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# # 6271056823 : MAJOR CHEMISTRY

KEYWORD: DNA, RNA, Templated reaction, Combinatorial synthesis, Styryl dyes
Kriangsak Faikhruea : DNA-TEMPLATED SYNTHESIS OF CATIONIC STYRYL DYES. Advisor: Prof. TIRAYUT
VILAIVAN, Ph.D.

Styryl dye is a class of pi-conjugated dye that shows several desirable optical properties, such as
high photostability, solvatochromic characteristics, and high fluorescence quantum vyields. Due to the
responsiveness to the binding with the target biomolecules such as nucleic acids, some of these dyes have
been widely employed for biomolecular detection and cellular imaging. These dyes are typically synthesized
via an aldol-type reaction between a methyl heterocycle and an aromatic aldehyde in the presence of acid or
base as a catalyst. However, the conventional method of synthesizing these dyes is inefficient, time-
consuming, and involves the use of excessive chemicals, as each dye must be prepared and isolated before
evaluating its optical properties. DNA-templated synthesis has recently emerged as a powerful approach for
synthesizing different types of organic molecules. This method allows for the rapid and convenient synthesis
of diverse targets at microscopic scales, which is crucial during the discovery phase. The objective of this study
is to develop a novel DNA-templated reaction for synthesizing cationic styryl cyanine dyes. The key to the
success of the proposed method relies on the electrostatic binding of two cationic coupling partners (the
heterocycles and aromatic aldehydes) to the DNA template. This brings the two coupling partners in close
proximity and proper orientation for the reaction, resulting in an accelerated formation of the dye. The
concept of the DNA-templated synthesis strategy was proven, and it successfully produced the desired styryl
dyes from a wide range of substrates in a combinatorial fashion. The success of the dye formation was
confirmed by UV-Vis and fluorescence spectroscopy, and in some cases, NMR spectroscopy and mass
spectrometry. Importantly, the formation and responsiveness of these dyes to the DNA template, which also
acted as the nucleic acid target, could be easily observed in situ. By utilizing different DNA templates and
substrates, it was possible to identify new dyes that are responsive to a specific type of DNA template. Lastly,
the templated styryl dye synthesis was successfully performed within live Hela cells. However, nuclease
digestion experiments confirm that the cellular RNA acted as the template instead of DNA probably due to the
inaccessibility of the latter. Overall, this approach holds potential as a valuable tool for synthesizing and

screening dyes that specifically target various types of nucleic acids or organelles within cells.

Field of Study: Chemistry Student's Signature .......cevevevieieininns
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CHAPTER |
INTRODUCTION

1.1 Background of nucleic acid staining dyes
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Figure 1.1 Nucleic acid structures.

Nucleic acids (Figure 1.1) are complex biomolecules that play a fundamental
role in the storage and expression of genetic information. They are present in all
living organisms, including plants, animals, and microorganisms. There are two
primary types of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA). Both DNA and RNA are crucial for the transfer and expression of genetic
information. However, there are fundamental differences in the structures and
functions between the two. DNA acts as a genetic material, carrying the necessary
instructions for protein production (via mRNA) and the overall development and
functioning of an organism. On the other hand, RNA plays a critical role in converting

the genetic information stored in DNA into functional proteins not only by acting as a
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template (MRNA) but also involving in the machinery necessary for the protein
synthesis (tRNA, rRNA)." In addition, RNA also plays important regulatory roles in the

protein production.”

Nucleic acid detection is essential for various applications, enabling the
identification, diagnosis, monitoring, and understanding of genetic information,
diseases, and biological processes. It provides valuable insights that help improve
human health, advance scientific knowledge, and support decision-making in various
fields, such as medical diagnostics,3 research,” forensics,” and infectious disease

monitoring.’

In general, commonly used techniques for nucleic acid detection can be
categorized into the Polymerase Chain Reaction (PCR)’ and related isothermal
amplification techniques, such as loop-mediated isothermal amplification (LAMP) and
recombinase polymerase amplification (RPA) whereby the sequence of the template
is read by the polymerase enzymes.® Another important technique is the Nucleic
Acid Hybridization,” including Nucleic Acid Chips/Beads Arrays,'”® whereby the
sequence is read by specific hybridization with a specific nucleic acid probe. Finally,
in Nucleic Acid Sequencing,'' the sequence of the nucleic acid can be read by the
use of polymerase and chain-terminating ddNTP or by measuring the electrical signal
change upon passing the nucleic acid strand through a nanopore channel.’? Each
strategy still have limitation in terms of practicality, sensitivity, specificity not only
among different related nucleic acid targets but also the ability to withstand
interference when applied to biological substances such as serum, saliva, urine, and

cell extracts.'

Nucleic acid stains are dyes that can bind to nucleic acids and show

detectable optical responses, mostly in the form of fluorescence. Due to their
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simplicity, speed, visual detection capabilities, versatility, cost-effectiveness,
compatibility with other techniques, non-destructive nature, and high sensitivity,
several dyes have long been used as an important tool for the detection and
visualization of nucleic acids. These staining dyes allow for rapid qualitative analysis,
direct visual readout, and broad applicability across different sample types, both
isolated nucleic acids and cells/tissues. While they may not provide the same level
of specificity or quantification as some advanced methods, nucleic acid staining
techniques are valuable tools in research, diagnostics, and education settings,
providing accessible and efficient detection of nucleic acids. In addition, they can be
used as a purely visualizing agent in combination with a more specific technique

such as PCR/LAMP or probe-based hybridization.*

Different types of organic dyes have the capability to bind to nucleic acids,
leading to unique optical responses that can be utilized for the identification of
specific sequences, abnormalities, and structural changes in nucleic acids both in
vitro and within the biological systems. These optical responses may serve both

qualitative and quantitative purposes. Examples of commercially available staining

15 16, 17
l,

dyes that exhibit strong fluorescence signals (such as DAPI,*> ethidium bromide,
and SYBR® Green 1" ') or color changes (like methylene blue®® and crystal violet®!)

in the presence of nucleic acids are shown in Figure 1.2.
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Figure 1.2 Commercial dyes for nucleic acid detection.

However, many of these commercially available staining dyes have
concerning issues with mutagenicity and toxicity, thus posing risks to researchers and
the environment. Moreover, these dyes are often expensive and may lack certain
desirable properties, such as specific excitation/emission wavelengths and selectivity
for different nucleic acid structures or sequences.”” Consequently, there is a
persistent challenge to find new nucleic acid staining agents that possess lower

toxicity, adjustable optical properties, and other desirable characteristics.

Among the various nucleic acid stains, cationic planar and conjugated organic
molecules are particularly promising candidates. These molecules exhibit inherent
binding affinity towards nucleic acids and offer optical properties that can be easily
adjusted by modifying their molecular structure. This tunability allows researchers to
fine-tune the photonic and electronic properties of these molecules, making them

attractive alternatives in the search for novel nucleic acid staining agents.?
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1.2 Styryl dyes

Styryl dyes are a generic class of conjugated organic dyes relating to the well-
known cyanine dyes. Cyanine dyes belong to a subgroup called polymethines, which
have an odd number of methine groups connecting between two nitrogen atoms as
end groups that can be part of heteroaromatic rings.?* On the other hand, styryl dyes
consist of two aromatic parts with complementary electronic properties linking
together through one or more conjugated double bonds with even number of
methine groups.”” The majority of styryl dyes have an electron-rich aromatic ring
system connected to an electron-deficient heteroaromatic ring system via a C=C
connector (Ar-CH=CH-) (a styryl group), hence the origin of the name “styryl dye”

(Figure 1.3).

Polymethine dyes:
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Figure 1.3 General structure of polymethine dyes, examples of symmetrical and

unsymmetrical cyanine dyes and generic designs of styryl dyes.
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Optical properties of styryl dyes are generally highly sensitive to changes in
their environment, such as solvent polarity,® pH or aggregation states. They typically
exhibit visible color and/or fluorescence changes even with slight alterations in the
surrounding environment. Moreover, styryl dyes demonstrate remarkable
photostability and exhibit a high fluorescence quantum yield (@) under the right
environment. These dyes have found extensive use in the photographic industry as
sensitizers and additives.?” ? Additionally, they have great potential in various other
applications such as molecular photovoltaic cells,” optical molecular systems,*
and artificial photosynthesis.® In recent years, styryl dyes have been employed as
fluorescent probes in numerous analytes, particularly for detecting peroxidase
activities,*? specific ions,” or biomolecules.® They have also been utilized as

fluorescent probes for nucleic acids sensing in various applications.**

1.2.1 Optical properties and mechanism of modulation

Styryl dyes have an asymmetrical donor-Tt-acceptor structure, often referred
to as a push-pull system, which contributes to their remarkable optical
characteristics. These dyes exhibit significant changes in their optical properties
depending on the surrounding environment due to their dipolar nature. For example,
the absorption and emission wavelengths and intensities of the same dye are
different in different solvents. Such solvatochromic behavior can be understood by
considering dipole moments of the dye. If the excited state possesses a higher dipole
moment than the ground state, it is preferentially stabilized by more polar solvents.
As a result, the energy gap between the two states became narrows, leading to a

shift in the absorption and emission spectra towards the red region.’
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Styryl dyes also possess a unique characteristic known as molecular rotor,
whereby they can adopt twisted states by rotating one segment of the molecule
relative to the rest of the molecule in the excited state. This property is particularly
observed in a class of fluorophores called twisted intramolecular charge transfer
(TICT) complexes. TICT refers to a phenomenon known as electron transfer, which
takes place when molecules are excited by light. Typically, these molecules
comprise a donor part connected to an acceptor part.” When a photon is absorbed,
a molecular rotor can return to the ground state either from the locally energized
(LE) state or from the twisted state. The energy gaps between the LE and twisted
states and the ground state are significantly different. De-excitation from the twisted
state leads to either a red-shifted emission wavelength or no emission at all.
However, if the molecular motion is restricted, such as through binding to a host
molecule, the non-radiative relaxation pathway is hindered, resulting in higher

fluorescent quantum yields (Figure 1.4).”
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The mechanism behind the fluorescence enhancement of styryl dyes in the
presence of nucleic acids can be attributed to the restriction in conformational
freedom of the dye molecules. When the styryl dye molecules intercalate or insert
into the grooves of DNA with matching dimension, their conformational flexibility
becomes limited. This restricted mobility prevents the non-radiative relaxation
pathway for the excited dye molecules, leading to an increase in fluorescence

emission.”

1.2.2 Styryl dyes for nucleic acid detection

As previously mentioned, styryl dyes have found extensive use as staining
agents for nucleic acid detection.™* Here, a selection of recent literature published
within the past five years that utilizes styryl dyes for the purpose of nucleic acid
staining is presented. In 2018, Wang et al.*’ published a study in which they
introduced two styryl dyes based on the benzothiazolium system to visualize
nucleoli and chromosomes in real-time during the cell cycle. Through molecular
simulation studies, they proposed that the dye molecules bind to dsDNA at
hydrophobic minor grooves, with additional stabilization occurring through hydrogen
bonding between the dye and nucleobases. The simulation also suggested that the
dye could potentially bind to dsRNA at hydrophobic major grooves through m-cation

interactions and hydrogen bonding (Figure 1.5).
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Figure 1.5 Visualization of nucleolus and chromosomes using co-staining with SYTO-
RNA and Hoechst 33342, respectively. Digest experiments performed using RNase and
DNase enzymes, emission analysis of probe 1 in viscous solution and in the presence
of nucleic acid, and models illustrating the interaction of probe 1 with DNA and RNA
fragments in Wang’s work. **

(Used with permission of Royal Society of Chemistry, from Red fluorescent probes for real-time imaging of the cell
cycle by dynamic monitoring of the nucleolus and chromosome, Wang, K.-N. Chao, X.-J. Liu, B. Zhou, D.-J. He, L.
Zheng, X.-H. Cao, Q. Tan, C.-P. Zhang, C. Mao, Z.-W. Chem. Commun. 2018, 54, 2635-2638.; permission conveyed

through Copyright Clearance Center, Inc.)

In 2020, Collot and co-workers® demonstrated improvement of the
eukaryotic cells plasma membrane (PM) staining properties of FM1-43, a known
probe, by modifying its structure (Figure 1.6). By making rational chemical
adjustments while preserving the core fluorophore and using suitable targeting
moieties, styryl dyes were transformed into efficient PM probes for bioimaging. Since
FM1-43 had limitations in its affinity and cationic accumulation, modifications were
made to eliminate the cationic nature, enhance hydrophobicity, and introduce
amphiphilic moieties for efficient plasma membrane targeting. Additionally, the
fluorophore was modified to extend its T-conjugation and shift the absorbance and

emission spectra. These modifications resulted in SP-468, a neutral zwitterionic dye
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with improved imaging properties, and SQ-535, which could be used in the red
channel with reduced bleedthough in the green channel. Unlike FM1-43 which
showed weak PM signal and intracellular staining, the new dyes efficiently stained
the PM in various mammalian cell lines, including primary neurons. Notably, the new
probes also showed excellent PM staining in fixed cells and brain slices. A newly
developed dye called SP-468, with its enhanced photostability and large Stokes shift,
enabled live neuronal super-resolution imaging using STED microscopy. Some of
these new dyes maintained their ability to stain the PM of plant cells, making them
versatile for both mammalian and plant experiments. This study emphasizes the
importance of designing molecular fluorescent probes that meet bioimaging

requirements.
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Figure 1.6 (A) Structural comparison of FM1-43 and the newly developed styryl
probes, SP-468 (Styrylpyridinium) and SQ-535 (Styryl Quinolinium), along with their
respective orientation within the plasma membrane. (B) Laser scanning confocal
imaging of plant cells (Nicotiana benthamiana) and live cells from Hela cell lines

stained with FM1-43 and SP-468 in Collot’s work. °*

(Reprinted (adapted) with permission from Collot, M.; Boutant, E.; Fam, K. T.; Danglot, L.; Klymchenko, A. S.
Molecular Tuning of Styryl Dyes Leads to Versatile and Efficient Plasma Membrane Probes for Cell and Tissue

Imaging. Bioconjugate Chem. 2020, 31 (3), 875-883. Copyright 2020 American Chemical Society.)
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In the same year, Saady et al.*’ also developed a quinolinium-based styryl
dyes that exhibited specific staining of nucleoli and cytoplasm without showing
toxicity. The dyes displayed higher affinity for rRNA compared to nuclear dsDNA. It
was hypothesized that the dyes bound to secondary/tertiary structures of rRNA,
which are partially double-stranded. However, in the case of nuclear dsDNA, the
presence of histones forming nucleosomes on the cellular DNA hindered the dye
binding, resulting in a lower fluorescent response. This observation highlights the
differential binding behavior of the dyes towards different nucleic acid targets and
provides insights into its selective staining properties that may not always reflect the

behavior in the isolated targets (Figure 1.7).
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Figure 1.7 Compound 12e exhibits binding to rRNA in cells in Saady’s work. ** (A)
Fluorescence signal of compound 12e is reduced in cells upon transcriptional
inhibition of RNA polymerase | using CX-5461 and BMH-21. (B) Stress granules formed
by arsenite treatment and labeled with anti-G3BP1 (green) do not exhibit co-

localization with compound 12e (white). DNA staining with Hoechst is shown in cyan.
(Reprinted from Saady, A. Varon, E. Jacob, A. Shav-Tal, Y. Fischer, B. Applying styryl quinolinium fluorescent

probes for imaging of ribosomal RNA in living cells. Dyes Pigm. 2020, 174, 107986. Copyright 2020, with permission

from Elsevier.)
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In yet another example, a series of monocationic styryl dyes were developed
by Cipor and co-workers in 2020.%* All dyes in this study exhibited moderate shifts in
UV/Vis spectra, increased fluorescence, sligsht changes in CD spectra, and minor
stabilization of DNA/RNA duplexes. The binding constants indicated a higher affinity
for dyes with larger condensed aromatic surfaces. Most dyes showed low
cytotoxicity, except for BZ-IND, which exhibited moderate cytotoxicity at micromolar
concentrations due to potential DNA/RNA intercalation. Most dyes localized with
mitochondria, but BZ-Se localized to lysosomes, and BZ-IND showed equal
distribution between mitochondria and lysosomes. This suggested different
mechanisms of action, but further experiments are still required to understand the

basis of such selectivity (Figure 1.8).
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Figure 1.8 Intracellular localization of O-PY, BZ-Se and BZ-IND in Cipor’s work.”

(Reprinted from Cipor, I. Kurutos, A. Dobrikov, G. M. Kamounah, F. S. Majhen, D. Nesti¢, D. Piantanida, I., Structure-
dependent mitochondria or lysosome-targeting styryl fluorophores bearing remarkable Stokes shift. Dyes Pigm.

2022, 206, 110626. Copyright 2022, with permission from Elsevier.)
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1.>* introduced new dicationic styryl dyes with

In 2022, Supabowornsathit et a
heteroaromatic cores (pyridinium, benzothiazolium, and quinolinium) to enhance
their binding interaction with nucleic acids. The dyes were modified with an
additional positive charge via a quaternary ammonium group attached to an
electron-rich aromatic ring. The optical properties and DNA binding of the dicationic
dyes were compared to their monocationic counterparts. The dicationic dyes
exhibited a bathochromic shift in absorption spectra and significant fluorescence
enhancement in the presence of dsDNA. They also show stronger affinity towards
dsDNA when compared to the corresponding monocationic dyes. Importantly, they
demonstrated improved sensitivity in  DNA detection, with detection limits
comparable to commercial dyes. The potential applications of these dicationic styryl
dyes in foodborne pathogen detection and cellular nucleic acid imaging had been

demonstrated. In agreement with previous works, cellular RNA was found to be the

primary target for cellular nucleic acid imaging (Figure 1.9).
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Figure 1.9 Applications of dicationic styryl dye (BT2+NEt,) for cellular nucleic acid
detection in Supabowornsathit’s work. **

(Reprinted from Supabowornsathit, K; Faikhruea, K; Ditmangklo, B.; Jaroenchuensiri, T.; Wongsuwan, S,;
Junpra-ob, S.; Choopara, I.; Palaga, T.; Aonbangkhen, C.; Somboonna, N.; Taechalertpaisarn, J.; Vilaivan, T.
Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci. Rep. 2022, 12 (1), 14250.

Copyright © 2022 with permission from Nature Portfolio)
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In 2023, two cationic cyanine-styryl derivatives, Styryl-QL and Styryl-BT, were
developed by Wangngae®* and were found to possess favorable optical properties
for bio-imaging. They exhibited acceptable fluorescence quantum yields and large
Stokes shifts. Styryl-QL displayed stronger intramolecular charge transfer (ICT)
compared to Styryl-BT, resulting in more red-shifted absorption spectra. The dyes
showed fluorescence enhancement only when bound to DNA, comparing with other
possible interferents highlighting their specificity towards DNA. Molecular docking
confirmed the importance of electrostatic interactions between the positively
charged dyes and the DNA phosphate backbone. These styryl dyes demonstrated
selective uptake by cancer cells and displayed antibacterial and anticancer

properties (Figure 1.10).
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Figure 1.10 Cationic styryl dyes for DNA labelling and selectivity toward cancer cells

in Wangngae’s work. >*

(Used with permission of Royal Society of Chemistry, from A. Cationic styryl dyes for DNA labelling and selectivity

toward cancer cells and Gram-negative bacteria, Wangngae, S. Ngivprom, U. Khrootkaew, T. Worakaensai, S. Lai, R.-

Y. Kamkaew, RSC Adv. 2023, 13 (3), 2115-2122.; permission conveyed through Copyright Clearance Center, Inc.)
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The optical properties change of styryl dyes in the presence of nucleic acid
might involve different aggregation states. In 2021, Ustimova et al. demonstrated the
formation of helical aggregates of bis(styryl) dyes in the presence of a DNA
template.” Three dimeric styryl pyridinium dyes with different substituents on the
phenyl moiety were synthesized and their interactions with calf thymus DNA (ct-DNA)
were investicated. The dyes containing the NMe, group exhibited a higher
fluorescence enhancement upon binding to DNA. At high concentrations (ligand-DNA
ratio = 0.6), these molecules formed aggregates within the minor groove of ct-DNA,
indicating by CD signal. Based on CD spectroscopic studies, it was proposed that the
bis(styryl) dye with an OMe substituent formed right-handed chiral helical dye
aggregates, while the dye with an NMe, group formed left-handed chiral aggregates.
These findings highlight the structural influence of substituents on the aggregation

behavior of styryl dyes and their interaction with DNA (Figure 1.11).
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Figure 1.11 Formation of helical aggregations by ctDNA in the presence of
Bis(styrylpyridinium dyes with OMe or/and NMe, substituents. >°

(Reprinted from Ustimova, M. A. Fedorov, Y. V. Tsvetkov, V. B. Tokarev, S. D. Shepel, N. A. Fedorova, O. A., Helical
aggregates of bis(styryl) dyes formed by DNA templating. J. Photochem. Photobiol, A 2021, 418, 113378.

Copyright 2021, with permission from Elsevier.)
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In another study by Zonji¢ in 2022, the binding and optical properties change
of styryl dyes with benzothiazole connecting to N-methylpiperazinylphenyl or N-
phenylpiperazinylphenyl scaffolds for various nucleic acid structures were
investigated.”® The introduction of methyl or phenyl groups to the piperazine unit
had a profound impact on the binding properties, affinities, spectroscopic responses,
and antiproliferative effects of the dyes, which N-phenylpiperazinylphenyl dyes
showed more prominent antiproliferative activity among various tumour cell lines
compared with N-methylpiperazinylphenyl dyes. Styryl dyes with N-methylpiperazine
substituents exhibited a preferential binding to the minor groove of AT-rich DNA
sequences, leading to increased fluorescence, significant stabilization of the double
helix, and positive induced circular dichroism spectra. These compounds also formed
complexes with G-quadruplex through T-7t stacking interactions with the top or
bottom G-tetrad. On the other hand, styryl dyes with N-phenylpiperazine
substituents bound to ds-polynucleotides through partial intercalation and exhibited
stronger stabilization of G-quadruplex compared to the methyl-substituted dyes.
However, the fluorescence responsiveness from N-methylpiperazinylphenyl styryl
dyes was very low. Furthermore, the dyes effectively penetrated cells and
accumulated in  the mitochondria, showing co-localization with standard
mitochondrial markers. The findings also suggested the possibility to develop styryl

dyes that show selectivity towards different nucleic acid templates (Figure 1.12).
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Figure 1.12 Styryl dyes with N-methylpiperazine and N-phenylpiperazine substituents
for targeting AT-rich and G-quadruplex DNA and cell staining. *®

(Reprinted from Zonji¢, I. Radi¢ Stojkovi¢, M. Crolatac, I.; Tomasi¢ Pai¢, A. Pseni¢nik, S. Vasilev, A. Kandinska, M.
Mondeshki, M. Baluschev, S. Landfester, K., Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine
Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorg. Chem. 2022, 127, 105999.

Copyright 2022, with permission from Elsevier.)

1.2.3 Combinatorial synthesis of styryl dyes for targeted nucleic acid
staining
The traditional approach for designing fluorescent sensors involves combining
fluorescence dye molecules with specially designed receptors for specific analytes.
The goal is to achieve the desired change in the fluorescence properties of the dye
when a recognition event occurs between the receptor and the analyte. Although
many fluorescent sensors have been successfully developed using this approach, it
requires great efforts in both sensor design, synthesis, evaluation and optimization.
Furthermore, these sensors are limited in their application to the specific analytes
that they were designed for, known as “Analyte Directed Sensors”.””*® Since such
sensors are designed for specific analytes, they may not be easily adaptable or

reconfigurable for detecting different substances. Modifying or expanding their
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capabilities to detect new analytes often requires significant redesign and re-
engineering. To overcome these limitations, the combinatorial approach offers a
promising alternative known as “Diversity Directed Sensors”.” This approach relies
on the development of an efficient synthetic route for generating a diverse range of
dyes. While combinatorial chemistry has been widely used in chemical biology and
medicinal/pharmaceutical fields to discover biologically active molecules or drug

candidates, its application to fluorescent dyes is still limited.

In 2003, Rosania et al.°> employed the combinatorial approach for discovering
fluorescent dyes that targeted specific organelles. By combining various aldehydes
and methyl pyridinium salts, they were able to create a diverse library of styryl dyes
that emitted a wide range of colors. Through screening with specific biological targets
such as DNA, RNA, proteins, or organelles without purification, it was found that 119
out of 276 fluorescent compounds localize to specific subcellular compartments (i.e.,
mitochondria, endoplasmic reticulum, vesicles, nucleoli, chromatin, cytoplasm, or
granules). Considering that the library compounds which were positively charged, it
was not unexpected that 64 out of 119 selected compounds localize specifically to
mitochondria. Hence, this study disclosed that combinatorial chemistry is a powerful

technique for the discovery of new organelle-targeted fluorescent dyes (Figure 1.13).
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(Reprinted (adapted) with permission from Rosania, G. R.; Lee, J. W, Ding, L; Yoon, H.-S; Chang, Y.-T.
Combinatorial Approach to Organelle-Targeted Fluorescent Library Based on the Styryl Scaffold J. Am. Chem. Soc.

2003, 125 (5), 1130-1131. Copyright 2003 American Chemical Society.)

In the same year, Lee et al.® utilized a combinatorial synthesis and cell-
based screening techniques to identify styryl dyes with new structural motifs for a
DNA sensor. They constructed a library of 855 different styryl dyes and identified 8
promising molecules for further investigation. One of these was ultimately identified
as a nuclear staining dye capable of penetrating cells, exhibiting a 13-fold increase in
fluorescence in the presence of DNA. The researchers demonstrated its application in
live-cell imaging. Subsequently, in 2006, the same research group developed styryl
dyes that were selective for RNA, enabling visualization of nuclear structure and

function within living cells.*® From a collection of 88 styryl dyes synthesized using the



34

combinatorial approach, the dyes demonstrating the highest nucleolar targeting
ability, intense fluorescence, minimal photobleaching, and minimal impact on cell
viability were selected. The investigation unveiled three novel styryl dyes suitable for
RNA imaging within living cells, showing fluorescence increase by 5.5-55 times in the

presence of RNA (Figure 1.14).
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Imaging Probes for Studying Nuclear Structure and Function. Chem. Biol. 2006, 13 (6), 615-623. Copyright 2006,

with permission from ELsevier.)
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1.3 DNA templated reaction

1.3.1 Conventional DNA-templated synthesis

DNA-templated synthesis (DTS) refers to a process where DNA molecules are
used as templates or scaffolds to guide the assembly of other molecules, such as
small organic compounds. It takes advantage of the specific base pairing properties of
DNA to direct the synthesis of desired structures or functional materials. The power
of DNA templated ligation reaction has long been extensively exploited in biological
fields.®®® Only recently that the concept of DNA-templated synthesis (DTS) has
attracted attention in the area of organic synthesis for some time due to its
advantageous features, including specificity, simplicity, rapidity, and cost-
effectiveness. Most importantly, the ability to amplify DNA offer a unique advantage
in the identification of the target molecule that may be present in too small
amounts to be directly detected. The pioneering work by Gartner and Liu in 2001%
popularized this approach. The fundamental principle involves attaching reactants
with reactive groups to two complementary oligonucleotide strands through
covalent bonds. When the two oligonucleotide strands were complementary they
hybridized to form a duplex. The hybridization brought the two reactive groups into
close proximity, thus enhancing local concentrations and facilitating the formation of
the desired products. This research had demonstrated the applicability of sequence-
specific DNA-templated reactions, encompassing various reaction types such as Sy2
substitutions, additions to a,pB-unsaturated carbonyl systems, and additions to vinyl
sulfones. Nucleophiles such as thiols and amines could participate in these reactions,
and acceptable yields with notable sequence specificity have been achieved. In
2004, the same research group® designed DNA-templated synthetic libraries with

hish complexity and structural diversity, primarily focusing on macrocycles. This
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involved the utilization of multistep DNA-templated organic synthesis to convert
libraries of DNA sequences (comprising three "codons") into sequence-programmed
synthetic small-molecule macrocycles. In vitro selections for protein affinity were
performed on the resulting DNA-macrocycle conjugates. The structure of the
selected macrocycle was then identified from the sequence of the DNA template
following amplification. Thus, following the translation, selection, and amplification of
libraries of nucleic acids that encode synthetic small molecules, a single macrocycle

with a known target protein affinity was identified (Figure 1.15).
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Figure 1.15 (A) Molecular architecture of reactants for DTS, (B) Distance-independent
DTS, and (C) Multistep DTS. 67 (Reprinted from Li X; Liu, D. R. DNA-Templated Organic Synthesis:

Nature's Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules. Angew. Chem. Int. Ed. 2004,

43 (37), 4848-4870. Copyright © 2004 with permission from John Wiley and Sons)

1.3.2 DNA-templated synthesis not involving base-pairing

In contrast to the previous examples where the complementarity of two DNA
strands was crucial for the DNA-templated reactions, there exists a different but
related principle in DNA-templated synthesis (DTS) where global features of DNA,
such as base stacks, grooves, hydrophobic surfaces, and chirality, play a significant
role in determining the success of the reaction rather than nucleic acid sequence
complementarity. One notable example is the DNA-based Cu-catalyzed asymmetric
synthesis proposed by Roelfes et al. in 2005.° ¢" When a copper complex of an
intercalating ligand was bound to DNA, a chiral environment was created around the
copper catalyst. Indeed, the Diels-Alder products could be obtained in high

enantioselectivities. Despite the inherent right-handed chirality of the DNA used,
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appropriate selection of ligands enabled access to both enantiomers of the Diels-
Alder product. The modular nature of this system, coupled with noncovalent binding
of the catalytic moiety to the chiral environment (DNA) through achiral ligands,
facilitates rapid structural variations and the customization of catalysts for novel
processes. Additionally, this method offers the advantage of separating the product
from the catalyst. The Cu-ligand complex forms a tight intercalation complex with
DNA and remains in the aqueous phase, allowing for easy separation from the

product through simple extraction (Figure 1.16A).
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Figure 1.16 DNA-templated asymmetric Diels-Alder reaction. ®*°

((A) Used with permission of Royal Society of Chemistry, from Highly enantioselective DNA-based catalysis,
Roelfes, G. Boersma, A. J. Feringa, B. L., 6, 2006; permission conveyed through Copyright Clearance Center, Inc. (B)
Reprinted from Chen, K., He, Z., Xiong, W. Wang, C.-J. Zhou, X, Enantioselective Diels-Alder reactions with left-
handed G-quadruplex DNA-based catalysts. Chin. Chem. Lett. 2021, 32 (5), 1701-1704. Copyright 2021, with

permission from Elsevier.)
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Apart from generic DNA duplexes, enantioselective Diels-Alder reactions with
left-handed G-quadruplex DNA-based catalyst were developed by Chen et al. in
2021.% A G-quadruplex DNA is a secondary structure that can form in DNA sequences
containing guanine-rich regions. It is a non-canonical structure that is distinctive from
the conventional double helix structure of DNA. The G-quadruplex structure is
further stabilized by the presence of cations, such as potassium or sodium ions,
which bind to the central channel formed by the G-quartets. Without the addition of
ligands, left-handed G-quadruplex (L-G4) was shown to have strong enantioselectivity
(-52% ee) catalysis. The negative value of enantiomeric excess (ee) indicated the
formation of products with opposite enantioselectivity to the normal right-handed
dsDNA. When combined with copper(ll) ions, G4 was further stabilized when G4
ligands were added, resulting in greater enantioselectivity (up to -80% ee) (Figure

1.16B).

The naturally occurring supramolecular structures of biomolecules such as
DNA, RNA, and proteins inspired the use supramolecular self-assembly as a means to
design and create artificial molecular systems. In “target-guided synthesis (TGS)”,*"
biological targets such as proteins and nucleic acids assemble their most effective
binders from a specific set of molecular fragments. The formation of chemical bonds
requires close proximity and precise orientation of reactants. Therefore, the
supramolecular assembling of reactant units on the template fulfills this requirement

by bringing the dispersed molecular units together and facilitating predefined

interactions between them to provide the desired product (Figure 1.17).
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Irreversible
ligation

— —_—
Fast Slow

Figure 1.17 The concept of target-guided synthesis (TGS) involves bringing together
specific reactive molecules in close proximity through the target molecule itself,
allowing them to undergo irreversible reactions and ultimately form the desired

ligand.

During the past decades, several research groups utilized secondary structures
of nucleic acids for templated ligand assembly. In 2012, Antonio et al. discovered a
potent telomere-targeting small molecule by using in situ “Click chemistry” of a
series of alkyne and azide building blocks that were facilitated by a G-quadruplex
DNA template.” A human telomeric DNA (H-Telo) was chosen as a target due to its
significance in cancer biology and possess the capability to initiate a DNA damage
response at telomeres, leading to senescence and apoptosis. Interestingly, the
formations of the single 1,4-adduct, which results from the cycloaddition in the
presence of H-Telo were observed and identified by LC-MS. They demonstrated the
effectiveness of unbiased approaches, such as in situ click chemistry, in enhancing

the interaction of small molecules with specific nucleic acid structures (Figure 1.18).
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@ "E:N / SYNTHESIS
Figure 1.18 In situ synthesis of triazoles via click chemistry catalyzed by G-

quadruplex DNA (H-Telo). ™

(Reprinted from Antonio, D. M.; Biffi, G;  Mariani, A; Raiber, E.-A. Selective RNA Versus DNA G-Quadruplex
Targeting by In Situ Click Chemistry. Angew. Chem. Int. Ed. 2012, 51 (44), 11073-11078. Copyright © 2012 with

permission from John Wiley and Sons)

In 2017, Panda et al.”” successfully demonstrated another example of TGS
using DNA nano-templates that promote the click reaction from an array of azide and
alkyne fragments for discovering a selective G-quadruplex binding c-MYC inhibitor.
The G-quadruplex nano-template played a crucial role in producing a primary
triazole product that demonstrated inhibitory properties on c-MYC expression. The G-
quadruplex DNA nano-templates were designed to assemble on gold-coated
magnetic nanoparticles. The immobilization of the G4 DNA on the magnetic beads
allows washing to remove the excess reactants and weakly-bound products. After
thermal denaturation of the G4 DNA, and the strongly bound clicked products were
obtained and identified by LC-MS. The nano-templates facilitate the regioselective
formation of 1,4-substituted triazole products, which are easily isolated by magnetic
decantation. The triazole product specifically targeted the c-MYC promoter G-
quadruplex, which is a particular DNA structure responsible for controlling the

expression of the c-MYC gene. The binding property of a potent lead compound
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from the templated reaction was compared with individually synthesized compound.
It was concluded that the lead binds and stabilizes the G-quadruplex structure in c-
MYC P1 promoter and specifically reduces c-MYC expression. These findings indicated
that the TGS method has the potential to be employed in the development of

ligands that selectively target specific molecules for drug discovery purposes (Figure

1.19).
g S
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Figure 1.19 Schematic representation of templated cycloaddition between selective

azide and alkyne partners using G,-Au@Fe;O, nanoparticles. "

(Reprinted from Panda, D.; Saha, P.; Das, T.; Dash, J. Target guided synthesis using DNA nano-templates for
selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat. Commun. 2017, 8 (1), 16103. Copyright ©

2017 with permission from Nature Portfolio)

Relating to the aforementioned work, in 2023 Chaudhuri et al.”® reported that
G-quadruplex DNA could act as a template for guiding an even more challenging bio-
orthogonal macrocyclization reaction to synthesize gene modulators from
bifunctional azide and alkyne fragments. In the non-templated reaction, the
efficiency is generally limited due to oligo- and polymerization. G4s immobilized on
gold-coated magnetic nanoparticles were employed to facilitate the isolation and

detection of G4-targeting peptidomimetic macrocycles. In addition, comparable
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macrocycles were synthesized with the aim to understand their functional
significance in regulating gene function. The G4-templated reaction reveled a lead
compound showing high specificity towards DNA target (c-MYC and h-Telo).
Importantly, they were able to observe the formation of the macrocycle both in vitro
and in cells from corresponding alkyne and azide fragments. The achievement of in
vitro and intracellular macrocyclization would introduce a novel opportunity for

target-oriented therapeutic applications (Figure 1.20).

In situ macrocyclization

|

% j - N r@:\mz}w
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c-MYCand h-Telo
In cell macrocyclization selective

Figure 1.20 Schematic representation of the target-guided synthesis of G4-selective

ligands by DNA-functionalized magnetic gold nanoparticles. ™

(Reprinted from Chaudhuri, R; Prasanth, T.; Dash, Expanding the Toolbox of Target Directed Bio-Orthogonal
Synthesis: In Situ Direct Macrocyclization by DNA Templates. J. Angew. Chem. Int. Ed. 2023, 62 (7), €202215245,

Copyright © 2023 with permission from John Wiley and Sons)

1.4 Templated synthesis of cyanine dyes

In general, the formation of larger molecules from smaller components,

where one product molecule is created from two reactant molecules, is not



aq

thermodynamically favored due to the inherent decrease in entropy. To address this
challenge, compartmentalization techniques are often employed, such as by using

" reported a surfactant-mediated

micelles or receptors. In 2013, Maguellati et al.
fluorogenic imine formation in water (Figure 1.21). The imine formation could be
readily observed from the fluorescence of the product. Without the surfactant no
reaction occurred. The inclusion of double-stranded DNA in the system also
enhanced the reaction efficiency, likely because the resulting fluorescent imine
product was stabilized within the minor groove of DNA. This environment-responsive
fluorogenic system could also function as a DNA hybridization probe, where the
hybridization between two complementary DNA strands could be detected by the

production of a fluorescent dye within the DNA host. Notably, no fluorescence was

observed in the presence of a single-stranded DNA “template”.
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Figure 1.21 Reversible synthe5|s of fluorescent imine from non-fluorescent
amine and weakly fluorescent aldehyde in aqueous media using either surfactants

(below and above their CMC) or double-stranded DNA (acting as a reaction host).

(Used with permission of Royal Society of Chemistry, from Enhanced imine synthesis in water: from surfactant-
mediated catalysis to host-guest mechanisms, K. Meguellati, A. Fallah-Araghi, J. Baret, A. El Harrak, T. Mangeat, C.
M. Marques, A. D. Griffiths, S. Ladame, Chem. Commun. 2013, 49, 11332-11334. permission conveyed through

Copyright Clearance Center, Inc.)



a5

The same research group also reported on a DNA-templated ligation of
peptide nucleic acid (PNA) through the formation of a cyanine dye.”® The two PNA
strands were modified at their N- or C-terminus with non-fluorescent cyanine dye
precursors. The positioning of these modifiers was designed to allow optimal
orientation for simultaneous binding of both fluorogenic PNA probes to their
complementary DNA template. This arrangement led to the irreversible formation of
a highly fluorescent symmetrical trimethine cyanine dye. Moreover, the similar idea
was also further extended to producing a trimethine cyanine dye, which is guided by
the formation of a parallel-stranded G-quadruplex DNA. The process involves
attaching the aldehyde and indoline building blocks to the ends of two PNA strands
that are complementary to the single-stranded regions flanking the DNA quadruplex-
forming sequence. The fluorogenic reaction occurs exclusively when the quadruplex

structure is formed, ensuring the specificity of the synthesis process (Figure 1.22).”
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Figure 1.22 Symmetrical trimethine cyanine dye synthesis from two non-fluorescent
labeled-PNA precursors via DNA-templated reaction guided by (A) distance of
precursors and (B) DNA structure.

((A) Reprinted from Single Nucleotide Polymorphism Detection Using a Biocompatible , Fluorogenic and DNA-
Templated Reaction of Cyanine Dye Formation. Meguellati, K.; Ladame, S. J. Analyt. Molecul. Tech. 2013, 1 (1), 5.
Copyright © 2013 with permission from Avens Publishing Group, (B) Reprinted from DNA-Templated Synthesis of
Trimethine Cyanine Dyes: A Versatile Fluorogenic Reaction for Sensing G-Quadruplex Formation. Meguellati, K.;
Koripelly, G.; Ladame, Angew. Chem. Int. Ed. 2010, 49, 2738. Copyright © 2010 with permission from John Wiley

and Sons)
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Although previous research has demonstrated the DNA-templated synthesis
of fluorescence-conjugated imines, the literature lacks information on the DNA-
templated synthesis of styryl dyes directly from their precursors. It remains unknown
whether the formation of styryl dyes, which involves deprotonation and C-C bond
formation, is feasible in the presence of a DNA template without first attaching them
to the DNA or PNA strand under sufficiently mild conditions. Hence, this present
study aims to investigate the potential of such challenging and previously unknown

DNA-templated C-C bond formation.

1.5 Rationale and objective of this study

In this study, our primary objective is to create an innovative method for
synthesizing styryl dyes through a DNA-templated approach. We initiate the synthesis
by utilizing two coupling partners, namely a methylated heteroaromatic system and
an aromatic aldehyde, along with a DNA template. The proposed concept suggests
that these precursors will bind to the DNA template and undergo a reaction,

ultimately producing the styryl dye while remaining bound to the DNA.

This approach offers significant advantages. Firstly, the synthesis of the dye
can be accomplished rapidly due to the facilitated reaction within the DNA template.
Additionally, the optical properties of the dye can be directly measured, enabling
efficient characterization of the dyes properties in situ. Moreover, we envision that by
utilizing different DNA templates, it may be possible to selectively accelerate the
formation of new dyes that specifically bind to a particular DNA template. This, in
turn, would allow for rapid generation and identification of dyes with the ability to

selectively attach to specific DNA structures.
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CHAPTER Il
EXPERIMENTAL SECTION

2.1 Chemicals and reagents

All chemicals used in this study were purchased from standard suppliers
(Sigma-Aldrich, TCl, Alfa Aesa, Fluka, Acros, and Merck), and were analytical grade and
used as received without further purification. Deoxyribonucleic acid sodium salt from
salmon testes (stDNA) was purchased from Sigma-Aldrich. Synthetic deoxyribonucleic
acids were purchased from Integrated DNA Technologies and the sequences are
summarized in Table 2.1. The dsRNA was kindly prepared by Mr. Kitipong Angsujinda
and Prof. Dr. Wanchai Assavalapsakul (Department of Microbiology, Faculty of
Science, Chulalongkorn university) (Section 2.8.5). The tRNA sample was provided by
Dr. Pornchai Kaewsapsak (Faculty of Medicine, Chulalongkorn University). Substituted
BT derivatives were kindly provided by Ms. Thitiya Lasing and Assist. Prof. Dr.
Tanatorn Khotavivattana (Department of Chemistry, Faculty of Science,
Chulalongkorn University). lonic liquid ([BMIM]PF4) was synthesized according to the
literature.®% MilliQ water was obtained from a Milli-Q® Reference water purification
system (type 1) equipped with a Millipak® 40 filter unit 0.22 pum, Millipore (USA). The
nuclease-free water was purchased from Invitrogen. In terms of instrumentation, the
electronic absorption spectra and fluorescence spectra were recorded on a Varian
Cary 100 UV-Visible spectrometer, Varian Eclipse fluorescence spectrophotometer, or
a PerkinElmer EnSight multimode plate reader. CD spectra were measured on a
JASCO J815 spectrophotometer and nuclear magnetic resonance spectra were
recorded on a JEOL JNM-ECZR500R/S1 500 MHz FT-NMR spectrometer. Mass spectra

were obtained from MALDI-TOF mass spectrometer (SpiralTOF JEOL JMS-S3000). High-
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performance liquid chromatography (HPLC) experiments were performed on a Nexera

LC-40 series HPLC system (Shimadzu, Japan).

Table 2.1 Sequences of oligonucleotides employed in this study.

Name Sequence (5’—3’)
ssDNA CCAGGGCATGGTAGATCACTGTACGCCGCG
dsDNA CCAGGGCATGGTAGATCACTGTACGCCGCG +

CGCGGCGTACAGTGATCTACCATGCCCTGG
c-MYC TGAGGGTGGGTAGGGTGGGTAA

22AG AGGGTTAGGGTTAGGGTTAGGG

dT30 EREREEREREREREEREERRERRRRRERE
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2.2 Synthesis of cationic methylated heterocycles as coupling partners

2.2.1 Monocationic heteroaromatic substrates (N-methylation)

7N Mel, MeCN 7N
“ > S
*N* 90 °C,12 h ‘N7 |I”

Figure 2.1 N-methylation of nitrogen-contained heterocycles

The solution of methyl-substituted nitrogen-containing heterocycle (1.0
equiv.) and iodomethane (2.0 equiv.) in acetonitrile was heated at 90 °C for 12 hours.
The precipitate was collected by vacuum filtration. The obtained solid was washed

with diethyl ether and dried over a vacuum.

2,3-Dimethylbenzo[d]thiazol-3-ium iodide (BT")

Yield 99%; 'H NMR (500 MHz, DMSO-ds) O (ppm) 8.39 (d, J = 8.2 Hz, 1H), 8.24 (d, J =

8.5 Hz, 1H), 7.87 — 7.83 (m, 1H), 7.76 (dd, J = 8.0, 7.4 Hz, 1H), 4.15 (s, 3H), 3.13 (s, 3H).
2-Amino-3-methylbenzo[d]thiazol-3-ium iodide (BT-NH,")

Yield 95%; 'H NMR (500 MHz, DMSO-dg) O (ppm) 7.97 (d, J = 7.8 Hz, 1H), 7.64 (d, J =

8.2 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 3.69 (s, 3H).
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1,4-Dimethylpyridin-1-ium iodide (4-Py™)

Yield 71%; 'H NMR (500 MHz, DMSO-ds) O (ppm) 8.70 (d, J = 6.6 Hz, 2H), 7.83 (d, J =

6.4 Hz, 2H), 4.15 (s, 3H), 3.23 (s, 3H).
1,2,3,3-Tetramethyl-3H-indol-1-ium iodide (TMIN™)

Yield 95%; *H NMR (500 MHz, DMSO-d;) O (ppm) 7.89 — 7.86 (m, 1H), 7.79 (dt, J = 6.7,

3.3 Hz, 1H), 7.60 — 7.55 (m, 2H), 3.94 (s, 3H), 2.74 (s, 3H), 1.49 (s, 6H).
2,3-Dimethylbenzo[d]oxazol-3-ium iodide (BX")

Yield 87%; 'H NMR (500 MHz, DMSO-de) & (ppm) 7.13 (ddd, J = 7.8, 6.3, 1.7 Hz, 2H),

6.92 - 6.89 (m, 1H), 6.80 (td, J = 7.5, 1.2 Hz, 1H), 2.97 (s, 3H), 1.63 (s, 3H).
1,2-Dimethylquinolin-1-ium iodide (2-QL")

Yield 85%; 'H NMR (500 MHz, DMSO-d,) ) (ppm) 9.06 (d, J = 8.5 Hz, 1H), 8.55(d, J =
9.0 Hz, 1H), 8.36 (dd, J = 8.1, 1.3 Hz, 1H), 8.19 (ddd, J = 8.8, 7.0, 1.5 Hz, 1H), 8.08 (d, J

=85 Hz, 1H), 7.95 (t, J = 7.6 Hz, 1H), 4.41 (s, 3H), 3.04 (s, 3H).
1,4-Dimethylquinolin-1-ium iodide (4-QL*)

Yield 92%; 'H NMR (500 MHz, DMSO-dg) O (ppm) 9.38 — 9.25 (m, 1H), 8.52 — 8.41 (m,

2H), 8.31 - 8.20 (m, 1H), 8.05 — 7.97 (m, 2H), 4.54 (s, 3H), 2.96 (s, 3H).
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2.2.2 Synthesis of polycationic 2-methylbenzothiazolium salt

7N Dibromoalkane 7 NR3, THF 7N
0 ) v K .\ ", )
"N MeCN, 90 °C, 12 h ‘N7 Br~ rt, 12 h N7 Br
(% Qoo
n Br n NR3 Br
(n=345) (n = 3,4,5)

Figure 2.2 Modification of cationic side chain heterocycles

The solution of 2-methylbenzothiazole (1.0 equiv.) and dibromoalkane (5.0
equiv.) in acetonitrile was refluxed for 6-12 hours. The precipitate was washed with
diethyl ether and dried under a vacuum. Next, the introduction of the positive charge
on the side chain was performed by stirring the mixture between bromoalkoxyl
heterocycle and trimethylamine (30% v/v in THF) at room temperature overnight.
The precipitate obtained was collected by filtration, washed with diethyl ether, and

dried under a vacuum.

2-Methy!l-3-(3-(pyridin-1-ium-1-y)propyl)benzo[d]thiazol-3-ium bromide

(BTC3Py?") Yield 56%; 'H NMR (500 MHz, DMSO-dy) O (ppm) 9.17 (d, J = 5.9 Hz, 2H),
8.59 (dd, J = 11.3, 4.3 Hz, 1H), 8.45 (dd, J = 10.4, 8.7 Hz, 2H), 8.18 — 8.14 (m, 2H), 7.87
(dd, J = 8.3, 7.4 Hz, 1H), 7.78 (t, J = 7.7 Hz, 1H), 4.88 (dd, J = 16.2, 9.9 Hz, 4H), 3.18 (s,

3H), 2.53 (dq, J = 15.5, 7.8 Hz, 2H).
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2-Methyl-3-(5-(pyridin-1-ium-1-y)pentyl)benzo[d]thiazol-3-ium bromide

(BTC5Py?")

Yield 72%; "H NMR (500 MHz, DMSO-dy) O (ppm) 9.08 (t, J = 5.9 Hz, 2H), 8.58 (dd, J =
12.2, 4.4 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.30 (d, J = 8.5 Hz, 1H), 8.14 (t, J = 7.0 Hz,
2H), 7.87 = 7.83 (m, 1H), 7.77 (t, J = 7.7 Hz, 1H), 4.72 = 4.63 (m, 2H), 4.59 (t, J = 7.3 Hz,
2H), 3.18 (s, 3H), 1.96 (dd, J = 13.1, 5.7 Hz, 2H), 1.90 — 1.82 (m, 2H), 1.48 — 1.38 (m,

2H).

3,3'-(Propane-1,3-diyDbis(2-methylbenzo[d]thiazol-3-ium) bromide (BisBT(C3)**)

Yield 80%; 'H NMR (500 MHz, DMSO-d) O (ppm) 8.11 (d, J = 8.3 Hz, 2H), 8.00 (d, J =
8.6 Hz, 2H), 7.78 (t, J = 7.9 Hz, 2H), 7.70 (t, J = 7.8 Hz, 2H), 4.96 — 4.88 (m, 4H), 3.10 (s,

6H), 2.61 — 2.50 (m, 2H).
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2.2.3 Modification of cationic side chain aromatic aldehyde

O H O _H O _H

+ -
OH 1,4-dibromobutane OHBV NRj, THF OH NR'; Br
K2CO3, DMF, rt, 12 h rt,12 h

NR, NR, NR;

Figure 2.3 Modification of cationic side chain aromatic aldehydes

The synthesis of the positively charged aldehyde consisted of two steps -
bromoalkylation and positive charge introduction. First, the solution of 2-
salicylaldehyde derivative (1.0 equiv.), 1,4-dibromobutane (5.0 equiv.), and dried
K,COs (1.5 equiv.) in anhydrous DMF was stirred at room temperature for 12 hours.
Then, the crude reaction mixture was diluted in DCM and extracted with water (3 x
20 mL). After that, the organic layer was dried over MgSO,4 and then the solvent
residue was removed under vacuum. The crude product was purified by column
chromatography (Hexane:EtOAc (4:1)) to afford the bromoalkoxy aldehyde
intermediate as a yellow-brown oil. Next, the positive charge installation on the side
chain of the aldehyde was performed by stirring the mixture between the
bromoalkoxy aldehyde and trimethylamine (30%v/v in THF, 5.0 equiv.) at room
temperature overnight. The precipitated product was collected by filtration, washed

with diethyl ether, and dried under vacuum.
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4-(5-(Diethylamino)-2-formylphenoxy)-N,N,N-trimethylbutan-1-aminium bromide
(AldY)

Yield 65%; "H NMR (500 MHz, DMSO-dj) O (ppm) 9.98 (s, 1H), 7.47 (d, J = 8.9 Hz, 1H),
6.31 (dt, J = 5.5, 2.7 Hz, 1H), 6.09 (d, J = 2.2 Hz, 1H), 4.11 — 4.06 (m, 2H), 3.02 (s, 9H),
1.89 — 1.81 (m, 2H), 1.79 — 1.71 (m, 2H), 1.08 (t, J = 7.0 Hz, 6H). '>°C NMR (126 MHz,
DMSO-dg) O (ppm) 186.1, 163.5, 154.1, 130.4, 113.7, 104.8, 93.8, 67.3, 65.5, 52.7, 44.6,

26.1, 24.6, 19.8, 18.0, 13.0.

4-(5-(Azetidin-1-yl)-2-formylphenoxy)-N,N,N-trimethylbutan-1-aminium bromide

(AzeAld™")

Yield 74%; "H NMR (500 MHz, DMSO-d,) O (ppm) 9.97 (d, J = 38.6 Hz, 1H), 7.44 (t, J =
22.4 Hz, 1H), 5.97 (d, J = 8.3 Hz, 1H), 5.82 (d, J = 33.5 Hz, 1H,), 4.06 (s, 2H), 3.94 (t, J =
6.8 Hz, 4H), 3.03 (s, 9H), 2.46 (m, 2H), 2.36 — 2.27 (m, 2H), 1.84 (m, 2H), 1.74 (m, 2H).
3C NMR (126 MHz, DMSO-dy) O (ppm) 186.5, 163.2, 157.0, 130.2, 114.5, 103.7, 93.0,

67.5, 65.5, 52.7, 51.7, 26.0, 19.8, 16.3.

4-(2-Formyl-5-(4-methylpiperazin-1-yl)phenoxy)-N,N,N-trimethylbutan-1-

aminium bromide (PizAld*)

Yield 46%; 'H NMR (500 MHz, DMSO-ds) O (ppm) 10.01 (s, 1H), 7.48 (d, J = 8.9 Hz, 1H),
6.34 (dd, J = 8.9, 1.8 Hz, 1H), 6.14 (d, J = 2.0 Hz, 1H), 4.11 (t, J = 5.9 Hz, 2H), 3.03 (s,
9H), 1.89 — 1.80 (m, 2H), 1.79 - 1.71 (m, 2H). *C NMR (126 MHz, DMSO-dy) O (ppm)
186.4, 163.2, 156.4, 130.1, 114.1, 105.2, 94.6, 67.4, 65.5, 64.9, 52.8, 52.7, 46.7, 26.1,

19.8. HRMS (MALDI-TOF): m/z calcd for CigH3,N50,™: 334.2489 [M-H]* found: 334.2477.
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4-(2-Formyl-5-morpholinophenoxy)-N,N,N-trimethylbutan-1-aminium bromide

(MorpAld*)

Yield 53%; 'H NMR (500 MHz, DMSO-d) O (ppm) 10.02 (s, 1H), 7.48 (dd, J = 7.2, 3.7
Hz, 1H), 6.34 (dt, J = 7.4, 1.9 Hz, 1H), 6.14 (t, J = 5.7 Hz, 1H), 4.11 (dd, J = 10.5, 4.7 Hz,
2H), 3.01 (t, J = 6.4 Hz), 1.89 - 1.82 (m, 2H), 1.78 — 1.72 (m, 2H), 1.70 — 1.64 (m, 8H).
13C NMR (126 MHz, DMSO-dy) O (ppm) 187.0, 163.1, 157.2, 130.0, 116.0, 106.8, 97.1,

67.6, 66.3, 65.5, 52.7, 47.2, 26.0, 19.8.

4-((1-Formylnaphthalen-2-yl)oxy)-N,N,N-trimethylbutan-1-aminium bromide

(NaphAld™*)

Yield 83%; 'H NMR (500 MHz, DMSO-dy) © (ppm) 10.80 (s, 1H), 9.08 (d, J = 8.6 Hz, 1H),
8.26 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.61 (ddd, J = 8.5, 6.9, 1.3 Hz, 1H),
7.57(d, J = 9.2 Hz, 1H), 7.45 = 7.41 (m, 1H), 4.33 (t, J = 5.8 Hz, 2H), 3.40 - 3.33 (m,
2H), 3.04 (s, 9H), 1.93 — 1.78 (m, 4H). *C NMR (126 MHz, DMSO-dy) O (ppm) 192.0,
163.9, 138.6, 131.2, 130.4, 129.2, 128.7, 125.2, 124.4, 116.1, 115.1, 69.0, 65.4, 52.7,
26.2,19.8. HRMS (MALDI-TOF): m/z calcd for C;sHsNO,": 286.1802 [M-H]" found:

286.1829

4-((9-Formyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ijlquinolin-8-yl)oxy)-N,N,N-

trimethylbutan-1-aminium bromide (JuAld*)

Yield 80%; 'H NMR (500 MHz, DMSO-dg) O (ppm) 9.85 - 9.76 (m, 1H), 7.1 (s, 1H), 3.81
(d,J = 6.1 Hz, 2H), 3.22 (s, 4H), 3.03 (d, J= 1.1 Hz, 9H), 2.61 (d, J = 5.4 Hz, 4H), 1.76
(dd, J = 49.7, 15.4 Hz, 8H). *C NMR (126 MHz, DMSO-d) O (ppm) 186.8, 159.2, 149.2,
126.9, 117.4, 116.5, 112.5, 74.6, 66.8, 65.6, 55.0, 52.7, 50.9, 49.8, 49.6, 49.5, 27.3, 27.0,
21.3, 21.0, 20.7, 19.6. HRMS (MALDI-TOF): m/z calcd for CyoHsiN,O,": 331.2380 [M-HJ*

found: 331.2378.
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2.3 Conventional synthesis of cationic styryl dyes

O _H

+ -
777 O\H,NR';; Br Acid/base catalysis
- 4 >
N7 | EtOH, reflux, 12-24 h
NR,

Figure 2.4 Synthesis of cationic styryl dyes

The aldol-type condensation between the quaternized heterocyclic
compound bearing an acidic methyl group and the aromatic aldehyde was
performed as described in the literature.”® In brief, the solution of the cationic
heterocycle (1 equiv.) and aromatic aldehyde (1 equiv.) was carried out in ethanol (1
mL/mmol) was heated at 90 °C overnight without any added catalyst. For the less
reactive QL™ as the heterocyclic coupling partner, the reaction was performed in
acetic anhydride (1 mL/mmol) to allow acid catalyzed pathway. The products were
obtained as dark red to dark purple solids. To facilitate the isolation of the products,
the counterions in all cationic dyes were exchanged to hexafluorophosphate (PF67)
by treatment of the crude product with excess NH4PF4 in ethanol. The precipitated

salts were isolated by filtration and then recrystallized in EtOH.
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(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-5-methoxy-3-

methylbenzo[d]thiazol-3-ium bromide iodide (5-OMe-BT*-Ald")

Yield 43%; 'H NMR (500 MHz, DMSO-ds) O (ppm) 8.12 (d, J = 8.9 Hz, 1H), 8.05 (d, J =
15.2 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.45 (d, J = 15.2 Hz, 1H),
7.23(dd, J = 8.9, 2.3 Hz, 1H), 6.48 (dd J = 9.2, 2.1 Hz, 1H), 6.17 (d, J = 2.1 Hz, 1H),
4.18 (t, J = 5.8 Hz, 2H), 4.10 (s, 3H), 3.89 (s, 3H), 3.48 (dt, J = 22.7, 8.0 Hz, 6H), 3.09 (s,
9H), 1.95 — 1.82 (m, 4H), 1.13 (t, J = 7.0 Hz, 6H). *C NMR (126 MHz, DMSO-ds) O (ppm)
172.2,161.5, 160.9, 154.1, 154.0, 144.0, 143.6, 124.9, 118.2, 116.3, 111.4, 106.7, 105.2,
100.3, 94.4, 67.8, 65.4, 56.9, 52.7, 44.5, 35.8, 26.1, 19.8, 13.2. HRMS (MALDI-TOF): m/z

calcd for CogHaN5O,S": 482.2836 [M-H]* found: 482.2834.

(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-6-methoxy-3-

methylbenzo[d]thiazol-3-ium bromide iodide (6-OMe-BT*-Ald(NEt,)")

Yield 43%; "H NMR (500 MHz, DMSO-dls) O (ppm) 8.00 (d, J = 15.3 Hz, 1H), 7.94 (d, J =
9.2 Hz, 1H), 7.85 (t, J = 6.2 Hz, 2H), 7.44 (d, J = 15.2 Hz, 1H), 7.32 (dd, J = 9.2, 2.6 Hz,
1H), 6.47 (dd, J = 9.1, 2.1 Hz, 1H), 6.18 (d, J = 2.1 Hz, 1H), 4.18 (t, J = 5.8 Hz, 2H), 4.08
(s, 3H), 3.85 (s, 3H), 3.44 (ddt, J = 29.2, 14.0, 7.0 Hz, 7H), 3.08 (s, 9H), 1.95 - 1.82 (m,
aH), 1.13 (t, J = 7.0 Hz, 6H). **C NMR (126 MHz, DMSO-d¢) O (ppm) 169.7, 161.4, 159.1,
153.8, 143.5, 136.7, 128.5, 117.6, 117.1, 111.3, 107.5, 106.5, 105.4, 94.4, 67.8, 65.5,
56.7, 56.6, 52.8, 44.9, 35.2, 26.1, 19.7, 13.2. HRMS (MALDI-TOF): m/z calcd for

CogHaiN50,S: 482.2836 [M-H]" found: 482.2805.
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(E)-1-Methyl-2-(4-morpholino-2-(4-(trimethylammonio)butoxy)styryl)quinolin-1-

ium bromide iodide (2-QL*-Ald(Morp)*)

Yield 26%; 'H NMR (500 MHz, DMSO-d) O (ppm) 8.77 (d, J = 9.1 Hz, 1H), 8.40 (dd, J =
9.1, 3.1 Hz, 1H), 8.27 - 8.17 (m, 2H), 8.07 (s, 1H), 7.84 (dd, J = 8.1, 6.4 Hz, 1H), 7.65 (d,
J=15.6 Hz, 2H), 6.71 - 6.66 (m, 1H), 6.53 (d, J = 2.1 Hz, 1H), 4.38 (s, 3H), 4.18 (s, 2H),
3.80 - 3.62 (m, 4H), 3.10 - 3.04 (m, 18H), 1.99 — 1.79 (m, 4H). >C NMR (126 MHz,
DMSO-dg) O (ppm) 160.7, 157.2, 155.7, 143.7, 142.8, 139.8, 134.9, 132.9, 130.4, 128.7,
127.4,120.7, 119.4, 114.4, 114.0, 107.6, 97.6, 68.0, 66.4, 65.5, 52.8, 47.3, 26.2, 19.9.

HRMS (MALDI-TOF): m/z calcd for CogHsoN5O,™: 460.2958 [M-H]* found: 460.2951.

(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-3-

ethylbenzo[d]thiazol-3-ium hexafluorophosphate (BT*-Ald")

Yield 63 %; 'H NMR (500 MHz, DMSO-dy) O (ppm) 8.18 (d, J = 7.9 Hz, 1H), 8.12 (d, J
=15.1 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 9.1 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H),
7.64 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 15.2 Hz, 1H), 6.54 (d, J = 8.9 Hz, 1H), 6.21 (s, 1H),
4.21 (t, 2H), 4.12 (s, 3H), 3.64 — 3.47 (m, 6H), 3.09 (s, 9H), 1.92 (g, 4H), 1.18 (t, J = 6.9
Hz, 6H); *C NMR (126 MHz, DMSO-d) O (ppm) 171.1, 161.3, 153.8, 146.3, 144.2, 142.0,
128.8,127.2, 126.2, 123.6, 115.6, 111.0, 106.3, 104.4, 93.9, 67.3, 65.1, 52.3, 44.5, 351,
25.6,19.2, 12.7.; HRMS (MALDI-TOF): m/z calcd for C,;H3sN50S*: 452.2735 [M-H]*

found: 452.2774.

(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-1,3,3-trimethyl-

3H-indol-1-ium hexafluorophosphate (TMIN*-Ald*)

Yield 91 %; 'H NMR (500 MHz, DMSO-d) O (ppm) 8.41 (d, J = 15.4 Hz, 1H), 8.06 (d, J =
8.9 Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 8.2 Hz, 1H),

7.44 (t, ) = 7.7 Hz, 1H), 7.19 (d, J = 15.5 Hz, 1H), 6.60 (d, J = 7.4 Hz, 1H), 6.23 (s, 1H),
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4.23 (s, 2H), 3.86 (s, 3H), 3.58 (q, J = 7.0 Hz, 6H), 3.09 (s, 9H), 1.91 (s, 4H), 1.70 (s, 6H),
1.19 (t, J = 7.1 Hz, 6H). *C NMR (126 MHz, DMSO-dy) O (ppm) 179.0, 162.7, 155.5,
142.8,142.3, 129.3, 127.4, 123.0, 113.5, 112.6, 107.5, 94.2, 67.9, 65.5, 52.7, 50.6, 45.3,
33.0, 27.7, 26.2, 19.8, 13.2.; HRMS (MALDI-TOF): m/z calcd for C3oHqsN5O*: 462.3479

[M-H]" found: 462.3410.

(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-3-

methylbenzo[d]oxazol-3-ium hexafluorophosphate (BX*-Ald")

Yield 38%; 'H NMR (500 MHz, DMSO-dy) O (ppm) 8.31 (t, J = 11.9 Hz, 1H), 7.89 (ddd, J
= 7.3,6.2, 5.0 Hz, 3H), 7.59 (M, 1.4 Hz, 2H), 7.14 (d, J = 15.3 Hz, 1H), 6.51 (dt, J = 9.9,
4.9 Hz, 1H), 6.19 (d, J = 2.2 Hz, 1H), 4.21 (t, J = 5.7 Hz, 2H), 3.97 (s, 3H), 3.50 (q, J = 7.0
Hz, 5H), 3.46 - 3.40 (m, 2H), 3.06 (s, 9H), 1.87 (q, J = 3.7 Hz, 4H), 1.13 (d, J = 7.1 Hz,
6H). °C NMR (126 MHz, DMSO-d,) O (ppm) 163.7, 161.9, 154.5, 147.3, 132.1, 127.7,
127.4,113.6, 112.2, 111.2, 106.8, 94.5, 94.3, 67.9, 66.3, 65.5, 54.4, 52.7, 49.4, 45.0,
44.3,40.5, 40.4, 40.2, 40.0, 39.9, 39.7, 39.5, 33.8, 32.0, 30.0, 26.0, 25.7, 19.8, 19.2, 13.2,

12.3.; HRMS (MALDI-TOF): m/z calcd for C,7H59N50,*: 436.2958 [M-H]* found: 436.2889.

(E)-2-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-1-methylquinolin-

1-ium hexafluorophosphate (2-QL*-Ald")

Yield 54 %; 'H NMR (500 MHz, DMSO-d) O (ppm) 8.67 (d, J = 9.1 Hz, 1H), 8.37 (dd, J =
16.8, 9.1 Hz, 2H), 8.27 (d, J = 15.3 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 8.05 (t, J = 8.0 Hz,
1H), 7.81 (t, J = 8.6 Hz, 2H), 7.54 (d, J = 15.4 Hz, 1H), 6.49 (d, J = 9.0 Hz, 1H), 6.24 (s,
1H), .34 (s, 3H), 4.22 (t, J = 5.3 Hz, 2H), 3.51 (g, J = 6.9 Hz, 6H), 3.09 (s, 9H), 1.93 (s,
aH), 1.17 (t, J = 7.0 Hz, 6H). *C NMR (126 MHz, DMSO-d¢) & (ppm) 161.4, 157.0, 153.2,
144.5,141.7, 139.8, 134.5, 133.9, 130.3, 128.2, 127.0, 120.3, 119.0, 112.2, 111.3, 106.0,

94.6, 67.8, 65.6, 52.7, 44.8, 39.0, 26.2, 19.9, 13.1.
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(E)-4-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-1-methylquinolin-

1-ium hexafluorophosphate (4-QL*-Ald")

Yield 26 %; 'H NMR (500 MHz, DMSO-dy) 6 8.93 (d, J = 6.5 Hz, 1H), 8.84 (d, J =8.5 Hz,
1H), 8.28 (m, 2H), 8.17 (m, 2H), 8.01 — 7.91 (m, 3H), 6.47 (d, J = 9.0 Hz, 1H),6.24 (s, 1H),
4.40 (s, 3H), 4.21 (t, 2H), 3.54 - 3.47 (m, 6H), 3.07 (s, 9H), 1.93 (g, 4H), 1.17(t, J = 6.7
Hz, 3H); *C NMR (126 MHz, DMSO-d6) O (ppm) 160.2, 153.4, 152.0, 146.3, 139.3,138.9,
134.5,131.7, 128.5, 125.9, 125.6, 119.1, 113.1, 112.1, 112.0, 105.4, 94.3, 67.2,65.2, 52.3,
44.2,43.9, 25.8, 19.4, 12.7.; HRMS (MALDI-TOF): m/z calcd for CooHeN;0":446.3171 [M-

H]* found: 446.3202.

(E)-4-(4-(Diethylamino)-2-(4-(trimethylammonio)butoxy)styryl)-1-methylpyridin-

1-ium hexafluorophosphate (4-PY*-Ald")

Yield 100 %; 'H NMR (500 MHz, DMSO-d;) O (ppm) 8.60 (d, J = 5.9 Hz, 2H), 7.97 (m,
3H), 7.57 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 16.0 Hz, 1H), 6.40 (d, J = 8.9 Hz, 1H), 6.21 (s,
1H), 4.16 (m, 5H), 3.54 - 3.43 (m, 6H), 3.09 (s, 9H), 1.89 (d, J = 6.9 Hz, 4H), 1.13 (t, J =
6.6 Hz, 3H); *C NMR (126 MHz, DMSO-dg) O (ppm) 159.7, 153.8, 151.2, 144.1, 137 1,
131.2, 121.7, 116.5, 111.2, 105.0, 94.5, 67.1, 65.1, 52.2, 46.2, 44.1, 25.6, 19.5, 12.6.;

HRMS (MALDI-TOF): m/z calcd for CosHsgN;0": 396.3015 [M-H]* found: 396.3040.
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2.4 DNA-templated synthesis of cationic styryl dyes

The quaternized heterocycles and aldehydes were mixed at 1:1 molar ratio
(1-2 mM of final concentration from the 5 mM stock solution in MilliQ) in the
presence of the nucleic acid template (1 mg/mL, 1.5 yM in bp) at 200 pL final
volume (in MWQ) in a 96-well plate. The mixture was shaken continuously and
incubated at at room temperature (30-40 °C) in the absence of light for 2-14 days.
The color change was observed under ambient light and UV light (312 and 365 nm)
under a transilluminator. The spectroscopic data including UV-Vis absorption and

fluorescence emission were collected using multimode plate reader.

For screening of G-quadruplex binding dye, the dye precursors
(heteroaromatic and aldehyde) were mixed at the final concentration of 2 mM (molar
ratio = 1:1) in 5 mM KCL, 10 mM Tris-HCl (pH 7.4) in the presence of 1 mg/mL DNA
(0.75 uM in base quadruplets) in 100 pL final volume in a 96-well plate. The mixture

was incubated at room temperature for 14 days.

2.5 Spectroscopic studies

2.5.1 Fluorescence quantum yield of synthesized dyes

The optical properties of the cationic styryl dyes in the presence and absence
of nucleic acids were studied by measuring the absorption and fluorescence change
of the dyes in the presence and absence of nucleic acids in a quartz cuvette with a
path length of 1.0 cm at ambient temperature. The fluorescence quantum yield (@)

of the free dyes and bound dyes with DNA were calculated using rhodamine 6G
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(D- =0.95, A., =470-510nm) or cresyl violet (- =0.54, Ao, =540-590nm) as the

reference dyes. The integrated fluorescence intensities and the absorbance values at

Aoy Of the standard and the samples were plot and the obtained slopes were

assigned as gradgangarg aNd gradgmple, respectively.

The quantum yield can then be calculated according to equation (2.1):

grad h2
sample sample
Fsampte = Fstandard d h2 ) (2.1)

standard standard

Where grad is the slope from the plot of integrated fluorescence intensity as a

function of absorbance and 1 is the refractive index of the solvent used for the

fluorescence measurement.

2.5.2 Dye-DNA binding interaction study

The binding constant (K,,) and binding site (n) values were determined by
fluorescence titration to compare the relative binding affinity between the dye
molecules and DNA strands of interest (ssDNA, dsDNA, and GQ (c-MYC) as shown in
Table 2.1). Firstly, the dye-DNA mixtures at various dye-DNA (in bp) ratios were
prepared in 10 mM Tris-HCl buffer (pH 7.4) and 100 mM KCl at a fixed concentration
of dyes (2 uM) and designated amounts of DNA in a 96-well microplate with a final
volume of 200 uL. Then, the fluorescence at the desired wavelengths were recorded
on the microplate reader. The fluorescence intensities were recorded until they
reached constant values which represented excess amounts of DNA in the system.
Only the data at the optimal ratios for dye-DNA (in bp) which showed a linear

relationship were used to calculate the binding parameters: K, and n. Following the
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method of Akbay and co-workers,® the McGhee and von Hippel equation was
modified based on an assumption that only one type of interaction between dye
and DNA leads to the non-cooperative binding. Therefore, K, and n values can be

calculated from fluorescent titration curves using equation (2.2):

. @feo=]

F X
Y= Foe e (2.2)
Cdye Kb (1_n )n

Fmax

where Y=fluorescence intensity at maximum emission wavelength (F) and
X=FxCqye/Cona (bp). Therefore, Ky, n and Fp,ax values can be calculated as
approximation parameters of fitting the experimentally obtained data plotted as the

dependence of Y on X according to Eg. (2.2).

2.5.2 Evaluation of optical properties of the dyes from DNA-templated
synthesis

From the DNA-templated reaction, the yield of the dye product was
evaluated by UV-vis absorption at individual absorption maxima. The fluorescence
responsiveness of the dye product in a presence of DNA was quantitated by the
relative fluorescence that the fluorescence signal from the dye-DNA bound form was
divided by the absorbance to decouple the extent of dye formation from the DNA

responsiveness as shown in equation (2.3):

/Fluorescence emission

F= (2.3)
/Absorption
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2.6 Kinetic study of DNA-templated synthesis

The kinetic study was performed by measuring the absorption and
fluorescence change as a function of time. Under pseudo-first-order condition of BT,
the Ald(NEt,)" was validated in a range concentration 1-10 mM with salmon testes
DNA (1 mg/mL) in 200 L final volume in a 96-well plate. The dye formation was
observed by UV-Vis absorption at 570 nm of absorption maxima and fluorescence
emission at 590 nm (A.,=565 nm). At 10 mM AlJ(NEt,)", the reaction reached its

steady state after 30 hours at 25 °C.

2.7 Quantitation of styryl dye product from DNA-templated synthesis

2.7.1 Quantitative NMR analysis

The BT'-Ald" dye was extracted from the crude reaction mixture (200 uL) by
using the ionic liquid [BMIMIPF¢ (IL) (5 pL). The IL layer was washed with water (3 x 20
uL) and then dried under vacuum. The extracted product was dissolved in 500 pL
DMSO-dg and then 50 pL of methyl-3,5-dinitrobenzoate solution (10 mM in DMSO-dy)
was added as an internal standard (final concentration of IS = 0.91 mM). The yield of
the desired product was calculated from the integration of the 'H NMR signal
(number of scans = 128) according to equation (2.4):

/ Hsamplecsampte

= (2.4)
/std Hstdcstd

sample

Where H is number of hydrogen atoms and C is concentration
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2.7.2 UV-Visible spectroscopic analysis

For the quantitation of dye formation after a specified period of time, the
volume of the crude product was adjusted from 0.2 mL to 1.0 mL in 1.0 mL of a

quartz cuvette. The BT™-Ald" dye concentration was converted and calculated from

the absorption at 570 nm (€570 = 7.9x10* M'cm™ for BT*-Ald* dye) according to

Beer’s law according to equation (5):

A = ebc (5)

Where c is pathlength (1 cm) and e is epsilon (€)

2.7.3 HPLC analysis

The analysis was performed by reverse-phase HPLC using a Vertical® UPS C18
column (4.6 mm x 50 mm, 3 pm). The mobile phase consisted of solvent A (0.1%
TFA in MilliQ water) and solvent B (0.1% TFA in acetonitrile). The column was
equilibrated at 1%B for 5 min, raised to 60% B over 5 min, held at 60% B for 4 min,

and then lowered to 1% B in 3 min at a constant flow rate of 1.0 mL/min.

To analyse the dye formation, the crude dye was extracted with ionic liquid
[BMIMIPF4 (5 ulL) and washed. Then, the IL layer was collected and re-dissolved in

methanol (1 mL) for HPLC analysis. The injection volume was 10 pL.
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2.8 Biological study

2.8.1 Cell culture
HelLa cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM,

HyClone™ Thermo Scientific, USA) containing 4.5 ¢/L D-glucose, 4 mM L-glutamine
and supplemented with 10% of heat-inactivated fetal bovine serum (FBS; Gibco™

Invitrogen) at 37 °C at 5% CO,.

2.8.2 Cell imaging experiment

The Hela cells were seeded on a 24-well chamber cell culture plate at 5 x
10* cells per well. The cells were grown in cultured media in a humidification
incubator at 37 °C and 5% CO,. The live cells were stained with 20 uM BT"-Ald*, 500
nM PhenoVue512 at 37 °C. After 18 h of treatment, the cells were stained with DAPI
(0.2 pg/mL) and incubated for 15 minutes. The fluorescence images of the live cells

were recorded using an inverted fluorescence microscope (ZEISS Axio Observer).

2.8.3 Cell viability using MTT assay

Hela cells were seeded in 96-well plates at 1 x 10 cells per well. The cells
were incubated at 37 °C in a humidification incubator with 5% CO,. After 24 hours of
incubation, the cells were treated with different concentrations of 10, 50, 100, 200
UM coupling partners (BT", Ald", AldPy"). They were incubated under the same
conditions for 3 days. MTT solution (5 mg/mL of 3-(4,5-dimethylthiazol-2-y|)-2,5-
diphenyltetrazolium bromide in DMEM) was added to the wells and again incubated
at 37 °C for 3 hours. The media was then removed and mixed with DMSO. The
absorbance at 570 nm was measured with a PerkinElmer, EnSight Multimode

Microplate Reader and the cytotoxicity was calculated.
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2.8.4 Templated synthesis of styryl dyes in cells

The Hela cells were seeded on a 24-well plate at 5x10° cells per well. The
cells were grown in an incubator at 37 °C and 5% CO, for 18 hours. In a screening
experiment, the cell lines were treated with the coupling partners at 37 °C and 5%
CO,. After 3 days of treatment, the cells were fixed with 4% paraformaldehyde (in
PBS) for 10 minutes and then permeabilized with 1% Triton X-100 (in PBS) for 2
minutes at room temperature. Then, the fixed cells were stained with DAPI (1 pg/mL)
for 20 minutes at room temperature. For RNase and DNase treatment, after cellular
fixation and permeabilization, the fixed cells were incubated with RNase A (25 pyg/mL)
or DNase | (30 pg/mL) at 37 °C for 4 hours. After that the cells were used for studying

DNA-templated reactions with the same normal protocol.

The fluorescence images of the live cells after treatment were recorded using
a fluorescence microscope (ZEISS Axio Observer with optical sectioning and

deconvolution algorithm).
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2.8.5 Double-stranded RNA (dsRNA) production

This experiment was performed by Dr. Kitipong Angsujinda from Aquatic
Resources Research Institute, Chulalongkorn University. To express dsRNA, a single
colony of E. coli strain HT115(DE3) harboring a plasmid encoding dsRNA specific to a
ribonucleotide reductase small subunit gene of White spot syndrome virus (pET-17b-
dsWSV-rr2) was grown on in the LB medium containing 12 ug/ml tetracycline and 50
pg/ml ampicillin at 30 °C with shaking until ODgyg m reach 0.4. The dsRNA expression
was induced with the addition of isopropyl-B-d-thiogalactopyranoside (IPTG) at
0.4 mM final concentration. Following incubation at 30 °C for 3 h, the cells were
collected by centrifugation at 15,557 x ¢ for 15 min at 4 °C. To extract the dsRNA, the
induced recombinant bacteria were resuspended in 0.1% SDS in 1x PBS. After boiling
for 2 min and immediately keeping on ice for 30 sec, the cell lysate was added with
a total of 0.05 pg of RNase A in 1x RNase buffer (300 mM sodium acetate, 10 mM
Tris-HCL, pH 7.5, and 5 mM EDTA) and incubated at 37 °C for 30 min. At last, the
dsRNA was isolated from the mixture by using a TRI reagent (Molecular Research
Center, Cincinnati, OH) following the manufacturer’s instruction. The dsRNA obtained
was solubilized in DEPC-treated water, verified by polyacrylamide gel electrophoresis,

and kept on ice prior to use for further analysis.
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CHAPTER IlI
RESULTS AND DISCUSSION

3.1 Concept validation of DNA-templated styryl dye synthesis

Generally, the aldol-type condensation between an acidic methyl group
connected to a heteroaromatic ring and an aromatic aldehyde to form styryl dyes
requires heating in the presence of an acid or a base as a catalyst, typically in a polar
organic solvent such as ethanol.”” No reaction is expected under biological or
ambient conditions without a catalyst. To demonstrate the concept of the newly
proposed DNA-templated synthesis of cationic styryl dyes, salmon testes DNA (stDNA)
was employed as a generic dsDNA template. Based on the excellent optical
properties of the benzothiazolium-based styryl dyes, the benzothiazole scaffold was

chosen as the electron-deficient heteroaromatic substrate.

To study the effect of the positive charge on the benzothiazole substrate for
the DNA-templated styryl dye synthesis, 2-methylbenzothiazole (BT) was utilized as a
model for neutral substrate, while the corresponding N-methylated derivative (BT")
was employed as a model for cationic substrate. For the aromatic aldehyde part, 4-
(diethylamino)salicylaldehyde (Ald) and its trimethylammonium cationic modification
derivative (Ald") were selected as the models for neutral and cationic aldehyde
substrates, respectively. The templated styryl dye synthesis experiments were
conducted in a 96-well plate by pairwise mixing of the benzothiazoles and aldehyde
substrates in the absence (—) and presence (+) of the DNA template in water. The
reaction mixture was then incubated at ambient temperature (30 °C) on a shaker and

the formation of the dye was observed visually and spectroscopically (Figure 3.1).



70

R
A R o
o] —
s 0 — DNA template s v N
p,— + 9‘{ >—N —_—> @ . L
©:N + - H — N«I”
R R
BT R=H Ald R=H
BT+ R=CH; Ald* R=(CH):N(CH)*
B -

RN o ]
. M ’
Diversity 1 @n}— + \\_</-__\> ‘
~ N - . - I-
||R X X Diversity 2 [ /
e |

Multiple-mode microplate reader

Figure 3.1 (A) A model reaction for DNA-templated synthesis and (B) Work-flow for
the combinatorial screening of DNA-templated styryl dye synthesis.
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Figure 3.2 (A) Combinatorial screening of the DNA-templated styryl dye synthesis
from benzothiazoles and diethylamino-substituted aldehydes. Condition: [Coupling
partners] = 1 mM, [stDNA] = 1 mg/mL incubating at room temperature (30 °C) (B) UV-
visible spectra and (C) Fluorescence spectra (Ao, = 565 nm) of crude reaction

products from the DNA templated reaction.
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In agreement with the expectation, an obvious color change was observed
only in the wells that contain both the positively charged aldehyde (Ald") and the
DNA template after one day of incubation. As shown in the Figure 3.2A, yellow-
colored solutions were obtained when BT was used as the coupling partner with
Ald*, while a light pink coloration was observed only from the BT*-Ald" combination
in the presence of the DNA template. When the incubation time was extended to 2
days, the combination of BT*-Ald" in the presence of the DNA template exhibited a
bright pink solution under daylight and a strong red fluorescence under UV light (312
nm). Spectroscopic profiles (absorbance and fluorescence) of the reaction product
from the BT'-Ald" reaction in the presence of the DNA template were compared with
the same styryl dye that was independently synthesized by the conventional
method from the same coupling partners (BT™-Ald"). The results revealed successful
formation of the expected styryl dye product as shown by the absorption maxima at
560 nm and emission maxima at 600 nm (Figures 3.2B, C), which was identical to the
reference styryl dye independently synthesized by the conventional method.?
Importantly, no color change was observed for any substrate combinations in the
absence of the DNA template, indicating the importance of the template. Likewise,
no color change was observed when Ald was used instead of Ald" thus suggesting

the importance of positive charge on the aldehyde substrate.

In another set of control experiments, with only one of the two coupling
partners being present, no dye formation was observed despite the presence of the
DNA template (Figure 3.3A). However, it appears that Ald" might also be able to
interact with DNA as evidenced by the yellow-colored non-fluorescent solution with
an absorption maximum at 470 nm (Figure 3.3B). The same yellow solution was also
observed in all combinations that contain both Ald™ and DNA, with the exception of

the reaction that also contain BT" whereby the styryl dye was successfully formed.
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Based on these results, we propose that in the absence of the BT coupling partner,

the unreacted Ald™ may form an adduct with DNA.
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Figure 3.3 (A) Control experiment with only one of two coupling partners in
presence of DNA and (B) UV-Visible spectrum. Condition: [Coupling partners] = 1 mM,
[DNA] = 1 mg/mL incubating at room temperature (30 °C) for 2 days.

As a hypothesis, it is possible that the Ald" substrate could react with one or
more nucleobases bearing the exocyclic amino group in the DNA template to form
an imine adduct.?® To confirm the hypothesis, an NMR experiment was performed
on a mixture of deoxyguanosine monophosphate (dGMP) and Ald* at a stoichiometric
ratio in water. The mixture was incubated at room temperature for 2 days. To

investigate the structure of the Ald"-dGMP adduct was analyzed by 2D NMR to
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determine the correlations between *H-'H and 'H-°C signals of the adduct molecule.
As shown in Figure 3.4, the color of the mixture changed from yellow to dark brown.
Based on the key HMBC correlation between the 'H signal of imine at 9.3 ppm and
C signal of C2 on guanine at 131 ppm, a possible structure of the adduct in which
the aldehyde formed an imine with the exocyclic amino group of dG was proposed.
Furthermore, the imine product showed the (-ve) m/z at 657.4669 which
corresponded to [CygHaoN;OgPNal'". In the case of neutral Ald, no colored product was
observed. This indicated that the electrostatically neutral Ald may bind with lower
efficiency to the DNA template than Ald". This confirms the critical role of the
electrostatic interaction between the cationic aldehyde and anionic DNA backbone

to promote the binding and subsequent reactions.
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Figure 3.4 (A) Model reaction of dGMP-Ald* (B) 'H NMR and (C) HMBC spectrum of
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(30 °C) for 2 days.
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3.1.1 Study of salt or buffer for templated reaction

According to our proposal, the electrostatic interactions between the cationic
substrates and the anionic phosphate backbone of the DNA template is responsible
for bringing the coupling partners together on the DNA template. To confirm the
important role of electrostatic interaction in the DNA-templated dye synthesis, the
effects of salt and buffer which contribute to the ionic strength of the reaction
medium were studied. As shown in Figure 3.5, the addition of NaCl, Tris-HCl, or
phosphate buffer attenuated the reaction between BT™-Ald™ as shown by the less
pronounced color change when compared to the reaction without these additives.
The results confirmed that the increased ionic strength resulting from the addition of
salt or buffer to the system suppressed the electrostatic interaction. Rather
unexpectedly, the coupling between Ald" and the neutral benzothiazole substrate
(BT) was more effective in the presence of NaCl as an additive as shown by the
formation of pink-colored and fluorescent product, presumably the corresponding
monocationic styryl dye. This might be explained by the enhancement of the
hydrophobic interaction upon increasing ionic strength thus enabling the coupling

between the neutral BT and Ald".
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3.1.2 Approachability of the templated styryl dye formation with various
templates

The reaction between BT" and Ald® was also investigated with other
macromolecular templates including polystyrene sulfonate (PSS) (an anionic polymer
containing aromatic groups similar to DNA) and polyethylene imine (PEI) (a cationic
polymer without aromatic groups). As shown in Figure 3.6, in all cases no styryl dye
was formed indicating that the templated reaction is specific to the DNA template. In
addition, dsDNA was far more effective in templating the dye formation than ssDNA
possibly due to the more rigid structure of the dsDNA that provides a more well-
defined cavities for the coupling partners to bind (via groove binding or intercalation)
and react to form the dye. In addition to DNA, RNAs may also serve as a template for

the styryl dye formation as they also possess negatively charged phosphate



78

backbone and can provide binding cavities that can promote the dye formation via
the same mechanism as DNA. When dsRNA was used as the template at the same
concentration, the dye formation was less pronounced when compared to dsDNA
template. In case of tRNA, the folding structure was only not suitable for dye
formation. This could be due to the non-optimal cavity for the coupling partners to

bind and the yield of the dye product might also be limited by the degradation of

the RNAs during the long incubation time.
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n »
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S

Figure 3.6 Effect of templates on DNA-templated synthesis. Condition: [coupling
partners] = 1 mM, [DNA] = 1 meg/mL, [saltl/[buffer] = 10 mM incubating at room

temperature for 2 days.
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3.2 Kinetic study of the styryl dye formation from DNA-templated synthesis

Kinetic studies were performed to evaluate the acceleration of the dye
formation by the DNA template. The combination between BT' and Ald* in the
presence of salmon testes DNA template was also used as a model reaction. To
examine the rate constant of the DNA-templated dye synthesis, the concentration of
BT was fixed at 500 mM to ensure a pseudo-first-order kinetic model. The
concentration of Ald" was validated in a range of 1, 2, 5, and 10 mM with stDNA 1
mg/mL (0.8 uM in bp). The absorption of the styryl dye at 570 nm was measured at
hourly intervals at 25 °C and plotted as a function of time. From the results, it was
found that the absorbance of the dye product increased by a different extent
depending on the concentration of the Ald™. In the presence of 1 mg/mL stDNA, the
kinetic of the dye formation reached the steady state after incubating for 30 and 50
hours in the presence of 10 and 5 mM of Ald*, respectively (Figure 3.7A). At a higher
stDNA concentration (2 mg/mL), the dye formation was significantly faster and the
kinetics of the dye formation reached the steady state at 15 and 25 hours in the
presence of 10 and 5 mM of Ald", respectively. However, the absorptions dropped
after 40 hours of incubation due to aggregation or precipitation of the dye at high
concentrations (Figure 3.7B). To evaluate the kinetic constants, the condition at 10
mM Ald® 500 mM BT" with 1 mg/mL stDNA which showed reasonably fast kinetics
was chosen for the study. As shown in Figure 3.7C, the plot between logarithm of
As7o and time provided a linear relationship indicating that the first-order reaction.
Following the pseudofirst-order kinetics model, the rate constant (k) of the DNA-
templated reaction was estimated at 1.51x10" M*h™ (or 2.6x10° M?s™) at 25 °C. Due
to the slow kinetics of the non-templated reaction, the rate constant could not be

calculated.
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Figure 3.7 Kinetic study of the DNA-templated synthesis of BT™-Ald" in the presence
of (A) 1 mg/mL stDNA, and (B) 2 mg/mL of stDNA. (C) Plots between n (As;) and
time. Condition: [Ald*] = 10 mM, [DNA] = 1 mg/mL, incubating at room temperature
(25 °Q).

3.3 Isolation and quantitation of the styryl dye product

The developed DNA-templated styryl dye synthesis already provided a
powerful way for convenient synthesis, rapid screening and identification of dyes with
favourable optical properties without the need to isolate the dyes from the reaction
mixture. However, it might be desirable in some instances to isolate the dyes from
the system. From the literature report, it was found that the ionic liquid [BMIM]PF
has been suggested as a solvent to extract dyes from nucleic acid-dye complexes.®
This concept was successfully applied to the styryl dye extraction from the DNA
template. The dye product was successfully extracted from the reaction mixture to

the [BMIM]PF; ionic liquid (IL) layer (Figure 3.8A). The ionic liquid layer containing the



81

extracted dye was analyzed by 'H NMR to calculate the percentage yield of the dye
formation. To quantitate the dye formation, a known amount of IS was quantitatively
introduced into the solution of the crude IL extract. The concentration and amount
of the dye product was determined from the integration of 'H signals of the product
relative to the IS. After 14 days of incubation, a total of 27% of the dye BT*-Ald" was
obtained based on NMR studies. The figure is in good agreement with the calculated

percentage yield from UV-Visible spectrophotometry at 23% yield of the dye BT'-

Ald" (Ayax = 570 nm, €57 = 7.9x10% Mcm™). Furthermore, the identity of the dye
was further confirmed by MALDI-TOF mass spectrometry which revealed the
molecular ion at (+ve) m/z 452.2859 which is consistent with the expected mass of

the dye at m/z 452.2735 for [C,7HagNsOST" (M-H").
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Figure 3.8 (A) Extraction of styryl dye from Dye-DNA complex using [BMIM]PF4 ionic
liquid. Condition: [Ald*] = 1 mM, [DNA] = 1 mg/mL, incubating at room temperature
for 14 days. (B) 'H NMR spectra (128 scans) of the extracted styryl dye comparing

with reference BT** dye and the corresponding coupling partners, BT* and Ald".
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In addition to the spectroscopic studies, the efficiency of the dye formation
was also evaluated by high-performance liquid chromatography (HPLC). After the
DNA-templated reaction was completed, the dye was isolated by [BMIM]PF
extraction as described above and the extract was diluted with methanol. The
analysis was performed on a reversed phase column (C18) eluting with the gradients
of acetonitrile-water mixtures containing 0.1% TFA (v/v) as the mobile phase. The
retention time of the reference starting materials (BT" and Ald"), the isolated dye
(BT™-Ald" dye), and IL ([BMIMIPF¢) was investicated under 190 nm absorption was
determined as shown in Table 3.1. Moreover, the formation of the BT™-Ald" dye was
also monitored at 550 nm which was the specific absorption wavelength of the dye
(Figure 3.9). The R; at 9.7 min of the extracted product perfectly matched the R; of
the reference BT'-Ald" dye. The yield of the dye was estimated from the peak area
at Ry = 9.7 min at 550 nm using the external calibration method. A g¢ood linear
correlation between peak area and reference BT™-Ald" dye concentration over the
range of 5-100 pM was obtained. According to HPLC analyses, the yield of the dye
BT™-Ald" was 1.5% after 2 days of incubation, and 19% of was obtained after 14 days
incubation. The obtained results are also consistent with the calculated yield from
the previous spectroscopic analysis. These promising results could be used to
confirm the performance of the dye formation. The isolation technique method is

thus demonstrated to be useful for isolating the styryl dye from the DNA template.

Table 3.1 Retention time of the components in the DNA-templated reaction

R; (min)
BT 6.93°
Ald" 9.26°
BT*-Ald* dye 9.74°
[BMIM]PF 4.06"

a Absorption at 220 nm, © Absorption at 190 nm
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Figure 3.9 HPLC chromatograms of templated reaction for BT™-Ald" synthesis after
incubating for 2 days. Condition: [Ald*] = 1 mM, [DNA] = 1 mg/mL incubating at room
temperature, reversed-phase HPLC was performed using C18 column eluting with

acetonitrile:water with 0.1% TFA gradients.
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3.4 Design and synthesis of more diversed cationic coupling partners

The results from the concept validation experiments discussed above clearly
demonstrated the possibility of the DNA-templated styryl dye synthesis. In addition,
it also revealed the criteria of substrates that could participate in the DNA-templated
dye formation that they must be cationic, indicating the critical role of electrostatic
interaction in promoting the binding of the coupling partners the DNA template that
would eventually determine the efficiency of the styryl dye formation. To explore
the substrate scope further, we tested the DNA-templated dye synthesis with
additional substrates. First, various cationic heterocycles and aromatic aldehydes with

a cationic side chain were synthesized.
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Figure 3.10 Schematic illustration of the concept of the nucleic acid-templated

- template
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synthesis of cationic styryl dyes. (A) Diverse sets of cationic heteroaromatic and
aldehyde substrates can (B) bind to the anionic (from phosphate backbone) nucleic
acid template and then react to form styryl dyes in the DNA-bound form. (C) The
spectroscopic profiles (UV-vis absorption and fluorescence emission) of the DNA-dye-

bound form are simultaneously evaluated.
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To introduce the additional positive charge to the methylated heterocycles a
trimethylammonium or pyridinium group was attached by nucleophilic displacement
of the corresponding N-bromoalkylated heteroaromatic compounds. For the
positively charged aromatic aldehydes, the hydroxy substituent on the aromatic
aldehyde was bromoalkylated and subsequently reacted with trimethylamine or
pyridine. The structures of all synthesized compounds were confirmed by 'H and **C

NMR spectroscopy. New compounds were also further characterized by HRMS.

|
@jiﬂ .
n=1 R=H

n=345 R=Br

I

oL ®

I'IR,

n=345

R’= N(CH3)3* or N-pyridinium* EDG

@ D e il

R’
)
>\—©—EDG -
H

R’= N(CH_);* or N-pyridinium*

T“ (i) R-X, MeCN, 90 °C, 12 h
(i) N(CHa); or Pyridine, THF, 12 h
‘,.)_4 Br (iii)1,4-Dibromobutane, K,CO3;, DMF, 12 h

HO le) (iv) Salmon sperm DNA (1 mg/mL), 2-14 days
o (0]
H H

Figure 3.11 Synthesis of the cationic coupling partners used in this study.
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3.5 Combinatorial DNA-templated styryl dye synthesis

Having identified BT*-Ald" as the most productive coupling partners and the
conditions for promoting the DNA-templated reaction, we further explored the

applicability of the method for other cationic coupling partners.

3.5.1 The effect of substituent on the benzothiazolium substrates

In the first set of experiments, the DNA-templated reaction between Ald* with
a diverse set of benzothiazolium-core substrates was studied. The N-
methylbenzothiazolium salts with various substituents including electron withdrawing
(-F, -CF3, -OCF3, -NO,, -Cl, -Br) (the benzothiazole precursors were a gift from Asst.
Prof. Dr. Tanatorn Khotavivattana’s lab, Department of Chemistry, Faculty of Science,
Chulalongkorn university) and electron-donating (-OMe, -NPr,, -Ph, -Me) (the
precursors were synthesized from commercial chemicals) were prepared as the
heteroaromatic coupling partner. The stoichiometric mixture of the Ald" and
benzothiazolium salts at 1:1 ratio and final concentration of 1 mM each and stDNA
template (1 mg/mL) under the same conditions previously developed for the BT'-
Ald" pair. After 2 days, a range of colored products was formed in most wells (Figure
3.13). The solutions appeared yellow to purple in color with absorption maxima in
the range of 530 to 570 nm with the emission wavelength in the range of 595 to 615
nm (Table 3.2). The dye products were isolated by IL extraction and characterized
by MALDI-TOF spectrometry. From the results, all of the desired molecular mass
from combinatorial templated reaction were consistently found as the calculation.
The promising analysis results confirm the successful of the styryl dye synthesis using

DNA-templated approach.
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In an attempt to quantitate the extent of the dye formation, the absorbance
of the reaction mixture in each well was measured spectrophotometrically. Assuming
a similar molar extinction coefficient, the absorbance at A,y (lx,.) Was taken as the
indication of the extent of the dye formation. The styryl dye products obtained from
BT" substrates bearing electron-withdrawing substituents showed much more intense
color comparing to the BT substrates with electron-donating substituents. For
example, up to 17 times of the intensity at the maximum absorption wavelength of
5-NO, was observed when compared to the unsubstituted benzothiazole H-BT*. The
results suggested that the BT substrates with electron-withdrawing groups reacted
faster with the Ald"™ than the substrates with electron-donating substituents. This is
consistent with the ease of deprotonation of the 2-methyl group and better
stabilization of the carbanion intermediate and thus facilitating the aldol
condensation with the aromatic aldehyde. The more exact comparison could be
made by quantitative HPLC analysis of the styryl dyes formed from Ald* and three
BT" derivatives including H-BT", 5-NO,-BT", and 5-OMe-BT" as representatives of
neutral, electron-deficient and electron-rich substrates, respectively. From the
external standard calibration curves prepared from independently synthesized
reference compounds, the percentage yields of BT™-Ald", 5-NO,-BT*-Ald* and 5-OMe-
BT'-Ald" after 2 days were calculated at 1.5%, 26% (17 times of BT™-Ald") and 0.9%
(0.6 times vs BT™-Ald"), respectively. Although a strongly-colored dye was obtained in
the case of the 5-NO,-BT-Ald", no fluorescence was observed which could be
attributed to the quenching effect of the -NO, group by energy transfer.2® Moreover,
the steric effect may also play a crucial role in determining the efficiency of the
reaction as shown in the case of 6-Ph-BT-Ald" combination whereby no dye was

formed as shown by the almost colorless solution without fluorescence.
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To quantitate the responsiveness of the dye in the presence of DNA, it was
necessary to decouple the fluorescence intensity from the extent of the dye

formation. This was achieved by dividing the fluorescence intensity (/g,,) with the

absorbance (/,) at the respective ﬂmax and the larger value of /¢,/I4s would indicate
the dye that is more responsive. Based on these assumptions, the best yields were
obtained with the 5-NO,-BT™-Ald" and the most responsive dyes in terms of
fluorescence enhancement in the presence of salmon testes DNA were 5-OMe-BT"-
Ald" and 6-OMe-BT*-Ald". Inspired by the combinatorial screening results, the two

dyes were individually synthesized in 40-43 % yields by conventional methods.

The optical properties of these dyes were compared with the BT™-Ald" dye as

shown in Table 3.3 Indeed, the 5-OMe-BT"-Ald" and 6-OMe-BT"-Ald" dyes showed

the similar molar extinction coefficient (€) in dye-DNA form and fluorescence
brightness than the parent BT'™-Ald* dye. The two dyes exhibited very low
fluorescence quantum yields in the free state and became highly fluorescence in the
presence of DNA. Although the two new dyes exhibited similar fluorescence
responsiveness to the BT™-Ald" dye, their brightness was considerably stronger due to
the larger molar absorptivity. The results suggested that the combinatorial screening
can identify dyes with desirable characteristics including the absorption and emission
wavelengths as well as the responsiveness with DNA quickly. Thus, the power of the
developed DNA-templated dye synthesis method was clearly demonstrated.
Nevertheless, it was not clear yet whether the affinity of the dyes to the DNA has any

correlation with the extent of the dye’s formation and/or their responsiveness.
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Table 3.3 Optical properties of the individually synthesized dyes (5-OMe-BT*-Ald"
and 6-OMe-BT™-Ald"). Condition: [Dye] = 1 uM, [DNA] = 2 uM in 10 mM PB (pH 7.0)
(dsDNA = 5’-CCAGGGCATGGTAGATCACTGTACGCCGCG-3” +
5’-CGCGGCGTACAGTGATCTACCATGCCCTGG-3’).

P £ Brightness o ¢F(DNA)/
0
Dye x10° M cm™) (x10°) ] D: 4y

Value A (nm) Dye +DNA  Dye +DNA

2.8
BT"-Ald" 126 600 0.1 1.0 0.004  0.371 88"
7.9 (+DNA)
5-OMe-BT - 8.9
34 600 0.2 15.2 0.002 0.170 71
Ald* 6.7 (+DNA)
6-OMe-BT"- 7.7
38 600 0.2 16.2 0.003 0.211 73
Ald” 5.2 (+DNA)

9 Data taken from Sci. Rep. 2022, 12, 14250.

3.5.2 Substituent effect on aromatic aldehyde substrates

In the next experiments, we expanded the substrate scopes for both the
aromatic aldehyde and heteroaromatic coupling partners. Several aromatic
aldehydes with positively-charged modification (see the structures in Figure 3.14) are
effective coupling partners in the DNA-templated synthesis of styryl dye as shown by
the characteristic color change and fluorescence of the dye formed in the presence
of BT" as the heteroaromatic part. The styryl dyes deriving from the reactions
between BT and aromatic aldehydes with various -NR, substituents, e.g.
diethylamino (NEt,), morpholino (Morp), and N-methylpiperazino (Piz), showed similar
optical properties, exhibiting the same range of absorption maxima (565-570 nm).
This may be explained by comparable PET effects of these electron donating
substituents. In terms of fluorescence, BT*-MorpAld™ and BT"-PizAld" showed low
responsiveness to the DNA template comparing to the BT -Ald" pair. This might be
because the substituents are more sterically hindered than diethylamino group

leading to the deterioration of DNA binding. Some aldehydes such as those deriving
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from julolidine and naphthaldehyde were not effective coupling partners as shown
by the absence of the expected reddish color in Figure 3.14. These aldehydes may
be too sterically hindered or may intercalate into the DNA duplex that make the dye
formation difficult. In addition, the doubly-positively-charged bisAld*" was not
suitable as coupling partners because these highly charged molecules caused

immediate precipitation upon mixing with stDNA.

For the heteroaromatic part variation, BT derivatives with two positive charges
were synthesized by the introduction of positively charged sidechain bearing
quaternized nitrogen substituents including trimethylammonium (BTC3NMe,**) and
pyridinium (BTC3Py?*, BTC4Py**, and BTC5Py**) to the BT scaffold. Furthermore,
bisBT** substrates (bisBT(C3)*" and bisBT(N-linker)*") were also included as the di- and
tetra-cationic coupling partners, respectively. The results from the DNA-templated
coupling of these BT derivatives (see the structures in Figure 3.14) with Ald”
revealed that the introduction of more positive charges to the BT substrates as in
bisBT(C3)** and BTC3NMes?* did not increase the rate of dye formation when
compared to BT" as they gave similar absorption intensities in the same timeframe.
Nevertheless, for bisBTC3", the product colors changed to dark purple or dark red
(red-shifted from 565 nm to 580 nm). The explanation for is that the bis-styryl dyes
may fold to form internal aggregate that result in the change of optical properties. In
an aqueous solution, the two styryl molecules may stack on top of each other to
form an intramolecular face-to-face sandwich H-dimer.” In addition, it has been
previously reported that bis-cationic styryl dyes demonstrated some red shift on
absorption (20-30 nm) and large Stoke's shift on the fluorescence because of the
effective resonance energy transfer. The fluorescence from the BTC3NMe;?*-Ald" pair
was 1.6 times higher than the BT*-Ald" pair, which suggested that the presence of the

additional positive charge improves the responsiveness. For BTC3Py?*, the styryl dye
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product formation was enhanced as shown by the high intensity of the absorbance
(6 times of the BT"-Ald" pair) but the dye showing a smaller fluorescence response
(1.5 times lower of I¢,/I4s value). These results demonstrated the power of the DNA-
templated synthesis in revealing subtle effects of the structural characteristic of the
coupling partners to the optical properties of the dyes. The fact that different
positively charged sidechains (-NMe;* and -Py*) showed similar spectroscopic
properties (Table 3.4) indicates that the quaternized species on the side chain of the
coupling partners did not much affect the HOMO-LUMO energy levels which is not
unexpected as they were not directly conjugated to the fluorophore. The steric
hindrance also plays minor effects since they are not directly linked to the
fluorophore, and thus similar binding affinities with DNA are obtained in the case of
dyes from substrates with -NMe;" and -Py* sidechains. In case of BTC4Py" and
BTC5Py", only a small variation in the solution color was obtained and the length of
the sidechain showed only minor effects. These results revealed the consistency with
the previous literature that the shorter linker length appeared to enhance the
fluorescence responsiveness. Nonetheless, the length of modified linker was less
pronounced than introduction of positive charged for DNA binding.”® In agreement
with the previous experiments with aldehydes bearing multiple positive charges, the
bisBT(N-linker)*" was also not suitable as coupling partners due to the precipitation

upon mixing with the DNA template (Table 3.4).
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Figure 3.14 DNA-templated reaction for combinatorial synthesis of styryl dyes from

various cationic benzothiazolium salts and aromatic aldehydes with positively-

charged side chains. Condition: [coupling partners] = 1 mM, [DNA] = 1 mg/mL,

incubating at room temperature for 2 days.
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3.5.3 Effect of heterocycles bearing with an acidic methyl group

In addition to the benzothiazolium core structure, other heteroaromatic ring
systems carrying an acidic methyl group were also explored as potential substrates.
As demonstrated in Figure 3.15 and Table 3.5, N-methylated 2-quinolinium (2-QL"),
d-quinolinium (4-QL"), trimethylindoleninium (TMIN™), 4-pyridinium (4-PY™),
benzoxazolium (BX™), and 2-aminobenzothiazolium (BT-NH,") were examined as
coupling partners with Ald™. A preliminary study revealed that a 1 mM substrate
concentration that had been optimized from previous experiments with the more
reactive BT" substrate required too long incubation time owing to the less acidic
methyl groups on these heteroaromatic rings comparing with BT*. Consequently, the
concentrations of the substrates and DNA template were increased to ensure a

reasonable reaction rate under the same timeframe.

Except for TMIN®, other heterocyclic derivatives were found to be less
effective coupling partners than BT as shown by the weak color change after 2 days
of incubation. As shown in Figure 3.15, strongly colored solutions indicative of the
dye formation were observed only with the BT™-Ald" and TMIN-Ald" combinations.
The obtained dyes showed similar absorption and emission profiles with the isolated
dyes that were conventionally synthesized (Table 3.5). When the incubation period
was extended to 14 days, the color change was ultimately observed in all
combinations. For 2-QL"-Ald" and 4-QL"-Ald", deep violet or blue solutions were
obtained, while the combinations of 4-PY*, BX" or BT-NH," with Ald" gave pink to red
solutions. Under the conditions with increased concentrations of the DNA and the
coupling components, some non-templated reactions also occurred. The color
change can confirm that the DNA-templated synthesis served a convenience to
synthesize the styryl dye under mild condition even for 2-QL", 4-QL", 4-PY", and BX"

which required Ac,O as a catalyst. Nevertheless, spectroscopic measurement in
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comparison with reference dyes confirmed that the dyes were formed more
effectively in the presence of the DNA template (Table 3.6). Interestingly, the
developed DNA-templated styryl dye synthesis also enabled imine-based styryl dye
synthesis strategy in aqueous media.”” Compared to literature, the fluorogenic imine
was successfully synthesized by catalysing by dsDNA. The dsDNA can act as a host to
drive the equilibration of the reaction toward the formation of fluorescent imino dye

which is stabilized upon binding to dsDNA.

R, r—
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7 _
+
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%
-
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D

Figure 3.15 Observation of DNA-templated synthesis (under white light and UV 312
nm) from a combinatorial screening of various methyl heteroaromatic substrates and
Ald" after incubation for 2 and 14 days. Condition: [Coupling partners] = 2 mM, [DNA]

= 1 mg/mL incubating at room temperature.
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Table 3.5 Optical properties (absorption (/) and relative fluorescence emission
(lee/Iaps) from combinatorial screening using heteroaromatic and cationic diethyl

amino aromatic aldehyde substrate.

Heterocycle Mass (m/2) ﬂAbs aps /lEm lem lerd ! abs L€
Calc Found  (nm) (nm)

BT 452.273  452.286 565 0.75° 600  248.70° 1660 0.371

TMIN® 462348  462.341 565 1.84° 620  39.30° 108 0.124

BX" 436.296 436.289 570 0.30 595  334.19" 1114 0.426

2-QL* 446.317 446.281 570 0.64 630 149.73 234 0.025

4-QL* 446.317 446.238 570 0.10 590  433.28 4333 0.057

4-pY* 396.301  396.308 565 0.079 590 86.49 1094 0.127

BT-NH," 453268 453.286 570 0.024 590 204.89 8537 N/A

aDiluted 5x. ® Medium PMT voltage. < Optical properties of the individually synthesized dyes. Conditions: [Dye] = 2
pM, [DNA] = 1 uM; [DNA (in bp)] : [Dye] = 15 : 1; all measurements were performed in 10 mM sodium phosphate
buffer pH 7.0. dsDNA = 5-CGCGGCGTACAGTGATCTACCATGCCCTGG-3" +
3-GCGCCGCATGTCACTAGATGGTACGGGACC-5".

3.6 DNA-templated styryl dye synthesis as a screening tool for dyes that are

responsive to specific DNA structures

The ability of DNA to act as a template for dye synthesis offers an
opportunity for the development of dyes that can bind and show responsiveness for
a specific type of DNA template. Thus, we aimed to test if the use of different DNA
templates can accelerate the formation of styryl dyes that show specific
responsiveness towards different DNA structures. The G-quadruplex DNAs (GQs) which
possess distinctive secondary structures were utilized as templates for combinatorial
dyes synthesis in comparison with dsDNA and ssDNA. GQ DNAs are ubiquitous and
are biologically relevant because excess amount of GQ DNA in human can cause

abnormal gene expressions and genetic disorders. Therefore, development of dyes
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that can specifically stain GQs is significant for medical diagnosis.?® Typically, GQs
are formed from G-rich DNA sequences whereby four guanine bases hydrogen
bonded together to form a tetrad which was further stabilized by cations (e.g. K¥,
NH,") and base stacking.”®°! In the last decades, many studies have been developed
specific dyes which selectively bind with GQs structures. Most of developed dyes
were intercalator, and quinolinium-based dyes have been reported as an excellent

candidate for selective GQs staining dyes.’**°

To demonstrate that the DNA-templated dye synthesis can be used for the
identification of dyes that are selective to GQs, various DNAs with different structures
including dsDNA, ssDNA, and GQs (c-MYC and 22AG) were employed as the template
for the styryl dye synthesis. It has been demonstrated that the c-MYC G-quadruplex
possesses significant stability and adopts a parallel topology. Furthermore, its
elongated surface is particularly well-suited for strong interaction with organic small
molecules.”” *® For the 22AG sequence, is known to fold into quadruplex structures
of different topology in the presence of cations.”” Typically, while Na* induces
antiparallel quadruplex folding, its structure in the presence of K™ is still debated.
However, the current consensus considers that 22AG is a mixture of hybrid-type
structures in K*.'% Typically, GQs are stabilized under a high salt concentration
environment. However, one limitation of the DNA-templated dye synthesis is the

slow reaction rate under a high ionic strength environment. Consequently, only low

salt and buffer concentrations were employed in this work (from 50 —100 mM KCl,
10 mM to 5 mM in 1 mM Tris-HCL). Circular dichroism (CD) spectroscopy was used to
confirm that the G4 structures were formed under the chosen conditions. CD spectra
of G-quadruplexes typically exhibit characteristic peaks and troughs that correspond
to specific structural features (Figure 3.16). The CD spectra have to be compared

with reference spectra of known G-quadruplex structures. This can help identify



99

similarities and differences, aiding in the characterization of the DNA structure (Figure

3.17).
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Figure 3.16 (A) Hydrogen bonding pattern in a G-quadruplex. Three topologies
adopted by G4 nucleic acids and their respective circular dichroism signatures of (B)

parallel (C) antiparallel and (D) hybrid form. %!
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Figure 3.17 CD spectra of GQ-DNAs (A) c-MYC (B) 22AG in low concentration of
buffer. Condition: [DNA] = 1 uM in 1 mM Tris-HCL (pH 7.4).

For the heterocyclic substrates, 1,2-dimethylquinolinium (2-QL") and 1,4-
dimethylquinolinium (4-QL") iodide were chosen to couple with various positively-
charged aromatic aldehydes in the presence of various DNA templates as shown in
Figure 3.18. After 14 days of incubation, some combinations revealed distinctive
color changes indicating the dye formation. The 2-QOL" substrate showed a faster
coupling rate compared to the 4-QL" substrate. Importantly, the 2-QL" and MorpAld*
combination appeared to give a specific color change in the presence of c-MYC and
22AG DNA over other types of DNAs. The dye formation could be identified by
MALDI-TOF spectrometry and the observed mass form the GQ-DNA templated-
synthesis (460.2841 and 460.2848 for c-MYC and 22AG, respectively) was in good
agreement with the calculated mass 460.2959 for [C,oH3gN5O,]" (M-H™). Then, the 2-
QL"-MorpAld* dye was synthesized by the conventional method to investigate the
optical properties in comparison with the dye obtained from the DNA-templated
synthesis and to study its selectivity towards different DNA targets. By visual
observation, the synthesized dye exhibited red fluorescence in the presence of GQ-

DNA including c-MYC and 22AG (Figure 3.18). As shown in Figure 3.19, the isolated
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dye also gave a larger response to GQ-DNA than ssDNA or dsDNA. The binding
constants of the 2-QL"-MorpAld™ dye with different DNA structures were determined
by fluorescence spectrophotometry. The results (Table 3.6) showed a larger binding
constant with c-MYC than ssDNA and dsDNA, although the level of difference is only
marginal. Hence, screening for the dyes that are responsive to different DNA

structures was possible using the developed DNA-templated reaction.
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Figure 3.18 Application of DNA-templated synthesis for the discovery of styryl dyes
that are responsive to some specific DNA structures using quinolinium substrates and
various alkyl amino aromatic aldehydes in the presence of different DNA templates
(ssDNA, dsDNA, and GQs). Condition: [coupling partners] = 2 mM, [DNA] = 0.5 pg/mL,
[KCU = 5 mM in 1 mM Tris-HCL (pH 7.4) incubating at room temperature for 14 days.
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22AG

White light

2-QL*-Ald(Morp)*

Figure 3.19 Photographs of 2-QL"-MorpAld® prepared by the conventional method in
the absence and presence of various DNAs (under white licht and 312 nm UV light).
Condition: [Dye] = 2 uM, [DNA] = 4 pM, [KCl] = 50 mM in 10 mM Tris-HCl buffer (pH
7.4).

Table 3.6 Selectivity and binding constant of 2-QL*-MorpAld™ dye towards various
DNAs. Condition: [Dye] = 2 uM, [DNA] = 0-1 pM, [KClJ] = 50 mM in 10 mM Tris-HCLl
buffer (pH 7.4).

DNA F/F, K, (x10° M) n
c-MYC 54.9 1.6 3.03
22AG 100.3 13 4.10
sSDNA 6.3 0.9 2.11

dsDNA 18.9 0.3 1.79
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3.7 Application of DNA-templated styryl dye synthesis in cells

The previous results demonstrated the successful DNA-templated (and RNA-
templated) dye synthesis using natural (stDNA) or synthetic nucleic acids as a
template. As nucleic acids are abundant in the cells, it was envisioned that cellular
nucleic acids could act as the template for the dye synthesis in the cells providing
that the coupling partners were able to enter the target cells and exhibited low
toxicity. This could open up new opportunities to synthesize the dyes directly in the

cells and study their staining behaviors.
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Figure 3.20 Applicability of nucleic acid-templated synthesis of styryl dye in cells.
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3.7.1 Fluorescence staining behavior in living cells of BT*-Ald* dye

Before studying the templated reaction in the cells, the conventionally
synthesized BT'—Ald" dye, was utilized as a model to evaluate the behavior of the
dye for cellular fluorescence staining. The Hela cell line which is an immortal human
cell was employed for cytological studies. The BT™-Ald" dye was previously shown to
selectively stain cellular RNA rather than DNA.>® In addition, this dicationic dye is also

less cytotoxic when compared with monocationic dye.

In 2002, Supabowornsathit et al. reported the staining behaviour of the BT"-
Ald* dye in live HeLa cells.” Live HeLa cells were treated with 20 pM of BT*-Ald* dye
in cell culture media for 18 hours. From the fluorescence images, the red
fluorescence from BT'-Ald" dye was observed in several of the whole cells.
Moreover, the brightest area appeared in the nuclei region that are not overlapping
with in the DAPI stain indicating that the dye did not bind to DNA. To further confirm
that RNA was the target, the Hela cells were co-stained with the SYTO RNA select®
Green. In the co-localization experiments, the fluorescence image showed
collocative overlapping between red fluorescence from BT "-Ald* dye and green
fluorescence from RNA select dye (Pearson coefficient = 0.684), confirming the similar
staining pattern and thus RNA selectivity of BT*-Ald* and SYTO RNA select® Green

(Figure 3.21).
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SYTO RNA select®
Green

Co-localization

Figure 3.21 Co-localization between BT'-Ald" dye and RNA staining dyes in Hela
cells. Condition: Hela cell (5x10* cells/well) in DMEM, [Dye] = 20 pM incubated for
45 minutes at 37 © C under 5% CO, atmosphere, SYTO RNA select® Green 500 UM for
20 minutes, DAPI (200 ng/mL) for 15 minutes. >

In addition to the co-staining experiments, nuclease digestion experiments
were used to confirm the nucleic acid target in cells. As shown in the Figure 3.22,
the image in the blue channel showed nuclear DNA staining from DAPI, the red and
green channels showed RNA staining from BT*-Ald* and SYTO RNA Select® Green dye
in HelLa cells. When the cells were treated with DNase | which degraded all cellular
DNAs, only the blue signal was disappeared while the red and green in the cells
nucleoli and cytoplasm still remained. The absence of the DAPI signal confirmed that
the nuclear DNA was completely digested. However, the fluorescence of BT "-Ald"
and SYTO RNA select® Green confirmed that the observed fluorescence was not due
to cellular DNA binding. In the contrast, when the Hela cells were treated with

RNase A, the blue fluorescence remained but the red and green fluorescence
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disappeared. Thus, the nuclease digestion experiments further confirmed that

cellular RNA is indeed the target for the BT™-Ald" dye.
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Figure 3.22 Fluorescence images of nucleic acid staining confirmed by enzymatic
digestion (DNAse | and RNase A). Condition: HelLa cell (5x10% cells/well) in DMEM,
[Dye] = 20 uM incubated for 45 minutes at 37 °C under 5% CO, atmosphere, SYTO
RNA select® Green 500 uM for 20 minutes, DAPI (200 ng/mL) for 15 minutes.

The RNA binding of the dye was also confirmed by observing the
fluorescence responsiveness of BT™-Ald" towards different nucleic acid targets in
vitro. As shown in Figure 3.23, the fluorescence of the dye was observed in the
presence of both dsDNA and dsRNA when visualized under UV (312 nm) indicating

that the dye could also bind to dsRNA and gave fluorescence enhancement.
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Figure 3.23 Fluorescence responsiveness of BT*-Ald" dye toward several nucleic acid.

Condition: [Dye] = 1 pM, [Nucleic acid] = 2 uM in bp in 10 mM PB (pH 7.0).

For the staining experiments in the cells, it appeared that BT™-Ald" dye
selectively bind to only RNA in cells and no nuclear DNA staining was observed. This
can be explained that the cellular DNA are naturally bound to histone to form
nucleoprotein complexes (NPC) called a nucleosome that are generally found in
chromosomes. It has been reported that some styryl dyes that could bind to DNAs in
vitro did not bind to the NPCs in the cells and thus the histone could be the key
factor that prevented the dye from binding to cellular DNAs (Figure 3.24). In contrast,
RNAs are found in several parts of cells such as the cytoplasm or nucleoli in the
nucleus which consists of condensed rRNA. Notably, RNAs are frequently found in
free form (MRNA) or protein-bound form (rRNA) but perhaps the RNA in
ribonucleoprotein complexes are more accessible to the small molecules. %% It
has been reported that some styryl dyes could penetrate in to the nucleus and thus

bound to rRNA in nucleoli.*> 1% This explanation may account for the binding

behaviour of BT™-Ald" in the cells in the present study.
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Figure 3.24 Structure of DNA-Histone complexes.

3.7.2 Toxicity of coupling partners

Before studying the templated reaction in cells, the toxicity of the cationic
substrates (BT" and diethylamino salicylaldehyde carrying with cationic modification
including -NMe;" and -Py") towards Hela cell lines was evaluated by MTT assays. The
cells were grown in the cell culture media for 24 hours and then treated with each
coupling partners at 10, 20, 50 and 100 pM. The incubation time was set at 3 days
which should cover the time required for the templated dye formation. As shown in
Figure 3.25, the cell viabilities were over 80% after incubating the cells with each
coupling partner over 3 days. The results indicated the low cytotoxicity of the
cationic substrates for the dye synthesis, which is one of the requirements for

achieving the templated reaction in cells.
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Figure 3.25 Toxicity of the cationic coupling partners for a model templated styryl
dye formation in Hela cells. Condition: Hela cell (1x10* cells/well) in DMEM, [Dye] =
10-100 pM incubated for 24 hours at 37 °C under 5% CO, atmosphere.

3.7.3 Nucleic acid-templated reaction in live cells

Before studying the nucleic acid-templated dye synthesis in the cells, the
effect of interferences in cell culture media was investigated to ensure that the dye
formation is not an artifact. In the study, the coupling partners (0.2 mM) were
incubated in cell culture media included DMEM with 10% FBS, and 1% penicillin, in
the absence of the cells at 37 °C for 3 days. Next, the dye formation was evaluated
by using spectroscopic techniques. From the UV-Visible spectrum, there were no
difference in the absorption spectra of the media and the media in the presence of
coupling partners in the absence of stDNA indicating that the dye did not
spontaneously form in the cell culture media (Figure 3.26). However, in the presence
of stDNA template, no signal could be observed. This might be due to the formation
of the dye in too small amounts to be detectable by UV-Vis spectrophotometry.
Fluorescence spectrophotometry was therefore used to further confirm the dye

formation. No fluorescence signal was observed when the coupling partners were
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mixed in the culture media in the absence of stDNA template. In contrast, the

fluorescence signal corresponding to the BT™-Ald* dye (Aern=595 nm) was clearly
visible when the salmon testes DNA was introduced to the media. This clearly
indicated that the dye formation was successful in the cell culture media only when

the DNA template is present (Figure 3.26B).
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Figure 3.26 (A) UV-Visible and (B) Fluorrescence sprectra of nucleic acid-templated
styryl dye formation in cell culture media. Condition: [coupling partners] = 0.2 mM,

[StDNA] = 1 mg/mL in DMEM incubated for 3 days at 37 °C under 5% CO,

atmosphere.
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Next, the nucleic acid-templated styryl dye synthesis was attempted in living

cells. In a preliminary experiment, the BT and Ald" coupling partners (0.2 mM each)
were introduced to Hela cells in 12-well plate and incubated for 3 days. After the
incubation time, the live cells were treated with Hoechst22345 for 15 minutes to
stain the nuclear DNA before observing with fluorescence microscopy. The
fluorescence images of the cells after incubation with the coupling partners (BT* and
Ald") were consistent with those obtained from cell staining with the previously
synthesized BT™-Ald" dye. In both cases, red fluorescent signals were observed in
both cytoplasm and nucleus in exactly the same pattern. Similarly, the intense red
fluorescence with similar staining pattern was also observed in the cells incubated
with BT" and cationic pyridinium-modified aldehyde (AldPy*) (Figure 3.27). These
results were in line with a previous report that the pyridinium sidechain can improve
the dye’s binding with nucleic acids. Moreover, there are some literatures reported
that amphiphilicity of pyridinium-modified moiety could increase cell penetrating
property on small molecules.'® ! Notably, the bright fluorescence from BT*-AldPy*
from templated reaction might imply the formation of the dye product in high yield.
Accordingly, these promising results can confirm the possibility of nucleic acid-
templated reaction in live cells for screening of staining behavior of the dye under

biological conditions.
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Figure 3.27 Live cells imaging from nucleic acid-templated synthesis of styryl dye in

Hela cells. The fluorescence images were observed from BT +Ald" and BT +AldPy*

coupling partners after incubation for 3 days. Condition: HelLa cell (5x10* cells/well)
in DMEM, [coupling partner] = 0.2 mM incubated for 3 days at 37 °C under 5% CO,
atmosphere, Hoechst22345 (1 ng/mL) for 15 minutes.

3.7.4 Concept validation of nucleic acid-templated reaction in live cells

To additionally confirm the roles of cellular nucleic acids as the template for
the dye formation, the Hela cells were fixed and separately treated with DNase | and
RNase A to selectively digest the DNA or RNA before performing the templated
reaction using BT" and Ald"/AldPy" as the coupling partners under the same
conditions. Deoxyribonuclease | (DNase 1) is a common enzyme that cleaves DNA,
resulting in the formation of two smaller fragments called oligonucleotides. These

fragments have one end with a phosphate group attached at the 5' position and the
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other end with a hydroxyl group at the 3' position. On the other hand, RNase
A efficiently catalyzes the cleavage of the P-O5' bond of RNA specifically after
pyrimidine residues. As expected, no red fluorescence signals were observed in the
cells that were treated with RNase A. The absence of templated reactions confirmed
that RNA was indeed act as a template for the dye formation. In contrast, the red
fluorescence signals of the dye products remained in the cells that treated with
DNase I. The lack of nuclear DNA staining by DAPI confirmed that the DNA was
indeed completely digested. However, the dye formation was still observed in the
cells indicating that DNA was not the template for the styryl dye formation in the

cells (Figure 3.28).
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Figure 3.28 Applicability of nucleic acid-templated synthesis of styryl dye in Hela
cells. The fluorescence images were observed from (A) BT'+Ald" and (B) BT +AldPy*
coupling partners (0.2 mM of each) after incubation for 3 days (Red channel; A, =
305 nm, ﬁgm = 617 nm, Blue channel,; ﬁgx =353 nm, /15m = 465 nm). Condition: Hela
cell (5x10 cells/well) in DMEM, [coupling partner] = 0.2 mM incubated for 3 days at
37 °C under 5% CO, atmosphere, RNase A (25 pg/mL) or DNase | (30 pg/mL) at 37 °C

for 4 hours, DAPI (1 pg/mL) for 20 minutes at room temperature.
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For the control experiments, when the cells were treated with only BT or
Ald" substrate, no red fluorescence could be observed (Figure 3.29). These findings
support the conclusion that the dye formation was possible in the cells and the

process was facilitated by intracellular nucleic acids.

Bright field Red channel Blue channel Overlay

Ald* BT*

AldPy*

Figure 3.29 Control experiment of nucleic acid-templated synthesis of styryl dye in
Hela cells. Condition: Hela cell (5x10" cells/well) in DMEM, [coupling partner] = 0.2
mM incubated for 3 days at 37 °C under 5% CO, atmosphere, DAPI (1 ug/mL) for 20

minutes at room temperature.
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3.7.5 Applications of nucleic acid-templated dye synthesis in cells

The nucleic acid-templated reaction in the cells was extended to various
cationic heterocycles. However, it was observed that the formation of dyes involving
less acidic methyl on quinolinium and pyridinium salts exhibited slow kinetics thus
were not suitable for live cells experiments. To overcome this limitation, the
combinatorial screening of a diverse set of cationic heterocycles and aromatic
aldehydes was conducted in fixed Hela cells instead. After a 7-day incubation
period, the fluorescence imaging experiments revealed the presence of red
fluorescence, except for the PY" substrate. As mentioned earlier, TMIN+ displayed
the fastest rate of dye formation under the same conditions regardless of the Ald*
coupling partners. All new dyes exhibited a similar staining pattern to that of the BT"-

Ald" dye, whereby they selectively stained RNA in the nucleoli (Figure 3.30).
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All the results described above indicated the successful formation of styryl
dyes through DNA-templated synthesis (in vitro) and RNA-templated synthesis in
cells. Previous literature reports have described various monocationic styryl dyes that
selectively stain cellular RNA especially at the nucleoli.® %% 11112 The consistency
observed in the staining patterns between nucleic acid-templated synthetic screening
and this general observation suggests that nucleic acid-templated synthesis can be

employed to evaluate the localization and binding behavior of cationic styryl dyes.

To further investigate these findings, validating the results by comparing the
behavior of the DNA-templated synthesized dyes with dyes synthesized through
traditional methods (isolated dyes) will help establish the reliability and significance
of the nucleic acid-templated synthesis approach. This comparative analysis can
provide insights into the advantages, limitations, and potential applications of DNA-

templated synthesis for styryl dye formation and their subsequent binding behavior.
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CHAPTER IV
CONCLUSION

This study presents a novel approach for the formation of styryl dyes from
cationic heterocycles and aldehydes through the nucleic acid-templated synthesis
under mild conditions that are biologically compatible. The presence of a cationic
moiety on both coupling precursors plays a crucial role in the reaction process which
can be attributed to the electrostatic interaction between the cationic precursors
and the polyanionic phosphate backbone of the DNA. This method offers a powerful
strategy for the synthesis and screening of diverse sets of styryl dyes with various
optical properties and allows for the facile generation of a library of styryl dyes with
diverse structures. Different types of DNA templates can accelerate the selective
formation of styryl dyes, depending on the template used. This template-dependent
effect allows for the identification of new dyes that exhibit selectivity towards
different types of DNAs. By leveraging the structural diversity of DNA, it becomes
possible to create a wide range of dye structures with different optical properties and

specificity towards DNA structures.

Another important aspect of this study is that the templated dye synthesis
can also occur inside living cells. When the coupling partners were incubated with
HelLa cells, the dye formation took place inside the cells as shown by the same
staining pattern when compared to the cells that were stained with the
independently synthesized dye. Due to the blockage of cellular DNA by binding to
histones, cytoplasmic and nucleoli RNA were the primary targets for the staining by
the styryl dyes. Nuclease digestion experiments confirmed that cellular RNAs rather

than DNA acted as the template for styryl dye synthesis. It was envisioned that this
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newly developed DNA-templated styryl dye synthesis approach will greatly facilitate
the rapid discovery of new styryl dyes with desirable characteristics. These dyes hold
great potential for a wide range of biological applications, appreciation to their

tunable properties and the ability to selectively target specific DNA templates.

Overall, DNA-templated synthesis offers a powerful and versatile approach to
the combinatorial synthesis of styryl dyes. The synthesis is convenient and provides
the optical properties information directly, i.e. the synthesis and screening are
performed in a single step. The reaction also occurs under biologically compatible
conditions that even allow for dye synthesis in living cells. These advantages make it
a valuable tool for the development of novel dyes with tailored properties and

applications.
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Substituent effect on BT" substrates for DNA-templated synthesis
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Figure A.1 Study of substituent effect on BT heteroaromatic substrate using diverse

sets of (A) electron-withdrawing and (B) electron-donating substituents. Spectro

scopic profiles; (C) Absorption spectra and (D) Emission spectra (Ag, = 565 nm) of

dye-DNA bound form from combinatorial screening.



133

Combinatorial synthesis of styryl dyes from various cationic heteroaromatic

substrates
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Figure A.2 Study of heteroaromatic effect on DNA-templated synthesis using various

heterocycle substrates (A) templated reaction (B) UV-visible and fluorescence

spectra.
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Table A.1 Optical properties of the individually synthesized dyes from various
heteroaromatic and N,N-diethylamno aromatic aldehyde. Conditions: [Dye] = 2 uM,
[DNA] = 1 uM; [DNA (in bp)] : [Dye] = 15 : 1; all measurements were performed in 10
mM sodium phosphate buffer (pH 7.0).

dsDNA = 5-CGCGGCGTACAGTGATCTACCATGCCCTGG-3" +
3'-GCGCCGCATGTCACTAGATGGTACGGGACE-S'.

lAbs lEm led/Ins ¢F
Dye Iabs lem

(nm) (nm) (x 10%) Dye  +DNA
BT -Ald(NEL,)" 565 0.127 600 467946 37 0.004 0.371
BX"-Ald(NEt,)" 570 0.009 595 12106 13 0.006 0.426
TMIN*-AId(NEL,)" 565 0.284 620 389408 14 0.004 0.124
4-PY"-Ald(NEL,)" 565 0.053 590 117126 22 0.002 0.127
2-QL*-Ald(NEt,)" 570 0.647 630 6481 0.11 0.001 0.025
4-QL* -Ald(NEt,)" 570 0.057 590 898 0.16 0.001 0.057

? Excitation wavelength (As), 565 nm
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nm.
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Figure A.5 HPLC chromatogram of crude from DNA-templated synthesis for BT™-Ald"
after incubating for 14 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.6 HPLC chromatogram of crude from DNA-templated synthesis for 4-F-BT"-

Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.7 HPLC chromatogram of crude from DNA-templated synthesis for 5-Br-BT"-
Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.8 HPLC chromatogram of crude from DNA-templated synthesis for 5-CI-BT"-
Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.9 HPLC chromatogram of crude from DNA-templated synthesis for 5-F-BT"-
Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.10 HPLC chromatogram of crude from DNA-templated synthesis for 5-NO,-

BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.11 HPLC chromatogram of crude from DNA-templated synthesis for 6-F-BT"-

Ald™ after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.12 HPLC chromatogram of crude from DNA-templated synthesis for 5,6-F-
BT™-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.13 HPLC chromatogram of crude from DNA-templated synthesis for 6-CFs-

BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.



147

uAu

A) 1250000 PDA Multi 2 220nm,4nm|

.242

1000000

750000

500000

250000

T
0.0 25 5.0 75 10.0 125 15.0 175 20.0

min
uAu
B) 2 PDA Multi 1 550nm,4nm|
500000 =
e
400000
300000
200000
100000
o
T T T T T T T
0.0 25 5.0 75 10.0 125 15.0 175 20.0

min

Figure A.14 HPLC chromatogram of crude from DNA-templated synthesis for 6-OCF-
BT™-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.15 HPLC chromatogram of crude from DNA-templated synthesis for 7-F-BT*-
Ald* after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.16 HPLC chromatogram of crude from DNA-templated synthesis for 5-OMe-
BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.17 HPLC chromatogram of crude from DNA-templated synthesis for 5-Me-

BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.18 HPLC chromatogram of crude from DNA-templated synthesis for 5,6-Me-
BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.19 HPLC chromatogram of crude from DNA-templated synthesis for 6-OMe-

BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Figure A.20 HPLC chromatogram of crude from DNA-templated synthesis for 6-NPrs-
BT-Ald" after incubating for 2 days observed at (A) 220 nm and (B) 550 nm.
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Characterization

Dye product from DNA-templated reaction

m/z calc.452.273 , found 452.286
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Figure A.21 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
BT"-Ald™.

m/z calc. 470.264 , found 470.248
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Figure A.22 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
4-F-BT"-Ald".
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m/z calc. 530.184 , found 530.205
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Figure A.23 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-Br-BT"-Ald™.

m/z calc. 486.234 , found 486.251
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Figure A.24 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-CI-BT*-Ald".
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m/z calc. 470.264 , found 470.279
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Figure A.25 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-F-BT"-Ald™.

m/z calc. 497.258 , found 497.285
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Figure A.26 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-NO,-BT™-Ald".
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m/z calc. 470.264, found 470.282

1[1) 6F-BT-new cal.tas Description: 6F-BT laser55

5200
4800
4400
3
2
4000 prs
3500 A
fad
28
4o
g2
3200 25
2800

1600 4
1200 4
800 4

400 4
0

452 456 460 464 468 472 476 480 484 488 492 496 500m/z

Figure A.27 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
6-F-BT™-Ald".

m/z calc. 488.254 , found 488.276
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Figure A.28 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5,6-F-BT"-Ald".
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m/z calc. 520.260 , found 520.269
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Figure A.29 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
6-CF5-BT™-Ald".

m/z calc. 536.255 , found 536.278
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Figure A.30 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
6-OCF4-BT"-Ald".
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m/z calc. 470.264 , found 470.284
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Figure A.31 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
7-F-BT™-Ald".

m/z calc. 482.284 , found 482.313
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Figure A.32 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-OMe-BT"-Ald".
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m/z calc. 466.289 , found 466.308
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Figure A.33 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5-Me-BT™-Ald".
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Figure A.34 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
5,6-Me-BT*-Ald".
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m/z calc. 482.284 , found 482.314
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Figure A.35 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
6-OMe-BT*-Ald".

m/z calc. 551.378 , found 551.353
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Figure A.36 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
6-NPr,-BT*-Ald".
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Figure A.37 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for

BX*-Ald".

m/z calc. 462.348, found 462.341
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Figure A.38 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for

TMIN™-Ald".
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m/z calc. 446.317, found 446.281
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Figure A.39 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
2-QL*-Ald".

m/z calc. 446.317, found 446.238
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Figure A. 40 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
4-QL*-Ald".
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m/z calc. 396.301, found 396.308
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Figure A.41 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
4-PY*-Ald”.

m/z calc. 453.268, found 453.286
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Figure A.42 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
BT-NH,"-Ald".
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m/z calc. 460.296, found 460.284
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Figure A.43 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
2-QL*-MorpAld™ catalysed by c-MYC.
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Figure A.44 Mass spectrum (MALDI-TOF) of crude from DNA-templated synthesis for
2-QL"-MorpAld* catalysed by c-MYC.
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ot 111) GMP-AKl+_negtas _Description: dGMP+Ald+_neg

387.2401

480

HGMP AL
57,4660

440

6554561

400

bst.4688

= e e
160+ 5
&
2 g
120 =
om = .
] s -
g ]
fo
it
040 | | 8%
bl \ .
.Hnllw\u i ull ’ ‘||\r e gty ll \l.‘ ———
480 500 520 540 560 580 600 620 640 660 680 700 miz

Figure A.45 Mass spectrum (MALDI-TOF) of crude from dGMP-Ald".
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Figure A. 46 'H NMR spectrum of 2,3-dimethylbenzo[d]thiazol-3-ium iodide (BT").
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Figure A. 47 'H NMR spectrum of 2-amino-3-methylbenzo[d]thiazol-3-ium iodide (BT-

NH,").
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Figure A.48 '"H NMR spectrum of 2-methyl-3-(3<(pyridin-1-ium -1-
yDpropylbenzold]thiazol-3-ium bromide (BTC3Py*").
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Figure A.49 'H NMR spectrum of 2-methyl-3-(4<(pyridin-1-ium -1-
yObutylbenzo[d]thiazol-3-ium bromide (BTC4Py?*).
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Figure A.50'H NMR spectrum of 2-methyl-3-(5«(pyridin-1-ium -1-
yUpentylbenzold]thiazol-3-ium bromide (BTC5Py*")
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Figure A.51 'H NMR spectrum of 3,3'(propane-1,3-diyDbis(2-methylbenzo[d]thiazol-3-
ium) bromide (BisBT)*").
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Figure A.52 "H NMR spectrum of 1,4-dimethylpyridin-1-ium iodide (4-Py™).
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Figure A.53 'H NMR spectrum of 1,2,3,3-tetramethyl-3H-indol-1-ium iodide (TMIN®).
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Figure A.54 'H NMR spectrum of 2,3-dimethylbenzo[d]oxazol-3-ium iodide (BX™).
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Figure A.55 "H NMR spectrum of 1,2-dimethylquinolin-1-ium iodide (2-QL").
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Figure A.56 'H NMR spectrum of 1,4-dimethylquinolin-1-ium iodide (4-QL").

Characterization of aromatic aldehydes with positively charged side chains
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Figure A57 'H NMR spectrum of 4-(5-(diethylamino)-2-formylphenoxy)-N,N,N-
trimethylbutan-1-aminium bromide (AlA(NEt,)").
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Figure A58 'H NMR spectrum of 4-(2-formyl-5-(d-methylpiperazin-1-y)phenoxy)-

N,N,N-trimethylbutan-1-aminium bromide (Ald(Piz)*).
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Figure A59 "H NMR

trimethylbutan-1-aminium bromide (Ald(Morp)®).

spectrum of 4-(2-formyl-5-morpholinophenoxy)-N,N,N-
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Figure A.60 'H NMR spectrum of 4-((9-formyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-
ijlquinolin-8-yDoxy)-N, N, N-trimethylbutan-1-aminium bromide (AldUu)").
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Figure A.61 'H NMR spectrum of 4-((1-formylnaphthalen-2-yDoxy)-N,N,N-

trimethylbutan-1-aminium bromide (NaphAld®).
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Figure A.62 'H NMR spectrum of 4-(5-(azetidin-1-yl)-2-formylphenoxy)-N,N,N-

trimethylbutan-1-aminium bromide (Ald(Aze)").

Characterization of isolated cationic styryl dyes
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Figure A.63 '"H NMR spectrum of (F)2<(4-(diethylamino)-2-(4-

(trimethylammonio)butoxy)styryl)-5-methoxy-3-methylbenzo[d]thiazol-3-ium bromide

iodide (5-OMe-BT*-Ald(NEt,)").



176

—
0 S / N
V.
N+
Vol
ﬂ;ll II L ‘Jut J‘
M wR ¥ YOy T it
2835 Ik 3 £88 ® € = H
125 11.5 10.5 95 90 85 80 75 70 65 60 55 50 45 40 35 3.0 25 20 15 1.0 05 00 -1.0 -2.0

Chemical Shift (ppm)

Figure A.64 '"H NMR spectrum of (E)2-(4-(diethylamino)-2-(4-
(trimethylammonio)butoxy)styryl)-6-methoxy-3-methylbenzold]thiazol-3-ium bromide
iodide ((6-OMe-BT"-Ald(NEt,)").
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Figure A.65 '"H NMR spectrum (£)-1-methyl-2-(d-morpholino-2-(4-
(trimethylammonio)butoxy)styryl)quinolin-1-ium bromide iodide (2-QL*-MorpAld®).
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Figure A.66 'H NMR spectrum (E)2-«(4-(Diethylam ino)-2-(4-
(trimethylammonio)butoxy)styryl)-1,3,3-trimethyl-3H-indol-1-ium
hexafluorophosphate (TMIN*-Ald").
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Figure A.67 'H NMR spectrum (£)-2<(4-(diethylam ino)-2-(4-
(trimethylammonio)butoxy)styryl)-3-methylbenzol[d]oxazol-3-ium

hexafluorophosphate (BX*-Ald™).
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Figure A.68 'H NMR spectrum (£)-2<(4-(diethylam ino)-2-(4-
(trimethylammonio)butoxy)styryl)-1-methylquinolin-1-ium hexafluorophosphate (2-
QL"™-Ald").
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Figure A.69 'H NMR spectrum (£)-4<(4-(diethylam ino)-2-(4-
(trimethylammonio)butoxy)styryl)-1-methylquinolin-1-ium hexafluorophosphate (4-
QL"™-Ald")
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Figure A. 70 'H NMR spectrum (E)-4-(4-(diethylamino)-2-4-
(trimethylammonio)butoxy)styryl)-1-methylpyridin-1-ium hexafluorophosphate (2-PY™-
ALd(NEL,)").
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