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Hormonal therapy is necessary in hormone receptor-positive breast cancer
patients. It is used in both early and advanced-stage patients. Unfortunately, many
patients developed endocrine resistance later on after the treatment was initiated
and this could progress the disease. Endocrine resistance results from many
mechanisms, including HER2 signaling pathway. These resistant breast cancer cells
exhibit more HERZ2 signaling proteins such as AKT and ERK, compared to wild-type
hormone receptor-positive breast cancer cells. Palbociclib is a CDK4/6 inhibitor and
is indicated in patients who developed tamoxifen resistance. Lapatinib is a dual
tyrosine kinase inhibitor- HER1 and HER2 and is used in HER2-overexpressed breast
cancer patients. Palbociclib combined with lapatinib was investigated in head and
neck squamous cell carcinoma and this resulted in synergistic cytotoxic activity
and a decrease in ERK1/2 phosphorylation. However, combining these two drugs
has not been used in endocrine-resistant breast cancer cells whose tumors
overexpressed HER2 after hormonal therapy. In this study, we investigated the
combination effect of these two drugs in MCF-7/LCC2 and MCF-7/LCC9 breast
cancer cells, including cytotoxic activity, anti-invasion, and the mechanism behind
it. Lapatinib combined with palbociclib at ICsy showed a significantly increased
cytotoxic activity. Moreover, the combination of these drugs resulted in higher anti-

invasion activitv than either sinele drue alone did. | anatinib combined with
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CHAPTER 1 INTRODUCTION

1.1 Background and Rationale

Breast cancer is one of the most common malignancies and occurs most
frequently in one in eight to ten women [1]. There is an increasing trend in breast
cancer incidence in Asia, Africa, and South America, and the mortality rate in these
areas is rising [1]. Surgery and radiotherapy (Local therapies) are the first choices for
patients with early-stage breast cancer. Apart from local therapy, systemic therapy
still plays a vital role in almost all breast cancer patients, including early and
advanced cancer patients [2, 3]. Endocrine therapy is crucial in hormone receptor-
positive subtypes (luminal subtypes) [1]. However, many mechanisms can trigger
endocrine resistance in breast cancer patients and are focusing on the estrogen
receptor (ER) signaling pathway. Other growth factor receptors, such as HER2 and
VEGF (angiogenesis factor), also impact resistance to endocrine therapy [4]. HER2
activation in endocrine-resistant breast cancer cells activates PI3K/AKT and MAPK/ERK
pathways [5]. The signaling pathways promote cell proliferation and survival [6]. In
MCF-7/LCC2 (tamoxifen-resistant breast cancer) and MCF-7/LCC9 (tamoxifen and
fulvestrant-resistant breast cancer) cell lines, HER2 and its downstream signaling
proteins such as pAKT and pERK1/2 were increased when compared to MCF-7 wild
type cell line and the levels were similar to SKBR3 (HER2 overexpressed) cell line [5].
Patients with high levels of NCoA3 had resistance to tamoxifen and chemotherapy,
leading to a worse prognosis [7, 8]. Epithelial-mesenchymal transition (EMT) is a
cellular process necessary in metastasis. Cells lose their epithelial phenotypes and
gain more mesenchymal phenotypes. The monolayer sheet cells initiate mobilization
through EMT. This process is associated with downregulations of epithelial cell
markers like E-cadherin & occludins and upregulations of mesenchymal markers such
as vimentin and N-cadherin. Transcription factors like Snail, Twist, and Zeb1/2 are
also known as regulators of the process [9]. Matrix metalloproteinases (MMPs)
correlate with metastasis and aggressiveness of breast cancer cells. Especially MMP-9,
it lyses the extracellular matrix (ECM) and basement membrane, leading to

metastasis [10]. Once the ECM is destroyed, C-X-C chemokine receptor type 4



(CXCR4) binds with stromal cell-derived factor-1 (SDF-1 or CXCL12) and induces actin
polymerization, which causes pseudopodia and leads to metastasis [11]. Wnt/B-
catenin pathway also controls EMT and associates with primary and metastatic
tumors [12]. Furthermore, endocrine-resistant breast cancer cells also exhibit
overexpression of Wnt responsive genes [12]. Moreover, higher metastasis to lung
and brain is higher if the patients are identified by the Wnt/B-catenin classifier [13].

Palbociclib, an orally selective CDK4/6 inhibitor, is developed and can be
used in combination with fulvestrant to treat endocrine-resistant breast cancer
patients [4]. Abemaciclib, another CDK4/6 inhibitor, was combined with fulvestrant
and trastuzumab demonstrated longer PFS than trastuzumab and chemotherapy in
HR-positive and HER2-positive metastatic breast cancer patients [14]. Moreover, a
synergistic effect is seen when combining abemaciclib with HER2-directed therapies,
especially in resistant HER2-positive breast cancer in transgenic mouse models [15].

Lapatinib is an oral dual tyrosine kinase inhibitor that blocks HER1 and HER2
tyrosine kinase activity by binding to the ATP-binding site of the intracellular domain
of the receptor and resulting in tumor cell growth suppression [16]. In cutaneous
squamous cell carcinoma (cSCC), lapatinib enhanced apoptosis of human cSCC cell
lines, and the cSCC cell cycle was arrested in G2/M phase [17]. Lapatinib also
interfered PI3K/AKT/mTOR pathway and reduced EMT via Wnt/ERK/PI3K-AKT pathway
in human ¢SCC cells [17].

In HPV-negative head and neck squamous cell carcinoma (HNSCO),
simultaneous inhibition of RB1 phosphorylation with Palbociclib and EGFR activity
with lapatinib resulted in synergistic inhibitory effects on the HNSCC cell proliferation
and suppressed ERK1/2 phosphorylation [18]. Prior clinical trials have shown that
combining HER2-targeted therapy with an Al resulted in clinical benefits in patients
with advanced HR-positive and HER2-positive breast cancer patients. Combining
abemaciclib plus trastuzumab plus fulvestrant resulted in a better progression-free
survival rate than chemotherapy plus trastuzumab [19-22]. However, clinical use of
CDK4/6 inhibitor and HER2-targeted therapy in endocrine-resistant breast cancer

patients whose tumors overexpressed HER2 after resistance to endocrine therapy has



not been included in any clinical guidelines. Thus, a potential research gap could be
explored between the combination of lapatinib and palbociclib in endocrine-
resistant breast cancer cells that overexpressed HER2, especially the MCF-7/LCC9 cell

line.

1.2 Research question
- How combining lapatinib with palbociclib affects proliferation, HER2 signaling
pathway (tamoxifen-resistant mechanism) and the EMT process (cell

invasion/migration) in endocrine-resistant breast cancer cells?

1.3 Objective

The aims of this study are
- to study the anti-proliferation and anti-invasion effects of combining lapatinib
and palbociclib in endocrine-resistant breast cancer cells.
- to study the molecular mechanisms of lapatinib and palbociclib, including
anti-proliferation, anti-invasion, inhibition of HER2 signaling, and endocrine resistance

in endocrine-resistant breast cancer cells.

1.4 Hypothesis
- Lapatinib combined with palbociclib exhibits anti-proliferation and anti-HER2

activity through AKT, HER2, and ERK signaling pathways and reduces CyclinD1 and
NCoA3 (tamoxifen-resistant mechanism) in endocrine-resistant breast cancer cells.
- Lapatinib combined with palbociclib exhibits an anti-migration/invasion effect

through the EMT process in endocrine-resistant breast cancer cells.

1.5 Keywords

lapatinib, palbociclib, endocrine-resistant breast cancer cells, AKT, EMT, invasion



1.6 Conceptual framework

Lapatinib and Palbociclib in Endocrine resistant breast cancer cells (HER2 overexpressed)

/ l l

Synergistic Cytotoxic effect l, Wnt/ErK/PI3K-AKT l, AKT, HER2, ERK
pathway (HER2 Signaling)
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l Cell Proliferation y
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CHAPTER Il REVIEW OF LITERATURE

2.1 Breast Cancer

The three most common cancers worldwide are colon, lung, and breast [1].
Particularly in women, breast cancer is the leading malignancy and occurs most
frequently in one in eight to ten women. However, a decline in mortality rate is seen
in North America and Europe due to early detection by mammograms and
ultrasound and new emerging effective systemic therapies. On the contrary, there is
an increasing trend in breast cancer incidence in Asia, Africa, and South America,
probably caused by lifestyle changes and more developed screening programs in

developing countries. Moreover, the mortality rate in these areas is rising [1].

2.2 Molecular subtypes of breast cancer

Breast cancer is clinically categorized into four molecular subtypes based on
their cancer gene expressions (Luminal A, Luminal B, HER2-enriched, and basal-like
(triple negative)). These subtypes are separated by the expression of Estrogen
receptor (ER), Progesterone Receptor (PgR), and HER2 [1]. Ki67 also plays an essential
role in investigating how aggressively breast cancer can proliferate [1]. ER and PgR-
positive tumors can be treated by endocrine therapy. HER2-positive tumors can be

treated by trastuzumab (targeted therapy) [1].

1) Luminal A breast cancer is steroid hormone receptor-positive (ER and/or
PgR-positive, HER2-negative, and low proliferation (Ki67)). Luminal A is also
the most common subtype and can be treated with estrogen receptor
inhibitors like tamoxifen or aromatase inhibitors [1, 23].

2) Luminal B breast cancer is steroid hormone receptor-positive (ER and/or
PgR-positive, and either HER2-positive or high proliferation (Ki67)).
Adjuvant chemotherapy is added from only endocrine therapy (estrogen
receptor inhibitors) [1].

3) HER2 subtype is ER and/or PgR-negative, HER2-positive. HER2-enriched

tumors tend to be more aggressive and have a poorer prognosis than



Luminal A, but with the development of trastuzumab, the HER2 subtype
prognosis is better [1, 23].

4) Basal-like cancer is more common in young African Americans and has a
poorer prognosis than Luminal A. Furthermore, no targeted therapies are
yet available (ER, PgR, and HER2-negative), so chemotherapy is always
indicated, and BRCA testing is recommended [1, 23].

2.3 Treatment of Breast Cancer

1) Local therapy (Surgery and Radiotherapy)

Surgery and radiotherapy are the first choices for patients with early-stage
breast cancer. There are mainly two surgical ways of breast cancer: total mastectomy
and breast-conserving surgery. Many factors are used to consider which surgeries suit
each patient, such as cancer’s prognosis, patients’ desire, etc. [24]. Total mastectomy
with axillary lymph node dissection should be added with radiotherapy to reduce
recurrence and mortality for patients with positive lymph nodes [25]. Radiotherapy
should be added to every patient for breast-conserving surgery to reduce recurrence
and deaths [26].

Fortunately, breast-conserving surgery is nowadays more practical because of
the accomplishment of neoadjuvant drug therapies that can shrink the tumor’s size

[1].

2) Systemic therapy

Apart from local therapy, systemic therapy still plays an important role in
almost all breast cancer patients, including early and advanced-stage cancer patients
[2, 3]. Adjuvant tamoxifen helps reduce malignancy in the contralateral side of the
breast [3]. Al HER2-positive tumors should be treated with targeted therapy,
trastuzumab (anti-HER2), and all basal-like tumors should receive adjuvant
chemotherapy. Most clinical trials have proven that combining drugs is more

effective than a single drug in all breast cancer diseases, both early and advanced



[3]. Endocrine therapy is crucial in hormone receptor-positive subtypes (luminal

subtypes), which will be focused on later [1].

Endocrine Therapy

The mechanism of estrogen in breast cancer

Estrogen is essential in many body physiological processes, including the
female reproductive, bone, central nervous, and cardiovascular systems. The
imbalance of estrogen receptor signaling could lead to cancers in the breast, uterus,

and ovary. So, anti-estrogens have become vital in treating breast cancer patients [4].

Selective estrogen receptor modulators (SERMs)

SERMS are anti-estrogens that compete with estrogen and have different
effects on different tissues. For example, tamoxifen inhibits breast tissue proliferation,
but it is an agonist for the uterus, the heart, and the bone. There are many SERMs in
the market, which can be categorized based on their chemical structure.
Triphenylethylenes (tamoxifen), benzothiophenes, phenylindoles, and

tetrahydronaphthalenes are some examples [4].

Selective estrogen receptor degraders (SERDs)

SERDs, or the most known SERDS: Fulvestrant, are anti-estrogens that induce
ER degradation and demolish the ER signaling pathway. Therefore, it acts as a
universal ER antagonist and effectively treats tamoxifen-resistant breast cancers [4].

ER and PgR levels were reduced more than tamoxifen if treated with fulvestrant [4].

Aromatase Inhibitors (Al)
Aromatase inhibitors significantly reduce estrogen production in the body.
Thus, aromatase inhibitors avoid stimulating ER-positive breast cancer cells [27]. It is

the first-line drug in post-menopausal women only [3].



2.4 Endocrine-Resistant Breast Cancer

Many mechanisms can trigger endocrine resistance in breast cancer patients.
The first one is metabolic resistance. Typically, tamoxifen will be converted to its
active metabolites (4-hydroxytamoxifen and endoxifen) by CYP enzymes. The
primarily responsible gene for this is the CYP2D6 gene, and 7% of patients are poor
metabolizers of tamoxifen. Low levels of active metabolites resulted in a worse

prognosis [4].

Alterations in ER and ER pathways could also change the outcome of
endocrine therapy. Epigenetic silencing can result in ER loss and resistance to
tamoxifen and fulvestrant. Moreover, the ligand-binding domain of ER could also

mutate and lead to resistance to Als [4].

Furthermore, the PI3K/Akt/mTOR pathway also correlates with resistance to
hormonal therapy by activating ER in the absence of estrogen. PI3K activation lowers
ER expression and results in tamoxifen resistance [4]. Other growth factor receptors,
such as HER2 (an epidermal growth factor receptor (EGFR)), fibroblast growth factor
receptor (FGFR), insulin growth factor receptor (IGFR), and vascular endothelial
growth factor receptor (VEGFR) are also known to have an impact on resistance to
endocrine therapy [4]. HER2 activation in endocrine-resistant breast cancer cells
activates PI3K/AKT and MAPK/ERK pathways [5]. The signaling pathways promote cell
proliferation and survival [6]. In MCF-7/LCC2 (tamoxifen-resistant) and MCF-7/LCC9
(tamoxifen and fulvestrant-resistant) cell lines, HER2 and its downstream signaling
proteins such as pAKT and pERK1/2 were increased compared to MCF-7 wild type
cell line and the levels were similar to SKBR3 (HER2 overexpressed) cell line [5].
Receptor tyrosine kinases (RTKs) also regulate MAPK, PI3K/Akt, and JAK/STAT signaling
pathways. These pathways have a role in cancer angiogenesis and metastasis
pathways. However, structural mutations, gene amplification, and alternate pathway

activation made anti-RTK therapy struggle in breast cancer [28].
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Figure 1 The expression of ER, NCOA3 and HER2 signaling in endocrine-resistant and

HER2-overexpressed breast cancer cells [5]

As mentioned, tamoxifen acts as an ER antagonist in breast tissue but as an
ER agonist in the bone, uterus, and cardiovascular system. These variations could be
from diversities in the expression of coregulatory proteins [29]. The most known
coactivator is the nuclear receptor coactivator 3 (NCoA3). Patients with high levels of
NCoA3 had resistance to tamoxifen and chemotherapy, leading to a worse prognosis
[7, 8]. From Figure 1 above, MCF-7/LCC9 cells, tamoxifen and fulvestrant-resistant

cells also overexpressed NCoA3 [30].

2.5 HER2 in Breast Cancer

Human epithelial growth factor receptor 2 (HER2, neu, ErbB2) is a tyrosine
kinase receptor, a member of EGFR or ErbB family, including HER1, HER2, HER3, and
HER4 [31, 32]. HER2/neu gene is located at q 21 of chromosome 17, encoding 185
kDa tyrosine kinase protein with 1255 amino acids [33]. The HER2 receptors consist of
three specific domains: intracellular tyrosine kinase domain, transmembrane domain,
and extracellular domain (ECD), which do not directly bind to identifiable ligands in
contrast to other members in the family [34]. Among HER2/EGFR heterodimers,
HER2/HER3 heterodimer is the most potent dimer to propagate signals [32, 34]. The


https://www-sciencedirect-com.cuml1.md.chula.ac.th/topics/neuroscience/estrogen-receptor
https://www-sciencedirect-com.cuml1.md.chula.ac.th/topics/pharmacology-toxicology-and-pharmaceutical-science/steroid-receptor-coactivator-3
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ECD may be cleaved by proteolytic mechanism and shed into blood circulation,

leaving truncated transmembrane receptors that are 10-100-fold more oncogenic

than full-length receptors [35]. Some studies suggested that serum ECD was a

promising biomarker of treatment response, metastasis, and recurrence in HER2

overexpressed patients [35, 36].

After the activation of HER2 through dimerization, HER2 trans-auto-

phosphorylates at tyrosine kinase residues which act as docking sites for other

proteins, and then signal two main pathways — PI3K/AKT and MAPK pathways shown

in Figure 2 [31].

1.

Ligands © o .
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HER3/HER4

-
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-
Breast Tumorigenesis

Figure 2 PI3K/AKT and MAPK pathways [37]
The PI3K/AKT pathway begins with the phosphorylated-RTK recruiting p85
and then p110, a regulatory subunit and a catalytic subunit of PI3K,
respectively, forming an activated PI3K complex which then
phosphorylates membrane PIP2 into PIP3. PIP3 docks AKT and PDK1 to
the membrane and activates and stimulates AKT by PDK1 and mTORC2.
The PI3K/AKT pathway, regulated by downstream signaling effectors such
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as PTEN, mTOR, and NFkB contributes to the inhibition of apoptosis [33].
(Figure 3,4)

RTK
e.g. HER2, FGFR1, IGFIR)
Pip3 PIP3 PIP3 PIP3
PIP PYP S PDKI AKT\\ 5
e WA gy,
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( AKT ) mTORC2 +——
,\/I)Mm/\ e =~
Ipatasertib l /
Buparlisib P
Dual PI3K/mTOR inhibitors ::L:"l::" S6K
PQR309 N
LY3023414 CH5132799 /

Gedatolisib SF1126 /

Growth proliferation
and oncogenesis

Figure 3 PI3K/AKT pathway [38]

2. The MAPK pathway starts with SH2 domain binding with phosphorylated-
RTK. The SH3 domain, connected to the SH2 domain by non-functioning
adaptor protein Grb2, activates Ras-GEF (SOS). SOS then replaces GDP
from inactivated Ras in the membrane with GTP and turns into activated
Ras. Ras activates Raf, which is then phosphorylated and turned into MAP
kinase kinase (Mek) and MAP kinase (Erk) consecutively. The activation of

MAPK pathway results in cell growth and differentiation [39].
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As shown in the Figure 5 below, Rb or retinoblastoma, a tumor suppressor
protein, binds with E2F to prevent gene transcription. However, CDK4/6 can bind to
CyclinD1 and together hyperphosphorylated Rb and lead to cell cycle progression.
This process contributed to the resistance to anti-estrogens. Fortunately, Palbociclib,
a CDK4/6 inhibitor, is developed and can be used in combination with fulvestrant to

treat ER+ breast cancer patients [4].

Fig. 4 The PIK/AKUeTOR pathway and the cell cycle pathway have been shown to cross-talk with the ER pathway, leading to estrogen-independent ER activation and contributing to
endocrine resistance. Inbibitons of both pathways have shown clinical benefit when used im combination with an endocrine hackbone.

Figure 5 The PI3k/Akt/mTOR and the cell cycle pathway contributing to endocrine

resistance [4]

2.6 Metastasis

Metastasis is a process that starts from epithelial-mesenchymal transition

(EMT),
local tissue invasion (ECM degradation), intravasation to the blood vessels, homing in
the vessels, extravasation to other tissues, and metastatic niche formation at the new
site [40].

Epithelial-mesenchymal transition (EMT) is a cellular process important in
metastasis. Cells lose their epithelial phenotypes and gain more mesenchymal
phenotypes. The monolayer sheet cells initiate mobilization through EMT. This
process is associated with downregulations of epithelial cell markers like E-cadherin

& occludins and upregulations of mesenchymal markers such as vimentin and N-
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cadherin. Transcription factors like Snail, Twist, and Zebl1/2 are also known as
regulators of the process [9]. Finally, EMT leads to invasion, migration, metabolic
reprogramming, and apoptotic resistance [41].

Matrix — metalloproteinases  (MMPs)  correlate  with  metastasis  and
aggressiveness of breast cancer cells. Especially MMP-9, it lyses type IV collagen and
gelatin, which are the components of the extracellular matrix (ECM) and basement
membrane and leads to metastasis [10]. Once the ECM is destroyed, CXCR4 becomes
the important mediator to metastasis. CXCR4 binds with stromal cell-derived factor-1
(SDF-1 or CXCL12) and induces actin polymerization, which causes pseudopodia and
leads to metastasis [11].

MCF-7 cells, wild-type ER-positive cells, lived in tightly packed cells and had
high levels of E-cadherin (CDH-1, the epithelial molecule). MCF-7/LCCY cells are
more spindle in shape, have pseudopodia, and highly expressed vimentin (VIM) and
Snail (mesenchymal biomarkers), which were the characters of mesenchymal cell
type [30]. These changes show that the endocrine-resistant breast cancer cells
underwent EMT changes [30].

Wnt/B-catenin pathway is also a vital pathway controlling breast cancer
progression. The pathway regulates epithelial-mesenchymal transition (EMT). EMT
associated with primary and metastatic tumors [12]. The Wnt pathway gene
expression also upregulates cell proliferation, invasion and metastasis, and
angiogenesis. Furthermore, endocrine-resistant breast cancer cells also exhibit
overexpression of Wnt-responsive genes [12]. Moreover, higher metastasis of breast
cancers to the lung and brain is higher if the patients are identified by the Wnt/pB-

catenin classifier (Figure 6) [13].
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Figure 6 Wnt signaling in triple-negative breast cancer [13]

2.7 Palbociclib

Palbociclib, an orally selective CDK4/6 inhibitor, is developed and used in
combination with fulvestrant to treat ER+ breast cancer patients [4]. The indications
are patients with advanced or metastatic hormone receptor-positive patients with
HER2-negative in pre-menopausal women or men with the progression of the disease
after an endocrine therapy (used in combination with fulvestrant) ([42]. Palbociclib
combined with fulvestrant showed a longer progression-free survival (PFS) rate than
fulvestrant alone [43]. Another approved indication is in advanced or metastatic HR-
positive and HER2-negative breast cancer in post-menopausal women or men as an
initial endocrine-based therapy (combined with an aromatase inhibitor) [42].
Palbociclib combined with letrozole improved PFS compared to letrozole alone [44].
Currently, there are clinical trials using the inhibitor in other breast cancer subtypes
(HER2-positive and triple-negative) and combinations with other targeted therapies
[42, 44]. Myelotoxicity is seen in patients after receiving palbociclib, but it is well
described and could be easily managed through dose reductions [14]. Abemaciclib,
another CDK4/6 inhibitor, was combined with fulvestrant and trastuzumab. This
combination demonstrated longer PFS compared with trastuzumab and
chemotherapy in HR and HER2-positive metastatic breast cancer patients and also

better anticancer activity in vitro and in vivo [14, 45]. Moreover, a synergistic effect is
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seen when combining abemaciclib with HER2-directed therapies, especially in
resistant HER2-positive breast cancer in transgenic mouse models [15]. CDK4/6
inhibitor decreased Rb phosphorylation and TSC2 phosphorylation and partially
attenuated mTORC1 activity. This effect leads to feedback inhibition of upstream

EGFR family kinases and delays tumor recurrence [15].

2.8 Lapatinib

Breast cancer with HER2 overexpression tends to be more aggressive, but with
the development of HER2-targeted therapy, the HER2 subtype prognosis is better
than before [1, 23]. Lapatinib is an oral reversible dual tyrosine kinase inhibitor that
blocks HER1 and HER2 tyrosine kinase activity by binding to the ATP-binding site of
the intracellular domain of the receptor such as Raf, PI3K, and PLC1 proteins and
resulting in the inhibition of downstream signaling cascades — MAPK;, PI3K/AKT, and
PLC pathways. Thus, tumor cell growth is suppressed [16, 46]. In addition, lapatinib
activates p38 MAPK, a class of MAPK that responds to stress stimuli and promotes
cell killing in G1 phase, downregulates anti-apoptotic protein Bcl2 (a mediator in
MAPK pathway), and reduces expression of surviving, which is an apoptosis inhibitor
protein through PI3K/AKT pathway [36, 47]. In cutaneous squamous cell carcinoma
(cSCO), lapatinib enhanced apoptosis of human cSCC cell lines and the cSCC cell
cycle was arrested in G2/M phase [17]. Lapatinib also interrupted PI3K/AKT/mTOR
pathway and decreased EMT via Wnt/ErK/PI3K-AKT pathway in human cSCC cells
[17].

The most common side effect is diarrhea which is typically well tolerated.
Lapatinib has been approved since 2010 for post-menopausal women with HR-
positive and HER2-positive metastatic breast cancer in combination with letrozole
[16]. Another indication is for patients with advanced or metastatic breast cancer with
HER2 overexpression who progressed after an anthracycline, a taxane, and

trastuzumab (in combination with capecitabine) [16].



17

2.9 Prior clinical trials

The eLECTRA trial (Study of the Efficacy and Safety of Letrozole Combined
with Trastuzumab in Patients with MBC), the TANDEM trial (Trastuzumab in Dual HER2
ER-Positive MBQC), and the EGF30008 trial demonstrated that combining HER2-targeted
therapy to an Al resulted in clinical benefit [19-21]. The phase 2 monarcHER trial
showed that in patients with advanced HR-positive and HER2-positive breast cancer
patients, combining abemaciclib plus trastuzumab plus fulvestrant resulted in a
better progression-free survival rate than chemotherapy plus trastuzumab with safe

tolerability [22].

2.10 Rationale of this study: Combining CDK4/6 inhibitor and HER2-targeted
therapy in endocrine-resistant breast cancer cells

ER and HER2 signaling interact with each other through many pathways, and
co-expression of the two receptors resulted in resistance to hormonal therapy [48].
Targeting multiple pathways simultaneously may improve anti-cancer activity [49].
Chemotherapy’s side effects are not as well tolerated as targeted therapy, so
palbociclib combined with fulvestrant is used in endocrine-resistant breast cancer
patients [42]. In MCF-7/LCC2 and MCF-7/LCC9 cell lines, HER2 and its downstream
signaling proteins were increased compared to MCF-7 wild-type cell line, and the
levels were similar to SKBR3 (HER2 overexpressed) cell line (Figure 1) [5]. Thus,
adding lapatinib, an oral dual tyrosine kinase inhibitor that blocks HER1 and HER2
tyrosine kinase activity [16], could potentially suppress tumor cell growth. In HPV-
negative head and neck squamous cell carcinoma (HNSCC), simultaneous inhibition
of RB1 phosphorylation with palbociclib and EGFR activity with lapatinib resulted in
synergistic inhibitory effects on the HNSCC cells proliferation and suppressed ERK1/2
phosphorylation [18]. Prior clinical trials in HR+ and HER+ breast cancer patients have
shown that combining HER2-targeted therapy with an Al resulted in clinical benefits
[19-21]. The phase 2 monarcHER trial showed that in patients with advanced HR-
positive and HER2-positive breast cancer patients, combining abemaciclib plus

trastuzumab plus fulvestrant resulted in a better progression-free survival rate than
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chemotherapy plus trastuzumab [22]. However, clinical use of CDK4/6 inhibitor and
HER2-targeted therapy in endocrine-resistant breast cancer patients whose tumors
overexpressed HER-2 after resistance to endocrine therapy has not been included in
any clinical guidelines and MCF-7/LCC2 and MCF-7/LCC9 cells do resemble these

patients.

From the literature reviews above, a potential research gap could be
explored between the combination of lapatinib and palbociclib in endocrine-

resistant breast cancer cells, especially MCF-7/LCC9 cells.

® The combination of lapatinib and palbociclib could potentially inhibit
HER2 signaling pathway (tamoxifen-resistant mechanism) in the
endocrine-resistant cell lines.

® The combination of lapatinib and palbociclib could inhibit the EMT

process (cell invasion) in endocrine-resistant cell lines.



CHAPTER Il MATERIALS AND METHODS

3.1 Materials

Cell lines
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MCF-7 wild type, MCF-7/LCC2 (tamoxifen-resistant breast cancer cell) and

MCF-7/LCC9 (tamoxifen and fulvestrant-resistant breast cancer cell) from

Dr. Robert Clarke (Georgetown University Medical Center, Washington, DC,

USA)

Drug

Lapatinib 5 g (abcam) and Palbociclib 5 g (abcam)

Chemicals

Minimum Essential Medium (MEM) (Gibco, USA)
Penicillin-streptomycin (Gibco, USA)

Fetal bovine serum (FBS) (HyClone, USA)

Amphotericin B (Gibco, USA)

0.25% trypsin/EDTA (Gibco, USA)

0.4% trypan blue dye (Gibco, USA)

Improved MEM (Gibco, USA)

MEM Non-Essential Amino Acids (MEM NEAA) (Gibco, USA)
Thiazolyl Blue Tetrazolium Bromide (MTT) (Sigma, USA)
PBS

Equipments

CO2 incubator (Thermo forma, USA)
Lamina flow hood (ESSCO ,USA)
Microplate reader (Perkin Elmer, Victor3, USA)

pH meter (CG842 Schott, Scientific Promotion, Co., Ltd., Japan)

Autopipette (BRAND., Germany) and Serological pipette (Gilson, USA)

Centrifuge (Hettich, USA)

Vortex mixer (Scientific Industries, USA)

Gel electrophoresis (Bio-Rad, USA), thermocycler machine (Eppendorf,

USA)
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- Microscope (ECLIPSE TS100, Hollywood International, Co., Thailand)

- 96 and 6-well culture plates (Corning, USA)

3.2 Methods

3.2.1 Cell preparation

Prepared MCF-7, MCF-7/LCC2, and MCF-7/LCC9 cells in Minimum Essential
Media (MEM) which was added with 5% fetal bovine serum (FBS), 1% penicillin &
streptomycin and Amphotericin B. The cells were cultured in T25 flasks and put in
the incubator which was controlled in a 5% CO, gas and 37°C environment. Media
was changed routinely every 2-3 days. When approximately 80% of cell density was

seen, cells were subcultured into a new passage.

3.2.2 Drugs preparation

Lapatinib and palbociclib, pure compounds, were dissolved in DMSO into a
stock solution at 10 mM concentration, and the stock solution was kept at -20°C.
When the drug was going to be used, it would be dissolved in complete media to

get the specified concentrations.

3.2.3 Cell Viability assay (MTT assay)

1. Cells were cultured until 70-80% density and seeded into a 96-well culture
plate with 5,000 cells per well or 50,000 cells per ml.

2. The plate was then incubated for 18 hours in an FBS-free media.

3. The cells were treated with lapatinib or palbociclib at 0-50 uM, and left for

48 hours. 4. Then, the investigator added 10ul of thiazolyl blue tetrazolium

bromide (MTT) per well and left for 4 hours.

5. The investigator then removed the media and formazan crystals were seen

and added with DMSO.

6. The plates were read by a microplate reader at 570 nm absorbance to find

out IC50. 7. Cell viability was calculated by the formula below and IC50 was

calculated by GraphPad Prism program which required a series of drug
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concentrations and cell proliferation percentages to plot x-y by linear

regression. IC50 was then estimated using the plotted straight line.

Mean OD of treated cells

Percentage of proliferation = Moan OD of untreated colls x 100

For the combination of lapatinib and palbociclib, two drugs will be combined
in @ non-constant ratio of concentrations below IC50 to determine the combined
cytotoxic effect. Then, its potency will be calculated by the CompuSyn program
which uses the Chou-Talalay method. The result is combination index (Cl): CI = 1
means additive effect, Cl < 1 means synergism, and Cl > 1 shows antagonistic effect

in each drug combination.

3.2.4 Matrigel invasion assay

Matrigel assay is a functional assay for studying the ability of cell invasion.

1. The upper chambers of a transwell were coated with matrigel and
incubated for 24 hours.

2. MCF7/LCCY cells at the density of 50,000 cells/well were added to upper
chambers in serum-free media, but lower chambers contained 5% serum
media in 24-well plates.

3. Non-toxic concentrations (at two concentrations lower than IC50 of both
drugs and two combined constant ratio concentrations at concentrations
below IC50) of lapatinib and/or palbociclib solutions were added and
then cells were incubated for 48 hours.

4. Next, the investigator scraped off the non-invaded cells from the upper
chambers.

5. Fixed the invasive cells with 4% formaldehyde and stained with crystal
violet dye.

6. Counted the invaded cells under a microscope (25 random fields). Cell

invasion was calculated by the formula below.
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Percentage of invasion

Number of cells invading 22atrigel (Drug solution) 100
= X

Number of cells invading 22atrigel (Control)

3.2.5 Western Blot Analysis

1. Cells were cultured in 6-well plates with different drug concentrations (two
concentrations lower than IC50 of both drugs and two combined constant ratios at
concentrations below IC50).

2. The western blot analysis procedure started with cell extraction. The cells
were lysed by lysis buffer containing proteinase inhibitor cocktails.

3. The protein extracts were then loaded into acrylamide gels for gel

electrophoresis

4. Gels were then transferred onto a nitrocellulose membrane.

5. The membrane blots were blocked by the blocking buffer (0.1% Tween 20

and 5% non-fat milk powder in Tris-buffered saline (TBS)).

6. Blots were incubated with primary antibodies for AKT, HER2, ERK, NCoA3,
CyclinD1, and EMT markers (E-cadherin, Snail, and Vimentin) in 5% BSA in TBST buffer
overnight (18-21 hours) at 4°C. GAPDH will be used as a loading control for every
protein.

7. The membranes were washed three times with TBST and incubated with

the secondary antibody.

8. Immunoblots were developed using ECL western blotting substrate and

analyzed using a luminescent image analyzer.

3.3 Data Analysis and Statistics

Data analysis is demonstrated as mean and standard error from at least three
independent experiments, each experiment was done in triplicates and analyzed by
one-way ANOVA and Tukey post hoc test by GraphPad Prism 10. Microsoft Excel and
GraphPad Prism were used for data analysis and graph processing. The statistical

significance is accepted at P value < 0.05.
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The knowledge from this study would provide the preclinical data to support

the use of lapatinib with palbociclib in further clinical studies or clinical trials to treat

endocrine-resistant breast cancer. Lapatinib combined with palbociclib could be

used for patients with endocrine-resistant breast cancer who overexpressed HER2.

The quality of life of the patients could be improved.

3.5 Ethical Consideration

Ethical consideration was exempted from the Institutional Review Boards (IRB)

of the Faculty of Medicine, Chulalongkorn University (IRB Number: 419/66, COE

Number: 037/2023) since the experiments were performed only in human cell lines.

The cell lines are given by Dr. Robert Clarke (Georgetown University Medical Center,

Washington, DC, USA) and are not obtained directly from animals or humans.

3.6 Experimental Design: /n vitro experimental research

Cytotoxic activity
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CHAPTER IV RESULTS

4.1 The anti-proliferation effect of lapatinib and palbociclib

4.1.1 The anti-proliferation effect of lapatinib in hormone-receptor

positive (MCF-7) and endocrine-resistant (MCF-7/LCC2 and MCF-7/LCC9)

breast cancer cell lines

MCF-7, MCF-7/LCC2, and MCF-7LCC9 breast cancer cells were treated with
lapatinib (3.0-50.0 uM) for 48 hours. The cell viability was then investigated by MTT
assay. Laptinib potentially decreased cell viability in all breast cancer cell lines
(p<0.05) (Figure 7). The half inhibitory concentrations (ICs, values) of MCF-7, MCF-
7/LCC2, and MCF-7/LCCYO cells were 7.07+ 0.29, 7.96+0.15, and 8.20+0.05 pM,
respectively (Figure 7).
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Figure 7 Cell viability after lapatinib treatment for 48 hours in wild-type
hormone-receptor positive (MCF-7) and endocrine-resistant (MCF-7/LCC2 and MCF-

7/LCCY) breast cancer cell lines. Statistical significance levels are indicated as *p <
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0.05, **p < 0.01, and **p < 0.001 compared to vehicle control. Each value was

shown as mean + SEM from 3 independent experiments (N=3).

4.1.2 The anti-proliferation effect of palbociclib in hormone-receptor

positive (MCF-7) and endocrine-resistant (MCF-7/LCC2 and MCF-7/LCC9)

breast cancer cell lines

MCF-7, MCF-7/LCC2, and MCF-7LCC9 breast cancer cells were treated with
palbociclib (3.0-50.0 uM) for 48 hours. The cell viability was then investigated by MTT
assay. Palbociclib potentially decreased cell viability in all breast cancer cell lines
(p<0.05) (Figure 8). The half inhibitory concentrations (ICsy values) of MCF-7, MCF-
7/LCC2, and MCF-7/LCCY cells were 597+ 0.67, 1.19+0.09, and 3.90+0.20 pM,

respectively (Figure 8).

MCF-7 48 hr MCF-7/LCC2 48 hr
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Figure 8 Cell viability after palbociclib treatment for 48 hours in wild-type
hormone-receptor positive (MCF-7) and endocrine-resistant (MCF-7/LCC2 and MCF-

7/LCCY) breast cancer cell lines. Statistical significance levels are indicated as *p <
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0.05, **p < 0.01, and **p < 0.001 compared to vehicle control. Each value was

shown as mean + SEM from 3 independent experiments (N=3).

4.1.3 The combined effect of lapatinib and palbociclib in endocrine-

resistant (MCF-7/LCC2 and MCF-7/LCC9) breast cancer cell lines

After the calculation of ICs, values for each single drug, MCF-7/LCC2, and
MCF-7LCC9 breast cancer cells were treated with the combined lapatinib and
palbociclib in different concentrations (ICsy with 1Csq, 1Cso/2 with 1Cs0/2, 1Cs0/4 with
ICs0/4) for 48 hours. The cell viability was then investigated by MTT assay. The cell
viability of each drug combination is shown in Figure 9. In MCF-7/LCC2 cell lines,
combining lapatinib and palbociclib at the half inhibitory concentrations of both
drugs, resulted in the highest cytotoxic activity and is statistically significant
compared to the control vehicle. Even though lapatinib at very low concentrations
resulted in proliferative effects, combining lapatinib with palbociclib lowers that
effect, and combining it at ICs, still resulted in the highest cytotoxic activity (Figure
9).
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Figure 9 Cell viability after lapatinib and palbociclib treatment in different
drug combinations for 48 hours in endocrine-resistant (MCF-7/LCC2 and MCF-7/LCC9)
breast cancer cell lines. Statistical significance levels are indicated as *p < 0.05, **p <
0.01, and **p < 0.001 compared to vehicle control. Each value was shown as mean

+ SEM from 3 independent experiments (N=3).
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In MCF-7/LCC9 cell lines, lapatinib at very low concentrations also resulted in
proliferative effects, combining it with palbociclib lowers that effect, and combining it
at ICsy still resulted in the highest cytotoxic activity. Especially when combining
lapatinib and palbociclib at the half inhibitory concentrations of both drugs, the cell
viability was statistically significantly lower than those that were treated with ICs, of
palbociclib. This demonstrated that combining both drugs at ICs, concentrations
showed a synergistic effect and using a single drug alone (palbociclib is usually used

in these cell lines but not with lapatinib) cannot compete with the combination

(Figure 10).
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Figure 10 The combined effect of lapatinib and palbociclib in endocrine-
resistant (MCF-7/LCC2 and MCF-7/LCC9) breast cancer cell lines. The combination
index (Cl) was generated from CompuSyn based on the Chou-Talalay Method. The
graphs show combination index (Cl) analysis; synergism (Cl<1); additive effect (Cl=1),
and antagonism (CI>1). Combining lapatinib and palbociclib at the half inhibitory
concentrations of both drugs resulted in a synergistic effect (Cl<1) in both MCF-

7/LCC2 and MCF-7/LCC9 breast cancer cell lines.

4.2 The anti-invasive effect of lapatinib and palbociclib in endocrine-resistant
(MCF-7/LCC2 and MCF-7/LCC9) breast cancer cell lines

After the cell viability assay, the potential of combining both drugs was observed.
Anti-invasion activity (metastasis) was investigated. Cells were treated with non-toxic

concentrations (IC5y/2 and 1C5,/4) of every single drug and the combination of both
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drugs and put in the upper chambers of 28atrigel in an FBS-free (non-nutritious)
environment. The lower chambers contained FBS and cells were attracted to them.
All concentrations of either single or combined drugs could inhibit the invasion
activity, but the non-toxic concentrations (IC5,/2) of both drugs resulted in the
highest anti-invasion activity with the statistically significant level at p<0.01 in MCF-
7/LCCY breast cancer cell lines, while the same concentrations of a single drug alone
did not show significant anti-invasion characteristics. The relative cell invasion

percentage was reduced to 80.35% =+ 2.44 (Figure 11).
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Figure 11 Pictures of MCF-7/LCC9 breast cancer cells captured from a
microscope that were fixed in Matrigels to investigate the anti-invasive effect of
different drug concentrations of lapatinib and/or palbociclib. The graph
demonstrated the relative percentage of cell invasion compared to vehicle control in
each drug concentration. Combining lapatinib and palbociclib at the non-toxic
concentrations (IC50/2) of both drugs resulted in the highest anti-invasion activity in
MCF-7/LCC9 breast cancer cell lines. Statistical significance levels are indicated as **p
< 0.01 compared to vehicle control. Each value was shown as mean + SEM from 3

independent experiments (N=3).

4.3 Lapatinib combined with palbociclib decreased AKT signaling pathway and
EMT transcription factor

Western blot was performed after MTT assay and Matrigel assay to investigate
the underlying mechanism. MCF-7/LCC9 cells were treated with lapatinib and
palbociclib at different non-toxic concentrations (ICs,/2 and 1Cs,/4) (Figure 12). Either
lapatinib or palbociclib reduced the pAKT and Snail expression of both drugs.
However, the combination of both drugs resulted in the highest suppression of both
PAKT and Snail protein with statistical significance compared to control. Especially for
Snail protein, lapatinib at ICs,/2 combined with palbociclib at ICso/2  significantly
decreased protein expression when compared to lapatinib at 1Csy/2 alone. This

finding suggests that the combination of both drugs is superior to using a single drus.
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Figure 12 Western blots were performed to observe the amount of protein in
each drug treatment. pAKT, AKT, and Snail were investigated and the results are
interesting. The higher the concentrations of both drugs, the lower the expression of
each protein. Statistical significance levels are indicated as *p < 0.05 and **p < 0.01

compared to vehicle control. Each value was shown as mean + SEM from 3

independent experiments (N=3).

4.4 The combination effect of lapatinib and palbociclib on other signaling
proteins

Western blot was performed in MCF-7/LCC9 cells that were treated with
lapatinib and palbociclib at different non-toxic concentrations (ICs/2 and 1Cs0/4)
(Figure 13, 14, 15). The results of the combination effects in some proposed

signaling pathways were not significantly different as follows:
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For tamoxifen-resistance signaling pathway proteins — NCoA3 and CyclinD1,
the combination of lapatinib and palbociclib did not show potential inhibitory effects
on these signaling pathway (Figure 13).

For HER2 signaling pathway proteins (apart from AKT), pHER2 and pERK were
investigated. The combination of lapatinib and palbociclib did not show potential
inhibitory effects on these signaling pathways. (Figure 14).

For EMT pathway and invasion activity (apart from Snail), MMP9, and Vimentin
were investigated. The combination of lapatinib and palbociclib did not show

potential inhibitory effects on these signaling pathway (Figure 15).
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Figure 14 Western blots were performed to observe the amount of protein in

each drug treatment for HER2 signaling pathway. pHER2 and pERK were investigated.

Each value was shown as mean + SEM from independent experiments (N=2 for ERK

and N=1 for HER2).
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CHAPTER V DISCUSSION AND CONCLUSION

Luminal A breast cancer is hormone receptor-positive and the most common
subtype which can be treated with estrogen receptor inhibitors like tamoxifen or
aromatase inhibitors [1, 23]. However, many mechanisms can trigger endocrine
resistance in breast cancer patients. Growth factor receptors, such as HER2 and VEGF
(angiogenesis factor), also impact resistance to endocrine therapy [4]. HER2 activation
in endocrine-resistant breast cancer cells activates PI3K/AKT and MAPK/ERK pathways
[5]. The signaling pathways promote cell proliferation and survival [6]. In MCF-7/LCC2
(tamoxifen-resistant breast cancer) and MCF-7/LCC9 (tamoxifen and fulvestrant-
resistant breast cancer) cell lines, HER2 and its downstream signaling proteins such as
PAKT and pERK1/2 were increased when compared to wild-type MCF-7 cell line and
the levels were similar to SKBR3 (HER2 overexpressed) cell line [5]. Epithelial-
mesenchymal transition (EMT) is a cellular process necessary in metastasis. This
process is associated with downregulations of epithelial cell markers like E-cadherin
and upregulations of mesenchymal markers such as Vimentin and Snail [9].

Palbociclib, an orally selective CDK4/6 inhibitor, is developed and can be
used in combination with fulvestrant to treat endocrine-resistant breast cancer
patients [4]. Lapatinib is an oral dual tyrosine kinase inhibitor that blocks HER1 and
HER2 [16]. Lapatinib also interfered PI3K/AKT/mTOR pathway and reduced EMT via
Wnt/ERK/PI3K-AKT pathway in human cSCC cells [17]. In HPV-negative head and neck
squamous cell carcinoma (HNSCC), simultaneous inhibition of RB1 phosphorylation
with Palbociclib and EGFR activity with lapatinib resulted in synergistic inhibitory
effects on the HNSCC cells proliferation and suppressed ERK1/2 phosphorylation [18].
Prior clinical trials have shown that combining abemaciclib plus trastuzumab plus
fulvestrant resulted in a better progression-free survival rate than chemotherapy plus
trastuzumab [19-22]. However, clinical use of CDK4/6 inhibitor and HER2-targeted
therapy in endocrine-resistant breast cancer patients whose tumors overexpressed
HER2 after resistance to endocrine therapy has not been included in any clinical

guidelines.
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Therefore, in this study, the combination effects of lapatinib and palbociclib
were investigated in endocrine-resistant breast cancer cells that overexpressed HER2,
especially the MCF-7/LCC9 cell line.

First, we examine the cell viability of the wild-type MCF-7, MCF-7/LCC2, and
MCF-7/LCC9 breast cancer cells that were treated with either lapatinib or palbociclib
for 48 hours. Lapatinib potentially reduced cell viability in a single-digit micromolar
range. Even though very low concentrations of lapatinib resulted in proliferative
effects in MCF-7/LCC2, and MCF-7/LCC9 cells, its ICs is still less than ten micromolar
range which is considered a good candidate for clinical use. This could occur from
the inhibition of HER1 and HER2 activities and the activation of other pathways
through ER and HER2 crosstalk [48]. On the other hand, the proliferative effect of
lapatinib did not occur in the wild-type MCF-7 cells and could be from less
expression of HER2 signaling proteins and consequently, less crosstalk. Previous
studies demonstrated that dual HER2-targeted therapy overcame HER2 single therapy
in overall survival benefit [48]. Therefore, higher concentrations of lapatinib could
highly inhibit cell proliferation.

For palbociclib, the anti-proliferative effect was high in the resistant cell lines
as expected, since it is one of the drugs widely used for endocrine-resistant breast
cancer patients. Its ICs, value is also less than ten micromolar range for all cell lines,
wild-type MCF-7, MCF-7/LCC2, and MCF-7/LCC9 cells. Surprisingly, the ICs, value of
palbociclib for wild-type MCF-7 is higher than both endocrine-resistant cell lines and
this could be from the least proliferative nature of the cells, resulting in less CDK4/6
activation and less target-drug bindins.

The combined cytotoxic activity in resistant cell lines indicated that their
effects were cumulative when used at concentrations below the ICs,. However, when
the two drugs were combined at the ICs,, they displayed a more potent cytotoxic
effect on both MCF-7/LCC2 and MCF-7/LCC9 resistant cells, showing a synergistic
effect. Consequently, the combination of these two drugs offers increased anti-
proliferative effects in endocrine-resistant breast cancer cells.

Then, the anti-invasive property was observed for both drugs through the

Matrigel invasion assay. All concentrations of either single or combined drugs could
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inhibit the invasion activity, but the non-toxic concentrations (IC50/2) of both drugs
resulted in the highest anti-invasion activity with statistically significant level at
p<0.01 in MCF-7/LCC9 breast cancer cells, while the same concentrations of a single
drug alone did not show significant anti-invasive characteristics. Therefore, combining
these two drugs resulted in additional anti-invasive effects in endocrine-resistant
breast cancer cells.

Phosphorylated AKT enhances the expression of mesenchymal markers and
promotes epithelial-mesenchymal transition (EMT) in breast cancer cells that
overexpress HER2 [50]. Typically, glycogen synthase kinase-3 beta (GSK3B) induces
Snail to be unstabilized and leads to reduction of EMT pathway (Figure 16). pAKT
phosphorylate and inactivate GSK3, resulting in Snail stabilization and increasing in
breast cancer invasion activity [51]. Palbociclib, when wused at non-toxic
concentrations, can reduce phosphorylated AKT, but the combination of lapatinib
and palbociclib greatly inhibited phosphorylated AKT. The level of Snail protein, a
transcription factor that induces EMT, also decreased when the cells were treated
with each drug individually. But when lapatinib and palbociclib were combined, they
significantly suppressed Snail expression more effectively than when either drug was
used alone. As a result, the combination of lapatinib and palbociclib effectively
decreased Snail and phosphorylated AKT proteins in MCF-7/LCC9 cells, and this
effect is in a concentration-dependent manner.

We did not observe the significant changes in other signaling proteins which
are not in the AKT/GSK3B/Snail pathway. Therefore, that could be the reason behind
those negative results, including NCoA3 and CyclinD1- the tamoxifen-resistance
pathway, ERK and HER2 which are the upstreams family of HERZ2 signaling pathway
and are not directly controlled by AKT, and also the invasion proteins — MMP9 and
vimentin. GSK3 usually controls MMP7 [52], another MMP so the MMP9 was not
significantly suppressed. Snail overexpression also results in induction of MMP7
transcription [53]. MMP-7, the MMP in GSK3B/Snail pathway [53], should be further
investigated.

A synergistic effect is seen when combining abemaciclib with HER2-directed

therapies, especially in resistant HER2-positive breast cancer in transgenic mouse
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models (15). CDK4/6 inhibitor decreased Rb phosphorylation and TSC2
phosphorylation and partially attenuated mTORC1 activity. This effect leads to
feedback inhibition of upstream EGFR family kinases and delays tumor recurrence
(15). Lapatinib also interrupted PI3K/AKT/mTOR pathway and decreased EMT via
Wnt/ErK/PI3K-AKT pathway in human cSCC cells (17). Consequently, these two drugs
modified the AKT pathway, leading to a reduction in EMT and cell invasion, which
has been validated by our findings.

From the research question, objectives, and hypothesis, all written problems
have been addressed in this study. Combining lapatinib with palbociclib resulted in
the synergistic anti-proliferation effect using the concentrations at ICs, of both drugs
and the anti-invasive effect using non-toxic concentrations. The study also provides
the underlying mechanism of the anti-invasive property of the combination, which is
the regulation via the significant reduction of AKT signaling pathway and
consequently decreased Snail, an important transcription factor of the EMT process
in endocrine-resistant breast cancer cells. However, we did not observe the inhibitory
effects of the combined treatment on HER2, ERK signaling, and tamoxifen-resistant
molecules including CyclinD1 and NCoA3 as hypothesized. Therefore, we
demonstrated the proposed mechanism (Figure 16) of the combination of these
drugs and indicated the potential of the combination in further animal or clinical
trials.

In summary, the combination of lapatinib and palbociclib (an anti-HER2 agent
and CDK4/6 inhibitor), when used to treat endocrine-resistant breast cancer cells with
HER2 overexpression after hormonal therapy resistance, offers promising preliminary
data for clinical trials involving endocrine-resistant breast cancer patients. This is
based on our research findings, which demonstrate superior anti-proliferative and
anti-invasive effects, as well as a significant reduction in the EMT transcription factor

and AKT levels when compared to using each drug individually.
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