acid acrylate 
(10-25%), 
diphenyl (2,4,6- 
trimethylbenzoyl) phosphine 
oxide (<2.5%) 
potassium fluoride (<2.5%) 
 

Monobond plus Ivoclar Vivadent, 
Schaan, Liechtenstein 

Ethanol, 3-
(trimethoxysilyl)propyl 
methacrylate, methacrylated 
phosphoric acid ester 

Tetrahydrofuran  
 

LOBA Chemie Pvt. Ltd. 
- Jehangir Villa, 107, 
Wode House Road, 
Colaba, Mumbai, India 

Tetrahydrofuran 99.8% 
 
 
 

Hydrogen peroxide LOBA Chemie Pvt. Ltd. 
- Jehangir Villa, 107, 

Hydrogen peroxide 35% 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

Wode House Road, 
Colaba, Mumbai, India 

Pyridine LOBA Chemie Pvt. Ltd. 
- Jehangir Villa, 107, 
Wode House Road, 
Colaba, Mumbai, India 

Pyridine 99.5% 

Morpholine LOBA Chemie Pvt. Ltd. 
- Jehangir Villa, 107, 
Wode House Road, 
Colaba, Mumbai, India 

Morpholine 99.5% 

 
3.5 Mode of failure evaluation 

Stereo Microscope; SZ 61, Olympus, Tokyo, Japan. at 40x magnification was 
used to evaluate and classify the fracture area (adhesive, cohesive, mix).  

The fracture area was calculated as a percentage of the total bonding area by 
taking use of the program Image J 1.41 (ImageJ 1.41, Wayne Rasband, National 
Institutes of Health, Bethesda, Maryland, United States), Cohesive failure was 
determined to be the mode of failure if the glass fiber post or composite core 
material interphase was found in more than 60 percent of the total bonding area. 
They were considered that is mixed failure if the percentage in this region is less than 
60 percent but more than 40 percent. In addition, they are considered to have 
adhesive failure if the above regions composed less than 40 percent of the entire 
3.6 Surface roughness measuring sample preparation. 
3.6.1 Determination of Surface Properties with White Light Interferometry 
Sample preparation materials 

1. Glass fiber posts that would be measured. 
2. Plastic mold with a hole on the holder, as shown in Figure 24. 
3. Light curing flowable resin composite 
4. A plate made of black acrylic resin in the shape of a rectangle, with a 

metal post and marker lines, as illustrated in Figure 25. 
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Step of sample preparation 
1. The taper end of a fiber-reinforced composite post was placed 2 mm 

deep into a plastic mold. 
2. A flowable resin composite was injected into the plastic mold and 

then activated with a light curing unit. 
3. A plastic hole put into a metal post and attached to a post-plastic 

mold assembly linked a black acrylic resin plate to a glass fiber post-plastic mold 
assembly. 

4. The assembled component was placed on the white light 
interferometry tester's stand. 

5. On the surface of the fiber-reinforced composite posts that coincided 
to the marker line, the value of Ra was measured. 

6. The sample from step 5 was submerged in a chemical solution for 1 
minute before being rinsed with water and allowed to dry. 

7. The surface roughness of the sample from step 6 was measured by 
repeating steps 3 to 5. 

8. For each group, six samples were measured. 
 
White light optical interferometry (WLI, ContourX-1000, Bruker, Salbruken, 

Germany) was employed to carry out the measurements, and a vertical scanning 
interferometry mode was utilized for the analysis (VSI). The field of view (FOV) was 
set to 0.55 degrees, and the magnification was set to 20, which resulted in an image 
size of 1.7 x 2.3 mm. Ra, which stands for the arithmetic mean height of surface, was 
included in the report.        
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Figure 24 displays a) a glass fiber post, b) a plastic mold with a hole in the holder, 

and c) the insertion and attachment of the tapered end of the glass fiber posts in the 

plastic mold. 

               

Figure 25 depicts a) a black acrylic resin plate with marker lines and a short metal 
post, and b) a glass fiber post-plastic mold assembly attached to the black acrylic 
resin plate. 
3.6.2 Scanning electron microscope (SEM) evaluation 

Two samples of each type of post received surface treatments were 
subjected to SEM for morphological analysis of the surface using a gold spotter 
coated (Gold sputtering unit, JEOL Ltd., Akishima, Japan) and then were observed 
through a scanning electron microscope (JSM-IT500HR, JEOL Ltd., Tokyo, Japan). 
3.7 Sample size calculation 

The sample size calculation was be based on a 5% margin of error and 95% 
confidence level (significance of 0.05) using statistical software (G*Power v. 3.1.5, 
Faul, Erdfelder, Buchner and Lang, Heinrich Heine University, Düsseldorf, Germany, 
that can be downloaded from http://www.gpower.hhu.de/ en.html) (168) and 
previous dental articles. 
3.8 Statistical analysis 

For the non-thermocycling, 5000-cycle, and 10,000-cycle thermocycling 
conditions, the data from each condition was analyzed using IBM SPSS Statistics for 
Windows version 22.0. The continuous outcome and normality of distribution of the 
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analyzed data were determined using a Kolmogorov–Smirnov test at a significance 
level of 0.05. Levene’s test was then used to analyze the equality of variation. 
The results showed that the data had a normal distribution and equal variance. 
Therefore, one-way analysis of variance (ANOVA) was used to analyze the data, 
followed by Tukey’s Honestly Significant Difference test (p < 0.05). 

For the same chemical reagent treatment groups, an independent t-test was 
used to examine statistically significant differences (p < 0.05) between the D.T. Light-
Post and FRC Postec Plus groups. 

In white light interferometry surface roughness measurements, the mean 
surface roughness values of each type of post exhibited a normal distribution and 
equal variance. A one-way analysis of variance (ANOVA) was used to analyze the 
data, followed by Tukey’s Honestly Significant Difference test (p < 0.05). 
3.9 Ethical considerations 

No ethical consideration required. 
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CHAPTER 4 
RESULTS 

 
The microtensile bond strength  

All the mean microtensile bond strength results are shown in Table 12, 13 
and 14.  
No thermocycling condition 

In Bis-GMA resin matrix groups (FRC posts), the PY group exhibited the highest 
microtensile bond strength (41.09±4.29), followed by MP group (34.44±3.76), H2O2 
group (31.15±2.61), THF group (28.49±1.86) and control group (29.64±2.26), 
respectively. The microtensile bond strength of the PY group was significantly higher 
than that of the other groups. While the microtensile bond strength of the MP group 
was significantly higher than that of the THF, H2O2 and control groups. Moreover, the 
microtensile bond strength of the control group was not significantly different from 
that of the THF and H2O2 groups.  

For epoxy resin matrix groups (D.T. light- posts), PY group showed the highest 
microtensile bond strength (46.93±4.97), followed by THF group (40.73±3.40), MP 
group (39.40±2.80), H2O2 group (38.30±3.16) and control group (33.22±2.43), 
respectively. The microtensile bond strength of PY group showed significantly higher 
than that of the other groups. However, the microtensile bond strength of the THF, 
MP, and H2O2 group was considerably greater than that of the control group despite 
not being statistically different from one another.  

In terms of the resin matrix type of glass fiber posts, the microtensile bond 
strength of epoxy resin matrix posts were significantly greater than that of Bis-GMA 
resin matrix posts across all intervention techniques. 

Thermocycling condition 

From the thermocycle testing, the 5,000-cycle thermocycling, in Bis-GMA resin 
matrix groups (FRC posts), the PY group a exhibited the highest of microtensile bond 
strength (36.21±5.39), followed by MP group (33.04±4.43), H2O2 group (26.19±2.36), 
THF group (26.31±4.51) and control group (25.05±4.71).  
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The PY group had the significantly highest microtensile bond strength of the 
other groups. The MP group was also significantly higher than that of the THF and 
control groups (p<0.05). However, The MP group and H2O2 group was not significantly 
different from each other. 

In the 5,000-cycle thermocycling, epoxy resin matrix groups (D.T. light- posts), 
the PY group demonstrated the highest of microtensile bond strength (41.96±4.45), 
followed by MP group (34.80±5.07), THF group (29.73±4.60), H2O2 group (29.43±3.58) 
and control group (27.81±3.23), respectively. The microtensile bond strength of the 
PY group was significantly higher than that of the other groups. MP group was also 
significantly higher than control groups (p<0.05). However, The MP, THF and H2O2 
group was not significantly different from each other.  
        The Bis-GMA resin matrix groups (FRC posts) after 10000-cycle thermocycling, 
the PY group had the highest of microtensile bond strength (35.26±3.65), followed by 
MP group (31.63±4.97), H2O2 group (25.40±2.18), THF group (25.59±2.51) and control 
group (24.22±4.07), consequently.  
         Similarly, to the previous result, the significant group with the highest 
microtensile bond strength was the PY group. MP group was significantly higher than 
that of the THF, H2O2 and control group (p<0.05). 

The 10,000-cycle thermocycling, for epoxy resin matrix groups (D.T. light- 
posts), the PY group displayed the highest of microtensile bond strength (39.76±2.37), 
followed by MP group (31.42±4.15), H2O2 group (28.84±3.86), THF group (28.59±3.17) 
and control group (26.33±2.51). 
      The PY group had significantly higher microtensile bond strength than the other 
groups. However, the MP, THF and H2O2 groups were not significantly different from 
each other, and their microtensile bond strengths were significantly higher than of 
the control group (p<0.05). 
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Table  12 shows the mean microtensile bond strength resulting from non-

thermocycling conditions. 

chemical 
agent 
type of resin 
matrix 

Control H2O235 % 
60 s 

THF 99.8% 
60 s 

Pyridine 
99.5% 
60 s 

Morpholine 
99.5% 
60 s 

Bis GMA  
(FRC post 
plus) 

29.64±2.26c 31.15±2.61
bc 

28.49±1.86
c 

41.09±4.29
a 

34.44±3.76b 

Epoxy (D.T. 
light- post) 

33.22 
±2.43c* 

38.30±3.16
b* 

40.73±3.40
b* 

46.93±4.97
a* 

39.40±2.80b* 

 
Table  13 shows the mean microtensile bond strength resulting after 5,000-cycle 

thermocycling. 

chemical 
agent 
type of 
resin 
matrix 

Control H2O235 % 
60 s 

THF 99.8% 
60 s 

Pyridine 
99.5% 
60 s 

Morpholine 
99.5% 
60 s 

Bis GMA  
(FRC 
post 
plus) 

25.05±4.71c 26.19±2.36bc 26.31±4.51c 39.21±5.39a 33.04±4.43b 

Epoxy 
(D.T. 
light- 
post) 

27.81±3.23c 29.43±3.58bc 29.73±4.60bc 41.96±4.45a* 34.80±5.07b 
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Table  14 displays the mean microtensile bond strength obtained after 10,000-cycle 

thermocycling. 

chemical 
agent 
type of 
resin 
matrix 

Control H2O235 % 
60 s 

THF 99.8% 
60 s 

Pyridine 
99.5% 
60 s 

Morpholine 
99.5% 
60 s 

Bis GMA 
(FRC 
post 
plus) 

24.22±4.07c 25.40±2.18c 25.59±2.51c 35.26±3.65a 31.63±4.97b 

Epoxy 
(D.T. 
light- 
post) 

26.33±2.51c 28.84±3.86bc 28.59±3.17bc 39.76±2.37a* 31.42±4.15b 

 
The failure modes 

Tables 15–17 and Figures 26–28 illustrate the mode of failure of the non-
thermocycling group, the 5,000-cycle and 10,000-cycle thermocycling groups. 
Non thermocycling condition 

It was shown in this study that higher adhesive failure was found in all groups, 
and mixed failure was also shown in all groups. Moreover, the highest percentages of 
mixed failure were demonstrated in the epoxy PY group. But cohesive failure was not 
found in any group. 
5,000-cycle thermocycling condition 

Higher adhesive failure mode was discovered in all groups. While mixed 
failure was also shown in all groups except Epoxy C, Bis-GMA PY, and Bis-GMA MP. 
For the cohesive failure mode, it was displayed only in the epoxy PY and Bis-GMA PY 
groups. 
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10,000-cycle thermocycling condition 

It was observed that higher adhesive failure mode was found in all groups. 
While mixed failure was also shown in all groups except Epoxy H2O2, Epoxy MP and 
Bis-GMA H2O2. Furthermore, the cohesive failure mode was only seen in the epoxy 
PY group. It indicated a total of twenty percent. 
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Table  15 shows failure modes of non-thermocycling condition. 

Group Cohesive Adhesive Mixed 

Epoxy C  0 80 20 

Epoxy H2O2  0 70 30 

Epoxy THF 0 80 20 

Epoxy PY 0 60 40 

Epoxy MP 0 80 20 

Bis-GMA C 0 80 20 

Bis-GMA H2O2 0 70 30 

Bis-GMA THF 0 80 20 

Bis-GMA PY 0 80 20 

Bis-GMA MP 0 90 10 

 

 
Figure 26 illustrate the bar graphs display the failure modes in the non-thermocycling 

condition.  
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Table  16 shows the failure modes of 5,000 thermocycling cycles. 

Group Cohesive Adhesive Mixed 

Epoxy C  0 100 0 

Epoxy H2O2  0 90 10 

Epoxy THF 0 90 10 

Epoxy PY 10 80 10 

Epoxy MP 0 90 10 

Bis-GMA C 0 80 20 

Bis-GMA H2O2 0 80 20 

Bis-GMA THF 0 90 10 

Bis-GMA PY 10 90 0 

Bis-GMA MP 0 100 0 

 

 
Figure  23 illustrate the bar graphs depict the failure modes after the 5,000-cycle 

thermocycling. 
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Table  17 shows the modes of failure resulting from 10,000-cycle thermocycling. 

Group Cohesive Adhesive Mixed 

Epoxy C  0 100 0 

Epoxy H2O2  0 90 10 

Epoxy THF 0 100 0 

Epoxy PY 20 70 10 

Epoxy MP 0 90 10 

Bis-GMA C 0 100 0 

Bis-GMA H2O2 0 90 10 

Bis-GMA THF 0 100 0 

Bis-GMA PY 0 100 0 

Bis-GMA MP 0 100 0 

 

 
Figure  24 demonstrates the failure modes are shown by the bar graphs after 10,000-

cycle thermocycling. 

Surface roughness analysis results 

- White Light Interferometry 
The qualitative evaluations of roughness characteristics using white light 

interferometry are shown in Tables 18 and 19. In the Epoxy and Bis-GMA groups, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

treatment with an aprotic solvent (THF, PY, and MP) significantly decreased Ra 
relative to each control group. Table 18 shows the surface roughness (Ra) of Epoxy 
groups using white light interferometry. 

Group Ra (µm) 

Epoxy C  514.860±31.801c  

Epoxy H2O2  596.661±32.910b 

Epoxy THF 614.874±36.120b  

Epoxy PY 704.140±44.637a  

Epoxy MP 664.629±37.545ab  
 
Table 19 displays the surface roughness (Ra) of Bis-GMA groups. using white light 

interferometry. 

Group Ra (µm) 

Bis-GMA C 584.970±22.221b 

Bis-GMA H2O2 585.884±31.036b  

Bis-GMA THF 608.670±36.106b  

Bis-GMA PY 859.439±30.789a 

Bis-GMA MP 621.812±41.610b 

 
- Scanning Electron Microscope (SEM) 

The SEM result showed that fibers glass or quartz were not damaged by all 
treatment agents. Their results revealed that all treatment can differently alter the 
surface topography of both epoxy and Bis-GMA resin matrix as displayed in Figure 29-
30. 

Pyridine application can result in more removal of both resin matrixes than 
other treatments in both the epoxy (D.T. light-post) and Bis-GMA (FRC post plus) 
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matrixes, which can expose more surface fibers. While tetrahydrofuran slightly 
removes Bis-GMA resin matrix when compared to others as shown in Figure 30.  

 
Figure  25 demonstrates the surface topography of Epoxy (D.T. light-post) control and 

treatment groups, which are hydrogen peroxide, tetrahydrofuran, pyridine, and 

morpholine, for 1 minute. 

 
Figure  26 represents the surface topography of Bis-GMA (FRC post plus) control and 

treatment groups, which are hydrogen peroxide, tetrahydrofuran, pyridine, and 

morpholine, for 1 minute. 
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CHAPTER 5 
DISCUSSION 

Endodontically treated teeth are typically severely damaged by caries, 
excessive wear, previous restorative treatment, or endodontic procedures leading to 
a lack of coronal tooth structure. In these clinical conditions, cast metal posts and 
cores have historically been employed to provide the essential retention for 
eventual prosthetic rehabilitation. Fiber-reinforced composite posts were launched in 
the 1990s as a replacement for traditional custom-made cast posts and prefabricated 
metal posts. Dental fiber-reinforced composite posts have been widely used in 
endodontically treated teeth. Because of the similarities in elastic modulus with 
dentin, they have been shown to outperform cast metal posts. While abutment 
build-up around a fiber post is essential when there is considerable loss of coronal 
tooth structure (169). For core build-up material, resin composite is a material of 
choice for use with fiber-reinforced composite posts due to its hardness and fracture 
toughness resemblance to tooth structure, allowing for preparation after curing. 
When utilized to perform core restorations, they must produce good outcomes in 
terms of microscopic structural integrity as well as surface adaptability surrounding 
fiber posts (24, 38, 41, 170, 171). The bonding ability of the core material and the 
fiber post is a key component influencing the final restoration survival rate (172, 173). 

Therefore, the purpose of this study was to investigate the effect of aprotic 
solvents on the polymer covering the fiber post surface. The results of the study 
revealed that the microtensile bond strength of fiber-reinforced composite posts 
varied significantly between testing groups and resin matrix types. Therefore, the null 
hypothesis was rejected. 

The microtensile bond test, which is performed in the current investigation, is 
characterized using specimens with tiny bonding regions. (less than 2 mm2), which 
lessens the chance of defects (defects) that impair the bond and increases data 
variation (174). Moreover, Due to axial tensile loading on a smaller contact, the 
microtensile test permits a more uniform stress distribution than the shear bond 
strength test. As a result, there are less cohesive fractures (175). In addition, 
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microtensile testing produces more trustworthy results and can be used to relatively 
small samples (176, 177). 

In a number of studies, researchers came to the conclusion that premature 
bond failure, which had an effect on the bond strength value, was associated to 
cutting procedures that induced higher mechanical stress at the interface. This was in 
addition to experimental variables such as cutting speed and specimen shape, as 
well as by intrinsic material properties (178, 179). The decision to exclude from 
statistical analysis would result in underestimation of the mean bond strength values 
(180). 

In our investigation, the number of premature failures before or after 
thermocycling was less than 2%, so we chose to omit the premature failure 
specimens. As a result, there was no zero in any of the specimens. For the bonding 
area configuration, the post- resin composite core contact was curved. Therefore, the 
area measurement calculation was modified.  A = 2r arcsin (L/2r) x h, where r, L, and 
h were the diameter, width, and height of the post, respectively (45, 181).  

Hydrogen peroxide is an alkaline chemical that, through a substrate oxidation 
process involving the electrophilic attack of hydrogen peroxide on the cured 
secondary amine, can only partially dissolve the epoxy resin matrix (34, 57, 182). 

The effect of different hydrogen peroxide concentrations and application 
periods on fiber posts was studied. The concentrations of 10% (48), 20% (49), 24% 
(60, 183), 35% (183, 184) and 50% (60) were taken into treatment fiber post surface 
study. However, regardless of application time, bond strength was not different 
between 50% and 24% hydrogen peroxide (60). When comparing 24% to 35% 
hydrogen peroxide, the study found that when the solutions were applied over the 
post surface or by immersion, the bond strength of 35% hydrogen peroxide was 
stronger than that of 24% (183). For the application time of 24% and 35% 
concentrations, the bond strength of 1 minute was not significantly different from 
that of 5 and 10 minutes. Furthermore, as compared to 15 second, 30 second, and 
control groups, the application duration of 35% concentration in 1 minute revealed 
the strongest bond strength (185).  As a consequence, this study utilized hydrogen 
peroxide at a concentration of 35% for an application period of 1 minute by 
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immersion, which was simpler to control in the experiments, and extended this 
technique to other surface treatment groups.    
 Tetrahydrofuran, pyridine, and morpholine were used as aprotic solvents in 
this investigation. The microtensile bond result revealed that an aprotic solvent can 
boost the microtensile bond strength more than hydrogen peroxide at the same 
application time. This would imply that the peroxide's oxidation effect left residual 
oxygen in the post-surface (183, 184), which could then affect the polymerization 
process (186), which exhibited the microtensile bond strength before and after 
thermocycling. 

Existing data about the influence of an aprotic solvent on the surface 
treatment of fiber-reinforced composite posts is limited. It is commonly 
acknowledged that a solvent is acceptable for dissolving a polymer if their solubility 
properties are comparable. The closer the similarity between the solute and solvent 
solubility parameters, the higher the likelihood that the solute will be soluble in the 
particular solvent (115). Consequently, solubility parameters, a numerical number 
reflecting the relative solubility characteristics of a single solvent, are one of the 
most important criteria in selecting a solvent for applications. For a dimethacrylate 
polymer such as Bis-GMA, it has a solubility parameter of 22.13 (MPa)1/2 (187), while 
epoxy resin has 23.75 (MPa)1/2 (14). Whereas aprotic solvents have the following 
solubility parameters: tetrahydrofuran 19.4 (MPa)1/2, pyridine 21.8 (MPa)1/2, and 
morpholine 21.5 (MPa)1/2 (14). However, not only solubility parameter but also other 
factors such as concentration, temperature, application duration, and pH impact the 
effectiveness of an aprotic solvent (188).  

In this present study, we found high bond strength in both the non-aprotic 
and aprotic solvent groups. This could be due to bonding between the bonding 
agent and the rein matrix, as well as between the bonding agent and the fiber-
reinforced fiber.   

For quartz or glass fibers, the purpose of the surface treatment of fiber-
reinforced composite post was to remove the resin matrix on the surface layer, 
exposing more quartz or glass fibers to produce a chemical bond interaction 
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between silane coupling agents and hydroxy groups on the glass/quartz surface. This 
chemical bond has a greater impact on bond strength. 

Especially, the pyridine treated epoxy resin matrix group showed the highest 
microtensile bond strength. This could be explained by the fact that the pyridine and 
epoxy resin matrices of glass/quartz fiber posts have a closed solubility parameter. 
As a result, pyridine can dissolve and swell the epoxy resin matrix, resulting in two 
processes for improving the bond strength between fiber-reinforced composite post 
and resin core build up material. 
1. The resin matrix covering the glass fiber was dissolved and removed, exposing 
the glass fiber. In this regard, the fibers are composed of hydroxyl group, which can 
be silanated to create enough adhesion to the bonding agent. 
2. When the resin matrix was dissolved and swelled. There are two possibilities 
for obtaining adhesion between the polymer matrix and the new bonding resin.  

2.1  Mechanical interlocking caused by rough surfaces. 
2.2  Adhesion by interpenetrating network (IPN) formation, When the resin 

matrix swelled and became soft and created the pores between polymer chains, it 
permitted the transfer of low-molecular-weight monomers from the bonding agent 
to diffusion into the swelled polymer matrix. The adhesion was accomplished after 
curing through IPN production. 

In this study, we chose white Light Interferometry for surface roughness 
measurement because it is a non-contact optical method for 3D-profiles of rough 
and smooth surfaces (154, 155, 156). 

As a result, we can use the same specimens to measure roughness before 
and after surface treatment, providing more trustworthy results. Therefore, we can 
use the same specimens for measurement the roughness before and after surface 
treatment this would give more reliable data.  For the SEM investigation, the results 
demonstrate changes in surface topography in all treated surface groups, as 
illustrated in Figures 22-26. They had more exposed glass fiber than the control 
group. 

For the mode of failure, debonding of a resin composite core of the fiber 
post happens frequently at the contact between these two components. It has an 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 63 

impact on the quality of prosthesis. As a result, the adhesion between post and core 
restorative materials is critical (113). There are two adherend surfaces adhered by the 
resin composite can be deboned either by “cohesive” or “adhesive” failure (2). 
Cohesive failure occurs in the bulk region of resin matrix of fiber-reinforced 
composite post or in the bulk of an adherend resin composite core material. 
Adhesive failure, on the other hand, occurs at the contact between a fiber-reinforced 
composite post and an attached resin composite material. 

Mixed failure happens because of a combination of cohesive and adhesive 
modes. In general, the cohesive mode is preferable to achieve a relatively high 
adhesive strength. If the bond strength between the resin composite core material 
and the adhering surface is insufficient, adhesive failure takes place, leading to facile 
debonding.  In this study, it was found that there was no cohesive failure in non-
thermocycling groups and increasing cohesive failure only PY groups in 5,000 and 
10,000-cycle thermocycling. Which means that PY group has a high adhesive strength. 

The relation of thermocycling and mode of failure, thermocycling is 
employed to weaken by aging a bonding interphase and resin composite (2, 189). In 
this study, 5,000 and 10,000-cycle thermocycling at 5C° and 55C° were used to 
simulate a six-month and one-year longevity in an oral environment, respectively 
(190). 

In addition to decreasing the physicochemical qualities of composite resin, 
changes in temperature can also reduce the quantity of unreacted double bonds 
(191). Regarding to 5,000 and 10,000-cycle thermocycling, all cohesive failure was 
occurred in post interphase, this result may imply to research which report that the 
mechanical property of fiber-reinforced composite post after thermocycling was 
decreased, so the weakest was in fiber-reinforced composite post interphase as 
shown in cohesive failure appearance. 

After being subjected to thermocycling, the discrepancies in the coefficients 
of thermal expansion (CTE) of each of the components may be responsible for the 
decrease in the micro tensile strength (192, 193).  
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Additionally, there is the possibility that void space inside the resin matrix 
could promote water absorption, which will lead to a decrease in the flexural 
strength of the fiber-reinforced composite post (194). 

In this experiment, the specimens were submerged in solution for one minute 
before being washed with water for one minute. The treated specimens were 
subsequently treated with a silane coupling agent, bonding agent, and placed in a 
silicone mold filled with resin composite core build-up materials.    
 In a subsequent investigation, the specimens will be submerged with the 
solution for one minute without first being cleaned in water. Following that, the 
process stated before will be repeated. As a result, we expect that the reduction 
approach will reduce both chair time and the number of working steps without 
affecting the bond strength between the resin composite core material and the fiber-
reinforced composite post.                      
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CHAPTER 6 
CONCLUSION 

 
From the limitations of this study, it can be concluded that. 
1)   As aprotic solvents, pyridine can increase the highest microtensile bond 

strength between the interphase of composite core and fiber-reinforced composite 
post both Bis-GMA (FRC post plus) and epoxy resin matrix (D.T. light-post). Moreover, 
pyridine is more effective with epoxy resin than with bis-GMA resin. 

2)   As a result of surface roughness analysis pyridine can increase the highest 
surface roughness. 

3)   The thermocycling process decreased the microtensile bond strength of 
all groups, but the pyridine groups had the highest bonds. 
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