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Mutations in the KCNQ?2 gene encoding for voltage-gated K channel subunits underlying
the neuronal M-current, have been associated with infantile-onset epileptic disorders. The clinical
spectrum ranges from self-limited neonatal seizures to epileptic encephalopathy and delayed
development. Although gain- and loss-of-function mutations of KCNQ2 leads to indistinguishable
phenotypes, different therapeutic approaches are required. To better understand genotype-phenotype
correlation, more reports of patients and their mutations with elucidated molecular mechanism are
needed. Here, we report nine unrelated patients with KCNQ2-related epilepsy carrying de novo
heterozygous KCNQ2 p.N258K or p.G279D identified via Trio exome sequencing that has never
been previously reported. To investigates the molecular mechanisms by electrophysiological
techniques combined with immunofluorescence analysis and western blotting. The Cellular
localization and protein expression analysis demonstrates that p.N258K and p.G279D impairs surface
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voltage dependence of activation, membrane resistance, and membrane time constant (7au),
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CHAPTER I INTRODUCTION

Background and Rationale

Infantile-onset epilepsy represents one of the most challenging pediatric neurological
conditions to diagnose and manage. It occurs in 0.8-1.2 per 1000 live births'~ and over 300 genes
have been demonstrated to be involved in the pathogenesis of infantile-onset epilepsy ! Among
these genes, KCNQ?2, encoding the potassium channel subunit, have been implicated to cause
benign/self-limited neonatal seizures (MIM#121200) or developmental and epileptic
encephalopathy (DEE; MIM#613720) °, in which de novo KCNQ2 mutations underlie a
substantial proportion of patients. In general, patients with KCNQ2 mutations have seizures that
occur during the first week of life whereas in benign/self-limited neonatal seizures patients show
seizures in the first days after birth and the seizures stops after weeks to months %’ The
developmental trajectory is typically within normal range. DEE phenotype characterized by drug-
resistant epilepsy and significant developmental delayg'lo. Electroencephalogram (EEG) typically
shows suppression-burst pattern. Identifying causative mutations and its phenotypes is critical for

genetic counseling and patient management.

The KCNQ?2 gene encodes Kv7.2 protein subunits that assemble the tetrameric homomer
voltage-gated potassium channels (Kv7.2 channels). On the other hand, heterotetrameric channels
(Kv7.2/Kv7.3) co-express with Kv7.3, encoded by the KCNQ3 gene. Each subunit of Kv7.2
protein consists of intracellular amino (N) and carboxy (C) terminals, six transmembrane
segments (S1-S6), and a pore loop between S5 and S6. Transmembrane segments between S1
and S4 forms a voltage sensing domain (VSD). The N-terminus (-NH) is tetramerization domain
that determines the specificity of subunit assembly“_n. Kv7.2/Kv7.3 channels are mainly located
in the soma and axon of neuron while Kv7.2 is expressed in axon terminals of neuron . Both
channels underlie the M-current, a slowly excitation current, non-inactivating current, a
subthreshold voltage-gated potassium current that regulates neuronal excitability and is inhibit by
muscarinic receptor agonists. M-current is typically produced by heterotetrameric tetramerize

while the homotetrameric Kv7.2 or Kv7.3 ion channel produces a small M-current "



To date, at least one hundred ninety-four cases of KCNQ2-related epilepsy have been
reported with mutations distributed over the six transmembrane, either at different domains or
within the same location but with different amino acids leading to varying severity "' Therefore,
the functional study of the Kv7.2 channels lead to a better understanding of the pathogenesis.
Studying the pathogenic mutations in the KCNQ?2 gene provides a better understanding of the
molecular pathomechanism of the disease and can be used as a guideline for treatments. Here, we
report the clinical characteristics of nine patients with neonatal-onset seizures with KCNQ?2
mutations. Two variants have never been previously reported. We perform study to investigate
the electrophysiological functional effect of both variants and found that they are both loss-of-

function which suggest specific treatment.

Research questions

What are functionally consequences of variants?

Objectives
To determine the functional consequences of the newly identified p.N258K and p.G279D
variants the pore loop domain of Kv7.2 channels by electrophysiological analysis,

immunofluorescence and western blotting in transfected HEK293 cells.

Hypotheses

Variants are loss of function on Kv7.2 channels, causing infantile-onset epilepsy.



Research design: descriptive and in vitro studies

Table 1 Research design of studies.

Experimental

Objective

1. Molecular biology

Generation plasmid wild types and mutant Kv7.2 subunits

2. Cell culture and transfections

Plasmid transfer allows the study of gene function and protein

expression in the cellular environment.

3. Immunofluorescence

Confirm mutant proteins localization into surface membrane

4. Western blotting

Confirm mutant proteins expression

3. Fluorescence activated cell sorting

(FACS)

Identification expressed cells after transfection

4. Electrophysiology

(Whole-cell patch technique)

Functional analysis of voltage-gated potassium channel

Key words

Developmental and epileptic encephalopathy (DEE); Self-limited neonatal seizures; The

KCNQ2 gene; whole-cell patch-clamp analysis.

Ethical consideration

Ethical approval of the study protocol had been provided by the Institutional Review

Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB No.

452/64) and the study followed the Helsinki Declaration and Good Clinical Practice guidelines.

Expected benefit

An implication of the finding is critical for precision medicine.
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CHAPTER II REVIEW OF RELATED LITERATURE

Epilepsy

Epilepsy is one of the most common chronic neurological diseases. It occurs in 0.8-1.2 per
1000 live births and nearly 25% is pediatric epilepsym’w. Epilepsy have been identified by the
recurrence of unstimulated seizures. According to the International League Against Epilepsy
(ILAE) have defined epilepsy based on recurrent the following conditions: (1) At least two
unprovoked (or reflex) seizures occurring >24 h apart; (2) one unprovoked (or reflex) seizure and
a probability of further seizures similar to the general recurrence risk (at least 60%) after two
unprovoked seizures, occurring over the next 10 years; (3) two or more unprovoked seizures

occurring at least 24 h apart that diagnosed of an epilepsy syndrome 15202

. In addition, about
10.5 million children (< 15 years old) have epilepsy. Most children with epilepsy have been
divided into four prognostic group. The first group is benign epilepsy (self-limiting; 20-30% of
patients) which have been resolved spontaneously in a few years and often avoids treatment, such
as Benign infantile seizures (non-familial) and Benign familial neonatal convulsions (BFNC). The
second group is drug-sensitive epilepsy (30% of patients), in which seizures are controlled with
medication and spontaneous relief is achieved within a few years. The third group is drug-
dependent epilepsy which drug treatment have been control seizures but no spontaneous respite
(20% of patients), required lifelong drug therapy, such as juvenile myoclonic epilepsy. The fourth
group is drug-resistant epilepsy with a poor prognosis (13—17 % of patients), such as epileptic
encephalopathy (EE)”. The clinical spectrum of epilepsy varies from patient to patient. Thus,
treatment in patients have different antiepileptic therapy. For example, antiepileptic therapy

retigabine (potassium channel opener) or dalfampridine (potassium channel blocker)”**.

Epilepsy occurs for many reasons, such as genetic mutations, brain disorder, metabolic
diseases, injuries and neurological infections. A variety of genes have been associated with
epilepsy. there suggests that several gene functions involve in disease progression. However,
often genetic differences or phenotype differences makes diagnostic methods very difficult.
Currently, next generation sequencing (NGS) allows the discovery of many genes that cause

disease in humans” . Consequently, NGS is widely used in the genetic diagnosis of epilepsies26.



Next generation sequencing: the diagnostic epilepsy

In 1977, the primary DNA sequencing method was introduced by Sanger, Maxam and
Gilbert’. This sequencing has been developed and read base sequences up to 2 kilo base pairs
(Kbps). Longer DNA fragments sequencing was developed by during the Human Genome Project
*In 2004, Next Generation Sequencing (NGS) is a large parallel sequencing platform. The
DNA templates are randomly read based on the genome. NGS offers multiple platforms, such as
the 454 pyrosequencing, illumination sequence. All are based on the same procedure. First, the
DNA templates are randomly split into fragments. Then, the fragments are conjugated with an
adapter specific to the primer used for amplification. After that, clonal expansion, each one with
the same template is sequenced. Every cycle of adding probes or nucleotides show an observable
signal to the image. The number of read lengths with NGS is 50-500 base pairs. Lastly, NGS
reads are aligned to the reference sequencezg. These NGS technologies are now used in a wide
variety of contexts. Neurogenetics services was supported by Whole Exome Sequencing (WES)
for identification novel variants in the genes, such as CHD2, COL4A1, FOXGI, GABRAI,
GRIN2B, HNRNPU, KCNQ2, MECP2, PCDH19, SCN14, SCN2A4, SCN8A, SLC6A1, STXBP1

and WWOX gene *,

KCNQ2-related infantile-onset epileptic disorders

Mutations in the KCNQ2 gene contribute to neonatal epilepsy with significant phenotype
heterogeneity, ranging from mild of the spectrum, like benign familial neonatal seizures (BFNS)
to more severe of neonatal onset developmental and epileptic encephalopathy (DEE). In
additional, KCNQ2-DEE have been shown approximately 25-30% prevalence in individuals with

autism spectrum disorder (ASD) 32

. KCNQ2-BFNS is characterized by multifocal seizures
starting in first day of life. There is usually a normal pattern in the electroencephalogram (EEG).
Seizures usually occur for a short time (one to two minutes) on any part of the body or in general.
Most children epilepsy remits spontaneously after few weeks or months (self-limited seizures)”.
In contrast, KCNQ2-DEE (also classified neonatal encephalitis type 7 or DIEE-7) is often a de
novo KCNQ2 mutation and is characterized by multiple daily drug-resistant seizures. It begins in
the first week of life and ends between the ages of 1-4 years. The EEG presents burst suppression

pattern. Generally, it has a very poor development and prognosis32’34’35.



In previous studies, pathogenic variants associated with KCNQ2- related self-limited
neonatal seizures are truncating variants (splice, nonsense, and frameshift), whole-gene deletions,
or heterozygous missense variants resulting in haploinsufficiency with a 20%-30% reduction of
the M-current density when mutated subunits are expressed together with wild type subunits in
heterologous cell systems5’36. Several previous studies analyzed the effect KCNQ2- related self-
limited neonatal seizures mutations have on the electrophysiological properties of K+ channels "
* Most mutations reduced the M- current density by about 20-30%, causing haploinsufficiency
of the ion channel. Only three KCNQ2 mutation with a dominant negative effect had been
published reduction in M-current density by more than 50%. The p.N258S mutation in S5-H5
linker reduced M- current density by more than 50% (~50-60%)"". The p-R207W mutation in S4
segments did not lead to KCNQ2- related self-limited neonatal seizures alone, but also caused
myokymia in the same patient. That is able to reduce M- current density by more than 50% while
the p.S247W mutation in S5 segments led to BFNC. that is able to reduce M- current density by
more than 80% **. Pathogenic changes identified in KCNQ2-related developmental and
epileptic encephalopathy are all de novo heterozygous missense variants or in-frame indels shown
to exert more than 50% reduction of the M-current function™*'. Variants associated with
KCNQ2-NEO-DEE are clustered in the S4 voltage-sensor, the pore, the C-terminal proximal
segment, and near the C-terminal B helix; all these regions are critical determinants for channel

. 5
function ".

Figure 2 Pathogenic variants associated with the KCNQ2 gene.
(a) Mutations found in BENE/BFNIS/BFIS cases are distributed among all areas of Kv7.2 protein subunit. (b)
Mutations found in epileptic encephalopathy are nearly the 4 hot spots: the S4 voltage-sensor, the pore, the

proximal C-terminal domain that binds phosphatidylinositol 4,5-bisphosphate (PIP2) and calmodulin’.



The Kv7 potassium channel family

Kv7 (KCNQ) family channels represent voltage-gated potassium (K+) channels which
consist of five members (Kv7.1-7.5) is generated by the KCNQ gene family. KCNQ1-5 gene are
located at chromosome 11p15, 20q13.3, 8q24, 1p34 and 6p1411 . Similarly, to other potassium
channels, a usable Kv7 channel produces identical or compatible subunit tetramers. Each subunit
consists of six transmembrane segments (S1-S6), amino (-NH) and carboxylic (-COOH)
terminal. Transmembrane segments between S1 and S4 forms a particular voltage sensing domain
(VSD). The S4 is important to the channel as it requires four to six positively charged arginine for
voltage sensing to function properly. The pore-loop domain, the selectivity filter, is formed by
S5-S6 segment; within this region, there must be a conserved GYG motif as a sequence of K+
permeability control 84 Long intracellular C-terminus where is four regions of (-helix (A-D)
that involved in signal capture and transduction activities by critical regulators, such as
phosphatidylinositol 4,5-bisphosphate (PIP2), calmodulin (CaM), syntaxin, A-kinase-anchoring
proteins, protein kinase C and ankyrin-G47 . The N-terminus is tetramerization domain that
determines the specificity of subunit assembly (Fig. 3) “ . The KCNQI gene forms homomeric
channels relate to cardiac action potential. The KCNQ2- 5 gene, the neuronal isoforms of the

channels that are regulate neurotransmitter release”.

Seloctivity fiter

Figure 3 Structure Kv7 potassium channels.
(a) Kv7 proteins subunit (six transmembrane protein) (b) the selectivity filter. (¢) Kv7 potassium tetrameric

45
channels .
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Highly conservative sequence in Kv7 channel

Kv7 channels have highly conservative sequence49. First of all, S4 segment is R-F-L-Q-I-
L- R-M, which is an important and regional voltage detector sequence. It must be four to six
positively charged arginine. Second, the S5-P-S6 is T-I-G-Y-G-D-K which is selectivity filter,
specifically G-Y-G motif that is signature sequence for filter ion (Fig. 4) 0 Lastly, (-helices

A-B in carboxylic tail is D-V-I-E-Q-Y-S as specific interaction with CaM (Fig. 4) *'.
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Figure 4 Structure alignment of Kv7 channels and highly conserved sequence on a black background47.

The KCNQ?2 gene encored Kv7.2 protein subunit that assemble the tetrameric K+ channels
(Kv7.2 channels). On the other hand, heteromeric channels (Kv7.2/Kv7.3) co-expressed with
Kv7.3, encored by the KCNQ3 gene. Kv7.2/Kv7.3 channels are mainly expressed in the central
nervous system (Soma & Axon) while Kv7.2 expressed of the peripheral nervous system " Both
of channels produced the M-current, slowly excitation current, non-inactivating current, a

subthreshold voltage-gated potassium current which control neuronal excitability and is inhibit by
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muscarinic receptor agonists. Typically, wild-type M-current is produced by heteromeric

tetramerize while homomeric KCNQ2 or KCNQ3 ion channels produce small M-currents.
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Figure 5 The structure of single Kv7.2 protein subunit™.

M-currents

The M-current is a type of non-stimulating potassium current (Kv7/KCNQ family) which
is important in raising the threshold for firing an action potential. It turns on at rest and tends to
open more during depolarization. Additionally, when the muscarinic acetylcholine receptor

15,53

(MACHhR) is activated, the channel is closed. The M-channel is a PIP2-regulated ion channel

The role of M currents in KCNQ2-pathogenic variants lead to the spectrum of
neurodevelopmental disorders. Pathogenic variants associated with KCNQ2-BFNS that were
splice, nonsense, frameshift, gene deletion, and heterozygous missense variant. There resulted in
a 20-30% reduction in M- current density when mutated subunits were expressed in the
heteromeric channels. On the other hand, KCNQ2-DEE is caused by heterozygous de novo
missense and have been shown a dominant negative (>50% decrease in M-current density) or

gain of function (GOF; >100% of the M-current density) in the heteromeric channel %

Overview of mutation in the KCNQ2 gene
The mutation hotspots of KCNQ2-pathogenic are found in S4 segment, the pore region and

the intracellular C- terminal domain. These mutations have been consisted of 95%missense
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mutations, 13% frameshift mutations, 9%splice site, 5% nonsense mutations. Currently, more than
one hundred have been reported data’’. Ina previous functional study, the p.R213Q and p.R213W
mutations in S4 segment have been showed a markedly reduce sensitivity to Voltage43. Mutation
studies in the pore domain, p.A265P, p.T274M, p.G290D are of loss of function which have been
reduced the M-current amplitude associated with the EE*. One study in Kv7.2-EE, p.R325G
mutation in C-terminus reduced channel apparent affinity for PIP2 which made non-functional™.
Additionally, the p.M1V, this variant is an initiation codon that leads to abnormal protein

. 55
translation .

Overview of Electrophysiological method

Electrophysiology is the branch of electrical physiology that is the measurement of the
electrical activity of biological cells (muscle cells, neurons, or stem cells). This can be done at a
single cell level or measured simultaneously from hundreds or thousands of cells *,

Electrophysiological techniques are divided into two types.
1. Intracellular recording

1.1  Patch-clamp: It involves creating a series circuit that contains cells or membranes without
penetrating the cell wall. An ionic solution-filled glass micro-pipette attached to the clamp
amplifier creates a high-resistance (Giga-ohm =GQ) seal between the patch and the glass in the

pipette mouth .
1.2 Current-clamp: Cells is injected the known current amplitude, such as increasing step

current from -50 to +50 pA ( A=10 pA ) observed the change in cellular excitability in response
to these current injections. It is a valuable technique because it can mimic physiological situations

such as synaptic input57.

1.3 Voltage-clamp: The membrane potential is held at the rated voltage. lon channels open at
various command voltages. This means that the resistance of the membrane changes when an
ionic current flows through the membrane. The feedback amplifier instantly compensates for this
by injecting feedback current to maintain the cell at the command voltage and record the resulting

58
current .
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(2)  Extracellular recording: This technique involves placing a wire electrode or silicon probe
directly into an object, in vivo, primary cell stratification and cultured cells or a biopsy above the

. . 59
electrode in vitro™ .

Patch-clamp is a conventional technique of electrophysiology. It requires an initial
formation of a Giga-ohm (GC) seal between the plasma membrane and the blunt tip (0.5—1 um
diameter) of glass micropipette (electrode). The Giga-ohm seal maintains the integrity of the
plasma membrane (unbreakable) and prevents the solution inside the micropipette from entering
the cell. However, this also limited electrical access to the intracellular spaces. This resulted in
the inability to control the cell membrane potential. Therefore, the perforation technique is a
strong suction or short momentary pressure after the formation of a Giga-ohm seal to rupture the
intact plasma membrane. then, glass micropipette was used measuring ion flow through ion
channels or across cell membrane. Patch-clamp configurations have four basic techniques. (1)
cell-attached patch records current through single, or a few, ion channels contained in the patch of
membrane (no rupture membrane). It requires a high resistance (10-100 G{)) seal between the
electrode and the membrane. (Fig. 6A). (2) Whole-cell patch records current through multiple
channels. The cells is confined to the resting membrane potential (-70 to -80 mV) and negative
pressure is applied to rupture the membrane. It requires 2- 6 G{) resistance (Fig. 6B). (3)
Outside-out patch records current through single channel. Membrane is slowly drawn from the
cell, allowing a bubble of membrane out from the cells (Figure 6C). (4) Inside-out patch records
current through single channel from that its membrane have been detached at the cytosolic surface

in low Ca+ solution (Fig. 6D) .
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Figure 6 Type of patch-clamp configurations.

(A) Cell-attached patch (B) Whole-cell patch (C) Outside-out patch (D) Inside-out patch.

In this study, whole-cell patch was used to study ion channel function. this technique
makes intracellular recording very stable. But the disadvantage is that the intracellular fluid of the
cell mixes with the solution inside the electrode. In addition, command voltages are important in
the study of ion channel functions because ion channels are open at different command voltages
that lead to the resistance of the membrane to change when an ionic current flows through the
membrane. Therefore, understanding the membrane potential phase and its operation is very

important in determining the voltage phase in this study.
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Membrane potential, action potential steps

Membrane potential is the potential difference between cell membranes. The potential
difference is due to the charges separated from the hydrophobic membrane which acts as both a
capacitor and a resistance to the movement of charged ions. Most of the ions in cells are Na', K,
Ca’" and CI. These ions have different concentrations inside and outside the cell. So, when the
ion channel opens, The ions moves to balance the ion concentration. In general, Na+, Ca’ and CI'
ion are more concentrated outside the cell and K ions are more concentrated than inside the cell,
in which the cell has a negative charge. This sets up an electrochemical gradient as the ion
channels open. The permeable ions flow down their electrochemical charge gradient through the
membrane and cause a change in voltage. This results in either depolarization or
hyperpolarization of the cell membrane potential. The positively charged Na and Ca”' ions had
an electrochemical gradient that supports their movement towards negatively charged cells, so
their positive charge depolarizes. On the other hand, K ions are highly concentrated inside the
cell. Therefore, the driving force of the ions is in the opposite direction, away from the cell. As a
result, they take the positive charge out of the cell and make the cell membrane more negative.
This is called hyperpolarization. The flow of ions through the membrane determines the total
resistance. (According to Ohm's law; V = IR) if there are many of channels open, membrane
resistance (Rm) is less due to more openings. Another important property of membranes is
capacitance (Cm). Cells with high capacity and low conductance change the potential slowly
while cells with less capacity change quickly. The velocity of this change is the membrane time
constant (Rm x Cm = Tau). In action potential of neurons, resting membrane potential (around -
60 mV) have been activated by a synaptic input. The depolarization reaches “threshold” this
triggers the opening of Na+ channels (-55 mV). This causes a rapid influx of Na+ ions leading to
the rise membrane potential at +40 mV. After that, Na+ channels are quickly inactivated while
K+ channels is activate. This efflux of K+ ions repolarize the membrane back to -60 mV or
beyond to more negative potentials, causing an after hyperpolarizing potential. hyperpolarization
uses slowly times, a small concentration of the ions exchanged across the membrane are pumped
back by Na+/K+ plums that exchange K+ and Na+ ions to reset and maintain the resting potential

(Fig. 7) o
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CHAPTER III MATERIALS AND METHODS

Patients and clinical data collection

Ethical approval was obtained from the institutional review board of the Faculty of
Medicine, Chulalongkorn University. Written informed consents were obtained from parents or
legal guardians of the participants. From June 2016 to December 2020, we recruited 104 patients
with infantile-onset pharmacoresistant epilepsy, defined as failure of adequate trials of two
tolerated, appropriately chosen, and used antiepileptic dlrugs,62 who underwent exome and/or
genome sequencing at King Chulalongkorn Memorial Hospital. Nine patients were found to
harbor pathogenic or likely pathogenic variants in the KCNQ2 gene. The detailed demographic

data and clinical characteristics were collected.

Exome, genome sequencing, bioinformatics and variant prioritization

Genomic DNA was isolated from peripheral blood leucocytes, enriched by SureSelect
Human All Exon V5 kits (Agilent Technologies, Santa Clara, CA) and sent to Macrogen Inc.,
Seoul, Korea for exome sequencing or to Beijing Genomics Institute (BGI), Beijing, China for
genome sequencing. [llumina HiSeq 2000 Sequencer was used with a target output of 6 GB.
Sequence reads in FASTQ sequencing files were aligned to the Human Reference Genome hgl19
from UCSC using Burrows-Wheeler  Alignment (BWA)  software  (http://bio-

bwa.sourceforge.net/). Single nucleotide variants (SNVs) and small insertions/ deletions (indels)

were detected by GATK Haplotypecaller and annotated by dbSNP&1000G.

A list of 728 genes associated with Genetic Epilepsy Syndrome according to Genomics
England PanelApp (https://panelapp.genomicsengland.co.uk/panels/402/) were used for the first
step of analysis. In silico analysis including SIFT (http://sift.jcvi.org/); Polyphen-2,

(http://genetics.bwh.harvard.edu/pph2/); M-CAP (http://bejerano.stanford.edu/mcap/); CADD

(https://cadd.gs.washington.edu/; recommended pathogenicity threshold >20) were also used to
predict variants’ pathogenicity. Variants were considered novel if they were not previously
reported in Genome Aggregation Database (gnomAD), ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/), not documented in PubMed scientific literature, and

were not identified in our in-house Thai reference exome database (T'REX)63. Variants were


http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://genetics.bwh.harvard.edu/pph2/
http://bejerano.stanford.edu/mcap/
https://cadd.gs.washington.edu/
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classified according to the recommendation of American College of Medical Genetics and

Genomics (ACMG)64.

Generated plasmid constructions
pcDNA3.1+/KV7.2-DYK (#NM_004518.6) and pcDNA3.1+/KV7.3-DYK (#

NM_004519.4) were synthesized by Genscript (New Jersey, USA). The cDNAKv7.2 was then
subcloned into the pcDNA3.1/CT-GFP-TOPO Vector (Invitrogen, Massachusetts, USA) using
standard PCR techniques (Table 2,3). Point mutations, ¢.774C>G (p.Asn258Lys) and ¢.836G>A
(p.Gly279Asp), were introduced using QuickChange site-directed mutagenesis kit (Agilent
Technologies, Santa Clara, California, USA). Mutagenic primers (Table 4) for each variant were
designed using the QuikChange Primer Design website
(https://www.agilent.com/store/primerDesignProgram.jsp). All plasmids were verified quality
using Sanger sequencing.
PCR protocol

1. To prepare master mix for one reaction (plus one extra) and add template plasmid,

2. Gently vortex and samples and spin down.

3. Perform PCR reaction using thermal cycling condition
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Table 2 PCR protocol amplified the KCNQ?2 gene.

(a) Primer used for amplification sequences of the KCNQ2 gene. (b) Reaction mix (¢) Thermal cycling

conditions
a

Fragment Forward Primer (5'-3') Reverse Primer (5'-3") PCR size (bp.)

KCNQ?2 gene AAAAGCTTCCAGGCACCATGGTGCAG TCTTCCTGGGCCCGGCCCAG 2,577
b c
Ingredients Volume (nL) Step Temperature (°C) Time Number of cycles

MgCl,(25mM) 1.8 Initial denaturation 94 5 min 1
10X PCR buffer+ (NH,),SO, 2 Denaturation 94 30s
dNTP (10mM) 0.3 Annealing 62 30s 35
Forward primer (10pm) 0.3 Extension 72 2.30 min
Reverse primer (10pm) 0.3 Final Extension 72 10 min 1
Tag DNA polymerase (Su/pl) 0.12
DMSO 5% 1
dH,0 13.18
DNA (50ng/ul) 1
Total 20

Cloning the KCNQ?2 gene into pcDNA3.1/CT-GFP_ TOPO
1. Warm Super Optimal Broth (SOC) medium and Lysogeny broth (LB) plates at room
temperature.

2. Setup TOPO Cloning reaction

Table 3 TOPO Cloning reaction for generated Kv7.2-GFP plasmid

Ingredients Volume (l,I.L)
Fresh KCNQ2 product 4
Salt Solution 1
TOPO vector 2
Total 6

3. Mix reaction and incubate for 30 minutes at room temperature.
Transformation
1. Thaw on ice of TOP10 Competent E.coli 50 LLL
2. Add 2 UL of TOPO Cloning reaction into TOP10 Competent E.coli and mix gently and

Incubate on ice 30 minutes
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3. Heat-shock the cell for 30 seconds at 42 °C and add 950 LLL of SOC medium

4. Shake the tube horizontally (200 rpm) at 37 °C for 1 hour.

5. Spread 100 AL of pellet into LB plates and incubate overnight at 37 °C

6. Pick colony for analyze the KCNQ2 gene by PCR and verify the orientation of insert by
restriction enzyme (Hindilll and EcoRV )

7. The KCNQ?2 gene verified quality using Sanger sequencing

Mutagenesis protocol

1. To prepare each mutagenesis reaction
2. Gently vortex and samples and spin down.
3. Perform PCR reaction using thermal cycling conditions

Table 4 Mutagenesis protocol for switched amino acid the KCNQ?2 gene.

(a) Primer used for amplification sequences. (b) Reaction mix (c¢) Thermal cycling condition

a

Fragment Forward Primer (5'-3") Reverse Primer (5'-3")
¢.774C>G
GAAGGGGGAGAAGGACCACTTTGACACCTA TAGGTGTCAAAGTGGTCCTTCTCCCCCTTC
(p.N258K)
¢.836G>A
TGACCACCATTGACTACGGGGACAAGTACC GGTACTTGTCCCCGTAGTCAATGGTGGTCA
(p.G279D)
b C
Ingredients Concentration Volume (uL) Step Temperature (°C) Time Number of cycles
10X reaction buffer 5 Initial denaturation 94 30s 1
dNTP (10mM) 1 Denaturation 95 30s
Forward primer (125 ng/ul) 100 ng/ul 1.25 Annealing 55 1 min 15
Reverse primer (125 ng/ul) 100 ng/ul 1.25 Extension 68 9 min
dH,0 16 Final Extension 68 1 min 1
DNA (50ng/pl) 0.5
Total Master Mix 25
Add Pfu Ultra DNA polymerase Su/pl 1

KCNQ?2 expression in HEK293 cells

To begin with, HEK293 (human embryonic kidney; ATCC CRL-1573) cells,native non-
expression the KCNQ?2 and KCNQ3 genes, using in this study were passage 7—15. Then, cells
were cultured in Dulbecco's Modified Eagle Medium (DMEM) with high glucose (HyClone,
Logan, Utah, USA), supplemented with 10% Fetal bovine serum and 1X Antibiotic-Antimycotic

(Gibco) and maintained at 37°¢ in a humidified atmosphere with 5% CO,. Next, plasmids were
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transient transfected into HEK293 cells using Lipofectamine 3000 (Invitrogen) according to
protocol in Teble 5. For the homotetrameric (Kv7.2, p.N258K, p.G279D) with 2.5 |lg, or
heterotetrameric (Kv7.2/Kv7.3, p.N258K/Kv7.3, p.G279D/Kv7.3, Kv7.2/p.N258K/Kv7.3,

Kv7.2/p.G279D/Kv7.3) were co-expressed by transfecting in a 1:1 ratio (1.25Lg: 1.25Lg), 1:1:2

ratio (0.625lg : 0.625 g : 1.25 |Lg) and assayed 48- or 72- hours post transfection.

Table 5 Transient transfection protocol.



For (a) Whole cell patch-clamp analysis (b) Immunofluorescence (¢) Western blotting

a Whole cell patch-clamp analysis (6-well)
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Working Lipofectamine 3000 Reagent

DNA Master mix

Condition Cells
Lipofectamin3000 (uL) Opti_MEM (uL) Plasmids (ng) P3000 (ul) Opti_MEM (uL)
p.-Kv7.2 1,000k 7.5 125 2500 5 125
p.Kv7.3 1,000k 7.5 125 2500 5 125
p.N258K 1,000k 7.5 125 2500 5 125
p.G279D 1,000k 7.5 125 2500 5 125
p-Kv7.2/Kv7.3 1,000k 7.5 125 1250:1250 7.5 125
p-N258K/Kv7.3 1,000k 7.5 125 1250:1250 7.5 125
p.G279D/Kv7.3 1,000k 7.5 125 1250:1250 7.5 125
Kv7.2/p.N258K/Kv7.3 1,000k 7.5 125 1250:625:625 7.5 125
Kv7.2/p.G279D/Kv7.3 1,000k 7.5 125 1250:625:625 7.5 125
b Immunofluorescence (12-well)
Working Lipofectamine 3000 Reagent DNA Master mix
Condition Cells
Lipofectamin3000 (uL) Opti_MEM (uL) Plasmids (ng) P3000 (uL) Opti_MEM (uL)
p.Kv7.2 300k 3 50 1000 2 50
p.-Kv7.3 300k 3 50 1000 2 50
p-N258K 300k 3 50 1000 2 50
p.G279D 300k 3 50 1000 2 50
p.Kv7.2/Kv7.3 300k 3 50 500:500 3 50
p.N258K/Kv7.3 300k 3 50 500:500 3 50
p.G279D/Kv7.3 300k 3 50 500:500 3 50
¢ Western blotting (T75)
Working Lipofectamine 3000 Reagent DNA Master mix
Condition Cells
Lipofectamin3000 (uL) Opti_MEM (uL) Plasmids (mg) P3000 (uL) Opti_MEM (uL)
p.Kv7.2 5,000k 60 750 20 40 750
p-N258K 5,000k 60 750 20 40 750
p.G279D 5,000k 60 750 20 40 750
p.Kv7.2/Kv7.3 5,000k 60 750 10:10 40 750
p-N258K/Kv7.3 5,000k 60 750 10:10 40 750
p.G279D/Kv7.3 5,000k 60 750 10:10 40 750
Immunofluorescence

Protein localization studies, HEK293 cells growing on Poly-D-Lysin-coated (2mg/mL)

coverslips were transiently transfected for 72 hours. After that, cells were fixed with 4%

paraformaldehyde for 15 minutes. For homomeric condition; Kv7.2(WT) and mutants, tagged

with GFP were mounted with ProLong Gold Antifade Mountant (Invitrogen# P36934). On the



23

other hand, heteromeric channels; Kv7.2/Kv7.3 (WT) and mutants, cells were permeabilized
using 0.2% Triton X-100 in PBS for 20 minutes and blocked with 1% BSA for 1 hour at RT.
Next, cells were incubated overnight at 4 °C, out of light with KCNQ3 polyclonal antibody
(1:800) (Invitrogen# PA1-930) in 0.1% BSA, followed by 2 h at RT incubation with a Donkey
Anti-Rabbit IgG H&L (Alexa Fluor 647, abcam) (1:500)) in 0.1% BSA. Lastly, cells several were
washed steps and mounted onto microscope slides. Confocal microscopic observations were
performed with a Zeiss axio observer z1 microscope equipped with a 63x oil immersion lens. For

images acquisition and analysis used The Zen 3.4 (blue edition) software.

Western blotting

In the study, proteins expression were divided into three parts: total protein lysates (TL),
membrane-associated proteins (MP) and cytosol proteins (CP). First of all, 72 hours post-
transfection, HEK293 cells (5 x 10° cells) in the growth medium were scraped by cell scraper on
ice and centrifuge harvested at 300 g for 5 minutes. Then, cell pellets were washed by (1X)
phosphate-buffered saline (PBS) and centrifuged at 300 g for 5 minutes. For total lysate proteins,
cells were lysed in 500ul of RIPA buffer (Thermo Fisher, Waltham, MA, USA) containing 1X
protease inhibitor cocktail (Thermo Scientific). Conversely, fractional proteins were extracted by
Mem-PER Plus Membrane Protein Extraction Kit (Thermo Scientific). Briefly, 1.5mL of Cell
Wash Solution washed cells and centrifuged at 300 g for 5 minutes. Next, cell pellets were
incubated with 0.75mL of Permeabilization Buffer for 10 minutes at 4°C. After that,
permeabilized cells were centrifuged at 16,000 g for 15 minutes keeping supernatant containing
cytosolic proteins (CP). Meanwhile, the pellets were incubated by Solubilization Buffer for 30
minutes at 4°C that are membrane-associated proteins (MP). Secondly, western blot analysis,
proteins (20 lg/lane) from the total lysate and fractional proteins were resolved by SDS-Laemmli
buffer (BIO-RAD) with 3% B-mercaptoethanol. After that, heating of proteins at 95 °C for 1
min, the samples was separated on 8% sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS-PAGE) running at 80 V for 40 min and then at 90 V for 2.30 h. The proteins
were transferred onto polyvinylidene difluoride PFDV membranes (Invitrogen). GAPDH was
used as a loading control. The membranes were blocked in blocking agent (5% nonfat dry milk)

for 1 h at RT and washed with washing buffer (Tris-buffered saline (TBS) + Tween 0.05%) four
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times, each time 10 minutes. Then, they were incubated overnight at 4 °C with anti-Kv7.2 Rabbit
mAD (1:500) (Cell Signaling Danvers, Massachusetts, USA)in 5% BSA and GAPDH Rabbit
mAb (1:500) (Cell Signaling) in 5% BSA followed by Anti-rabbit IgG, HRP-linked
Antibody(1:1000)(Cell Signaling) in 5% BSA for 1 h at RT. Finally, the blots were rinsed, and
treated with SuperSignal Weat Pico PLUS Chemiluminescent Substrate (The Thermo Scientific).

Protein bands visualized by chemiluminescence signals using Imaging Quant LAS4000.

Fluorescence activated cell sorting (FACS)

For electrophysiological analysis, 24 hours post-transfection, transfected cells were
successfully identified by fluorescence activated cell sorting (FACS) (BD FACSAria 11). Channel
voltages were set as follows: Alexa Fluor 430 and 647. To detect KCNQ2-GFP expression and
KCNQ3-DYKDDDDK Tag, conjugated to Alexa Fluor 647 (Cell Signaling Technology).
Expressed cells were collected by collecting buffer (100X Fetal bovine serum and 1X Antibiotic-
Antimycotic (Gibco). After that, cells were plated on 35-mm dishes coating with Poly-D-lysine

(2mg/mL) hydrobromide at 37°C overnight.

Whole cell patch-clamp analysis

Electrophysiological analysis of the p.N258K and p.G279D mutant channels were
performed by standard whole-cell patch-clamp technique. there investigated potassium currents
(M-currents). Wild-types (p.Kv7.2 and p.Kv7.2/Kv7.3) were positive control channels. Non-
transfected HEK293 cells were negative control channels because it had multiple endogenous Kv
genes. Whole-cell patch-clamp technique used an Axopatch 200-B amplifier (Axon Instruments,
Inc), controlled by a Digidata 1440A digitizer. The pCLAMP software ((Version 10, Axon
Instruments, Inc)) was used for data acquisition and analysis. Briefly, transient transfected
HEK?293 cells, 24 h after fluorescence activated cell sorting (FACS). Expressed cells were
covered at 2-2.5 ml/min with extracellular solution contained (in mM): 145 NaCl, 5 KCl, 2 CaCl,,
1 MgClL, 10 glucose, and 10 HEPES, pH 7.3-7.4 titrated with NaOH; osmolality 315-320
mOsm/Kg. The borosilicate glass microelectrodes (BF150-86-10, Sutter/USA) has resistance of
1-3 ML) when pipette intracellular solution contained (in mM) the following: 140 K-gluconate, 2

MgCl,, 1 CaCl,, 10 EGTA, 10 HEPES, and 10 Mg-ATP, pH 7.3-7.4 titrated with KOH;



osmolality 285-290 mOsm/Kg. Currents were recorded in response 1.3 s, voltage steps of

potentials 10 mV, potentials ranging from —110 mV to +50 mV from a holding potential of —80

mV. Tail currents (deactivating) were recorded at 40 mV (Fig. 8).

+50 mV (AV=10mV)

-40 mV

-110 mV
+————<— Time (ms)
H 800 400

b

Mode/fiate | inputs | Outputs | Trigger | Statistics | Comments | Math | Wavetorm | Stimulus |

Acquisition Mode
Gaplree © Fixeddength eveats + Episodic stimulation
Variable fength events  High-speed ascilloscope
E s
1 8
Sweepsfrun: i & =azamm
Sweepdursion s[5 §] = 100000 samples
First holding: Epochs: Last holding:
78.1 ms. 484385 78.1ms
1562 samples 96876 samples: 1562 samples
Sampling Rate per Signal sveraging
= Punsfuial * 1. na averaging
Fastrate (20000 H osnes
A G
T Slow rate (Hzp: [20000 &

Space avallable is 31910 sweeps = 22472 MB Tatal data throughput is 20 kiz [+ 2.29 Mlimin)

¥ Allow automatic analysis in other programs

e

Mode/Rate | Inputs  Outputs | Trigger | Statistics | Comments | Math | Wavetorm | Stimulus |
Ansloeg OUT Channels

Channel #0:  [V_clamp. =] Range [m¥): -200.00 10 199.99 at 20.0 mV/V
Chasncl #1:  [Cmd 1 ~] Range (m¥): -200.00 10 199,99 2t 20.0 m¥¥
Channel #2:  |Cmd 2 ~| Range [m¥]: 20000 1o 199.99 at 20.0 mV/V
Channel 43 [Cmd 3 =| Range [m¥): -200.00 10 199,99 at 20.0 mVV

Analeg OUT Hulding Levels

V_clamp [mV): ree
Crmd 1 mV): J
Cmd 2 fmV]: o
Cmd 3 ¥ 0

Digitsl OUT Holding Patier

Cc

MadeMate Inputs | Outputs | Trigger| Statistics | Comments | Math | Wavetorm | Stimalus

Analeg IN Channels
¥ Channel 80:  [im_scaled =)
r Chammetdt: [0 vm -]
I~ Chasnel £2:
I Channel #3:

I Channel #4:

I Chammel#S: W5
I~ Channei 86 [6

I Channel #7: [N 7

f

© Channct#n:  fws |
™ Channel 29 Ih
- omsetme Wi
I Chonmel#11: [N 11 3

I Chonnel12: [N 12 -]

[ chenmetmiy: w13 -]
Chomnel#14: [ 14
Channel 815: [N 15 =]

Mode/Rate | Inputs | Outputs | Trigger | Statistics | Comments | Math  Wavetorm | Stimulus

Waveiorm Ansiag OUT: ¥_clamp Info
~ Analog Wavelorm
@ Epochs  Stimulus file

Intersweep holding Use hotding =]

I~ Digital Outputs

Epoch Description A | B [ ¢ [ 0 |

38 I A T O |
an Step Step Step O OH |ON  Off  ON  ON ON
Sample rate Fast [Fast [Fasi [Fast [Fasi [Fasi [Fast [Fasi [Fast [Fast

Fiestlevel (mv) |10 110 40 [0 0 [0

Detalevel ) [0 100 [0 [0

First duration [ms 50 800 50 0

Delis duration fmf0 0 |

Digital bit patiern | 1111 0000

Digital bit patiem (0000 0000
"

Number of sweeps = 17

Summary

(O O (O )

Channel #0 [Channel #1| Channel 82 | Channel £3.

[ Altemate Wavetorms |

Figure 8 Setting protocol for whole-cell patch-clamp recording.

(a)Voltage steps of potentials for this study (b-f) Procedure for setting up protocols with Clampex software.

Data analysis

To examine the -electrophysiological
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and potassium (K+) gating properties.

Electrophysiological properties were demonstrated by representative raw M-current traces, the
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current-voltage (I-V) curves used to estimate the conductance and reversal potential and M-
current density used to estimate electrical capacitance (criteria of diagnosis for KCNQ2-epileptic
disorders). It was calculated as peak current (pA) at +50 mV divided by the cell capacitance (pF).
On the other hand, K+ gating properties were investigated by the half-activating voltage (V,,,)
detected depolarization of channels, the slope conductance (k) of channels. There were calculated
by the Boltzmann function: 1= 1/[1+exp(V2-V)/k], V4= half-activating voltage, k = slope, at
tail current amplitudes at — 40 mV. The membrane resistance (Rm) was calculated according to
Ohm’s law (V= IR), I is the current, V is the voltage and R is the resistance detected the
resistance of the cell membrane when ions flow through it . The membrane time constant (Tau)
were calculated by Rm XCm, Cm is membrane capacitance detected time of change membrane
potential66.

Data are expressed as means £ S.E.M. Statistical analyses were carried out using SPSS
and GraphPad Prism 9.4.0. One-way ANOVA followed by Tukey’s posttest. The number of
samples (n) have been indicated in the figure legends. Statistical significance was defined by * p

<0.05, ** p < 0.01, *** p < 0.001.

CHAPTER IV RESULTS
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Clinical features of the patients

One hundred and four unrelated families with infantile-onset drug-resistant epilepsy
underwent exome and genome sequencing. 43% De novo pathogenic and likely pathogenic
variants in the KCNQ?2 gene were identified in 9% (9/104) of the patients and account for 20%
(9/44) of the neonatal-onset cases.

67% (6/9) of the patients with KCNQ2-related epilepsy were female. All of the patients
were born at term. There was no family history of epilepsy or developmental delay. All of the
patients had seizures onset during the neonatal period. Neuroimaging data were available in 7 out
of 9 patients. 71% (5/7) patients showed unremarkable neuroimaging. The EEG data were
available in eight patients (88%; 8/9). The findings included multifocal epileptiform discharges
(63%; 5/8) and burst suppression pattern (37%; 3/8). The number of antiepileptic drugs used
before genetic testing ranged from 2 to 6. The clinical characteristics of the patients are

summarized in Supplementary Table S1.

Molecular characteristics

Seven de novo missense pathogenic and likely pathogenic variants were found in nine
patients (Supplementary Table S1). The p.N258K and p.G279D variants have never been
previously reported. Both variants occurred de novo (Fig 9a-b) and were not found in healthy
population. In silico analysis using SIFT (http:/sift.jcvi.org/); Polyphen-2,

(http://genetics.bwh.harvard.edu/pph2/); M-CAP (http://bejerano.stanford.edu/mcap/); CADD

(https://cadd.gs.washington.edu/; recommended pathogenicity threshold >20) predict the variants
to be disease-causing (Supplementary Table S2). The Asparagine and glycine residue are located
in the pore-loop domain of the Kv7.2 and are highly conserved across members of the Kv7 family

(Fig 10a-b). We performed functional studies to confirm the pathogenicity of both variants.


http://genetics.bwh.harvard.edu/pph2/
http://bejerano.stanford.edu/mcap/
https://cadd.gs.washington.edu/
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Figure 9 Sequence alignment of the patient's BAM file on Golden Helix Genome Browse 3.0.0 and
pedigree of families

(a,b) The total yield of read depth was 104/85 (Reference/Alternate) for the p.N258K variant and 72/33
(Reference/Alternate) for the p.G279D variant. (b,d) pedigree of families,the solid black symbol is a family

member with different KCNQ2-DEE. The open symbol represents a healthy family.
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Generated plasmid
1. Generated plasmid constructions; Kv7.2-GFP WT
The cloning of expressed genes and the polymerase chain reaction (PCR), two genetic
engineering were used generating of Kv7.2-GFP WT plasmids which expressed KCNQO2-GFP

fusion proteins. We amplified in-frame KCNQ?2 gene (Fig. 11a-b) and subcloned into the GFP-

expression vector in Fig. 12.
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Figure 11 Polymerase chain reaction (PCR) of the KCNQ2 gene.

(a) The KCNQ2 gene product size (b) Restriction fragments length were digested by Hindilll and EcoRV of

verify the orientation of insert.
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|- y 3 . . GFP

GCACCATGGTGCAGAAGTCGCGCAACGGCGGCGTATACCCCGGCCCGAGCGGGGAGAAGAAGCTGAAGGTGGG
CTTCGTGGGGCTGGACCCCGGCGCGCCCGACTCCACCCGGGACGGGGCGCTGCTGATCGCCGGCTCCGAGGCCCCC
AAGCGCGGCAGCATCCTCAGCAAACCTCGCGCGGGCGGCGCGGGCGCCGGGAAGCCCCCCAAGCGCAACGCCTTCT
ACCGCAAGCTGCAGAATTTCCTCTACAACGTGCTGGAGCGGCCGCGCGGCTGGGCGTTCATCTACCACGCCTACGT
GTTCCTCCTGGTTTTCTCCTGCCTCGTGCTGTCTGTGTTTTCCACCATCAAGGAGTATGAGAAGAGCTCGGAGGGG
GCCCTCTACATCCTGGAAATCGTGACTATCGTGGTGTTTGGCGTGGAGTACTTCGTGCGGATCTGGGCCGCAGGCT
GCTGCTGCCGGTACCGTGGCTGGAGGGGGCGGCTCAAGTTTGCCCGGAAACCGTTCTGTGTGATTGACATCATGGT
GCTCATCGCCTCCATTGCGGTGCTGGCCGCCGGCTCCCAGGGCAACGTCTTTGCCACATCTGCGCTCCGGAGCCTG
CGCTTCCTGCAGATTCTGCGGATGATCCGCATGGACCGGCGGGGAGGCACCTGGAAGCTGCTGGGCTCTGTGGTCT
ATGCCCACAGCAAGGAGCTGGTCACTGCCTGGTACATCGGCTTCCTTTGTCTCATCCTGGCCTCGTTCCTGGTGTA
CTTGGCAGAGAAGGGGGAGAACGACCACTTTGACACCTACGCGGATGCACTCTGGTGGGGCCTGATCACGCTGACC
ACCATTGGCTACGGGGACAAGTACCCCCAGACCTGGAACGGCAGGCTCCTTGCGGCAACCTTCACCCTCATCGGTG
TCTCCTTCTTCGCGCTGCCTGCAGGCATCTTGGGGTCTGGGTTTGCCCTGAAGGTTCAGGAGCAGCACAGGCAGAA
GCACTTTGAGAAGAGGCGGAACCCGGCAGCAGGCCTGATCCAGTCGGCCTGGAGATTCTACGCCACCAACCTCTCG
CGCACAGACCTGCACTCCACGTGGCAGTACTACGAGCGAACGGTCACCGTGCCCATGTACAGACTTATCCCCCCGC
TGAACCAGCTGGAGCTGCTGAGGAACCTCAAGAGTAAATCTGGACTCGCTTTCAGGAAGGACCCCCCGCCGGAGCC
GTCTCCAAGCCAGAAGGTCAGTTTGAAAGATCGTGTCTTCTCCAGCCCCCGAGGCGTGGCTGCCAAGGGGAAGGGG
TCCCCGCAGGCCCAGACTGTGAGGCGGTCACCCAGCGCCGACCAGAGCCTCGAGGACAGCCCCAGCAAGGTGCCCA
AGAGCTGGAGCTTCGGGGACCGCAGCCGGGCACGCCAGGCTTTCCGCATCAAGGGTGCCGCGTCACGGCAGAACTC
AGAAGAAGCAAGCCTCCCCGGAGAGGACATTGTGGATGACAAGAGCTGCCCCTGCGAGTTTGTGACCGAGGACCTG
ACCCCGGGCCTCAAAGTCAGCATCAGAGCCGTGTGTGTCATGCGGTTCCTGGTGTCCAAGCGGAAGTTCAAGGAGA
GCCTGCGGCCCTACGACGTGATGGACGTCATCGAGCAGTACTCAGCCGGCCACCTGGACATGCTGTCCCGAATTAA
GAGCCTGCAGTCCAGAGTGGACCAGATCGTGGGGCGGGGCCCAGCGATCACGGACAAGGACCGCACCAAGGGCCCG
GCCGAGGCGGAGCTGCCCGAGGACCCCAGCATGATGGGACGGCTCGGGAAGGTGGAGAAGCAGGTCTTGTCCATGG
AGAAGAAGCTGGACTTCCTGGTGAATATCTACATGCAGCGGATGGGCATCCCCCCGACAGAGACCGAGGCCTACTT
TGGGGCCAAAGAGCCGGAGCCGGCGCCGCCGTACCACAGCCCGGAAGACAGCCGGGAGCATGTCGACAGGCACGGC
TGCATTGTCAAGATCGTGCGCTCCAGCAGCTCCACGGGCCAGAAGAACTTCTCGGCGCCCCCGGCCGCGCCCCCTG
TCCAGTGTCCGCCCTCCACCTCCTGGCAGCCACAGAGCCACCCGCGCCAGGGCCACGGCACCTCCCCCGTGGGGGA
CCACGGCTCCCTGGTGCGCATCCCGCCGCCGCCTGCCCACGAGCGGTCGCTGTCCGCCTACGGCGGGGGCAACCGC
GCCAGCATGGAGTTCCTGCGGCAGGAGGACACCCCGGGCTGCAGGCCCCCCGAGGGGAACCTGCGGGACAGCGACA
CGTCCATCTCCATCCCGTCCGTGGACCACGAGGAGCTGGAGCGTTCCTTCAGCGGCTTCAGCATCTCCCAGTCCAA
GGAGAACCTGGATGCTCTCAACAGCTGCTACGCGGCCGTGGCGCCTTGTGCCAAAGTCAGGCCCTACATTGCGGAG
GGAGAGTCAGACACCGACTCCGACCTCTGTACCCCGTGCGGGCCCCCGCCACGCTCGGCCACCGGCGAGGGTCCCT
TTGGTGACGTGGGCTGGGCCGGGCCCAGGAAGAGTTCARAAGGGCAATTCTGCAGATATCCAGCACAGTGGCGCCG
CTCGAGTCTAGAATGGCTAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTG
ATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATT
TATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTT
TCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCA
CTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCG
TATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCA
CACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAG
ATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAA
CCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTT
GTAACTGCTGCTGGGATTACACATGGCATGCGATGAGCTCTACAAATAATGAATTAAACCCGCTGATCAGCCTCGAC
TGTGCC..

Figure 12 Plasmid constructions; Kv7.2-GFP WT.
(a) Schematic presentation of the Kv7.2-GFP subunit. (b) Sequence of the KCNQ2 gene deleted stop codon

(dark box) and sequence of GFP- fusion (green box).
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2. Generated plasmid constructions; mutants

The variants of interest were engineered in Kv7.2-GFP WT plasmids (variant 1;
¢.774C>G, p.N258K) and variant 2; ¢.836G>A, p.G279D) by QuikChange site-directed

mutagenesis. Sanger sequencing was identified variant of mutant plasmids in Fig. 13.
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Figure 13 Chromatograms of sanger sequencing verified quality of the mutations

(a) p.N258K (b) p.G279D.

Fluorescent p.N258K and p.G279D reduces Kv7.2 plasma membrane expression
In comparisons to WT channels, plasma membrane expressions levels of p.N258K and
p.G279D Kv7.2 were reduced (Fig. 14a). The co-assembly of Kv7.2 and Kv7.3 is crucial to their
efficient trafficking and function, we thus determined the impact of p.N258K and p.G279D Kv7.2
in cells co-expressing WT Kv7.3 at a 1:1 ratio. In comparison to WT Kv7.2 and Kv7.3, Kv7.2
plasma membrane expression in cells expressing p.N258K and p.G279D Kv7.2 were reduced
(Fig. 14b). This was also apparent in the Western blot analysis in which the membrane abundance
of Kv7.2 in both p.N258K and p.G279D Kv7.2 were lower than WT Kv7.2 and when co-

expressed with Kv7.3 (Fig. 15). This consistent with reduced plasma membrane expressions.
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Kv7.2 Kv7.3 Merge

p.N258K

p.G279D

Figure 14 Immunofluorescence confocal microscopy showed localization on cell membranes.

(a) Non-permeabilized HEK293 cells expressing Kv7.2WT and mutant channels containing a GFP-tag in C-
terminal; Kv7.2WT (left panel), p.N258K (middle panel) and p.G279D (right panel). Proteins are expressed in
the same way on cell surfaces labeled by green signal. (b) Confocal images of GFP-tagged Kv7.2WT, p.N258K
and p.G279D proteins (green signal). Cell surface was permeabilized and labeled by C-KCNQ3 antibodies (red
signal). Kv7.2/Kv7.3WT and mutants were expressed at the cell surface of transfected HEK293 cells as shown

by the merge (yellow signal). Scale bars 5 pm.
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Figure 15 Western blots of Kv7.2 protein expressions in membrane, cytoplasmic and total cell lysate
of cells expressing Kv7.2WT, p.N258K and p.G279D, Kv7.2/Kv7.3WT, or p.N258K or p.G279D co-expressed

with Kv7.3. Non- transfected HEK293 cells was used as a negative control and GAPDH as a loading control.

Fluorescence activated cell sorting (FACS)

For electrophysical analysis 48 h post-transfection. Cell expressions were successfully
identified by fluorescence-activated cell sorting (FACS) (BD FACSAria 11). To detect Kv7.2-
tagged GFP expressions and Kv7.3-tagged DYKDDDDK, conjugated Alexa Fluor 647. Images
presented plot of positive cells of GFP expressed on Q1gate which were homotetrameric

channels. Q2 gate were showed plot of heterotetrameric channels, presenting of positive cell of

GFP and DYKDDDDK tags expression (Fig. 16).
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Figure 16 Histogram profiles of sorting gates used for FACS based on Alexa Fluor 430 and 647 channels.

(Panels a-c) were used to define KCNQ2-GFP sorting gates, (panels d-h) were used to define Kv7.2-tagged

GFP expressions and Kv7.3-tagged DYKDDDDK, conjugated to Alexa Fluor 647 sorting gates. These gates

were positioned such that Q1: cells expressed GFP, Q2: cells expressed GFP& DYKDDDDK tag, Q3: non-

transfected cell, Q4: cells expressed DYKDDDDK tag.
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Electrophysiological properties of p.N258K and p.G279D mutations in Kv7.2.

We analyzed electrophysiological function of pathogenic Kv7.2 variants p.N258K and
p-G279D that was performed by whole-cell patch clamp recording in expression transfected
HEK293 cells. Expression cells were identified by fluorescence-activated cell sorting (FACS). To
determine affected function of mutant channels after transfection of homotetrameric variants.
Moreover, most patients diagnosed with KCNQ2-associated epileptic disorders were autosomal
dominant heterozygous epilepsy. Therefore, we performed patch clamp repeat recordings, in
which co-expressing with Kv7.2WT, p.N258K, p.G279D and Kv7.3WT at homologous
heterotetrameric channels; 1:1 ratio (1.25 [lg: 1.25 Llg) and heterozygous heterotetrameric
channels 1:1:2 ratio (0.625 Llg: 0.625 J1g:1.25 Llg). These ratios mimic the expression of the
physiological heterotetrameric channels and used to study a dominant negative effect on the M-
channel activitym. Non-transfected HEK293cells were used negative control(n =22 cells) .

To examine the electrophysiological parameters that consist of electrophysiological
properties and potassium (K+) gating properties. Electrophysiological properties were
demonstrated function of mutant channels by representative raw M-current traces, the current—
voltage (I-V) curves used to estimate the conductance and reversal potential and M-current
density used to estimate electrical capacitance. On the other hand, K+ gating properties were
investigated by the half-activating voltage (V,,,) detected depolarization of channels, the slope
conductance (k) of channels. The membrane resistance (Rm) detected the resistance of the cell
membrane when ions flow through it. The membrane time constant (7au) detected time of

change the membrane potential to return to the "resting state".
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1. Electrophysiological function in the novel p.N258K mutate on of Kv7.2
To analyze the electrophysiological functions of p.N258K, whole-cell patch clamp was

performed in homotetrameric channels (p.N258K Kv7.2; n =15 cells) and heterotetrameric
channels (p.N258K/Kv7.3; n= 15 cells and Kv7.2/p.N258K/Kv7.3; n= 13 cells) channels versus
WT (Kv7.2; n =18 cells and Kv7.2/Kv7.3; n = 22 cells). Cells expressing p.N258K exhibited
lower M-current amplitude almost ~40-50% (Fig 17 b-g) and current density (reduction of about
~51.97 % in p.N258K, ~54.09 % in p.N258K/Kv7.3 and ~51.11 % in Kv7.2/p.N258K/Kv7.3)
when compared to Kv7.2WT and Kv7.2/Kv7.3WT (Fig 18). The conductance-voltage
relationship was showed significantly reduce in conductance at conditional voltage -50 mV to
+50 mV (Fig. 19a-b & Supplementary Fig. S2-3) and shifted significantly towards depolarized
voltages for 0.87 mV in p.N258K, 2.24 mV in p.N258K/Kv7.3 and 1.18 mV in
Kv7.2/p.N258K/Kv7.3compared to WT, resulting in a more positive half-activating voltages
(V,,,) and lower slope conductance (K) (Fig. 20a-b, & Supplementary Table. S3). But there was
no significant increase in reversal potential when compared with WT which was equilibrium
gradient of K+ ions (Fig. 19¢ & Supplementary Table. S3). Input resistance and time constant
(Tau) in cells expressing p.N258K were significantly higher than in WT cells (Fig. 21a-b &

Supplementary Table. S3).
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Figure 17 Representative raw current traces for homotetrameric and heterotetrameric in p.N258K

channels.

(a) Voltage step protocol (b-g) Representative current traces of non-transfected (n = 22), Kv7.2WT (n = 18),

p.N258K Kv7.2 (n = 15), Kv7.2/Kv7.3WT (n = 22), p.N258K /Kv7.3 (n = 14), Kv7.2/p.N258K/Kv7.3 (n = 13)

in response to the assigned voltage protocols.
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Figure 18 Comparison of average peak M-current densities (pA/pF) at +50 mV in homotetrameric and
heterotetrameric of p.N258K channels.

The mean scores were 13.46 + 1.48 pA/pF in p.N258K Kv7.2 and 28.02 + 1.81pA/pF in Kv7.2WT, with a
significant difference between the groups (p < 0.001). Post hoc analysis showed that the mean scores of
p.N258K Kv7.2 channels was significantly lower than in Kv7.2WT (p < 0.001). On the other hand, the mean
scores were 15.79 + 1.83 pA/pF in p.N258K/Kv7.3, 17.58 + 1.89 pA/pF in Kv7.2/p.N258K/Kv7.3 and 34.40 +
4.23 pA/pF in Kv7.2Kv7.3WT, with a significant difference between the groups (p < 0.001). Post hoc analysis
revealed that the mean scores of p.N258K/KV7.3 and Kv7.2/p.N258K/Kv7.3 channels were dramatically two-
fold lower than in Kv7.2/Kv7.3WT (p < 0.001 and p < 0.001, respectively). Statistically significant differences

are indicated by *p < 0.05, **p <0.01, ***p <0.001 based on one-way ANOVA Tukey test.
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Figure 19 Analysis of the current-voltage (I-V) relationships (from -110 to +50 mV) and comparison of reversal

potential in homotetrameric and heterotetrameric of p.N258K channels.

(a) The current-voltage (I-V) curves of p.N258K at conditional voltage -50 mV to +50 mV differed significantly between groups

(p <0.001). Post hoc analysis showed that the mean scores of p.N258K Kv7,2 channels was significantly lower than in

Kv7.2WT (p < 0.001) (b) The current-voltage (I-V) curves of p.N258K/Kv7.3 and Kv7.2/p.N258K/Kv7.3 at
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conditional voltage -50 mV to +50 mV differed significantly between groups (p < 0.001). Post hoc analysis

showed that the mean scores of p.N258K/KV7.3 and Kv7.2/p.N258K/Kv7.3 channels were significantly lower

than in Kv7.2/Kv7.3WT (p < 0.001 and p < 0.001, respectively). (¢) Reversal potential were -84.78 =2.92 mV

in p.N258K Kv7.2 and -92.30 £4.79 mV in Kv7.2WT, with a no significant difference between the groups (p

=0.307) and were -89.83 + 3.94 mV in p.N258K/Kv7.3, -86.57 £ 4.71 mV in Kv7.2/p.N258K/Kv7.3 and -95.31

+4.63 mV in Kv7.2/Kv7.3WT, with a no significant difference between the groups (p =0.602). Statistically

significant differences are indicated by *p < 0.05, **p < 0.01, ***p <0.001, ns = no significant based on one-

way ANOVA Tukey test.
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Figure 20 Comparison of K+ gating properties in homotetrameric and heterotetrameric p.N258K

channels.
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(a) The mean scores of the half-activating voltage (V,,,) of homotetrameric channels were -42.91 £ 0.0013 mV

in p.N258K Kv7.2 and -43.78 £ 0.0011 mV in Kv7.2WT, with a significant difference between the groups (p <

0.001). Post hoc analysis showed that the mean scores of p.N258K Kv7.2 channels was significantly increase

when compared with Kv7.2WT (p < 0.001) while heterotetrameric channels were -42.76 + 0.0021 mV in

p-N258K/Kv7.3,-43.06 £ 0.0017 mV in Kv7.2/p.N258K/Kv7.3 and -44.24 £ 0.0019 mV in Kv7.2/Kv7.3WT,

with a significant difference between the groups (p < 0.001). Post hoc analysis revealed significant increase

when compared with Kv7.2/Kv7.3WT (p <0.001 and p < 0.001, respectively) (b) The mean scores of the slope

conductance (k) of homotetrameric channels were 2.93 + 0.15 mV/e-fold in p.N258K Kv7.2 and 3.82 + 0.24

mV/e-fold in Kv7.2WT, with a significant difference between the groups (p < 0.001). Post hoc analysis showed

that the mean scores of p.N258K Kv7.2 channels was significantly decrease when compared with Kv7.2WT (p
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= 0.002) while heterotetrameric channels were 2.78 + 0.14 mV/e-fold in p.N258K/Kv7.3, 3.08 =0.18 mV/e-
fold in Kv7.2/p.N258K/Kv7.3 and 4.26 + 0.28 mV/e-fold in Kv7.2/Kv7.3WT, with a significant difference
between the groups (p < 0.001). Post hoc analysis revealed that the mean scores of p.N258K/Kv7.3 and
Kv7.2/p.N258K/Kv7.3 channels were significantly decrease when compared with Kv7.2Kv7.3WT (p < 0.001
and p = 0.002, respectively).
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Figure 21 Comparison of the membrane resistance (Rm) and the membrane time constant (Tau) in
homotetrameric and heterotetrameric of p.N258K channels.

(a) the mean scores of the membrane resistance (Rm) of homotetrameric channels were 135.65 £4.21 MEC in
p-N258K Kv7.2 and 105.41 £4.72 MQ in Kv7.2WT, with a significant difference between the groups (p <
0.001). Post hoc analysis showed that the mean scores of p.N258K Kv7.2 expressed cells was significantly
increase when compared with Kv7.2WT (p = 0.003) whereas heterotetrameric channels were 137.32 + 5.59
M2 in p.N258K/Kv7.3, 133.06 + 5.78 MCD in Kv7.2/p.N258K/Kv7.3 and 95.37 + 4.41 M2 in
Kv7.2/Kv7.3WT, with a significant difference between the groups (p < 0.001). Post hoc analysis revealed that
the mean scores of p.N258K/Kv7.3 and Kv7.2/p.N258K/Kv7.3 expressed cells were significantly increase
when compared with Kv7.2/Kv7.3WT expressed cells (p < 0.001 and p < 0.001, respectively). (b) the mean
scores of the membrane time constant (7au) of homotetrameric channels were 4550.06 + 621.66 ms in p.N258K
Kv7.2 and 1889.149 + 97.66 ms in Kv7.2WT, with a significant difference between the groups (p < 0.001). Post
hoc analysis showed that the mean scores of p.N258K Kv7.2 expressed cells was significantly higher than in
Kv7.2WT (p = 0.005) while, heterotetrameric channels were 3690 + 364.38 ms in p.N258K/Kv7.3, 3337.08 +

418.03 ms in Kv7.2/p.N258K/Kv7.3 and 1637.05 + 122.93 ms in Kv7.2/Kv7.3WT, with a significant difference
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between the groups (p < 0.001). Post hoc analysis revealed that the mean scores of p.N258K/Kv7.3 and
Kv7.2/p.N258K/Kv7.3 expressed cells were significantly higher than in Kv7.2/Kv7.3WT (p = 0.009, p = 0.05,

respectively). Statistically significant differences are indicated by *p < 0.05, **p < 0.01, ***p < 0.001.

2.  Electrophysiological function in the novel p.G279D mutate on of Kv7.2

The finding of patch-clamp showed defect in electrophysiological functions of p.G279D,

whole-cell patch clamp was performed in homotetrameric (p.G279D Kv7.2; n =15 cells) and
heterotetrameric channels (p.G279D/Kv7.3; n= 14 cells and Kv7.2/p.G279D/Kv7.3; n= 14 cells)
channels versus WT (Kv7.2WT; n = 18 cells and Kv7.2/Kv7.3WT; n = 22 cells). Cells expressing
p.G279D exhibited lower M-current amplitude (almost ~20-30%) (Fig.22b-g). and current
density reduction of about ~49.36% in p.G279D Kv7.2, ~51.49 % in p.G279D/Kv7.3 and
~56.73% in Kv7.2/p.N258K/Kv7.3 when compared to Kv7.2WT and Kv7.2/Kv7.3WT (Fig 23).
The conductance-voltage relationship was showed significantly reduce in conductance at
conditional voltage -50 mV to +50 mV (Fig. 24a-b & Supplementary Fig. S2-3) and shifted
significantly towards depolarized voltages for 0.61 mV in p.G279D Kv7.2, 1.23 mV in
p-G279D/Kv7.3 and 1 mV in Kv7.2/p.G279D/Kv7.3 compared to WT, resulting in a more
positive half-activating voltages (V,,,) and lower slope conductance (K) (Fig. 25a-b, &
Supplementary Table. S3). But there was no significant increase in reversal potential when
compared with WT which was equilibrium gradient of K+ ions (Fig. 24c & Supplementary Table.
S3). Input resistance in cells expressing p.N258K were significantly higher than in WT cells
while time constant (Tau) were increased in p.G279D Kv7.2 and p.G279D Kv7.2/Kv7.3 (Fig.

26a-b & Supplementary Table. S3).
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Figure 22 Representative raw current traces for homotetrameric and heterotetrameric in p.G279D

channels.

(a) Voltage step protocol (b-g) Representative current traces of non-transfected (n = 22), Kv7.2WT (n = 18),

p.G279D Kv7.2 (n = 15), Kv7.2/Kv7.3 WT (n = 22), p.G279D/Kv7.3 (n = 14), Kv7.2/p.G279D/Kv7.3 (n = 14)

in response to the assigned voltage protocols.
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Figure 23 Comparison of average peak M-current densities (pA/pF) in homotetrameric and

heterotetrameric of p.G279D channels.

The mean scores were 14.19 £ 1.03 pA/pF in p.G279D Kv7.2 and 28.02 + 1.81 pA/pF in Kv7.2WT, with a

significant difference between the groups (p < 0.001). Post hoc analysis showed that the mean scores of
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p.G279D Kv7.2 channels was significantly lower than in Kv7.2WT (p < 0.001). On the other hand, The mean

scores were 16.69 + 0.94 pA in p.G279D/Kv7.3, 19.52 + 2.51 pA in Kv7.2/p.G279D/Kv7.3 and 34.40 +4.23

pA/pF in Kv7.2Kv7.3WT, with a significant difference between the groups (p < 0.001). Post hoc analysis

revealed that the mean scores of p.G279D/Kv7.3 and Kv7.2/p.G279D/Kv7.3 channels were dramatically two-

fold lower than in Kv7.2/Kv7.3WT (p < 0.001 and p < 0.001, respectively).Statistically significant differences

are indicated by *p < 0.05, **p < 0.01, ***p < 0.001 based on one-way ANOVA Tukey test.
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Figure 24 Analysis of the current—voltage (I-V) relationships (from — 110 to +50 mV) and comparison of

reversal potential in homotetrameric and heterotetrameric of p.G279D channels.

(a) The current-voltage (I-V) curves of p.G279D at conditional voltage -50 mV to +50 mV differed

significantly between groups (p < 0.001). Post hoc analysis showed that the mean scores of p.G279D Kv7.2

channels was significantly lower than in Kv7.2WT (p < 0.01) (b) The current-voltage (I-V) curves of

p-G279D/Kv7.3 and Kv7.2/p.G279D/Kv7.3 at conditional voltage -50 mV to +50 mV differed significantly

between groups (p < 0.001). Post hoc analysis showed that the mean scores of p.G279D/Kv7.3 and

Kv7.2/p.G279D/Kv7.3 channels were significantly lower than in Kv7.2/Kv7.3WT (p <0.01 and p <0.01,
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respectively). (¢) Reversal potential were -85.51 +4.13 mV in p.G279D Kv7.2 and -92.30 £ 4.79 mV in

Kv7.2WT, with a no significant difference between the groups (p =0.307) and were -90.33 +=3.61 mV in

p-G279D/Kv7.3, -86.57 £ 4.71 mV in Kv7.2/p.G279D/Kv7.3 and -95.31 £ 4.63 mV in Kv7.2/Kv7.3WT, with a
no significant difference between the groups (p =0.602). Statistically significant differences are indicated by *p

<0.05, **p < 0.01, ***p <0.001, ns = no significant based on one-way ANOVA Tukey test.
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Figure 25 Comparison of K+ gating properties in homotetrameric and heterotetrameric p.G279D
channels.

(a) The mean scores of the half-activating voltage (V,,,) of homotetrameric channels were -43.17 + 0.0013
mV in p.G279D Kv7.2 and -43.78 £ 0.0011 mV in Kv7.2WT, with a significant difference between the groups
(p <0.001). Post hoc analysis showed that the mean scores of p.G279D Kv7.2 channels was significantly
increase when compared with Kv7.2WT (p < 0.001) while heterotetrameric channels were -43.01 +0.0018 mV
in p.G279D/Kv7.3, -43.24 £ 0.0021 mV in Kv7.2/p.G279D/Kv7.3 and -44.24 £ 0.0019 mV in
Kv7.2/Kv7.3WT, with a significant difference between the groups (p < 0.001). Post hoc analysis revealed
significant increase when compared with Kv7.2/Kv7.3WT (p < 0.001 and p < 0.001, respectively) (b) The mean
scores of the slope conductance (k) of homotetrameric channels were 3.19 £ 0.18 mV/e-fold in p.G279D Kv7.2
and 3.82 + 0.24 mV/e-fold in Kv7.2WT, with a significant difference between the groups (p < 0.001). Post hoc
analysis showed that the mean scores of p.G279D Kv7.2 channels was significantly decrease when compared
with Kv7.2WT (p < 0.001) while heterotetrameric channels were 3.12 + 0.14 mV/e-fold in p. G279D/Kv7.3,
3.34 £ 0.21 mV/e-fold in Kv7.2/p.G279D/Kv7.3 and 4.26 + 0.28 mV/e-fold in Kv7.2/Kv7.3WT, with a
significant difference between the groups (p < 0.001). Post hoc analysis revealed that the mean scores of

p-G279D/Kv7.3 and Kv7.2/p.G279D/Kv7.3 channels were significantly decrease when compared with
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Kv7.2Kv7.3WT (p <0.001 and p = 0.012, respectively). Statistically significant differences are indicated by *p

<0.05, *¥*p < 0.01, ***p <0.001, ns = no significant based on one-way ANOVA Tukey test.
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Figure 26 Comparison of the membrane resistance (Rm) and the membrane time constant (Tau) in
homotetrameric and heterotetrameric of p.G279D channels.

(a) the mean scores of the membrane resistance (Rm) of homotetrameric channels were 127.69 + 3.38 MQ in
p-G279D Kv7.2 and 105.41 £4.72 MQ in Kv7.2WT, with a significant difference between the groups (p <
0.001). Post hoc analysis showed that the mean scores of p.G279D Kv7.2 expressed cells was significantly
increase when compared with Kv7.2WT (p = 0.034) whereas heterotetrameric channels were 120.92 +5.11
M2 in p.G279D/Kv7.3, 122.64 + 7.61 MCD in Kv7.2/p.G279D/Kv7.3 and 95.37 = 4.41 MQ in
Kv7.2/Kv7.3WT, with a significant difference between the groups (p < 0.001). Post hoc analysis revealed that
the mean scores of p.G279D/Kv7.3 and Kv7.2/p.G279D/Kv7.3 expressed cells were significantly increase
when compared with Kv7.2/Kv7.3WT expressed cells (p = 0.01 and p = 0.006, respectively). (b) the mean
scores of the membrane time constant (Tau) of homotetrameric channels were 3859.70 + 254.93 ms in p.G279D
Kv7.2 and 1889.149 + 97.66 ms in Kv7.2WT, with a significant difference between the groups (p < 0.001). Post
hoc analysis showed that the mean scores of G279D expressed cells was significantly higher than in Kv7.2WT
(p = 0.008) while, heterotetrameric channels were 3135.04+ 181.61 ms in p.G279D/Kv7.3, 3092.34 + 334.87
ms in Kv7.2/p.G279D/Kv7.3 and 1637.05 + 122.93 ms in Kv7.2/Kv7.3WT, with a no significant difference
between the groups (p = 0.104, p = 0.138, respectively). Statistically significant differences are indicated by *p
<0.05, **p <0.01, ***p <0.001.
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This result shows that the p.N258K and p.G279D reduced function of Kv.7.2 channels,
as evidenced by the decrease in M-current, M-current density. There is also a loss of K+ gate
properties with depolarization detection and reduced localization of p.N258K and p.G279D Kv7.2
leading to expression cells having an active Kv7.2 channel. The cell has increased membrane
resistance. This also causes cells to spend more time changing their membrane potential. This is

shown by the increase in the membrane time constant (7Tau).
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CHAPTER V DISCUSSION

Mutations in KCNQ? lead to infantile-onset epileptic disorders with broad severity
spectrum from self-limited neonatal seizures to severe developmental and epileptic
encephalopathy. More case reports might contribute to stronger genotype-phenotype found Thai
patients with KCNQ2-related epilepsy, provide clinical and molecular characteristics, identify two
novel genetic variants with functional studies. Both actually occur in the amino acid residues
which have previously been reported. Nonetheless, different amino acid changes at the same
amino acid residues may not have the same molecular pathomechanism. For example, the
functional study of p.R213Q and p.R213W mutations in S4 have been showed a markedly
reduced sensitivity to voltage, with p.R213Q lead to more severe functional changes than
p-R213W. Additionally, the p.R213W phenotype caused benign familial neonatal convulsions
(BFNC) and p.R213Q caused neonatal-onset epileptic encephalopathy (EE)®.

The first novel genetic variant, p.N258K, found in patient 3 is a missense mutation in the
S5-HS5 linker. Because asparagine 258 is highly conserved sequence
(SFLVYLAEKGENDHFDTYADAL) among homologous proteins in the voltage-gated K+
channel subunits”. Asn 258 locate to the end of the pore or through the extracellular part of the
pore (forming pores). This region may have conformational change during the depolarization and
affect pore conductance and opening of the channel®. This is supported by p.N258S mutation
which effected trafficking of the mutation channel into the surface membrane that due to
rearrange the structure within the pore region in the mutant protein4o. The findings of patch-clamp
confirmed its pathogenicity; the M-current showed reducing current by almost ~40-50%, M-
current density presented a reduction of about 50-55% indicating the dominant-negative effect on
heterotetrameric channels, the current—voltage (I-V) curve showed reduce in conductance, K+
gating properties of channels; the half activating voltage (V) revealed depolarizing shift in
voltage, increasing membrane resistance (Rm) and membrane time constant (7au). The results
agree with previous study, mutation of p.N258S have been reported functional defect; M-current
reduced by almost 50%, the M-current density showed ~80 % reduction in homotetrameric
channels and ~50 % reduction in heterotetrameric channels, the current—voltage (I-V) curve

presented reduce in conductance, the half activating voltage (V,,,) was slight depolarizing shift in
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voltage “. Other functional study in the S5-H5 linker of Kv7.2 protein subunits, p.A265P
channels have been reported functional defect; M-current reduced by almost 20-40 %, , ~30-50
% reduction in M-current density in heterotetrameric, the current—voltage (I-V) curve showed
reduce in conductance, the half activating voltage (V,,,) was slight depolarizing shift in voltage “
Both p.N258S and p.A265P mutations lead to loss-of-function and dominant-negative effect. So
that, functional consequences of p.N258K effected loss-of-function dominant-negative effect of
mutation.

The second novel genetic variant, p.G279D, found in patient 6 is missense mutation in
pore-forming S5 and S6 region. Because Glycine 279 is highly conserved sequence (TIGYGDK)
in pore domain of the Kv7 channel family. Additionally, position Gly279 is GYG pore motif that
is signature sequence of the selectivity filter (K+) and channel conductance and stability of the
open pore state when there is a mutation in this location, it often leads to abnormal selectivity
filter (K+) and protein expression. The findings of patch-clamp confirmed its pathogenicity; The
M-current showed reducing almost 20-30%. The M-current density presented a reduction of about
50-55% indicating the weakly dominant-negative effect on heterotetrameric channels, the
current—voltage (I-V) curve was showed decrease in conductance , K+ gating properties of
channels; the half activating voltage (V,,) showed depolarizing shift in voltage, the membrane
resistance (Rm) were increased. These results were supported by p.G279S mutation. It was loss-
of-function that was only ~30-50% M-current was presented in the mutant channels and ~75%
reduction of M-current density which have been expressed of dominant-negative effects on

. 32,67,70
heterotetrameric channels

. Other functional study in pore-forming S5 and S6 region.
p-T274M and p.G290D mutation have been reported significant reduction of the current. The M-
current density exhibited significant reduction of about ~30 to 50% which have been expressed
of dominant-negative effects on heterotetrameric channels. So that, functional consequences of
p-G279D mutation cause that a defect of channel permeability which lead to loss-of-function
dominant-negative effect of mutation.

Although the p.N258K and p.G279D variant functional effect observed in the
experimental model did not differ. The clinical outcome in the patient 3 and patient 6 differs

greatly. Patient 3 has neonatal-onset seizures with normal developmental milestones at age one

year and six months. The seizures were controlled after two anti-seizures medications. While



52

patient 6 has DEE phenotype. Previous studies have shown association between truncating
variants and self-limited epilepsy. >3 Complexity remains in the prediction of phenotype for
KCNQ?2 missense variants. In vitro functional effect alone is no likely to explain the phenotype.
Different factors including the variant locations and genetic modifier may also play important
roles.

In conclusion, the findings confirmed functional characterization of p.N258K and
p-G279D in different domains of the Kv7.2 subunits are loss-of-function defect as well as had

dominant-negative effect of the mutants, that are pathogenic to infantile-onset epileptic disorders.
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A. Total lysates
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Supplementary Figure S1. Original membranes (a) and gels (b) before cropping of dashed-line
regions depicted in Figure 5 (A) Total lysate, (B) membrane protein fraction and (C) Cytoplasmic
protein fraction. Red arrow indicates KCNQ2-GFP proteins (122 kDa) Black arrow indicates the
GAPDH (37 kDa).
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Non-transfected
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p.G279D Kv7.2
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Supplementary Figure S3. Currents of mutant channels compared with WT at conditional
voltage 0 mV to +50 mV. Statistically significant differences are indicated by *p < 0.05, **p < 0.01,
***p < 0.001, ns =no significant based on one-way ANOVA Tukey test.
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Supplementary Figure S4. Currents of mutant channels compared with WT at conditional
voltage -50 mV to -10 mV. Statistically significant differences are indicated by *p < 0.05, **p < 0.01,

***p < 0.001, ns = no significant based on one-way ANOVA Tukey test.
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