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CHAPTER 1
INTRODUCTION

1.1Background

Bioethanol or Ethyl alcohol(C2HgOH) is flammable, low toxicity and colorless
liquid with lower boiling point (78.5°C) melting point (-114.5°C) and density (789
kg/m?) than water. Bioethanol can be produced by the hydrolysis and sugar
fermentation respectively. In Thailand, the raw materials for bioethanol production
consist of molasses (58%), cassava (38%), and cane juice (4%), as shown in Table 1.

Table 1. Thai Ethanol Installed Capacity (April 2021) [1 ]

Feedstock Number of plants Installed capacity (million liters/ day)
Molasses 10 2.60
Cassava 10 2.09
Cassava & Molasses 5 1.05
Cane juice 1 0.23
Total 26 5.97

In Thailand, bioethanol is primarily used as an additive to gasoline in order to
replace Methyl tert-Butyl Ether (MTBE). This blending process is known as "gasohol"
and is used to increase the octane and oxygen levels in gasoline, which can help to
reduce pollution emissions, decrease oversupply of agricultural produce, and
decrease the need for gasoline imports. The proportion of bioethanol blended with
gasoline can be 10%, 20%, or 85%, and is known as gasohol E10, E20, and E85,
respectively. Since October 2012, the Thai government has mandated the use of

gasohol E10 as the primary fuel in place of gasoline.

Currently, there is a growing trend of electric vehicles (EVs) in Thailand, largely

due to government subsidies for domestic EV manufacturing and overseas companies




planning to establish manufacturing bases in the country, as shown in Figure 1. EVs
are becoming increasingly popular due to their ability to reduce emissions, as they
do not produce any tailpipe emissions, which are a major source of pollution.
Additionally, they require less maintenance than traditional vehicles, as the electric
engine does not require the same level of maintenance as a traditional internal

combustion engine.

Passenger cars

Motorcycles Pick-ups
(with SRP £ THB 2 million or THB 2-7 million o 2

(with SRP < THB 150,000) (with SRP = THB 2,000,000)

No duty reduction/ No duty reduction/
exemption exemption

CBU:

Duty rate reduction for CBU imported under FTA

(From 80% to 0% - 60%)

¥ RRSP < THB 2 million v RRSP: THB 2-7 million

v Battery capacity = 10 kWh v Battery capacity 230 kWh

Excise tax reduction Excise tax reduction
WY No FTA utilization WY NoFTA utilization of 1% from 10% to 0%
Duty reduced 10 40% Duty reduced to ¢

9] FTActs ooy ren et 2‘:;&....:.. Excise subsidy** Excise subsidy**
Oy Dy st indicnd THB 18,000/unit THB 150,000/unit

Duty further reduced
for 40%

Goods imported under Goods imported under
an FTA at a duty rate of an FTA at a duty rate of
less than 40% loss than 20%
Duty oxempted

CBU & CKD:

Excise tax reduction from Excise subsidy** €BU and CKD :-;‘;“V-PMUM CKD
8% to 2% THB 70,000 unit or
THB 150,000 /unit

Figure 1. Government initiatives and incentives for EV adoption. [2 ]

From the previous paragraph, bioethanol in Thailand is currently facing a
number of challenges, including a decreasing demand for the product. However, any
oversupply of bioethanol can be used as raw material to produce value-added
chemical compounds such as ethylene, propene, ethylene glycol, acetone, and
acetic acid.

In "Decode the Future of Acetone" [3 ], the forecasted demand for the
acetone market in Thailand shows a CAGR of 7.12%. In 2020, the acetone market
demand stood at 174.77 thousand tons. The growth in demand is significantly driven

by the demand for Isopropyl Alcohol and Bisphenol A, both of which are compounds



used in end-use industrial products like pharmaceuticals, adhesives, cosmetics,
paints, and coatings. According to the "2023-2025 Thailand Industry Outlook" [4], the
forecasted demand for ethylene is expected to increase by around 3%. Furthermore,
Krungsri Research's "Thailand Industry Outlook 2023-2025" [4 ] states that the
demand for petrochemicals, including ethylene, will increase annually by around 3%.
As mentioned in the previous paragraph, acetone and ethylene are interesting
chemicals as value-added products derived from bioethanol. These chemicals can
be classified as bio-based chemicals, and they hold greater value than bioethanol
itself.

The advantages of acetone and ethylene production from bioethanol include:
1.Sustainability: Producing acetone and ethylene from bioethanol reduces
dependence on fossil fuels, such as petroleum, for their synthesis. This shift towards
renewable resources promotes a sustainable and circular economy.

2.Greenhouse gas emissions: The production of bioethanol results in lower
greenhouse gas emissions compared to traditional fossil fuel-derived processes. This
reduction in emissions contributes to the global effort to combat climate change.
3.Energy security: By using domestically-produced bioethanol as a feedstock for
acetone and ethylene, countries can reduce their reliance on imported petroleum,
improving energy security and promoting self-sufficiency.

4 Rural development: Bioethanol production supports the agricultural sector by
providing a market for crops and crop residues. This can lead to increased income for
farmers and stimulate rural economic development.

5.Waste reduction: Converting agricultural waste and byproducts into valuable
chemicals like acetone and ethylene helps to reduce waste and improve resource
efficiency.

6.Biodegradable products: Acetone and ethylene derived from bioethanol are
chemically identical to those produced from petroleum. However, their renewable
origin can make the end products more appealing to environmentally conscious
consumers who prefer biodegradable or bio-based products.

7.Technological advancements: The development of new technologies and

processes to produce acetone and ethylene from bioethanol encourages innovation



and can lead to further improvements in efficiency, cost, and environmental
performance. The focus of this study is on the production of acetone and ethylene
as a value-added product using bioethanol.

Acetone has a wide range of applications in various industries, including:

1.Personal care industry: Acetone is used in nail polish and other cosmetic products.
2.Pharmaceutical industry: Acetone is used as a solvent and excipient.

3.Textile industry: Acetone is used as a degreaser.

4.Electronics industry: Acetone is used to clean components to achieve the
maximum performance.

5.Environmental industry: Acetone is used to remove surface oil spills.

Ethylene also has a wide range of applications in various industries, including:
1.Production of polyethylene: Ethylene is the primary feedstock for the production of
polyethylene, which is the world's most widely used plastic.

2.Manufacturing of other chemicals: Ethylene is used in the production of other
chemicals such as ethylene oxide, ethylene glycol, and vinyl chloride.

Producing acetone and ethylene from ethanol can lead to higher-value
products with versatile applications across various industries, potentially meeting
increasing future demand. According to the Ministry of Energy [5 ], the price of
ethanol is USD 1.05 per kilogram. Meanwhile, the domestic price for acetone [6 ] is
USD 2.91 per kilogram, and for ethylene [7 ], it is USD 12.77 per kilogram.

In this study, acetone and ethylene production from ethanol will be simulated by
using AspenPlus®V11 to analyze process simulation condition, economic feasibility

and energy utilization consumption which compare in 2 cases.
1.2 Research Objectives

The purpose of this study is to design and simulate the process of acetone
and ethylene production from ethanol by using AspenPlus®V11 to analyze the
process conditions, economic feasibility, and energy evaluation for two cases, one
with ZnO catalyst and ZnO-Ca0 catalysts, while keeping the operating conditions the

Same.



1.3 Research scopes

1.3.1 To simulate the process of acetone and ethylene production from bioethanol
using Aspen Plus® V11, and analyze the results for both production cases.
1.3.2 To assess the economic feasibility of acetone and ethylene production from
bioethanol using Aspen Plus® V11, and compare the results for the two production
cases.
1.3.3 To analyze the energy consumption and utilization in acetone and ethylene
production from bioethanol using Aspen Plus® V11, comparing the results for both
production cases.
1.3.4 To develop a simulation model for ethylene and acetone production from
bioethanol that incorporates heat exchanger networks, aiming to optimize energy
efficiency.

By achieving these research scopes, the aim to identify which catalyst yields
better results and contribute to the development of sustainable and cost-effective

acetone and ethylene production methods.
1.4 Research benefits

1.4.1 The ability to scale up the process from laboratory to commercial scale, which
would enable large-scale production of acetone and ethylene from ethanol.

1.4.2 A better understanding of the unit operations and operating conditions
necessary to produce acetone and ethylene from ethanol.

1.4.3 An assessment of the feasibility of the process from both economic and energy

utilization perspectives.



1.5 Research methodology

Studying acetone and ethylene production from ethanol by using catalytic reaction

from literature review. (Lab scale)

Design the process from lab scale to commercial scale.

A

Simulate the process from designing commercial scale by using AspenPlus®

No

Economic analysis by using AspenPlus®

Yes

Discussion the results and conclusion of the process.




CHAPTER 2
THEORY AND LITERATURE REVIEW

This chapter offers an overview of the theoretical foundation pertinent to this
research. It encompasses descriptions of the properties of the compounds in focus—
acetone, ethylene, and ethanol. The chapter elucidates the reaction mechanism for
acetone and ethylene production from ethanol, reviews relevant literature on the
production of acetone and ethylene from ethanol, and details the separation

process used in the simulations for this study.

2.1 THEORY

2.1.1 Ethanol

Ethanol, also known as ethyl alcohol, is a clear, colorless, highly volatile, and highly
flammable chemical compound that easily dissolves in water, as shown in Table 2.
Ilts chemical formula is CoHg5OH (see Figure 2). It can be produced through the
fermentation of agricultural produce, resulting in a product called ethanol, or

through the hydration of ethylene.

/\OH

Figure 2 Chemical Structure of Ethanol [8 ]



Table 2 Physical and Chemical properties of ethanol [9 ]

Properties Value
Physical State Clear liquid
Appearance Colorless
Odor Mild, pleasant
Viscosity 1.20 cP ®20°C
Boiling Point 78°C

Freezing Point -114.1°C
Solubility Miscible
Specific Gravity 0.79 @20°C
Molecular Weight 46.0414

There are many chemicals produced using ethanol as a precursor for value-added

products, such as ethylene, BTX (an approximate stoichiometry of the global supply

of benzene, toluene, and xylenes), isobutene, propene, and acetone, as shown in

Figure 3.
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2.1.2 Acetone

Acetone, also known as propanone, is a clear, colorless, highly volatile, and highly
flammable chemical compound that easily dissolves in water, as shown in Table 3.
Its chemical formula is (CH3)2CO (see Figure 4). The most common production

method for acetone is through co-production in the cumene process.

0

A

Figure 4 Chemical Structure of Acetone [8]

Table 3 Physical and Chemical properties of acetone [10 ], [11 ]

Properties Value
Physical State Liquid
Appearance Colorless
Odor Pungent
Viscosity 0.36 cP @20°C
Boiling Point 56.08°C
Freezing Point -94.7°C
Solubility Miscible
Specific Gravity 0.7845 @20°C
Molecular Weight 58.079

In addition to its use in the chemicals, pharmaceutical, and textile industries,
acetone is also commonly used as a cleaning agent, nail polish remover, and
degreaser. The demand for acetone in these applications is driven by the consumer

market.
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Nowadays, bioacetone has been produced through ABE (acetone-butanol-
ethanol) fermentation, using carbohydrates such as starches and sugars and
Clostridium acetobutylicum or other related bacteria. Companies in Scotland (Celtic
Renewables), the US (Gevo), India (Godavari Biorefineries Ltd.), and China (Godavari
Biorefineries Ltd.) are involved in bioacetone production.[12 ]

2.1.3 Ethylene

Ethylene, also known as ethene, is a colorless gas at room temperature and has a
lower density than air, as shown in Table 5. It is highly flammable, and its chemical
formula is CoHg4 (see Figure 5). The most common method of producing ethylene is
through a process called steam cracking, which involves breaking down hydrocarbons

using high temperature and pressure.

Figure 5 Chemical Structure of Ethylene [13 ]
Table 4 Physical and Chemical properties of ethylene [14 ,15 ]

Properties Value
Physical State Gas
Appearance Colorless
Odor Sweet and musky
Viscosity 0.0103 cP @25°C
Boiling Point -103.7°C
Specific Gravity 0.978 @25°C
Molecular Weight 28.054

2.1.4 The reaction mechanism to produce acetone and ethylene from ethanol.

There are 2 pathways to produce acetone from ethanol with thermocatalytic
reactions.

The first pathway of acetone production from ethanol called “ketonization”.
Ketonization is a chemical process that converts a primary or secondary alcohol into
a ketone through the use of an oxidizing agent, such as concentrated sulfuric acid.

The reaction typically involves the addition of the oxidizing agent to the alcohol,



11

which leads to the formation of an intermediate aldehyde and then to a ketone.
Ketonization is used in the production of certain chemicals, such as acetone, and is
an important step in the industrial synthesis of certain compounds.
Ethanol is dehydrogenation to acetaldehyde and hydrogen.[16]
CH3CHOH  —» CH3CHO + Ho (2.1)
Ethanol is dehydration to ethylene and water. [16]
CH3CHOH ——» CaHg4 + H20 (2.2)
Acetaldehyde is oxidation to acetic acid. [16]
CH3CHO + HpO —» CH3COOCH + Hp (2.3)
Acetic acid is ketonization to acetone. [16]
2CH3COOH —» CH3COCH3 + CO2 + H20 (2.4)
The second pathway of acetone production from ethanol called “aldol

addition” Aldol addition is a chemical reaction that results in the formation of a new
carbon-carbon bond between two aldehyde or ketone molecules. This reaction
occurs through the nucleophilic addition of an enolate ion to an aldehyde or ketone
molecule, resulting in the formation of a B—hydroxy aldehyde or ketone. The
reaction is called an aldol addition because it leads to the formation of an aldol,
which is a molecule that contains both an aldehyde and an alcohol functional group.
Aldol additions are widely used in organic synthesis, as they provide a convenient
way to form carbon-carbon bonds and construct complex molecules.
Ethanol is dehydrogenation to acetaldehyde and hydrogen. [16]

CH3CHOH ——» CH3CHO + Hap (2.5)
Ethanol is dehydration to ethylene. [16]

CH3CHOH ——»  (CaHg + H20 (2.6)
Acetaldehyde is aldol addition to 3-hydroxybutanal as following. [16]

CH3CHO + CH3CH20H —— CH3CH(OH)CH2CHO + Hp  (2.7)
3-hydroxybutanal is decarboxylation and dehydrogenation to acetone. [16]
CH3CH(OH)CH2CHO + O [lattice] ——» CH3COCH3 + CO2 + Hp (2.8)
From equation (2.4) and (2.8) show the acetone production by the difference way of

reaction, the reactant and by-products as show in table5.



Table 5 The difference between acetone and ethylene production mechanism.

Details Ketonization Aldol Addition
Reactants CH3CH,OH, H20 CH3CHOH
By-products COg3, Hy CO2, Hz
Undesired products CoHag CaHa

2.2 Literature review

2.2.1 Reaction and Catalysts related to acetone and ethylene production.

From the section 2.1.3 the diversity of catalyst and operating conditions to produce

acetone from ethanol as table 6

12
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From Table 6, the catalyst with the highest ethanol conversion (100%)
consists of ZnO-CaO and ZnFe04. However, the catalyst life of ZnFez04 is less
than 24 hours, making the ZnO-CaO catalyst more desirable for achieving 100%
ethanol conversion to produce acetone. The next most efficient catalyst is
Lag 757153 MnO3with an ethanol conversion of 99%. However, this catalyst is
not commercially available and must be synthesized. Lanthanum and Strontium,
which are more costly than other more abundant elements, make up its
composition. Furthermore, the acetone yield of ZnO-Ca0 is higher than that of the
La0.7ST'0_3Mn03cataLyst, making it unsuitable for comparison with the ZnO-CaO
catalyst in acetone production. The next most efficient catalyst is ZnO, with an
ethanol conversion of 98.6% and acetone and ethylene yields of 40% and 50%,
respectively. This catalyst can be compared to the ZnO-CaO catalyst, as both are
commercially available and easily supplied. A comparison of the techno-economic
aspects of these catalysts can help determine which one is more cost-effective for

large-scale production of acetone and ethylene from ethanol.

The ZnO-Ca0 and ZnO catalysts are compared in two cases: the first case
involves the use of ZnO-Ca0 catalyst to produce acetone from ethanol, while the
second case employs ZnO catalyst to produce both acetone and ethylene from
ethanol. A literature review reveals that both catalysts have been synthesized, and
Temperature-Programmed Decomposition (TPD) has been used to analyze the effect
of calcination temperature on the activity and yield of ethanol conversion. Ethanol
and water, at concentrations of 36 wt% and 64 wt% respectively, were fed into a
fixed-bed reactor at atmospheric pressure. The reaction temperature was set at
400°C with a residence time of 0.435 seconds. The reactor was wrapped with an iron
sheet to prevent temperature fluctuations. The reactants and products from the

reactor were analyzed using gas chromatography.
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2.2.2 Methods for Separating Troublesome By-products.

In the second case study, which delves into the production of acetone and
ethylene from ethanol, a variety of conventional technologies are employed to
purify the gas phase. These technologies encompass adsorption, absorption-stripping,

membrane separation, and cryogenic distillation.

2.2.2.1 Adsorption technology

Adsorption is a process where a liquid or gas, termed the 'adsorbate’, accumulates on
the surface of a solid, which is referred to as the 'adsorbent'. This accumulation arises
due to diverse forces or interactions, such as Van der Waals forces, electrostatic
forces, covalent bonds, or even specific chemical reactions. The kind of interaction

depends on the type of adsorption, which can be either physical or chemical. [26]

Physical adsorption

Physical adsorption is typified by forces or interactions like Van der Waals or
electrostatic forces. This process is reversible and highly sensitive to temperature
changes. Contrary to some processes, physical adsorption doesn't necessitate
activation energy and can result in the creation of multiple layers on the adsorbent
surface. It demonstrates the highest efficacy at low temperatures and elevated

pressures. [26]

Chemical adsorption

Also known as chemisorption, chemical adsorption is driven by forces or interactions
such as covalent bonds or specific chemical reactions, culminating in the creation of
surface compounds. This process is irreversible, necessitates activation energy, and

results in the formation of a singular monolayer on the adsorbent's surface. It is most

effective at heightened temperatures. [26,27]
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Criteria to use Adsorption

While distillation and air stripping stand as the primary techniques for separating
components in liquid phases based on relative volatility, adsorption becomes a
favored method under distinct conditions. These include scenarios where the relative
volatility between pivotal components is minimal, the chief component in the feed
is of diminished value, and the desired product is present in sparse concentrations.
Moreover, situations where the boiling points of components overlap or when low
temperatures and high pressures are vital make adsorption a preferred choice.
Additionally, if there's potential heat-induced damage or alteration to components in
the feed, or challenges like chemical corrosion, unwelcome chemical reactions, or
situations prompting equipment fouling arise, adsorption becomes an attractive
remedy. Under the right circumstances, adsorption proves to be cost-efficient,
especially for mid-level throughputs and when there isn't a strict demand for ultra-
high purity. If the feed gas is inherently pressurized, adsorption's cost benefits amplify

significantly. [26]

CO2 Adsorption

Drawing from the study "CO2 adsorption by swing technologies and challenges on
industrialization" [28], various swing adsorption techniques including pressure swing
adsorption (PSA), temperature swing adsorption (TSA), vacuum pressure swing
adsorption (VPSA), and electrical thermal swing adsorption (ETSA) are utilized for CO2
adsorption. In PSA, CO3 is primarily adsorbed onto a solid adsorbent under high
pressure. This adsorption is then reversed by decreasing the pressure, typically to
atmospheric levels. In TSA, the adsorbent's ability to capture CO3 is temperature-
dependent. It exhibits greater adsorption at elevated temperatures, whereas other
gases like N consistently showcase low adsorption capacities across temperature
ranges. In TSA, the adsorbent's ability to capture CO7 is temperature-dependent. It

exhibits greater adsorption at elevated temperatures, whereas other gases like N
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consistently showcase low adsorption capacities across temperature ranges. VPSA,
alternatively known as Vacuum Swing Adsorption (VSA), typically operates at higher
feed temperatures during the adsorption phase and undergoes recovery at or below
atmospheric pressures. ETSA, as introduced by Fabuss and Dubois, serves as an
enhancement to the TSA method, especially when deploying hot gas. In contrast to
TSA, which employs hot gas as its heat source, ETSA capitalizes on the Joule effect
by channeling electricity through the adsorption column. For this process to be
effective, the adsorbent must possess electrical conductivity. By applying a low-
voltage electric current, CO3 is released from the adsorbent. Preliminary assessments
suggest that ETSA may offer a more cost-effective strategy for CO» capture than its

traditional counterparts. [28]

2.2.2.2 Absorption and Stripping technology

Absorption and stripping are opposite processes in which gases or contaminants are
transferred between the liquid and gas phases. While absorption entails the
solubilization of a gas component into a liquid, stripping involves moving a
contaminant from a liquid to a gas phase. Absorption can be classified into two

types: physical absorption and chemical absorption. [26]
Physical Absorption

Physical absorption is primarily based on solubility differences. It involves the
removal of a gaseous component due to its differential solubility between the gas
and liquid phases. There isn't a chemical reaction between the gas and the solvent;

instead, the gas simply dissolves into the solvent. [26]
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Chemical Absorption

Chemical absorption requires a chemical reaction between the gas to be removed
and a compound present in the liquid solvent. As a result of this reaction, the gas

remains in solution. [26]

CO2 Absorption

In physical absorption, the solubility of CO2 in a solvent increase under high pressure
within a gas-liquid contactor. When this solvent is then moved to a low-pressure
flash tank, CO2 bubbles form and release. This action initiates the desorption
process, eventually reaching equilibrium where the liquid is no longer supersaturated
with CO2. [29] Conversely, in chemical absorption, CO2-rich flue gas enters at the
bottom of the absorber, flowing counter-currently to the lean liquid solvent. As they
interact, chemical reactions take place between CO2 and the solvent. The resulting

purified exhaust gas exits from the top of the column, being directed to the stack.

[30]

2.2.2.3 Membrane Technology

A membrane is a semi-permeable barrier between two phases, selectively restricting
molecule movement. While the barrier can be solid, liquid, or gas, its selectivity
ensures separation. Separation mechanisms include size exclusion, differing diffusion
rates, electrical charge, and solubility variations. Unlike methods relying on

equilibrium, membrane separation is driven by an external force.[26]

For the separation of gas mixtures where both the feed and permeate streams are in
the gas phase, the driving force is the difference in partial pressure. The membrane

used is usually a dense film, and the transport method is sorption—diffusion. For
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polymer materials below their glass transition temperature, the "dual-mode”

transport model is commonly applied.[26]

2.2.2.4 Cryogenic distillation technology

Cryogenic distillation separates components from a gas stream at extremely low
temperatures and under high pressure based on their boiling points or relative
volatility. Components with lower boiling points are collected at the top, while those
with higher boiling points settle at the bottom as liquid. The column's efficiency is
influenced by its operating temperature and pressure. The column usually operates
in a two-phase region, with liquid flowing downwards and vapor rising counter-

currently. The separation's mass transfer primarily occurs during the vapor-liquid in

Acetone and ethylene are produced as described in the second case. The
chemical reactions mechanism is detailed from equation (2.1) to (2.4). From these
equations, it is evident that CO2 and Hy are by-products. To purify ethylene (C2Hg),
both reactive absorption and cryogenic distillation are considered. Reactive

absorption (or chemical absorption) is favored for CO2 separation for several reasons:

1.Cryogenic Distillation operates under high pressure and low temperatures, leading

to increased utility costs

2.Membranes, while a potential solution for CO» capture, face challenges in
performance, real-world applicability, economic viability, integration, and necessitate

enhanced collaboration between power plants and membrane developers.[33]

3.Adsorption is effective only at low CO2 concentrations, and the sorbent utilized is

not optimal for CO5 capture.[34]

To separate CO32, the Reactive Absorption-Stripping method is employed. During the
absorption stage, a reaction between CO2 and the MEA (Monoethanolamine)

solution facilitates the transfer of CO» from the gas phase to the liquid phase.
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Conversely, in the stripping stage, CO2 is released from the MEA solution. The

reaction mechanism between CO3 and MEA is presented in equations (2.9) to

(2.13).[30]

Chemical Reactions in reactive absorption

2H,0 =H301 + OH™ (2.9)
MEA" + 102 H301 + MEA (2.10)
HCO3™ +H,0= H30% + CO3%~ (2.11)
COp + MEA + Ho0 = MEACOO~ + H;0% (2.12)
co,+ OH- & HCO5~ (2.13)

Equations (2.9) to (2.11) describe the equilibrium reactions from the reactive
absorption. The coefficients of the equilibrium constants for these reactions are
presented in equation (2.14) and can be found in Table 7. On the other hand, the
reversible kinetic reactions are outlined in equations (2.12) and (2.13), with their
respective kinetic parameters detailed in Table 8.

The temperature dependence equation for reaction (2.9) to (2.11).[35]

B
K; = exp (A+2+ C In(T) + DT) (2.14)



Table 7 Coefficients of equilibrium constants of equation (2.14) [35]
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Equation K; A B C D Temperature(K)
(2.9) K59 132.899 | -134459 | -22.4773 0 273-498
(2.10) K5 10 2.1211 | -8189.38 0 -0.007484 273-323
211) | Kyqq | 216049 | -12431.7 | -35.4819 0 273.498

Table 8 kinetic parameter [30]

Forward reaction Reverse reaction Order of

Equation kofj Ej kofj Ej rate law

[kmol/(mA3 s)] [cal/mol] [kmol/(mA3 s)] | [cal/mol] expression

(2.12) 9.77(101710) 9855.8 3.23(10719) 15655 and

(2.13) 4.32(101\13) 13249 2.38(10717) 29451 an

Cryogenic distillation is utilized to purify ethylene. This method can achieve

an ethylene purity of over 99%. It is effective in separating gas mixtures and can be

employed to purify ethylene across various scales.[36]
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CHAPTER 3

Methodology

This chapter provides an overview of the study's design scope, detailing the
feed preparation process and presenting a preliminary design with a block flow
diagram. It includes a thorough process description, complete with a process flow
diagram, and conducts an economic analysis. This analysis encompasses cost
assumptions for raw materials, catalysts, and utilities, as well as product valuations,
all essential for calculating economic feasibility. Additionally, it introduces an

economic index to gauge the potential for investment.
3.1 Design Scope

In chapter 2, the operating conditions for the study were set at 400°C and 1
atm, and the ZnO-Ca0 catalyst and ZnO catalyst were chosen for techno-economic
comparison. The ZnO-Ca0O catalyst with a 9:1 mole ratio demonstrated 100% ethanol
conversion, 91% acetone yield, and 9% ethylene yield. In contrast, the ZnO catalyst
achieved 98.6% ethanol conversion, 40% acetone yield, 50% ethylene yield, and 8%
acetaldehyde vyield.

Table 9 Catalysts, conversion of ethanol and yield of product with 400°C and 1 atm

operations.
ltem | Catalyst | Conversion of ethanol Yield of product
1. Zn0O-Ca0 1 0.91 of acetone and 0.09 of ethylene
2. Zn0O 0.986 0.4 of acetone, 0.5 of ethylene and 0.08 of
acetaldehyde

From table 6. The definition of parameters can explain for using in mass balance as

equation (3.1) and (3.2)

Conversion = moles of ethanol reacted (3.1)

moles of ethanol feed

Yield = moles of ethanol convert to product (3.2)

moles of ethanol feed
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3.2 Feed Preparation

To produce acetone and ethylene from ethanol, the feed stream consists of
ethanol and water obtained from an outsource that contains 95% ethanol. Before
passing to the reactor, the feed stream is adjusted to a composition of 36 wt%
ethanol and 64 wt% water. To study the techno-economics and feasibility of the
process, two cases were considered. In the first case, acetone production from
ethanol was studied using a ZnO-CaO catalyst to produce 50,000 tons/year of
acetone. The feed stream to the reactor for this case was 242,095.07 tons/year, with
a composition of 36 wt% ethanol and 64 wt% water. In the second case, both
ethanol and ethylene were produced. To facilitate comparison of the two cases, the
feed stream to the reactor was held constant at 242,095.07 tons/year, which

corresponds to the same feed composition of 36 wt% ethanol and 64 wt% water.
3.3 Preliminary Design

The conceptual design for producing acetone and ethylene from ethanol was
studied for two cases including:

3.3.1 Feed preparation system

The fresh feed stream of 95% ethanol and any accompanying water is stored
at ambient temperature and pressure (1 atm and 30°C). This stream is then
combined with the recycle stream and fed to the reactor, resulting in @ mass fraction
of 0.36 ethanol and 0.64 water. The annual quantities of ethanol and water involved
in this process are 87,154.23 tons/year and 154,940.84 tons/year, respectively.

3.3.2 Reactor system

Following the feed preparation system, both the ethanol and water streams
are introduced into the reactor, where they undergo the critical ketonization
reactions outlined in equations (2.1) to (2.4). The reactor is operated at 400°C and 1
atm, and two different catalysts are used: ZnO-Ca0 in the first case and ZnO in the
second. The specific choice of operating conditions and catalysts are based on their
ability to promote the desired reaction pathways and achieve optimal conversion

rates.
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After the reactor system, all of the chemicals, including both products and
reactants, are in the form of gas or vapor. When they pass through the phase
separation system, the gas phase containing ethylene, CO2, and Hy will separate into
the gas phase, while the vapor phase containing acetone and water (in the first case)
or acetone, water, acetaldehyde, and unreacted ethanol (in the second case) will
separate into the liquid phase.

3.3.4 Gas separation system

In the second case, the vapor phase from the phase separation system will
separate into the liquid phase, while the gas phase will pass through a gas separation
system to separate the ethylene.

3.3.5 Liquid separation system

To purify and separate acetone, the liquid phase from the phase separation
system will pass through a liquid separation system, which will separate acetone
from water (in the first case) or from unreacted ethanol (in the second case,
assuming an ethanol conversion of 0.986), as well as from water and acetaldehyde.

3.3.6 Recycle system

Water and ethanol are the reactants in this process. To reduce the amount of
fresh feed water required in the first case, the water from the liquid separation
system and the ethanol and water from the liquid separation system in the second
case will pass through a recycle system, which allows for the reuse of these

reactants
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3.4 Process Description

In this work, there are two cases. The first case involves acetone production
from ethanol using a ZnO-Ca0 catalyst, while the second case involves the
production of acetone and ethylene from ethanol using a ZnO catalyst. Both of
these cases were simulated using the Aspen Plus V11 program for this research.

Figure 8 depicts the process of synthesizing acetone from bioethanol using a
Zn0O-Ca0 catalyst. A fresh ethanol feed (ETOH-F) with a 95% concentration, water
(WATER-F), and a recycle stream (RECYCLE) are merged in mixer M-1 to create a
consistent stream. Annually, this stream consists of 87,154.23 tons of ethanol and
154,940.84 tons of water, and it leads to the production of 50,000 tons of acetone.
Prior to entry into the reactors R-1, R-2, and R-3, the mixture is progressively
preheated in heat exchangers E-1 and E-2 to a temperature of 400°C. The resulting
mixture, now containing acetone, water, ethylene, CO2, and Hp, is unified again in
mixer M-2. This mixture is then passed through compressed in compressor C-1 to
increase the pressure. It is then channeled through heat exchangers E-3 and E-4 for
cooling down the stream. Once it exits heat exchanger E-4 the product stream is
conveyed to phase separator S-1, which segregates the vapor and liquid phases. The
vapor phase is removed (PURGE-1), while the liquid phase, containing acetone, water,
and trace amounts of ethylene, CO2, and Ha, is collected. This liquid is then sent
through valve V-1 to decrease its pressure and subsequently fed into the distillation
column S-2. From the top of the column, minor quantities of ethylene, CO5, and Ha
are eliminated (PURGE-2), and the acetone is refined to a desired purity of 95%.
Water is drawn from the bottom of the distillation column and is pressure-reduced
via a valve before being looped back into the process as part of the recycle stream.

Figures 9 to 12 illustrate the process of producing acetone and ethylene from
bioethanol using a ZnO catalyst. The ethanol feed (ETOH-F) at a 95% concentration
is mixed with water (WATER-F) and a recycle stream (RECYCLE1) in mixer M-1, creating
a uniform stream. This approach is consistent with the process depicted in Figure 6

(Case 1), which uses a ZnO-CaO catalyst, allowing for direct comparisons of feed
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amounts for investment feasibility studies. Before entering reactors R-1, R-2, R-3 and
R-4, the mixture is sequentially preheated in heat exchangers E-1 through E-2 until it
reaches 400°C. The post-reaction output—including ethanol, water, acetone,
acetaldehyde, ethylene, CO2, and Hp—is consolidated in mixer M-2. This product
stream is then compressed in compressor C-1, which increases the pressure. The
pressurized vapor then cools by passing through heat exchangers E-3, which
facilitates a heat exchange—cooling the product stream while concurrently warming
the cooling water stream and pass through phase separator S-1. The heavier bottom
stream from S-1 is pressurized by pump P-3 before moving on to mixer M-4. The
lighter top stream (vapor phase) from S-1 is directed into the reactive absorption
column (ABSORP). In mixer M-3, a 90% monoethanolamine (MEA) solution (MEA-F),
additional water (WATER-F2), and another recycle stream (RECYCLE2) are combined
and introduced at the top of ABSORP in a liquid phase. The vapor phase from S-1
enters the bottom of ABSORP, where the CO2 reacts with MEA, separating from the
vapor phase. After absorption, the CO2-depleted bottom stream is pressurized by
pump P-1 and sent to the stripping column (STRIPPER) for MEA regeneration. The
stream exiting STRIPPER is further pressurized by pump P-2 and rerouted through
heat exchanger E-5, then proceeds to phase separator S-12, where the liquid phase is
drained from the bottom, and the vapor phase is cooled in heat exchangers E-6 with
cooling water before passing through mixer M-3 as RECYCLEZ2, which contains water
and MEA. At the top of ABSORP, trace amounts of CO2 are compressed by C-2 and
cooled in E-4 with cooling water before entering to phase separator S-2. The output
goes to phase separator S-2, where the liquid phase joins the flow in mixer M-4, and
the vapor phase enters distillation column S-3. In S-3, the heavier bottom stream
merges with the contents from M-4, while the lighter top stream is compressed by C-
3, cooled in E-7 with chilled water, and then directed to phase separator S-4. The
liquid phase from S-4 is depressurized through valve V-1 and routed to mixer M-4.
Concurrently, the lighter top output is pressurized by C-4 and conveyed to cryogenic
distillation columns S-5 to S-7, where ethylene is purified to 99% purity. The stream

from mixer M-4 enters distillation columns S-8 to S-10 to concentrate the acetone to
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95%. Finally, the heavy stream from the bottom of S-10 is depressurized via valve V-
3 and processed through phase separator S-11. The vapor phase from S-11 is purged,
and the liquid phase is recycled back to mixer M-1.
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3.5 Economic analysis

36

In this study, Table 10 lists the cost assumptions for raw materials, products,

and catalysts used in the feasibility calculations, while Table 11 outlines the utility

cost assumptions for these calculations.

Table 10 Costs of Raw Materials, Products, and Catalysts

ltem Detail Cost Unit Reference

1. Ethanol 95% 1.05 USD/kg (5]

2. Acetone 95% 291 USD/kg (6]

3. Ethylene 99% 12.77 USD/kg (7]

a. Water 0.6943 usb/m3 [37]

5. MEA 90% 2.4592 USD/kg [38]

6. ZnO catalyst 4287 USD/ton [39]

7. CaO catalyst 67.16 USD/ton [40]

Table 11 Costs of Utilities
Case | Case |l
ltem Utility Unit (ZnO-CaO (ZnO catalyst) | Reference
catalyst)
Cost
1. Electricity USD/kWh 0.0775 0.0775 Aspen
2. Cooling water usb/m? 0.0317 0.0317
3. Medium pressure USD/GJ 2.78 2.78
steam
4. | High pressure steam | USD/ton - 25.77 [41]
5. Chilled water USD/ton 0.185 0.185
6. Natural Gas UsD/GJ 3.16 3.16
7. Propylene Usbh/GJ - 43.2 [42]
refricerant

8. | C1/C2/C3 refrigerant | USD/GJ - 135 [42]
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In the final analysis, sizing of unit operations, including cost estimations for all
equipment in the acetone and ethylene production processes, was performed for
both cases using Aspen Process Economic Evaluation. This analysis yielded the Net
Present Value (NPV), Internal Rate of Return (IRR), Profitability Index (PI), and Payback
Period (PP)

Net present value (NPV) [43]

NPv= 2N 0(1+r)t (3.3)

CFt represents the anticipated net cash flow at time t. For this project, the
projected lifespan (N) is assumed to be 20 years, and the discount rate (r) is assumed
to be 10%. An NPV greater than 0 indicates that the project is financially viable and
potentially worth investing in.

Internal Rate of Return (IRR) [44]

IRR= =0 3.4

Xt=o (1+1RR)t (3.4)
An IRR greater than r (discount rate) indicates that the project is financially viable and
potentially worth investing in.

Profitability Index (PI) [45]

o Present Value (PV)of Future Cash Flows (3.5)
- Initial Investment '

An Pl greater than 1 indicates that the project is financially viable and potentially

worth investing in.
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CHAPTER 4

Results and Discussion

This chapter includes an explanation and discussion of the study's results. It
covers six topics: evaluation of raw material utilization, simulation results, heat

recovery systems, and economic assessment.
4.1 Evaluation of raw material utilization

In this study, mass balance calculations are utilized to evaluate the amount
of feed before simulating the process using Aspen Plus® V11. These calculations
consider the stoichiometric ratios of the chemical reactions from Equations (2.1) to
(2.4), as well as the conversion and yield data from Table 6, with item 1 pertaining to
Case | and item 2 to Case Il. In table 12 and 13 presents mass flow rates to the mixer
in Case | and Case Il as determined by the mass balance calculations and the
simulation results.

Table 12 Comparison of the mass flow rates to the mixer in Case | as determined by

the mass balance calculations and the simulation results.

Mass balance Simulation
Stream name Substance calculations results.
Mass flowrate (tons/year)
ETOH-F Ethanol 87,154.23 87,156.097
Water 4,587.06 4,587.163
WATER-F Water 7,860.84 10,375.594
Water 142,492.95 139,857.334
Acetone - 3.3654E-09
RECYCLE Ethylene - 1.28654E-41
CO2 - 1.00691E-32
Ho - 5.50262E-47




39

Table 13 Comparison of the mass flow rates to the mixer in Case Il as determined by

the mass balance calculations and the simulation results.

Mass balance Simulation
Stream name Substance calculations results.
Mass flowrate (tons/year)
ETOH-F Ethanol 85,934.07 86,822.6254
Water 4,522.85 4,569.61186
WATER-F Water - 146,113.8054
Ethanol 1,220.16 333.4336
RECYCLE1 Water 150,418.01 4256.5057
Acetone - 8.46082E-06

Table 12 shows discrepancies between the substances and mass flow rates in
mass balance calculations compared to simulation results. This variance stems from
the assumption in mass balance calculations that separation is perfect, meaning that
all water in the process can be completely separated and recycled as the recycle
stream (RECYCLE). However, the simulation results indicate that water is present not
only in the recycle stream but also as a component in other streams. Additionally,
there are trace amounts of acetone, ethylene, CO2, and Hy in the recycle stream,

which suggests that the separation is not entirely perfect.

Table 13 shows discrepancies between the substances and mass flow rates in
mass balance calculations compared to simulation results. This variance stems from
the assumption in mass balance calculations that separation is perfect, meaning that
all water and ethanol in the process can be completely separated and recycled as
the recycle stream (RECYCLE1). However, the simulation results indicate that water
and ethanol is present not only in the recycle stream but also as a component in
other streams. Additionally, there are trace amounts of acetone in the recycle

stream, which suggests that the separation is not entirely perfect.




4.2 Simulation results

From process flow diagram in chapter 3 in section 3.4, stream results via
Aspen Plus® V11. In table 14 presents acetone production from bioethanol with
ZnO-Ca0 catalyst (Case 1) and table 15 presents acetone and ethylene production

from bioethanol with ZnO catalyst (Case II).
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4.3 Performance analysis

The complexity of the process in the first case is lower than that of the
second case. In the first case, the only product is acetone, which can be purified
through the distillation process. In contrast, the second case involves producing
ethylene and acetone. To separate ethylene from CO2 and Hp, absorption-stripping
is employed, using an amine-based solution to isolate CO5. Cryogenic distillation, a
low-temperature distillation technique, is then used to separate ethylene and Hs.
Meanwhile, acetone is purified using the distillation process. Consequently, producing
acetone and ethylene from bioethanol is more complex than producing acetone

alone from bioethanol.
4.4 Heat recovery system

In Case | with heat recovery, as shown in Figure 13, the process of
synthesizing acetone from bioethanol using a ZnO-CaO catalyst. A fresh ethanol feed
(ETOH-F) with a 95% concentration, water (WATER-F), and a recycle stream (RECYCLE)
are merged in mixer M-1 to create a consistent stream. Annually, this stream consists
of 87,154.23 tons of ethanol and 154,940.84 tons of water, and it leads to the
production of 50,000 tons of acetone. Prior to entry into the reactors R-1, R-2, and R-
3, the mixture is progressively preheated in heat exchangers E-1 to E-4 to a
temperature of 400°C. The resulting mixture, now containing acetone, water,
ethylene, CO2, and Hap, is unified again in mixer M-2. This mixture is then passed
through heat exchanger E-1, which facilitates a heat exchange: cooling the product
stream while concurrently warming the feed stream. After leaving heat exchanger E-
1, the product stream is still in vapor form. To initiate a phase change to both liquid
and vapor (binary phase), the vapor is compressed in compressor C-1 to increase the
pressure. It is then channeled through heat exchangers E-2 and E-3 for additional
heat exchange with the feed stream, resulting in further cooling. The cooling
continues in heat exchangers E-5 and E-6 via heat exchange with cooling water and
chilled water, respectively. Once it exits heat exchanger E-6, the product stream is
conveyed to phase separator S-1, which segregates the vapor and liquid phases. The

vapor phase is removed (PURGE-1), while the liquid phase, containing acetone, water,
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and trace amounts of ethylene, CO2, and Ho, is collected. This liquid is then sent
through valve V-1 to decrease its pressure and subsequently fed into the distillation
column S-2. From the top of the column, minor quantities of ethylene, CO2, and Hp
are eliminated (PURGE-2), and the acetone is refined to a desired purity of 95%.
Water is drawn from the bottom of the distillation column and is pressure-reduced
via a valve before being looped back into the process as part of the recycle stream.
In case Il with heat recovery, as shown in Figure 14 to 17, the process of
producing acetone and ethylene from bioethanol using a ZnO catalyst. The ethanol
feed (ETOH-F) at a 95% concentration is mixed with water (WATER-F) and a recycle
stream (RECYCLE1) in mixer M-1, creating a uniform stream. This approach is
consistent with the process depicted in Figure 6 (Case 1), which uses a ZnO-CaO
catalyst, allowing for direct comparisons of feed amounts for investment feasibility
studies. Before entering reactors R-1, R-2, R-3 and R-4 f , the mixture is sequentially
preheated in heat exchangers E-1 through E-4 until it reaches 400°C. The post-
reaction output—including ethanol, water, acetone, acetaldehyde, ethylene, CO5,
and Ha—is consolidated in mixer M-2. This product stream is then cooled in heat
exchanger E-5, simultaneously preheating the stripping stream, but it remains in
vapor form. To convert the vapor to a binary liquid-vapor phase, it is compressed in
compressor C-1, which increases the pressure. The pressurized vapor then cools by
passing through heat exchangers E-1 and E-3, which facilitates a heat exchange—
cooling the product stream while concurrently warming the feed stream. The cooling
continues in heat exchangers E-6 and E-7, through heat exchange with cooling water
and chilled water, respectively, before entering phase separator S-1. The heavier
bottom stream from S-1 is pressurized by pump P-3 before moving on to mixer M-4.
The lighter top stream (vapor phase) from S-1 is directed into the reactive absorption
column (ABSORP). In mixer M-3, a 90% monoethanolamine (MEA) solution (MEA-F),
additional water (WATER-F2), and another recycle stream (RECYCLE2) are combined
and introduced at the top of ABSORP in a liquid phase. The vapor phase from S-1
enters the bottom of ABSORP, where the CO3 reacts with MEA, separating from the

vapor phase. After absorption, the CO2-depleted bottom stream is pressurized by
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pump P-1 and sent to the stripping column (STRIPPER) for MEA regeneration. The
stream exiting STRIPPER is further pressurized by pump P-2 and rerouted through
heat exchanger E-5, then proceeds to phase separator S-12, where the liquid phase is
drained from the bottom, and the vapor phase is cooled in heat exchangers E-9 and
E-10 with cooling water before passing through mixer M-3 as RECYCLE2, which
contains water and MEA. At the top of ABSORP, trace amounts of CO5 are
compressed by C-2 and cooled in E-2. The output goes to phase separator S-2,
where the liquid phase joins the flow in mixer M-4, and the vapor phase enters
distillation column S-3. In S-3, the heavier bottom stream merges with the contents
from M-4, while the lighter top stream is compressed by C-3, cooled in E-8 with
chilled water, and then directed to phase separator S-4. The liquid phase from S-4 is
depressurized through valve V-1 and routed to mixer M-4. Concurrently, the lighter
top output is pressurized by C-4 and conveyed to cryogenic distillation columns S-5
to S-7, where ethylene is purified to 99% purity. The stream from mixer M-4 enters
distillation columns S-8 to S-10 to concentrate the acetone to 95%. Finally, the
heavy stream from the bottom of S-10 is depressurized via valve V-3 and processed
through phase separator S-11. The vapor phase from S-11 is purged, and the liquid

phase is recycled back to mixer M-1.
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Table 16 presents a comparison between Case | and lI, highlighting the differences in

scenarios that include a heat recovery system and those that do not.

Utility Consumption Cost of utility
(GJ/hr) consumption (USD/hr)
Case Utility With heat Without With heat Without
No. recovery heat recovery heat
system recovery system recovery
system system
Cooling water 10.64 72.74 4.02 27.50
Chilled water 4.66 1.15 3.04 0.75
Case | | Medium pressure - 52.59 - 146.20
steam
Natural Gas 9.03 8.57 28.53 27.07
Summary 24.33 135.05 35.59 201.52
Cooling water 8.33 60.01 3.15 22.68
Chilled water 4.80 0.42 3.12 0.27
Case |l High pressure : 62.02 - 351.05
steam
Natural Gas 24.00 8.59 75.71 27.14
Summary 37.13 131.04 82.00 401.14

Table 16 indicates that the process incorporating a heat recovery system is
more efficient than the process without one. This efficiency stems from the fact that
the heat recovery system facilitates heat transfer for both heating and cooling with
other streams in the process, reducing the reliance on external utilities for these

functions.
4.5 Economic assessment
In this study, Aspen Process Economic Analyzer is used for the economic

analysis. The assumption for Case | is the production of 50,000 tons/year of 95%
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acetone, with a feed stream to the reactor totaling 242,095.07 tons/year. This stream

has a composition of 36 wt% ethanol and 64 wt% water. In comparison, Case |l

maintains the same feed stream rate of 242,095.07 tons/year with an identical

composition of 36 wt% ethanol and 64 wt% water. However, the product in this case

includes both 95% acetone and 99% ethylene.

The economic assessment, including the costs of raw materials and catalysts,

as well as the product selling price, is presented in Table 10. The annual cost

estimation is provided in Table 17.

Table 17 Annual cost estimation

Case | Case |l
Detail With HR Without HR With HR Without HR
Annual Cost (USD/year)
Capital Cost 1,402,547.54 893,704.54 2,585,513.30 96,013.25
Total Raw 93,865,378.55 | 93,865,378.55 | 216,568,148.90 | 216,568,148.90
Materials Cost
Total Utilities | 6,910,833.91 38,700,669.88 | 34,176,321.36 167,122,211.45
Cost
Total 834,519.00 511,492.00 1,255,480.00 1,255,480.00
Operating
Labor Cost
Total 194,036.00 81,141.20 260,396.00 258,071.00
Maintenance
Cost
Total Product | 136,491,000.00 | 136,491,000.00 | 147,289,000.00 147,289,000.00
Sale
Summary 33,283,685.00 | 2,868,964.63 -107,556,859.56 | -238,010,924.60
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Table 17 shows that the summary value is positive which mean the value of
total cost is less than the value of total product sale in Case | both with heat
integration and without heat integration but in without heat integration the summary
is less than heat integration due to the higher cost of total utilities cost. In Case |l
both with heat integration and without heat integration, the summary value is
negative. This indicates that Case Il is less attractive for investment due to the
complexity of its processes. These include CO2 separation using MEA solution,
reactive absorption cause to the higher cost of raw material, a stripping column to
recovery MEA solution, and ethylene purification through cryogenic distillation, along

with higher utility costs for the condenser.

To evaluate the economic feasibility, key economic indicators such as Net
Present Value (NPV), Internal Rate of Return (IRR), Profitability Index (PI), and Payback

Period were analyzed, assuming a 10% discount rate, 20 years plant life as shown in

Table 18.
Table 18 key economic indicators
Ilte Detail Case | Case Il
m With HR Without HR With HR Without HR
1. NPV 171,634,839 106,224,738 (1,073,071,360) (2,293,171,391)
usb usb usb usb
2. IRR 34% 23% N/A N/A
3. P 3.17 1.71 (9.25) (21.93)
4. | Payback 5 years 8 years More than More than
Period 8 months 10 months 20 years 20 years

Table 18 shows that Case | is economically feasible: it has a positive Net
Present Value (NPV), an Internal Rate of Return (IRR) exceeding the assumed 10%
discount rate, a Profitability Index (PI) greater than 1, and a payback period of 5 years
and 8 months. In contrast, Case Il is deemed a less attractive investment due to its

payback period exceeding 20 years.
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CHAPTER 5
Conclusion and Recommendation

5.1 Conclusion

The increasing trend of electric vehicles (EVs) directly affects the bioethanol
market, as it leads to a decrease in gasohol demand. This decline in bioethanol
usage subsequently impacts domestic agriculture. In this study, we explore the shift
in the bio-based or organic chemical industry towards renewable raw materials,
aligning with global warming mitigation efforts. We use Aspen Plus® V11 for process
simulation, focusing on acetone and ethylene production. Additionally, the Aspen
Process Economic Analyzer is employed for economic analysis.

This study examines two cases, each producing different products: acetone
and ethylene. Both cases use the same amount of raw materials fed into the reactor
and operate under identical conditions (400°C and 1 atm). However, they differ in the
catalysts used: Case | employs a ZnO-CaO catalyst, while Case Il uses a ZnO catalyst.
This difference in catalysts directly affects the products obtained; Case | produces
only acetone, whereas Case Il yields both acetone and ethylene.

The first result involves evaluating raw material utilization by comparing mass
balance calculations with simulation results for both the fresh feed stream and the
recycle stream in each case. In Case |, the amount of ethanol in the feed stream is
nearly identical in both calculations and simulations, as the ethanol conversion rate
is 100%. However, the amount of water in the feed stream in the simulation results
is higher than that in the mass balance calculations. This discrepancy arises because
the separation process in the mass balance calculations is assumed to be ideal,
meaning it achieves perfect separation. Consequently, the only component in the
recycle stream in the mass balance calculations is water, and its quantity is higher
than in the simulation results. Due to the assumption of perfect separation in the
mass balance calculations, the quantities of both fresh feed (ethanol and water) and

the recycle stream in Case Il are lower than those in the simulation results.
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The second result focuses on the simulation outcomes and performance
analysis. Case II's process is more complex than Case |, as the reactor output includes
acetone, ethylene, water, COp, and Hy. However, ethylene, CO2, and Hy are present
only in trace amounts compared to acetone. In this case, phase separation is
employed to remove all traces of ethylene, CO2, and Hp, and a single distillation
column is used to purify acetone to 95%. In contrast, the product mixture of the
second case contains acetaldehyde, acetone, ethanol, ethylene, water, CO2, and Hj.
Here, ethylene and acetone are the major components, necessitating separate
purification processes. Ethylene purification involves first removing CO2 using a
reactive absorption and stripping column. To achieve 99% purity of ethylene,
cryogenic distillation is applied, with refrigerants in the condenser, significantly
increasing costs. Meanwhile, purifying acetone to 95% requires the use of more than
one distillation column.

The third result pertains to the heat recovery system. In both cases, it is
observed that the utility costs are higher for processes without a heat recovery
system. This is because, in a heat recovery system, heat exchangers transfer heat
between streams, reducing the need for external utilities.

The final result is economic assessment, key economic indicators in case |l
including NPV, IRR, Pl and payback period represent that this case is not interesting to
invest according to the complexity of the process is cause to the higher cost in all of
the section including capital cost, total raw material cost, total utilities cost, total

operating labor cost and total maintenance cost.
5.2 Recommendation

Considering the production process in the second case, using a cooling tower
at a low temperature (cryogenic distillation) may not be appropriate. This is because
using a utility for the low temperature is refrigerant which cause to the highly cost
that making the investment in the second case unfeasible in terms of payback.
Further studies might be needed to find other methods that could make the process

of producing pure ethylene more attractive for investment.
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APPENDIX A Calculation of ethanol required and feed amount

for acetone production from bioethanol with ZnO-CaO catalyst.

For Acetone production basis in 50,000 tons/year

Ethanol conversion is 1

Yield of ethylene(C2Hg4) is 0.09
Yield of acetone (C3HgO) is 0.91
Reaction#1

C2H50H

Mole Stoichiometric 1

Mass a6

Reaction#2

C2H50H +

Mole Stoichiometric2

Mass 92

From Reaction#1

H20

18

C2H4 + H20
1 1
28 18
= C3H60 +

1

58

consumed

C2H4  produced 0.09 mole C2H50H

H20

produced

co2

aa

0.09
0.09

mole

mole



r

From Reaction#2

C3H60 produced 0.455 mole C2H50H consumed 091 mole
H20 consumed 0.455 mole
CO2 produced 0.455 mole
H2 produced 1.82 mole
CONSUMED PRODUCED Feed
C2H50H H20 C2H4 H20 | C3H60 Co2 H2 C2H50H | H20
Mole 1 0.455 0.09 0.09 0.455 0.455 1.82 1 4.5597
Mass 46 8.19 2.52 1.62 26.39 20.02 3.64 a6 82.0746
Mass/Mass 1.74 0.31 0.1 0.06 1 0.76 0.14
of
acetone
Produce | 87,154.23 | 15,517.24 | 4,774.54 | 3,069.34 | 50,000 | 37,931.03 | 6,896.55
50,000
tons of
acetone

water feed to the reactor is (64% * 87154.23)/36% = 154,940.84 tons/year.

Ethanol feed is 87, 154.23 tons /year as 36% of feed and 64% of feed is water, the
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Finding mass flowrate of ethanol with feed (from literature reviews) at 674 K, 0.435

sec, 0.5 g catalyst and 5 ml reactor size

ethanol 1.59 kPa

water 7.25 kPa
sum

At ethanol

PV m/MW R T time

m (PVMW)/RT

Where P is 0.0157(0.1798) = 0.0028 atm

Vis 5 ml

Time 0.435 second

MW is 46 g/mol

Ris 0.08206 atml/mol K
Tis 674 K

0.0157

0.0716

0.0873

0.435

Thus the mass flowrate of ethanol is 2.69859E-05 g/sec

At water, the mass flowrate is 0.000219682 ¢/sec

Thus the total mass flowrate is 0.000246668 g/sec

From WHSV =
cat

where weight of catalyst is 0.5 ¢

Thus WHSV is 0.000493336 per sec or 1.776009274 per hr

atm

atm

sec

mole frac

0.1798

0.8202
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For this simulation results, the mass flowrate to reactor is 25,041.87 kg/hr thus weight

of catalyst is 14,100.08 kg or 14.1 tons.

From this study the catalyst ratio between ZnO and CaO is 9:1 by mol

Catalyst ratio ZnO Ca0  9:1 by mol
MW 81.406 56.077
mass 732.654 56.077
Mas ratio 0.93 0.07

From Wcat 14,100.08 kg
Mass (kg) ZnO Cao
13,113.08 987.01

Mass (tons)  13.11307726 0.987005815 is the amount of catalyst for using.

Finding the reactor diameter (D) for packed bed reactor
41
From G=—=
D2
Where G is mass velocity in kg/Tn2 S
M is mass flowrate in kg/hr
D is vessel diameter in m.
From the literature review the total mass flowrate is 0.000246668 g¢/sec or 0.000888
ke/hr with 4 mm diameter, thus the mass velocity is 70.70100611 I<g/Tn2 s
From the simulation results assume 4 packed bed reactors.

Thus the mass flowrate of each reactor is 6,260.47 kg/hr with 70.70100611 kg/Tn2 S

mass velocity, the diameter is 10.62076572 m.

Assume aspect ratio(L/D) is 1.5, thus L or length of packed bed reactor is 15.93 m.
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The volume of catalyst bed.
In this work the bulk density of catalyst of ZnO-CaO is 880 kg/m? and Wcat is
3,525.02 kg/reactor
Catalyst bed volume (Vpeq) = Wege/bulk density
Thus the catalyst bed volume is 3525.02/880 = 4 m?
The length of bed (Lpeg) = 4Vpeq/ TD?
Thus the length of bed is 0.05 m.
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