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1. Introduction 

In the era of climatic changes, capital allocation will decide not just humanity's 

development toward resolving the environmental changes, but also which industries 

and businesses will cope, grow, and become a part of the future industrial landscape. 

The transformation to a net-zero emissions economy is necessary to meet the Paris 

Agreement's climate targets by 2050, which would undoubtedly alter the global 

competitiveness landscape. As communities demand and embrace more 

environmentally friendly manufacturing methods due to legislation, political will, and 

the consequences of climate change, demand for zero-emission technology will 

increase even more. This path of technological changes is boosting automation, 

mechanization, electrification, and dynamic optimization1, which are driving the 

renewable energy transition. The path to this new green economy will be filled with 

investment opportunities, as the long-term picture clearly shows. This study's goal is 

to guide investors in navigating this evolving environment by highlighting the 

megatrends and identifying the sectors that are best positioned to remain 

competitively green in the present and the future. 

A lot of studies exploring the connection between the return, volatility, and other 

assets of investments in renewable energy have been sparked by the rising 

popularity of these investments. Technology and oil prices, for instance, have an 

impact on the stock values of renewable energy sources (Irene Henriques, 2008). 

Time-varying tail dependency was seen in relation to oil and renewable energy. 

(Reboredo, 2015) and their relationship is greater when there are bad markets 

(Ishaan Dawar, 2021). Depending on the geography, the state of the market, and the 

length of the investment horizon, different assets' dependency with renewable 

energy equity changes (Pham, 2021). To determine the appropriate hedging ratios 

between renewable energy and traditional assets, several studies also look at the 

relationship between clean energy and other assets. For example, (Saeed et al., 

2020) examines the usage of clean energy2 assets as a hedge against dirty energy3 

investments. (Shrimali, 2019) demonstrates that renewable energy equity does not 

improve the risk–return profile for investors compared to conventional alternatives. 

Portfolios that invest in renewable energy outperform those that invest in fossil fuels 

(Irene Henriques, 2018). Renewable energy equities have been shown to mitigate 

the downside risk of dirty energy stocks (Kuang, 2021a). The impact of shocks in 

equity and oil implied volatility on renewable energy stock realized volatility varies 

across renewable energy sub-sectors (Fuentes & Herrera, 2020). To this purpose, the 

 
1 Farmer and Lafond, ‘How Predictable Is Technological Progress?’, 2016, 
https://doi.org/10.1016/j.respol.2015.11.001. 
2 Renewable energy, often known as clean energy, is defined as energy produced from natural 
sources or processes. Renewable energy resources include wind, solar, hydro, geothermal, and 
bioenergy. (Ellabban et al., 2014). 
3 Dirty energy is defined fossil fuels-based energy 

https://doi.org/10.1016/j.respol.2015.11.001
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flow of adequate funds to finance renewable energy demands may be constrained 

by investor perceptions that investments in renewable energy do not offer attractive 

returns when compared to conventional options. 

The recent study of (Kuang, 2021b) show that the risk and return on renewable 

energy stock sub-sectors vary significantly and renewable energy stocks generally 

underperform the overall equity market but outperform dirty stocks. In addition, the 

study provides new insights into effective diversification strategies and active 

portfolio management at the clean energy sub-sector4 levels. How to construct a 

wind and solar stock portfolio as part of renewable energy portfolio and how it 

would perform in comparison to passively investing in renewable energy sector 

index. To fill this gap, our objective of this study is to examine the purity score and 

green complexity score on wind and solar stock return, which will be valuable in 

enhancing return, by test performance of different portfolios. We analyze the purity 

score and green complexity score as a new type of green/environmental rating. The 

purity score and green complexity score set specific metrics and magnitude for each 

firm’s technology-dense, which consider as a winner in this shifting landscape. It 

dynamically reflects the actual status of a firm’s business activity and provides a new 

way to measure the greenness/sustainability of firms from the perspective of output. 

To do so, we use the purity score and green complexity score as sorting factors to 

construct portfolios. 

To the best of our knowledge, no similar study has ever been conducted. This 

study, in particular, contributes to the present literature in three dimensions. First, 

this is the first empirical study to examine the purity score and green complexity 

score on wind and solar stock return – by using them as factors sorting, whether high 

score portfolio that include higher technology-dense firms perform better than low 

score. Second, our study clarifies the risk-adjusted return relationship for 

investments in wind and solar stocks and provides empirical evidence of a 

relationship between those factors and returns, which may help reshape financial 

markets by facilitating fund to wind and solar businesses. Third, this research 

compares the performance of different factors sorting portfolios. As a result, it 

provides a more comprehensive view of wind and solar sub-sector. This considers 

that, rather than passively investing in the aggregated wind and/or solar energy 

index, investors can apply those sorting factors to construct their decarbonized 

portfolios. The results of high score portfolio compared to universal and/or low score 

portfolio would be useful not only to market participants who contribute funds to 

the energy transition, but also to policymakers in determining whether certain 

technologies’ development can be primarily driven by the market.  

 
4 Sub-sector in clean energy which are 
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This paper is structured as follows. Section 2 summarizes some of existing 

literatures, section 3 introduces data, section 4 is our methodology, Section 5 is the 

results and discussion, and section 6 is about the conclusion. 

 

2. Related literature 
2.1) Green complexity measurement 

(Penny Mealy, 2022) employ techniques from the literature on economic 

complexity to create two novel measures, the Green Complexity Index (GCI) and 

Green Complexity Potential (GCP), and show how they can capture specific 

environmental data about a country's present production capacity and potential for 

future green diversification. Given that the green transition is projected to change 

the global competitive environment in favor of nations that can presently generate 

green, high-tech products. Their methodology builds on existing work in the 

economic geography and economic complexity literature (Boschma et al., 2013; 

Hidalgo et al., 2018; Hidalgo et al., 2007; Neffke et al., 2011; Pari Patel, 1997; 

Weitzman, 1998) which has demonstrated that nations are more inclined to diversify 

into goods or businesses that call for comparable production capabilities to those 

they already have. 

The GCP calculates the average relatedness of each nation to green complex 

items in which it lacks market share. Therefore, the GCP identifies which nations are 

best positioned to expand their green manufacturing capabilities into new green 

goods in the future, as opposed to the GCI, which allows countries to be evaluated 

using an assessment of their current green production capabilities. They 

demonstrate that the GCP can considerably predict increase in a country's GCI, green 

export share, and the number of green items in which a country is competitive after 

adjusting for each country's per capita GDP. A significant positive association 

between nations' GCP and GCI is also discovered. For instance, a high GCP score in 

the wind and solar sectors suggests that a nation is likely to improve its 

competitiveness in those technologies in the future, which may be taken as signaling 

a relatively appealing investment. Additionally, a high GCI is linked to strong 

indications of the strictness of environmental regulation. 

Even after adjusting for per capita GDP, this study's findings show that 

nations with high GCI rankings also frequently have fewer emissions, greater rates of 

green patenting, and stricter environmental regulations. They also see a "greener" 

impact, which suggests that nations with superior green production skills may 

diversify into new green export prospects more easily. Given that they use the most 

particular green goods as building materials for facilities, wind and solar energy 

technology development makes one of the biggest contributions to a nation's green 

competitiveness. For instance, since its tenth five-year plan, which covered the years 
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2001 to 2005, China has made green energy technology a fundamental component 

of its industrial strategy. This plan set "promote new energy and renewable energy 

like solar PV and wind" as one of its main objectives5. 

2.2) Wind and solar industry 

(Hepburn et al., 2020) suggests that governments exploring additional 

investments in energy infrastructure include those who are implementing "green 

recovery" programs or those that anticipate considerable future increase in energy 

consumption6. The International Energy Agency’s (IEA, 2021) estimates that costs for 

solar and offshore wind are also projected to continue to decline, the cost of power 

produced from gas would increase globally in the next 10 to 30 years. It is without a 

doubt necessary to increase wind and solar capacity in order to achieve Net Zero by 

2050. According to BNEF, until 2030, 505 gigawatts of additional wind power and 

455 gigawatts of solar PV would need to be produced globally year, respectively7.  

(Perlin, 1999) states that the cost of solar PV has decreased by more than 

three orders of magnitude since its first commercial use in 1958. (Matthew Ives, 

2021) also illustrate that Over the past ten years, the cost of wind and solar energy 

has decreased by 60% and 80%, respectively, due to larger, more efficient wind 

turbines and the automation of solar product manufacture. It is anticipated that 

these price drops will continue, which might have a significant negative impact on 

the world energy system. Additionally, they contend that as the world moves toward 

renewable energy and net zero, the share of global trade volumes held by renewable 

energy technologies—which include items like solar panels and wind turbines—has 

grown by about 1%. Furthermore, their examination of historical energy technology 

cost patterns reveals that the decades-long rise in the use of renewable energy 

technologies has repeatedly corresponded with sharp drops in those prices. For 

instance, during the past 50 years, the cost of solar photovoltaics has decreased by 

three orders of magnitude. Wind, energy storage, and electrolyzers (hydrogen-based 

energy) all exhibit comparable tendencies. These price drops are expected to 

continue and will bring some of these renewable technologies well below the cost 

basis for the current generation of electricity from fossil fuels. Additionally, their 

model indicates that a swift switch to an international energy system based on 

renewable energy sources with storage may save the globe trillions of dollars and 

 
5 IEA, ‘The 10th Five-Year Plan for Economic and Social Development of the People’s Republic of China 
(2001-2005)’, IEA/IRENA Renewables Policies Database, 2021 https://www.iea.org/policies/1736-the-
10th-five-year-plan-for-economic-and-socialdevelopment-of-the-peoples-republic-of-china-2001-
2005?page=4&q=China. 
6 Ives, M.C., L. Righetti, J. Schiele, K. De Meyer, L. Hubble-Rose, F. Tieng, and others, A New 
Perspective on Decarbonising the Global Energy System, Oxford University Smith School of Enterprise 
and the Environment, 2021 www.energychallenge.info 
7 IEA, World Energy Outlook 2020, 2020, MML 

https://www.iea.org/policies/1736-the-10th-five-year-plan-for-economic-and-socialdevelopment-of-the-peoples-republic-of-china-2001-2005?page=4&q=China
https://www.iea.org/policies/1736-the-10th-five-year-plan-for-economic-and-socialdevelopment-of-the-peoples-republic-of-china-2001-2005?page=4&q=China
https://www.iea.org/policies/1736-the-10th-five-year-plan-for-economic-and-socialdevelopment-of-the-peoples-republic-of-china-2001-2005?page=4&q=China
http://www.energychallenge.info/
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result in significantly lower energy costs for everyone, producing a favorable 

dynamic that might spur quick change. 

(Sharpe & Lenton, 2021) have also discovered compelling data that suggests 

energy storage and renewable technology will maintain their downward price 

trends. These trends have consistently been underestimated by the majority of the 

major climate mitigation models used to inform policymakers. Additionally, they 

have not seen any data that suggests renewables won't maintain their present 

downward price trends. Several tipping points have been passed as the cost of 

renewable energy has decreased (Sharpe & Lenton, 2021; Way et al., 2019), and the 

markets they compete in have steadily grown in size from specialty applications to 

mass market. The world's two most affordable methods of generating power from 

new construction are now solar and wind energy (IEA, 2020c)8, while on a total-cost-

of-ownership (TCO) basis, some electric cars (EVs) are approaching parity with their 

internal combustion engine vehicle (ICEV) equivalents (Hagman et al., 2016), with 

some even predicting their sticker prices will be cheaper within around 2-3 years9. 

Therefore, there is enough strong evidence to conclude that these long-term energy 

technology cost patterns are reliable and predictable (Farmer & Lafond, 2016; 

McNerney et al., 2011). For predicting technological advancement, several new 

techniques that are statistically supported and securely based in data have been 

created (Farmer et al., 2019; Wilson et al., 2013). The empirical evidence clearly 

supports the trends. 

Additionally, (Way, 2021) estimates future energy system costs are 

examined, along with how, in three distinct scenarios, technological cost uncertainty 

affects system costs. Even without taking into consideration climatic damages or co-

benefits of climate policy, a quick switch to green energy would result in total net 

savings of many trillions of dollars compared to maintaining a fossil fuel-based 

economy. If the current exponentially expanding deployment patterns for solar PV, 

wind, batteries, and hydrogen electrolyzers continue for another ten years, their 

models indicate that. Thus, as part of worldwide efforts to meet the Paris targets and 

attain net zero by 2050, wind and solar are two renewable energy sources that are 

essential to the climate transition and whose capacity might rise 10-fold in just 20 

years. 

 

2.3) Investing in renewable energy sector 

In earlier research, volatility was frequently used as an objective function to 

lessen the risk associated with portfolios of clean energy and unclean assets. 

(Nasreen et al., 2020). However, the link between oil and the clean energy index is 
 

8 IEA, 2020c. World Energy Outlook 2020. Paris: International Energy Agency. 
9 Henze, V. 2020. https://about.bnef.com/blog/ 

https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/
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nonlinear (Ishaan Dawar, 2021) and has an influence on how well clean energy risk 

reduction works with regard to assets with a range of volatile to extremely risky 

conditions (Kuang, 2021a). As a result, the current study incorporates volatility and 

tail risk into the appropriate optimization framework and performance evaluation, 

enabling investors to design an ideal portfolio to meet their investment goals. 

(Kuang, 2021b) uses a relative risk ratio approach (Bredin et al., 2017; Conlon 

et al., 2020) to clearly demonstrate the effectiveness of risk reduction across several 

clean energy sub-sectors and risk metrics under varying degrees of decarbonization, 

as well as the adverse risk impact of diversifying into clean energy equities. 

Furthermore, the report contends that although renewable energy equities 

outperform filthy stocks, they lag the entire equity market. The minimum-tail risk 

approach is preferable to the minimum-variance strategy for investors who want to 

reduce the carbon footprint of their portfolios. For investors with a moderate level 

of risk tolerance, the index that monitors the owners and operators of renewable 

energy projects offers the best risk-adjusted returns and works well to reduce the 

volatility risk associated with filthy assets. However, the favored choices for lowering 

the tail risks of dirty assets are the wind and energy storage indexes.  The most 

profitable category is renewable energy, followed by energy efficiency, bio/clean 

fuels, and innovative materials, which are in the middle. The top right corner of the 

efficient frontier graph represents the fuel cell index with the highest risk and 

reward. 

3. Data  
3.1) Sample 

Our research sample comprises 150 large capitalization stocks from the 

global renewable energy sector, categorized according to the Bloomberg Industry 

Classification Systems (BICS). To construct our portfolio, we follow the methodology 

outlined in Rahat and Nguyen (2022), we first obtain monthly price data and market 

capitalization figures from DataStream. We collect data spanning from December 

2017 to December 2022. With this data, we calculate monthly portfolio returns using 

an equal-weight approach, ensuring that each stock in the portfolio carries the same 

weight. We also acquire a benchmark index for our analysis, namely the NASDAQ 

Clean Edge Green Energy (CELS) index. This index is specially designed as a modified 

market capitalization-weighted benchmark. Its purpose is to track the performance 

of companies primarily engaged in the manufacturing, development, distribution, 

and installation of clean energy technologies. 10. 

 

Table 1: Sample distribution by country and sub-sector 

 
10 Source: https://indexes.nasdaqomx.com/Index/Overview/CELS 

https://indexes.nasdaqomx.com/Index/Overview/CELS
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This table provides a sample distribution by country and sub-sector. Our sample includes 111 solar 

and 39 wind stocks. China, the United States, and India are the top 3 countries in our sample, with 

33,28, and 16 stocks, respectively. 

Country Solar Wind Total 

Australia 3 0 3 

Brazil 0 1 1 

Canada 7 0 7 

China 26 13 39 

Denmark 1 1 2 

France 1 0 1 

Germany 2 3 5 

Hong Kong 5 3 8 

India 9 5 14 

Israel 4 2 6 

Italy 1 0 1 

Monaco 0 1 1 

Netherlands 1 1 2 

Norway 2 0 2 

Poland 8 1 9 

South Korea 4 2 6 

Spain 2 1 3 

Sweden 5 2 7 

Switzerland 1 0 1 

Taiwan 12 0 12 

Thailand 1 0 1 

United Kingdom 0 1 1 

United States 16 2 18 

Total 111 39 150 

Table 2: The median of purity score by sub-sector 

This table provides the median of purity score by sub-sector and year. The wind consistently exhibits 

higher purity scores than the solar across all years, 2017-2021. The average median of purity score for 

solar is 0.6460, 0.7365 for wind, and 0.6844 for both solar and wind sector. 

Sector 2017 2018 2019 2020 2021 Average 

Solar 0.6400 0.6400 0.6500 0.6500 0.6500 0.6460 

Wind 0.7331 0.7366 0.7552 0.7494 0.7082 0.7365 

Solar and Wind 0.6800 0.6690 0.6892 0.6865 0.6971 0.6844 
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Table 3: The average purity score by country 

This table provides the average purity score by country for 2017 to 2021. Denmark, Switzerland, and 

the United Kingdom have the highest purity score in our sample. Whereas the overall average purity 

score is 0.5704. 

Country 2017 2018 2019 2020 2021 Average 

Universe 0.5644 0.5629 0.5762 0.5703 0.5779 0.5704 
Australia 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 
Brazil 0.2668 0.2668 0.2668 0.2668 0.2668 0.2668 
Canada 0.6429 0.6429 0.6429 0.6429 0.6429 0.6429 
China 0.4978 0.4978 0.4978 0.4978 0.4978 0.4978 
Denmark 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 
France 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
Germany 0.6792 0.6792 0.6792 0.6792 0.6792 0.6792 
Hong Kong 0.6744 0.6744 0.6744 0.6744 0.6744 0.6744 
India 0.6754 0.6754 0.6754 0.6754 0.6754 0.6754 
Israel 0.4650 0.4650 0.4650 0.4650 0.4650 0.4650 
Italy 0.7100 0.7100 0.7100 0.7100 0.7100 0.7100 
Monaco 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Netherlands 0.6866 0.6866 0.6866 0.6866 0.6866 0.6866 
Norway 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 
Poland 0.5456 0.5456 0.5456 0.5456 0.5456 0.5456 
South Korea 0.6424 0.6424 0.6424 0.6424 0.6424 0.6424 
Spain 0.7680 0.7680 0.7680 0.7680 0.7680 0.7680 
Sweden 0.5021 0.5021 0.5021 0.5021 0.5021 0.5021 
Switzerland 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 
Taiwan 0.5563 0.5563 0.5563 0.5563 0.5563 0.5563 
Thailand 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
United Kingdom 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 
United States 0.5535 0.5535 0.5535 0.5535 0.5535 0.5535 
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Table 4: The average green complexity score by country 

This table provides the average green complexity score by country for 2017 to 2021. In our sample, 

Norway, Australia, and Switzerland have the highest green complexity scores of 4.1994, 2.0324 and 

1.9572, respectively. Whereas the average green complexity score during the time is 0.7707. 

Country 2017 2018 2019 2020 2021 Average 

Universe 0.6123 0.7585 0.8293 0.8595 0.7940 0.7707 

Australia 2.2174 2.1818 2.0385 1.7037 2.0204 2.0324 

Brazil 0.4400 0.3200 0.5652 0.8261 0.5313 0.5365 

Canada 0.5376 0.6700 0.7212 0.8922 0.7093 0.7060 

China 0.7995 0.8090 0.8015 0.7855 0.7989 0.7989 

Denmark 1.6284 1.5789 1.5602 1.5156 1.5701 1.5707 

France 0.9477 0.9689 0.8842 0.9120 0.9284 0.9282 

Germany 1.7454 1.7575 1.7329 1.7428 1.7445 1.7446 

Hong Kong 0.1014 0.2129 0.3195 0.3867 0.2572 0.2555 

India 0.4592 0.5105 0.6017 0.6461 0.5554 0.5546 

Israel 1.4521 1.3210 1.3176 1.1957 1.3142 1.3201 

Italy 0.9845 0.9550 0.9398 0.9682 0.9619 0.9619 

Monaco 0.9477 0.9689 0.8842 0.9120 0.9284 0.9282 

Netherlands 0.4410 0.4511 0.4855 0.4650 0.4610 0.4607 

Norway 4.4444 3.7000 3.2857 5.5000 4.0667 4.1994 

Poland 0.9700 0.9672 0.9720 0.9644 0.9684 0.9684 

South Korea 1.2843 1.3800 1.3400 1.3600 1.3408 1.3410 

Spain 0.6416 0.6216 0.5982 0.6073 0.6172 0.6172 

Sweden 1.5086 1.5322 1.4970 1.4940 1.5081 1.5080 

Switzerland 1.9211 1.9737 1.8933 2.0411 1.9567 1.9572 

Taiwan 0.7995 0.8090 0.8015 0.7855 0.7989 0.7989 

Thailand 0.5946 0.6463 0.6370 0.5775 0.6141 0.6139 

United Kingdom 1.2829 1.3005 1.2705 1.2406 1.2733 1.2736 

United States 1.4372 1.4807 1.3941 1.3932 1.4263 1.4263 

 

3.2) Asset pricing factors 

From the Kenneth R. French data repository, international risk factors are 

obtained. The market returns are based on NASDAQ Clean Edge Green Energy 

(CELS), and we use the U.S. one-month T-bill rate as a proxy for the risk-free rate. 

The risk factors include the size factor (small minus big: SMB), which is calculated as 

the average return on the nine small stock portfolios minus the average return on 

the nine big stock portfolios, the value factor (HML), which is calculated as the 

average return on the two value portfolios minus the average return on the two 

growth portfolios, and the momentum factor (WML) defined as the equal-weight 

average of the two winning portfolio returns for an area less the average of the two 

losing portfolio returns. Each factor is calculated as follows: 
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SMB(B/M)  = 1/3 (Small Value + Small Neutral + Small Growth)  

    - 1/3 (Big Value + Big Neutral + Big Growth)           (1)

  

SMB(OP)  =  1/3 (Small Robust + Small Neutral + Small Weak) 

- 1/3 (Big Robust + Big Neutral + Big Weak)           (2) 

SMB(INV)  = 1/3 (Small Conservative + Small Neutral + Small Aggressive) 

  - 1/3 (Big Conservative + Big Neutral + Big Aggressive      (3) 

SMB   = 1/3 ( SMB(B/M) + SMB(OP) + SMB(INV)            (4) 

HML   = 1/2 (Small Value + Big Value) - 1/2 (Small Growth + Big 

Growth)                  (5) 

WML   = 1/2 (Small High + Big High) - 1/2 (Small Low + Big Low) (6) 

Asset pricing factors will be used for calculating risk-adjusted return in the next 

section. 

3.3) Sorting factors for portfolio construction 

 

(1) Green complexity score 

The first factor is based on green complexity score, macro data as a country 

level, and a comparative analysis calculated by GCP/GCI by country where firm 

headquarter location is, to imply that a country has competitive strengths and 

capacity to maintain such advantages in the future. The score captures the 

technological sophistication of the green products that a country is currently and 

potentially exporting competitively. We collect green complexity index (GCI) and 

green complexity potential (GCP) of each country from Green Transition Navigator11.  

We calculate the green complexity score of each firm and divide all stocks 

into 2 groups based on their green complexity score of the previous year and update 

on an annual basis. The stocks with above-median scores are classified as high score, 

while those below the median are considered as low score.  

(2) Purity score 

The second factor is based on the purity score, micro data as a firm level, and 

is considered as a new type of green or environmental rating. The purity score 

captures magnitude for each firm’s technology-dense, which is considered a winner 

in this shifting landscape due to cost declines and rapid growth trend. We apply 

 
11 Data source: https://green-transition-navigator.org/ 

https://green-transition-navigator.org/
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method from LO_SSEE, 202112 report to compute the purity score at firm level. The 

purity score indicates how much firm involved in midstream activities. We first 

analyze company descriptions to classify company sub-business then map onto the 

value chain activities to assign exposure score as table 2; approach placed less focus 

on upstream and downstream operations and gave midstream (core manufacturing) 

businesses with component production and installation better marks. Instead of 

focusing on services and inputs, midstream manufacturing operations aim to 

encompass the full spectrum of goods.  

Table 5: Wind and solar value chain  

Activity Sub-business Description 

Upstream Inputs Metals and minerals  
Chemicals (Plastics, Polysilicon) 

Midstream Product 
manufacturing 

Wind turbine components  
- Blades, towers, nacelle, bearings, castings 
Solar panel components 
- Wafer, cell, module 
Ancillary services 
- All non-module hardware 
- Monitoring and controls 
- PV manufacturing equipment 

Construction and 
installation 

Windfarm, Solar power plant, and Mixed wind 
and solar developers 

Downstream Generation and 
distribution 

Wind energy generation, Solar energy 
generation, 
and Mixed wind and solar generation 

Source: LO_SSEE, 202113 report 

Table 6: Exposure score of each sub-business 

Exposure score is an average of each activity calculated by LO_SSEE, 2021 report which was calculated 

using two considerations – specialization and relevance, expert judgement, and engagement with 

industry professionals. 

Activity Sub-business Description Exposure 
Score  
(0-1) 

Upstream Inputs Metals and minerals 0.33 

Chemicals 

Midstream Product and 
manufacturing 

Wind turbine components 0.80 

Solar Panel Components 

 
12 LO_SSEE (Lombard Odier and the Smith School of Enterprise and the Environment (“SSEE”) at the 
University of Oxford), 2021, “The predictors of success in a greening world”. 
13 LO_SSEE (Lombard Odier and the Smith School of Enterprise and the Environment (“SSEE”) 
at the University of Oxford), 2021, “The predictors of success in a greening world”. 
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Ancillary services 

Construction and 
Installation 

Wind farm 

Solar power plant 

Mixed wind and solar 
developers 

Downstream Generation and 
distribution 

Wind energy generation 0.50 

Solar energy generation 

Mixed wind and solar generation 
Table 7: (Example) Purity score of each company 

Company Sub-business % Revenue Exposure 
Score 

Purity 
Score 

A Wind turbine 100% 0.8 0.8 

B Wind turbine 20% 0.8 0.56 

Solar Power Generation 80% 0.5 
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To minimize look-ahead bias, we divide all stocks into 2 groups based 

on their purity scores of the previous year and update on an annual basis. The 

stocks with above-median scores are classified as high score, while those 

below the median are considered as low score.  

 

4. Methodology 
4.1) Portfolio construction 

We analyze portfolios using equal-weighted portfolio returns. Accordingly, 

we follow portfolio construct methodologies of (Rahat & Nguyen, 2022) based on 

sorting factors. Our sorting factors are purity score and green complexity score. The 

sorting factors are calculated annually, and consequently, the portfolios are 

rebalanced. Factor sorting portfolios are comprising high scores and low scores. 

Furthermore, to assess the comparative performance, we have three types of 

portfolios. The first one includes all firms, a universal portfolio, the second one 

comprises high scores of sorting factor, the final one includes low scores of sorting 

factor. Therefore, as figure 1, we have 5 portfolios which are 2 high score portfolios, 

(1) high score of purity (2) high score of green complexity score, 2 low score 

portfolios, (3) low score of purity (4) low score of green complexity score, and (5) a 

universal portfolio. Consequently, as figure 2, the comparison between high or low 

score and universal will reveal the impact of divestment. Meanwhile, the 

performance differences between high and low portfolios will reflect on 

technologically concentrated styles. 

 

Figure 1: Portfolios Construction 
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Figure 2: Portfolio comparison 

 

4.2) Model 

Our study includes a comparison of created portfolios' raw return and risk-

adjusted performance. We employ the CAPM (capital asset pricing model), the raw 

return, the Sharpe ratio, the Sortino ratio, the Fama & French 3-factor model, and 

the Carhart 4-factor model. We calculate portfolio return as follow: 

𝑅𝑝 = 𝛴𝑖=1
𝑛 𝑤𝑖𝑟𝑖                              

(7) 

Where 

𝑅𝑝 the equal-weighted portfolio return at time t of each constructed portfolio, 

𝑤𝑖 is the weight of each stock in the portfolio, and 

𝑟𝑖 is the return of the stock 

In addition, we follow (Markowitz, 1952) classical portfolio optimization 

approach to Determine the combination of assets that maximizes performance in a 

mean-variance scenario while examining both unconventional and traditional asset 
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classes to see whether there are any benefits to diversification. By adding assets in a 

portfolio that are not perfectly connected, diversification is created. This lowers 

unsystematic risk and enables greater risk-adjusted returns. A typical investing 

approach is portfolio diversification, which has been employed with a variety of 

different asset classes, including gold, real estate, water, diamonds, and weather 

derivatives (Conover et al., 2009; Dempster & Artigas, 2010; Gilroy et al., 2013; Hung 

et al., 2008; Ratner & Klein, 2008; Small et al., 2012; Van Lennep et al., 2004). The 

Sharpe ratio (SR) represents the amount of excess return (return above the risk-free 

rate) per unit of risk (measured by standard deviation) and consequently compute 

the Sharpe ratio as follow: 

𝑆𝑅 =  
𝑅𝑝−𝑅𝑓

𝜎𝑝
                            (8) 

Where 

 𝑅𝑝 is the equal-weighted portfolio return at time t of each constructed portfolio, 

 𝑅𝑓 is the U.S. one month T-bill rate14, and  

𝜎𝑝 is the standard deviation of the portfolio. 

To address downside risk, we also employ The Sortino ratio which is a 

variation of the Sharpe ratio that only factors in downside risk. Investors are only 

concerned about exposure to volatility that might result in negative returns, whereas 

Sharpe ratio handles all risk (including upside risk) equally, making the comparison 

with downside deviation feasible (Washer, 2013). Consequently, a common statistic 

for determining risk-adjusted performance across diverse asset classes is the Sortino 

ratio (Damianov & Elsayed, 2020; Sanford, 2022). We estimate the Sortino ratio (ST) 

as follow: 

𝑆𝑇 =  
𝑅𝑝−𝑅𝑓

𝜎𝑑
                            (9) 

Where 

𝑅𝑝 is the equal-weighted portfolio return at time t of each constructed portfolio, 

𝑅𝑓 is the U.S. one month T-bill rate15, and  

𝜎𝑑  is the standard deviation of negative asset returns. 

To control other risk factors and estimate the marginal returns of portfolios 

over the risk-free rate, we use the capital asset pricing model (CAPM) to calculate 

 
14 Following Kenneth R. French’s method 
15 Following Kenneth R. French’s method 
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the risk-adjusted abnormal performance or Jensen’s alpha, by (Jensen, 1968), of 

each equally weighted constructed portfolio as follow: 

𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + ɛ𝑝𝑡          (10) 

Where 

𝑅𝑝𝑡 is the equal-weighted portfolio return at time t of each constructed portfolio, 

𝑅𝑓𝑡 is the U.S. one month T-bill rate16, 

𝛼𝑝 represent the abnormal return of portfolio, 

𝑅𝑚 is the return of NASDAQ Clean Edge Green Energy (CELS) which is a modified 

market capitalization weighted index designed to track the performance of 

companies that are primarily manufacturers, developers, distributors and/or 

installers of clean energy technologies17,  

𝑏𝑝is factor loading of market premium (𝑅𝑚𝑡 − 𝑅𝑓𝑡), and 

ɛ𝑝𝑡 is the idiosyncratic return component at time t 

Moreover, we employ (Fama & French, 1993) three-factor model by adding 

two more risk factors which are size factor (Small minus Big: SMB) and value factor 

(High minus Low book to market: HML) to calculate the risk-adjusted abnormal 

performance of each equally weighted constructed portfolio as follow: 

𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + ɛ𝑝𝑡       (11) 

Where 

𝑅𝑝𝑡 is the equal-weighted portfolio return at time t of each constructed portfolio, 

𝑅𝑓𝑡 is the U.S. one month T-bill rate18, 

𝛼𝑝 represent the abnormal return of portfolio, 

𝑅𝑚 is the return of NASDAQ Clean Edge Green Energy (CELS) which is a modified 

market capitalization weighted index designed to track the performance of 

companies that are primarily manufacturers, developers, distributors and/or 

installers of clean energy technologies19,  

𝑆𝑀𝐵𝑡 is the international size factor at time t,  

 
16 Following Kenneth R. French’s method 
17 The NASDAQ Clean Edge Green Energy Index description: 
https://indexes.nasdaqomx.com/Index/Overview/CELS 
18 Following Kenneth R. French’s method 
19 The NASDAQ Clean Edge Green Energy Index description: 
https://indexes.nasdaqomx.com/Index/Overview/CELS 

https://indexes.nasdaqomx.com/Index/Overview/CELS
https://indexes.nasdaqomx.com/Index/Overview/CELS
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𝐻𝑀𝐿𝑡is the international value factor at time t,  

𝑏𝑝, 𝑠𝑝 and ℎ𝑝 are factor loadings of market premium (𝑅𝑚𝑡 − 𝑅𝑓𝑡), size factor 

(𝑆𝑀𝐵𝑡), and value factor (𝐻𝑀𝐿𝑡) respectively 

ɛ𝑝𝑡 is the idiosyncratic return component at time t 

To examine the momentum effect in addition to Fama-French three-factor 

using the momentum factor (winners minus losers: WML), we use (Carhart, 1997) 

four-factor model to calculate the risk-adjusted abnormal performance of each 

equally weighted constructed portfolio as follow: 

𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + 𝑤𝑝𝑊𝑀𝐿𝑡 + ɛ𝑝𝑡

 (12) 

Where 

𝑅𝑝𝑡 is the equal-weighted portfolio return at time t of each constructed portfolio, 

𝑅𝑓𝑡 is the U.S. one month T-bill rate20, 

𝛼𝑝 represent the abnormal return of portfolio, 

𝑅𝑚 is the return of NASDAQ Clean Edge Green Energy (CELS) which is a modified 

market capitalization weighted index designed to track the performance of 

companies that are primarily manufacturers, developers, distributors and/or 

installers of clean energy technologies21,  

𝑆𝑀𝐵𝑡 is the international size factor at time t,  

𝐻𝑀𝐿𝑡is the international value factor at time t,  

𝑊𝑀𝐿𝑡 is the international momentum factor at time t,  

ɛ𝑝𝑡 is the idiosyncratic return component at time t, and 

𝑏𝑝, 𝑠𝑝, ℎ𝑝and 𝑤𝑝 are factor loadings of market premium (𝑅𝑚𝑡 − 𝑅𝑓𝑡), size factor 

(𝑆𝑀𝐵𝑡), value factor (𝐻𝑀𝐿𝑡) and momentum factor (𝑊𝑀𝐿𝑡) respectively 

We estimate the regression. The positive difference of returns, the Sharpe 

ratio, and Sortino ratio between the high score and a universal implies the divesting 

strategy of investment in across renewable energy sector and high technological-

dense firm and/or country. Whereas the positive difference of returns, the Sharpe 

ratio, and Sortino ratio between the high score and the low score implies an 

investment style involving technologically concentrated firms provide necessary 

 
20 Following Kenneth R. French’s method 
21 The NASDAQ Clean Edge Green Energy Index description: 
https://indexes.nasdaqomx.com/Index/Overview/CELS 

https://indexes.nasdaqomx.com/Index/Overview/CELS
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incentive to investors. A positive and significant 𝛼𝑝 of the high score over a universal 

would signify the positive impact of divestment from across renewable energy sector 

to technological specialization firm and/or country. Likewise, a positive and 

significant 𝛼𝑝 of the high score over the low score captures necessary incentive for 

investing in technological specialization firm and/or country. On the contrary, an 

insignificant 𝛼𝑝 would imply that there are no return differentials between the two 

portfolios and vice versa. 

According to previous study of (Way, 2021), The construction of wind and 

solar farms that are connected to the grid via specialized cabling and equipment, as 

well as midstream activities that manufacture solar panel and wind turbine 

components, function as the engines of growth for both industries, leading to cost 

reductions and remarkable growth as well as a source of increased market 

competitiveness. It may result in more anomalous results (In et al., 2019). While 

providing less pure play exposure to the topic of wind and solar items, downstream 

energy generation and material inputs do. Moreover, (Mealy, 2020) established two 

new metrics for measuring a nation's ability to produce green energy: the green 

complexity index (GCI) and the green complexity potential (GCP). Based on the 

quantity and Product Complexity Index (PCI) of green products in which each country 

is competitive, GCI assesses each nation's level of green competitiveness. According 

to the proximity and complexity of goods in which a nation is not currently 

competitive, GCP assesses the possibility for that nation to diversify into complex, 

green products in the future. Their further research indicates that nations with high 

GCI rankings also frequently have fewer emissions, greater rates of green patenting, 

and stricter environmental regulations. Additionally, they see a "green get greener 

effect," or the ease with which advanced green export options are accessible to 

nations with green production capabilities. With 75 unique items out of 295 in the 

category of renewable energy, the development of wind and solar products makes 

one of the biggest contributions to a nation's green competitiveness22, 15 goods 

specifically for solar facilities, and 22 products devoted to the building of wind 

facilities 23.  The remaining nine goods are used in both wind and solar installations 

and have overlapped uses. Then again, (Reboredo, 2015) found that country’s new 

energy policies drive stock investment. Therefore, we propose the testable 

hypothesis as follows: 

 
22 The list of products based on environmental goods lists compiled by the WTO, the OECD, 
and APEC using in Mealy and Teytelboym, 2020 
23 The remaining 29 green products, 15 are for biomass, 7 are for hydropower, 5 are for 
geothermal. The other additional 2 products that are not specific to any renewable energy 
industry. 
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Hypothesis 1a: The high portfolios outperform the low score portfolios and 

universal portfolios across various performance metrics, including raw return, risk-

adjusted return, and asset pricing models that account for and control risks. 

Conversely, the study of (Rezec & Scholtens, 2017) discovered that the risk-

adjusted return on the renewable energy indexes is extremely low and that they are 

not currently a financially appealing portfolio investment. (Marti-Ballester, 2019) 

same results using a particular market benchmark, green energy mutual funds 

perform worse than their conventional equivalents. While the overall expenditure 

ratio has a detrimental impact on the financial performance of renewable energy. 

Furthermore, (Hemrit & Benlagha, 2021) identified economic and Pandemic-induced 

uncertainty having a negative impact on the renewable energy index. And (Reboredo 

et al., 2017) suggested that because renewable energy projects often give a low 

return owing to expensive manufacturing and creative technology expenses, they 

may be less appealing as investment opportunities. Therefore, we propose the 

testable hypothesis.  

Hypothesis 1b: The high portfolios underperform the low score portfolios and 

universal portfolios across various performance metrics, including raw return, risk-

adjusted return, and asset pricing models that account for and control risks. 

5. Results and discussion 

This research paper examines whether portfolios with high scores provide an 

appealing choice when compared to universal portfolios and low score portfolios in 

terms of risk-adjusted returns and Jensen's alpha. Furthermore, it investigates 

whether there is an adverse performance impact when investing in firms with high 

technological specialization in wind and solar industry. We assess the performance 

during 2018 to 2022. Table 8 illustrates portfolio performance, and it appears that 

portfolios with high scores outperform both universal and low score portfolios, 

regardless of the sorting factor. Based on green complexity score sorting, the high 

score portfolio has an average monthly return of 7.88%, a universal portfolio has a 

return of 4.45%, and a low score portfolio has a return of 1.93%. The return for 

differentials in the high score and universal portfolio and the high score and low 

score portfolio remains appealingly positive, while the return for the low score and 

universal portfolio is negative. When the portfolios are classified by purity score, the 

results remain consistent. Specifically, the high score portfolio has an average 

monthly return of 5.74%, while the low score portfolio has a monthly return of 

3.16%. 
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Table 8: Portfolio performance 

Portfolio Return Max Return Max Loss S.D. Downside S.D. Sharpe Sortino 

Sorting factor – None 

Universal 4.45% 78.64% -15.66% 43.34% 10.12% 0.0507 0.4600 

        

Sorting factor – Green complexity score 

High  7.88% 182.86% -12.67% 59.14% 11.76% 0.0326 0.7007 

Low  1.93% 19.13% -17.88% 17.29% 7.80% 0.0407 0.3071 

High – Universal 3.43% 104.23% -9.16% 23.98% 4.75% 0.0056 1.0079 

High – Low 5.95% 181.79% -17.36% 58.37% 12.61% 0.0427 0.6552 

Low – Universal -2.52% 8.19% -77.56% 37.53% 7.72% (0.0517) (0.3987) 

        

Sorting factor – Purity score 

High  5.74% 149.70% -14.19% 44.98% 9.84% 0.0610 0.5629 

Low  3.16% 38.13% -17.12% 30.56% 9.89% 0.0329 0.4045 

High – Universal 1.29% 71.06% -8.62% 18.66% 3.65% 0.0105 0.5065 

High – Low  2.57% 142.13% -17.24% 46.10% 8.23% 0.0243 0.2000 

Low – Universal -1.29% 8.62% -71.06% 29.48% 4.91% (0.0336) (0.1294) 

        

Rm 1.98% 33.82% -23.43%     

 

The results of raw return and risk-adjusted return – Sharpe and Sortino 

ratios, are provided in Table 9. Our analysis reveals compelling insights into the 

performance of different portfolios based on two sorting factors, green complexity 

score and purity score. Portfolios created by sorting green complexity score indicate 

an interesting tendency. The high score portfolios raw returns outperform when 

compared to both universal and low score portfolio. Across the board, we 

consistently observe positive return indicators across high score, low score, and 

universal portfolios. Specifically, the high score portfolio stands out as a top 

performer, boasting a raw return of 0.0788. Conversely, the low score portfolio 

demonstrates relatively lower raw returns of 0.0193 while the return of universal 

portfolio stands at 0.0445. Interestingly, the raw return for differentials in the high 

score and universal portfolio stands at 0.0343, indicating signifies that a strategic 

shift from an all-stocks portfolio to companies situated in countries with high green 

complexity scores or specialized technologies can yield notably higher returns for 

investors. Moreover, the differential in high and low score are even larger positive at 

0.0595, indicating that divesting the green complexity country benefits investors, 

and our findings indicate the presence of such advantages. Consequently, adopting 

an investment approach that involves divesting from assets with high green 

complexity holds immense for investors. On the contrary, the return for differentials 

in the low score and portfolio is negative. The negative return signifies that investors 
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will have to pay a premium to continue investing in low green complexity score 

stocks, and they will be better off transitioning away from these stocks. The results 

are consistent for the Sortino ratio. However, in the case of the Sharpe ratio, the 

universal portfolio boasts a Sharpe ratio of 0.0507 which is higher both high score 

portfolio, 0.0326 and low score portfolio at 0.0407, indicating the high score 

portfolio has a higher level of risk, the standard deviation shown as Table 8, and does 

not efficiently using the level of risk it takes on to generate returns compared to 

universal and low score portfolio. The consistency across the raw return and Sortino 

ratios signifies that incentives persist regardless of the risk perception.  

The portfolios created using purity score as sorting also reveal a similar story. 

We observe that the high score portfolio dominates their counterparts in terms of 

raw return, Sharpe ratio and Sortino ratio. To illustrate, the high score portfolio has a 

raw return of 0.0574, which is markedly higher than the low score portfolio's return 

of 0.0316. The high score portfolio outperforms the low score portfolio in terms of 

Sharpe and Sortino ratios, with values of 0.0610 and 0.5629, respectively, compared 

to 0.0329 and 0.4045 for the low score portfolio. Similarly, the differences in returns 

between the high score and universal portfolio, as well as the high score and low 

score portfolio, continue to show a positive trend, while the differences in returns 

between low score and universal portfolio show a negative trend. These results 

reaffirm the strategy of divesting from firms with lower technological density and 

shifting towards diversification across the wind and solar industry, particularly in 

favor of highly specialized technological firms. 
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Table 9: Return and Risk-adjusted return 

Return and Risk-adjusted Return     

  
Raw 
Return 

Sharpe 
Ratio 

Sortino 
Ratio 

Sorting Factor - None       

Universal 4.45%*** 0.0507 0.4560*** 

  (2.7023) (1.5356) (2.7651) 

        

Sorting Factor - Green Complexity Score     

High 7.88%** 0.0326 0.7007** 

  (2.3182) (0.7986) (2.4184) 

Low 1.93%** 0.0407 0.3071** 

  (2.1797) (0.8168) (2.5599) 

High - Universal 3.43%* 0.0056 1.0080 

  (1.8124) (0.0984) (1.5096) 

High - Low 5.95%* 0.0427 0.6552** 

  (1.7932) (1.1074) (2.4855) 

Low - Universal -2.52%* -0.0517* -0.3987*** 

  (-1.7671) (-1.8267) (-2.8688) 

        

Sorting Factor - Purity Score       

High 5.74%** 0.0610 0.5629** 

  (2.1336) (1.4792) (2.4699) 

Low 3.16%*** 0.0329 0.4045*** 

  (2.8583) (0.9032) (2.8998) 

High - Universal 1.29% 0.0105 0.5065 

  (1.0458) (0.2792) (0.9500) 

High - Low 2.57% 0.0243 0.2000 

  (1.0468) (0.7735) (0.8992) 

Low - Universal -1.29% -0.0336 -0.1294 

  (-1.0474) (-1.0020) (-0.7738) 

*** represents significance at 1%, ** at 5%, * at 10%.   
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The panel estimates for Jensen's alpha of portfolios sorted by green 

complexity score, as presented in Table 11, provide significant insights. Notably, a 

statistically significant and positive alpha is observed across all portfolios— high 

score, low score, or universal. This indicates that these investment portfolios 

generate returns surpassing the expected return for their corresponding risk levels. 

Furthermore, those portfolios exhibit well-diversified characteristics aimed at 

mitigating excess risk, which inevitably impacts investment performance. This 

alignment is consistent with the results of three different asset pricing models used 

in this study. According to the CAPM model, the alpha for the high score portfolio is 

0.0623, 0.0328 for the universal portfolio, and 0.0114 for the low score portfolio. 

Even when the size factor and value factor are taken into account using the 

Fama&French 3-factor model, the alpha of the portfolios remains positive and 

significant: 0.0838 for the high score portfolio, 0.0497 for the universal portfolio, and 

0.0251 for the low score portfolio. Similarly, when deploying the Carhart 4-factor 

model to account momentum factor, the alpha of the portfolios persists positive and 

significant: 0.0840 for the high score portfolio, 0.0499 for the universal portfolio, and 

0.0253 for the low score portfolio. It suggests that those portfolios outperform the 

benchmark or a risk-adjusted expectation. The study of Kuang, 2021c also shows 

similar findings that wind and solar indices may be appealing to aggressive investors 

seeking higher returns with higher risk tolerance compared to other renewable 

energy indices. Moreover, in accordance with a prior study conducted by Way et al. 

(2021), within the wind and solar industry, midstream activities encompassing the 

production of components for solar panels and wind turbines, along with the 

construction of wind and solar farms integrated into the grid through specialized 

infrastructure, play a pivotal role in driving growth for both sectors. These activities 

have not only resulted in cost reductions and impressive industry expansion but have 

also enhanced market competitiveness. Thus, they have the potential to contribute 

to higher abnormal returns (In et al., 2019). Interestingly, the high score portfolio 

displays a notably higher alpha than both the universal and low score portfolios. 

Moreover, the differential portfolios—both high versus universal and high score 

versus low score—likewise manifest statistically significant and positive alphas. This 

suggests that an investment strategy involving divestment from countries with low 

green complexity scores holds appealing incentives for investors. Investment 

strategies that divest from nations with low levels of technology density or green 

complexity provide benefits for investors. On the other hand, the low score and 

portfolio differentials have a negative alpha. The portfolio's realized return was less 

than anticipated and out of line with the underlying risk, as indicated by the negative 

alpha. The portfolio may not have been sufficiently diversified to reduce the excess 

risk that influences investment performance, on the other hand. This suggests that 

investors would be better off moving away from low green complexity score equities 

because doing so would require them to pay a higher premium. Additionally, the 
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coefficients associated with risk factors offer noteworthy insights. In the context of 

high and low score portfolios, only the size premium is deemed statistically 

significant. Conversely, for the universal portfolio, both the market premium and size 

premium exhibit significance. This implies that the universal portfolio carries a 

heightened risk exposure due to its sensitivity to market and size factors.  

As shown in Table 12, the results for portfolios using purity sorting factors are 

similar. The high score portfolio shows a positive and significant alpha. However, the 

divestment alphas, although positive, but not statistical significance. This implies that 

the efficacy of divestment strategies is contingent on the proxy used to identify 

them, notably the green complexity score. Consequently, even if the realized returns 

of the low score portfolio align with the risk factors, investors are still paying a 

premium when compared to investing in firms with higher green complexity scores. 

Additionally, this study supports the finding of Cesar Hidalgo et al. (2007) that the 

green complexity score captures that countries that specialize in more 

technologically sophisticated products enjoy higher income and growth. Countries 

and regions are also significantly more likely to develop competitiveness in products 

and services that require capabilities similar to those they already have. 

Furthermore, Mealy et al. (2020) have demonstrated a correlation between high 

green complexity indexes and high indicators of environmental policy rigor. A nation 

may be viewed as having a relatively favorable investment climate if it receives a 

high complexity score in the wind and solar industries, which suggests that the 

country will likely expand its competitiveness in those technologies in the future. 

This implies that countries with well-developed green production capabilities find it 

more feasible to expand into new green export opportunities. These results also 

resonate with a study by IRENA (2019), which demonstrated that the costs of wind 

and solar energy have, for the most part, exceeded those of fossil fuel alternatives. 

Government support mechanisms like as feed-in tariffs, subsidies, and quotas have 

predominantly pushed deployment in the renewable energy sector, aligning with the 

previous research of (Reboredo, 2015) that the country's new energy policies 

encourage stock investment. This reinforces the notion that countries boasting high 

green complexity scores tend to be competitive and outperform their low-score 

counterparts in the renewable energy sector, owing to a combination of factors, 

including robust government incentives and policy support. 
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Table 11: Panel results Jensen’s Alpha (Sorting factor – Green Complexity Score) 

  Universal High Low High - Universal High - Low Low - Universal 

Sorting Factor - Green Complexity Score 
  
CAPM; 𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + ɛ𝑝𝑡 

αp 0.0328** 0.0623* 0.0114* 0.0290* 0.0505* -0.0219* 

   (2.236)   (1.904)   (1.851)   (1.862)   (1.854)   (-1.680)  

bp 0.5810*** 0.8286*** 0.3883*** 0.2489 0.4416 -0.1914 

   (4.337)   (2.773)   (5.912)   (1.431)   (1.449)   (-1.461)  
 

Fama&French 3-factor;  𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + ɛ𝑝𝑡 

αp 0.0497*** 0.0838** 0.0251*** 0.0336* 0.0582* -0.0251* 

  (2.745) (2.04) (2.935) (1.720) (1.678) (-1.762) 

bp 0.4543*** 0.6297* 0.3116*** 0.1768 0.3195 -0.1414 

  (2.972) (1.814) (4.319) (0.867) (0.894) (-0.92) 

sp -0.8387* -1.2298 -0.5696*** -0.38963 -0.65872 0.27059 

  (-1.886) (-1.218) (-2.714) (-0.657) (-0.634) (0.605) 

hp 0.1603 0.1123 0.1956 -0.0492 -0.0846 0.0341 

  (0.565) (0.174) (1.46) (-0.13) (-0.127) (0.119) 
 

Carhart 4-factors; 𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + 𝑤𝑝𝑊𝑀𝐿𝑡 + ɛ𝑝𝑡 

αp 0.0499*** 0.0840** 0.0253*** 0.0336* 0.0582* -0.0251* 

  (2.726) (2.022) (2.93) (1.851) (1.783) (-1.833) 

bp 0.4455*** 0.6213* 0.3028*** 0.1772 0.3198 -0.1413 

  (2.734) (1.679) (3.941) (0.815) (0.839) (-0.863) 

sp -0.8543* -1.2446 -0.5851*** -0.3889 -0.6581 0.2707 

  (-1.865) (-1.196) (-2.708) (-0.636) (-0.614) (0.588) 

hp 0.1882 0.1387 0.2232 -0.0506 -0.0856 0.0339 

  (0.569) (0.184) (1.43) (-0.115) (-0.111) (0.102) 

wp 0.0521 0.0494 0.0516 -0.0025 -0.0019 -0.0003 

  (0.168) (0.07) (0.353) (-0.006) (-0.003) (-0.001) 

*** represents significance at 1%, ** at 5%, * at 10%.  
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35 

 

Table 12: Panel results Jensen’s Alpha (Sorting factor – Purity Score) 

 

  Universal High Low High - Universal High - Low Low - Universal 

Sorting Factor - Purity Score 
  
CAPM; 𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + ɛ𝑝𝑡 

αp 0.0328** 0.0453* 0.0202** 0.01207 0.02468 -0.01308 

  (2.236) (1.732) (2.556) (0.958) (0.98)  (-1.038)  

bp 0.5810*** 0.5977** 0.5673*** 0.0180 0.0317 -0.0124 

  (4.337) (2.501) (7.864) (0.157) (0.138)  (-0.108)  
 

Fama&French 3-factor;  𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + ɛ𝑝𝑡 

αp 0.0497*** 0.0712** 0.0281*** 0.0210 0.0426 -0.02212 

  (2.745) (2.196) (2.839) (1.337) (1.354) (-1.405) 

bp 0.4543*** 0.37952 0.5294*** -0.0734 -0.1485 0.0765 

  (2.972) (1.385) (6.339) (-0.552) (-0.558) (0.575) 

sp -0.8387* -1.3892* -0.3007 -0.5490 -1.0870 0.53945 

  (-1.886) (-1.742) (-1.237) (-1.419) (-1.404) (1.393) 

hp 0.16028 0.18708 0.127395 0.0256 0.0585 -0.0341 

  (0.565) (0.368) (0.821) (0.104) (0.118) (-0.138) 
 

Carhart 4-factors; 𝑅𝑝𝑡 − 𝑅𝑓𝑡 = 𝛼𝑝 + 𝑏𝑝(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑠𝑝𝑆𝑀𝐵𝑡 + ℎ𝑝𝐻𝑀𝐿𝑡 + 𝑤𝑝𝑊𝑀𝐿𝑡 + ɛ𝑝𝑡  
αp 0.0499*** 0.0711** 0.0286*** 0.0207 0.0419 -0.0218 

  (2.726) (2.166) (2.873) (1.298) (1.318) (-1.37) 

bp 0.4455*** 0.3857 0.5085*** -0.0585 -0.1215 0.0643 

  (2.734) (1.32) (5.737) (-0.413) (-0.429) (0.454) 

sp -0.8543* -1.3783* -0.3377 -0.5226 -1.0392 0.518 

  (-1.865) (-1.678) (-1.355) (-1.312) (-1.304) (1.299) 

hp 0.1882 0.1677 0.1934 -0.0216 -0.0268 0.0042 

  (0.569) (0.283) (1.074) (-0.075) (0.102) (0.014) 

wp 0.0521 0.0362 0.1234 -0.0881 -0.1593 0.0715 

  (0.168) (0.065) (0.731) (-0.326) (-0.295) (0.265) 

*** represents significance at 1%, ** at 5%, * at 10%.   
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6. Conclusion 

New investment opportunities have been made possible by the renewable 

energy sector's fast growth. The Paris Climate Agreement of 2015's worldwide 

commitment to a climate-resilient economy is predicted to have a positive impact on 

the renewable energy sector, attracting a wide spectrum of investors. This study 

investigates whether investment styles in wind and solar sector with technology-

specific considerations incentivize portfolio investors. We use two criteria to create 

high and low score portfolios using 150 global large capitalization stocks in 

renewable energy and sector classified by Bloomberg Industry Classification Systems 

(BICS). The sorting factors include green complexity score and purity score. The 

assessment of comparative return and risk-adjusted performance demonstrates that 

high score portfolios dominate their low counterparts. Our results also indicate that 

divestment of low green complexity country enhances portfolio performance and 

has incentives for investors. The comparative green complexity score in wind and 

solar suggests leading producers of these renewable energy products in the future. 

The knowledge accessible to investors as they strategically build their portfolios in 

the renewable energy industry is augmented by knowing which nations are more 

specialized in the manufacturing and manufacture of wind and solar items than 

other kinds of eco-friendly goods. 

Our results provide room for a more focused approach towards divesting 

from firms with lower technological density or specialized technologies in wind and 

solar industry. Considering the advantages of divestment and the generally improved 

risk-adjusted returns, Institutional investors from developed markets can 

legitimately explore international portfolio assets without going against their 

fiduciary obligations for responsible investing. These outcomes are also promising 

for fund managers who may allocate capital to technologically advanced and 

environmentally friendly investment vehicles to meet the financial objectives of 

investors who care about the environment. Finally, our findings ought to spur 

businesses to make investments in specialized technology for the renewable energy 

sector. We think that while investing in technologically advanced companies won't 

stop ecological degradation right away, it will undoubtedly help to preserve the 

health of the climate in the medium to long term. Overall, our study is important 

since it is one of few that examines the effects of divestiture in businesses with low 

technical density. The influence of a particular technology may be explored in more 

detail in future study, which can also take into account professionally managed 

portfolios 
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